Use ui_file_as_string in gdb/top.c
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
228
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table. If the element is to
237 be included, the <<add_archive_element>> linker callback
238 routine must be called with the element as an argument, and
239 the element's symbols must be added to the linker hash table
240 just as though the element had itself been passed to the
241 <<_bfd_link_add_symbols>> function.
242
243 When the a.out <<_bfd_link_add_symbols>> function receives an
244 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 passing <<aout_link_check_archive_element>> as the function
246 argument. <<aout_link_check_archive_element>> calls
247 <<aout_link_check_ar_symbols>>. If the latter decides to add
248 the element (an element is only added if it provides a real,
249 non-common, definition for a previously undefined or common
250 symbol) it calls the <<add_archive_element>> callback and then
251 <<aout_link_check_archive_element>> calls
252 <<aout_link_add_symbols>> to actually add the symbols to the
253 linker hash table - possibly those of a substitute BFD, if the
254 <<add_archive_element>> callback avails itself of that option.
255
256 The ECOFF back end is unusual in that it does not normally
257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 archives already contain a hash table of symbols. The ECOFF
259 back end searches the archive itself to avoid the overhead of
260 creating a new hash table.
261
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 Performing the final link
266
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 When all the input files have been processed, the linker calls
270 the <<_bfd_final_link>> entry point of the output BFD. This
271 routine is responsible for producing the final output file,
272 which has several aspects. It must relocate the contents of
273 the input sections and copy the data into the output sections.
274 It must build an output symbol table including any local
275 symbols from the input files and the global symbols from the
276 hash table. When producing relocatable output, it must
277 modify the input relocs and write them into the output file.
278 There may also be object format dependent work to be done.
279
280 The linker will also call the <<write_object_contents>> entry
281 point when the BFD is closed. The two entry points must work
282 together in order to produce the correct output file.
283
284 The details of how this works are inevitably dependent upon
285 the specific object file format. The a.out
286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 Information provided by the linker
298
299 Before the linker calls the <<_bfd_final_link>> entry point,
300 it sets up some data structures for the function to use.
301
302 The <<input_bfds>> field of the <<bfd_link_info>> structure
303 will point to a list of all the input files included in the
304 link. These files are linked through the <<link.next>> field
305 of the <<bfd>> structure.
306
307 Each section in the output file will have a list of
308 <<link_order>> structures attached to the <<map_head.link_order>>
309 field (the <<link_order>> structure is defined in
310 <<bfdlink.h>>). These structures describe how to create the
311 contents of the output section in terms of the contents of
312 various input sections, fill constants, and, eventually, other
313 types of information. They also describe relocs that must be
314 created by the BFD backend, but do not correspond to any input
315 file; this is used to support -Ur, which builds constructors
316 while generating a relocatable object file.
317
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 Relocating the section contents
322
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
329
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocatable link, the
339 relocs themselves must also be modified and written out.
340
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
350
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
355
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 Writing the symbol table
360
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
366
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
373
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files.
381
382 The <<strip>> field of the <<bfd_link_info>> structure
383 controls which symbols are written out. The possible values
384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
385 then the <<keep_hash>> field of the <<bfd_link_info>>
386 structure is a hash table of symbols to keep; each symbol
387 should be looked up in this hash table, and only symbols which
388 are present should be included in the output file.
389
390 If the <<strip>> field of the <<bfd_link_info>> structure
391 permits local symbols to be written out, the <<discard>> field
392 is used to further controls which local symbols are included
393 in the output file. If the value is <<discard_l>>, then all
394 local symbols which begin with a certain prefix are discarded;
395 this is controlled by the <<bfd_is_local_label_name>> entry point.
396
397 The a.out backend handles symbols by calling
398 <<aout_link_write_symbols>> on each input BFD and then
399 traversing the global hash table with the function
400 <<aout_link_write_other_symbol>>. It builds a string table
401 while writing out the symbols, which is written to the output
402 file at the end of <<NAME(aout,final_link)>>.
403 */
404
405 static bfd_boolean generic_link_add_object_symbols
406 (bfd *, struct bfd_link_info *, bfd_boolean collect);
407 static bfd_boolean generic_link_add_symbols
408 (bfd *, struct bfd_link_info *, bfd_boolean);
409 static bfd_boolean generic_link_check_archive_element_no_collect
410 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
411 bfd_boolean *);
412 static bfd_boolean generic_link_check_archive_element_collect
413 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
414 bfd_boolean *);
415 static bfd_boolean generic_link_check_archive_element
416 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
417 bfd_boolean *, bfd_boolean);
418 static bfd_boolean generic_link_add_symbol_list
419 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
420 bfd_boolean);
421 static bfd_boolean generic_add_output_symbol
422 (bfd *, size_t *psymalloc, asymbol *);
423 static bfd_boolean default_data_link_order
424 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
425 static bfd_boolean default_indirect_link_order
426 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
427 bfd_boolean);
428
429 /* The link hash table structure is defined in bfdlink.h. It provides
430 a base hash table which the backend specific hash tables are built
431 upon. */
432
433 /* Routine to create an entry in the link hash table. */
434
435 struct bfd_hash_entry *
436 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
437 struct bfd_hash_table *table,
438 const char *string)
439 {
440 /* Allocate the structure if it has not already been allocated by a
441 subclass. */
442 if (entry == NULL)
443 {
444 entry = (struct bfd_hash_entry *)
445 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
446 if (entry == NULL)
447 return entry;
448 }
449
450 /* Call the allocation method of the superclass. */
451 entry = bfd_hash_newfunc (entry, table, string);
452 if (entry)
453 {
454 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
455
456 /* Initialize the local fields. */
457 memset ((char *) &h->root + sizeof (h->root), 0,
458 sizeof (*h) - sizeof (h->root));
459 }
460
461 return entry;
462 }
463
464 /* Initialize a link hash table. The BFD argument is the one
465 responsible for creating this table. */
466
467 bfd_boolean
468 _bfd_link_hash_table_init
469 (struct bfd_link_hash_table *table,
470 bfd *abfd ATTRIBUTE_UNUSED,
471 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
472 struct bfd_hash_table *,
473 const char *),
474 unsigned int entsize)
475 {
476 bfd_boolean ret;
477
478 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
479 table->undefs = NULL;
480 table->undefs_tail = NULL;
481 table->type = bfd_link_generic_hash_table;
482
483 ret = bfd_hash_table_init (&table->table, newfunc, entsize);
484 if (ret)
485 {
486 /* Arrange for destruction of this hash table on closing ABFD. */
487 table->hash_table_free = _bfd_generic_link_hash_table_free;
488 abfd->link.hash = table;
489 abfd->is_linker_output = TRUE;
490 }
491 return ret;
492 }
493
494 /* Look up a symbol in a link hash table. If follow is TRUE, we
495 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
496 the real symbol. */
497
498 struct bfd_link_hash_entry *
499 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
500 const char *string,
501 bfd_boolean create,
502 bfd_boolean copy,
503 bfd_boolean follow)
504 {
505 struct bfd_link_hash_entry *ret;
506
507 ret = ((struct bfd_link_hash_entry *)
508 bfd_hash_lookup (&table->table, string, create, copy));
509
510 if (follow && ret != NULL)
511 {
512 while (ret->type == bfd_link_hash_indirect
513 || ret->type == bfd_link_hash_warning)
514 ret = ret->u.i.link;
515 }
516
517 return ret;
518 }
519
520 /* Look up a symbol in the main linker hash table if the symbol might
521 be wrapped. This should only be used for references to an
522 undefined symbol, not for definitions of a symbol. */
523
524 struct bfd_link_hash_entry *
525 bfd_wrapped_link_hash_lookup (bfd *abfd,
526 struct bfd_link_info *info,
527 const char *string,
528 bfd_boolean create,
529 bfd_boolean copy,
530 bfd_boolean follow)
531 {
532 bfd_size_type amt;
533
534 if (info->wrap_hash != NULL)
535 {
536 const char *l;
537 char prefix = '\0';
538
539 l = string;
540 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
541 {
542 prefix = *l;
543 ++l;
544 }
545
546 #undef WRAP
547 #define WRAP "__wrap_"
548
549 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
550 {
551 char *n;
552 struct bfd_link_hash_entry *h;
553
554 /* This symbol is being wrapped. We want to replace all
555 references to SYM with references to __wrap_SYM. */
556
557 amt = strlen (l) + sizeof WRAP + 1;
558 n = (char *) bfd_malloc (amt);
559 if (n == NULL)
560 return NULL;
561
562 n[0] = prefix;
563 n[1] = '\0';
564 strcat (n, WRAP);
565 strcat (n, l);
566 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
567 free (n);
568 return h;
569 }
570
571 #undef REAL
572 #define REAL "__real_"
573
574 if (*l == '_'
575 && CONST_STRNEQ (l, REAL)
576 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
577 FALSE, FALSE) != NULL)
578 {
579 char *n;
580 struct bfd_link_hash_entry *h;
581
582 /* This is a reference to __real_SYM, where SYM is being
583 wrapped. We want to replace all references to __real_SYM
584 with references to SYM. */
585
586 amt = strlen (l + sizeof REAL - 1) + 2;
587 n = (char *) bfd_malloc (amt);
588 if (n == NULL)
589 return NULL;
590
591 n[0] = prefix;
592 n[1] = '\0';
593 strcat (n, l + sizeof REAL - 1);
594 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
595 free (n);
596 return h;
597 }
598
599 #undef REAL
600 }
601
602 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
603 }
604
605 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
606 and the remainder is found in wrap_hash, return the real symbol. */
607
608 struct bfd_link_hash_entry *
609 unwrap_hash_lookup (struct bfd_link_info *info,
610 bfd *input_bfd,
611 struct bfd_link_hash_entry *h)
612 {
613 const char *l = h->root.string;
614
615 if (*l == bfd_get_symbol_leading_char (input_bfd)
616 || *l == info->wrap_char)
617 ++l;
618
619 if (CONST_STRNEQ (l, WRAP))
620 {
621 l += sizeof WRAP - 1;
622
623 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
624 {
625 char save = 0;
626 if (l - (sizeof WRAP - 1) != h->root.string)
627 {
628 --l;
629 save = *l;
630 *(char *) l = *h->root.string;
631 }
632 h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
633 if (save)
634 *(char *) l = save;
635 }
636 }
637 return h;
638 }
639 #undef WRAP
640
641 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
642 in the treatment of warning symbols. When warning symbols are
643 created they replace the real symbol, so you don't get to see the
644 real symbol in a bfd_hash_travere. This traversal calls func with
645 the real symbol. */
646
647 void
648 bfd_link_hash_traverse
649 (struct bfd_link_hash_table *htab,
650 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
651 void *info)
652 {
653 unsigned int i;
654
655 htab->table.frozen = 1;
656 for (i = 0; i < htab->table.size; i++)
657 {
658 struct bfd_link_hash_entry *p;
659
660 p = (struct bfd_link_hash_entry *) htab->table.table[i];
661 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
662 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
663 goto out;
664 }
665 out:
666 htab->table.frozen = 0;
667 }
668
669 /* Add a symbol to the linker hash table undefs list. */
670
671 void
672 bfd_link_add_undef (struct bfd_link_hash_table *table,
673 struct bfd_link_hash_entry *h)
674 {
675 BFD_ASSERT (h->u.undef.next == NULL);
676 if (table->undefs_tail != NULL)
677 table->undefs_tail->u.undef.next = h;
678 if (table->undefs == NULL)
679 table->undefs = h;
680 table->undefs_tail = h;
681 }
682
683 /* The undefs list was designed so that in normal use we don't need to
684 remove entries. However, if symbols on the list are changed from
685 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
686 bfd_link_hash_new for some reason, then they must be removed from the
687 list. Failure to do so might result in the linker attempting to add
688 the symbol to the list again at a later stage. */
689
690 void
691 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
692 {
693 struct bfd_link_hash_entry **pun;
694
695 pun = &table->undefs;
696 while (*pun != NULL)
697 {
698 struct bfd_link_hash_entry *h = *pun;
699
700 if (h->type == bfd_link_hash_new
701 || h->type == bfd_link_hash_undefweak)
702 {
703 *pun = h->u.undef.next;
704 h->u.undef.next = NULL;
705 if (h == table->undefs_tail)
706 {
707 if (pun == &table->undefs)
708 table->undefs_tail = NULL;
709 else
710 /* pun points at an u.undef.next field. Go back to
711 the start of the link_hash_entry. */
712 table->undefs_tail = (struct bfd_link_hash_entry *)
713 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
714 break;
715 }
716 }
717 else
718 pun = &h->u.undef.next;
719 }
720 }
721 \f
722 /* Routine to create an entry in a generic link hash table. */
723
724 struct bfd_hash_entry *
725 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
726 struct bfd_hash_table *table,
727 const char *string)
728 {
729 /* Allocate the structure if it has not already been allocated by a
730 subclass. */
731 if (entry == NULL)
732 {
733 entry = (struct bfd_hash_entry *)
734 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
735 if (entry == NULL)
736 return entry;
737 }
738
739 /* Call the allocation method of the superclass. */
740 entry = _bfd_link_hash_newfunc (entry, table, string);
741 if (entry)
742 {
743 struct generic_link_hash_entry *ret;
744
745 /* Set local fields. */
746 ret = (struct generic_link_hash_entry *) entry;
747 ret->written = FALSE;
748 ret->sym = NULL;
749 }
750
751 return entry;
752 }
753
754 /* Create a generic link hash table. */
755
756 struct bfd_link_hash_table *
757 _bfd_generic_link_hash_table_create (bfd *abfd)
758 {
759 struct generic_link_hash_table *ret;
760 bfd_size_type amt = sizeof (struct generic_link_hash_table);
761
762 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
763 if (ret == NULL)
764 return NULL;
765 if (! _bfd_link_hash_table_init (&ret->root, abfd,
766 _bfd_generic_link_hash_newfunc,
767 sizeof (struct generic_link_hash_entry)))
768 {
769 free (ret);
770 return NULL;
771 }
772 return &ret->root;
773 }
774
775 void
776 _bfd_generic_link_hash_table_free (bfd *obfd)
777 {
778 struct generic_link_hash_table *ret;
779
780 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
781 ret = (struct generic_link_hash_table *) obfd->link.hash;
782 bfd_hash_table_free (&ret->root.table);
783 free (ret);
784 obfd->link.hash = NULL;
785 obfd->is_linker_output = FALSE;
786 }
787
788 /* Grab the symbols for an object file when doing a generic link. We
789 store the symbols in the outsymbols field. We need to keep them
790 around for the entire link to ensure that we only read them once.
791 If we read them multiple times, we might wind up with relocs and
792 the hash table pointing to different instances of the symbol
793 structure. */
794
795 bfd_boolean
796 bfd_generic_link_read_symbols (bfd *abfd)
797 {
798 if (bfd_get_outsymbols (abfd) == NULL)
799 {
800 long symsize;
801 long symcount;
802
803 symsize = bfd_get_symtab_upper_bound (abfd);
804 if (symsize < 0)
805 return FALSE;
806 bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
807 symsize);
808 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
809 return FALSE;
810 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
811 if (symcount < 0)
812 return FALSE;
813 bfd_get_symcount (abfd) = symcount;
814 }
815
816 return TRUE;
817 }
818 \f
819 /* Generic function to add symbols to from an object file to the
820 global hash table. This version does not automatically collect
821 constructors by name. */
822
823 bfd_boolean
824 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
825 {
826 return generic_link_add_symbols (abfd, info, FALSE);
827 }
828
829 /* Generic function to add symbols from an object file to the global
830 hash table. This version automatically collects constructors by
831 name, as the collect2 program does. It should be used for any
832 target which does not provide some other mechanism for setting up
833 constructors and destructors; these are approximately those targets
834 for which gcc uses collect2 and do not support stabs. */
835
836 bfd_boolean
837 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
838 {
839 return generic_link_add_symbols (abfd, info, TRUE);
840 }
841
842 /* Indicate that we are only retrieving symbol values from this
843 section. We want the symbols to act as though the values in the
844 file are absolute. */
845
846 void
847 _bfd_generic_link_just_syms (asection *sec,
848 struct bfd_link_info *info ATTRIBUTE_UNUSED)
849 {
850 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
851 sec->output_section = bfd_abs_section_ptr;
852 sec->output_offset = sec->vma;
853 }
854
855 /* Copy the symbol type and other attributes for a linker script
856 assignment from HSRC to HDEST.
857 The default implementation does nothing. */
858 void
859 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
860 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
861 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
862 {
863 }
864
865 /* Add symbols from an object file to the global hash table. */
866
867 static bfd_boolean
868 generic_link_add_symbols (bfd *abfd,
869 struct bfd_link_info *info,
870 bfd_boolean collect)
871 {
872 bfd_boolean ret;
873
874 switch (bfd_get_format (abfd))
875 {
876 case bfd_object:
877 ret = generic_link_add_object_symbols (abfd, info, collect);
878 break;
879 case bfd_archive:
880 ret = (_bfd_generic_link_add_archive_symbols
881 (abfd, info,
882 (collect
883 ? generic_link_check_archive_element_collect
884 : generic_link_check_archive_element_no_collect)));
885 break;
886 default:
887 bfd_set_error (bfd_error_wrong_format);
888 ret = FALSE;
889 }
890
891 return ret;
892 }
893
894 /* Add symbols from an object file to the global hash table. */
895
896 static bfd_boolean
897 generic_link_add_object_symbols (bfd *abfd,
898 struct bfd_link_info *info,
899 bfd_boolean collect)
900 {
901 bfd_size_type symcount;
902 struct bfd_symbol **outsyms;
903
904 if (!bfd_generic_link_read_symbols (abfd))
905 return FALSE;
906 symcount = _bfd_generic_link_get_symcount (abfd);
907 outsyms = _bfd_generic_link_get_symbols (abfd);
908 return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
909 }
910 \f
911 /* Generic function to add symbols from an archive file to the global
912 hash file. This function presumes that the archive symbol table
913 has already been read in (this is normally done by the
914 bfd_check_format entry point). It looks through the archive symbol
915 table for symbols that are undefined or common in the linker global
916 symbol hash table. When one is found, the CHECKFN argument is used
917 to see if an object file should be included. This allows targets
918 to customize common symbol behaviour. CHECKFN should set *PNEEDED
919 to TRUE if the object file should be included, and must also call
920 the bfd_link_info add_archive_element callback function and handle
921 adding the symbols to the global hash table. CHECKFN must notice
922 if the callback indicates a substitute BFD, and arrange to add
923 those symbols instead if it does so. CHECKFN should only return
924 FALSE if some sort of error occurs. */
925
926 bfd_boolean
927 _bfd_generic_link_add_archive_symbols
928 (bfd *abfd,
929 struct bfd_link_info *info,
930 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
931 struct bfd_link_hash_entry *, const char *,
932 bfd_boolean *))
933 {
934 bfd_boolean loop;
935 bfd_size_type amt;
936 unsigned char *included;
937
938 if (! bfd_has_map (abfd))
939 {
940 /* An empty archive is a special case. */
941 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
942 return TRUE;
943 bfd_set_error (bfd_error_no_armap);
944 return FALSE;
945 }
946
947 amt = bfd_ardata (abfd)->symdef_count;
948 if (amt == 0)
949 return TRUE;
950 amt *= sizeof (*included);
951 included = (unsigned char *) bfd_zmalloc (amt);
952 if (included == NULL)
953 return FALSE;
954
955 do
956 {
957 carsym *arsyms;
958 carsym *arsym_end;
959 carsym *arsym;
960 unsigned int indx;
961 file_ptr last_ar_offset = -1;
962 bfd_boolean needed = FALSE;
963 bfd *element = NULL;
964
965 loop = FALSE;
966 arsyms = bfd_ardata (abfd)->symdefs;
967 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
968 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
969 {
970 struct bfd_link_hash_entry *h;
971 struct bfd_link_hash_entry *undefs_tail;
972
973 if (included[indx])
974 continue;
975 if (needed && arsym->file_offset == last_ar_offset)
976 {
977 included[indx] = 1;
978 continue;
979 }
980
981 h = bfd_link_hash_lookup (info->hash, arsym->name,
982 FALSE, FALSE, TRUE);
983
984 if (h == NULL
985 && info->pei386_auto_import
986 && CONST_STRNEQ (arsym->name, "__imp_"))
987 h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
988 FALSE, FALSE, TRUE);
989 if (h == NULL)
990 continue;
991
992 if (h->type != bfd_link_hash_undefined
993 && h->type != bfd_link_hash_common)
994 {
995 if (h->type != bfd_link_hash_undefweak)
996 /* Symbol must be defined. Don't check it again. */
997 included[indx] = 1;
998 continue;
999 }
1000
1001 if (last_ar_offset != arsym->file_offset)
1002 {
1003 last_ar_offset = arsym->file_offset;
1004 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
1005 if (element == NULL
1006 || !bfd_check_format (element, bfd_object))
1007 goto error_return;
1008 }
1009
1010 undefs_tail = info->hash->undefs_tail;
1011
1012 /* CHECKFN will see if this element should be included, and
1013 go ahead and include it if appropriate. */
1014 if (! (*checkfn) (element, info, h, arsym->name, &needed))
1015 goto error_return;
1016
1017 if (needed)
1018 {
1019 unsigned int mark;
1020
1021 /* Look backward to mark all symbols from this object file
1022 which we have already seen in this pass. */
1023 mark = indx;
1024 do
1025 {
1026 included[mark] = 1;
1027 if (mark == 0)
1028 break;
1029 --mark;
1030 }
1031 while (arsyms[mark].file_offset == last_ar_offset);
1032
1033 if (undefs_tail != info->hash->undefs_tail)
1034 loop = TRUE;
1035 }
1036 }
1037 } while (loop);
1038
1039 free (included);
1040 return TRUE;
1041
1042 error_return:
1043 free (included);
1044 return FALSE;
1045 }
1046 \f
1047 /* See if we should include an archive element. This version is used
1048 when we do not want to automatically collect constructors based on
1049 the symbol name, presumably because we have some other mechanism
1050 for finding them. */
1051
1052 static bfd_boolean
1053 generic_link_check_archive_element_no_collect (bfd *abfd,
1054 struct bfd_link_info *info,
1055 struct bfd_link_hash_entry *h,
1056 const char *name,
1057 bfd_boolean *pneeded)
1058 {
1059 return generic_link_check_archive_element (abfd, info, h, name, pneeded,
1060 FALSE);
1061 }
1062
1063 /* See if we should include an archive element. This version is used
1064 when we want to automatically collect constructors based on the
1065 symbol name, as collect2 does. */
1066
1067 static bfd_boolean
1068 generic_link_check_archive_element_collect (bfd *abfd,
1069 struct bfd_link_info *info,
1070 struct bfd_link_hash_entry *h,
1071 const char *name,
1072 bfd_boolean *pneeded)
1073 {
1074 return generic_link_check_archive_element (abfd, info, h, name, pneeded,
1075 TRUE);
1076 }
1077
1078 /* See if we should include an archive element. Optionally collect
1079 constructors. */
1080
1081 static bfd_boolean
1082 generic_link_check_archive_element (bfd *abfd,
1083 struct bfd_link_info *info,
1084 struct bfd_link_hash_entry *h,
1085 const char *name ATTRIBUTE_UNUSED,
1086 bfd_boolean *pneeded,
1087 bfd_boolean collect)
1088 {
1089 asymbol **pp, **ppend;
1090
1091 *pneeded = FALSE;
1092
1093 if (!bfd_generic_link_read_symbols (abfd))
1094 return FALSE;
1095
1096 pp = _bfd_generic_link_get_symbols (abfd);
1097 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1098 for (; pp < ppend; pp++)
1099 {
1100 asymbol *p;
1101
1102 p = *pp;
1103
1104 /* We are only interested in globally visible symbols. */
1105 if (! bfd_is_com_section (p->section)
1106 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1107 continue;
1108
1109 /* We are only interested if we know something about this
1110 symbol, and it is undefined or common. An undefined weak
1111 symbol (type bfd_link_hash_undefweak) is not considered to be
1112 a reference when pulling files out of an archive. See the
1113 SVR4 ABI, p. 4-27. */
1114 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1115 FALSE, TRUE);
1116 if (h == NULL
1117 || (h->type != bfd_link_hash_undefined
1118 && h->type != bfd_link_hash_common))
1119 continue;
1120
1121 /* P is a symbol we are looking for. */
1122
1123 if (! bfd_is_com_section (p->section)
1124 || (h->type == bfd_link_hash_undefined
1125 && h->u.undef.abfd == NULL))
1126 {
1127 /* P is not a common symbol, or an undefined reference was
1128 created from outside BFD such as from a linker -u option.
1129 This object file defines the symbol, so pull it in. */
1130 *pneeded = TRUE;
1131 if (!(*info->callbacks
1132 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1133 &abfd))
1134 return FALSE;
1135 /* Potentially, the add_archive_element hook may have set a
1136 substitute BFD for us. */
1137 return generic_link_add_object_symbols (abfd, info, collect);
1138 }
1139
1140 /* P is a common symbol. */
1141
1142 if (h->type == bfd_link_hash_undefined)
1143 {
1144 bfd *symbfd;
1145 bfd_vma size;
1146 unsigned int power;
1147
1148 /* Turn the symbol into a common symbol but do not link in
1149 the object file. This is how a.out works. Object
1150 formats that require different semantics must implement
1151 this function differently. This symbol is already on the
1152 undefs list. We add the section to a common section
1153 attached to symbfd to ensure that it is in a BFD which
1154 will be linked in. */
1155 symbfd = h->u.undef.abfd;
1156 h->type = bfd_link_hash_common;
1157 h->u.c.p = (struct bfd_link_hash_common_entry *)
1158 bfd_hash_allocate (&info->hash->table,
1159 sizeof (struct bfd_link_hash_common_entry));
1160 if (h->u.c.p == NULL)
1161 return FALSE;
1162
1163 size = bfd_asymbol_value (p);
1164 h->u.c.size = size;
1165
1166 power = bfd_log2 (size);
1167 if (power > 4)
1168 power = 4;
1169 h->u.c.p->alignment_power = power;
1170
1171 if (p->section == bfd_com_section_ptr)
1172 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1173 else
1174 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1175 p->section->name);
1176 h->u.c.p->section->flags |= SEC_ALLOC;
1177 }
1178 else
1179 {
1180 /* Adjust the size of the common symbol if necessary. This
1181 is how a.out works. Object formats that require
1182 different semantics must implement this function
1183 differently. */
1184 if (bfd_asymbol_value (p) > h->u.c.size)
1185 h->u.c.size = bfd_asymbol_value (p);
1186 }
1187 }
1188
1189 /* This archive element is not needed. */
1190 return TRUE;
1191 }
1192
1193 /* Add the symbols from an object file to the global hash table. ABFD
1194 is the object file. INFO is the linker information. SYMBOL_COUNT
1195 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1196 is TRUE if constructors should be automatically collected by name
1197 as is done by collect2. */
1198
1199 static bfd_boolean
1200 generic_link_add_symbol_list (bfd *abfd,
1201 struct bfd_link_info *info,
1202 bfd_size_type symbol_count,
1203 asymbol **symbols,
1204 bfd_boolean collect)
1205 {
1206 asymbol **pp, **ppend;
1207
1208 pp = symbols;
1209 ppend = symbols + symbol_count;
1210 for (; pp < ppend; pp++)
1211 {
1212 asymbol *p;
1213
1214 p = *pp;
1215
1216 if ((p->flags & (BSF_INDIRECT
1217 | BSF_WARNING
1218 | BSF_GLOBAL
1219 | BSF_CONSTRUCTOR
1220 | BSF_WEAK)) != 0
1221 || bfd_is_und_section (bfd_get_section (p))
1222 || bfd_is_com_section (bfd_get_section (p))
1223 || bfd_is_ind_section (bfd_get_section (p)))
1224 {
1225 const char *name;
1226 const char *string;
1227 struct generic_link_hash_entry *h;
1228 struct bfd_link_hash_entry *bh;
1229
1230 string = name = bfd_asymbol_name (p);
1231 if (((p->flags & BSF_INDIRECT) != 0
1232 || bfd_is_ind_section (p->section))
1233 && pp + 1 < ppend)
1234 {
1235 pp++;
1236 string = bfd_asymbol_name (*pp);
1237 }
1238 else if ((p->flags & BSF_WARNING) != 0
1239 && pp + 1 < ppend)
1240 {
1241 /* The name of P is actually the warning string, and the
1242 next symbol is the one to warn about. */
1243 pp++;
1244 name = bfd_asymbol_name (*pp);
1245 }
1246
1247 bh = NULL;
1248 if (! (_bfd_generic_link_add_one_symbol
1249 (info, abfd, name, p->flags, bfd_get_section (p),
1250 p->value, string, FALSE, collect, &bh)))
1251 return FALSE;
1252 h = (struct generic_link_hash_entry *) bh;
1253
1254 /* If this is a constructor symbol, and the linker didn't do
1255 anything with it, then we want to just pass the symbol
1256 through to the output file. This will happen when
1257 linking with -r. */
1258 if ((p->flags & BSF_CONSTRUCTOR) != 0
1259 && (h == NULL || h->root.type == bfd_link_hash_new))
1260 {
1261 p->udata.p = NULL;
1262 continue;
1263 }
1264
1265 /* Save the BFD symbol so that we don't lose any backend
1266 specific information that may be attached to it. We only
1267 want this one if it gives more information than the
1268 existing one; we don't want to replace a defined symbol
1269 with an undefined one. This routine may be called with a
1270 hash table other than the generic hash table, so we only
1271 do this if we are certain that the hash table is a
1272 generic one. */
1273 if (info->output_bfd->xvec == abfd->xvec)
1274 {
1275 if (h->sym == NULL
1276 || (! bfd_is_und_section (bfd_get_section (p))
1277 && (! bfd_is_com_section (bfd_get_section (p))
1278 || bfd_is_und_section (bfd_get_section (h->sym)))))
1279 {
1280 h->sym = p;
1281 /* BSF_OLD_COMMON is a hack to support COFF reloc
1282 reading, and it should go away when the COFF
1283 linker is switched to the new version. */
1284 if (bfd_is_com_section (bfd_get_section (p)))
1285 p->flags |= BSF_OLD_COMMON;
1286 }
1287 }
1288
1289 /* Store a back pointer from the symbol to the hash
1290 table entry for the benefit of relaxation code until
1291 it gets rewritten to not use asymbol structures.
1292 Setting this is also used to check whether these
1293 symbols were set up by the generic linker. */
1294 p->udata.p = h;
1295 }
1296 }
1297
1298 return TRUE;
1299 }
1300 \f
1301 /* We use a state table to deal with adding symbols from an object
1302 file. The first index into the state table describes the symbol
1303 from the object file. The second index into the state table is the
1304 type of the symbol in the hash table. */
1305
1306 /* The symbol from the object file is turned into one of these row
1307 values. */
1308
1309 enum link_row
1310 {
1311 UNDEF_ROW, /* Undefined. */
1312 UNDEFW_ROW, /* Weak undefined. */
1313 DEF_ROW, /* Defined. */
1314 DEFW_ROW, /* Weak defined. */
1315 COMMON_ROW, /* Common. */
1316 INDR_ROW, /* Indirect. */
1317 WARN_ROW, /* Warning. */
1318 SET_ROW /* Member of set. */
1319 };
1320
1321 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1322 #undef FAIL
1323
1324 /* The actions to take in the state table. */
1325
1326 enum link_action
1327 {
1328 FAIL, /* Abort. */
1329 UND, /* Mark symbol undefined. */
1330 WEAK, /* Mark symbol weak undefined. */
1331 DEF, /* Mark symbol defined. */
1332 DEFW, /* Mark symbol weak defined. */
1333 COM, /* Mark symbol common. */
1334 REF, /* Mark defined symbol referenced. */
1335 CREF, /* Possibly warn about common reference to defined symbol. */
1336 CDEF, /* Define existing common symbol. */
1337 NOACT, /* No action. */
1338 BIG, /* Mark symbol common using largest size. */
1339 MDEF, /* Multiple definition error. */
1340 MIND, /* Multiple indirect symbols. */
1341 IND, /* Make indirect symbol. */
1342 CIND, /* Make indirect symbol from existing common symbol. */
1343 SET, /* Add value to set. */
1344 MWARN, /* Make warning symbol. */
1345 WARN, /* Warn if referenced, else MWARN. */
1346 CYCLE, /* Repeat with symbol pointed to. */
1347 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1348 WARNC /* Issue warning and then CYCLE. */
1349 };
1350
1351 /* The state table itself. The first index is a link_row and the
1352 second index is a bfd_link_hash_type. */
1353
1354 static const enum link_action link_action[8][8] =
1355 {
1356 /* current\prev new undef undefw def defw com indr warn */
1357 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1358 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1359 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1360 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1361 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1362 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1363 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT },
1364 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1365 };
1366
1367 /* Most of the entries in the LINK_ACTION table are straightforward,
1368 but a few are somewhat subtle.
1369
1370 A reference to an indirect symbol (UNDEF_ROW/indr or
1371 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1372 symbol and to the symbol the indirect symbol points to.
1373
1374 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1375 causes the warning to be issued.
1376
1377 A common definition of an indirect symbol (COMMON_ROW/indr) is
1378 treated as a multiple definition error. Likewise for an indirect
1379 definition of a common symbol (INDR_ROW/com).
1380
1381 An indirect definition of a warning (INDR_ROW/warn) does not cause
1382 the warning to be issued.
1383
1384 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1385 warning is created for the symbol the indirect symbol points to.
1386
1387 Adding an entry to a set does not count as a reference to a set,
1388 and no warning is issued (SET_ROW/warn). */
1389
1390 /* Return the BFD in which a hash entry has been defined, if known. */
1391
1392 static bfd *
1393 hash_entry_bfd (struct bfd_link_hash_entry *h)
1394 {
1395 while (h->type == bfd_link_hash_warning)
1396 h = h->u.i.link;
1397 switch (h->type)
1398 {
1399 default:
1400 return NULL;
1401 case bfd_link_hash_undefined:
1402 case bfd_link_hash_undefweak:
1403 return h->u.undef.abfd;
1404 case bfd_link_hash_defined:
1405 case bfd_link_hash_defweak:
1406 return h->u.def.section->owner;
1407 case bfd_link_hash_common:
1408 return h->u.c.p->section->owner;
1409 }
1410 /*NOTREACHED*/
1411 }
1412
1413 /* Add a symbol to the global hash table.
1414 ABFD is the BFD the symbol comes from.
1415 NAME is the name of the symbol.
1416 FLAGS is the BSF_* bits associated with the symbol.
1417 SECTION is the section in which the symbol is defined; this may be
1418 bfd_und_section_ptr or bfd_com_section_ptr.
1419 VALUE is the value of the symbol, relative to the section.
1420 STRING is used for either an indirect symbol, in which case it is
1421 the name of the symbol to indirect to, or a warning symbol, in
1422 which case it is the warning string.
1423 COPY is TRUE if NAME or STRING must be copied into locally
1424 allocated memory if they need to be saved.
1425 COLLECT is TRUE if we should automatically collect gcc constructor
1426 or destructor names as collect2 does.
1427 HASHP, if not NULL, is a place to store the created hash table
1428 entry; if *HASHP is not NULL, the caller has already looked up
1429 the hash table entry, and stored it in *HASHP. */
1430
1431 bfd_boolean
1432 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1433 bfd *abfd,
1434 const char *name,
1435 flagword flags,
1436 asection *section,
1437 bfd_vma value,
1438 const char *string,
1439 bfd_boolean copy,
1440 bfd_boolean collect,
1441 struct bfd_link_hash_entry **hashp)
1442 {
1443 enum link_row row;
1444 struct bfd_link_hash_entry *h;
1445 struct bfd_link_hash_entry *inh = NULL;
1446 bfd_boolean cycle;
1447
1448 BFD_ASSERT (section != NULL);
1449
1450 if (bfd_is_ind_section (section)
1451 || (flags & BSF_INDIRECT) != 0)
1452 {
1453 row = INDR_ROW;
1454 /* Create the indirect symbol here. This is for the benefit of
1455 the plugin "notice" function.
1456 STRING is the name of the symbol we want to indirect to. */
1457 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1458 copy, FALSE);
1459 if (inh == NULL)
1460 return FALSE;
1461 }
1462 else if ((flags & BSF_WARNING) != 0)
1463 row = WARN_ROW;
1464 else if ((flags & BSF_CONSTRUCTOR) != 0)
1465 row = SET_ROW;
1466 else if (bfd_is_und_section (section))
1467 {
1468 if ((flags & BSF_WEAK) != 0)
1469 row = UNDEFW_ROW;
1470 else
1471 row = UNDEF_ROW;
1472 }
1473 else if ((flags & BSF_WEAK) != 0)
1474 row = DEFW_ROW;
1475 else if (bfd_is_com_section (section))
1476 {
1477 row = COMMON_ROW;
1478 if (!bfd_link_relocatable (info)
1479 && strcmp (name, "__gnu_lto_slim") == 0)
1480 _bfd_error_handler
1481 (_("%s: plugin needed to handle lto object"),
1482 bfd_get_filename (abfd));
1483 }
1484 else
1485 row = DEF_ROW;
1486
1487 if (hashp != NULL && *hashp != NULL)
1488 h = *hashp;
1489 else
1490 {
1491 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1492 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1493 else
1494 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1495 if (h == NULL)
1496 {
1497 if (hashp != NULL)
1498 *hashp = NULL;
1499 return FALSE;
1500 }
1501 }
1502
1503 if (info->notice_all
1504 || (info->notice_hash != NULL
1505 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1506 {
1507 if (! (*info->callbacks->notice) (info, h, inh,
1508 abfd, section, value, flags))
1509 return FALSE;
1510 }
1511
1512 if (hashp != NULL)
1513 *hashp = h;
1514
1515 do
1516 {
1517 enum link_action action;
1518
1519 cycle = FALSE;
1520 action = link_action[(int) row][(int) h->type];
1521 switch (action)
1522 {
1523 case FAIL:
1524 abort ();
1525
1526 case NOACT:
1527 /* Do nothing. */
1528 break;
1529
1530 case UND:
1531 /* Make a new undefined symbol. */
1532 h->type = bfd_link_hash_undefined;
1533 h->u.undef.abfd = abfd;
1534 bfd_link_add_undef (info->hash, h);
1535 break;
1536
1537 case WEAK:
1538 /* Make a new weak undefined symbol. */
1539 h->type = bfd_link_hash_undefweak;
1540 h->u.undef.abfd = abfd;
1541 break;
1542
1543 case CDEF:
1544 /* We have found a definition for a symbol which was
1545 previously common. */
1546 BFD_ASSERT (h->type == bfd_link_hash_common);
1547 (*info->callbacks->multiple_common) (info, h, abfd,
1548 bfd_link_hash_defined, 0);
1549 /* Fall through. */
1550 case DEF:
1551 case DEFW:
1552 {
1553 enum bfd_link_hash_type oldtype;
1554
1555 /* Define a symbol. */
1556 oldtype = h->type;
1557 if (action == DEFW)
1558 h->type = bfd_link_hash_defweak;
1559 else
1560 h->type = bfd_link_hash_defined;
1561 h->u.def.section = section;
1562 h->u.def.value = value;
1563 h->linker_def = 0;
1564
1565 /* If we have been asked to, we act like collect2 and
1566 identify all functions that might be global
1567 constructors and destructors and pass them up in a
1568 callback. We only do this for certain object file
1569 types, since many object file types can handle this
1570 automatically. */
1571 if (collect && name[0] == '_')
1572 {
1573 const char *s;
1574
1575 /* A constructor or destructor name starts like this:
1576 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1577 the second are the same character (we accept any
1578 character there, in case a new object file format
1579 comes along with even worse naming restrictions). */
1580
1581 #define CONS_PREFIX "GLOBAL_"
1582 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1583
1584 s = name + 1;
1585 while (*s == '_')
1586 ++s;
1587 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1588 {
1589 char c;
1590
1591 c = s[CONS_PREFIX_LEN + 1];
1592 if ((c == 'I' || c == 'D')
1593 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1594 {
1595 /* If this is a definition of a symbol which
1596 was previously weakly defined, we are in
1597 trouble. We have already added a
1598 constructor entry for the weak defined
1599 symbol, and now we are trying to add one
1600 for the new symbol. Fortunately, this case
1601 should never arise in practice. */
1602 if (oldtype == bfd_link_hash_defweak)
1603 abort ();
1604
1605 (*info->callbacks->constructor) (info, c == 'I',
1606 h->root.string, abfd,
1607 section, value);
1608 }
1609 }
1610 }
1611 }
1612
1613 break;
1614
1615 case COM:
1616 /* We have found a common definition for a symbol. */
1617 if (h->type == bfd_link_hash_new)
1618 bfd_link_add_undef (info->hash, h);
1619 h->type = bfd_link_hash_common;
1620 h->u.c.p = (struct bfd_link_hash_common_entry *)
1621 bfd_hash_allocate (&info->hash->table,
1622 sizeof (struct bfd_link_hash_common_entry));
1623 if (h->u.c.p == NULL)
1624 return FALSE;
1625
1626 h->u.c.size = value;
1627
1628 /* Select a default alignment based on the size. This may
1629 be overridden by the caller. */
1630 {
1631 unsigned int power;
1632
1633 power = bfd_log2 (value);
1634 if (power > 4)
1635 power = 4;
1636 h->u.c.p->alignment_power = power;
1637 }
1638
1639 /* The section of a common symbol is only used if the common
1640 symbol is actually allocated. It basically provides a
1641 hook for the linker script to decide which output section
1642 the common symbols should be put in. In most cases, the
1643 section of a common symbol will be bfd_com_section_ptr,
1644 the code here will choose a common symbol section named
1645 "COMMON", and the linker script will contain *(COMMON) in
1646 the appropriate place. A few targets use separate common
1647 sections for small symbols, and they require special
1648 handling. */
1649 if (section == bfd_com_section_ptr)
1650 {
1651 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1652 h->u.c.p->section->flags |= SEC_ALLOC;
1653 }
1654 else if (section->owner != abfd)
1655 {
1656 h->u.c.p->section = bfd_make_section_old_way (abfd,
1657 section->name);
1658 h->u.c.p->section->flags |= SEC_ALLOC;
1659 }
1660 else
1661 h->u.c.p->section = section;
1662 h->linker_def = 0;
1663 break;
1664
1665 case REF:
1666 /* A reference to a defined symbol. */
1667 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1668 h->u.undef.next = h;
1669 break;
1670
1671 case BIG:
1672 /* We have found a common definition for a symbol which
1673 already had a common definition. Use the maximum of the
1674 two sizes, and use the section required by the larger symbol. */
1675 BFD_ASSERT (h->type == bfd_link_hash_common);
1676 (*info->callbacks->multiple_common) (info, h, abfd,
1677 bfd_link_hash_common, value);
1678 if (value > h->u.c.size)
1679 {
1680 unsigned int power;
1681
1682 h->u.c.size = value;
1683
1684 /* Select a default alignment based on the size. This may
1685 be overridden by the caller. */
1686 power = bfd_log2 (value);
1687 if (power > 4)
1688 power = 4;
1689 h->u.c.p->alignment_power = power;
1690
1691 /* Some systems have special treatment for small commons,
1692 hence we want to select the section used by the larger
1693 symbol. This makes sure the symbol does not go in a
1694 small common section if it is now too large. */
1695 if (section == bfd_com_section_ptr)
1696 {
1697 h->u.c.p->section
1698 = bfd_make_section_old_way (abfd, "COMMON");
1699 h->u.c.p->section->flags |= SEC_ALLOC;
1700 }
1701 else if (section->owner != abfd)
1702 {
1703 h->u.c.p->section
1704 = bfd_make_section_old_way (abfd, section->name);
1705 h->u.c.p->section->flags |= SEC_ALLOC;
1706 }
1707 else
1708 h->u.c.p->section = section;
1709 }
1710 break;
1711
1712 case CREF:
1713 /* We have found a common definition for a symbol which
1714 was already defined. */
1715 (*info->callbacks->multiple_common) (info, h, abfd,
1716 bfd_link_hash_common, value);
1717 break;
1718
1719 case MIND:
1720 /* Multiple indirect symbols. This is OK if they both point
1721 to the same symbol. */
1722 if (strcmp (h->u.i.link->root.string, string) == 0)
1723 break;
1724 /* Fall through. */
1725 case MDEF:
1726 /* Handle a multiple definition. */
1727 (*info->callbacks->multiple_definition) (info, h,
1728 abfd, section, value);
1729 break;
1730
1731 case CIND:
1732 /* Create an indirect symbol from an existing common symbol. */
1733 BFD_ASSERT (h->type == bfd_link_hash_common);
1734 (*info->callbacks->multiple_common) (info, h, abfd,
1735 bfd_link_hash_indirect, 0);
1736 /* Fall through. */
1737 case IND:
1738 if (inh->type == bfd_link_hash_indirect
1739 && inh->u.i.link == h)
1740 {
1741 _bfd_error_handler
1742 /* xgettext:c-format */
1743 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1744 abfd, name, string);
1745 bfd_set_error (bfd_error_invalid_operation);
1746 return FALSE;
1747 }
1748 if (inh->type == bfd_link_hash_new)
1749 {
1750 inh->type = bfd_link_hash_undefined;
1751 inh->u.undef.abfd = abfd;
1752 bfd_link_add_undef (info->hash, inh);
1753 }
1754
1755 /* If the indirect symbol has been referenced, we need to
1756 push the reference down to the symbol we are referencing. */
1757 if (h->type != bfd_link_hash_new)
1758 {
1759 /* ??? If inh->type == bfd_link_hash_undefweak this
1760 converts inh to bfd_link_hash_undefined. */
1761 row = UNDEF_ROW;
1762 cycle = TRUE;
1763 }
1764
1765 h->type = bfd_link_hash_indirect;
1766 h->u.i.link = inh;
1767 /* Not setting h = h->u.i.link here means that when cycle is
1768 set above we'll always go to REFC, and then cycle again
1769 to the indirected symbol. This means that any successful
1770 change of an existing symbol to indirect counts as a
1771 reference. ??? That may not be correct when the existing
1772 symbol was defweak. */
1773 break;
1774
1775 case SET:
1776 /* Add an entry to a set. */
1777 (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1778 abfd, section, value);
1779 break;
1780
1781 case WARNC:
1782 /* Issue a warning and cycle, except when the reference is
1783 in LTO IR. */
1784 if (h->u.i.warning != NULL
1785 && (abfd->flags & BFD_PLUGIN) == 0)
1786 {
1787 (*info->callbacks->warning) (info, h->u.i.warning,
1788 h->root.string, abfd, NULL, 0);
1789 /* Only issue a warning once. */
1790 h->u.i.warning = NULL;
1791 }
1792 /* Fall through. */
1793 case CYCLE:
1794 /* Try again with the referenced symbol. */
1795 h = h->u.i.link;
1796 cycle = TRUE;
1797 break;
1798
1799 case REFC:
1800 /* A reference to an indirect symbol. */
1801 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1802 h->u.undef.next = h;
1803 h = h->u.i.link;
1804 cycle = TRUE;
1805 break;
1806
1807 case WARN:
1808 /* Warn if this symbol has been referenced already from non-IR,
1809 otherwise add a warning. */
1810 if ((!info->lto_plugin_active
1811 && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1812 || h->non_ir_ref)
1813 {
1814 (*info->callbacks->warning) (info, string, h->root.string,
1815 hash_entry_bfd (h), NULL, 0);
1816 break;
1817 }
1818 /* Fall through. */
1819 case MWARN:
1820 /* Make a warning symbol. */
1821 {
1822 struct bfd_link_hash_entry *sub;
1823
1824 /* STRING is the warning to give. */
1825 sub = ((struct bfd_link_hash_entry *)
1826 ((*info->hash->table.newfunc)
1827 (NULL, &info->hash->table, h->root.string)));
1828 if (sub == NULL)
1829 return FALSE;
1830 *sub = *h;
1831 sub->type = bfd_link_hash_warning;
1832 sub->u.i.link = h;
1833 if (! copy)
1834 sub->u.i.warning = string;
1835 else
1836 {
1837 char *w;
1838 size_t len = strlen (string) + 1;
1839
1840 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1841 if (w == NULL)
1842 return FALSE;
1843 memcpy (w, string, len);
1844 sub->u.i.warning = w;
1845 }
1846
1847 bfd_hash_replace (&info->hash->table,
1848 (struct bfd_hash_entry *) h,
1849 (struct bfd_hash_entry *) sub);
1850 if (hashp != NULL)
1851 *hashp = sub;
1852 }
1853 break;
1854 }
1855 }
1856 while (cycle);
1857
1858 return TRUE;
1859 }
1860 \f
1861 /* Generic final link routine. */
1862
1863 bfd_boolean
1864 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1865 {
1866 bfd *sub;
1867 asection *o;
1868 struct bfd_link_order *p;
1869 size_t outsymalloc;
1870 struct generic_write_global_symbol_info wginfo;
1871
1872 bfd_get_outsymbols (abfd) = NULL;
1873 bfd_get_symcount (abfd) = 0;
1874 outsymalloc = 0;
1875
1876 /* Mark all sections which will be included in the output file. */
1877 for (o = abfd->sections; o != NULL; o = o->next)
1878 for (p = o->map_head.link_order; p != NULL; p = p->next)
1879 if (p->type == bfd_indirect_link_order)
1880 p->u.indirect.section->linker_mark = TRUE;
1881
1882 /* Build the output symbol table. */
1883 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1884 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1885 return FALSE;
1886
1887 /* Accumulate the global symbols. */
1888 wginfo.info = info;
1889 wginfo.output_bfd = abfd;
1890 wginfo.psymalloc = &outsymalloc;
1891 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1892 _bfd_generic_link_write_global_symbol,
1893 &wginfo);
1894
1895 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1896 shouldn't really need one, since we have SYMCOUNT, but some old
1897 code still expects one. */
1898 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1899 return FALSE;
1900
1901 if (bfd_link_relocatable (info))
1902 {
1903 /* Allocate space for the output relocs for each section. */
1904 for (o = abfd->sections; o != NULL; o = o->next)
1905 {
1906 o->reloc_count = 0;
1907 for (p = o->map_head.link_order; p != NULL; p = p->next)
1908 {
1909 if (p->type == bfd_section_reloc_link_order
1910 || p->type == bfd_symbol_reloc_link_order)
1911 ++o->reloc_count;
1912 else if (p->type == bfd_indirect_link_order)
1913 {
1914 asection *input_section;
1915 bfd *input_bfd;
1916 long relsize;
1917 arelent **relocs;
1918 asymbol **symbols;
1919 long reloc_count;
1920
1921 input_section = p->u.indirect.section;
1922 input_bfd = input_section->owner;
1923 relsize = bfd_get_reloc_upper_bound (input_bfd,
1924 input_section);
1925 if (relsize < 0)
1926 return FALSE;
1927 relocs = (arelent **) bfd_malloc (relsize);
1928 if (!relocs && relsize != 0)
1929 return FALSE;
1930 symbols = _bfd_generic_link_get_symbols (input_bfd);
1931 reloc_count = bfd_canonicalize_reloc (input_bfd,
1932 input_section,
1933 relocs,
1934 symbols);
1935 free (relocs);
1936 if (reloc_count < 0)
1937 return FALSE;
1938 BFD_ASSERT ((unsigned long) reloc_count
1939 == input_section->reloc_count);
1940 o->reloc_count += reloc_count;
1941 }
1942 }
1943 if (o->reloc_count > 0)
1944 {
1945 bfd_size_type amt;
1946
1947 amt = o->reloc_count;
1948 amt *= sizeof (arelent *);
1949 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1950 if (!o->orelocation)
1951 return FALSE;
1952 o->flags |= SEC_RELOC;
1953 /* Reset the count so that it can be used as an index
1954 when putting in the output relocs. */
1955 o->reloc_count = 0;
1956 }
1957 }
1958 }
1959
1960 /* Handle all the link order information for the sections. */
1961 for (o = abfd->sections; o != NULL; o = o->next)
1962 {
1963 for (p = o->map_head.link_order; p != NULL; p = p->next)
1964 {
1965 switch (p->type)
1966 {
1967 case bfd_section_reloc_link_order:
1968 case bfd_symbol_reloc_link_order:
1969 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1970 return FALSE;
1971 break;
1972 case bfd_indirect_link_order:
1973 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
1974 return FALSE;
1975 break;
1976 default:
1977 if (! _bfd_default_link_order (abfd, info, o, p))
1978 return FALSE;
1979 break;
1980 }
1981 }
1982 }
1983
1984 return TRUE;
1985 }
1986
1987 /* Add an output symbol to the output BFD. */
1988
1989 static bfd_boolean
1990 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1991 {
1992 if (bfd_get_symcount (output_bfd) >= *psymalloc)
1993 {
1994 asymbol **newsyms;
1995 bfd_size_type amt;
1996
1997 if (*psymalloc == 0)
1998 *psymalloc = 124;
1999 else
2000 *psymalloc *= 2;
2001 amt = *psymalloc;
2002 amt *= sizeof (asymbol *);
2003 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2004 if (newsyms == NULL)
2005 return FALSE;
2006 bfd_get_outsymbols (output_bfd) = newsyms;
2007 }
2008
2009 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2010 if (sym != NULL)
2011 ++ bfd_get_symcount (output_bfd);
2012
2013 return TRUE;
2014 }
2015
2016 /* Handle the symbols for an input BFD. */
2017
2018 bfd_boolean
2019 _bfd_generic_link_output_symbols (bfd *output_bfd,
2020 bfd *input_bfd,
2021 struct bfd_link_info *info,
2022 size_t *psymalloc)
2023 {
2024 asymbol **sym_ptr;
2025 asymbol **sym_end;
2026
2027 if (!bfd_generic_link_read_symbols (input_bfd))
2028 return FALSE;
2029
2030 /* Create a filename symbol if we are supposed to. */
2031 if (info->create_object_symbols_section != NULL)
2032 {
2033 asection *sec;
2034
2035 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2036 {
2037 if (sec->output_section == info->create_object_symbols_section)
2038 {
2039 asymbol *newsym;
2040
2041 newsym = bfd_make_empty_symbol (input_bfd);
2042 if (!newsym)
2043 return FALSE;
2044 newsym->name = input_bfd->filename;
2045 newsym->value = 0;
2046 newsym->flags = BSF_LOCAL | BSF_FILE;
2047 newsym->section = sec;
2048
2049 if (! generic_add_output_symbol (output_bfd, psymalloc,
2050 newsym))
2051 return FALSE;
2052
2053 break;
2054 }
2055 }
2056 }
2057
2058 /* Adjust the values of the globally visible symbols, and write out
2059 local symbols. */
2060 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2061 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2062 for (; sym_ptr < sym_end; sym_ptr++)
2063 {
2064 asymbol *sym;
2065 struct generic_link_hash_entry *h;
2066 bfd_boolean output;
2067
2068 h = NULL;
2069 sym = *sym_ptr;
2070 if ((sym->flags & (BSF_INDIRECT
2071 | BSF_WARNING
2072 | BSF_GLOBAL
2073 | BSF_CONSTRUCTOR
2074 | BSF_WEAK)) != 0
2075 || bfd_is_und_section (bfd_get_section (sym))
2076 || bfd_is_com_section (bfd_get_section (sym))
2077 || bfd_is_ind_section (bfd_get_section (sym)))
2078 {
2079 if (sym->udata.p != NULL)
2080 h = (struct generic_link_hash_entry *) sym->udata.p;
2081 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2082 {
2083 /* This case normally means that the main linker code
2084 deliberately ignored this constructor symbol. We
2085 should just pass it through. This will screw up if
2086 the constructor symbol is from a different,
2087 non-generic, object file format, but the case will
2088 only arise when linking with -r, which will probably
2089 fail anyhow, since there will be no way to represent
2090 the relocs in the output format being used. */
2091 h = NULL;
2092 }
2093 else if (bfd_is_und_section (bfd_get_section (sym)))
2094 h = ((struct generic_link_hash_entry *)
2095 bfd_wrapped_link_hash_lookup (output_bfd, info,
2096 bfd_asymbol_name (sym),
2097 FALSE, FALSE, TRUE));
2098 else
2099 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2100 bfd_asymbol_name (sym),
2101 FALSE, FALSE, TRUE);
2102
2103 if (h != NULL)
2104 {
2105 /* Force all references to this symbol to point to
2106 the same area in memory. It is possible that
2107 this routine will be called with a hash table
2108 other than a generic hash table, so we double
2109 check that. */
2110 if (info->output_bfd->xvec == input_bfd->xvec)
2111 {
2112 if (h->sym != NULL)
2113 *sym_ptr = sym = h->sym;
2114 }
2115
2116 switch (h->root.type)
2117 {
2118 default:
2119 case bfd_link_hash_new:
2120 abort ();
2121 case bfd_link_hash_undefined:
2122 break;
2123 case bfd_link_hash_undefweak:
2124 sym->flags |= BSF_WEAK;
2125 break;
2126 case bfd_link_hash_indirect:
2127 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2128 /* fall through */
2129 case bfd_link_hash_defined:
2130 sym->flags |= BSF_GLOBAL;
2131 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2132 sym->value = h->root.u.def.value;
2133 sym->section = h->root.u.def.section;
2134 break;
2135 case bfd_link_hash_defweak:
2136 sym->flags |= BSF_WEAK;
2137 sym->flags &=~ BSF_CONSTRUCTOR;
2138 sym->value = h->root.u.def.value;
2139 sym->section = h->root.u.def.section;
2140 break;
2141 case bfd_link_hash_common:
2142 sym->value = h->root.u.c.size;
2143 sym->flags |= BSF_GLOBAL;
2144 if (! bfd_is_com_section (sym->section))
2145 {
2146 BFD_ASSERT (bfd_is_und_section (sym->section));
2147 sym->section = bfd_com_section_ptr;
2148 }
2149 /* We do not set the section of the symbol to
2150 h->root.u.c.p->section. That value was saved so
2151 that we would know where to allocate the symbol
2152 if it was defined. In this case the type is
2153 still bfd_link_hash_common, so we did not define
2154 it, so we do not want to use that section. */
2155 break;
2156 }
2157 }
2158 }
2159
2160 /* This switch is straight from the old code in
2161 write_file_locals in ldsym.c. */
2162 if (info->strip == strip_all
2163 || (info->strip == strip_some
2164 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2165 FALSE, FALSE) == NULL))
2166 output = FALSE;
2167 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2168 {
2169 /* If this symbol is marked as occurring now, rather
2170 than at the end, output it now. This is used for
2171 COFF C_EXT FCN symbols. FIXME: There must be a
2172 better way. */
2173 if (bfd_asymbol_bfd (sym) == input_bfd
2174 && (sym->flags & BSF_NOT_AT_END) != 0)
2175 output = TRUE;
2176 else
2177 output = FALSE;
2178 }
2179 else if (bfd_is_ind_section (sym->section))
2180 output = FALSE;
2181 else if ((sym->flags & BSF_DEBUGGING) != 0)
2182 {
2183 if (info->strip == strip_none)
2184 output = TRUE;
2185 else
2186 output = FALSE;
2187 }
2188 else if (bfd_is_und_section (sym->section)
2189 || bfd_is_com_section (sym->section))
2190 output = FALSE;
2191 else if ((sym->flags & BSF_LOCAL) != 0)
2192 {
2193 if ((sym->flags & BSF_WARNING) != 0)
2194 output = FALSE;
2195 else
2196 {
2197 switch (info->discard)
2198 {
2199 default:
2200 case discard_all:
2201 output = FALSE;
2202 break;
2203 case discard_sec_merge:
2204 output = TRUE;
2205 if (bfd_link_relocatable (info)
2206 || ! (sym->section->flags & SEC_MERGE))
2207 break;
2208 /* FALLTHROUGH */
2209 case discard_l:
2210 if (bfd_is_local_label (input_bfd, sym))
2211 output = FALSE;
2212 else
2213 output = TRUE;
2214 break;
2215 case discard_none:
2216 output = TRUE;
2217 break;
2218 }
2219 }
2220 }
2221 else if ((sym->flags & BSF_CONSTRUCTOR))
2222 {
2223 if (info->strip != strip_all)
2224 output = TRUE;
2225 else
2226 output = FALSE;
2227 }
2228 else if (sym->flags == 0
2229 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2230 /* LTO doesn't set symbol information. We get here with the
2231 generic linker for a symbol that was "common" but no longer
2232 needs to be global. */
2233 output = FALSE;
2234 else
2235 abort ();
2236
2237 /* If this symbol is in a section which is not being included
2238 in the output file, then we don't want to output the
2239 symbol. */
2240 if (!bfd_is_abs_section (sym->section)
2241 && bfd_section_removed_from_list (output_bfd,
2242 sym->section->output_section))
2243 output = FALSE;
2244
2245 if (output)
2246 {
2247 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2248 return FALSE;
2249 if (h != NULL)
2250 h->written = TRUE;
2251 }
2252 }
2253
2254 return TRUE;
2255 }
2256
2257 /* Set the section and value of a generic BFD symbol based on a linker
2258 hash table entry. */
2259
2260 static void
2261 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2262 {
2263 switch (h->type)
2264 {
2265 default:
2266 abort ();
2267 break;
2268 case bfd_link_hash_new:
2269 /* This can happen when a constructor symbol is seen but we are
2270 not building constructors. */
2271 if (sym->section != NULL)
2272 {
2273 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2274 }
2275 else
2276 {
2277 sym->flags |= BSF_CONSTRUCTOR;
2278 sym->section = bfd_abs_section_ptr;
2279 sym->value = 0;
2280 }
2281 break;
2282 case bfd_link_hash_undefined:
2283 sym->section = bfd_und_section_ptr;
2284 sym->value = 0;
2285 break;
2286 case bfd_link_hash_undefweak:
2287 sym->section = bfd_und_section_ptr;
2288 sym->value = 0;
2289 sym->flags |= BSF_WEAK;
2290 break;
2291 case bfd_link_hash_defined:
2292 sym->section = h->u.def.section;
2293 sym->value = h->u.def.value;
2294 break;
2295 case bfd_link_hash_defweak:
2296 sym->flags |= BSF_WEAK;
2297 sym->section = h->u.def.section;
2298 sym->value = h->u.def.value;
2299 break;
2300 case bfd_link_hash_common:
2301 sym->value = h->u.c.size;
2302 if (sym->section == NULL)
2303 sym->section = bfd_com_section_ptr;
2304 else if (! bfd_is_com_section (sym->section))
2305 {
2306 BFD_ASSERT (bfd_is_und_section (sym->section));
2307 sym->section = bfd_com_section_ptr;
2308 }
2309 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2310 break;
2311 case bfd_link_hash_indirect:
2312 case bfd_link_hash_warning:
2313 /* FIXME: What should we do here? */
2314 break;
2315 }
2316 }
2317
2318 /* Write out a global symbol, if it hasn't already been written out.
2319 This is called for each symbol in the hash table. */
2320
2321 bfd_boolean
2322 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2323 void *data)
2324 {
2325 struct generic_write_global_symbol_info *wginfo =
2326 (struct generic_write_global_symbol_info *) data;
2327 asymbol *sym;
2328
2329 if (h->written)
2330 return TRUE;
2331
2332 h->written = TRUE;
2333
2334 if (wginfo->info->strip == strip_all
2335 || (wginfo->info->strip == strip_some
2336 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2337 FALSE, FALSE) == NULL))
2338 return TRUE;
2339
2340 if (h->sym != NULL)
2341 sym = h->sym;
2342 else
2343 {
2344 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2345 if (!sym)
2346 return FALSE;
2347 sym->name = h->root.root.string;
2348 sym->flags = 0;
2349 }
2350
2351 set_symbol_from_hash (sym, &h->root);
2352
2353 sym->flags |= BSF_GLOBAL;
2354
2355 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2356 sym))
2357 {
2358 /* FIXME: No way to return failure. */
2359 abort ();
2360 }
2361
2362 return TRUE;
2363 }
2364
2365 /* Create a relocation. */
2366
2367 bfd_boolean
2368 _bfd_generic_reloc_link_order (bfd *abfd,
2369 struct bfd_link_info *info,
2370 asection *sec,
2371 struct bfd_link_order *link_order)
2372 {
2373 arelent *r;
2374
2375 if (! bfd_link_relocatable (info))
2376 abort ();
2377 if (sec->orelocation == NULL)
2378 abort ();
2379
2380 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2381 if (r == NULL)
2382 return FALSE;
2383
2384 r->address = link_order->offset;
2385 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2386 if (r->howto == 0)
2387 {
2388 bfd_set_error (bfd_error_bad_value);
2389 return FALSE;
2390 }
2391
2392 /* Get the symbol to use for the relocation. */
2393 if (link_order->type == bfd_section_reloc_link_order)
2394 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2395 else
2396 {
2397 struct generic_link_hash_entry *h;
2398
2399 h = ((struct generic_link_hash_entry *)
2400 bfd_wrapped_link_hash_lookup (abfd, info,
2401 link_order->u.reloc.p->u.name,
2402 FALSE, FALSE, TRUE));
2403 if (h == NULL
2404 || ! h->written)
2405 {
2406 (*info->callbacks->unattached_reloc)
2407 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
2408 bfd_set_error (bfd_error_bad_value);
2409 return FALSE;
2410 }
2411 r->sym_ptr_ptr = &h->sym;
2412 }
2413
2414 /* If this is an inplace reloc, write the addend to the object file.
2415 Otherwise, store it in the reloc addend. */
2416 if (! r->howto->partial_inplace)
2417 r->addend = link_order->u.reloc.p->addend;
2418 else
2419 {
2420 bfd_size_type size;
2421 bfd_reloc_status_type rstat;
2422 bfd_byte *buf;
2423 bfd_boolean ok;
2424 file_ptr loc;
2425
2426 size = bfd_get_reloc_size (r->howto);
2427 buf = (bfd_byte *) bfd_zmalloc (size);
2428 if (buf == NULL && size != 0)
2429 return FALSE;
2430 rstat = _bfd_relocate_contents (r->howto, abfd,
2431 (bfd_vma) link_order->u.reloc.p->addend,
2432 buf);
2433 switch (rstat)
2434 {
2435 case bfd_reloc_ok:
2436 break;
2437 default:
2438 case bfd_reloc_outofrange:
2439 abort ();
2440 case bfd_reloc_overflow:
2441 (*info->callbacks->reloc_overflow)
2442 (info, NULL,
2443 (link_order->type == bfd_section_reloc_link_order
2444 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2445 : link_order->u.reloc.p->u.name),
2446 r->howto->name, link_order->u.reloc.p->addend,
2447 NULL, NULL, 0);
2448 break;
2449 }
2450 loc = link_order->offset * bfd_octets_per_byte (abfd);
2451 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2452 free (buf);
2453 if (! ok)
2454 return FALSE;
2455
2456 r->addend = 0;
2457 }
2458
2459 sec->orelocation[sec->reloc_count] = r;
2460 ++sec->reloc_count;
2461
2462 return TRUE;
2463 }
2464 \f
2465 /* Allocate a new link_order for a section. */
2466
2467 struct bfd_link_order *
2468 bfd_new_link_order (bfd *abfd, asection *section)
2469 {
2470 bfd_size_type amt = sizeof (struct bfd_link_order);
2471 struct bfd_link_order *new_lo;
2472
2473 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2474 if (!new_lo)
2475 return NULL;
2476
2477 new_lo->type = bfd_undefined_link_order;
2478
2479 if (section->map_tail.link_order != NULL)
2480 section->map_tail.link_order->next = new_lo;
2481 else
2482 section->map_head.link_order = new_lo;
2483 section->map_tail.link_order = new_lo;
2484
2485 return new_lo;
2486 }
2487
2488 /* Default link order processing routine. Note that we can not handle
2489 the reloc_link_order types here, since they depend upon the details
2490 of how the particular backends generates relocs. */
2491
2492 bfd_boolean
2493 _bfd_default_link_order (bfd *abfd,
2494 struct bfd_link_info *info,
2495 asection *sec,
2496 struct bfd_link_order *link_order)
2497 {
2498 switch (link_order->type)
2499 {
2500 case bfd_undefined_link_order:
2501 case bfd_section_reloc_link_order:
2502 case bfd_symbol_reloc_link_order:
2503 default:
2504 abort ();
2505 case bfd_indirect_link_order:
2506 return default_indirect_link_order (abfd, info, sec, link_order,
2507 FALSE);
2508 case bfd_data_link_order:
2509 return default_data_link_order (abfd, info, sec, link_order);
2510 }
2511 }
2512
2513 /* Default routine to handle a bfd_data_link_order. */
2514
2515 static bfd_boolean
2516 default_data_link_order (bfd *abfd,
2517 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2518 asection *sec,
2519 struct bfd_link_order *link_order)
2520 {
2521 bfd_size_type size;
2522 size_t fill_size;
2523 bfd_byte *fill;
2524 file_ptr loc;
2525 bfd_boolean result;
2526
2527 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2528
2529 size = link_order->size;
2530 if (size == 0)
2531 return TRUE;
2532
2533 fill = link_order->u.data.contents;
2534 fill_size = link_order->u.data.size;
2535 if (fill_size == 0)
2536 {
2537 fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2538 (sec->flags & SEC_CODE) != 0);
2539 if (fill == NULL)
2540 return FALSE;
2541 }
2542 else if (fill_size < size)
2543 {
2544 bfd_byte *p;
2545 fill = (bfd_byte *) bfd_malloc (size);
2546 if (fill == NULL)
2547 return FALSE;
2548 p = fill;
2549 if (fill_size == 1)
2550 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2551 else
2552 {
2553 do
2554 {
2555 memcpy (p, link_order->u.data.contents, fill_size);
2556 p += fill_size;
2557 size -= fill_size;
2558 }
2559 while (size >= fill_size);
2560 if (size != 0)
2561 memcpy (p, link_order->u.data.contents, (size_t) size);
2562 size = link_order->size;
2563 }
2564 }
2565
2566 loc = link_order->offset * bfd_octets_per_byte (abfd);
2567 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2568
2569 if (fill != link_order->u.data.contents)
2570 free (fill);
2571 return result;
2572 }
2573
2574 /* Default routine to handle a bfd_indirect_link_order. */
2575
2576 static bfd_boolean
2577 default_indirect_link_order (bfd *output_bfd,
2578 struct bfd_link_info *info,
2579 asection *output_section,
2580 struct bfd_link_order *link_order,
2581 bfd_boolean generic_linker)
2582 {
2583 asection *input_section;
2584 bfd *input_bfd;
2585 bfd_byte *contents = NULL;
2586 bfd_byte *new_contents;
2587 bfd_size_type sec_size;
2588 file_ptr loc;
2589
2590 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2591
2592 input_section = link_order->u.indirect.section;
2593 input_bfd = input_section->owner;
2594 if (input_section->size == 0)
2595 return TRUE;
2596
2597 BFD_ASSERT (input_section->output_section == output_section);
2598 BFD_ASSERT (input_section->output_offset == link_order->offset);
2599 BFD_ASSERT (input_section->size == link_order->size);
2600
2601 if (bfd_link_relocatable (info)
2602 && input_section->reloc_count > 0
2603 && output_section->orelocation == NULL)
2604 {
2605 /* Space has not been allocated for the output relocations.
2606 This can happen when we are called by a specific backend
2607 because somebody is attempting to link together different
2608 types of object files. Handling this case correctly is
2609 difficult, and sometimes impossible. */
2610 _bfd_error_handler
2611 /* xgettext:c-format */
2612 (_("Attempt to do relocatable link with %s input and %s output"),
2613 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2614 bfd_set_error (bfd_error_wrong_format);
2615 return FALSE;
2616 }
2617
2618 if (! generic_linker)
2619 {
2620 asymbol **sympp;
2621 asymbol **symppend;
2622
2623 /* Get the canonical symbols. The generic linker will always
2624 have retrieved them by this point, but we are being called by
2625 a specific linker, presumably because we are linking
2626 different types of object files together. */
2627 if (!bfd_generic_link_read_symbols (input_bfd))
2628 return FALSE;
2629
2630 /* Since we have been called by a specific linker, rather than
2631 the generic linker, the values of the symbols will not be
2632 right. They will be the values as seen in the input file,
2633 not the values of the final link. We need to fix them up
2634 before we can relocate the section. */
2635 sympp = _bfd_generic_link_get_symbols (input_bfd);
2636 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2637 for (; sympp < symppend; sympp++)
2638 {
2639 asymbol *sym;
2640 struct bfd_link_hash_entry *h;
2641
2642 sym = *sympp;
2643
2644 if ((sym->flags & (BSF_INDIRECT
2645 | BSF_WARNING
2646 | BSF_GLOBAL
2647 | BSF_CONSTRUCTOR
2648 | BSF_WEAK)) != 0
2649 || bfd_is_und_section (bfd_get_section (sym))
2650 || bfd_is_com_section (bfd_get_section (sym))
2651 || bfd_is_ind_section (bfd_get_section (sym)))
2652 {
2653 /* sym->udata may have been set by
2654 generic_link_add_symbol_list. */
2655 if (sym->udata.p != NULL)
2656 h = (struct bfd_link_hash_entry *) sym->udata.p;
2657 else if (bfd_is_und_section (bfd_get_section (sym)))
2658 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2659 bfd_asymbol_name (sym),
2660 FALSE, FALSE, TRUE);
2661 else
2662 h = bfd_link_hash_lookup (info->hash,
2663 bfd_asymbol_name (sym),
2664 FALSE, FALSE, TRUE);
2665 if (h != NULL)
2666 set_symbol_from_hash (sym, h);
2667 }
2668 }
2669 }
2670
2671 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2672 && input_section->size != 0)
2673 {
2674 /* Group section contents are set by bfd_elf_set_group_contents. */
2675 if (!output_bfd->output_has_begun)
2676 {
2677 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2678 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2679 goto error_return;
2680 }
2681 new_contents = output_section->contents;
2682 BFD_ASSERT (new_contents != NULL);
2683 BFD_ASSERT (input_section->output_offset == 0);
2684 }
2685 else
2686 {
2687 /* Get and relocate the section contents. */
2688 sec_size = (input_section->rawsize > input_section->size
2689 ? input_section->rawsize
2690 : input_section->size);
2691 contents = (bfd_byte *) bfd_malloc (sec_size);
2692 if (contents == NULL && sec_size != 0)
2693 goto error_return;
2694 new_contents = (bfd_get_relocated_section_contents
2695 (output_bfd, info, link_order, contents,
2696 bfd_link_relocatable (info),
2697 _bfd_generic_link_get_symbols (input_bfd)));
2698 if (!new_contents)
2699 goto error_return;
2700 }
2701
2702 /* Output the section contents. */
2703 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2704 if (! bfd_set_section_contents (output_bfd, output_section,
2705 new_contents, loc, input_section->size))
2706 goto error_return;
2707
2708 if (contents != NULL)
2709 free (contents);
2710 return TRUE;
2711
2712 error_return:
2713 if (contents != NULL)
2714 free (contents);
2715 return FALSE;
2716 }
2717
2718 /* A little routine to count the number of relocs in a link_order
2719 list. */
2720
2721 unsigned int
2722 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2723 {
2724 register unsigned int c;
2725 register struct bfd_link_order *l;
2726
2727 c = 0;
2728 for (l = link_order; l != NULL; l = l->next)
2729 {
2730 if (l->type == bfd_section_reloc_link_order
2731 || l->type == bfd_symbol_reloc_link_order)
2732 ++c;
2733 }
2734
2735 return c;
2736 }
2737
2738 /*
2739 FUNCTION
2740 bfd_link_split_section
2741
2742 SYNOPSIS
2743 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2744
2745 DESCRIPTION
2746 Return nonzero if @var{sec} should be split during a
2747 reloceatable or final link.
2748
2749 .#define bfd_link_split_section(abfd, sec) \
2750 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2751 .
2752
2753 */
2754
2755 bfd_boolean
2756 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2757 asection *sec ATTRIBUTE_UNUSED)
2758 {
2759 return FALSE;
2760 }
2761
2762 /*
2763 FUNCTION
2764 bfd_section_already_linked
2765
2766 SYNOPSIS
2767 bfd_boolean bfd_section_already_linked (bfd *abfd,
2768 asection *sec,
2769 struct bfd_link_info *info);
2770
2771 DESCRIPTION
2772 Check if @var{data} has been already linked during a reloceatable
2773 or final link. Return TRUE if it has.
2774
2775 .#define bfd_section_already_linked(abfd, sec, info) \
2776 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2777 .
2778
2779 */
2780
2781 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2782 once into the output. This routine checks each section, and
2783 arrange to discard it if a section of the same name has already
2784 been linked. This code assumes that all relevant sections have the
2785 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2786 section name. bfd_section_already_linked is called via
2787 bfd_map_over_sections. */
2788
2789 /* The hash table. */
2790
2791 static struct bfd_hash_table _bfd_section_already_linked_table;
2792
2793 /* Support routines for the hash table used by section_already_linked,
2794 initialize the table, traverse, lookup, fill in an entry and remove
2795 the table. */
2796
2797 void
2798 bfd_section_already_linked_table_traverse
2799 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2800 void *), void *info)
2801 {
2802 bfd_hash_traverse (&_bfd_section_already_linked_table,
2803 (bfd_boolean (*) (struct bfd_hash_entry *,
2804 void *)) func,
2805 info);
2806 }
2807
2808 struct bfd_section_already_linked_hash_entry *
2809 bfd_section_already_linked_table_lookup (const char *name)
2810 {
2811 return ((struct bfd_section_already_linked_hash_entry *)
2812 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2813 TRUE, FALSE));
2814 }
2815
2816 bfd_boolean
2817 bfd_section_already_linked_table_insert
2818 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2819 asection *sec)
2820 {
2821 struct bfd_section_already_linked *l;
2822
2823 /* Allocate the memory from the same obstack as the hash table is
2824 kept in. */
2825 l = (struct bfd_section_already_linked *)
2826 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2827 if (l == NULL)
2828 return FALSE;
2829 l->sec = sec;
2830 l->next = already_linked_list->entry;
2831 already_linked_list->entry = l;
2832 return TRUE;
2833 }
2834
2835 static struct bfd_hash_entry *
2836 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2837 struct bfd_hash_table *table,
2838 const char *string ATTRIBUTE_UNUSED)
2839 {
2840 struct bfd_section_already_linked_hash_entry *ret =
2841 (struct bfd_section_already_linked_hash_entry *)
2842 bfd_hash_allocate (table, sizeof *ret);
2843
2844 if (ret == NULL)
2845 return NULL;
2846
2847 ret->entry = NULL;
2848
2849 return &ret->root;
2850 }
2851
2852 bfd_boolean
2853 bfd_section_already_linked_table_init (void)
2854 {
2855 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2856 already_linked_newfunc,
2857 sizeof (struct bfd_section_already_linked_hash_entry),
2858 42);
2859 }
2860
2861 void
2862 bfd_section_already_linked_table_free (void)
2863 {
2864 bfd_hash_table_free (&_bfd_section_already_linked_table);
2865 }
2866
2867 /* Report warnings as appropriate for duplicate section SEC.
2868 Return FALSE if we decide to keep SEC after all. */
2869
2870 bfd_boolean
2871 _bfd_handle_already_linked (asection *sec,
2872 struct bfd_section_already_linked *l,
2873 struct bfd_link_info *info)
2874 {
2875 switch (sec->flags & SEC_LINK_DUPLICATES)
2876 {
2877 default:
2878 abort ();
2879
2880 case SEC_LINK_DUPLICATES_DISCARD:
2881 /* If we found an LTO IR match for this comdat group on
2882 the first pass, replace it with the LTO output on the
2883 second pass. We can't simply choose real object
2884 files over IR because the first pass may contain a
2885 mix of LTO and normal objects and we must keep the
2886 first match, be it IR or real. */
2887 if (sec->owner->lto_output
2888 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2889 {
2890 l->sec = sec;
2891 return FALSE;
2892 }
2893 break;
2894
2895 case SEC_LINK_DUPLICATES_ONE_ONLY:
2896 info->callbacks->einfo
2897 /* xgettext:c-format */
2898 (_("%B: ignoring duplicate section `%A'\n"),
2899 sec->owner, sec);
2900 break;
2901
2902 case SEC_LINK_DUPLICATES_SAME_SIZE:
2903 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2904 ;
2905 else if (sec->size != l->sec->size)
2906 info->callbacks->einfo
2907 /* xgettext:c-format */
2908 (_("%B: duplicate section `%A' has different size\n"),
2909 sec->owner, sec);
2910 break;
2911
2912 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2913 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2914 ;
2915 else if (sec->size != l->sec->size)
2916 info->callbacks->einfo
2917 /* xgettext:c-format */
2918 (_("%B: duplicate section `%A' has different size\n"),
2919 sec->owner, sec);
2920 else if (sec->size != 0)
2921 {
2922 bfd_byte *sec_contents, *l_sec_contents = NULL;
2923
2924 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2925 info->callbacks->einfo
2926 /* xgettext:c-format */
2927 (_("%B: could not read contents of section `%A'\n"),
2928 sec->owner, sec);
2929 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2930 &l_sec_contents))
2931 info->callbacks->einfo
2932 /* xgettext:c-format */
2933 (_("%B: could not read contents of section `%A'\n"),
2934 l->sec->owner, l->sec);
2935 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2936 info->callbacks->einfo
2937 /* xgettext:c-format */
2938 (_("%B: duplicate section `%A' has different contents\n"),
2939 sec->owner, sec);
2940
2941 if (sec_contents)
2942 free (sec_contents);
2943 if (l_sec_contents)
2944 free (l_sec_contents);
2945 }
2946 break;
2947 }
2948
2949 /* Set the output_section field so that lang_add_section
2950 does not create a lang_input_section structure for this
2951 section. Since there might be a symbol in the section
2952 being discarded, we must retain a pointer to the section
2953 which we are really going to use. */
2954 sec->output_section = bfd_abs_section_ptr;
2955 sec->kept_section = l->sec;
2956 return TRUE;
2957 }
2958
2959 /* This is used on non-ELF inputs. */
2960
2961 bfd_boolean
2962 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2963 asection *sec,
2964 struct bfd_link_info *info)
2965 {
2966 const char *name;
2967 struct bfd_section_already_linked *l;
2968 struct bfd_section_already_linked_hash_entry *already_linked_list;
2969
2970 if ((sec->flags & SEC_LINK_ONCE) == 0)
2971 return FALSE;
2972
2973 /* The generic linker doesn't handle section groups. */
2974 if ((sec->flags & SEC_GROUP) != 0)
2975 return FALSE;
2976
2977 /* FIXME: When doing a relocatable link, we may have trouble
2978 copying relocations in other sections that refer to local symbols
2979 in the section being discarded. Those relocations will have to
2980 be converted somehow; as of this writing I'm not sure that any of
2981 the backends handle that correctly.
2982
2983 It is tempting to instead not discard link once sections when
2984 doing a relocatable link (technically, they should be discarded
2985 whenever we are building constructors). However, that fails,
2986 because the linker winds up combining all the link once sections
2987 into a single large link once section, which defeats the purpose
2988 of having link once sections in the first place. */
2989
2990 name = bfd_get_section_name (abfd, sec);
2991
2992 already_linked_list = bfd_section_already_linked_table_lookup (name);
2993
2994 l = already_linked_list->entry;
2995 if (l != NULL)
2996 {
2997 /* The section has already been linked. See if we should
2998 issue a warning. */
2999 return _bfd_handle_already_linked (sec, l, info);
3000 }
3001
3002 /* This is the first section with this name. Record it. */
3003 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
3004 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
3005 return FALSE;
3006 }
3007
3008 /* Choose a neighbouring section to S in OBFD that will be output, or
3009 the absolute section if ADDR is out of bounds of the neighbours. */
3010
3011 asection *
3012 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
3013 {
3014 asection *next, *prev, *best;
3015
3016 /* Find preceding kept section. */
3017 for (prev = s->prev; prev != NULL; prev = prev->prev)
3018 if ((prev->flags & SEC_EXCLUDE) == 0
3019 && !bfd_section_removed_from_list (obfd, prev))
3020 break;
3021
3022 /* Find following kept section. Start at prev->next because
3023 other sections may have been added after S was removed. */
3024 if (s->prev != NULL)
3025 next = s->prev->next;
3026 else
3027 next = s->owner->sections;
3028 for (; next != NULL; next = next->next)
3029 if ((next->flags & SEC_EXCLUDE) == 0
3030 && !bfd_section_removed_from_list (obfd, next))
3031 break;
3032
3033 /* Choose better of two sections, based on flags. The idea
3034 is to choose a section that will be in the same segment
3035 as S would have been if it was kept. */
3036 best = next;
3037 if (prev == NULL)
3038 {
3039 if (next == NULL)
3040 best = bfd_abs_section_ptr;
3041 }
3042 else if (next == NULL)
3043 best = prev;
3044 else if (((prev->flags ^ next->flags)
3045 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3046 {
3047 if (((next->flags ^ s->flags)
3048 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3049 /* We prefer to choose a loaded section. Section S
3050 doesn't have SEC_LOAD set (it being excluded, that
3051 part of the flag processing didn't happen) so we
3052 can't compare that flag to those of NEXT and PREV. */
3053 || ((prev->flags & SEC_LOAD) != 0
3054 && (next->flags & SEC_LOAD) == 0))
3055 best = prev;
3056 }
3057 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3058 {
3059 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3060 best = prev;
3061 }
3062 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3063 {
3064 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3065 best = prev;
3066 }
3067 else
3068 {
3069 /* Flags we care about are the same. Prefer the following
3070 section if that will result in a positive valued sym. */
3071 if (addr < next->vma)
3072 best = prev;
3073 }
3074
3075 return best;
3076 }
3077
3078 /* Convert symbols in excluded output sections to use a kept section. */
3079
3080 static bfd_boolean
3081 fix_syms (struct bfd_link_hash_entry *h, void *data)
3082 {
3083 bfd *obfd = (bfd *) data;
3084
3085 if (h->type == bfd_link_hash_defined
3086 || h->type == bfd_link_hash_defweak)
3087 {
3088 asection *s = h->u.def.section;
3089 if (s != NULL
3090 && s->output_section != NULL
3091 && (s->output_section->flags & SEC_EXCLUDE) != 0
3092 && bfd_section_removed_from_list (obfd, s->output_section))
3093 {
3094 asection *op;
3095
3096 h->u.def.value += s->output_offset + s->output_section->vma;
3097 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3098 h->u.def.value -= op->vma;
3099 h->u.def.section = op;
3100 }
3101 }
3102
3103 return TRUE;
3104 }
3105
3106 void
3107 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3108 {
3109 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3110 }
3111
3112 /*
3113 FUNCTION
3114 bfd_generic_define_common_symbol
3115
3116 SYNOPSIS
3117 bfd_boolean bfd_generic_define_common_symbol
3118 (bfd *output_bfd, struct bfd_link_info *info,
3119 struct bfd_link_hash_entry *h);
3120
3121 DESCRIPTION
3122 Convert common symbol @var{h} into a defined symbol.
3123 Return TRUE on success and FALSE on failure.
3124
3125 .#define bfd_define_common_symbol(output_bfd, info, h) \
3126 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3127 .
3128 */
3129
3130 bfd_boolean
3131 bfd_generic_define_common_symbol (bfd *output_bfd,
3132 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3133 struct bfd_link_hash_entry *h)
3134 {
3135 unsigned int power_of_two;
3136 bfd_vma alignment, size;
3137 asection *section;
3138
3139 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3140
3141 size = h->u.c.size;
3142 power_of_two = h->u.c.p->alignment_power;
3143 section = h->u.c.p->section;
3144
3145 /* Increase the size of the section to align the common symbol.
3146 The alignment must be a power of two. */
3147 alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3148 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3149 section->size += alignment - 1;
3150 section->size &= -alignment;
3151
3152 /* Adjust the section's overall alignment if necessary. */
3153 if (power_of_two > section->alignment_power)
3154 section->alignment_power = power_of_two;
3155
3156 /* Change the symbol from common to defined. */
3157 h->type = bfd_link_hash_defined;
3158 h->u.def.section = section;
3159 h->u.def.value = section->size;
3160
3161 /* Increase the size of the section. */
3162 section->size += size;
3163
3164 /* Make sure the section is allocated in memory, and make sure that
3165 it is no longer a common section. */
3166 section->flags |= SEC_ALLOC;
3167 section->flags &= ~SEC_IS_COMMON;
3168 return TRUE;
3169 }
3170
3171 /*
3172 FUNCTION
3173 bfd_find_version_for_sym
3174
3175 SYNOPSIS
3176 struct bfd_elf_version_tree * bfd_find_version_for_sym
3177 (struct bfd_elf_version_tree *verdefs,
3178 const char *sym_name, bfd_boolean *hide);
3179
3180 DESCRIPTION
3181 Search an elf version script tree for symbol versioning
3182 info and export / don't-export status for a given symbol.
3183 Return non-NULL on success and NULL on failure; also sets
3184 the output @samp{hide} boolean parameter.
3185
3186 */
3187
3188 struct bfd_elf_version_tree *
3189 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3190 const char *sym_name,
3191 bfd_boolean *hide)
3192 {
3193 struct bfd_elf_version_tree *t;
3194 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3195 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3196
3197 local_ver = NULL;
3198 global_ver = NULL;
3199 star_local_ver = NULL;
3200 star_global_ver = NULL;
3201 exist_ver = NULL;
3202 for (t = verdefs; t != NULL; t = t->next)
3203 {
3204 if (t->globals.list != NULL)
3205 {
3206 struct bfd_elf_version_expr *d = NULL;
3207
3208 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3209 {
3210 if (d->literal || strcmp (d->pattern, "*") != 0)
3211 global_ver = t;
3212 else
3213 star_global_ver = t;
3214 if (d->symver)
3215 exist_ver = t;
3216 d->script = 1;
3217 /* If the match is a wildcard pattern, keep looking for
3218 a more explicit, perhaps even local, match. */
3219 if (d->literal)
3220 break;
3221 }
3222
3223 if (d != NULL)
3224 break;
3225 }
3226
3227 if (t->locals.list != NULL)
3228 {
3229 struct bfd_elf_version_expr *d = NULL;
3230
3231 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3232 {
3233 if (d->literal || strcmp (d->pattern, "*") != 0)
3234 local_ver = t;
3235 else
3236 star_local_ver = t;
3237 /* If the match is a wildcard pattern, keep looking for
3238 a more explicit, perhaps even global, match. */
3239 if (d->literal)
3240 {
3241 /* An exact match overrides a global wildcard. */
3242 global_ver = NULL;
3243 star_global_ver = NULL;
3244 break;
3245 }
3246 }
3247
3248 if (d != NULL)
3249 break;
3250 }
3251 }
3252
3253 if (global_ver == NULL && local_ver == NULL)
3254 global_ver = star_global_ver;
3255
3256 if (global_ver != NULL)
3257 {
3258 /* If we already have a versioned symbol that matches the
3259 node for this symbol, then we don't want to create a
3260 duplicate from the unversioned symbol. Instead hide the
3261 unversioned symbol. */
3262 *hide = exist_ver == global_ver;
3263 return global_ver;
3264 }
3265
3266 if (local_ver == NULL)
3267 local_ver = star_local_ver;
3268
3269 if (local_ver != NULL)
3270 {
3271 *hide = TRUE;
3272 return local_ver;
3273 }
3274
3275 return NULL;
3276 }
3277
3278 /*
3279 FUNCTION
3280 bfd_hide_sym_by_version
3281
3282 SYNOPSIS
3283 bfd_boolean bfd_hide_sym_by_version
3284 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3285
3286 DESCRIPTION
3287 Search an elf version script tree for symbol versioning
3288 info for a given symbol. Return TRUE if the symbol is hidden.
3289
3290 */
3291
3292 bfd_boolean
3293 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3294 const char *sym_name)
3295 {
3296 bfd_boolean hidden = FALSE;
3297 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3298 return hidden;
3299 }
3300
3301 /*
3302 FUNCTION
3303 bfd_link_check_relocs
3304
3305 SYNOPSIS
3306 bfd_boolean bfd_link_check_relocs
3307 (bfd *abfd, struct bfd_link_info *info);
3308
3309 DESCRIPTION
3310 Checks the relocs in ABFD for validity.
3311 Does not execute the relocs.
3312 Return TRUE if everything is OK, FALSE otherwise.
3313 This is the external entry point to this code.
3314 */
3315
3316 bfd_boolean
3317 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3318 {
3319 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3320 }
3321
3322 /*
3323 FUNCTION
3324 _bfd_generic_link_check_relocs
3325
3326 SYNOPSIS
3327 bfd_boolean _bfd_generic_link_check_relocs
3328 (bfd *abfd, struct bfd_link_info *info);
3329
3330 DESCRIPTION
3331 Stub function for targets that do not implement reloc checking.
3332 Return TRUE.
3333 This is an internal function. It should not be called from
3334 outside the BFD library.
3335 */
3336
3337 bfd_boolean
3338 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3339 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3340 {
3341 return TRUE;
3342 }
3343
3344 /*
3345 FUNCTION
3346 bfd_merge_private_bfd_data
3347
3348 SYNOPSIS
3349 bfd_boolean bfd_merge_private_bfd_data
3350 (bfd *ibfd, struct bfd_link_info *info);
3351
3352 DESCRIPTION
3353 Merge private BFD information from the BFD @var{ibfd} to the
3354 the output file BFD when linking. Return <<TRUE>> on success,
3355 <<FALSE>> on error. Possible error returns are:
3356
3357 o <<bfd_error_no_memory>> -
3358 Not enough memory exists to create private data for @var{obfd}.
3359
3360 .#define bfd_merge_private_bfd_data(ibfd, info) \
3361 . BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \
3362 . (ibfd, info))
3363 */
3364
3365 /*
3366 INTERNAL_FUNCTION
3367 _bfd_generic_verify_endian_match
3368
3369 SYNOPSIS
3370 bfd_boolean _bfd_generic_verify_endian_match
3371 (bfd *ibfd, struct bfd_link_info *info);
3372
3373 DESCRIPTION
3374 Can be used from / for bfd_merge_private_bfd_data to check that
3375 endianness matches between input and output file. Returns
3376 TRUE for a match, otherwise returns FALSE and emits an error.
3377 */
3378
3379 bfd_boolean
3380 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info)
3381 {
3382 bfd *obfd = info->output_bfd;
3383
3384 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
3385 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
3386 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
3387 {
3388 if (bfd_big_endian (ibfd))
3389 _bfd_error_handler (_("%B: compiled for a big endian system "
3390 "and target is little endian"), ibfd);
3391 else
3392 _bfd_error_handler (_("%B: compiled for a little endian system "
3393 "and target is big endian"), ibfd);
3394 bfd_set_error (bfd_error_wrong_format);
3395 return FALSE;
3396 }
3397
3398 return TRUE;
3399 }
This page took 0.102763 seconds and 4 git commands to generate.