Add --hash-size switch to the linker
[deliverable/binutils-gdb.git] / bfd / hash.c
1 /* hash.c -- hash table routines for BFD
2 Copyright 1993, 1994, 1995, 1997, 1999, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Written by Steve Chamberlain <sac@cygnus.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "objalloc.h"
26 #include "libiberty.h"
27
28 /*
29 SECTION
30 Hash Tables
31
32 @cindex Hash tables
33 BFD provides a simple set of hash table functions. Routines
34 are provided to initialize a hash table, to free a hash table,
35 to look up a string in a hash table and optionally create an
36 entry for it, and to traverse a hash table. There is
37 currently no routine to delete an string from a hash table.
38
39 The basic hash table does not permit any data to be stored
40 with a string. However, a hash table is designed to present a
41 base class from which other types of hash tables may be
42 derived. These derived types may store additional information
43 with the string. Hash tables were implemented in this way,
44 rather than simply providing a data pointer in a hash table
45 entry, because they were designed for use by the linker back
46 ends. The linker may create thousands of hash table entries,
47 and the overhead of allocating private data and storing and
48 following pointers becomes noticeable.
49
50 The basic hash table code is in <<hash.c>>.
51
52 @menu
53 @* Creating and Freeing a Hash Table::
54 @* Looking Up or Entering a String::
55 @* Traversing a Hash Table::
56 @* Deriving a New Hash Table Type::
57 @* Changing the default Hash Table Size::
58 @end menu
59
60 INODE
61 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
62 SUBSECTION
63 Creating and freeing a hash table
64
65 @findex bfd_hash_table_init
66 @findex bfd_hash_table_init_n
67 To create a hash table, create an instance of a <<struct
68 bfd_hash_table>> (defined in <<bfd.h>>) and call
69 <<bfd_hash_table_init>> (if you know approximately how many
70 entries you will need, the function <<bfd_hash_table_init_n>>,
71 which takes a @var{size} argument, may be used).
72 <<bfd_hash_table_init>> returns <<FALSE>> if some sort of
73 error occurs.
74
75 @findex bfd_hash_newfunc
76 The function <<bfd_hash_table_init>> take as an argument a
77 function to use to create new entries. For a basic hash
78 table, use the function <<bfd_hash_newfunc>>. @xref{Deriving
79 a New Hash Table Type}, for why you would want to use a
80 different value for this argument.
81
82 @findex bfd_hash_allocate
83 <<bfd_hash_table_init>> will create an objalloc which will be
84 used to allocate new entries. You may allocate memory on this
85 objalloc using <<bfd_hash_allocate>>.
86
87 @findex bfd_hash_table_free
88 Use <<bfd_hash_table_free>> to free up all the memory that has
89 been allocated for a hash table. This will not free up the
90 <<struct bfd_hash_table>> itself, which you must provide.
91
92 @findex bfd_hash_set_default_size
93 Use <<bfd_hash_set_default_size>> to set the default size of
94 hash table to use.
95
96 INODE
97 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
98 SUBSECTION
99 Looking up or entering a string
100
101 @findex bfd_hash_lookup
102 The function <<bfd_hash_lookup>> is used both to look up a
103 string in the hash table and to create a new entry.
104
105 If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
106 will look up a string. If the string is found, it will
107 returns a pointer to a <<struct bfd_hash_entry>>. If the
108 string is not found in the table <<bfd_hash_lookup>> will
109 return <<NULL>>. You should not modify any of the fields in
110 the returns <<struct bfd_hash_entry>>.
111
112 If the @var{create} argument is <<TRUE>>, the string will be
113 entered into the hash table if it is not already there.
114 Either way a pointer to a <<struct bfd_hash_entry>> will be
115 returned, either to the existing structure or to a newly
116 created one. In this case, a <<NULL>> return means that an
117 error occurred.
118
119 If the @var{create} argument is <<TRUE>>, and a new entry is
120 created, the @var{copy} argument is used to decide whether to
121 copy the string onto the hash table objalloc or not. If
122 @var{copy} is passed as <<FALSE>>, you must be careful not to
123 deallocate or modify the string as long as the hash table
124 exists.
125
126 INODE
127 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
128 SUBSECTION
129 Traversing a hash table
130
131 @findex bfd_hash_traverse
132 The function <<bfd_hash_traverse>> may be used to traverse a
133 hash table, calling a function on each element. The traversal
134 is done in a random order.
135
136 <<bfd_hash_traverse>> takes as arguments a function and a
137 generic <<void *>> pointer. The function is called with a
138 hash table entry (a <<struct bfd_hash_entry *>>) and the
139 generic pointer passed to <<bfd_hash_traverse>>. The function
140 must return a <<boolean>> value, which indicates whether to
141 continue traversing the hash table. If the function returns
142 <<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
143 return immediately.
144
145 INODE
146 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
147 SUBSECTION
148 Deriving a new hash table type
149
150 Many uses of hash tables want to store additional information
151 which each entry in the hash table. Some also find it
152 convenient to store additional information with the hash table
153 itself. This may be done using a derived hash table.
154
155 Since C is not an object oriented language, creating a derived
156 hash table requires sticking together some boilerplate
157 routines with a few differences specific to the type of hash
158 table you want to create.
159
160 An example of a derived hash table is the linker hash table.
161 The structures for this are defined in <<bfdlink.h>>. The
162 functions are in <<linker.c>>.
163
164 You may also derive a hash table from an already derived hash
165 table. For example, the a.out linker backend code uses a hash
166 table derived from the linker hash table.
167
168 @menu
169 @* Define the Derived Structures::
170 @* Write the Derived Creation Routine::
171 @* Write Other Derived Routines::
172 @end menu
173
174 INODE
175 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
176 SUBSUBSECTION
177 Define the derived structures
178
179 You must define a structure for an entry in the hash table,
180 and a structure for the hash table itself.
181
182 The first field in the structure for an entry in the hash
183 table must be of the type used for an entry in the hash table
184 you are deriving from. If you are deriving from a basic hash
185 table this is <<struct bfd_hash_entry>>, which is defined in
186 <<bfd.h>>. The first field in the structure for the hash
187 table itself must be of the type of the hash table you are
188 deriving from itself. If you are deriving from a basic hash
189 table, this is <<struct bfd_hash_table>>.
190
191 For example, the linker hash table defines <<struct
192 bfd_link_hash_entry>> (in <<bfdlink.h>>). The first field,
193 <<root>>, is of type <<struct bfd_hash_entry>>. Similarly,
194 the first field in <<struct bfd_link_hash_table>>, <<table>>,
195 is of type <<struct bfd_hash_table>>.
196
197 INODE
198 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
199 SUBSUBSECTION
200 Write the derived creation routine
201
202 You must write a routine which will create and initialize an
203 entry in the hash table. This routine is passed as the
204 function argument to <<bfd_hash_table_init>>.
205
206 In order to permit other hash tables to be derived from the
207 hash table you are creating, this routine must be written in a
208 standard way.
209
210 The first argument to the creation routine is a pointer to a
211 hash table entry. This may be <<NULL>>, in which case the
212 routine should allocate the right amount of space. Otherwise
213 the space has already been allocated by a hash table type
214 derived from this one.
215
216 After allocating space, the creation routine must call the
217 creation routine of the hash table type it is derived from,
218 passing in a pointer to the space it just allocated. This
219 will initialize any fields used by the base hash table.
220
221 Finally the creation routine must initialize any local fields
222 for the new hash table type.
223
224 Here is a boilerplate example of a creation routine.
225 @var{function_name} is the name of the routine.
226 @var{entry_type} is the type of an entry in the hash table you
227 are creating. @var{base_newfunc} is the name of the creation
228 routine of the hash table type your hash table is derived
229 from.
230
231 EXAMPLE
232
233 .struct bfd_hash_entry *
234 .@var{function_name} (entry, table, string)
235 . struct bfd_hash_entry *entry;
236 . struct bfd_hash_table *table;
237 . const char *string;
238 .{
239 . struct @var{entry_type} *ret = (@var{entry_type} *) entry;
240 .
241 . {* Allocate the structure if it has not already been allocated by a
242 . derived class. *}
243 . if (ret == (@var{entry_type} *) NULL)
244 . {
245 . ret = ((@var{entry_type} *)
246 . bfd_hash_allocate (table, sizeof (@var{entry_type})));
247 . if (ret == (@var{entry_type} *) NULL)
248 . return NULL;
249 . }
250 .
251 . {* Call the allocation method of the base class. *}
252 . ret = ((@var{entry_type} *)
253 . @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
254 .
255 . {* Initialize the local fields here. *}
256 .
257 . return (struct bfd_hash_entry *) ret;
258 .}
259
260 DESCRIPTION
261 The creation routine for the linker hash table, which is in
262 <<linker.c>>, looks just like this example.
263 @var{function_name} is <<_bfd_link_hash_newfunc>>.
264 @var{entry_type} is <<struct bfd_link_hash_entry>>.
265 @var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
266 routine for a basic hash table.
267
268 <<_bfd_link_hash_newfunc>> also initializes the local fields
269 in a linker hash table entry: <<type>>, <<written>> and
270 <<next>>.
271
272 INODE
273 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
274 SUBSUBSECTION
275 Write other derived routines
276
277 You will want to write other routines for your new hash table,
278 as well.
279
280 You will want an initialization routine which calls the
281 initialization routine of the hash table you are deriving from
282 and initializes any other local fields. For the linker hash
283 table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
284
285 You will want a lookup routine which calls the lookup routine
286 of the hash table you are deriving from and casts the result.
287 The linker hash table uses <<bfd_link_hash_lookup>> in
288 <<linker.c>> (this actually takes an additional argument which
289 it uses to decide how to return the looked up value).
290
291 You may want a traversal routine. This should just call the
292 traversal routine of the hash table you are deriving from with
293 appropriate casts. The linker hash table uses
294 <<bfd_link_hash_traverse>> in <<linker.c>>.
295
296 These routines may simply be defined as macros. For example,
297 the a.out backend linker hash table, which is derived from the
298 linker hash table, uses macros for the lookup and traversal
299 routines. These are <<aout_link_hash_lookup>> and
300 <<aout_link_hash_traverse>> in aoutx.h.
301 */
302
303 /* The default number of entries to use when creating a hash table. */
304 #define DEFAULT_SIZE 4051
305 static size_t bfd_default_hash_table_size = DEFAULT_SIZE;
306
307 /* Create a new hash table, given a number of entries. */
308
309 bfd_boolean
310 bfd_hash_table_init_n (table, newfunc, size)
311 struct bfd_hash_table *table;
312 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
313 struct bfd_hash_table *,
314 const char *));
315 unsigned int size;
316 {
317 unsigned int alloc;
318
319 alloc = size * sizeof (struct bfd_hash_entry *);
320
321 table->memory = (PTR) objalloc_create ();
322 if (table->memory == NULL)
323 {
324 bfd_set_error (bfd_error_no_memory);
325 return FALSE;
326 }
327 table->table = ((struct bfd_hash_entry **)
328 objalloc_alloc ((struct objalloc *) table->memory, alloc));
329 if (table->table == NULL)
330 {
331 bfd_set_error (bfd_error_no_memory);
332 return FALSE;
333 }
334 memset ((PTR) table->table, 0, alloc);
335 table->size = size;
336 table->newfunc = newfunc;
337 return TRUE;
338 }
339
340 /* Create a new hash table with the default number of entries. */
341
342 bfd_boolean
343 bfd_hash_table_init (table, newfunc)
344 struct bfd_hash_table *table;
345 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
346 struct bfd_hash_table *,
347 const char *));
348 {
349 return bfd_hash_table_init_n (table, newfunc, bfd_default_hash_table_size);
350 }
351
352 /* Free a hash table. */
353
354 void
355 bfd_hash_table_free (table)
356 struct bfd_hash_table *table;
357 {
358 objalloc_free ((struct objalloc *) table->memory);
359 table->memory = NULL;
360 }
361
362 /* Look up a string in a hash table. */
363
364 struct bfd_hash_entry *
365 bfd_hash_lookup (table, string, create, copy)
366 struct bfd_hash_table *table;
367 const char *string;
368 bfd_boolean create;
369 bfd_boolean copy;
370 {
371 register const unsigned char *s;
372 register unsigned long hash;
373 register unsigned int c;
374 struct bfd_hash_entry *hashp;
375 unsigned int len;
376 unsigned int index;
377
378 hash = 0;
379 len = 0;
380 s = (const unsigned char *) string;
381 while ((c = *s++) != '\0')
382 {
383 hash += c + (c << 17);
384 hash ^= hash >> 2;
385 }
386 len = (s - (const unsigned char *) string) - 1;
387 hash += len + (len << 17);
388 hash ^= hash >> 2;
389
390 index = hash % table->size;
391 for (hashp = table->table[index];
392 hashp != (struct bfd_hash_entry *) NULL;
393 hashp = hashp->next)
394 {
395 if (hashp->hash == hash
396 && strcmp (hashp->string, string) == 0)
397 return hashp;
398 }
399
400 if (! create)
401 return (struct bfd_hash_entry *) NULL;
402
403 hashp = (*table->newfunc) ((struct bfd_hash_entry *) NULL, table, string);
404 if (hashp == (struct bfd_hash_entry *) NULL)
405 return (struct bfd_hash_entry *) NULL;
406 if (copy)
407 {
408 char *new;
409
410 new = (char *) objalloc_alloc ((struct objalloc *) table->memory,
411 len + 1);
412 if (!new)
413 {
414 bfd_set_error (bfd_error_no_memory);
415 return (struct bfd_hash_entry *) NULL;
416 }
417 memcpy (new, string, len + 1);
418 string = new;
419 }
420 hashp->string = string;
421 hashp->hash = hash;
422 hashp->next = table->table[index];
423 table->table[index] = hashp;
424
425 return hashp;
426 }
427
428 /* Replace an entry in a hash table. */
429
430 void
431 bfd_hash_replace (table, old, nw)
432 struct bfd_hash_table *table;
433 struct bfd_hash_entry *old;
434 struct bfd_hash_entry *nw;
435 {
436 unsigned int index;
437 struct bfd_hash_entry **pph;
438
439 index = old->hash % table->size;
440 for (pph = &table->table[index];
441 (*pph) != (struct bfd_hash_entry *) NULL;
442 pph = &(*pph)->next)
443 {
444 if (*pph == old)
445 {
446 *pph = nw;
447 return;
448 }
449 }
450
451 abort ();
452 }
453
454 /* Base method for creating a new hash table entry. */
455
456 struct bfd_hash_entry *
457 bfd_hash_newfunc (entry, table, string)
458 struct bfd_hash_entry *entry;
459 struct bfd_hash_table *table;
460 const char *string ATTRIBUTE_UNUSED;
461 {
462 if (entry == (struct bfd_hash_entry *) NULL)
463 entry = ((struct bfd_hash_entry *)
464 bfd_hash_allocate (table, sizeof (struct bfd_hash_entry)));
465 return entry;
466 }
467
468 /* Allocate space in a hash table. */
469
470 PTR
471 bfd_hash_allocate (table, size)
472 struct bfd_hash_table *table;
473 unsigned int size;
474 {
475 PTR ret;
476
477 ret = objalloc_alloc ((struct objalloc *) table->memory, size);
478 if (ret == NULL && size != 0)
479 bfd_set_error (bfd_error_no_memory);
480 return ret;
481 }
482
483 /* Traverse a hash table. */
484
485 void
486 bfd_hash_traverse (table, func, info)
487 struct bfd_hash_table *table;
488 bfd_boolean (*func) PARAMS ((struct bfd_hash_entry *, PTR));
489 PTR info;
490 {
491 unsigned int i;
492
493 for (i = 0; i < table->size; i++)
494 {
495 struct bfd_hash_entry *p;
496
497 for (p = table->table[i]; p != NULL; p = p->next)
498 {
499 if (! (*func) (p, info))
500 return;
501 }
502 }
503 }
504 \f
505 void
506 bfd_hash_set_default_size (bfd_size_type hash_size)
507 {
508 int index;
509 /* Extend this prime list if you want more granularity of hash table size. */
510 static bfd_size_type hash_size_primes[] =
511 {
512 1021, 4051, 8599, 16699
513 };
514
515 /* Work out best prime number near the hash_size. */
516 for (index = 0; index < ARRAY_SIZE (hash_size_primes) - 1; ++index)
517 if (hash_size <= hash_size_primes[index])
518 break;
519
520 bfd_default_hash_table_size = hash_size_primes[index];
521 }
522 \f
523 /* A few different object file formats (a.out, COFF, ELF) use a string
524 table. These functions support adding strings to a string table,
525 returning the byte offset, and writing out the table.
526
527 Possible improvements:
528 + look for strings matching trailing substrings of other strings
529 + better data structures? balanced trees?
530 + look at reducing memory use elsewhere -- maybe if we didn't have
531 to construct the entire symbol table at once, we could get by
532 with smaller amounts of VM? (What effect does that have on the
533 string table reductions?) */
534
535 /* An entry in the strtab hash table. */
536
537 struct strtab_hash_entry
538 {
539 struct bfd_hash_entry root;
540 /* Index in string table. */
541 bfd_size_type index;
542 /* Next string in strtab. */
543 struct strtab_hash_entry *next;
544 };
545
546 /* The strtab hash table. */
547
548 struct bfd_strtab_hash
549 {
550 struct bfd_hash_table table;
551 /* Size of strtab--also next available index. */
552 bfd_size_type size;
553 /* First string in strtab. */
554 struct strtab_hash_entry *first;
555 /* Last string in strtab. */
556 struct strtab_hash_entry *last;
557 /* Whether to precede strings with a two byte length, as in the
558 XCOFF .debug section. */
559 bfd_boolean xcoff;
560 };
561
562 static struct bfd_hash_entry *strtab_hash_newfunc
563 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
564
565 /* Routine to create an entry in a strtab. */
566
567 static struct bfd_hash_entry *
568 strtab_hash_newfunc (entry, table, string)
569 struct bfd_hash_entry *entry;
570 struct bfd_hash_table *table;
571 const char *string;
572 {
573 struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
574
575 /* Allocate the structure if it has not already been allocated by a
576 subclass. */
577 if (ret == (struct strtab_hash_entry *) NULL)
578 ret = ((struct strtab_hash_entry *)
579 bfd_hash_allocate (table, sizeof (struct strtab_hash_entry)));
580 if (ret == (struct strtab_hash_entry *) NULL)
581 return NULL;
582
583 /* Call the allocation method of the superclass. */
584 ret = ((struct strtab_hash_entry *)
585 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
586
587 if (ret)
588 {
589 /* Initialize the local fields. */
590 ret->index = (bfd_size_type) -1;
591 ret->next = NULL;
592 }
593
594 return (struct bfd_hash_entry *) ret;
595 }
596
597 /* Look up an entry in an strtab. */
598
599 #define strtab_hash_lookup(t, string, create, copy) \
600 ((struct strtab_hash_entry *) \
601 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
602
603 /* Create a new strtab. */
604
605 struct bfd_strtab_hash *
606 _bfd_stringtab_init ()
607 {
608 struct bfd_strtab_hash *table;
609 bfd_size_type amt = sizeof (struct bfd_strtab_hash);
610
611 table = (struct bfd_strtab_hash *) bfd_malloc (amt);
612 if (table == NULL)
613 return NULL;
614
615 if (! bfd_hash_table_init (&table->table, strtab_hash_newfunc))
616 {
617 free (table);
618 return NULL;
619 }
620
621 table->size = 0;
622 table->first = NULL;
623 table->last = NULL;
624 table->xcoff = FALSE;
625
626 return table;
627 }
628
629 /* Create a new strtab in which the strings are output in the format
630 used in the XCOFF .debug section: a two byte length precedes each
631 string. */
632
633 struct bfd_strtab_hash *
634 _bfd_xcoff_stringtab_init ()
635 {
636 struct bfd_strtab_hash *ret;
637
638 ret = _bfd_stringtab_init ();
639 if (ret != NULL)
640 ret->xcoff = TRUE;
641 return ret;
642 }
643
644 /* Free a strtab. */
645
646 void
647 _bfd_stringtab_free (table)
648 struct bfd_strtab_hash *table;
649 {
650 bfd_hash_table_free (&table->table);
651 free (table);
652 }
653
654 /* Get the index of a string in a strtab, adding it if it is not
655 already present. If HASH is FALSE, we don't really use the hash
656 table, and we don't eliminate duplicate strings. */
657
658 bfd_size_type
659 _bfd_stringtab_add (tab, str, hash, copy)
660 struct bfd_strtab_hash *tab;
661 const char *str;
662 bfd_boolean hash;
663 bfd_boolean copy;
664 {
665 register struct strtab_hash_entry *entry;
666
667 if (hash)
668 {
669 entry = strtab_hash_lookup (tab, str, TRUE, copy);
670 if (entry == NULL)
671 return (bfd_size_type) -1;
672 }
673 else
674 {
675 entry = ((struct strtab_hash_entry *)
676 bfd_hash_allocate (&tab->table,
677 sizeof (struct strtab_hash_entry)));
678 if (entry == NULL)
679 return (bfd_size_type) -1;
680 if (! copy)
681 entry->root.string = str;
682 else
683 {
684 char *n;
685
686 n = (char *) bfd_hash_allocate (&tab->table, strlen (str) + 1);
687 if (n == NULL)
688 return (bfd_size_type) -1;
689 entry->root.string = n;
690 }
691 entry->index = (bfd_size_type) -1;
692 entry->next = NULL;
693 }
694
695 if (entry->index == (bfd_size_type) -1)
696 {
697 entry->index = tab->size;
698 tab->size += strlen (str) + 1;
699 if (tab->xcoff)
700 {
701 entry->index += 2;
702 tab->size += 2;
703 }
704 if (tab->first == NULL)
705 tab->first = entry;
706 else
707 tab->last->next = entry;
708 tab->last = entry;
709 }
710
711 return entry->index;
712 }
713
714 /* Get the number of bytes in a strtab. */
715
716 bfd_size_type
717 _bfd_stringtab_size (tab)
718 struct bfd_strtab_hash *tab;
719 {
720 return tab->size;
721 }
722
723 /* Write out a strtab. ABFD must already be at the right location in
724 the file. */
725
726 bfd_boolean
727 _bfd_stringtab_emit (abfd, tab)
728 register bfd *abfd;
729 struct bfd_strtab_hash *tab;
730 {
731 register bfd_boolean xcoff;
732 register struct strtab_hash_entry *entry;
733
734 xcoff = tab->xcoff;
735
736 for (entry = tab->first; entry != NULL; entry = entry->next)
737 {
738 const char *str;
739 size_t len;
740
741 str = entry->root.string;
742 len = strlen (str) + 1;
743
744 if (xcoff)
745 {
746 bfd_byte buf[2];
747
748 /* The output length includes the null byte. */
749 bfd_put_16 (abfd, (bfd_vma) len, buf);
750 if (bfd_bwrite ((PTR) buf, (bfd_size_type) 2, abfd) != 2)
751 return FALSE;
752 }
753
754 if (bfd_bwrite ((PTR) str, (bfd_size_type) len, abfd) != len)
755 return FALSE;
756 }
757
758 return TRUE;
759 }
This page took 0.049151 seconds and 5 git commands to generate.