2001-07-12 H.J. Lu <hjl@gnu.org>
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocateable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the <<creator>>
153 field of the hash table must be checked to make sure that the
154 hash table was created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the <<creator>> field before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is true, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table.
225
226 @findex _bfd_generic_link_add_archive_symbols
227 In most cases the work of looking through the symbols in the
228 archive should be done by the
229 <<_bfd_generic_link_add_archive_symbols>> function. This
230 function builds a hash table from the archive symbol table and
231 looks through the list of undefined symbols to see which
232 elements should be included.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table.
237
238 The function passed to
239 <<_bfd_generic_link_add_archive_symbols>> must read the
240 symbols of the archive element and decide whether the archive
241 element should be included in the link. If the element is to
242 be included, the <<add_archive_element>> linker callback
243 routine must be called with the element as an argument, and
244 the elements symbols must be added to the linker hash table
245 just as though the element had itself been passed to the
246 <<_bfd_link_add_symbols>> function.
247
248 When the a.out <<_bfd_link_add_symbols>> function receives an
249 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
250 passing <<aout_link_check_archive_element>> as the function
251 argument. <<aout_link_check_archive_element>> calls
252 <<aout_link_check_ar_symbols>>. If the latter decides to add
253 the element (an element is only added if it provides a real,
254 non-common, definition for a previously undefined or common
255 symbol) it calls the <<add_archive_element>> callback and then
256 <<aout_link_check_archive_element>> calls
257 <<aout_link_add_symbols>> to actually add the symbols to the
258 linker hash table.
259
260 The ECOFF back end is unusual in that it does not normally
261 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
262 archives already contain a hash table of symbols. The ECOFF
263 back end searches the archive itself to avoid the overhead of
264 creating a new hash table.
265
266 INODE
267 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
268 SUBSECTION
269 Performing the final link
270
271 @cindex _bfd_link_final_link in target vector
272 @cindex target vector (_bfd_final_link)
273 When all the input files have been processed, the linker calls
274 the <<_bfd_final_link>> entry point of the output BFD. This
275 routine is responsible for producing the final output file,
276 which has several aspects. It must relocate the contents of
277 the input sections and copy the data into the output sections.
278 It must build an output symbol table including any local
279 symbols from the input files and the global symbols from the
280 hash table. When producing relocateable output, it must
281 modify the input relocs and write them into the output file.
282 There may also be object format dependent work to be done.
283
284 The linker will also call the <<write_object_contents>> entry
285 point when the BFD is closed. The two entry points must work
286 together in order to produce the correct output file.
287
288 The details of how this works are inevitably dependent upon
289 the specific object file format. The a.out
290 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
291
292 @menu
293 @* Information provided by the linker::
294 @* Relocating the section contents::
295 @* Writing the symbol table::
296 @end menu
297
298 INODE
299 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
300 SUBSUBSECTION
301 Information provided by the linker
302
303 Before the linker calls the <<_bfd_final_link>> entry point,
304 it sets up some data structures for the function to use.
305
306 The <<input_bfds>> field of the <<bfd_link_info>> structure
307 will point to a list of all the input files included in the
308 link. These files are linked through the <<link_next>> field
309 of the <<bfd>> structure.
310
311 Each section in the output file will have a list of
312 <<link_order>> structures attached to the <<link_order_head>>
313 field (the <<link_order>> structure is defined in
314 <<bfdlink.h>>). These structures describe how to create the
315 contents of the output section in terms of the contents of
316 various input sections, fill constants, and, eventually, other
317 types of information. They also describe relocs that must be
318 created by the BFD backend, but do not correspond to any input
319 file; this is used to support -Ur, which builds constructors
320 while generating a relocateable object file.
321
322 INODE
323 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
324 SUBSUBSECTION
325 Relocating the section contents
326
327 The <<_bfd_final_link>> function should look through the
328 <<link_order>> structures attached to each section of the
329 output file. Each <<link_order>> structure should either be
330 handled specially, or it should be passed to the function
331 <<_bfd_default_link_order>> which will do the right thing
332 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
333
334 For efficiency, a <<link_order>> of type
335 <<bfd_indirect_link_order>> whose associated section belongs
336 to a BFD of the same format as the output BFD must be handled
337 specially. This type of <<link_order>> describes part of an
338 output section in terms of a section belonging to one of the
339 input files. The <<_bfd_final_link>> function should read the
340 contents of the section and any associated relocs, apply the
341 relocs to the section contents, and write out the modified
342 section contents. If performing a relocateable link, the
343 relocs themselves must also be modified and written out.
344
345 @findex _bfd_relocate_contents
346 @findex _bfd_final_link_relocate
347 The functions <<_bfd_relocate_contents>> and
348 <<_bfd_final_link_relocate>> provide some general support for
349 performing the actual relocations, notably overflow checking.
350 Their arguments include information about the symbol the
351 relocation is against and a <<reloc_howto_type>> argument
352 which describes the relocation to perform. These functions
353 are defined in <<reloc.c>>.
354
355 The a.out function which handles reading, relocating, and
356 writing section contents is <<aout_link_input_section>>. The
357 actual relocation is done in <<aout_link_input_section_std>>
358 and <<aout_link_input_section_ext>>.
359
360 INODE
361 Writing the symbol table, , Relocating the section contents, Performing the Final Link
362 SUBSUBSECTION
363 Writing the symbol table
364
365 The <<_bfd_final_link>> function must gather all the symbols
366 in the input files and write them out. It must also write out
367 all the symbols in the global hash table. This must be
368 controlled by the <<strip>> and <<discard>> fields of the
369 <<bfd_link_info>> structure.
370
371 The local symbols of the input files will not have been
372 entered into the linker hash table. The <<_bfd_final_link>>
373 routine must consider each input file and include the symbols
374 in the output file. It may be convenient to do this when
375 looking through the <<link_order>> structures, or it may be
376 done by stepping through the <<input_bfds>> list.
377
378 The <<_bfd_final_link>> routine must also traverse the global
379 hash table to gather all the externally visible symbols. It
380 is possible that most of the externally visible symbols may be
381 written out when considering the symbols of each input file,
382 but it is still necessary to traverse the hash table since the
383 linker script may have defined some symbols that are not in
384 any of the input files.
385
386 The <<strip>> field of the <<bfd_link_info>> structure
387 controls which symbols are written out. The possible values
388 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
389 then the <<keep_hash>> field of the <<bfd_link_info>>
390 structure is a hash table of symbols to keep; each symbol
391 should be looked up in this hash table, and only symbols which
392 are present should be included in the output file.
393
394 If the <<strip>> field of the <<bfd_link_info>> structure
395 permits local symbols to be written out, the <<discard>> field
396 is used to further controls which local symbols are included
397 in the output file. If the value is <<discard_l>>, then all
398 local symbols which begin with a certain prefix are discarded;
399 this is controlled by the <<bfd_is_local_label_name>> entry point.
400
401 The a.out backend handles symbols by calling
402 <<aout_link_write_symbols>> on each input BFD and then
403 traversing the global hash table with the function
404 <<aout_link_write_other_symbol>>. It builds a string table
405 while writing out the symbols, which is written to the output
406 file at the end of <<NAME(aout,final_link)>>.
407 */
408
409 static boolean generic_link_read_symbols
410 PARAMS ((bfd *));
411 static boolean generic_link_add_symbols
412 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
413 static boolean generic_link_add_object_symbols
414 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
415 static boolean generic_link_check_archive_element_no_collect
416 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
417 static boolean generic_link_check_archive_element_collect
418 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
419 static boolean generic_link_check_archive_element
420 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded, boolean collect));
421 static boolean generic_link_add_symbol_list
422 PARAMS ((bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
423 boolean collect));
424 static bfd *hash_entry_bfd PARAMS ((struct bfd_link_hash_entry *));
425 static void set_symbol_from_hash
426 PARAMS ((asymbol *, struct bfd_link_hash_entry *));
427 static boolean generic_add_output_symbol
428 PARAMS ((bfd *, size_t *psymalloc, asymbol *));
429 static boolean default_fill_link_order
430 PARAMS ((bfd *, struct bfd_link_info *, asection *,
431 struct bfd_link_order *));
432 static boolean default_indirect_link_order
433 PARAMS ((bfd *, struct bfd_link_info *, asection *,
434 struct bfd_link_order *, boolean));
435
436 /* The link hash table structure is defined in bfdlink.h. It provides
437 a base hash table which the backend specific hash tables are built
438 upon. */
439
440 /* Routine to create an entry in the link hash table. */
441
442 struct bfd_hash_entry *
443 _bfd_link_hash_newfunc (entry, table, string)
444 struct bfd_hash_entry *entry;
445 struct bfd_hash_table *table;
446 const char *string;
447 {
448 struct bfd_link_hash_entry *ret = (struct bfd_link_hash_entry *) entry;
449
450 /* Allocate the structure if it has not already been allocated by a
451 subclass. */
452 if (ret == (struct bfd_link_hash_entry *) NULL)
453 ret = ((struct bfd_link_hash_entry *)
454 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)));
455 if (ret == (struct bfd_link_hash_entry *) NULL)
456 return NULL;
457
458 /* Call the allocation method of the superclass. */
459 ret = ((struct bfd_link_hash_entry *)
460 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
461
462 if (ret)
463 {
464 /* Initialize the local fields. */
465 ret->type = bfd_link_hash_new;
466 ret->next = NULL;
467 }
468
469 return (struct bfd_hash_entry *) ret;
470 }
471
472 /* Initialize a link hash table. The BFD argument is the one
473 responsible for creating this table. */
474
475 boolean
476 _bfd_link_hash_table_init (table, abfd, newfunc)
477 struct bfd_link_hash_table *table;
478 bfd *abfd;
479 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
480 struct bfd_hash_table *,
481 const char *));
482 {
483 table->creator = abfd->xvec;
484 table->undefs = NULL;
485 table->undefs_tail = NULL;
486 return bfd_hash_table_init (&table->table, newfunc);
487 }
488
489 /* Look up a symbol in a link hash table. If follow is true, we
490 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
491 the real symbol. */
492
493 struct bfd_link_hash_entry *
494 bfd_link_hash_lookup (table, string, create, copy, follow)
495 struct bfd_link_hash_table *table;
496 const char *string;
497 boolean create;
498 boolean copy;
499 boolean follow;
500 {
501 struct bfd_link_hash_entry *ret;
502
503 ret = ((struct bfd_link_hash_entry *)
504 bfd_hash_lookup (&table->table, string, create, copy));
505
506 if (follow && ret != (struct bfd_link_hash_entry *) NULL)
507 {
508 while (ret->type == bfd_link_hash_indirect
509 || ret->type == bfd_link_hash_warning)
510 ret = ret->u.i.link;
511 }
512
513 return ret;
514 }
515
516 /* Look up a symbol in the main linker hash table if the symbol might
517 be wrapped. This should only be used for references to an
518 undefined symbol, not for definitions of a symbol. */
519
520 struct bfd_link_hash_entry *
521 bfd_wrapped_link_hash_lookup (abfd, info, string, create, copy, follow)
522 bfd *abfd;
523 struct bfd_link_info *info;
524 const char *string;
525 boolean create;
526 boolean copy;
527 boolean follow;
528 {
529 if (info->wrap_hash != NULL)
530 {
531 const char *l;
532
533 l = string;
534 if (*l == bfd_get_symbol_leading_char (abfd))
535 ++l;
536
537 #undef WRAP
538 #define WRAP "__wrap_"
539
540 if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
541 {
542 char *n;
543 struct bfd_link_hash_entry *h;
544
545 /* This symbol is being wrapped. We want to replace all
546 references to SYM with references to __wrap_SYM. */
547
548 n = (char *) bfd_malloc (strlen (l) + sizeof WRAP + 1);
549 if (n == NULL)
550 return NULL;
551
552 /* Note that symbol_leading_char may be '\0'. */
553 n[0] = bfd_get_symbol_leading_char (abfd);
554 n[1] = '\0';
555 strcat (n, WRAP);
556 strcat (n, l);
557 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
558 free (n);
559 return h;
560 }
561
562 #undef WRAP
563
564 #undef REAL
565 #define REAL "__real_"
566
567 if (*l == '_'
568 && strncmp (l, REAL, sizeof REAL - 1) == 0
569 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
570 false, false) != NULL)
571 {
572 char *n;
573 struct bfd_link_hash_entry *h;
574
575 /* This is a reference to __real_SYM, where SYM is being
576 wrapped. We want to replace all references to __real_SYM
577 with references to SYM. */
578
579 n = (char *) bfd_malloc (strlen (l + sizeof REAL - 1) + 2);
580 if (n == NULL)
581 return NULL;
582
583 /* Note that symbol_leading_char may be '\0'. */
584 n[0] = bfd_get_symbol_leading_char (abfd);
585 n[1] = '\0';
586 strcat (n, l + sizeof REAL - 1);
587 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
588 free (n);
589 return h;
590 }
591
592 #undef REAL
593 }
594
595 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
596 }
597
598 /* Traverse a generic link hash table. The only reason this is not a
599 macro is to do better type checking. This code presumes that an
600 argument passed as a struct bfd_hash_entry * may be caught as a
601 struct bfd_link_hash_entry * with no explicit cast required on the
602 call. */
603
604 void
605 bfd_link_hash_traverse (table, func, info)
606 struct bfd_link_hash_table *table;
607 boolean (*func) PARAMS ((struct bfd_link_hash_entry *, PTR));
608 PTR info;
609 {
610 bfd_hash_traverse (&table->table,
611 ((boolean (*) PARAMS ((struct bfd_hash_entry *, PTR)))
612 func),
613 info);
614 }
615
616 /* Add a symbol to the linker hash table undefs list. */
617
618 INLINE void
619 bfd_link_add_undef (table, h)
620 struct bfd_link_hash_table *table;
621 struct bfd_link_hash_entry *h;
622 {
623 BFD_ASSERT (h->next == NULL);
624 if (table->undefs_tail != (struct bfd_link_hash_entry *) NULL)
625 table->undefs_tail->next = h;
626 if (table->undefs == (struct bfd_link_hash_entry *) NULL)
627 table->undefs = h;
628 table->undefs_tail = h;
629 }
630 \f
631 /* Routine to create an entry in an generic link hash table. */
632
633 struct bfd_hash_entry *
634 _bfd_generic_link_hash_newfunc (entry, table, string)
635 struct bfd_hash_entry *entry;
636 struct bfd_hash_table *table;
637 const char *string;
638 {
639 struct generic_link_hash_entry *ret =
640 (struct generic_link_hash_entry *) entry;
641
642 /* Allocate the structure if it has not already been allocated by a
643 subclass. */
644 if (ret == (struct generic_link_hash_entry *) NULL)
645 ret = ((struct generic_link_hash_entry *)
646 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)));
647 if (ret == (struct generic_link_hash_entry *) NULL)
648 return NULL;
649
650 /* Call the allocation method of the superclass. */
651 ret = ((struct generic_link_hash_entry *)
652 _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
653 table, string));
654
655 if (ret)
656 {
657 /* Set local fields. */
658 ret->written = false;
659 ret->sym = NULL;
660 }
661
662 return (struct bfd_hash_entry *) ret;
663 }
664
665 /* Create an generic link hash table. */
666
667 struct bfd_link_hash_table *
668 _bfd_generic_link_hash_table_create (abfd)
669 bfd *abfd;
670 {
671 struct generic_link_hash_table *ret;
672
673 ret = ((struct generic_link_hash_table *)
674 bfd_alloc (abfd, sizeof (struct generic_link_hash_table)));
675 if (ret == NULL)
676 return (struct bfd_link_hash_table *) NULL;
677 if (! _bfd_link_hash_table_init (&ret->root, abfd,
678 _bfd_generic_link_hash_newfunc))
679 {
680 free (ret);
681 return (struct bfd_link_hash_table *) NULL;
682 }
683 return &ret->root;
684 }
685
686 /* Grab the symbols for an object file when doing a generic link. We
687 store the symbols in the outsymbols field. We need to keep them
688 around for the entire link to ensure that we only read them once.
689 If we read them multiple times, we might wind up with relocs and
690 the hash table pointing to different instances of the symbol
691 structure. */
692
693 static boolean
694 generic_link_read_symbols (abfd)
695 bfd *abfd;
696 {
697 if (bfd_get_outsymbols (abfd) == (asymbol **) NULL)
698 {
699 long symsize;
700 long symcount;
701
702 symsize = bfd_get_symtab_upper_bound (abfd);
703 if (symsize < 0)
704 return false;
705 bfd_get_outsymbols (abfd) = (asymbol **) bfd_alloc (abfd, symsize);
706 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
707 return false;
708 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
709 if (symcount < 0)
710 return false;
711 bfd_get_symcount (abfd) = symcount;
712 }
713
714 return true;
715 }
716 \f
717 /* Generic function to add symbols to from an object file to the
718 global hash table. This version does not automatically collect
719 constructors by name. */
720
721 boolean
722 _bfd_generic_link_add_symbols (abfd, info)
723 bfd *abfd;
724 struct bfd_link_info *info;
725 {
726 return generic_link_add_symbols (abfd, info, false);
727 }
728
729 /* Generic function to add symbols from an object file to the global
730 hash table. This version automatically collects constructors by
731 name, as the collect2 program does. It should be used for any
732 target which does not provide some other mechanism for setting up
733 constructors and destructors; these are approximately those targets
734 for which gcc uses collect2 and do not support stabs. */
735
736 boolean
737 _bfd_generic_link_add_symbols_collect (abfd, info)
738 bfd *abfd;
739 struct bfd_link_info *info;
740 {
741 return generic_link_add_symbols (abfd, info, true);
742 }
743
744 /* Add symbols from an object file to the global hash table. */
745
746 static boolean
747 generic_link_add_symbols (abfd, info, collect)
748 bfd *abfd;
749 struct bfd_link_info *info;
750 boolean collect;
751 {
752 boolean ret;
753
754 switch (bfd_get_format (abfd))
755 {
756 case bfd_object:
757 ret = generic_link_add_object_symbols (abfd, info, collect);
758 break;
759 case bfd_archive:
760 ret = (_bfd_generic_link_add_archive_symbols
761 (abfd, info,
762 (collect
763 ? generic_link_check_archive_element_collect
764 : generic_link_check_archive_element_no_collect)));
765 break;
766 default:
767 bfd_set_error (bfd_error_wrong_format);
768 ret = false;
769 }
770
771 return ret;
772 }
773
774 /* Add symbols from an object file to the global hash table. */
775
776 static boolean
777 generic_link_add_object_symbols (abfd, info, collect)
778 bfd *abfd;
779 struct bfd_link_info *info;
780 boolean collect;
781 {
782 if (! generic_link_read_symbols (abfd))
783 return false;
784 return generic_link_add_symbol_list (abfd, info,
785 _bfd_generic_link_get_symcount (abfd),
786 _bfd_generic_link_get_symbols (abfd),
787 collect);
788 }
789 \f
790 /* We build a hash table of all symbols defined in an archive. */
791
792 /* An archive symbol may be defined by multiple archive elements.
793 This linked list is used to hold the elements. */
794
795 struct archive_list
796 {
797 struct archive_list *next;
798 int indx;
799 };
800
801 /* An entry in an archive hash table. */
802
803 struct archive_hash_entry
804 {
805 struct bfd_hash_entry root;
806 /* Where the symbol is defined. */
807 struct archive_list *defs;
808 };
809
810 /* An archive hash table itself. */
811
812 struct archive_hash_table
813 {
814 struct bfd_hash_table table;
815 };
816
817 static struct bfd_hash_entry *archive_hash_newfunc
818 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
819 static boolean archive_hash_table_init
820 PARAMS ((struct archive_hash_table *,
821 struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
822 struct bfd_hash_table *,
823 const char *)));
824
825 /* Create a new entry for an archive hash table. */
826
827 static struct bfd_hash_entry *
828 archive_hash_newfunc (entry, table, string)
829 struct bfd_hash_entry *entry;
830 struct bfd_hash_table *table;
831 const char *string;
832 {
833 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
834
835 /* Allocate the structure if it has not already been allocated by a
836 subclass. */
837 if (ret == (struct archive_hash_entry *) NULL)
838 ret = ((struct archive_hash_entry *)
839 bfd_hash_allocate (table, sizeof (struct archive_hash_entry)));
840 if (ret == (struct archive_hash_entry *) NULL)
841 return NULL;
842
843 /* Call the allocation method of the superclass. */
844 ret = ((struct archive_hash_entry *)
845 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
846
847 if (ret)
848 {
849 /* Initialize the local fields. */
850 ret->defs = (struct archive_list *) NULL;
851 }
852
853 return (struct bfd_hash_entry *) ret;
854 }
855
856 /* Initialize an archive hash table. */
857
858 static boolean
859 archive_hash_table_init (table, newfunc)
860 struct archive_hash_table *table;
861 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
862 struct bfd_hash_table *,
863 const char *));
864 {
865 return bfd_hash_table_init (&table->table, newfunc);
866 }
867
868 /* Look up an entry in an archive hash table. */
869
870 #define archive_hash_lookup(t, string, create, copy) \
871 ((struct archive_hash_entry *) \
872 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
873
874 /* Allocate space in an archive hash table. */
875
876 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
877
878 /* Free an archive hash table. */
879
880 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
881
882 /* Generic function to add symbols from an archive file to the global
883 hash file. This function presumes that the archive symbol table
884 has already been read in (this is normally done by the
885 bfd_check_format entry point). It looks through the undefined and
886 common symbols and searches the archive symbol table for them. If
887 it finds an entry, it includes the associated object file in the
888 link.
889
890 The old linker looked through the archive symbol table for
891 undefined symbols. We do it the other way around, looking through
892 undefined symbols for symbols defined in the archive. The
893 advantage of the newer scheme is that we only have to look through
894 the list of undefined symbols once, whereas the old method had to
895 re-search the symbol table each time a new object file was added.
896
897 The CHECKFN argument is used to see if an object file should be
898 included. CHECKFN should set *PNEEDED to true if the object file
899 should be included, and must also call the bfd_link_info
900 add_archive_element callback function and handle adding the symbols
901 to the global hash table. CHECKFN should only return false if some
902 sort of error occurs.
903
904 For some formats, such as a.out, it is possible to look through an
905 object file but not actually include it in the link. The
906 archive_pass field in a BFD is used to avoid checking the symbols
907 of an object files too many times. When an object is included in
908 the link, archive_pass is set to -1. If an object is scanned but
909 not included, archive_pass is set to the pass number. The pass
910 number is incremented each time a new object file is included. The
911 pass number is used because when a new object file is included it
912 may create new undefined symbols which cause a previously examined
913 object file to be included. */
914
915 boolean
916 _bfd_generic_link_add_archive_symbols (abfd, info, checkfn)
917 bfd *abfd;
918 struct bfd_link_info *info;
919 boolean (*checkfn) PARAMS ((bfd *, struct bfd_link_info *,
920 boolean *pneeded));
921 {
922 carsym *arsyms;
923 carsym *arsym_end;
924 register carsym *arsym;
925 int pass;
926 struct archive_hash_table arsym_hash;
927 int indx;
928 struct bfd_link_hash_entry **pundef;
929
930 if (! bfd_has_map (abfd))
931 {
932 /* An empty archive is a special case. */
933 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
934 return true;
935 bfd_set_error (bfd_error_no_armap);
936 return false;
937 }
938
939 arsyms = bfd_ardata (abfd)->symdefs;
940 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
941
942 /* In order to quickly determine whether an symbol is defined in
943 this archive, we build a hash table of the symbols. */
944 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
945 return false;
946 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
947 {
948 struct archive_hash_entry *arh;
949 struct archive_list *l, **pp;
950
951 arh = archive_hash_lookup (&arsym_hash, arsym->name, true, false);
952 if (arh == (struct archive_hash_entry *) NULL)
953 goto error_return;
954 l = ((struct archive_list *)
955 archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
956 if (l == NULL)
957 goto error_return;
958 l->indx = indx;
959 for (pp = &arh->defs;
960 *pp != (struct archive_list *) NULL;
961 pp = &(*pp)->next)
962 ;
963 *pp = l;
964 l->next = NULL;
965 }
966
967 /* The archive_pass field in the archive itself is used to
968 initialize PASS, sine we may search the same archive multiple
969 times. */
970 pass = abfd->archive_pass + 1;
971
972 /* New undefined symbols are added to the end of the list, so we
973 only need to look through it once. */
974 pundef = &info->hash->undefs;
975 while (*pundef != (struct bfd_link_hash_entry *) NULL)
976 {
977 struct bfd_link_hash_entry *h;
978 struct archive_hash_entry *arh;
979 struct archive_list *l;
980
981 h = *pundef;
982
983 /* When a symbol is defined, it is not necessarily removed from
984 the list. */
985 if (h->type != bfd_link_hash_undefined
986 && h->type != bfd_link_hash_common)
987 {
988 /* Remove this entry from the list, for general cleanliness
989 and because we are going to look through the list again
990 if we search any more libraries. We can't remove the
991 entry if it is the tail, because that would lose any
992 entries we add to the list later on (it would also cause
993 us to lose track of whether the symbol has been
994 referenced). */
995 if (*pundef != info->hash->undefs_tail)
996 *pundef = (*pundef)->next;
997 else
998 pundef = &(*pundef)->next;
999 continue;
1000 }
1001
1002 /* Look for this symbol in the archive symbol map. */
1003 arh = archive_hash_lookup (&arsym_hash, h->root.string, false, false);
1004 if (arh == (struct archive_hash_entry *) NULL)
1005 {
1006 pundef = &(*pundef)->next;
1007 continue;
1008 }
1009
1010 /* Look at all the objects which define this symbol. */
1011 for (l = arh->defs; l != (struct archive_list *) NULL; l = l->next)
1012 {
1013 bfd *element;
1014 boolean needed;
1015
1016 /* If the symbol has gotten defined along the way, quit. */
1017 if (h->type != bfd_link_hash_undefined
1018 && h->type != bfd_link_hash_common)
1019 break;
1020
1021 element = bfd_get_elt_at_index (abfd, l->indx);
1022 if (element == (bfd *) NULL)
1023 goto error_return;
1024
1025 /* If we've already included this element, or if we've
1026 already checked it on this pass, continue. */
1027 if (element->archive_pass == -1
1028 || element->archive_pass == pass)
1029 continue;
1030
1031 /* If we can't figure this element out, just ignore it. */
1032 if (! bfd_check_format (element, bfd_object))
1033 {
1034 element->archive_pass = -1;
1035 continue;
1036 }
1037
1038 /* CHECKFN will see if this element should be included, and
1039 go ahead and include it if appropriate. */
1040 if (! (*checkfn) (element, info, &needed))
1041 goto error_return;
1042
1043 if (! needed)
1044 element->archive_pass = pass;
1045 else
1046 {
1047 element->archive_pass = -1;
1048
1049 /* Increment the pass count to show that we may need to
1050 recheck object files which were already checked. */
1051 ++pass;
1052 }
1053 }
1054
1055 pundef = &(*pundef)->next;
1056 }
1057
1058 archive_hash_table_free (&arsym_hash);
1059
1060 /* Save PASS in case we are called again. */
1061 abfd->archive_pass = pass;
1062
1063 return true;
1064
1065 error_return:
1066 archive_hash_table_free (&arsym_hash);
1067 return false;
1068 }
1069 \f
1070 /* See if we should include an archive element. This version is used
1071 when we do not want to automatically collect constructors based on
1072 the symbol name, presumably because we have some other mechanism
1073 for finding them. */
1074
1075 static boolean
1076 generic_link_check_archive_element_no_collect (abfd, info, pneeded)
1077 bfd *abfd;
1078 struct bfd_link_info *info;
1079 boolean *pneeded;
1080 {
1081 return generic_link_check_archive_element (abfd, info, pneeded, false);
1082 }
1083
1084 /* See if we should include an archive element. This version is used
1085 when we want to automatically collect constructors based on the
1086 symbol name, as collect2 does. */
1087
1088 static boolean
1089 generic_link_check_archive_element_collect (abfd, info, pneeded)
1090 bfd *abfd;
1091 struct bfd_link_info *info;
1092 boolean *pneeded;
1093 {
1094 return generic_link_check_archive_element (abfd, info, pneeded, true);
1095 }
1096
1097 /* See if we should include an archive element. Optionally collect
1098 constructors. */
1099
1100 static boolean
1101 generic_link_check_archive_element (abfd, info, pneeded, collect)
1102 bfd *abfd;
1103 struct bfd_link_info *info;
1104 boolean *pneeded;
1105 boolean collect;
1106 {
1107 asymbol **pp, **ppend;
1108
1109 *pneeded = false;
1110
1111 if (! generic_link_read_symbols (abfd))
1112 return false;
1113
1114 pp = _bfd_generic_link_get_symbols (abfd);
1115 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1116 for (; pp < ppend; pp++)
1117 {
1118 asymbol *p;
1119 struct bfd_link_hash_entry *h;
1120
1121 p = *pp;
1122
1123 /* We are only interested in globally visible symbols. */
1124 if (! bfd_is_com_section (p->section)
1125 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1126 continue;
1127
1128 /* We are only interested if we know something about this
1129 symbol, and it is undefined or common. An undefined weak
1130 symbol (type bfd_link_hash_undefweak) is not considered to be
1131 a reference when pulling files out of an archive. See the
1132 SVR4 ABI, p. 4-27. */
1133 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
1134 false, true);
1135 if (h == (struct bfd_link_hash_entry *) NULL
1136 || (h->type != bfd_link_hash_undefined
1137 && h->type != bfd_link_hash_common))
1138 continue;
1139
1140 /* P is a symbol we are looking for. */
1141
1142 if (! bfd_is_com_section (p->section))
1143 {
1144 bfd_size_type symcount;
1145 asymbol **symbols;
1146
1147 /* This object file defines this symbol, so pull it in. */
1148 if (! (*info->callbacks->add_archive_element) (info, abfd,
1149 bfd_asymbol_name (p)))
1150 return false;
1151 symcount = _bfd_generic_link_get_symcount (abfd);
1152 symbols = _bfd_generic_link_get_symbols (abfd);
1153 if (! generic_link_add_symbol_list (abfd, info, symcount,
1154 symbols, collect))
1155 return false;
1156 *pneeded = true;
1157 return true;
1158 }
1159
1160 /* P is a common symbol. */
1161
1162 if (h->type == bfd_link_hash_undefined)
1163 {
1164 bfd *symbfd;
1165 bfd_vma size;
1166 unsigned int power;
1167
1168 symbfd = h->u.undef.abfd;
1169 if (symbfd == (bfd *) NULL)
1170 {
1171 /* This symbol was created as undefined from outside
1172 BFD. We assume that we should link in the object
1173 file. This is for the -u option in the linker. */
1174 if (! (*info->callbacks->add_archive_element)
1175 (info, abfd, bfd_asymbol_name (p)))
1176 return false;
1177 *pneeded = true;
1178 return true;
1179 }
1180
1181 /* Turn the symbol into a common symbol but do not link in
1182 the object file. This is how a.out works. Object
1183 formats that require different semantics must implement
1184 this function differently. This symbol is already on the
1185 undefs list. We add the section to a common section
1186 attached to symbfd to ensure that it is in a BFD which
1187 will be linked in. */
1188 h->type = bfd_link_hash_common;
1189 h->u.c.p =
1190 ((struct bfd_link_hash_common_entry *)
1191 bfd_hash_allocate (&info->hash->table,
1192 sizeof (struct bfd_link_hash_common_entry)));
1193 if (h->u.c.p == NULL)
1194 return false;
1195
1196 size = bfd_asymbol_value (p);
1197 h->u.c.size = size;
1198
1199 power = bfd_log2 (size);
1200 if (power > 4)
1201 power = 4;
1202 h->u.c.p->alignment_power = power;
1203
1204 if (p->section == bfd_com_section_ptr)
1205 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1206 else
1207 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1208 p->section->name);
1209 h->u.c.p->section->flags = SEC_ALLOC;
1210 }
1211 else
1212 {
1213 /* Adjust the size of the common symbol if necessary. This
1214 is how a.out works. Object formats that require
1215 different semantics must implement this function
1216 differently. */
1217 if (bfd_asymbol_value (p) > h->u.c.size)
1218 h->u.c.size = bfd_asymbol_value (p);
1219 }
1220 }
1221
1222 /* This archive element is not needed. */
1223 return true;
1224 }
1225
1226 /* Add the symbols from an object file to the global hash table. ABFD
1227 is the object file. INFO is the linker information. SYMBOL_COUNT
1228 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1229 is true if constructors should be automatically collected by name
1230 as is done by collect2. */
1231
1232 static boolean
1233 generic_link_add_symbol_list (abfd, info, symbol_count, symbols, collect)
1234 bfd *abfd;
1235 struct bfd_link_info *info;
1236 bfd_size_type symbol_count;
1237 asymbol **symbols;
1238 boolean collect;
1239 {
1240 asymbol **pp, **ppend;
1241
1242 pp = symbols;
1243 ppend = symbols + symbol_count;
1244 for (; pp < ppend; pp++)
1245 {
1246 asymbol *p;
1247
1248 p = *pp;
1249
1250 if ((p->flags & (BSF_INDIRECT
1251 | BSF_WARNING
1252 | BSF_GLOBAL
1253 | BSF_CONSTRUCTOR
1254 | BSF_WEAK)) != 0
1255 || bfd_is_und_section (bfd_get_section (p))
1256 || bfd_is_com_section (bfd_get_section (p))
1257 || bfd_is_ind_section (bfd_get_section (p)))
1258 {
1259 const char *name;
1260 const char *string;
1261 struct generic_link_hash_entry *h;
1262
1263 name = bfd_asymbol_name (p);
1264 if (((p->flags & BSF_INDIRECT) != 0
1265 || bfd_is_ind_section (p->section))
1266 && pp + 1 < ppend)
1267 {
1268 pp++;
1269 string = bfd_asymbol_name (*pp);
1270 }
1271 else if ((p->flags & BSF_WARNING) != 0
1272 && pp + 1 < ppend)
1273 {
1274 /* The name of P is actually the warning string, and the
1275 next symbol is the one to warn about. */
1276 string = name;
1277 pp++;
1278 name = bfd_asymbol_name (*pp);
1279 }
1280 else
1281 string = NULL;
1282
1283 h = NULL;
1284 if (! (_bfd_generic_link_add_one_symbol
1285 (info, abfd, name, p->flags, bfd_get_section (p),
1286 p->value, string, false, collect,
1287 (struct bfd_link_hash_entry **) &h)))
1288 return false;
1289
1290 /* If this is a constructor symbol, and the linker didn't do
1291 anything with it, then we want to just pass the symbol
1292 through to the output file. This will happen when
1293 linking with -r. */
1294 if ((p->flags & BSF_CONSTRUCTOR) != 0
1295 && (h == NULL || h->root.type == bfd_link_hash_new))
1296 {
1297 p->udata.p = NULL;
1298 continue;
1299 }
1300
1301 /* Save the BFD symbol so that we don't lose any backend
1302 specific information that may be attached to it. We only
1303 want this one if it gives more information than the
1304 existing one; we don't want to replace a defined symbol
1305 with an undefined one. This routine may be called with a
1306 hash table other than the generic hash table, so we only
1307 do this if we are certain that the hash table is a
1308 generic one. */
1309 if (info->hash->creator == abfd->xvec)
1310 {
1311 if (h->sym == (asymbol *) NULL
1312 || (! bfd_is_und_section (bfd_get_section (p))
1313 && (! bfd_is_com_section (bfd_get_section (p))
1314 || bfd_is_und_section (bfd_get_section (h->sym)))))
1315 {
1316 h->sym = p;
1317 /* BSF_OLD_COMMON is a hack to support COFF reloc
1318 reading, and it should go away when the COFF
1319 linker is switched to the new version. */
1320 if (bfd_is_com_section (bfd_get_section (p)))
1321 p->flags |= BSF_OLD_COMMON;
1322 }
1323 }
1324
1325 /* Store a back pointer from the symbol to the hash
1326 table entry for the benefit of relaxation code until
1327 it gets rewritten to not use asymbol structures.
1328 Setting this is also used to check whether these
1329 symbols were set up by the generic linker. */
1330 p->udata.p = (PTR) h;
1331 }
1332 }
1333
1334 return true;
1335 }
1336 \f
1337 /* We use a state table to deal with adding symbols from an object
1338 file. The first index into the state table describes the symbol
1339 from the object file. The second index into the state table is the
1340 type of the symbol in the hash table. */
1341
1342 /* The symbol from the object file is turned into one of these row
1343 values. */
1344
1345 enum link_row
1346 {
1347 UNDEF_ROW, /* Undefined. */
1348 UNDEFW_ROW, /* Weak undefined. */
1349 DEF_ROW, /* Defined. */
1350 DEFW_ROW, /* Weak defined. */
1351 COMMON_ROW, /* Common. */
1352 INDR_ROW, /* Indirect. */
1353 WARN_ROW, /* Warning. */
1354 SET_ROW /* Member of set. */
1355 };
1356
1357 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1358 #undef FAIL
1359
1360 /* The actions to take in the state table. */
1361
1362 enum link_action
1363 {
1364 FAIL, /* Abort. */
1365 UND, /* Mark symbol undefined. */
1366 WEAK, /* Mark symbol weak undefined. */
1367 DEF, /* Mark symbol defined. */
1368 DEFW, /* Mark symbol weak defined. */
1369 COM, /* Mark symbol common. */
1370 REF, /* Mark defined symbol referenced. */
1371 CREF, /* Possibly warn about common reference to defined symbol. */
1372 CDEF, /* Define existing common symbol. */
1373 NOACT, /* No action. */
1374 BIG, /* Mark symbol common using largest size. */
1375 MDEF, /* Multiple definition error. */
1376 MIND, /* Multiple indirect symbols. */
1377 IND, /* Make indirect symbol. */
1378 CIND, /* Make indirect symbol from existing common symbol. */
1379 SET, /* Add value to set. */
1380 MWARN, /* Make warning symbol. */
1381 WARN, /* Issue warning. */
1382 CWARN, /* Warn if referenced, else MWARN. */
1383 CYCLE, /* Repeat with symbol pointed to. */
1384 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1385 WARNC /* Issue warning and then CYCLE. */
1386 };
1387
1388 /* The state table itself. The first index is a link_row and the
1389 second index is a bfd_link_hash_type. */
1390
1391 static const enum link_action link_action[8][8] =
1392 {
1393 /* current\prev new undef undefw def defw com indr warn */
1394 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1395 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1396 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1397 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1398 /* COMMON_ROW */ {COM, COM, COM, CREF, CREF, BIG, REFC, WARNC },
1399 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1400 /* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, MWARN },
1401 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1402 };
1403
1404 /* Most of the entries in the LINK_ACTION table are straightforward,
1405 but a few are somewhat subtle.
1406
1407 A reference to an indirect symbol (UNDEF_ROW/indr or
1408 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1409 symbol and to the symbol the indirect symbol points to.
1410
1411 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1412 causes the warning to be issued.
1413
1414 A common definition of an indirect symbol (COMMON_ROW/indr) is
1415 treated as a multiple definition error. Likewise for an indirect
1416 definition of a common symbol (INDR_ROW/com).
1417
1418 An indirect definition of a warning (INDR_ROW/warn) does not cause
1419 the warning to be issued.
1420
1421 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1422 warning is created for the symbol the indirect symbol points to.
1423
1424 Adding an entry to a set does not count as a reference to a set,
1425 and no warning is issued (SET_ROW/warn). */
1426
1427 /* Return the BFD in which a hash entry has been defined, if known. */
1428
1429 static bfd *
1430 hash_entry_bfd (h)
1431 struct bfd_link_hash_entry *h;
1432 {
1433 while (h->type == bfd_link_hash_warning)
1434 h = h->u.i.link;
1435 switch (h->type)
1436 {
1437 default:
1438 return NULL;
1439 case bfd_link_hash_undefined:
1440 case bfd_link_hash_undefweak:
1441 return h->u.undef.abfd;
1442 case bfd_link_hash_defined:
1443 case bfd_link_hash_defweak:
1444 return h->u.def.section->owner;
1445 case bfd_link_hash_common:
1446 return h->u.c.p->section->owner;
1447 }
1448 /*NOTREACHED*/
1449 }
1450
1451 /* Add a symbol to the global hash table.
1452 ABFD is the BFD the symbol comes from.
1453 NAME is the name of the symbol.
1454 FLAGS is the BSF_* bits associated with the symbol.
1455 SECTION is the section in which the symbol is defined; this may be
1456 bfd_und_section_ptr or bfd_com_section_ptr.
1457 VALUE is the value of the symbol, relative to the section.
1458 STRING is used for either an indirect symbol, in which case it is
1459 the name of the symbol to indirect to, or a warning symbol, in
1460 which case it is the warning string.
1461 COPY is true if NAME or STRING must be copied into locally
1462 allocated memory if they need to be saved.
1463 COLLECT is true if we should automatically collect gcc constructor
1464 or destructor names as collect2 does.
1465 HASHP, if not NULL, is a place to store the created hash table
1466 entry; if *HASHP is not NULL, the caller has already looked up
1467 the hash table entry, and stored it in *HASHP. */
1468
1469 boolean
1470 _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, value,
1471 string, copy, collect, hashp)
1472 struct bfd_link_info *info;
1473 bfd *abfd;
1474 const char *name;
1475 flagword flags;
1476 asection *section;
1477 bfd_vma value;
1478 const char *string;
1479 boolean copy;
1480 boolean collect;
1481 struct bfd_link_hash_entry **hashp;
1482 {
1483 enum link_row row;
1484 struct bfd_link_hash_entry *h;
1485 boolean cycle;
1486
1487 if (bfd_is_ind_section (section)
1488 || (flags & BSF_INDIRECT) != 0)
1489 row = INDR_ROW;
1490 else if ((flags & BSF_WARNING) != 0)
1491 row = WARN_ROW;
1492 else if ((flags & BSF_CONSTRUCTOR) != 0)
1493 row = SET_ROW;
1494 else if (bfd_is_und_section (section))
1495 {
1496 if ((flags & BSF_WEAK) != 0)
1497 row = UNDEFW_ROW;
1498 else
1499 row = UNDEF_ROW;
1500 }
1501 else if ((flags & BSF_WEAK) != 0)
1502 row = DEFW_ROW;
1503 else if (bfd_is_com_section (section))
1504 row = COMMON_ROW;
1505 else
1506 row = DEF_ROW;
1507
1508 if (hashp != NULL && *hashp != NULL)
1509 h = *hashp;
1510 else
1511 {
1512 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1513 h = bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false);
1514 else
1515 h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1516 if (h == NULL)
1517 {
1518 if (hashp != NULL)
1519 *hashp = NULL;
1520 return false;
1521 }
1522 }
1523
1524 if (info->notice_all
1525 || (info->notice_hash != (struct bfd_hash_table *) NULL
1526 && (bfd_hash_lookup (info->notice_hash, name, false, false)
1527 != (struct bfd_hash_entry *) NULL)))
1528 {
1529 if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1530 value))
1531 return false;
1532 }
1533
1534 if (hashp != (struct bfd_link_hash_entry **) NULL)
1535 *hashp = h;
1536
1537 do
1538 {
1539 enum link_action action;
1540
1541 cycle = false;
1542 action = link_action[(int) row][(int) h->type];
1543 switch (action)
1544 {
1545 case FAIL:
1546 abort ();
1547
1548 case NOACT:
1549 /* Do nothing. */
1550 break;
1551
1552 case UND:
1553 /* Make a new undefined symbol. */
1554 h->type = bfd_link_hash_undefined;
1555 h->u.undef.abfd = abfd;
1556 bfd_link_add_undef (info->hash, h);
1557 break;
1558
1559 case WEAK:
1560 /* Make a new weak undefined symbol. */
1561 h->type = bfd_link_hash_undefweak;
1562 h->u.undef.abfd = abfd;
1563 break;
1564
1565 case CDEF:
1566 /* We have found a definition for a symbol which was
1567 previously common. */
1568 BFD_ASSERT (h->type == bfd_link_hash_common);
1569 if (! ((*info->callbacks->multiple_common)
1570 (info, h->root.string,
1571 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1572 abfd, bfd_link_hash_defined, (bfd_vma) 0)))
1573 return false;
1574 /* Fall through. */
1575 case DEF:
1576 case DEFW:
1577 {
1578 enum bfd_link_hash_type oldtype;
1579
1580 /* Define a symbol. */
1581 oldtype = h->type;
1582 if (action == DEFW)
1583 h->type = bfd_link_hash_defweak;
1584 else
1585 h->type = bfd_link_hash_defined;
1586 h->u.def.section = section;
1587 h->u.def.value = value;
1588
1589 /* If we have been asked to, we act like collect2 and
1590 identify all functions that might be global
1591 constructors and destructors and pass them up in a
1592 callback. We only do this for certain object file
1593 types, since many object file types can handle this
1594 automatically. */
1595 if (collect && name[0] == '_')
1596 {
1597 const char *s;
1598
1599 /* A constructor or destructor name starts like this:
1600 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1601 the second are the same character (we accept any
1602 character there, in case a new object file format
1603 comes along with even worse naming restrictions). */
1604
1605 #define CONS_PREFIX "GLOBAL_"
1606 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1607
1608 s = name + 1;
1609 while (*s == '_')
1610 ++s;
1611 if (s[0] == 'G'
1612 && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1613 {
1614 char c;
1615
1616 c = s[CONS_PREFIX_LEN + 1];
1617 if ((c == 'I' || c == 'D')
1618 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1619 {
1620 /* If this is a definition of a symbol which
1621 was previously weakly defined, we are in
1622 trouble. We have already added a
1623 constructor entry for the weak defined
1624 symbol, and now we are trying to add one
1625 for the new symbol. Fortunately, this case
1626 should never arise in practice. */
1627 if (oldtype == bfd_link_hash_defweak)
1628 abort ();
1629
1630 if (! ((*info->callbacks->constructor)
1631 (info,
1632 c == 'I' ? true : false,
1633 h->root.string, abfd, section, value)))
1634 return false;
1635 }
1636 }
1637 }
1638 }
1639
1640 break;
1641
1642 case COM:
1643 /* We have found a common definition for a symbol. */
1644 if (h->type == bfd_link_hash_new)
1645 bfd_link_add_undef (info->hash, h);
1646 h->type = bfd_link_hash_common;
1647 h->u.c.p =
1648 ((struct bfd_link_hash_common_entry *)
1649 bfd_hash_allocate (&info->hash->table,
1650 sizeof (struct bfd_link_hash_common_entry)));
1651 if (h->u.c.p == NULL)
1652 return false;
1653
1654 h->u.c.size = value;
1655
1656 /* Select a default alignment based on the size. This may
1657 be overridden by the caller. */
1658 {
1659 unsigned int power;
1660
1661 power = bfd_log2 (value);
1662 if (power > 4)
1663 power = 4;
1664 h->u.c.p->alignment_power = power;
1665 }
1666
1667 /* The section of a common symbol is only used if the common
1668 symbol is actually allocated. It basically provides a
1669 hook for the linker script to decide which output section
1670 the common symbols should be put in. In most cases, the
1671 section of a common symbol will be bfd_com_section_ptr,
1672 the code here will choose a common symbol section named
1673 "COMMON", and the linker script will contain *(COMMON) in
1674 the appropriate place. A few targets use separate common
1675 sections for small symbols, and they require special
1676 handling. */
1677 if (section == bfd_com_section_ptr)
1678 {
1679 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1680 h->u.c.p->section->flags = SEC_ALLOC;
1681 }
1682 else if (section->owner != abfd)
1683 {
1684 h->u.c.p->section = bfd_make_section_old_way (abfd,
1685 section->name);
1686 h->u.c.p->section->flags = SEC_ALLOC;
1687 }
1688 else
1689 h->u.c.p->section = section;
1690 break;
1691
1692 case REF:
1693 /* A reference to a defined symbol. */
1694 if (h->next == NULL && info->hash->undefs_tail != h)
1695 h->next = h;
1696 break;
1697
1698 case BIG:
1699 /* We have found a common definition for a symbol which
1700 already had a common definition. Use the maximum of the
1701 two sizes, and use the section required by the larger symbol. */
1702 BFD_ASSERT (h->type == bfd_link_hash_common);
1703 if (! ((*info->callbacks->multiple_common)
1704 (info, h->root.string,
1705 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1706 abfd, bfd_link_hash_common, value)))
1707 return false;
1708 if (value > h->u.c.size)
1709 {
1710 unsigned int power;
1711
1712 h->u.c.size = value;
1713
1714 /* Select a default alignment based on the size. This may
1715 be overridden by the caller. */
1716 power = bfd_log2 (value);
1717 if (power > 4)
1718 power = 4;
1719 h->u.c.p->alignment_power = power;
1720
1721 /* Some systems have special treatment for small commons,
1722 hence we want to select the section used by the larger
1723 symbol. This makes sure the symbol does not go in a
1724 small common section if it is now too large. */
1725 if (section == bfd_com_section_ptr)
1726 {
1727 h->u.c.p->section
1728 = bfd_make_section_old_way (abfd, "COMMON");
1729 h->u.c.p->section->flags = SEC_ALLOC;
1730 }
1731 else if (section->owner != abfd)
1732 {
1733 h->u.c.p->section
1734 = bfd_make_section_old_way (abfd, section->name);
1735 h->u.c.p->section->flags = SEC_ALLOC;
1736 }
1737 else
1738 h->u.c.p->section = section;
1739 }
1740 break;
1741
1742 case CREF:
1743 {
1744 bfd *obfd;
1745
1746 /* We have found a common definition for a symbol which
1747 was already defined. FIXME: It would nice if we could
1748 report the BFD which defined an indirect symbol, but we
1749 don't have anywhere to store the information. */
1750 if (h->type == bfd_link_hash_defined
1751 || h->type == bfd_link_hash_defweak)
1752 obfd = h->u.def.section->owner;
1753 else
1754 obfd = NULL;
1755 if (! ((*info->callbacks->multiple_common)
1756 (info, h->root.string, obfd, h->type, (bfd_vma) 0,
1757 abfd, bfd_link_hash_common, value)))
1758 return false;
1759 }
1760 break;
1761
1762 case MIND:
1763 /* Multiple indirect symbols. This is OK if they both point
1764 to the same symbol. */
1765 if (strcmp (h->u.i.link->root.string, string) == 0)
1766 break;
1767 /* Fall through. */
1768 case MDEF:
1769 /* Handle a multiple definition. */
1770 {
1771 asection *msec = NULL;
1772 bfd_vma mval = 0;
1773
1774 switch (h->type)
1775 {
1776 case bfd_link_hash_defined:
1777 msec = h->u.def.section;
1778 mval = h->u.def.value;
1779 break;
1780 case bfd_link_hash_indirect:
1781 msec = bfd_ind_section_ptr;
1782 mval = 0;
1783 break;
1784 default:
1785 abort ();
1786 }
1787
1788 /* Ignore a redefinition of an absolute symbol to the same
1789 value; it's harmless. */
1790 if (h->type == bfd_link_hash_defined
1791 && bfd_is_abs_section (msec)
1792 && bfd_is_abs_section (section)
1793 && value == mval)
1794 break;
1795
1796 if (! ((*info->callbacks->multiple_definition)
1797 (info, h->root.string, msec->owner, msec, mval, abfd,
1798 section, value)))
1799 return false;
1800 }
1801 break;
1802
1803 case CIND:
1804 /* Create an indirect symbol from an existing common symbol. */
1805 BFD_ASSERT (h->type == bfd_link_hash_common);
1806 if (! ((*info->callbacks->multiple_common)
1807 (info, h->root.string,
1808 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1809 abfd, bfd_link_hash_indirect, (bfd_vma) 0)))
1810 return false;
1811 /* Fall through. */
1812 case IND:
1813 /* Create an indirect symbol. */
1814 {
1815 struct bfd_link_hash_entry *inh;
1816
1817 /* STRING is the name of the symbol we want to indirect
1818 to. */
1819 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, true,
1820 copy, false);
1821 if (inh == (struct bfd_link_hash_entry *) NULL)
1822 return false;
1823 if (inh->type == bfd_link_hash_indirect
1824 && inh->u.i.link == h)
1825 {
1826 (*_bfd_error_handler)
1827 (_("%s: indirect symbol `%s' to `%s' is a loop"),
1828 bfd_get_filename (abfd), name, string);
1829 bfd_set_error (bfd_error_invalid_operation);
1830 return false;
1831 }
1832 if (inh->type == bfd_link_hash_new)
1833 {
1834 inh->type = bfd_link_hash_undefined;
1835 inh->u.undef.abfd = abfd;
1836 bfd_link_add_undef (info->hash, inh);
1837 }
1838
1839 /* If the indirect symbol has been referenced, we need to
1840 push the reference down to the symbol we are
1841 referencing. */
1842 if (h->type != bfd_link_hash_new)
1843 {
1844 row = UNDEF_ROW;
1845 cycle = true;
1846 }
1847
1848 h->type = bfd_link_hash_indirect;
1849 h->u.i.link = inh;
1850 }
1851 break;
1852
1853 case SET:
1854 /* Add an entry to a set. */
1855 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1856 abfd, section, value))
1857 return false;
1858 break;
1859
1860 case WARNC:
1861 /* Issue a warning and cycle. */
1862 if (h->u.i.warning != NULL)
1863 {
1864 if (! (*info->callbacks->warning) (info, h->u.i.warning,
1865 h->root.string, abfd,
1866 (asection *) NULL,
1867 (bfd_vma) 0))
1868 return false;
1869 /* Only issue a warning once. */
1870 h->u.i.warning = NULL;
1871 }
1872 /* Fall through. */
1873 case CYCLE:
1874 /* Try again with the referenced symbol. */
1875 h = h->u.i.link;
1876 cycle = true;
1877 break;
1878
1879 case REFC:
1880 /* A reference to an indirect symbol. */
1881 if (h->next == NULL && info->hash->undefs_tail != h)
1882 h->next = h;
1883 h = h->u.i.link;
1884 cycle = true;
1885 break;
1886
1887 case WARN:
1888 /* Issue a warning. */
1889 if (! (*info->callbacks->warning) (info, string, h->root.string,
1890 hash_entry_bfd (h),
1891 (asection *) NULL, (bfd_vma) 0))
1892 return false;
1893 break;
1894
1895 case CWARN:
1896 /* Warn if this symbol has been referenced already,
1897 otherwise add a warning. A symbol has been referenced if
1898 the next field is not NULL, or it is the tail of the
1899 undefined symbol list. The REF case above helps to
1900 ensure this. */
1901 if (h->next != NULL || info->hash->undefs_tail == h)
1902 {
1903 if (! (*info->callbacks->warning) (info, string, h->root.string,
1904 hash_entry_bfd (h),
1905 (asection *) NULL,
1906 (bfd_vma) 0))
1907 return false;
1908 break;
1909 }
1910 /* Fall through. */
1911 case MWARN:
1912 /* Make a warning symbol. */
1913 {
1914 struct bfd_link_hash_entry *sub;
1915
1916 /* STRING is the warning to give. */
1917 sub = ((struct bfd_link_hash_entry *)
1918 ((*info->hash->table.newfunc)
1919 ((struct bfd_hash_entry *) NULL, &info->hash->table,
1920 h->root.string)));
1921 if (sub == NULL)
1922 return false;
1923 *sub = *h;
1924 sub->type = bfd_link_hash_warning;
1925 sub->u.i.link = h;
1926 if (! copy)
1927 sub->u.i.warning = string;
1928 else
1929 {
1930 char *w;
1931
1932 w = bfd_hash_allocate (&info->hash->table,
1933 strlen (string) + 1);
1934 if (w == NULL)
1935 return false;
1936 strcpy (w, string);
1937 sub->u.i.warning = w;
1938 }
1939
1940 bfd_hash_replace (&info->hash->table,
1941 (struct bfd_hash_entry *) h,
1942 (struct bfd_hash_entry *) sub);
1943 if (hashp != NULL)
1944 *hashp = sub;
1945 }
1946 break;
1947 }
1948 }
1949 while (cycle);
1950
1951 return true;
1952 }
1953 \f
1954 /* Generic final link routine. */
1955
1956 boolean
1957 _bfd_generic_final_link (abfd, info)
1958 bfd *abfd;
1959 struct bfd_link_info *info;
1960 {
1961 bfd *sub;
1962 asection *o;
1963 struct bfd_link_order *p;
1964 size_t outsymalloc;
1965 struct generic_write_global_symbol_info wginfo;
1966
1967 bfd_get_outsymbols (abfd) = (asymbol **) NULL;
1968 bfd_get_symcount (abfd) = 0;
1969 outsymalloc = 0;
1970
1971 /* Mark all sections which will be included in the output file. */
1972 for (o = abfd->sections; o != NULL; o = o->next)
1973 for (p = o->link_order_head; p != NULL; p = p->next)
1974 if (p->type == bfd_indirect_link_order)
1975 p->u.indirect.section->linker_mark = true;
1976
1977 /* Build the output symbol table. */
1978 for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
1979 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1980 return false;
1981
1982 /* Accumulate the global symbols. */
1983 wginfo.info = info;
1984 wginfo.output_bfd = abfd;
1985 wginfo.psymalloc = &outsymalloc;
1986 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1987 _bfd_generic_link_write_global_symbol,
1988 (PTR) &wginfo);
1989
1990 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1991 shouldn't really need one, since we have SYMCOUNT, but some old
1992 code still expects one. */
1993 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1994 return false;
1995
1996 if (info->relocateable)
1997 {
1998 /* Allocate space for the output relocs for each section. */
1999 for (o = abfd->sections;
2000 o != (asection *) NULL;
2001 o = o->next)
2002 {
2003 o->reloc_count = 0;
2004 for (p = o->link_order_head;
2005 p != (struct bfd_link_order *) NULL;
2006 p = p->next)
2007 {
2008 if (p->type == bfd_section_reloc_link_order
2009 || p->type == bfd_symbol_reloc_link_order)
2010 ++o->reloc_count;
2011 else if (p->type == bfd_indirect_link_order)
2012 {
2013 asection *input_section;
2014 bfd *input_bfd;
2015 long relsize;
2016 arelent **relocs;
2017 asymbol **symbols;
2018 long reloc_count;
2019
2020 input_section = p->u.indirect.section;
2021 input_bfd = input_section->owner;
2022 relsize = bfd_get_reloc_upper_bound (input_bfd,
2023 input_section);
2024 if (relsize < 0)
2025 return false;
2026 relocs = (arelent **) bfd_malloc ((size_t) relsize);
2027 if (!relocs && relsize != 0)
2028 return false;
2029 symbols = _bfd_generic_link_get_symbols (input_bfd);
2030 reloc_count = bfd_canonicalize_reloc (input_bfd,
2031 input_section,
2032 relocs,
2033 symbols);
2034 if (reloc_count < 0)
2035 return false;
2036 BFD_ASSERT ((unsigned long) reloc_count
2037 == input_section->reloc_count);
2038 o->reloc_count += reloc_count;
2039 free (relocs);
2040 }
2041 }
2042 if (o->reloc_count > 0)
2043 {
2044 o->orelocation = ((arelent **)
2045 bfd_alloc (abfd,
2046 (o->reloc_count
2047 * sizeof (arelent *))));
2048 if (!o->orelocation)
2049 return false;
2050 o->flags |= SEC_RELOC;
2051 /* Reset the count so that it can be used as an index
2052 when putting in the output relocs. */
2053 o->reloc_count = 0;
2054 }
2055 }
2056 }
2057
2058 /* Handle all the link order information for the sections. */
2059 for (o = abfd->sections;
2060 o != (asection *) NULL;
2061 o = o->next)
2062 {
2063 for (p = o->link_order_head;
2064 p != (struct bfd_link_order *) NULL;
2065 p = p->next)
2066 {
2067 switch (p->type)
2068 {
2069 case bfd_section_reloc_link_order:
2070 case bfd_symbol_reloc_link_order:
2071 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2072 return false;
2073 break;
2074 case bfd_indirect_link_order:
2075 if (! default_indirect_link_order (abfd, info, o, p, true))
2076 return false;
2077 break;
2078 default:
2079 if (! _bfd_default_link_order (abfd, info, o, p))
2080 return false;
2081 break;
2082 }
2083 }
2084 }
2085
2086 return true;
2087 }
2088
2089 /* Add an output symbol to the output BFD. */
2090
2091 static boolean
2092 generic_add_output_symbol (output_bfd, psymalloc, sym)
2093 bfd *output_bfd;
2094 size_t *psymalloc;
2095 asymbol *sym;
2096 {
2097 if (bfd_get_symcount (output_bfd) >= *psymalloc)
2098 {
2099 asymbol **newsyms;
2100
2101 if (*psymalloc == 0)
2102 *psymalloc = 124;
2103 else
2104 *psymalloc *= 2;
2105 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd),
2106 *psymalloc * sizeof (asymbol *));
2107 if (newsyms == (asymbol **) NULL)
2108 return false;
2109 bfd_get_outsymbols (output_bfd) = newsyms;
2110 }
2111
2112 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2113 if (sym != NULL)
2114 ++ bfd_get_symcount (output_bfd);
2115
2116 return true;
2117 }
2118
2119 /* Handle the symbols for an input BFD. */
2120
2121 boolean
2122 _bfd_generic_link_output_symbols (output_bfd, input_bfd, info, psymalloc)
2123 bfd *output_bfd;
2124 bfd *input_bfd;
2125 struct bfd_link_info *info;
2126 size_t *psymalloc;
2127 {
2128 asymbol **sym_ptr;
2129 asymbol **sym_end;
2130
2131 if (! generic_link_read_symbols (input_bfd))
2132 return false;
2133
2134 /* Create a filename symbol if we are supposed to. */
2135 if (info->create_object_symbols_section != (asection *) NULL)
2136 {
2137 asection *sec;
2138
2139 for (sec = input_bfd->sections;
2140 sec != (asection *) NULL;
2141 sec = sec->next)
2142 {
2143 if (sec->output_section == info->create_object_symbols_section)
2144 {
2145 asymbol *newsym;
2146
2147 newsym = bfd_make_empty_symbol (input_bfd);
2148 if (!newsym)
2149 return false;
2150 newsym->name = input_bfd->filename;
2151 newsym->value = 0;
2152 newsym->flags = BSF_LOCAL | BSF_FILE;
2153 newsym->section = sec;
2154
2155 if (! generic_add_output_symbol (output_bfd, psymalloc,
2156 newsym))
2157 return false;
2158
2159 break;
2160 }
2161 }
2162 }
2163
2164 /* Adjust the values of the globally visible symbols, and write out
2165 local symbols. */
2166 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2167 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2168 for (; sym_ptr < sym_end; sym_ptr++)
2169 {
2170 asymbol *sym;
2171 struct generic_link_hash_entry *h;
2172 boolean output;
2173
2174 h = (struct generic_link_hash_entry *) NULL;
2175 sym = *sym_ptr;
2176 if ((sym->flags & (BSF_INDIRECT
2177 | BSF_WARNING
2178 | BSF_GLOBAL
2179 | BSF_CONSTRUCTOR
2180 | BSF_WEAK)) != 0
2181 || bfd_is_und_section (bfd_get_section (sym))
2182 || bfd_is_com_section (bfd_get_section (sym))
2183 || bfd_is_ind_section (bfd_get_section (sym)))
2184 {
2185 if (sym->udata.p != NULL)
2186 h = (struct generic_link_hash_entry *) sym->udata.p;
2187 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2188 {
2189 /* This case normally means that the main linker code
2190 deliberately ignored this constructor symbol. We
2191 should just pass it through. This will screw up if
2192 the constructor symbol is from a different,
2193 non-generic, object file format, but the case will
2194 only arise when linking with -r, which will probably
2195 fail anyhow, since there will be no way to represent
2196 the relocs in the output format being used. */
2197 h = NULL;
2198 }
2199 else if (bfd_is_und_section (bfd_get_section (sym)))
2200 h = ((struct generic_link_hash_entry *)
2201 bfd_wrapped_link_hash_lookup (output_bfd, info,
2202 bfd_asymbol_name (sym),
2203 false, false, true));
2204 else
2205 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2206 bfd_asymbol_name (sym),
2207 false, false, true);
2208
2209 if (h != (struct generic_link_hash_entry *) NULL)
2210 {
2211 /* Force all references to this symbol to point to
2212 the same area in memory. It is possible that
2213 this routine will be called with a hash table
2214 other than a generic hash table, so we double
2215 check that. */
2216 if (info->hash->creator == input_bfd->xvec)
2217 {
2218 if (h->sym != (asymbol *) NULL)
2219 *sym_ptr = sym = h->sym;
2220 }
2221
2222 switch (h->root.type)
2223 {
2224 default:
2225 case bfd_link_hash_new:
2226 abort ();
2227 case bfd_link_hash_undefined:
2228 break;
2229 case bfd_link_hash_undefweak:
2230 sym->flags |= BSF_WEAK;
2231 break;
2232 case bfd_link_hash_indirect:
2233 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2234 /* fall through */
2235 case bfd_link_hash_defined:
2236 sym->flags |= BSF_GLOBAL;
2237 sym->flags &=~ BSF_CONSTRUCTOR;
2238 sym->value = h->root.u.def.value;
2239 sym->section = h->root.u.def.section;
2240 break;
2241 case bfd_link_hash_defweak:
2242 sym->flags |= BSF_WEAK;
2243 sym->flags &=~ BSF_CONSTRUCTOR;
2244 sym->value = h->root.u.def.value;
2245 sym->section = h->root.u.def.section;
2246 break;
2247 case bfd_link_hash_common:
2248 sym->value = h->root.u.c.size;
2249 sym->flags |= BSF_GLOBAL;
2250 if (! bfd_is_com_section (sym->section))
2251 {
2252 BFD_ASSERT (bfd_is_und_section (sym->section));
2253 sym->section = bfd_com_section_ptr;
2254 }
2255 /* We do not set the section of the symbol to
2256 h->root.u.c.p->section. That value was saved so
2257 that we would know where to allocate the symbol
2258 if it was defined. In this case the type is
2259 still bfd_link_hash_common, so we did not define
2260 it, so we do not want to use that section. */
2261 break;
2262 }
2263 }
2264 }
2265
2266 /* This switch is straight from the old code in
2267 write_file_locals in ldsym.c. */
2268 if (info->strip == strip_all
2269 || (info->strip == strip_some
2270 && (bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2271 false, false)
2272 == (struct bfd_hash_entry *) NULL)))
2273 output = false;
2274 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2275 {
2276 /* If this symbol is marked as occurring now, rather
2277 than at the end, output it now. This is used for
2278 COFF C_EXT FCN symbols. FIXME: There must be a
2279 better way. */
2280 if (bfd_asymbol_bfd (sym) == input_bfd
2281 && (sym->flags & BSF_NOT_AT_END) != 0)
2282 output = true;
2283 else
2284 output = false;
2285 }
2286 else if (bfd_is_ind_section (sym->section))
2287 output = false;
2288 else if ((sym->flags & BSF_DEBUGGING) != 0)
2289 {
2290 if (info->strip == strip_none)
2291 output = true;
2292 else
2293 output = false;
2294 }
2295 else if (bfd_is_und_section (sym->section)
2296 || bfd_is_com_section (sym->section))
2297 output = false;
2298 else if ((sym->flags & BSF_LOCAL) != 0)
2299 {
2300 if ((sym->flags & BSF_WARNING) != 0)
2301 output = false;
2302 else
2303 {
2304 switch (info->discard)
2305 {
2306 default:
2307 case discard_all:
2308 output = false;
2309 break;
2310 case discard_sec_merge:
2311 output = true;
2312 if (info->relocateable
2313 || ! (sym->section->flags & SEC_MERGE))
2314 break;
2315 /* FALLTHROUGH */
2316 case discard_l:
2317 if (bfd_is_local_label (input_bfd, sym))
2318 output = false;
2319 else
2320 output = true;
2321 break;
2322 case discard_none:
2323 output = true;
2324 break;
2325 }
2326 }
2327 }
2328 else if ((sym->flags & BSF_CONSTRUCTOR))
2329 {
2330 if (info->strip != strip_all)
2331 output = true;
2332 else
2333 output = false;
2334 }
2335 else
2336 abort ();
2337
2338 /* If this symbol is in a section which is not being included
2339 in the output file, then we don't want to output the symbol.
2340
2341 Gross. .bss and similar sections won't have the linker_mark
2342 field set. */
2343 if ((sym->section->flags & SEC_HAS_CONTENTS) != 0
2344 && sym->section->linker_mark == false)
2345 output = false;
2346
2347 if (output)
2348 {
2349 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2350 return false;
2351 if (h != (struct generic_link_hash_entry *) NULL)
2352 h->written = true;
2353 }
2354 }
2355
2356 return true;
2357 }
2358
2359 /* Set the section and value of a generic BFD symbol based on a linker
2360 hash table entry. */
2361
2362 static void
2363 set_symbol_from_hash (sym, h)
2364 asymbol *sym;
2365 struct bfd_link_hash_entry *h;
2366 {
2367 switch (h->type)
2368 {
2369 default:
2370 abort ();
2371 break;
2372 case bfd_link_hash_new:
2373 /* This can happen when a constructor symbol is seen but we are
2374 not building constructors. */
2375 if (sym->section != NULL)
2376 {
2377 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2378 }
2379 else
2380 {
2381 sym->flags |= BSF_CONSTRUCTOR;
2382 sym->section = bfd_abs_section_ptr;
2383 sym->value = 0;
2384 }
2385 break;
2386 case bfd_link_hash_undefined:
2387 sym->section = bfd_und_section_ptr;
2388 sym->value = 0;
2389 break;
2390 case bfd_link_hash_undefweak:
2391 sym->section = bfd_und_section_ptr;
2392 sym->value = 0;
2393 sym->flags |= BSF_WEAK;
2394 break;
2395 case bfd_link_hash_defined:
2396 sym->section = h->u.def.section;
2397 sym->value = h->u.def.value;
2398 break;
2399 case bfd_link_hash_defweak:
2400 sym->flags |= BSF_WEAK;
2401 sym->section = h->u.def.section;
2402 sym->value = h->u.def.value;
2403 break;
2404 case bfd_link_hash_common:
2405 sym->value = h->u.c.size;
2406 if (sym->section == NULL)
2407 sym->section = bfd_com_section_ptr;
2408 else if (! bfd_is_com_section (sym->section))
2409 {
2410 BFD_ASSERT (bfd_is_und_section (sym->section));
2411 sym->section = bfd_com_section_ptr;
2412 }
2413 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2414 break;
2415 case bfd_link_hash_indirect:
2416 case bfd_link_hash_warning:
2417 /* FIXME: What should we do here? */
2418 break;
2419 }
2420 }
2421
2422 /* Write out a global symbol, if it hasn't already been written out.
2423 This is called for each symbol in the hash table. */
2424
2425 boolean
2426 _bfd_generic_link_write_global_symbol (h, data)
2427 struct generic_link_hash_entry *h;
2428 PTR data;
2429 {
2430 struct generic_write_global_symbol_info *wginfo =
2431 (struct generic_write_global_symbol_info *) data;
2432 asymbol *sym;
2433
2434 if (h->written)
2435 return true;
2436
2437 h->written = true;
2438
2439 if (wginfo->info->strip == strip_all
2440 || (wginfo->info->strip == strip_some
2441 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2442 false, false) == NULL))
2443 return true;
2444
2445 if (h->sym != (asymbol *) NULL)
2446 sym = h->sym;
2447 else
2448 {
2449 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2450 if (!sym)
2451 return false;
2452 sym->name = h->root.root.string;
2453 sym->flags = 0;
2454 }
2455
2456 set_symbol_from_hash (sym, &h->root);
2457
2458 sym->flags |= BSF_GLOBAL;
2459
2460 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2461 sym))
2462 {
2463 /* FIXME: No way to return failure. */
2464 abort ();
2465 }
2466
2467 return true;
2468 }
2469
2470 /* Create a relocation. */
2471
2472 boolean
2473 _bfd_generic_reloc_link_order (abfd, info, sec, link_order)
2474 bfd *abfd;
2475 struct bfd_link_info *info;
2476 asection *sec;
2477 struct bfd_link_order *link_order;
2478 {
2479 arelent *r;
2480
2481 if (! info->relocateable)
2482 abort ();
2483 if (sec->orelocation == (arelent **) NULL)
2484 abort ();
2485
2486 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2487 if (r == (arelent *) NULL)
2488 return false;
2489
2490 r->address = link_order->offset;
2491 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2492 if (r->howto == 0)
2493 {
2494 bfd_set_error (bfd_error_bad_value);
2495 return false;
2496 }
2497
2498 /* Get the symbol to use for the relocation. */
2499 if (link_order->type == bfd_section_reloc_link_order)
2500 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2501 else
2502 {
2503 struct generic_link_hash_entry *h;
2504
2505 h = ((struct generic_link_hash_entry *)
2506 bfd_wrapped_link_hash_lookup (abfd, info,
2507 link_order->u.reloc.p->u.name,
2508 false, false, true));
2509 if (h == (struct generic_link_hash_entry *) NULL
2510 || ! h->written)
2511 {
2512 if (! ((*info->callbacks->unattached_reloc)
2513 (info, link_order->u.reloc.p->u.name,
2514 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2515 return false;
2516 bfd_set_error (bfd_error_bad_value);
2517 return false;
2518 }
2519 r->sym_ptr_ptr = &h->sym;
2520 }
2521
2522 /* If this is an inplace reloc, write the addend to the object file.
2523 Otherwise, store it in the reloc addend. */
2524 if (! r->howto->partial_inplace)
2525 r->addend = link_order->u.reloc.p->addend;
2526 else
2527 {
2528 bfd_size_type size;
2529 bfd_reloc_status_type rstat;
2530 bfd_byte *buf;
2531 boolean ok;
2532
2533 size = bfd_get_reloc_size (r->howto);
2534 buf = (bfd_byte *) bfd_zmalloc (size);
2535 if (buf == (bfd_byte *) NULL)
2536 return false;
2537 rstat = _bfd_relocate_contents (r->howto, abfd,
2538 link_order->u.reloc.p->addend, buf);
2539 switch (rstat)
2540 {
2541 case bfd_reloc_ok:
2542 break;
2543 default:
2544 case bfd_reloc_outofrange:
2545 abort ();
2546 case bfd_reloc_overflow:
2547 if (! ((*info->callbacks->reloc_overflow)
2548 (info,
2549 (link_order->type == bfd_section_reloc_link_order
2550 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2551 : link_order->u.reloc.p->u.name),
2552 r->howto->name, link_order->u.reloc.p->addend,
2553 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2554 {
2555 free (buf);
2556 return false;
2557 }
2558 break;
2559 }
2560 ok = bfd_set_section_contents (abfd, sec, (PTR) buf,
2561 (file_ptr)
2562 (link_order->offset *
2563 bfd_octets_per_byte (abfd)), size);
2564 free (buf);
2565 if (! ok)
2566 return false;
2567
2568 r->addend = 0;
2569 }
2570
2571 sec->orelocation[sec->reloc_count] = r;
2572 ++sec->reloc_count;
2573
2574 return true;
2575 }
2576 \f
2577 /* Allocate a new link_order for a section. */
2578
2579 struct bfd_link_order *
2580 bfd_new_link_order (abfd, section)
2581 bfd *abfd;
2582 asection *section;
2583 {
2584 struct bfd_link_order *new;
2585
2586 new = ((struct bfd_link_order *)
2587 bfd_alloc (abfd, sizeof (struct bfd_link_order)));
2588 if (!new)
2589 return NULL;
2590
2591 new->type = bfd_undefined_link_order;
2592 new->offset = 0;
2593 new->size = 0;
2594 new->next = (struct bfd_link_order *) NULL;
2595
2596 if (section->link_order_tail != (struct bfd_link_order *) NULL)
2597 section->link_order_tail->next = new;
2598 else
2599 section->link_order_head = new;
2600 section->link_order_tail = new;
2601
2602 return new;
2603 }
2604
2605 /* Default link order processing routine. Note that we can not handle
2606 the reloc_link_order types here, since they depend upon the details
2607 of how the particular backends generates relocs. */
2608
2609 boolean
2610 _bfd_default_link_order (abfd, info, sec, link_order)
2611 bfd *abfd;
2612 struct bfd_link_info *info;
2613 asection *sec;
2614 struct bfd_link_order *link_order;
2615 {
2616 switch (link_order->type)
2617 {
2618 case bfd_undefined_link_order:
2619 case bfd_section_reloc_link_order:
2620 case bfd_symbol_reloc_link_order:
2621 default:
2622 abort ();
2623 case bfd_indirect_link_order:
2624 return default_indirect_link_order (abfd, info, sec, link_order,
2625 false);
2626 case bfd_fill_link_order:
2627 return default_fill_link_order (abfd, info, sec, link_order);
2628 case bfd_data_link_order:
2629 return bfd_set_section_contents (abfd, sec,
2630 (PTR) link_order->u.data.contents,
2631 (file_ptr)
2632 (link_order->offset *
2633 bfd_octets_per_byte (abfd)),
2634 link_order->size);
2635 }
2636 }
2637
2638 /* Default routine to handle a bfd_fill_link_order. */
2639
2640 static boolean
2641 default_fill_link_order (abfd, info, sec, link_order)
2642 bfd *abfd;
2643 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2644 asection *sec;
2645 struct bfd_link_order *link_order;
2646 {
2647 size_t size;
2648 char *space;
2649 size_t i;
2650 int fill;
2651 boolean result;
2652
2653 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2654
2655 size = (size_t) link_order->size;
2656 space = (char *) bfd_malloc (size);
2657 if (space == NULL && size != 0)
2658 return false;
2659
2660 fill = link_order->u.fill.value;
2661 for (i = 0; i < size; i += 2)
2662 space[i] = fill >> 8;
2663 for (i = 1; i < size; i += 2)
2664 space[i] = fill;
2665 result = bfd_set_section_contents (abfd, sec, space,
2666 (file_ptr)
2667 (link_order->offset *
2668 bfd_octets_per_byte (abfd)),
2669 link_order->size);
2670 free (space);
2671 return result;
2672 }
2673
2674 /* Default routine to handle a bfd_indirect_link_order. */
2675
2676 static boolean
2677 default_indirect_link_order (output_bfd, info, output_section, link_order,
2678 generic_linker)
2679 bfd *output_bfd;
2680 struct bfd_link_info *info;
2681 asection *output_section;
2682 struct bfd_link_order *link_order;
2683 boolean generic_linker;
2684 {
2685 asection *input_section;
2686 bfd *input_bfd;
2687 bfd_byte *contents = NULL;
2688 bfd_byte *new_contents;
2689
2690 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2691
2692 if (link_order->size == 0)
2693 return true;
2694
2695 input_section = link_order->u.indirect.section;
2696 input_bfd = input_section->owner;
2697
2698 BFD_ASSERT (input_section->output_section == output_section);
2699 BFD_ASSERT (input_section->output_offset == link_order->offset);
2700 BFD_ASSERT (input_section->_cooked_size == link_order->size);
2701
2702 if (info->relocateable
2703 && input_section->reloc_count > 0
2704 && output_section->orelocation == (arelent **) NULL)
2705 {
2706 /* Space has not been allocated for the output relocations.
2707 This can happen when we are called by a specific backend
2708 because somebody is attempting to link together different
2709 types of object files. Handling this case correctly is
2710 difficult, and sometimes impossible. */
2711 (*_bfd_error_handler)
2712 (_("Attempt to do relocateable link with %s input and %s output"),
2713 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2714 bfd_set_error (bfd_error_wrong_format);
2715 return false;
2716 }
2717
2718 if (! generic_linker)
2719 {
2720 asymbol **sympp;
2721 asymbol **symppend;
2722
2723 /* Get the canonical symbols. The generic linker will always
2724 have retrieved them by this point, but we are being called by
2725 a specific linker, presumably because we are linking
2726 different types of object files together. */
2727 if (! generic_link_read_symbols (input_bfd))
2728 return false;
2729
2730 /* Since we have been called by a specific linker, rather than
2731 the generic linker, the values of the symbols will not be
2732 right. They will be the values as seen in the input file,
2733 not the values of the final link. We need to fix them up
2734 before we can relocate the section. */
2735 sympp = _bfd_generic_link_get_symbols (input_bfd);
2736 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2737 for (; sympp < symppend; sympp++)
2738 {
2739 asymbol *sym;
2740 struct bfd_link_hash_entry *h;
2741
2742 sym = *sympp;
2743
2744 if ((sym->flags & (BSF_INDIRECT
2745 | BSF_WARNING
2746 | BSF_GLOBAL
2747 | BSF_CONSTRUCTOR
2748 | BSF_WEAK)) != 0
2749 || bfd_is_und_section (bfd_get_section (sym))
2750 || bfd_is_com_section (bfd_get_section (sym))
2751 || bfd_is_ind_section (bfd_get_section (sym)))
2752 {
2753 /* sym->udata may have been set by
2754 generic_link_add_symbol_list. */
2755 if (sym->udata.p != NULL)
2756 h = (struct bfd_link_hash_entry *) sym->udata.p;
2757 else if (bfd_is_und_section (bfd_get_section (sym)))
2758 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2759 bfd_asymbol_name (sym),
2760 false, false, true);
2761 else
2762 h = bfd_link_hash_lookup (info->hash,
2763 bfd_asymbol_name (sym),
2764 false, false, true);
2765 if (h != NULL)
2766 set_symbol_from_hash (sym, h);
2767 }
2768 }
2769 }
2770
2771 /* Get and relocate the section contents. */
2772 contents = ((bfd_byte *)
2773 bfd_malloc (bfd_section_size (input_bfd, input_section)));
2774 if (contents == NULL && bfd_section_size (input_bfd, input_section) != 0)
2775 goto error_return;
2776 new_contents = (bfd_get_relocated_section_contents
2777 (output_bfd, info, link_order, contents, info->relocateable,
2778 _bfd_generic_link_get_symbols (input_bfd)));
2779 if (!new_contents)
2780 goto error_return;
2781
2782 /* Output the section contents. */
2783 if (! bfd_set_section_contents (output_bfd, output_section,
2784 (PTR) new_contents,
2785 (file_ptr)
2786 (link_order->offset *
2787 bfd_octets_per_byte (output_bfd)),
2788 link_order->size))
2789 goto error_return;
2790
2791 if (contents != NULL)
2792 free (contents);
2793 return true;
2794
2795 error_return:
2796 if (contents != NULL)
2797 free (contents);
2798 return false;
2799 }
2800
2801 /* A little routine to count the number of relocs in a link_order
2802 list. */
2803
2804 unsigned int
2805 _bfd_count_link_order_relocs (link_order)
2806 struct bfd_link_order *link_order;
2807 {
2808 register unsigned int c;
2809 register struct bfd_link_order *l;
2810
2811 c = 0;
2812 for (l = link_order; l != (struct bfd_link_order *) NULL; l = l->next)
2813 {
2814 if (l->type == bfd_section_reloc_link_order
2815 || l->type == bfd_symbol_reloc_link_order)
2816 ++c;
2817 }
2818
2819 return c;
2820 }
2821
2822 /*
2823 FUNCTION
2824 bfd_link_split_section
2825
2826 SYNOPSIS
2827 boolean bfd_link_split_section(bfd *abfd, asection *sec);
2828
2829 DESCRIPTION
2830 Return nonzero if @var{sec} should be split during a
2831 reloceatable or final link.
2832
2833 .#define bfd_link_split_section(abfd, sec) \
2834 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2835 .
2836
2837 */
2838
2839 boolean
2840 _bfd_generic_link_split_section (abfd, sec)
2841 bfd *abfd ATTRIBUTE_UNUSED;
2842 asection *sec ATTRIBUTE_UNUSED;
2843 {
2844 return false;
2845 }
This page took 0.09094 seconds and 4 git commands to generate.