* coff-h8300.c (h8300_reloc16_extra_cases): Use input section
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the <<creator>>
153 field of the hash table must be checked to make sure that the
154 hash table was created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the <<creator>> field before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table.
225
226 @findex _bfd_generic_link_add_archive_symbols
227 In most cases the work of looking through the symbols in the
228 archive should be done by the
229 <<_bfd_generic_link_add_archive_symbols>> function. This
230 function builds a hash table from the archive symbol table and
231 looks through the list of undefined symbols to see which
232 elements should be included.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table.
237
238 The function passed to
239 <<_bfd_generic_link_add_archive_symbols>> must read the
240 symbols of the archive element and decide whether the archive
241 element should be included in the link. If the element is to
242 be included, the <<add_archive_element>> linker callback
243 routine must be called with the element as an argument, and
244 the elements symbols must be added to the linker hash table
245 just as though the element had itself been passed to the
246 <<_bfd_link_add_symbols>> function.
247
248 When the a.out <<_bfd_link_add_symbols>> function receives an
249 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
250 passing <<aout_link_check_archive_element>> as the function
251 argument. <<aout_link_check_archive_element>> calls
252 <<aout_link_check_ar_symbols>>. If the latter decides to add
253 the element (an element is only added if it provides a real,
254 non-common, definition for a previously undefined or common
255 symbol) it calls the <<add_archive_element>> callback and then
256 <<aout_link_check_archive_element>> calls
257 <<aout_link_add_symbols>> to actually add the symbols to the
258 linker hash table.
259
260 The ECOFF back end is unusual in that it does not normally
261 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
262 archives already contain a hash table of symbols. The ECOFF
263 back end searches the archive itself to avoid the overhead of
264 creating a new hash table.
265
266 INODE
267 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
268 SUBSECTION
269 Performing the final link
270
271 @cindex _bfd_link_final_link in target vector
272 @cindex target vector (_bfd_final_link)
273 When all the input files have been processed, the linker calls
274 the <<_bfd_final_link>> entry point of the output BFD. This
275 routine is responsible for producing the final output file,
276 which has several aspects. It must relocate the contents of
277 the input sections and copy the data into the output sections.
278 It must build an output symbol table including any local
279 symbols from the input files and the global symbols from the
280 hash table. When producing relocatable output, it must
281 modify the input relocs and write them into the output file.
282 There may also be object format dependent work to be done.
283
284 The linker will also call the <<write_object_contents>> entry
285 point when the BFD is closed. The two entry points must work
286 together in order to produce the correct output file.
287
288 The details of how this works are inevitably dependent upon
289 the specific object file format. The a.out
290 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
291
292 @menu
293 @* Information provided by the linker::
294 @* Relocating the section contents::
295 @* Writing the symbol table::
296 @end menu
297
298 INODE
299 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
300 SUBSUBSECTION
301 Information provided by the linker
302
303 Before the linker calls the <<_bfd_final_link>> entry point,
304 it sets up some data structures for the function to use.
305
306 The <<input_bfds>> field of the <<bfd_link_info>> structure
307 will point to a list of all the input files included in the
308 link. These files are linked through the <<link_next>> field
309 of the <<bfd>> structure.
310
311 Each section in the output file will have a list of
312 <<link_order>> structures attached to the <<map_head.link_order>>
313 field (the <<link_order>> structure is defined in
314 <<bfdlink.h>>). These structures describe how to create the
315 contents of the output section in terms of the contents of
316 various input sections, fill constants, and, eventually, other
317 types of information. They also describe relocs that must be
318 created by the BFD backend, but do not correspond to any input
319 file; this is used to support -Ur, which builds constructors
320 while generating a relocatable object file.
321
322 INODE
323 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
324 SUBSUBSECTION
325 Relocating the section contents
326
327 The <<_bfd_final_link>> function should look through the
328 <<link_order>> structures attached to each section of the
329 output file. Each <<link_order>> structure should either be
330 handled specially, or it should be passed to the function
331 <<_bfd_default_link_order>> which will do the right thing
332 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
333
334 For efficiency, a <<link_order>> of type
335 <<bfd_indirect_link_order>> whose associated section belongs
336 to a BFD of the same format as the output BFD must be handled
337 specially. This type of <<link_order>> describes part of an
338 output section in terms of a section belonging to one of the
339 input files. The <<_bfd_final_link>> function should read the
340 contents of the section and any associated relocs, apply the
341 relocs to the section contents, and write out the modified
342 section contents. If performing a relocatable link, the
343 relocs themselves must also be modified and written out.
344
345 @findex _bfd_relocate_contents
346 @findex _bfd_final_link_relocate
347 The functions <<_bfd_relocate_contents>> and
348 <<_bfd_final_link_relocate>> provide some general support for
349 performing the actual relocations, notably overflow checking.
350 Their arguments include information about the symbol the
351 relocation is against and a <<reloc_howto_type>> argument
352 which describes the relocation to perform. These functions
353 are defined in <<reloc.c>>.
354
355 The a.out function which handles reading, relocating, and
356 writing section contents is <<aout_link_input_section>>. The
357 actual relocation is done in <<aout_link_input_section_std>>
358 and <<aout_link_input_section_ext>>.
359
360 INODE
361 Writing the symbol table, , Relocating the section contents, Performing the Final Link
362 SUBSUBSECTION
363 Writing the symbol table
364
365 The <<_bfd_final_link>> function must gather all the symbols
366 in the input files and write them out. It must also write out
367 all the symbols in the global hash table. This must be
368 controlled by the <<strip>> and <<discard>> fields of the
369 <<bfd_link_info>> structure.
370
371 The local symbols of the input files will not have been
372 entered into the linker hash table. The <<_bfd_final_link>>
373 routine must consider each input file and include the symbols
374 in the output file. It may be convenient to do this when
375 looking through the <<link_order>> structures, or it may be
376 done by stepping through the <<input_bfds>> list.
377
378 The <<_bfd_final_link>> routine must also traverse the global
379 hash table to gather all the externally visible symbols. It
380 is possible that most of the externally visible symbols may be
381 written out when considering the symbols of each input file,
382 but it is still necessary to traverse the hash table since the
383 linker script may have defined some symbols that are not in
384 any of the input files.
385
386 The <<strip>> field of the <<bfd_link_info>> structure
387 controls which symbols are written out. The possible values
388 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
389 then the <<keep_hash>> field of the <<bfd_link_info>>
390 structure is a hash table of symbols to keep; each symbol
391 should be looked up in this hash table, and only symbols which
392 are present should be included in the output file.
393
394 If the <<strip>> field of the <<bfd_link_info>> structure
395 permits local symbols to be written out, the <<discard>> field
396 is used to further controls which local symbols are included
397 in the output file. If the value is <<discard_l>>, then all
398 local symbols which begin with a certain prefix are discarded;
399 this is controlled by the <<bfd_is_local_label_name>> entry point.
400
401 The a.out backend handles symbols by calling
402 <<aout_link_write_symbols>> on each input BFD and then
403 traversing the global hash table with the function
404 <<aout_link_write_other_symbol>>. It builds a string table
405 while writing out the symbols, which is written to the output
406 file at the end of <<NAME(aout,final_link)>>.
407 */
408
409 static bfd_boolean generic_link_add_object_symbols
410 (bfd *, struct bfd_link_info *, bfd_boolean collect);
411 static bfd_boolean generic_link_add_symbols
412 (bfd *, struct bfd_link_info *, bfd_boolean);
413 static bfd_boolean generic_link_check_archive_element_no_collect
414 (bfd *, struct bfd_link_info *, bfd_boolean *);
415 static bfd_boolean generic_link_check_archive_element_collect
416 (bfd *, struct bfd_link_info *, bfd_boolean *);
417 static bfd_boolean generic_link_check_archive_element
418 (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
419 static bfd_boolean generic_link_add_symbol_list
420 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
421 bfd_boolean);
422 static bfd_boolean generic_add_output_symbol
423 (bfd *, size_t *psymalloc, asymbol *);
424 static bfd_boolean default_data_link_order
425 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
426 static bfd_boolean default_indirect_link_order
427 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
428 bfd_boolean);
429
430 /* The link hash table structure is defined in bfdlink.h. It provides
431 a base hash table which the backend specific hash tables are built
432 upon. */
433
434 /* Routine to create an entry in the link hash table. */
435
436 struct bfd_hash_entry *
437 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
438 struct bfd_hash_table *table,
439 const char *string)
440 {
441 /* Allocate the structure if it has not already been allocated by a
442 subclass. */
443 if (entry == NULL)
444 {
445 entry = bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
446 if (entry == NULL)
447 return entry;
448 }
449
450 /* Call the allocation method of the superclass. */
451 entry = bfd_hash_newfunc (entry, table, string);
452 if (entry)
453 {
454 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
455
456 /* Initialize the local fields. */
457 h->type = bfd_link_hash_new;
458 memset (&h->u.undef.next, 0,
459 (sizeof (struct bfd_link_hash_entry)
460 - offsetof (struct bfd_link_hash_entry, u.undef.next)));
461 }
462
463 return entry;
464 }
465
466 /* Initialize a link hash table. The BFD argument is the one
467 responsible for creating this table. */
468
469 bfd_boolean
470 _bfd_link_hash_table_init
471 (struct bfd_link_hash_table *table,
472 bfd *abfd,
473 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
474 struct bfd_hash_table *,
475 const char *))
476 {
477 table->creator = abfd->xvec;
478 table->undefs = NULL;
479 table->undefs_tail = NULL;
480 table->type = bfd_link_generic_hash_table;
481
482 return bfd_hash_table_init (&table->table, newfunc);
483 }
484
485 /* Look up a symbol in a link hash table. If follow is TRUE, we
486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
487 the real symbol. */
488
489 struct bfd_link_hash_entry *
490 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
491 const char *string,
492 bfd_boolean create,
493 bfd_boolean copy,
494 bfd_boolean follow)
495 {
496 struct bfd_link_hash_entry *ret;
497
498 ret = ((struct bfd_link_hash_entry *)
499 bfd_hash_lookup (&table->table, string, create, copy));
500
501 if (follow && ret != NULL)
502 {
503 while (ret->type == bfd_link_hash_indirect
504 || ret->type == bfd_link_hash_warning)
505 ret = ret->u.i.link;
506 }
507
508 return ret;
509 }
510
511 /* Look up a symbol in the main linker hash table if the symbol might
512 be wrapped. This should only be used for references to an
513 undefined symbol, not for definitions of a symbol. */
514
515 struct bfd_link_hash_entry *
516 bfd_wrapped_link_hash_lookup (bfd *abfd,
517 struct bfd_link_info *info,
518 const char *string,
519 bfd_boolean create,
520 bfd_boolean copy,
521 bfd_boolean follow)
522 {
523 bfd_size_type amt;
524
525 if (info->wrap_hash != NULL)
526 {
527 const char *l;
528 char prefix = '\0';
529
530 l = string;
531 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
532 {
533 prefix = *l;
534 ++l;
535 }
536
537 #undef WRAP
538 #define WRAP "__wrap_"
539
540 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
541 {
542 char *n;
543 struct bfd_link_hash_entry *h;
544
545 /* This symbol is being wrapped. We want to replace all
546 references to SYM with references to __wrap_SYM. */
547
548 amt = strlen (l) + sizeof WRAP + 1;
549 n = bfd_malloc (amt);
550 if (n == NULL)
551 return NULL;
552
553 n[0] = prefix;
554 n[1] = '\0';
555 strcat (n, WRAP);
556 strcat (n, l);
557 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
558 free (n);
559 return h;
560 }
561
562 #undef WRAP
563
564 #undef REAL
565 #define REAL "__real_"
566
567 if (*l == '_'
568 && strncmp (l, REAL, sizeof REAL - 1) == 0
569 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
570 FALSE, FALSE) != NULL)
571 {
572 char *n;
573 struct bfd_link_hash_entry *h;
574
575 /* This is a reference to __real_SYM, where SYM is being
576 wrapped. We want to replace all references to __real_SYM
577 with references to SYM. */
578
579 amt = strlen (l + sizeof REAL - 1) + 2;
580 n = bfd_malloc (amt);
581 if (n == NULL)
582 return NULL;
583
584 n[0] = prefix;
585 n[1] = '\0';
586 strcat (n, l + sizeof REAL - 1);
587 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
588 free (n);
589 return h;
590 }
591
592 #undef REAL
593 }
594
595 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
596 }
597
598 /* Traverse a generic link hash table. The only reason this is not a
599 macro is to do better type checking. This code presumes that an
600 argument passed as a struct bfd_hash_entry * may be caught as a
601 struct bfd_link_hash_entry * with no explicit cast required on the
602 call. */
603
604 void
605 bfd_link_hash_traverse
606 (struct bfd_link_hash_table *table,
607 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
608 void *info)
609 {
610 bfd_hash_traverse (&table->table,
611 (bfd_boolean (*) (struct bfd_hash_entry *, void *)) func,
612 info);
613 }
614
615 /* Add a symbol to the linker hash table undefs list. */
616
617 void
618 bfd_link_add_undef (struct bfd_link_hash_table *table,
619 struct bfd_link_hash_entry *h)
620 {
621 BFD_ASSERT (h->u.undef.next == NULL);
622 if (table->undefs_tail != NULL)
623 table->undefs_tail->u.undef.next = h;
624 if (table->undefs == NULL)
625 table->undefs = h;
626 table->undefs_tail = h;
627 }
628
629 /* The undefs list was designed so that in normal use we don't need to
630 remove entries. However, if symbols on the list are changed from
631 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
632 bfd_link_hash_new for some reason, then they must be removed from the
633 list. Failure to do so might result in the linker attempting to add
634 the symbol to the list again at a later stage. */
635
636 void
637 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
638 {
639 struct bfd_link_hash_entry **pun;
640
641 pun = &table->undefs;
642 while (*pun != NULL)
643 {
644 struct bfd_link_hash_entry *h = *pun;
645
646 if (h->type == bfd_link_hash_new
647 || h->type == bfd_link_hash_undefweak)
648 {
649 *pun = h->u.undef.next;
650 h->u.undef.next = NULL;
651 if (h == table->undefs_tail)
652 {
653 if (pun == &table->undefs)
654 table->undefs_tail = NULL;
655 else
656 /* pun points at an u.undef.next field. Go back to
657 the start of the link_hash_entry. */
658 table->undefs_tail = (struct bfd_link_hash_entry *)
659 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
660 break;
661 }
662 }
663 else
664 pun = &h->u.undef.next;
665 }
666 }
667 \f
668 /* Routine to create an entry in a generic link hash table. */
669
670 struct bfd_hash_entry *
671 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
672 struct bfd_hash_table *table,
673 const char *string)
674 {
675 /* Allocate the structure if it has not already been allocated by a
676 subclass. */
677 if (entry == NULL)
678 {
679 entry =
680 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
681 if (entry == NULL)
682 return entry;
683 }
684
685 /* Call the allocation method of the superclass. */
686 entry = _bfd_link_hash_newfunc (entry, table, string);
687 if (entry)
688 {
689 struct generic_link_hash_entry *ret;
690
691 /* Set local fields. */
692 ret = (struct generic_link_hash_entry *) entry;
693 ret->written = FALSE;
694 ret->sym = NULL;
695 }
696
697 return entry;
698 }
699
700 /* Create a generic link hash table. */
701
702 struct bfd_link_hash_table *
703 _bfd_generic_link_hash_table_create (bfd *abfd)
704 {
705 struct generic_link_hash_table *ret;
706 bfd_size_type amt = sizeof (struct generic_link_hash_table);
707
708 ret = bfd_malloc (amt);
709 if (ret == NULL)
710 return NULL;
711 if (! _bfd_link_hash_table_init (&ret->root, abfd,
712 _bfd_generic_link_hash_newfunc))
713 {
714 free (ret);
715 return NULL;
716 }
717 return &ret->root;
718 }
719
720 void
721 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
722 {
723 struct generic_link_hash_table *ret
724 = (struct generic_link_hash_table *) hash;
725
726 bfd_hash_table_free (&ret->root.table);
727 free (ret);
728 }
729
730 /* Grab the symbols for an object file when doing a generic link. We
731 store the symbols in the outsymbols field. We need to keep them
732 around for the entire link to ensure that we only read them once.
733 If we read them multiple times, we might wind up with relocs and
734 the hash table pointing to different instances of the symbol
735 structure. */
736
737 static bfd_boolean
738 generic_link_read_symbols (bfd *abfd)
739 {
740 if (bfd_get_outsymbols (abfd) == NULL)
741 {
742 long symsize;
743 long symcount;
744
745 symsize = bfd_get_symtab_upper_bound (abfd);
746 if (symsize < 0)
747 return FALSE;
748 bfd_get_outsymbols (abfd) = bfd_alloc (abfd, symsize);
749 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
750 return FALSE;
751 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
752 if (symcount < 0)
753 return FALSE;
754 bfd_get_symcount (abfd) = symcount;
755 }
756
757 return TRUE;
758 }
759 \f
760 /* Generic function to add symbols to from an object file to the
761 global hash table. This version does not automatically collect
762 constructors by name. */
763
764 bfd_boolean
765 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
766 {
767 return generic_link_add_symbols (abfd, info, FALSE);
768 }
769
770 /* Generic function to add symbols from an object file to the global
771 hash table. This version automatically collects constructors by
772 name, as the collect2 program does. It should be used for any
773 target which does not provide some other mechanism for setting up
774 constructors and destructors; these are approximately those targets
775 for which gcc uses collect2 and do not support stabs. */
776
777 bfd_boolean
778 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
779 {
780 return generic_link_add_symbols (abfd, info, TRUE);
781 }
782
783 /* Indicate that we are only retrieving symbol values from this
784 section. We want the symbols to act as though the values in the
785 file are absolute. */
786
787 void
788 _bfd_generic_link_just_syms (asection *sec,
789 struct bfd_link_info *info ATTRIBUTE_UNUSED)
790 {
791 sec->output_section = bfd_abs_section_ptr;
792 sec->output_offset = sec->vma;
793 }
794
795 /* Add symbols from an object file to the global hash table. */
796
797 static bfd_boolean
798 generic_link_add_symbols (bfd *abfd,
799 struct bfd_link_info *info,
800 bfd_boolean collect)
801 {
802 bfd_boolean ret;
803
804 switch (bfd_get_format (abfd))
805 {
806 case bfd_object:
807 ret = generic_link_add_object_symbols (abfd, info, collect);
808 break;
809 case bfd_archive:
810 ret = (_bfd_generic_link_add_archive_symbols
811 (abfd, info,
812 (collect
813 ? generic_link_check_archive_element_collect
814 : generic_link_check_archive_element_no_collect)));
815 break;
816 default:
817 bfd_set_error (bfd_error_wrong_format);
818 ret = FALSE;
819 }
820
821 return ret;
822 }
823
824 /* Add symbols from an object file to the global hash table. */
825
826 static bfd_boolean
827 generic_link_add_object_symbols (bfd *abfd,
828 struct bfd_link_info *info,
829 bfd_boolean collect)
830 {
831 bfd_size_type symcount;
832 struct bfd_symbol **outsyms;
833
834 if (! generic_link_read_symbols (abfd))
835 return FALSE;
836 symcount = _bfd_generic_link_get_symcount (abfd);
837 outsyms = _bfd_generic_link_get_symbols (abfd);
838 return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
839 }
840 \f
841 /* We build a hash table of all symbols defined in an archive. */
842
843 /* An archive symbol may be defined by multiple archive elements.
844 This linked list is used to hold the elements. */
845
846 struct archive_list
847 {
848 struct archive_list *next;
849 unsigned int indx;
850 };
851
852 /* An entry in an archive hash table. */
853
854 struct archive_hash_entry
855 {
856 struct bfd_hash_entry root;
857 /* Where the symbol is defined. */
858 struct archive_list *defs;
859 };
860
861 /* An archive hash table itself. */
862
863 struct archive_hash_table
864 {
865 struct bfd_hash_table table;
866 };
867
868 /* Create a new entry for an archive hash table. */
869
870 static struct bfd_hash_entry *
871 archive_hash_newfunc (struct bfd_hash_entry *entry,
872 struct bfd_hash_table *table,
873 const char *string)
874 {
875 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
876
877 /* Allocate the structure if it has not already been allocated by a
878 subclass. */
879 if (ret == NULL)
880 ret = bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
881 if (ret == NULL)
882 return NULL;
883
884 /* Call the allocation method of the superclass. */
885 ret = ((struct archive_hash_entry *)
886 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
887
888 if (ret)
889 {
890 /* Initialize the local fields. */
891 ret->defs = NULL;
892 }
893
894 return &ret->root;
895 }
896
897 /* Initialize an archive hash table. */
898
899 static bfd_boolean
900 archive_hash_table_init
901 (struct archive_hash_table *table,
902 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
903 struct bfd_hash_table *,
904 const char *))
905 {
906 return bfd_hash_table_init (&table->table, newfunc);
907 }
908
909 /* Look up an entry in an archive hash table. */
910
911 #define archive_hash_lookup(t, string, create, copy) \
912 ((struct archive_hash_entry *) \
913 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
914
915 /* Allocate space in an archive hash table. */
916
917 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
918
919 /* Free an archive hash table. */
920
921 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
922
923 /* Generic function to add symbols from an archive file to the global
924 hash file. This function presumes that the archive symbol table
925 has already been read in (this is normally done by the
926 bfd_check_format entry point). It looks through the undefined and
927 common symbols and searches the archive symbol table for them. If
928 it finds an entry, it includes the associated object file in the
929 link.
930
931 The old linker looked through the archive symbol table for
932 undefined symbols. We do it the other way around, looking through
933 undefined symbols for symbols defined in the archive. The
934 advantage of the newer scheme is that we only have to look through
935 the list of undefined symbols once, whereas the old method had to
936 re-search the symbol table each time a new object file was added.
937
938 The CHECKFN argument is used to see if an object file should be
939 included. CHECKFN should set *PNEEDED to TRUE if the object file
940 should be included, and must also call the bfd_link_info
941 add_archive_element callback function and handle adding the symbols
942 to the global hash table. CHECKFN should only return FALSE if some
943 sort of error occurs.
944
945 For some formats, such as a.out, it is possible to look through an
946 object file but not actually include it in the link. The
947 archive_pass field in a BFD is used to avoid checking the symbols
948 of an object files too many times. When an object is included in
949 the link, archive_pass is set to -1. If an object is scanned but
950 not included, archive_pass is set to the pass number. The pass
951 number is incremented each time a new object file is included. The
952 pass number is used because when a new object file is included it
953 may create new undefined symbols which cause a previously examined
954 object file to be included. */
955
956 bfd_boolean
957 _bfd_generic_link_add_archive_symbols
958 (bfd *abfd,
959 struct bfd_link_info *info,
960 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
961 {
962 carsym *arsyms;
963 carsym *arsym_end;
964 register carsym *arsym;
965 int pass;
966 struct archive_hash_table arsym_hash;
967 unsigned int indx;
968 struct bfd_link_hash_entry **pundef;
969
970 if (! bfd_has_map (abfd))
971 {
972 /* An empty archive is a special case. */
973 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
974 return TRUE;
975 bfd_set_error (bfd_error_no_armap);
976 return FALSE;
977 }
978
979 arsyms = bfd_ardata (abfd)->symdefs;
980 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
981
982 /* In order to quickly determine whether an symbol is defined in
983 this archive, we build a hash table of the symbols. */
984 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
985 return FALSE;
986 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
987 {
988 struct archive_hash_entry *arh;
989 struct archive_list *l, **pp;
990
991 arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
992 if (arh == NULL)
993 goto error_return;
994 l = ((struct archive_list *)
995 archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
996 if (l == NULL)
997 goto error_return;
998 l->indx = indx;
999 for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1000 ;
1001 *pp = l;
1002 l->next = NULL;
1003 }
1004
1005 /* The archive_pass field in the archive itself is used to
1006 initialize PASS, sine we may search the same archive multiple
1007 times. */
1008 pass = abfd->archive_pass + 1;
1009
1010 /* New undefined symbols are added to the end of the list, so we
1011 only need to look through it once. */
1012 pundef = &info->hash->undefs;
1013 while (*pundef != NULL)
1014 {
1015 struct bfd_link_hash_entry *h;
1016 struct archive_hash_entry *arh;
1017 struct archive_list *l;
1018
1019 h = *pundef;
1020
1021 /* When a symbol is defined, it is not necessarily removed from
1022 the list. */
1023 if (h->type != bfd_link_hash_undefined
1024 && h->type != bfd_link_hash_common)
1025 {
1026 /* Remove this entry from the list, for general cleanliness
1027 and because we are going to look through the list again
1028 if we search any more libraries. We can't remove the
1029 entry if it is the tail, because that would lose any
1030 entries we add to the list later on (it would also cause
1031 us to lose track of whether the symbol has been
1032 referenced). */
1033 if (*pundef != info->hash->undefs_tail)
1034 *pundef = (*pundef)->u.undef.next;
1035 else
1036 pundef = &(*pundef)->u.undef.next;
1037 continue;
1038 }
1039
1040 /* Look for this symbol in the archive symbol map. */
1041 arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1042 if (arh == NULL)
1043 {
1044 /* If we haven't found the exact symbol we're looking for,
1045 let's look for its import thunk */
1046 if (info->pei386_auto_import)
1047 {
1048 bfd_size_type amt = strlen (h->root.string) + 10;
1049 char *buf = bfd_malloc (amt);
1050 if (buf == NULL)
1051 return FALSE;
1052
1053 sprintf (buf, "__imp_%s", h->root.string);
1054 arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1055 free(buf);
1056 }
1057 if (arh == NULL)
1058 {
1059 pundef = &(*pundef)->u.undef.next;
1060 continue;
1061 }
1062 }
1063 /* Look at all the objects which define this symbol. */
1064 for (l = arh->defs; l != NULL; l = l->next)
1065 {
1066 bfd *element;
1067 bfd_boolean needed;
1068
1069 /* If the symbol has gotten defined along the way, quit. */
1070 if (h->type != bfd_link_hash_undefined
1071 && h->type != bfd_link_hash_common)
1072 break;
1073
1074 element = bfd_get_elt_at_index (abfd, l->indx);
1075 if (element == NULL)
1076 goto error_return;
1077
1078 /* If we've already included this element, or if we've
1079 already checked it on this pass, continue. */
1080 if (element->archive_pass == -1
1081 || element->archive_pass == pass)
1082 continue;
1083
1084 /* If we can't figure this element out, just ignore it. */
1085 if (! bfd_check_format (element, bfd_object))
1086 {
1087 element->archive_pass = -1;
1088 continue;
1089 }
1090
1091 /* CHECKFN will see if this element should be included, and
1092 go ahead and include it if appropriate. */
1093 if (! (*checkfn) (element, info, &needed))
1094 goto error_return;
1095
1096 if (! needed)
1097 element->archive_pass = pass;
1098 else
1099 {
1100 element->archive_pass = -1;
1101
1102 /* Increment the pass count to show that we may need to
1103 recheck object files which were already checked. */
1104 ++pass;
1105 }
1106 }
1107
1108 pundef = &(*pundef)->u.undef.next;
1109 }
1110
1111 archive_hash_table_free (&arsym_hash);
1112
1113 /* Save PASS in case we are called again. */
1114 abfd->archive_pass = pass;
1115
1116 return TRUE;
1117
1118 error_return:
1119 archive_hash_table_free (&arsym_hash);
1120 return FALSE;
1121 }
1122 \f
1123 /* See if we should include an archive element. This version is used
1124 when we do not want to automatically collect constructors based on
1125 the symbol name, presumably because we have some other mechanism
1126 for finding them. */
1127
1128 static bfd_boolean
1129 generic_link_check_archive_element_no_collect (
1130 bfd *abfd,
1131 struct bfd_link_info *info,
1132 bfd_boolean *pneeded)
1133 {
1134 return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1135 }
1136
1137 /* See if we should include an archive element. This version is used
1138 when we want to automatically collect constructors based on the
1139 symbol name, as collect2 does. */
1140
1141 static bfd_boolean
1142 generic_link_check_archive_element_collect (bfd *abfd,
1143 struct bfd_link_info *info,
1144 bfd_boolean *pneeded)
1145 {
1146 return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1147 }
1148
1149 /* See if we should include an archive element. Optionally collect
1150 constructors. */
1151
1152 static bfd_boolean
1153 generic_link_check_archive_element (bfd *abfd,
1154 struct bfd_link_info *info,
1155 bfd_boolean *pneeded,
1156 bfd_boolean collect)
1157 {
1158 asymbol **pp, **ppend;
1159
1160 *pneeded = FALSE;
1161
1162 if (! generic_link_read_symbols (abfd))
1163 return FALSE;
1164
1165 pp = _bfd_generic_link_get_symbols (abfd);
1166 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1167 for (; pp < ppend; pp++)
1168 {
1169 asymbol *p;
1170 struct bfd_link_hash_entry *h;
1171
1172 p = *pp;
1173
1174 /* We are only interested in globally visible symbols. */
1175 if (! bfd_is_com_section (p->section)
1176 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1177 continue;
1178
1179 /* We are only interested if we know something about this
1180 symbol, and it is undefined or common. An undefined weak
1181 symbol (type bfd_link_hash_undefweak) is not considered to be
1182 a reference when pulling files out of an archive. See the
1183 SVR4 ABI, p. 4-27. */
1184 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1185 FALSE, TRUE);
1186 if (h == NULL
1187 || (h->type != bfd_link_hash_undefined
1188 && h->type != bfd_link_hash_common))
1189 continue;
1190
1191 /* P is a symbol we are looking for. */
1192
1193 if (! bfd_is_com_section (p->section))
1194 {
1195 bfd_size_type symcount;
1196 asymbol **symbols;
1197
1198 /* This object file defines this symbol, so pull it in. */
1199 if (! (*info->callbacks->add_archive_element) (info, abfd,
1200 bfd_asymbol_name (p)))
1201 return FALSE;
1202 symcount = _bfd_generic_link_get_symcount (abfd);
1203 symbols = _bfd_generic_link_get_symbols (abfd);
1204 if (! generic_link_add_symbol_list (abfd, info, symcount,
1205 symbols, collect))
1206 return FALSE;
1207 *pneeded = TRUE;
1208 return TRUE;
1209 }
1210
1211 /* P is a common symbol. */
1212
1213 if (h->type == bfd_link_hash_undefined)
1214 {
1215 bfd *symbfd;
1216 bfd_vma size;
1217 unsigned int power;
1218
1219 symbfd = h->u.undef.abfd;
1220 if (symbfd == NULL)
1221 {
1222 /* This symbol was created as undefined from outside
1223 BFD. We assume that we should link in the object
1224 file. This is for the -u option in the linker. */
1225 if (! (*info->callbacks->add_archive_element)
1226 (info, abfd, bfd_asymbol_name (p)))
1227 return FALSE;
1228 *pneeded = TRUE;
1229 return TRUE;
1230 }
1231
1232 /* Turn the symbol into a common symbol but do not link in
1233 the object file. This is how a.out works. Object
1234 formats that require different semantics must implement
1235 this function differently. This symbol is already on the
1236 undefs list. We add the section to a common section
1237 attached to symbfd to ensure that it is in a BFD which
1238 will be linked in. */
1239 h->type = bfd_link_hash_common;
1240 h->u.c.p =
1241 bfd_hash_allocate (&info->hash->table,
1242 sizeof (struct bfd_link_hash_common_entry));
1243 if (h->u.c.p == NULL)
1244 return FALSE;
1245
1246 size = bfd_asymbol_value (p);
1247 h->u.c.size = size;
1248
1249 power = bfd_log2 (size);
1250 if (power > 4)
1251 power = 4;
1252 h->u.c.p->alignment_power = power;
1253
1254 if (p->section == bfd_com_section_ptr)
1255 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1256 else
1257 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1258 p->section->name);
1259 h->u.c.p->section->flags = SEC_ALLOC;
1260 }
1261 else
1262 {
1263 /* Adjust the size of the common symbol if necessary. This
1264 is how a.out works. Object formats that require
1265 different semantics must implement this function
1266 differently. */
1267 if (bfd_asymbol_value (p) > h->u.c.size)
1268 h->u.c.size = bfd_asymbol_value (p);
1269 }
1270 }
1271
1272 /* This archive element is not needed. */
1273 return TRUE;
1274 }
1275
1276 /* Add the symbols from an object file to the global hash table. ABFD
1277 is the object file. INFO is the linker information. SYMBOL_COUNT
1278 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1279 is TRUE if constructors should be automatically collected by name
1280 as is done by collect2. */
1281
1282 static bfd_boolean
1283 generic_link_add_symbol_list (bfd *abfd,
1284 struct bfd_link_info *info,
1285 bfd_size_type symbol_count,
1286 asymbol **symbols,
1287 bfd_boolean collect)
1288 {
1289 asymbol **pp, **ppend;
1290
1291 pp = symbols;
1292 ppend = symbols + symbol_count;
1293 for (; pp < ppend; pp++)
1294 {
1295 asymbol *p;
1296
1297 p = *pp;
1298
1299 if ((p->flags & (BSF_INDIRECT
1300 | BSF_WARNING
1301 | BSF_GLOBAL
1302 | BSF_CONSTRUCTOR
1303 | BSF_WEAK)) != 0
1304 || bfd_is_und_section (bfd_get_section (p))
1305 || bfd_is_com_section (bfd_get_section (p))
1306 || bfd_is_ind_section (bfd_get_section (p)))
1307 {
1308 const char *name;
1309 const char *string;
1310 struct generic_link_hash_entry *h;
1311 struct bfd_link_hash_entry *bh;
1312
1313 name = bfd_asymbol_name (p);
1314 if (((p->flags & BSF_INDIRECT) != 0
1315 || bfd_is_ind_section (p->section))
1316 && pp + 1 < ppend)
1317 {
1318 pp++;
1319 string = bfd_asymbol_name (*pp);
1320 }
1321 else if ((p->flags & BSF_WARNING) != 0
1322 && pp + 1 < ppend)
1323 {
1324 /* The name of P is actually the warning string, and the
1325 next symbol is the one to warn about. */
1326 string = name;
1327 pp++;
1328 name = bfd_asymbol_name (*pp);
1329 }
1330 else
1331 string = NULL;
1332
1333 bh = NULL;
1334 if (! (_bfd_generic_link_add_one_symbol
1335 (info, abfd, name, p->flags, bfd_get_section (p),
1336 p->value, string, FALSE, collect, &bh)))
1337 return FALSE;
1338 h = (struct generic_link_hash_entry *) bh;
1339
1340 /* If this is a constructor symbol, and the linker didn't do
1341 anything with it, then we want to just pass the symbol
1342 through to the output file. This will happen when
1343 linking with -r. */
1344 if ((p->flags & BSF_CONSTRUCTOR) != 0
1345 && (h == NULL || h->root.type == bfd_link_hash_new))
1346 {
1347 p->udata.p = NULL;
1348 continue;
1349 }
1350
1351 /* Save the BFD symbol so that we don't lose any backend
1352 specific information that may be attached to it. We only
1353 want this one if it gives more information than the
1354 existing one; we don't want to replace a defined symbol
1355 with an undefined one. This routine may be called with a
1356 hash table other than the generic hash table, so we only
1357 do this if we are certain that the hash table is a
1358 generic one. */
1359 if (info->hash->creator == abfd->xvec)
1360 {
1361 if (h->sym == NULL
1362 || (! bfd_is_und_section (bfd_get_section (p))
1363 && (! bfd_is_com_section (bfd_get_section (p))
1364 || bfd_is_und_section (bfd_get_section (h->sym)))))
1365 {
1366 h->sym = p;
1367 /* BSF_OLD_COMMON is a hack to support COFF reloc
1368 reading, and it should go away when the COFF
1369 linker is switched to the new version. */
1370 if (bfd_is_com_section (bfd_get_section (p)))
1371 p->flags |= BSF_OLD_COMMON;
1372 }
1373 }
1374
1375 /* Store a back pointer from the symbol to the hash
1376 table entry for the benefit of relaxation code until
1377 it gets rewritten to not use asymbol structures.
1378 Setting this is also used to check whether these
1379 symbols were set up by the generic linker. */
1380 p->udata.p = h;
1381 }
1382 }
1383
1384 return TRUE;
1385 }
1386 \f
1387 /* We use a state table to deal with adding symbols from an object
1388 file. The first index into the state table describes the symbol
1389 from the object file. The second index into the state table is the
1390 type of the symbol in the hash table. */
1391
1392 /* The symbol from the object file is turned into one of these row
1393 values. */
1394
1395 enum link_row
1396 {
1397 UNDEF_ROW, /* Undefined. */
1398 UNDEFW_ROW, /* Weak undefined. */
1399 DEF_ROW, /* Defined. */
1400 DEFW_ROW, /* Weak defined. */
1401 COMMON_ROW, /* Common. */
1402 INDR_ROW, /* Indirect. */
1403 WARN_ROW, /* Warning. */
1404 SET_ROW /* Member of set. */
1405 };
1406
1407 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1408 #undef FAIL
1409
1410 /* The actions to take in the state table. */
1411
1412 enum link_action
1413 {
1414 FAIL, /* Abort. */
1415 UND, /* Mark symbol undefined. */
1416 WEAK, /* Mark symbol weak undefined. */
1417 DEF, /* Mark symbol defined. */
1418 DEFW, /* Mark symbol weak defined. */
1419 COM, /* Mark symbol common. */
1420 REF, /* Mark defined symbol referenced. */
1421 CREF, /* Possibly warn about common reference to defined symbol. */
1422 CDEF, /* Define existing common symbol. */
1423 NOACT, /* No action. */
1424 BIG, /* Mark symbol common using largest size. */
1425 MDEF, /* Multiple definition error. */
1426 MIND, /* Multiple indirect symbols. */
1427 IND, /* Make indirect symbol. */
1428 CIND, /* Make indirect symbol from existing common symbol. */
1429 SET, /* Add value to set. */
1430 MWARN, /* Make warning symbol. */
1431 WARN, /* Issue warning. */
1432 CWARN, /* Warn if referenced, else MWARN. */
1433 CYCLE, /* Repeat with symbol pointed to. */
1434 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1435 WARNC /* Issue warning and then CYCLE. */
1436 };
1437
1438 /* The state table itself. The first index is a link_row and the
1439 second index is a bfd_link_hash_type. */
1440
1441 static const enum link_action link_action[8][8] =
1442 {
1443 /* current\prev new undef undefw def defw com indr warn */
1444 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1445 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1446 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1447 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1448 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1449 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1450 /* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, NOACT },
1451 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1452 };
1453
1454 /* Most of the entries in the LINK_ACTION table are straightforward,
1455 but a few are somewhat subtle.
1456
1457 A reference to an indirect symbol (UNDEF_ROW/indr or
1458 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1459 symbol and to the symbol the indirect symbol points to.
1460
1461 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1462 causes the warning to be issued.
1463
1464 A common definition of an indirect symbol (COMMON_ROW/indr) is
1465 treated as a multiple definition error. Likewise for an indirect
1466 definition of a common symbol (INDR_ROW/com).
1467
1468 An indirect definition of a warning (INDR_ROW/warn) does not cause
1469 the warning to be issued.
1470
1471 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1472 warning is created for the symbol the indirect symbol points to.
1473
1474 Adding an entry to a set does not count as a reference to a set,
1475 and no warning is issued (SET_ROW/warn). */
1476
1477 /* Return the BFD in which a hash entry has been defined, if known. */
1478
1479 static bfd *
1480 hash_entry_bfd (struct bfd_link_hash_entry *h)
1481 {
1482 while (h->type == bfd_link_hash_warning)
1483 h = h->u.i.link;
1484 switch (h->type)
1485 {
1486 default:
1487 return NULL;
1488 case bfd_link_hash_undefined:
1489 case bfd_link_hash_undefweak:
1490 return h->u.undef.abfd;
1491 case bfd_link_hash_defined:
1492 case bfd_link_hash_defweak:
1493 return h->u.def.section->owner;
1494 case bfd_link_hash_common:
1495 return h->u.c.p->section->owner;
1496 }
1497 /*NOTREACHED*/
1498 }
1499
1500 /* Add a symbol to the global hash table.
1501 ABFD is the BFD the symbol comes from.
1502 NAME is the name of the symbol.
1503 FLAGS is the BSF_* bits associated with the symbol.
1504 SECTION is the section in which the symbol is defined; this may be
1505 bfd_und_section_ptr or bfd_com_section_ptr.
1506 VALUE is the value of the symbol, relative to the section.
1507 STRING is used for either an indirect symbol, in which case it is
1508 the name of the symbol to indirect to, or a warning symbol, in
1509 which case it is the warning string.
1510 COPY is TRUE if NAME or STRING must be copied into locally
1511 allocated memory if they need to be saved.
1512 COLLECT is TRUE if we should automatically collect gcc constructor
1513 or destructor names as collect2 does.
1514 HASHP, if not NULL, is a place to store the created hash table
1515 entry; if *HASHP is not NULL, the caller has already looked up
1516 the hash table entry, and stored it in *HASHP. */
1517
1518 bfd_boolean
1519 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1520 bfd *abfd,
1521 const char *name,
1522 flagword flags,
1523 asection *section,
1524 bfd_vma value,
1525 const char *string,
1526 bfd_boolean copy,
1527 bfd_boolean collect,
1528 struct bfd_link_hash_entry **hashp)
1529 {
1530 enum link_row row;
1531 struct bfd_link_hash_entry *h;
1532 bfd_boolean cycle;
1533
1534 if (bfd_is_ind_section (section)
1535 || (flags & BSF_INDIRECT) != 0)
1536 row = INDR_ROW;
1537 else if ((flags & BSF_WARNING) != 0)
1538 row = WARN_ROW;
1539 else if ((flags & BSF_CONSTRUCTOR) != 0)
1540 row = SET_ROW;
1541 else if (bfd_is_und_section (section))
1542 {
1543 if ((flags & BSF_WEAK) != 0)
1544 row = UNDEFW_ROW;
1545 else
1546 row = UNDEF_ROW;
1547 }
1548 else if ((flags & BSF_WEAK) != 0)
1549 row = DEFW_ROW;
1550 else if (bfd_is_com_section (section))
1551 row = COMMON_ROW;
1552 else
1553 row = DEF_ROW;
1554
1555 if (hashp != NULL && *hashp != NULL)
1556 h = *hashp;
1557 else
1558 {
1559 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1560 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1561 else
1562 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1563 if (h == NULL)
1564 {
1565 if (hashp != NULL)
1566 *hashp = NULL;
1567 return FALSE;
1568 }
1569 }
1570
1571 if (info->notice_all
1572 || (info->notice_hash != NULL
1573 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1574 {
1575 if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1576 value))
1577 return FALSE;
1578 }
1579
1580 if (hashp != NULL)
1581 *hashp = h;
1582
1583 do
1584 {
1585 enum link_action action;
1586
1587 cycle = FALSE;
1588 action = link_action[(int) row][(int) h->type];
1589 switch (action)
1590 {
1591 case FAIL:
1592 abort ();
1593
1594 case NOACT:
1595 /* Do nothing. */
1596 break;
1597
1598 case UND:
1599 /* Make a new undefined symbol. */
1600 h->type = bfd_link_hash_undefined;
1601 h->u.undef.abfd = abfd;
1602 bfd_link_add_undef (info->hash, h);
1603 break;
1604
1605 case WEAK:
1606 /* Make a new weak undefined symbol. */
1607 h->type = bfd_link_hash_undefweak;
1608 h->u.undef.abfd = abfd;
1609 h->u.undef.weak = abfd;
1610 break;
1611
1612 case CDEF:
1613 /* We have found a definition for a symbol which was
1614 previously common. */
1615 BFD_ASSERT (h->type == bfd_link_hash_common);
1616 if (! ((*info->callbacks->multiple_common)
1617 (info, h->root.string,
1618 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1619 abfd, bfd_link_hash_defined, 0)))
1620 return FALSE;
1621 /* Fall through. */
1622 case DEF:
1623 case DEFW:
1624 {
1625 enum bfd_link_hash_type oldtype;
1626
1627 /* Define a symbol. */
1628 oldtype = h->type;
1629 if (action == DEFW)
1630 h->type = bfd_link_hash_defweak;
1631 else
1632 h->type = bfd_link_hash_defined;
1633 h->u.def.section = section;
1634 h->u.def.value = value;
1635
1636 /* If we have been asked to, we act like collect2 and
1637 identify all functions that might be global
1638 constructors and destructors and pass them up in a
1639 callback. We only do this for certain object file
1640 types, since many object file types can handle this
1641 automatically. */
1642 if (collect && name[0] == '_')
1643 {
1644 const char *s;
1645
1646 /* A constructor or destructor name starts like this:
1647 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1648 the second are the same character (we accept any
1649 character there, in case a new object file format
1650 comes along with even worse naming restrictions). */
1651
1652 #define CONS_PREFIX "GLOBAL_"
1653 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1654
1655 s = name + 1;
1656 while (*s == '_')
1657 ++s;
1658 if (s[0] == 'G'
1659 && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1660 {
1661 char c;
1662
1663 c = s[CONS_PREFIX_LEN + 1];
1664 if ((c == 'I' || c == 'D')
1665 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1666 {
1667 /* If this is a definition of a symbol which
1668 was previously weakly defined, we are in
1669 trouble. We have already added a
1670 constructor entry for the weak defined
1671 symbol, and now we are trying to add one
1672 for the new symbol. Fortunately, this case
1673 should never arise in practice. */
1674 if (oldtype == bfd_link_hash_defweak)
1675 abort ();
1676
1677 if (! ((*info->callbacks->constructor)
1678 (info, c == 'I',
1679 h->root.string, abfd, section, value)))
1680 return FALSE;
1681 }
1682 }
1683 }
1684 }
1685
1686 break;
1687
1688 case COM:
1689 /* We have found a common definition for a symbol. */
1690 if (h->type == bfd_link_hash_new)
1691 bfd_link_add_undef (info->hash, h);
1692 h->type = bfd_link_hash_common;
1693 h->u.c.p =
1694 bfd_hash_allocate (&info->hash->table,
1695 sizeof (struct bfd_link_hash_common_entry));
1696 if (h->u.c.p == NULL)
1697 return FALSE;
1698
1699 h->u.c.size = value;
1700
1701 /* Select a default alignment based on the size. This may
1702 be overridden by the caller. */
1703 {
1704 unsigned int power;
1705
1706 power = bfd_log2 (value);
1707 if (power > 4)
1708 power = 4;
1709 h->u.c.p->alignment_power = power;
1710 }
1711
1712 /* The section of a common symbol is only used if the common
1713 symbol is actually allocated. It basically provides a
1714 hook for the linker script to decide which output section
1715 the common symbols should be put in. In most cases, the
1716 section of a common symbol will be bfd_com_section_ptr,
1717 the code here will choose a common symbol section named
1718 "COMMON", and the linker script will contain *(COMMON) in
1719 the appropriate place. A few targets use separate common
1720 sections for small symbols, and they require special
1721 handling. */
1722 if (section == bfd_com_section_ptr)
1723 {
1724 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1725 h->u.c.p->section->flags = SEC_ALLOC;
1726 }
1727 else if (section->owner != abfd)
1728 {
1729 h->u.c.p->section = bfd_make_section_old_way (abfd,
1730 section->name);
1731 h->u.c.p->section->flags = SEC_ALLOC;
1732 }
1733 else
1734 h->u.c.p->section = section;
1735 break;
1736
1737 case REF:
1738 /* A reference to a defined symbol. */
1739 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1740 h->u.undef.next = h;
1741 break;
1742
1743 case BIG:
1744 /* We have found a common definition for a symbol which
1745 already had a common definition. Use the maximum of the
1746 two sizes, and use the section required by the larger symbol. */
1747 BFD_ASSERT (h->type == bfd_link_hash_common);
1748 if (! ((*info->callbacks->multiple_common)
1749 (info, h->root.string,
1750 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1751 abfd, bfd_link_hash_common, value)))
1752 return FALSE;
1753 if (value > h->u.c.size)
1754 {
1755 unsigned int power;
1756
1757 h->u.c.size = value;
1758
1759 /* Select a default alignment based on the size. This may
1760 be overridden by the caller. */
1761 power = bfd_log2 (value);
1762 if (power > 4)
1763 power = 4;
1764 h->u.c.p->alignment_power = power;
1765
1766 /* Some systems have special treatment for small commons,
1767 hence we want to select the section used by the larger
1768 symbol. This makes sure the symbol does not go in a
1769 small common section if it is now too large. */
1770 if (section == bfd_com_section_ptr)
1771 {
1772 h->u.c.p->section
1773 = bfd_make_section_old_way (abfd, "COMMON");
1774 h->u.c.p->section->flags = SEC_ALLOC;
1775 }
1776 else if (section->owner != abfd)
1777 {
1778 h->u.c.p->section
1779 = bfd_make_section_old_way (abfd, section->name);
1780 h->u.c.p->section->flags = SEC_ALLOC;
1781 }
1782 else
1783 h->u.c.p->section = section;
1784 }
1785 break;
1786
1787 case CREF:
1788 {
1789 bfd *obfd;
1790
1791 /* We have found a common definition for a symbol which
1792 was already defined. FIXME: It would nice if we could
1793 report the BFD which defined an indirect symbol, but we
1794 don't have anywhere to store the information. */
1795 if (h->type == bfd_link_hash_defined
1796 || h->type == bfd_link_hash_defweak)
1797 obfd = h->u.def.section->owner;
1798 else
1799 obfd = NULL;
1800 if (! ((*info->callbacks->multiple_common)
1801 (info, h->root.string, obfd, h->type, 0,
1802 abfd, bfd_link_hash_common, value)))
1803 return FALSE;
1804 }
1805 break;
1806
1807 case MIND:
1808 /* Multiple indirect symbols. This is OK if they both point
1809 to the same symbol. */
1810 if (strcmp (h->u.i.link->root.string, string) == 0)
1811 break;
1812 /* Fall through. */
1813 case MDEF:
1814 /* Handle a multiple definition. */
1815 if (!info->allow_multiple_definition)
1816 {
1817 asection *msec = NULL;
1818 bfd_vma mval = 0;
1819
1820 switch (h->type)
1821 {
1822 case bfd_link_hash_defined:
1823 msec = h->u.def.section;
1824 mval = h->u.def.value;
1825 break;
1826 case bfd_link_hash_indirect:
1827 msec = bfd_ind_section_ptr;
1828 mval = 0;
1829 break;
1830 default:
1831 abort ();
1832 }
1833
1834 /* Ignore a redefinition of an absolute symbol to the
1835 same value; it's harmless. */
1836 if (h->type == bfd_link_hash_defined
1837 && bfd_is_abs_section (msec)
1838 && bfd_is_abs_section (section)
1839 && value == mval)
1840 break;
1841
1842 if (! ((*info->callbacks->multiple_definition)
1843 (info, h->root.string, msec->owner, msec, mval,
1844 abfd, section, value)))
1845 return FALSE;
1846 }
1847 break;
1848
1849 case CIND:
1850 /* Create an indirect symbol from an existing common symbol. */
1851 BFD_ASSERT (h->type == bfd_link_hash_common);
1852 if (! ((*info->callbacks->multiple_common)
1853 (info, h->root.string,
1854 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1855 abfd, bfd_link_hash_indirect, 0)))
1856 return FALSE;
1857 /* Fall through. */
1858 case IND:
1859 /* Create an indirect symbol. */
1860 {
1861 struct bfd_link_hash_entry *inh;
1862
1863 /* STRING is the name of the symbol we want to indirect
1864 to. */
1865 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1866 copy, FALSE);
1867 if (inh == NULL)
1868 return FALSE;
1869 if (inh->type == bfd_link_hash_indirect
1870 && inh->u.i.link == h)
1871 {
1872 (*_bfd_error_handler)
1873 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1874 abfd, name, string);
1875 bfd_set_error (bfd_error_invalid_operation);
1876 return FALSE;
1877 }
1878 if (inh->type == bfd_link_hash_new)
1879 {
1880 inh->type = bfd_link_hash_undefined;
1881 inh->u.undef.abfd = abfd;
1882 bfd_link_add_undef (info->hash, inh);
1883 }
1884
1885 /* If the indirect symbol has been referenced, we need to
1886 push the reference down to the symbol we are
1887 referencing. */
1888 if (h->type != bfd_link_hash_new)
1889 {
1890 row = UNDEF_ROW;
1891 cycle = TRUE;
1892 }
1893
1894 h->type = bfd_link_hash_indirect;
1895 h->u.i.link = inh;
1896 }
1897 break;
1898
1899 case SET:
1900 /* Add an entry to a set. */
1901 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1902 abfd, section, value))
1903 return FALSE;
1904 break;
1905
1906 case WARNC:
1907 /* Issue a warning and cycle. */
1908 if (h->u.i.warning != NULL)
1909 {
1910 if (! (*info->callbacks->warning) (info, h->u.i.warning,
1911 h->root.string, abfd,
1912 NULL, 0))
1913 return FALSE;
1914 /* Only issue a warning once. */
1915 h->u.i.warning = NULL;
1916 }
1917 /* Fall through. */
1918 case CYCLE:
1919 /* Try again with the referenced symbol. */
1920 h = h->u.i.link;
1921 cycle = TRUE;
1922 break;
1923
1924 case REFC:
1925 /* A reference to an indirect symbol. */
1926 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1927 h->u.undef.next = h;
1928 h = h->u.i.link;
1929 cycle = TRUE;
1930 break;
1931
1932 case WARN:
1933 /* Issue a warning. */
1934 if (! (*info->callbacks->warning) (info, string, h->root.string,
1935 hash_entry_bfd (h), NULL, 0))
1936 return FALSE;
1937 break;
1938
1939 case CWARN:
1940 /* Warn if this symbol has been referenced already,
1941 otherwise add a warning. A symbol has been referenced if
1942 the u.undef.next field is not NULL, or it is the tail of the
1943 undefined symbol list. The REF case above helps to
1944 ensure this. */
1945 if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1946 {
1947 if (! (*info->callbacks->warning) (info, string, h->root.string,
1948 hash_entry_bfd (h), NULL, 0))
1949 return FALSE;
1950 break;
1951 }
1952 /* Fall through. */
1953 case MWARN:
1954 /* Make a warning symbol. */
1955 {
1956 struct bfd_link_hash_entry *sub;
1957
1958 /* STRING is the warning to give. */
1959 sub = ((struct bfd_link_hash_entry *)
1960 ((*info->hash->table.newfunc)
1961 (NULL, &info->hash->table, h->root.string)));
1962 if (sub == NULL)
1963 return FALSE;
1964 *sub = *h;
1965 sub->type = bfd_link_hash_warning;
1966 sub->u.i.link = h;
1967 if (! copy)
1968 sub->u.i.warning = string;
1969 else
1970 {
1971 char *w;
1972 size_t len = strlen (string) + 1;
1973
1974 w = bfd_hash_allocate (&info->hash->table, len);
1975 if (w == NULL)
1976 return FALSE;
1977 memcpy (w, string, len);
1978 sub->u.i.warning = w;
1979 }
1980
1981 bfd_hash_replace (&info->hash->table,
1982 (struct bfd_hash_entry *) h,
1983 (struct bfd_hash_entry *) sub);
1984 if (hashp != NULL)
1985 *hashp = sub;
1986 }
1987 break;
1988 }
1989 }
1990 while (cycle);
1991
1992 return TRUE;
1993 }
1994 \f
1995 /* Generic final link routine. */
1996
1997 bfd_boolean
1998 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1999 {
2000 bfd *sub;
2001 asection *o;
2002 struct bfd_link_order *p;
2003 size_t outsymalloc;
2004 struct generic_write_global_symbol_info wginfo;
2005
2006 bfd_get_outsymbols (abfd) = NULL;
2007 bfd_get_symcount (abfd) = 0;
2008 outsymalloc = 0;
2009
2010 /* Mark all sections which will be included in the output file. */
2011 for (o = abfd->sections; o != NULL; o = o->next)
2012 for (p = o->map_head.link_order; p != NULL; p = p->next)
2013 if (p->type == bfd_indirect_link_order)
2014 p->u.indirect.section->linker_mark = TRUE;
2015
2016 /* Build the output symbol table. */
2017 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2018 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2019 return FALSE;
2020
2021 /* Accumulate the global symbols. */
2022 wginfo.info = info;
2023 wginfo.output_bfd = abfd;
2024 wginfo.psymalloc = &outsymalloc;
2025 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2026 _bfd_generic_link_write_global_symbol,
2027 &wginfo);
2028
2029 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
2030 shouldn't really need one, since we have SYMCOUNT, but some old
2031 code still expects one. */
2032 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2033 return FALSE;
2034
2035 if (info->relocatable)
2036 {
2037 /* Allocate space for the output relocs for each section. */
2038 for (o = abfd->sections; o != NULL; o = o->next)
2039 {
2040 o->reloc_count = 0;
2041 for (p = o->map_head.link_order; p != NULL; p = p->next)
2042 {
2043 if (p->type == bfd_section_reloc_link_order
2044 || p->type == bfd_symbol_reloc_link_order)
2045 ++o->reloc_count;
2046 else if (p->type == bfd_indirect_link_order)
2047 {
2048 asection *input_section;
2049 bfd *input_bfd;
2050 long relsize;
2051 arelent **relocs;
2052 asymbol **symbols;
2053 long reloc_count;
2054
2055 input_section = p->u.indirect.section;
2056 input_bfd = input_section->owner;
2057 relsize = bfd_get_reloc_upper_bound (input_bfd,
2058 input_section);
2059 if (relsize < 0)
2060 return FALSE;
2061 relocs = bfd_malloc (relsize);
2062 if (!relocs && relsize != 0)
2063 return FALSE;
2064 symbols = _bfd_generic_link_get_symbols (input_bfd);
2065 reloc_count = bfd_canonicalize_reloc (input_bfd,
2066 input_section,
2067 relocs,
2068 symbols);
2069 free (relocs);
2070 if (reloc_count < 0)
2071 return FALSE;
2072 BFD_ASSERT ((unsigned long) reloc_count
2073 == input_section->reloc_count);
2074 o->reloc_count += reloc_count;
2075 }
2076 }
2077 if (o->reloc_count > 0)
2078 {
2079 bfd_size_type amt;
2080
2081 amt = o->reloc_count;
2082 amt *= sizeof (arelent *);
2083 o->orelocation = bfd_alloc (abfd, amt);
2084 if (!o->orelocation)
2085 return FALSE;
2086 o->flags |= SEC_RELOC;
2087 /* Reset the count so that it can be used as an index
2088 when putting in the output relocs. */
2089 o->reloc_count = 0;
2090 }
2091 }
2092 }
2093
2094 /* Handle all the link order information for the sections. */
2095 for (o = abfd->sections; o != NULL; o = o->next)
2096 {
2097 for (p = o->map_head.link_order; p != NULL; p = p->next)
2098 {
2099 switch (p->type)
2100 {
2101 case bfd_section_reloc_link_order:
2102 case bfd_symbol_reloc_link_order:
2103 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2104 return FALSE;
2105 break;
2106 case bfd_indirect_link_order:
2107 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2108 return FALSE;
2109 break;
2110 default:
2111 if (! _bfd_default_link_order (abfd, info, o, p))
2112 return FALSE;
2113 break;
2114 }
2115 }
2116 }
2117
2118 return TRUE;
2119 }
2120
2121 /* Add an output symbol to the output BFD. */
2122
2123 static bfd_boolean
2124 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2125 {
2126 if (bfd_get_symcount (output_bfd) >= *psymalloc)
2127 {
2128 asymbol **newsyms;
2129 bfd_size_type amt;
2130
2131 if (*psymalloc == 0)
2132 *psymalloc = 124;
2133 else
2134 *psymalloc *= 2;
2135 amt = *psymalloc;
2136 amt *= sizeof (asymbol *);
2137 newsyms = bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2138 if (newsyms == NULL)
2139 return FALSE;
2140 bfd_get_outsymbols (output_bfd) = newsyms;
2141 }
2142
2143 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2144 if (sym != NULL)
2145 ++ bfd_get_symcount (output_bfd);
2146
2147 return TRUE;
2148 }
2149
2150 /* Handle the symbols for an input BFD. */
2151
2152 bfd_boolean
2153 _bfd_generic_link_output_symbols (bfd *output_bfd,
2154 bfd *input_bfd,
2155 struct bfd_link_info *info,
2156 size_t *psymalloc)
2157 {
2158 asymbol **sym_ptr;
2159 asymbol **sym_end;
2160
2161 if (! generic_link_read_symbols (input_bfd))
2162 return FALSE;
2163
2164 /* Create a filename symbol if we are supposed to. */
2165 if (info->create_object_symbols_section != NULL)
2166 {
2167 asection *sec;
2168
2169 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2170 {
2171 if (sec->output_section == info->create_object_symbols_section)
2172 {
2173 asymbol *newsym;
2174
2175 newsym = bfd_make_empty_symbol (input_bfd);
2176 if (!newsym)
2177 return FALSE;
2178 newsym->name = input_bfd->filename;
2179 newsym->value = 0;
2180 newsym->flags = BSF_LOCAL | BSF_FILE;
2181 newsym->section = sec;
2182
2183 if (! generic_add_output_symbol (output_bfd, psymalloc,
2184 newsym))
2185 return FALSE;
2186
2187 break;
2188 }
2189 }
2190 }
2191
2192 /* Adjust the values of the globally visible symbols, and write out
2193 local symbols. */
2194 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2195 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2196 for (; sym_ptr < sym_end; sym_ptr++)
2197 {
2198 asymbol *sym;
2199 struct generic_link_hash_entry *h;
2200 bfd_boolean output;
2201
2202 h = NULL;
2203 sym = *sym_ptr;
2204 if ((sym->flags & (BSF_INDIRECT
2205 | BSF_WARNING
2206 | BSF_GLOBAL
2207 | BSF_CONSTRUCTOR
2208 | BSF_WEAK)) != 0
2209 || bfd_is_und_section (bfd_get_section (sym))
2210 || bfd_is_com_section (bfd_get_section (sym))
2211 || bfd_is_ind_section (bfd_get_section (sym)))
2212 {
2213 if (sym->udata.p != NULL)
2214 h = sym->udata.p;
2215 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2216 {
2217 /* This case normally means that the main linker code
2218 deliberately ignored this constructor symbol. We
2219 should just pass it through. This will screw up if
2220 the constructor symbol is from a different,
2221 non-generic, object file format, but the case will
2222 only arise when linking with -r, which will probably
2223 fail anyhow, since there will be no way to represent
2224 the relocs in the output format being used. */
2225 h = NULL;
2226 }
2227 else if (bfd_is_und_section (bfd_get_section (sym)))
2228 h = ((struct generic_link_hash_entry *)
2229 bfd_wrapped_link_hash_lookup (output_bfd, info,
2230 bfd_asymbol_name (sym),
2231 FALSE, FALSE, TRUE));
2232 else
2233 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2234 bfd_asymbol_name (sym),
2235 FALSE, FALSE, TRUE);
2236
2237 if (h != NULL)
2238 {
2239 /* Force all references to this symbol to point to
2240 the same area in memory. It is possible that
2241 this routine will be called with a hash table
2242 other than a generic hash table, so we double
2243 check that. */
2244 if (info->hash->creator == input_bfd->xvec)
2245 {
2246 if (h->sym != NULL)
2247 *sym_ptr = sym = h->sym;
2248 }
2249
2250 switch (h->root.type)
2251 {
2252 default:
2253 case bfd_link_hash_new:
2254 abort ();
2255 case bfd_link_hash_undefined:
2256 break;
2257 case bfd_link_hash_undefweak:
2258 sym->flags |= BSF_WEAK;
2259 break;
2260 case bfd_link_hash_indirect:
2261 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2262 /* fall through */
2263 case bfd_link_hash_defined:
2264 sym->flags |= BSF_GLOBAL;
2265 sym->flags &=~ BSF_CONSTRUCTOR;
2266 sym->value = h->root.u.def.value;
2267 sym->section = h->root.u.def.section;
2268 break;
2269 case bfd_link_hash_defweak:
2270 sym->flags |= BSF_WEAK;
2271 sym->flags &=~ BSF_CONSTRUCTOR;
2272 sym->value = h->root.u.def.value;
2273 sym->section = h->root.u.def.section;
2274 break;
2275 case bfd_link_hash_common:
2276 sym->value = h->root.u.c.size;
2277 sym->flags |= BSF_GLOBAL;
2278 if (! bfd_is_com_section (sym->section))
2279 {
2280 BFD_ASSERT (bfd_is_und_section (sym->section));
2281 sym->section = bfd_com_section_ptr;
2282 }
2283 /* We do not set the section of the symbol to
2284 h->root.u.c.p->section. That value was saved so
2285 that we would know where to allocate the symbol
2286 if it was defined. In this case the type is
2287 still bfd_link_hash_common, so we did not define
2288 it, so we do not want to use that section. */
2289 break;
2290 }
2291 }
2292 }
2293
2294 /* This switch is straight from the old code in
2295 write_file_locals in ldsym.c. */
2296 if (info->strip == strip_all
2297 || (info->strip == strip_some
2298 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2299 FALSE, FALSE) == NULL))
2300 output = FALSE;
2301 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2302 {
2303 /* If this symbol is marked as occurring now, rather
2304 than at the end, output it now. This is used for
2305 COFF C_EXT FCN symbols. FIXME: There must be a
2306 better way. */
2307 if (bfd_asymbol_bfd (sym) == input_bfd
2308 && (sym->flags & BSF_NOT_AT_END) != 0)
2309 output = TRUE;
2310 else
2311 output = FALSE;
2312 }
2313 else if (bfd_is_ind_section (sym->section))
2314 output = FALSE;
2315 else if ((sym->flags & BSF_DEBUGGING) != 0)
2316 {
2317 if (info->strip == strip_none)
2318 output = TRUE;
2319 else
2320 output = FALSE;
2321 }
2322 else if (bfd_is_und_section (sym->section)
2323 || bfd_is_com_section (sym->section))
2324 output = FALSE;
2325 else if ((sym->flags & BSF_LOCAL) != 0)
2326 {
2327 if ((sym->flags & BSF_WARNING) != 0)
2328 output = FALSE;
2329 else
2330 {
2331 switch (info->discard)
2332 {
2333 default:
2334 case discard_all:
2335 output = FALSE;
2336 break;
2337 case discard_sec_merge:
2338 output = TRUE;
2339 if (info->relocatable
2340 || ! (sym->section->flags & SEC_MERGE))
2341 break;
2342 /* FALLTHROUGH */
2343 case discard_l:
2344 if (bfd_is_local_label (input_bfd, sym))
2345 output = FALSE;
2346 else
2347 output = TRUE;
2348 break;
2349 case discard_none:
2350 output = TRUE;
2351 break;
2352 }
2353 }
2354 }
2355 else if ((sym->flags & BSF_CONSTRUCTOR))
2356 {
2357 if (info->strip != strip_all)
2358 output = TRUE;
2359 else
2360 output = FALSE;
2361 }
2362 else
2363 abort ();
2364
2365 /* If this symbol is in a section which is not being included
2366 in the output file, then we don't want to output the
2367 symbol. */
2368 if (!bfd_is_abs_section (sym->section)
2369 && bfd_section_removed_from_list (output_bfd,
2370 sym->section->output_section))
2371 output = FALSE;
2372
2373 if (output)
2374 {
2375 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2376 return FALSE;
2377 if (h != NULL)
2378 h->written = TRUE;
2379 }
2380 }
2381
2382 return TRUE;
2383 }
2384
2385 /* Set the section and value of a generic BFD symbol based on a linker
2386 hash table entry. */
2387
2388 static void
2389 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2390 {
2391 switch (h->type)
2392 {
2393 default:
2394 abort ();
2395 break;
2396 case bfd_link_hash_new:
2397 /* This can happen when a constructor symbol is seen but we are
2398 not building constructors. */
2399 if (sym->section != NULL)
2400 {
2401 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2402 }
2403 else
2404 {
2405 sym->flags |= BSF_CONSTRUCTOR;
2406 sym->section = bfd_abs_section_ptr;
2407 sym->value = 0;
2408 }
2409 break;
2410 case bfd_link_hash_undefined:
2411 sym->section = bfd_und_section_ptr;
2412 sym->value = 0;
2413 break;
2414 case bfd_link_hash_undefweak:
2415 sym->section = bfd_und_section_ptr;
2416 sym->value = 0;
2417 sym->flags |= BSF_WEAK;
2418 break;
2419 case bfd_link_hash_defined:
2420 sym->section = h->u.def.section;
2421 sym->value = h->u.def.value;
2422 break;
2423 case bfd_link_hash_defweak:
2424 sym->flags |= BSF_WEAK;
2425 sym->section = h->u.def.section;
2426 sym->value = h->u.def.value;
2427 break;
2428 case bfd_link_hash_common:
2429 sym->value = h->u.c.size;
2430 if (sym->section == NULL)
2431 sym->section = bfd_com_section_ptr;
2432 else if (! bfd_is_com_section (sym->section))
2433 {
2434 BFD_ASSERT (bfd_is_und_section (sym->section));
2435 sym->section = bfd_com_section_ptr;
2436 }
2437 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2438 break;
2439 case bfd_link_hash_indirect:
2440 case bfd_link_hash_warning:
2441 /* FIXME: What should we do here? */
2442 break;
2443 }
2444 }
2445
2446 /* Write out a global symbol, if it hasn't already been written out.
2447 This is called for each symbol in the hash table. */
2448
2449 bfd_boolean
2450 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2451 void *data)
2452 {
2453 struct generic_write_global_symbol_info *wginfo = data;
2454 asymbol *sym;
2455
2456 if (h->root.type == bfd_link_hash_warning)
2457 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2458
2459 if (h->written)
2460 return TRUE;
2461
2462 h->written = TRUE;
2463
2464 if (wginfo->info->strip == strip_all
2465 || (wginfo->info->strip == strip_some
2466 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2467 FALSE, FALSE) == NULL))
2468 return TRUE;
2469
2470 if (h->sym != NULL)
2471 sym = h->sym;
2472 else
2473 {
2474 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2475 if (!sym)
2476 return FALSE;
2477 sym->name = h->root.root.string;
2478 sym->flags = 0;
2479 }
2480
2481 set_symbol_from_hash (sym, &h->root);
2482
2483 sym->flags |= BSF_GLOBAL;
2484
2485 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2486 sym))
2487 {
2488 /* FIXME: No way to return failure. */
2489 abort ();
2490 }
2491
2492 return TRUE;
2493 }
2494
2495 /* Create a relocation. */
2496
2497 bfd_boolean
2498 _bfd_generic_reloc_link_order (bfd *abfd,
2499 struct bfd_link_info *info,
2500 asection *sec,
2501 struct bfd_link_order *link_order)
2502 {
2503 arelent *r;
2504
2505 if (! info->relocatable)
2506 abort ();
2507 if (sec->orelocation == NULL)
2508 abort ();
2509
2510 r = bfd_alloc (abfd, sizeof (arelent));
2511 if (r == NULL)
2512 return FALSE;
2513
2514 r->address = link_order->offset;
2515 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2516 if (r->howto == 0)
2517 {
2518 bfd_set_error (bfd_error_bad_value);
2519 return FALSE;
2520 }
2521
2522 /* Get the symbol to use for the relocation. */
2523 if (link_order->type == bfd_section_reloc_link_order)
2524 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2525 else
2526 {
2527 struct generic_link_hash_entry *h;
2528
2529 h = ((struct generic_link_hash_entry *)
2530 bfd_wrapped_link_hash_lookup (abfd, info,
2531 link_order->u.reloc.p->u.name,
2532 FALSE, FALSE, TRUE));
2533 if (h == NULL
2534 || ! h->written)
2535 {
2536 if (! ((*info->callbacks->unattached_reloc)
2537 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2538 return FALSE;
2539 bfd_set_error (bfd_error_bad_value);
2540 return FALSE;
2541 }
2542 r->sym_ptr_ptr = &h->sym;
2543 }
2544
2545 /* If this is an inplace reloc, write the addend to the object file.
2546 Otherwise, store it in the reloc addend. */
2547 if (! r->howto->partial_inplace)
2548 r->addend = link_order->u.reloc.p->addend;
2549 else
2550 {
2551 bfd_size_type size;
2552 bfd_reloc_status_type rstat;
2553 bfd_byte *buf;
2554 bfd_boolean ok;
2555 file_ptr loc;
2556
2557 size = bfd_get_reloc_size (r->howto);
2558 buf = bfd_zmalloc (size);
2559 if (buf == NULL)
2560 return FALSE;
2561 rstat = _bfd_relocate_contents (r->howto, abfd,
2562 (bfd_vma) link_order->u.reloc.p->addend,
2563 buf);
2564 switch (rstat)
2565 {
2566 case bfd_reloc_ok:
2567 break;
2568 default:
2569 case bfd_reloc_outofrange:
2570 abort ();
2571 case bfd_reloc_overflow:
2572 if (! ((*info->callbacks->reloc_overflow)
2573 (info, NULL,
2574 (link_order->type == bfd_section_reloc_link_order
2575 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2576 : link_order->u.reloc.p->u.name),
2577 r->howto->name, link_order->u.reloc.p->addend,
2578 NULL, NULL, 0)))
2579 {
2580 free (buf);
2581 return FALSE;
2582 }
2583 break;
2584 }
2585 loc = link_order->offset * bfd_octets_per_byte (abfd);
2586 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2587 free (buf);
2588 if (! ok)
2589 return FALSE;
2590
2591 r->addend = 0;
2592 }
2593
2594 sec->orelocation[sec->reloc_count] = r;
2595 ++sec->reloc_count;
2596
2597 return TRUE;
2598 }
2599 \f
2600 /* Allocate a new link_order for a section. */
2601
2602 struct bfd_link_order *
2603 bfd_new_link_order (bfd *abfd, asection *section)
2604 {
2605 bfd_size_type amt = sizeof (struct bfd_link_order);
2606 struct bfd_link_order *new;
2607
2608 new = bfd_zalloc (abfd, amt);
2609 if (!new)
2610 return NULL;
2611
2612 new->type = bfd_undefined_link_order;
2613
2614 if (section->map_tail.link_order != NULL)
2615 section->map_tail.link_order->next = new;
2616 else
2617 section->map_head.link_order = new;
2618 section->map_tail.link_order = new;
2619
2620 return new;
2621 }
2622
2623 /* Default link order processing routine. Note that we can not handle
2624 the reloc_link_order types here, since they depend upon the details
2625 of how the particular backends generates relocs. */
2626
2627 bfd_boolean
2628 _bfd_default_link_order (bfd *abfd,
2629 struct bfd_link_info *info,
2630 asection *sec,
2631 struct bfd_link_order *link_order)
2632 {
2633 switch (link_order->type)
2634 {
2635 case bfd_undefined_link_order:
2636 case bfd_section_reloc_link_order:
2637 case bfd_symbol_reloc_link_order:
2638 default:
2639 abort ();
2640 case bfd_indirect_link_order:
2641 return default_indirect_link_order (abfd, info, sec, link_order,
2642 FALSE);
2643 case bfd_data_link_order:
2644 return default_data_link_order (abfd, info, sec, link_order);
2645 }
2646 }
2647
2648 /* Default routine to handle a bfd_data_link_order. */
2649
2650 static bfd_boolean
2651 default_data_link_order (bfd *abfd,
2652 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2653 asection *sec,
2654 struct bfd_link_order *link_order)
2655 {
2656 bfd_size_type size;
2657 size_t fill_size;
2658 bfd_byte *fill;
2659 file_ptr loc;
2660 bfd_boolean result;
2661
2662 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2663
2664 size = link_order->size;
2665 if (size == 0)
2666 return TRUE;
2667
2668 fill = link_order->u.data.contents;
2669 fill_size = link_order->u.data.size;
2670 if (fill_size != 0 && fill_size < size)
2671 {
2672 bfd_byte *p;
2673 fill = bfd_malloc (size);
2674 if (fill == NULL)
2675 return FALSE;
2676 p = fill;
2677 if (fill_size == 1)
2678 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2679 else
2680 {
2681 do
2682 {
2683 memcpy (p, link_order->u.data.contents, fill_size);
2684 p += fill_size;
2685 size -= fill_size;
2686 }
2687 while (size >= fill_size);
2688 if (size != 0)
2689 memcpy (p, link_order->u.data.contents, (size_t) size);
2690 size = link_order->size;
2691 }
2692 }
2693
2694 loc = link_order->offset * bfd_octets_per_byte (abfd);
2695 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2696
2697 if (fill != link_order->u.data.contents)
2698 free (fill);
2699 return result;
2700 }
2701
2702 /* Default routine to handle a bfd_indirect_link_order. */
2703
2704 static bfd_boolean
2705 default_indirect_link_order (bfd *output_bfd,
2706 struct bfd_link_info *info,
2707 asection *output_section,
2708 struct bfd_link_order *link_order,
2709 bfd_boolean generic_linker)
2710 {
2711 asection *input_section;
2712 bfd *input_bfd;
2713 bfd_byte *contents = NULL;
2714 bfd_byte *new_contents;
2715 bfd_size_type sec_size;
2716 file_ptr loc;
2717
2718 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2719
2720 input_section = link_order->u.indirect.section;
2721 input_bfd = input_section->owner;
2722 if (input_section->size == 0)
2723 return TRUE;
2724
2725 BFD_ASSERT (input_section->output_section == output_section);
2726 BFD_ASSERT (input_section->output_offset == link_order->offset);
2727 BFD_ASSERT (input_section->size == link_order->size);
2728
2729 if (info->relocatable
2730 && input_section->reloc_count > 0
2731 && output_section->orelocation == NULL)
2732 {
2733 /* Space has not been allocated for the output relocations.
2734 This can happen when we are called by a specific backend
2735 because somebody is attempting to link together different
2736 types of object files. Handling this case correctly is
2737 difficult, and sometimes impossible. */
2738 (*_bfd_error_handler)
2739 (_("Attempt to do relocatable link with %s input and %s output"),
2740 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2741 bfd_set_error (bfd_error_wrong_format);
2742 return FALSE;
2743 }
2744
2745 if (! generic_linker)
2746 {
2747 asymbol **sympp;
2748 asymbol **symppend;
2749
2750 /* Get the canonical symbols. The generic linker will always
2751 have retrieved them by this point, but we are being called by
2752 a specific linker, presumably because we are linking
2753 different types of object files together. */
2754 if (! generic_link_read_symbols (input_bfd))
2755 return FALSE;
2756
2757 /* Since we have been called by a specific linker, rather than
2758 the generic linker, the values of the symbols will not be
2759 right. They will be the values as seen in the input file,
2760 not the values of the final link. We need to fix them up
2761 before we can relocate the section. */
2762 sympp = _bfd_generic_link_get_symbols (input_bfd);
2763 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2764 for (; sympp < symppend; sympp++)
2765 {
2766 asymbol *sym;
2767 struct bfd_link_hash_entry *h;
2768
2769 sym = *sympp;
2770
2771 if ((sym->flags & (BSF_INDIRECT
2772 | BSF_WARNING
2773 | BSF_GLOBAL
2774 | BSF_CONSTRUCTOR
2775 | BSF_WEAK)) != 0
2776 || bfd_is_und_section (bfd_get_section (sym))
2777 || bfd_is_com_section (bfd_get_section (sym))
2778 || bfd_is_ind_section (bfd_get_section (sym)))
2779 {
2780 /* sym->udata may have been set by
2781 generic_link_add_symbol_list. */
2782 if (sym->udata.p != NULL)
2783 h = sym->udata.p;
2784 else if (bfd_is_und_section (bfd_get_section (sym)))
2785 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2786 bfd_asymbol_name (sym),
2787 FALSE, FALSE, TRUE);
2788 else
2789 h = bfd_link_hash_lookup (info->hash,
2790 bfd_asymbol_name (sym),
2791 FALSE, FALSE, TRUE);
2792 if (h != NULL)
2793 set_symbol_from_hash (sym, h);
2794 }
2795 }
2796 }
2797
2798 /* Get and relocate the section contents. */
2799 sec_size = (input_section->rawsize > input_section->size
2800 ? input_section->rawsize
2801 : input_section->size);
2802 contents = bfd_malloc (sec_size);
2803 if (contents == NULL && sec_size != 0)
2804 goto error_return;
2805 new_contents = (bfd_get_relocated_section_contents
2806 (output_bfd, info, link_order, contents, info->relocatable,
2807 _bfd_generic_link_get_symbols (input_bfd)));
2808 if (!new_contents)
2809 goto error_return;
2810
2811 /* Output the section contents. */
2812 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2813 if (! bfd_set_section_contents (output_bfd, output_section,
2814 new_contents, loc, input_section->size))
2815 goto error_return;
2816
2817 if (contents != NULL)
2818 free (contents);
2819 return TRUE;
2820
2821 error_return:
2822 if (contents != NULL)
2823 free (contents);
2824 return FALSE;
2825 }
2826
2827 /* A little routine to count the number of relocs in a link_order
2828 list. */
2829
2830 unsigned int
2831 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2832 {
2833 register unsigned int c;
2834 register struct bfd_link_order *l;
2835
2836 c = 0;
2837 for (l = link_order; l != NULL; l = l->next)
2838 {
2839 if (l->type == bfd_section_reloc_link_order
2840 || l->type == bfd_symbol_reloc_link_order)
2841 ++c;
2842 }
2843
2844 return c;
2845 }
2846
2847 /*
2848 FUNCTION
2849 bfd_link_split_section
2850
2851 SYNOPSIS
2852 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2853
2854 DESCRIPTION
2855 Return nonzero if @var{sec} should be split during a
2856 reloceatable or final link.
2857
2858 .#define bfd_link_split_section(abfd, sec) \
2859 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2860 .
2861
2862 */
2863
2864 bfd_boolean
2865 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2866 asection *sec ATTRIBUTE_UNUSED)
2867 {
2868 return FALSE;
2869 }
2870
2871 /*
2872 FUNCTION
2873 bfd_section_already_linked
2874
2875 SYNOPSIS
2876 void bfd_section_already_linked (bfd *abfd, asection *sec);
2877
2878 DESCRIPTION
2879 Check if @var{sec} has been already linked during a reloceatable
2880 or final link.
2881
2882 .#define bfd_section_already_linked(abfd, sec) \
2883 . BFD_SEND (abfd, _section_already_linked, (abfd, sec))
2884 .
2885
2886 */
2887
2888 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2889 once into the output. This routine checks each section, and
2890 arrange to discard it if a section of the same name has already
2891 been linked. This code assumes that all relevant sections have the
2892 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2893 section name. bfd_section_already_linked is called via
2894 bfd_map_over_sections. */
2895
2896 /* The hash table. */
2897
2898 static struct bfd_hash_table _bfd_section_already_linked_table;
2899
2900 /* Support routines for the hash table used by section_already_linked,
2901 initialize the table, traverse, lookup, fill in an entry and remove
2902 the table. */
2903
2904 void
2905 bfd_section_already_linked_table_traverse
2906 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2907 void *), void *info)
2908 {
2909 bfd_hash_traverse (&_bfd_section_already_linked_table,
2910 (bfd_boolean (*) (struct bfd_hash_entry *,
2911 void *)) func,
2912 info);
2913 }
2914
2915 struct bfd_section_already_linked_hash_entry *
2916 bfd_section_already_linked_table_lookup (const char *name)
2917 {
2918 return ((struct bfd_section_already_linked_hash_entry *)
2919 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2920 TRUE, FALSE));
2921 }
2922
2923 void
2924 bfd_section_already_linked_table_insert
2925 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2926 asection *sec)
2927 {
2928 struct bfd_section_already_linked *l;
2929
2930 /* Allocate the memory from the same obstack as the hash table is
2931 kept in. */
2932 l = bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2933 l->sec = sec;
2934 l->next = already_linked_list->entry;
2935 already_linked_list->entry = l;
2936 }
2937
2938 static struct bfd_hash_entry *
2939 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2940 struct bfd_hash_table *table,
2941 const char *string ATTRIBUTE_UNUSED)
2942 {
2943 struct bfd_section_already_linked_hash_entry *ret =
2944 bfd_hash_allocate (table, sizeof *ret);
2945
2946 ret->entry = NULL;
2947
2948 return &ret->root;
2949 }
2950
2951 bfd_boolean
2952 bfd_section_already_linked_table_init (void)
2953 {
2954 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2955 already_linked_newfunc, 42);
2956 }
2957
2958 void
2959 bfd_section_already_linked_table_free (void)
2960 {
2961 bfd_hash_table_free (&_bfd_section_already_linked_table);
2962 }
2963
2964 /* This is used on non-ELF inputs. */
2965
2966 void
2967 _bfd_generic_section_already_linked (bfd *abfd, asection *sec)
2968 {
2969 flagword flags;
2970 const char *name;
2971 struct bfd_section_already_linked *l;
2972 struct bfd_section_already_linked_hash_entry *already_linked_list;
2973
2974 flags = sec->flags;
2975 if ((flags & SEC_LINK_ONCE) == 0)
2976 return;
2977
2978 /* FIXME: When doing a relocatable link, we may have trouble
2979 copying relocations in other sections that refer to local symbols
2980 in the section being discarded. Those relocations will have to
2981 be converted somehow; as of this writing I'm not sure that any of
2982 the backends handle that correctly.
2983
2984 It is tempting to instead not discard link once sections when
2985 doing a relocatable link (technically, they should be discarded
2986 whenever we are building constructors). However, that fails,
2987 because the linker winds up combining all the link once sections
2988 into a single large link once section, which defeats the purpose
2989 of having link once sections in the first place. */
2990
2991 name = bfd_get_section_name (abfd, sec);
2992
2993 already_linked_list = bfd_section_already_linked_table_lookup (name);
2994
2995 for (l = already_linked_list->entry; l != NULL; l = l->next)
2996 {
2997 bfd_boolean skip = FALSE;
2998 struct coff_comdat_info *s_comdat
2999 = bfd_coff_get_comdat_section (abfd, sec);
3000 struct coff_comdat_info *l_comdat
3001 = bfd_coff_get_comdat_section (l->sec->owner, l->sec);
3002
3003 /* We may have 3 different sections on the list: group section,
3004 comdat section and linkonce section. SEC may be a linkonce or
3005 comdat section. We always ignore group section. For non-COFF
3006 inputs, we also ignore comdat section.
3007
3008 FIXME: Is that safe to match a linkonce section with a comdat
3009 section for COFF inputs? */
3010 if ((l->sec->flags & SEC_GROUP) != 0)
3011 skip = TRUE;
3012 else if (bfd_get_flavour (abfd) == bfd_target_coff_flavour)
3013 {
3014 if (s_comdat != NULL
3015 && l_comdat != NULL
3016 && strcmp (s_comdat->name, l_comdat->name) != 0)
3017 skip = TRUE;
3018 }
3019 else if (l_comdat != NULL)
3020 skip = TRUE;
3021
3022 if (!skip)
3023 {
3024 /* The section has already been linked. See if we should
3025 issue a warning. */
3026 switch (flags & SEC_LINK_DUPLICATES)
3027 {
3028 default:
3029 abort ();
3030
3031 case SEC_LINK_DUPLICATES_DISCARD:
3032 break;
3033
3034 case SEC_LINK_DUPLICATES_ONE_ONLY:
3035 (*_bfd_error_handler)
3036 (_("%B: warning: ignoring duplicate section `%A'\n"),
3037 abfd, sec);
3038 break;
3039
3040 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3041 /* FIXME: We should really dig out the contents of both
3042 sections and memcmp them. The COFF/PE spec says that
3043 the Microsoft linker does not implement this
3044 correctly, so I'm not going to bother doing it
3045 either. */
3046 /* Fall through. */
3047 case SEC_LINK_DUPLICATES_SAME_SIZE:
3048 if (sec->size != l->sec->size)
3049 (*_bfd_error_handler)
3050 (_("%B: warning: duplicate section `%A' has different size\n"),
3051 abfd, sec);
3052 break;
3053 }
3054
3055 /* Set the output_section field so that lang_add_section
3056 does not create a lang_input_section structure for this
3057 section. Since there might be a symbol in the section
3058 being discarded, we must retain a pointer to the section
3059 which we are really going to use. */
3060 sec->output_section = bfd_abs_section_ptr;
3061 sec->kept_section = l->sec;
3062
3063 return;
3064 }
3065 }
3066
3067 /* This is the first section with this name. Record it. */
3068 bfd_section_already_linked_table_insert (already_linked_list, sec);
3069 }
3070
3071 /* Convert symbols in excluded output sections to absolute. */
3072
3073 static bfd_boolean
3074 fix_syms (struct bfd_link_hash_entry *h, void *data)
3075 {
3076 bfd *obfd = (bfd *) data;
3077
3078 if (h->type == bfd_link_hash_warning)
3079 h = h->u.i.link;
3080
3081 if (h->type == bfd_link_hash_defined
3082 || h->type == bfd_link_hash_defweak)
3083 {
3084 asection *s = h->u.def.section;
3085 if (s != NULL
3086 && s->output_section != NULL
3087 && (s->output_section->flags & SEC_EXCLUDE) != 0
3088 && bfd_section_removed_from_list (obfd, s->output_section))
3089 {
3090 h->u.def.value += s->output_offset + s->output_section->vma;
3091 h->u.def.section = bfd_abs_section_ptr;
3092 }
3093 }
3094
3095 return TRUE;
3096 }
3097
3098 void
3099 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3100 {
3101 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3102 }
This page took 0.098325 seconds and 4 git commands to generate.