Change ld "notice" interface for better handling of indirect symbols
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
228
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table. If the element is to
237 be included, the <<add_archive_element>> linker callback
238 routine must be called with the element as an argument, and
239 the element's symbols must be added to the linker hash table
240 just as though the element had itself been passed to the
241 <<_bfd_link_add_symbols>> function.
242
243 When the a.out <<_bfd_link_add_symbols>> function receives an
244 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 passing <<aout_link_check_archive_element>> as the function
246 argument. <<aout_link_check_archive_element>> calls
247 <<aout_link_check_ar_symbols>>. If the latter decides to add
248 the element (an element is only added if it provides a real,
249 non-common, definition for a previously undefined or common
250 symbol) it calls the <<add_archive_element>> callback and then
251 <<aout_link_check_archive_element>> calls
252 <<aout_link_add_symbols>> to actually add the symbols to the
253 linker hash table - possibly those of a substitute BFD, if the
254 <<add_archive_element>> callback avails itself of that option.
255
256 The ECOFF back end is unusual in that it does not normally
257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 archives already contain a hash table of symbols. The ECOFF
259 back end searches the archive itself to avoid the overhead of
260 creating a new hash table.
261
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 Performing the final link
266
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 When all the input files have been processed, the linker calls
270 the <<_bfd_final_link>> entry point of the output BFD. This
271 routine is responsible for producing the final output file,
272 which has several aspects. It must relocate the contents of
273 the input sections and copy the data into the output sections.
274 It must build an output symbol table including any local
275 symbols from the input files and the global symbols from the
276 hash table. When producing relocatable output, it must
277 modify the input relocs and write them into the output file.
278 There may also be object format dependent work to be done.
279
280 The linker will also call the <<write_object_contents>> entry
281 point when the BFD is closed. The two entry points must work
282 together in order to produce the correct output file.
283
284 The details of how this works are inevitably dependent upon
285 the specific object file format. The a.out
286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 Information provided by the linker
298
299 Before the linker calls the <<_bfd_final_link>> entry point,
300 it sets up some data structures for the function to use.
301
302 The <<input_bfds>> field of the <<bfd_link_info>> structure
303 will point to a list of all the input files included in the
304 link. These files are linked through the <<link.next>> field
305 of the <<bfd>> structure.
306
307 Each section in the output file will have a list of
308 <<link_order>> structures attached to the <<map_head.link_order>>
309 field (the <<link_order>> structure is defined in
310 <<bfdlink.h>>). These structures describe how to create the
311 contents of the output section in terms of the contents of
312 various input sections, fill constants, and, eventually, other
313 types of information. They also describe relocs that must be
314 created by the BFD backend, but do not correspond to any input
315 file; this is used to support -Ur, which builds constructors
316 while generating a relocatable object file.
317
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 Relocating the section contents
322
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
329
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocatable link, the
339 relocs themselves must also be modified and written out.
340
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
350
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
355
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 Writing the symbol table
360
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
366
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
373
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files.
381
382 The <<strip>> field of the <<bfd_link_info>> structure
383 controls which symbols are written out. The possible values
384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
385 then the <<keep_hash>> field of the <<bfd_link_info>>
386 structure is a hash table of symbols to keep; each symbol
387 should be looked up in this hash table, and only symbols which
388 are present should be included in the output file.
389
390 If the <<strip>> field of the <<bfd_link_info>> structure
391 permits local symbols to be written out, the <<discard>> field
392 is used to further controls which local symbols are included
393 in the output file. If the value is <<discard_l>>, then all
394 local symbols which begin with a certain prefix are discarded;
395 this is controlled by the <<bfd_is_local_label_name>> entry point.
396
397 The a.out backend handles symbols by calling
398 <<aout_link_write_symbols>> on each input BFD and then
399 traversing the global hash table with the function
400 <<aout_link_write_other_symbol>>. It builds a string table
401 while writing out the symbols, which is written to the output
402 file at the end of <<NAME(aout,final_link)>>.
403 */
404
405 static bfd_boolean generic_link_add_object_symbols
406 (bfd *, struct bfd_link_info *, bfd_boolean collect);
407 static bfd_boolean generic_link_add_symbols
408 (bfd *, struct bfd_link_info *, bfd_boolean);
409 static bfd_boolean generic_link_check_archive_element_no_collect
410 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
411 bfd_boolean *);
412 static bfd_boolean generic_link_check_archive_element_collect
413 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
414 bfd_boolean *);
415 static bfd_boolean generic_link_check_archive_element
416 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
417 bfd_boolean *, bfd_boolean);
418 static bfd_boolean generic_link_add_symbol_list
419 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
420 bfd_boolean);
421 static bfd_boolean generic_add_output_symbol
422 (bfd *, size_t *psymalloc, asymbol *);
423 static bfd_boolean default_data_link_order
424 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
425 static bfd_boolean default_indirect_link_order
426 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
427 bfd_boolean);
428
429 /* The link hash table structure is defined in bfdlink.h. It provides
430 a base hash table which the backend specific hash tables are built
431 upon. */
432
433 /* Routine to create an entry in the link hash table. */
434
435 struct bfd_hash_entry *
436 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
437 struct bfd_hash_table *table,
438 const char *string)
439 {
440 /* Allocate the structure if it has not already been allocated by a
441 subclass. */
442 if (entry == NULL)
443 {
444 entry = (struct bfd_hash_entry *)
445 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
446 if (entry == NULL)
447 return entry;
448 }
449
450 /* Call the allocation method of the superclass. */
451 entry = bfd_hash_newfunc (entry, table, string);
452 if (entry)
453 {
454 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
455
456 /* Initialize the local fields. */
457 memset ((char *) &h->root + sizeof (h->root), 0,
458 sizeof (*h) - sizeof (h->root));
459 }
460
461 return entry;
462 }
463
464 /* Initialize a link hash table. The BFD argument is the one
465 responsible for creating this table. */
466
467 bfd_boolean
468 _bfd_link_hash_table_init
469 (struct bfd_link_hash_table *table,
470 bfd *abfd ATTRIBUTE_UNUSED,
471 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
472 struct bfd_hash_table *,
473 const char *),
474 unsigned int entsize)
475 {
476 bfd_boolean ret;
477
478 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
479 table->undefs = NULL;
480 table->undefs_tail = NULL;
481 table->type = bfd_link_generic_hash_table;
482
483 ret = bfd_hash_table_init (&table->table, newfunc, entsize);
484 if (ret)
485 {
486 /* Arrange for destruction of this hash table on closing ABFD. */
487 table->hash_table_free = _bfd_generic_link_hash_table_free;
488 abfd->link.hash = table;
489 abfd->is_linker_output = TRUE;
490 }
491 return ret;
492 }
493
494 /* Look up a symbol in a link hash table. If follow is TRUE, we
495 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
496 the real symbol. */
497
498 struct bfd_link_hash_entry *
499 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
500 const char *string,
501 bfd_boolean create,
502 bfd_boolean copy,
503 bfd_boolean follow)
504 {
505 struct bfd_link_hash_entry *ret;
506
507 ret = ((struct bfd_link_hash_entry *)
508 bfd_hash_lookup (&table->table, string, create, copy));
509
510 if (follow && ret != NULL)
511 {
512 while (ret->type == bfd_link_hash_indirect
513 || ret->type == bfd_link_hash_warning)
514 ret = ret->u.i.link;
515 }
516
517 return ret;
518 }
519
520 /* Look up a symbol in the main linker hash table if the symbol might
521 be wrapped. This should only be used for references to an
522 undefined symbol, not for definitions of a symbol. */
523
524 struct bfd_link_hash_entry *
525 bfd_wrapped_link_hash_lookup (bfd *abfd,
526 struct bfd_link_info *info,
527 const char *string,
528 bfd_boolean create,
529 bfd_boolean copy,
530 bfd_boolean follow)
531 {
532 bfd_size_type amt;
533
534 if (info->wrap_hash != NULL)
535 {
536 const char *l;
537 char prefix = '\0';
538
539 l = string;
540 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
541 {
542 prefix = *l;
543 ++l;
544 }
545
546 #undef WRAP
547 #define WRAP "__wrap_"
548
549 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
550 {
551 char *n;
552 struct bfd_link_hash_entry *h;
553
554 /* This symbol is being wrapped. We want to replace all
555 references to SYM with references to __wrap_SYM. */
556
557 amt = strlen (l) + sizeof WRAP + 1;
558 n = (char *) bfd_malloc (amt);
559 if (n == NULL)
560 return NULL;
561
562 n[0] = prefix;
563 n[1] = '\0';
564 strcat (n, WRAP);
565 strcat (n, l);
566 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
567 free (n);
568 return h;
569 }
570
571 #undef REAL
572 #define REAL "__real_"
573
574 if (*l == '_'
575 && CONST_STRNEQ (l, REAL)
576 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
577 FALSE, FALSE) != NULL)
578 {
579 char *n;
580 struct bfd_link_hash_entry *h;
581
582 /* This is a reference to __real_SYM, where SYM is being
583 wrapped. We want to replace all references to __real_SYM
584 with references to SYM. */
585
586 amt = strlen (l + sizeof REAL - 1) + 2;
587 n = (char *) bfd_malloc (amt);
588 if (n == NULL)
589 return NULL;
590
591 n[0] = prefix;
592 n[1] = '\0';
593 strcat (n, l + sizeof REAL - 1);
594 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
595 free (n);
596 return h;
597 }
598
599 #undef REAL
600 }
601
602 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
603 }
604
605 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
606 and the remainder is found in wrap_hash, return the real symbol. */
607
608 struct bfd_link_hash_entry *
609 unwrap_hash_lookup (struct bfd_link_info *info,
610 bfd *input_bfd,
611 struct bfd_link_hash_entry *h)
612 {
613 const char *l = h->root.string;
614
615 if (*l == bfd_get_symbol_leading_char (input_bfd)
616 || *l == info->wrap_char)
617 ++l;
618
619 if (CONST_STRNEQ (l, WRAP))
620 {
621 l += sizeof WRAP - 1;
622
623 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
624 {
625 char save = 0;
626 if (l - (sizeof WRAP - 1) != h->root.string)
627 {
628 --l;
629 save = *l;
630 *(char *) l = *h->root.string;
631 }
632 h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
633 if (save)
634 *(char *) l = save;
635 }
636 }
637 return h;
638 }
639 #undef WRAP
640
641 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
642 in the treatment of warning symbols. When warning symbols are
643 created they replace the real symbol, so you don't get to see the
644 real symbol in a bfd_hash_travere. This traversal calls func with
645 the real symbol. */
646
647 void
648 bfd_link_hash_traverse
649 (struct bfd_link_hash_table *htab,
650 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
651 void *info)
652 {
653 unsigned int i;
654
655 htab->table.frozen = 1;
656 for (i = 0; i < htab->table.size; i++)
657 {
658 struct bfd_link_hash_entry *p;
659
660 p = (struct bfd_link_hash_entry *) htab->table.table[i];
661 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
662 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
663 goto out;
664 }
665 out:
666 htab->table.frozen = 0;
667 }
668
669 /* Add a symbol to the linker hash table undefs list. */
670
671 void
672 bfd_link_add_undef (struct bfd_link_hash_table *table,
673 struct bfd_link_hash_entry *h)
674 {
675 BFD_ASSERT (h->u.undef.next == NULL);
676 if (table->undefs_tail != NULL)
677 table->undefs_tail->u.undef.next = h;
678 if (table->undefs == NULL)
679 table->undefs = h;
680 table->undefs_tail = h;
681 }
682
683 /* The undefs list was designed so that in normal use we don't need to
684 remove entries. However, if symbols on the list are changed from
685 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
686 bfd_link_hash_new for some reason, then they must be removed from the
687 list. Failure to do so might result in the linker attempting to add
688 the symbol to the list again at a later stage. */
689
690 void
691 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
692 {
693 struct bfd_link_hash_entry **pun;
694
695 pun = &table->undefs;
696 while (*pun != NULL)
697 {
698 struct bfd_link_hash_entry *h = *pun;
699
700 if (h->type == bfd_link_hash_new
701 || h->type == bfd_link_hash_undefweak)
702 {
703 *pun = h->u.undef.next;
704 h->u.undef.next = NULL;
705 if (h == table->undefs_tail)
706 {
707 if (pun == &table->undefs)
708 table->undefs_tail = NULL;
709 else
710 /* pun points at an u.undef.next field. Go back to
711 the start of the link_hash_entry. */
712 table->undefs_tail = (struct bfd_link_hash_entry *)
713 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
714 break;
715 }
716 }
717 else
718 pun = &h->u.undef.next;
719 }
720 }
721 \f
722 /* Routine to create an entry in a generic link hash table. */
723
724 struct bfd_hash_entry *
725 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
726 struct bfd_hash_table *table,
727 const char *string)
728 {
729 /* Allocate the structure if it has not already been allocated by a
730 subclass. */
731 if (entry == NULL)
732 {
733 entry = (struct bfd_hash_entry *)
734 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
735 if (entry == NULL)
736 return entry;
737 }
738
739 /* Call the allocation method of the superclass. */
740 entry = _bfd_link_hash_newfunc (entry, table, string);
741 if (entry)
742 {
743 struct generic_link_hash_entry *ret;
744
745 /* Set local fields. */
746 ret = (struct generic_link_hash_entry *) entry;
747 ret->written = FALSE;
748 ret->sym = NULL;
749 }
750
751 return entry;
752 }
753
754 /* Create a generic link hash table. */
755
756 struct bfd_link_hash_table *
757 _bfd_generic_link_hash_table_create (bfd *abfd)
758 {
759 struct generic_link_hash_table *ret;
760 bfd_size_type amt = sizeof (struct generic_link_hash_table);
761
762 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
763 if (ret == NULL)
764 return NULL;
765 if (! _bfd_link_hash_table_init (&ret->root, abfd,
766 _bfd_generic_link_hash_newfunc,
767 sizeof (struct generic_link_hash_entry)))
768 {
769 free (ret);
770 return NULL;
771 }
772 return &ret->root;
773 }
774
775 void
776 _bfd_generic_link_hash_table_free (bfd *obfd)
777 {
778 struct generic_link_hash_table *ret;
779
780 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
781 ret = (struct generic_link_hash_table *) obfd->link.hash;
782 bfd_hash_table_free (&ret->root.table);
783 free (ret);
784 obfd->link.hash = NULL;
785 obfd->is_linker_output = FALSE;
786 }
787
788 /* Grab the symbols for an object file when doing a generic link. We
789 store the symbols in the outsymbols field. We need to keep them
790 around for the entire link to ensure that we only read them once.
791 If we read them multiple times, we might wind up with relocs and
792 the hash table pointing to different instances of the symbol
793 structure. */
794
795 bfd_boolean
796 bfd_generic_link_read_symbols (bfd *abfd)
797 {
798 if (bfd_get_outsymbols (abfd) == NULL)
799 {
800 long symsize;
801 long symcount;
802
803 symsize = bfd_get_symtab_upper_bound (abfd);
804 if (symsize < 0)
805 return FALSE;
806 bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
807 symsize);
808 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
809 return FALSE;
810 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
811 if (symcount < 0)
812 return FALSE;
813 bfd_get_symcount (abfd) = symcount;
814 }
815
816 return TRUE;
817 }
818 \f
819 /* Generic function to add symbols to from an object file to the
820 global hash table. This version does not automatically collect
821 constructors by name. */
822
823 bfd_boolean
824 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
825 {
826 return generic_link_add_symbols (abfd, info, FALSE);
827 }
828
829 /* Generic function to add symbols from an object file to the global
830 hash table. This version automatically collects constructors by
831 name, as the collect2 program does. It should be used for any
832 target which does not provide some other mechanism for setting up
833 constructors and destructors; these are approximately those targets
834 for which gcc uses collect2 and do not support stabs. */
835
836 bfd_boolean
837 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
838 {
839 return generic_link_add_symbols (abfd, info, TRUE);
840 }
841
842 /* Indicate that we are only retrieving symbol values from this
843 section. We want the symbols to act as though the values in the
844 file are absolute. */
845
846 void
847 _bfd_generic_link_just_syms (asection *sec,
848 struct bfd_link_info *info ATTRIBUTE_UNUSED)
849 {
850 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
851 sec->output_section = bfd_abs_section_ptr;
852 sec->output_offset = sec->vma;
853 }
854
855 /* Copy the symbol type and other attributes for a linker script
856 assignment from HSRC to HDEST.
857 The default implementation does nothing. */
858 void
859 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
860 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
861 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
862 {
863 }
864
865 /* Add symbols from an object file to the global hash table. */
866
867 static bfd_boolean
868 generic_link_add_symbols (bfd *abfd,
869 struct bfd_link_info *info,
870 bfd_boolean collect)
871 {
872 bfd_boolean ret;
873
874 switch (bfd_get_format (abfd))
875 {
876 case bfd_object:
877 ret = generic_link_add_object_symbols (abfd, info, collect);
878 break;
879 case bfd_archive:
880 ret = (_bfd_generic_link_add_archive_symbols
881 (abfd, info,
882 (collect
883 ? generic_link_check_archive_element_collect
884 : generic_link_check_archive_element_no_collect)));
885 break;
886 default:
887 bfd_set_error (bfd_error_wrong_format);
888 ret = FALSE;
889 }
890
891 return ret;
892 }
893
894 /* Add symbols from an object file to the global hash table. */
895
896 static bfd_boolean
897 generic_link_add_object_symbols (bfd *abfd,
898 struct bfd_link_info *info,
899 bfd_boolean collect)
900 {
901 bfd_size_type symcount;
902 struct bfd_symbol **outsyms;
903
904 if (!bfd_generic_link_read_symbols (abfd))
905 return FALSE;
906 symcount = _bfd_generic_link_get_symcount (abfd);
907 outsyms = _bfd_generic_link_get_symbols (abfd);
908 return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
909 }
910 \f
911 /* Generic function to add symbols from an archive file to the global
912 hash file. This function presumes that the archive symbol table
913 has already been read in (this is normally done by the
914 bfd_check_format entry point). It looks through the archive symbol
915 table for symbols that are undefined or common in the linker global
916 symbol hash table. When one is found, the CHECKFN argument is used
917 to see if an object file should be included. This allows targets
918 to customize common symbol behaviour. CHECKFN should set *PNEEDED
919 to TRUE if the object file should be included, and must also call
920 the bfd_link_info add_archive_element callback function and handle
921 adding the symbols to the global hash table. CHECKFN must notice
922 if the callback indicates a substitute BFD, and arrange to add
923 those symbols instead if it does so. CHECKFN should only return
924 FALSE if some sort of error occurs. */
925
926 bfd_boolean
927 _bfd_generic_link_add_archive_symbols
928 (bfd *abfd,
929 struct bfd_link_info *info,
930 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
931 struct bfd_link_hash_entry *, const char *,
932 bfd_boolean *))
933 {
934 bfd_boolean loop;
935 bfd_size_type amt;
936 unsigned char *included;
937
938 if (! bfd_has_map (abfd))
939 {
940 /* An empty archive is a special case. */
941 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
942 return TRUE;
943 bfd_set_error (bfd_error_no_armap);
944 return FALSE;
945 }
946
947 amt = bfd_ardata (abfd)->symdef_count;
948 if (amt == 0)
949 return TRUE;
950 amt *= sizeof (*included);
951 included = (unsigned char *) bfd_zmalloc (amt);
952 if (included == NULL)
953 return FALSE;
954
955 do
956 {
957 carsym *arsyms;
958 carsym *arsym_end;
959 carsym *arsym;
960 unsigned int indx;
961 file_ptr last_ar_offset = -1;
962 bfd_boolean needed = FALSE;
963 bfd *element = NULL;
964
965 loop = FALSE;
966 arsyms = bfd_ardata (abfd)->symdefs;
967 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
968 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
969 {
970 struct bfd_link_hash_entry *h;
971 struct bfd_link_hash_entry *undefs_tail;
972
973 if (included[indx])
974 continue;
975 if (needed && arsym->file_offset == last_ar_offset)
976 {
977 included[indx] = 1;
978 continue;
979 }
980
981 h = bfd_link_hash_lookup (info->hash, arsym->name,
982 FALSE, FALSE, TRUE);
983
984 if (h == NULL
985 && info->pei386_auto_import
986 && CONST_STRNEQ (arsym->name, "__imp_"))
987 h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
988 FALSE, FALSE, TRUE);
989 if (h == NULL)
990 continue;
991
992 if (h->type != bfd_link_hash_undefined
993 && h->type != bfd_link_hash_common)
994 {
995 if (h->type != bfd_link_hash_undefweak)
996 /* Symbol must be defined. Don't check it again. */
997 included[indx] = 1;
998 continue;
999 }
1000
1001 if (last_ar_offset != arsym->file_offset)
1002 {
1003 last_ar_offset = arsym->file_offset;
1004 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
1005 if (element == NULL
1006 || !bfd_check_format (element, bfd_object))
1007 goto error_return;
1008 }
1009
1010 undefs_tail = info->hash->undefs_tail;
1011
1012 /* CHECKFN will see if this element should be included, and
1013 go ahead and include it if appropriate. */
1014 if (! (*checkfn) (element, info, h, arsym->name, &needed))
1015 goto error_return;
1016
1017 if (needed)
1018 {
1019 unsigned int mark;
1020
1021 /* Look backward to mark all symbols from this object file
1022 which we have already seen in this pass. */
1023 mark = indx;
1024 do
1025 {
1026 included[mark] = 1;
1027 if (mark == 0)
1028 break;
1029 --mark;
1030 }
1031 while (arsyms[mark].file_offset == last_ar_offset);
1032
1033 if (undefs_tail != info->hash->undefs_tail)
1034 loop = TRUE;
1035 }
1036 }
1037 } while (loop);
1038
1039 free (included);
1040 return TRUE;
1041
1042 error_return:
1043 free (included);
1044 return FALSE;
1045 }
1046 \f
1047 /* See if we should include an archive element. This version is used
1048 when we do not want to automatically collect constructors based on
1049 the symbol name, presumably because we have some other mechanism
1050 for finding them. */
1051
1052 static bfd_boolean
1053 generic_link_check_archive_element_no_collect (bfd *abfd,
1054 struct bfd_link_info *info,
1055 struct bfd_link_hash_entry *h,
1056 const char *name,
1057 bfd_boolean *pneeded)
1058 {
1059 return generic_link_check_archive_element (abfd, info, h, name, pneeded,
1060 FALSE);
1061 }
1062
1063 /* See if we should include an archive element. This version is used
1064 when we want to automatically collect constructors based on the
1065 symbol name, as collect2 does. */
1066
1067 static bfd_boolean
1068 generic_link_check_archive_element_collect (bfd *abfd,
1069 struct bfd_link_info *info,
1070 struct bfd_link_hash_entry *h,
1071 const char *name,
1072 bfd_boolean *pneeded)
1073 {
1074 return generic_link_check_archive_element (abfd, info, h, name, pneeded,
1075 TRUE);
1076 }
1077
1078 /* See if we should include an archive element. Optionally collect
1079 constructors. */
1080
1081 static bfd_boolean
1082 generic_link_check_archive_element (bfd *abfd,
1083 struct bfd_link_info *info,
1084 struct bfd_link_hash_entry *h,
1085 const char *name ATTRIBUTE_UNUSED,
1086 bfd_boolean *pneeded,
1087 bfd_boolean collect)
1088 {
1089 asymbol **pp, **ppend;
1090
1091 *pneeded = FALSE;
1092
1093 if (!bfd_generic_link_read_symbols (abfd))
1094 return FALSE;
1095
1096 pp = _bfd_generic_link_get_symbols (abfd);
1097 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1098 for (; pp < ppend; pp++)
1099 {
1100 asymbol *p;
1101
1102 p = *pp;
1103
1104 /* We are only interested in globally visible symbols. */
1105 if (! bfd_is_com_section (p->section)
1106 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1107 continue;
1108
1109 /* We are only interested if we know something about this
1110 symbol, and it is undefined or common. An undefined weak
1111 symbol (type bfd_link_hash_undefweak) is not considered to be
1112 a reference when pulling files out of an archive. See the
1113 SVR4 ABI, p. 4-27. */
1114 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1115 FALSE, TRUE);
1116 if (h == NULL
1117 || (h->type != bfd_link_hash_undefined
1118 && h->type != bfd_link_hash_common))
1119 continue;
1120
1121 /* P is a symbol we are looking for. */
1122
1123 if (! bfd_is_com_section (p->section)
1124 || (h->type == bfd_link_hash_undefined
1125 && h->u.undef.abfd == NULL))
1126 {
1127 /* P is not a common symbol, or an undefined reference was
1128 created from outside BFD such as from a linker -u option.
1129 This object file defines the symbol, so pull it in. */
1130 *pneeded = TRUE;
1131 if (!(*info->callbacks
1132 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1133 &abfd))
1134 return FALSE;
1135 /* Potentially, the add_archive_element hook may have set a
1136 substitute BFD for us. */
1137 return generic_link_add_object_symbols (abfd, info, collect);
1138 }
1139
1140 /* P is a common symbol. */
1141
1142 if (h->type == bfd_link_hash_undefined)
1143 {
1144 bfd *symbfd;
1145 bfd_vma size;
1146 unsigned int power;
1147
1148 /* Turn the symbol into a common symbol but do not link in
1149 the object file. This is how a.out works. Object
1150 formats that require different semantics must implement
1151 this function differently. This symbol is already on the
1152 undefs list. We add the section to a common section
1153 attached to symbfd to ensure that it is in a BFD which
1154 will be linked in. */
1155 symbfd = h->u.undef.abfd;
1156 h->type = bfd_link_hash_common;
1157 h->u.c.p = (struct bfd_link_hash_common_entry *)
1158 bfd_hash_allocate (&info->hash->table,
1159 sizeof (struct bfd_link_hash_common_entry));
1160 if (h->u.c.p == NULL)
1161 return FALSE;
1162
1163 size = bfd_asymbol_value (p);
1164 h->u.c.size = size;
1165
1166 power = bfd_log2 (size);
1167 if (power > 4)
1168 power = 4;
1169 h->u.c.p->alignment_power = power;
1170
1171 if (p->section == bfd_com_section_ptr)
1172 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1173 else
1174 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1175 p->section->name);
1176 h->u.c.p->section->flags |= SEC_ALLOC;
1177 }
1178 else
1179 {
1180 /* Adjust the size of the common symbol if necessary. This
1181 is how a.out works. Object formats that require
1182 different semantics must implement this function
1183 differently. */
1184 if (bfd_asymbol_value (p) > h->u.c.size)
1185 h->u.c.size = bfd_asymbol_value (p);
1186 }
1187 }
1188
1189 /* This archive element is not needed. */
1190 return TRUE;
1191 }
1192
1193 /* Add the symbols from an object file to the global hash table. ABFD
1194 is the object file. INFO is the linker information. SYMBOL_COUNT
1195 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1196 is TRUE if constructors should be automatically collected by name
1197 as is done by collect2. */
1198
1199 static bfd_boolean
1200 generic_link_add_symbol_list (bfd *abfd,
1201 struct bfd_link_info *info,
1202 bfd_size_type symbol_count,
1203 asymbol **symbols,
1204 bfd_boolean collect)
1205 {
1206 asymbol **pp, **ppend;
1207
1208 pp = symbols;
1209 ppend = symbols + symbol_count;
1210 for (; pp < ppend; pp++)
1211 {
1212 asymbol *p;
1213
1214 p = *pp;
1215
1216 if ((p->flags & (BSF_INDIRECT
1217 | BSF_WARNING
1218 | BSF_GLOBAL
1219 | BSF_CONSTRUCTOR
1220 | BSF_WEAK)) != 0
1221 || bfd_is_und_section (bfd_get_section (p))
1222 || bfd_is_com_section (bfd_get_section (p))
1223 || bfd_is_ind_section (bfd_get_section (p)))
1224 {
1225 const char *name;
1226 const char *string;
1227 struct generic_link_hash_entry *h;
1228 struct bfd_link_hash_entry *bh;
1229
1230 string = name = bfd_asymbol_name (p);
1231 if (((p->flags & BSF_INDIRECT) != 0
1232 || bfd_is_ind_section (p->section))
1233 && pp + 1 < ppend)
1234 {
1235 pp++;
1236 string = bfd_asymbol_name (*pp);
1237 }
1238 else if ((p->flags & BSF_WARNING) != 0
1239 && pp + 1 < ppend)
1240 {
1241 /* The name of P is actually the warning string, and the
1242 next symbol is the one to warn about. */
1243 pp++;
1244 name = bfd_asymbol_name (*pp);
1245 }
1246
1247 bh = NULL;
1248 if (! (_bfd_generic_link_add_one_symbol
1249 (info, abfd, name, p->flags, bfd_get_section (p),
1250 p->value, string, FALSE, collect, &bh)))
1251 return FALSE;
1252 h = (struct generic_link_hash_entry *) bh;
1253
1254 /* If this is a constructor symbol, and the linker didn't do
1255 anything with it, then we want to just pass the symbol
1256 through to the output file. This will happen when
1257 linking with -r. */
1258 if ((p->flags & BSF_CONSTRUCTOR) != 0
1259 && (h == NULL || h->root.type == bfd_link_hash_new))
1260 {
1261 p->udata.p = NULL;
1262 continue;
1263 }
1264
1265 /* Save the BFD symbol so that we don't lose any backend
1266 specific information that may be attached to it. We only
1267 want this one if it gives more information than the
1268 existing one; we don't want to replace a defined symbol
1269 with an undefined one. This routine may be called with a
1270 hash table other than the generic hash table, so we only
1271 do this if we are certain that the hash table is a
1272 generic one. */
1273 if (info->output_bfd->xvec == abfd->xvec)
1274 {
1275 if (h->sym == NULL
1276 || (! bfd_is_und_section (bfd_get_section (p))
1277 && (! bfd_is_com_section (bfd_get_section (p))
1278 || bfd_is_und_section (bfd_get_section (h->sym)))))
1279 {
1280 h->sym = p;
1281 /* BSF_OLD_COMMON is a hack to support COFF reloc
1282 reading, and it should go away when the COFF
1283 linker is switched to the new version. */
1284 if (bfd_is_com_section (bfd_get_section (p)))
1285 p->flags |= BSF_OLD_COMMON;
1286 }
1287 }
1288
1289 /* Store a back pointer from the symbol to the hash
1290 table entry for the benefit of relaxation code until
1291 it gets rewritten to not use asymbol structures.
1292 Setting this is also used to check whether these
1293 symbols were set up by the generic linker. */
1294 p->udata.p = h;
1295 }
1296 }
1297
1298 return TRUE;
1299 }
1300 \f
1301 /* We use a state table to deal with adding symbols from an object
1302 file. The first index into the state table describes the symbol
1303 from the object file. The second index into the state table is the
1304 type of the symbol in the hash table. */
1305
1306 /* The symbol from the object file is turned into one of these row
1307 values. */
1308
1309 enum link_row
1310 {
1311 UNDEF_ROW, /* Undefined. */
1312 UNDEFW_ROW, /* Weak undefined. */
1313 DEF_ROW, /* Defined. */
1314 DEFW_ROW, /* Weak defined. */
1315 COMMON_ROW, /* Common. */
1316 INDR_ROW, /* Indirect. */
1317 WARN_ROW, /* Warning. */
1318 SET_ROW /* Member of set. */
1319 };
1320
1321 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1322 #undef FAIL
1323
1324 /* The actions to take in the state table. */
1325
1326 enum link_action
1327 {
1328 FAIL, /* Abort. */
1329 UND, /* Mark symbol undefined. */
1330 WEAK, /* Mark symbol weak undefined. */
1331 DEF, /* Mark symbol defined. */
1332 DEFW, /* Mark symbol weak defined. */
1333 COM, /* Mark symbol common. */
1334 REF, /* Mark defined symbol referenced. */
1335 CREF, /* Possibly warn about common reference to defined symbol. */
1336 CDEF, /* Define existing common symbol. */
1337 NOACT, /* No action. */
1338 BIG, /* Mark symbol common using largest size. */
1339 MDEF, /* Multiple definition error. */
1340 MIND, /* Multiple indirect symbols. */
1341 IND, /* Make indirect symbol. */
1342 CIND, /* Make indirect symbol from existing common symbol. */
1343 SET, /* Add value to set. */
1344 MWARN, /* Make warning symbol. */
1345 WARN, /* Warn if referenced, else MWARN. */
1346 CYCLE, /* Repeat with symbol pointed to. */
1347 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1348 WARNC /* Issue warning and then CYCLE. */
1349 };
1350
1351 /* The state table itself. The first index is a link_row and the
1352 second index is a bfd_link_hash_type. */
1353
1354 static const enum link_action link_action[8][8] =
1355 {
1356 /* current\prev new undef undefw def defw com indr warn */
1357 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1358 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1359 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1360 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1361 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1362 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1363 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT },
1364 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1365 };
1366
1367 /* Most of the entries in the LINK_ACTION table are straightforward,
1368 but a few are somewhat subtle.
1369
1370 A reference to an indirect symbol (UNDEF_ROW/indr or
1371 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1372 symbol and to the symbol the indirect symbol points to.
1373
1374 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1375 causes the warning to be issued.
1376
1377 A common definition of an indirect symbol (COMMON_ROW/indr) is
1378 treated as a multiple definition error. Likewise for an indirect
1379 definition of a common symbol (INDR_ROW/com).
1380
1381 An indirect definition of a warning (INDR_ROW/warn) does not cause
1382 the warning to be issued.
1383
1384 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1385 warning is created for the symbol the indirect symbol points to.
1386
1387 Adding an entry to a set does not count as a reference to a set,
1388 and no warning is issued (SET_ROW/warn). */
1389
1390 /* Return the BFD in which a hash entry has been defined, if known. */
1391
1392 static bfd *
1393 hash_entry_bfd (struct bfd_link_hash_entry *h)
1394 {
1395 while (h->type == bfd_link_hash_warning)
1396 h = h->u.i.link;
1397 switch (h->type)
1398 {
1399 default:
1400 return NULL;
1401 case bfd_link_hash_undefined:
1402 case bfd_link_hash_undefweak:
1403 return h->u.undef.abfd;
1404 case bfd_link_hash_defined:
1405 case bfd_link_hash_defweak:
1406 return h->u.def.section->owner;
1407 case bfd_link_hash_common:
1408 return h->u.c.p->section->owner;
1409 }
1410 /*NOTREACHED*/
1411 }
1412
1413 /* Add a symbol to the global hash table.
1414 ABFD is the BFD the symbol comes from.
1415 NAME is the name of the symbol.
1416 FLAGS is the BSF_* bits associated with the symbol.
1417 SECTION is the section in which the symbol is defined; this may be
1418 bfd_und_section_ptr or bfd_com_section_ptr.
1419 VALUE is the value of the symbol, relative to the section.
1420 STRING is used for either an indirect symbol, in which case it is
1421 the name of the symbol to indirect to, or a warning symbol, in
1422 which case it is the warning string.
1423 COPY is TRUE if NAME or STRING must be copied into locally
1424 allocated memory if they need to be saved.
1425 COLLECT is TRUE if we should automatically collect gcc constructor
1426 or destructor names as collect2 does.
1427 HASHP, if not NULL, is a place to store the created hash table
1428 entry; if *HASHP is not NULL, the caller has already looked up
1429 the hash table entry, and stored it in *HASHP. */
1430
1431 bfd_boolean
1432 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1433 bfd *abfd,
1434 const char *name,
1435 flagword flags,
1436 asection *section,
1437 bfd_vma value,
1438 const char *string,
1439 bfd_boolean copy,
1440 bfd_boolean collect,
1441 struct bfd_link_hash_entry **hashp)
1442 {
1443 enum link_row row;
1444 struct bfd_link_hash_entry *h;
1445 struct bfd_link_hash_entry *inh = NULL;
1446 bfd_boolean cycle;
1447
1448 BFD_ASSERT (section != NULL);
1449
1450 if (bfd_is_ind_section (section)
1451 || (flags & BSF_INDIRECT) != 0)
1452 {
1453 row = INDR_ROW;
1454 /* Create the indirect symbol here. This is for the benefit of
1455 the plugin "notice" function.
1456 STRING is the name of the symbol we want to indirect to. */
1457 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1458 copy, FALSE);
1459 if (inh == NULL)
1460 return FALSE;
1461 }
1462 else if ((flags & BSF_WARNING) != 0)
1463 row = WARN_ROW;
1464 else if ((flags & BSF_CONSTRUCTOR) != 0)
1465 row = SET_ROW;
1466 else if (bfd_is_und_section (section))
1467 {
1468 if ((flags & BSF_WEAK) != 0)
1469 row = UNDEFW_ROW;
1470 else
1471 row = UNDEF_ROW;
1472 }
1473 else if ((flags & BSF_WEAK) != 0)
1474 row = DEFW_ROW;
1475 else if (bfd_is_com_section (section))
1476 {
1477 row = COMMON_ROW;
1478 if (strcmp (name, "__gnu_lto_slim") == 0)
1479 (*_bfd_error_handler)
1480 (_("%s: plugin needed to handle lto object"),
1481 bfd_get_filename (abfd));
1482 }
1483 else
1484 row = DEF_ROW;
1485
1486 if (hashp != NULL && *hashp != NULL)
1487 h = *hashp;
1488 else
1489 {
1490 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1491 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1492 else
1493 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1494 if (h == NULL)
1495 {
1496 if (hashp != NULL)
1497 *hashp = NULL;
1498 return FALSE;
1499 }
1500 }
1501
1502 if (info->notice_all
1503 || (info->notice_hash != NULL
1504 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1505 {
1506 if (! (*info->callbacks->notice) (info, h, inh,
1507 abfd, section, value, flags))
1508 return FALSE;
1509 }
1510
1511 if (hashp != NULL)
1512 *hashp = h;
1513
1514 do
1515 {
1516 enum link_action action;
1517
1518 cycle = FALSE;
1519 action = link_action[(int) row][(int) h->type];
1520 switch (action)
1521 {
1522 case FAIL:
1523 abort ();
1524
1525 case NOACT:
1526 /* Do nothing. */
1527 break;
1528
1529 case UND:
1530 /* Make a new undefined symbol. */
1531 h->type = bfd_link_hash_undefined;
1532 h->u.undef.abfd = abfd;
1533 bfd_link_add_undef (info->hash, h);
1534 break;
1535
1536 case WEAK:
1537 /* Make a new weak undefined symbol. */
1538 h->type = bfd_link_hash_undefweak;
1539 h->u.undef.abfd = abfd;
1540 break;
1541
1542 case CDEF:
1543 /* We have found a definition for a symbol which was
1544 previously common. */
1545 BFD_ASSERT (h->type == bfd_link_hash_common);
1546 if (! ((*info->callbacks->multiple_common)
1547 (info, h, abfd, bfd_link_hash_defined, 0)))
1548 return FALSE;
1549 /* Fall through. */
1550 case DEF:
1551 case DEFW:
1552 {
1553 enum bfd_link_hash_type oldtype;
1554
1555 /* Define a symbol. */
1556 oldtype = h->type;
1557 if (action == DEFW)
1558 h->type = bfd_link_hash_defweak;
1559 else
1560 h->type = bfd_link_hash_defined;
1561 h->u.def.section = section;
1562 h->u.def.value = value;
1563
1564 /* If we have been asked to, we act like collect2 and
1565 identify all functions that might be global
1566 constructors and destructors and pass them up in a
1567 callback. We only do this for certain object file
1568 types, since many object file types can handle this
1569 automatically. */
1570 if (collect && name[0] == '_')
1571 {
1572 const char *s;
1573
1574 /* A constructor or destructor name starts like this:
1575 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1576 the second are the same character (we accept any
1577 character there, in case a new object file format
1578 comes along with even worse naming restrictions). */
1579
1580 #define CONS_PREFIX "GLOBAL_"
1581 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1582
1583 s = name + 1;
1584 while (*s == '_')
1585 ++s;
1586 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1587 {
1588 char c;
1589
1590 c = s[CONS_PREFIX_LEN + 1];
1591 if ((c == 'I' || c == 'D')
1592 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1593 {
1594 /* If this is a definition of a symbol which
1595 was previously weakly defined, we are in
1596 trouble. We have already added a
1597 constructor entry for the weak defined
1598 symbol, and now we are trying to add one
1599 for the new symbol. Fortunately, this case
1600 should never arise in practice. */
1601 if (oldtype == bfd_link_hash_defweak)
1602 abort ();
1603
1604 if (! ((*info->callbacks->constructor)
1605 (info, c == 'I',
1606 h->root.string, abfd, section, value)))
1607 return FALSE;
1608 }
1609 }
1610 }
1611 }
1612
1613 break;
1614
1615 case COM:
1616 /* We have found a common definition for a symbol. */
1617 if (h->type == bfd_link_hash_new)
1618 bfd_link_add_undef (info->hash, h);
1619 h->type = bfd_link_hash_common;
1620 h->u.c.p = (struct bfd_link_hash_common_entry *)
1621 bfd_hash_allocate (&info->hash->table,
1622 sizeof (struct bfd_link_hash_common_entry));
1623 if (h->u.c.p == NULL)
1624 return FALSE;
1625
1626 h->u.c.size = value;
1627
1628 /* Select a default alignment based on the size. This may
1629 be overridden by the caller. */
1630 {
1631 unsigned int power;
1632
1633 power = bfd_log2 (value);
1634 if (power > 4)
1635 power = 4;
1636 h->u.c.p->alignment_power = power;
1637 }
1638
1639 /* The section of a common symbol is only used if the common
1640 symbol is actually allocated. It basically provides a
1641 hook for the linker script to decide which output section
1642 the common symbols should be put in. In most cases, the
1643 section of a common symbol will be bfd_com_section_ptr,
1644 the code here will choose a common symbol section named
1645 "COMMON", and the linker script will contain *(COMMON) in
1646 the appropriate place. A few targets use separate common
1647 sections for small symbols, and they require special
1648 handling. */
1649 if (section == bfd_com_section_ptr)
1650 {
1651 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1652 h->u.c.p->section->flags |= SEC_ALLOC;
1653 }
1654 else if (section->owner != abfd)
1655 {
1656 h->u.c.p->section = bfd_make_section_old_way (abfd,
1657 section->name);
1658 h->u.c.p->section->flags |= SEC_ALLOC;
1659 }
1660 else
1661 h->u.c.p->section = section;
1662 break;
1663
1664 case REF:
1665 /* A reference to a defined symbol. */
1666 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1667 h->u.undef.next = h;
1668 break;
1669
1670 case BIG:
1671 /* We have found a common definition for a symbol which
1672 already had a common definition. Use the maximum of the
1673 two sizes, and use the section required by the larger symbol. */
1674 BFD_ASSERT (h->type == bfd_link_hash_common);
1675 if (! ((*info->callbacks->multiple_common)
1676 (info, h, abfd, bfd_link_hash_common, value)))
1677 return FALSE;
1678 if (value > h->u.c.size)
1679 {
1680 unsigned int power;
1681
1682 h->u.c.size = value;
1683
1684 /* Select a default alignment based on the size. This may
1685 be overridden by the caller. */
1686 power = bfd_log2 (value);
1687 if (power > 4)
1688 power = 4;
1689 h->u.c.p->alignment_power = power;
1690
1691 /* Some systems have special treatment for small commons,
1692 hence we want to select the section used by the larger
1693 symbol. This makes sure the symbol does not go in a
1694 small common section if it is now too large. */
1695 if (section == bfd_com_section_ptr)
1696 {
1697 h->u.c.p->section
1698 = bfd_make_section_old_way (abfd, "COMMON");
1699 h->u.c.p->section->flags |= SEC_ALLOC;
1700 }
1701 else if (section->owner != abfd)
1702 {
1703 h->u.c.p->section
1704 = bfd_make_section_old_way (abfd, section->name);
1705 h->u.c.p->section->flags |= SEC_ALLOC;
1706 }
1707 else
1708 h->u.c.p->section = section;
1709 }
1710 break;
1711
1712 case CREF:
1713 /* We have found a common definition for a symbol which
1714 was already defined. */
1715 if (! ((*info->callbacks->multiple_common)
1716 (info, h, abfd, bfd_link_hash_common, value)))
1717 return FALSE;
1718 break;
1719
1720 case MIND:
1721 /* Multiple indirect symbols. This is OK if they both point
1722 to the same symbol. */
1723 if (strcmp (h->u.i.link->root.string, string) == 0)
1724 break;
1725 /* Fall through. */
1726 case MDEF:
1727 /* Handle a multiple definition. */
1728 if (! ((*info->callbacks->multiple_definition)
1729 (info, h, abfd, section, value)))
1730 return FALSE;
1731 break;
1732
1733 case CIND:
1734 /* Create an indirect symbol from an existing common symbol. */
1735 BFD_ASSERT (h->type == bfd_link_hash_common);
1736 if (! ((*info->callbacks->multiple_common)
1737 (info, h, abfd, bfd_link_hash_indirect, 0)))
1738 return FALSE;
1739 /* Fall through. */
1740 case IND:
1741 if (inh->type == bfd_link_hash_indirect
1742 && inh->u.i.link == h)
1743 {
1744 (*_bfd_error_handler)
1745 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1746 abfd, name, string);
1747 bfd_set_error (bfd_error_invalid_operation);
1748 return FALSE;
1749 }
1750 if (inh->type == bfd_link_hash_new)
1751 {
1752 inh->type = bfd_link_hash_undefined;
1753 inh->u.undef.abfd = abfd;
1754 bfd_link_add_undef (info->hash, inh);
1755 }
1756
1757 /* If the indirect symbol has been referenced, we need to
1758 push the reference down to the symbol we are referencing. */
1759 if (h->type != bfd_link_hash_new)
1760 {
1761 /* ??? If inh->type == bfd_link_hash_undefweak this
1762 converts inh to bfd_link_hash_undefined. */
1763 row = UNDEF_ROW;
1764 cycle = TRUE;
1765 }
1766
1767 h->type = bfd_link_hash_indirect;
1768 h->u.i.link = inh;
1769 /* Not setting h = h->u.i.link here means that when cycle is
1770 set above we'll always go to REFC, and then cycle again
1771 to the indirected symbol. This means that any successful
1772 change of an existing symbol to indirect counts as a
1773 reference. ??? That may not be correct when the existing
1774 symbol was defweak. */
1775 break;
1776
1777 case SET:
1778 /* Add an entry to a set. */
1779 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1780 abfd, section, value))
1781 return FALSE;
1782 break;
1783
1784 case WARNC:
1785 /* Issue a warning and cycle, except when the reference is
1786 in LTO IR. */
1787 if (h->u.i.warning != NULL
1788 && (abfd->flags & BFD_PLUGIN) == 0)
1789 {
1790 if (! (*info->callbacks->warning) (info, h->u.i.warning,
1791 h->root.string, abfd,
1792 NULL, 0))
1793 return FALSE;
1794 /* Only issue a warning once. */
1795 h->u.i.warning = NULL;
1796 }
1797 /* Fall through. */
1798 case CYCLE:
1799 /* Try again with the referenced symbol. */
1800 h = h->u.i.link;
1801 cycle = TRUE;
1802 break;
1803
1804 case REFC:
1805 /* A reference to an indirect symbol. */
1806 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1807 h->u.undef.next = h;
1808 h = h->u.i.link;
1809 cycle = TRUE;
1810 break;
1811
1812 case WARN:
1813 /* Warn if this symbol has been referenced already from non-IR,
1814 otherwise add a warning. */
1815 if ((!info->lto_plugin_active
1816 && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1817 || h->non_ir_ref)
1818 {
1819 if (! (*info->callbacks->warning) (info, string, h->root.string,
1820 hash_entry_bfd (h), NULL, 0))
1821 return FALSE;
1822 break;
1823 }
1824 /* Fall through. */
1825 case MWARN:
1826 /* Make a warning symbol. */
1827 {
1828 struct bfd_link_hash_entry *sub;
1829
1830 /* STRING is the warning to give. */
1831 sub = ((struct bfd_link_hash_entry *)
1832 ((*info->hash->table.newfunc)
1833 (NULL, &info->hash->table, h->root.string)));
1834 if (sub == NULL)
1835 return FALSE;
1836 *sub = *h;
1837 sub->type = bfd_link_hash_warning;
1838 sub->u.i.link = h;
1839 if (! copy)
1840 sub->u.i.warning = string;
1841 else
1842 {
1843 char *w;
1844 size_t len = strlen (string) + 1;
1845
1846 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1847 if (w == NULL)
1848 return FALSE;
1849 memcpy (w, string, len);
1850 sub->u.i.warning = w;
1851 }
1852
1853 bfd_hash_replace (&info->hash->table,
1854 (struct bfd_hash_entry *) h,
1855 (struct bfd_hash_entry *) sub);
1856 if (hashp != NULL)
1857 *hashp = sub;
1858 }
1859 break;
1860 }
1861 }
1862 while (cycle);
1863
1864 return TRUE;
1865 }
1866 \f
1867 /* Generic final link routine. */
1868
1869 bfd_boolean
1870 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1871 {
1872 bfd *sub;
1873 asection *o;
1874 struct bfd_link_order *p;
1875 size_t outsymalloc;
1876 struct generic_write_global_symbol_info wginfo;
1877
1878 bfd_get_outsymbols (abfd) = NULL;
1879 bfd_get_symcount (abfd) = 0;
1880 outsymalloc = 0;
1881
1882 /* Mark all sections which will be included in the output file. */
1883 for (o = abfd->sections; o != NULL; o = o->next)
1884 for (p = o->map_head.link_order; p != NULL; p = p->next)
1885 if (p->type == bfd_indirect_link_order)
1886 p->u.indirect.section->linker_mark = TRUE;
1887
1888 /* Build the output symbol table. */
1889 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1890 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1891 return FALSE;
1892
1893 /* Accumulate the global symbols. */
1894 wginfo.info = info;
1895 wginfo.output_bfd = abfd;
1896 wginfo.psymalloc = &outsymalloc;
1897 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1898 _bfd_generic_link_write_global_symbol,
1899 &wginfo);
1900
1901 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1902 shouldn't really need one, since we have SYMCOUNT, but some old
1903 code still expects one. */
1904 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1905 return FALSE;
1906
1907 if (info->relocatable)
1908 {
1909 /* Allocate space for the output relocs for each section. */
1910 for (o = abfd->sections; o != NULL; o = o->next)
1911 {
1912 o->reloc_count = 0;
1913 for (p = o->map_head.link_order; p != NULL; p = p->next)
1914 {
1915 if (p->type == bfd_section_reloc_link_order
1916 || p->type == bfd_symbol_reloc_link_order)
1917 ++o->reloc_count;
1918 else if (p->type == bfd_indirect_link_order)
1919 {
1920 asection *input_section;
1921 bfd *input_bfd;
1922 long relsize;
1923 arelent **relocs;
1924 asymbol **symbols;
1925 long reloc_count;
1926
1927 input_section = p->u.indirect.section;
1928 input_bfd = input_section->owner;
1929 relsize = bfd_get_reloc_upper_bound (input_bfd,
1930 input_section);
1931 if (relsize < 0)
1932 return FALSE;
1933 relocs = (arelent **) bfd_malloc (relsize);
1934 if (!relocs && relsize != 0)
1935 return FALSE;
1936 symbols = _bfd_generic_link_get_symbols (input_bfd);
1937 reloc_count = bfd_canonicalize_reloc (input_bfd,
1938 input_section,
1939 relocs,
1940 symbols);
1941 free (relocs);
1942 if (reloc_count < 0)
1943 return FALSE;
1944 BFD_ASSERT ((unsigned long) reloc_count
1945 == input_section->reloc_count);
1946 o->reloc_count += reloc_count;
1947 }
1948 }
1949 if (o->reloc_count > 0)
1950 {
1951 bfd_size_type amt;
1952
1953 amt = o->reloc_count;
1954 amt *= sizeof (arelent *);
1955 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1956 if (!o->orelocation)
1957 return FALSE;
1958 o->flags |= SEC_RELOC;
1959 /* Reset the count so that it can be used as an index
1960 when putting in the output relocs. */
1961 o->reloc_count = 0;
1962 }
1963 }
1964 }
1965
1966 /* Handle all the link order information for the sections. */
1967 for (o = abfd->sections; o != NULL; o = o->next)
1968 {
1969 for (p = o->map_head.link_order; p != NULL; p = p->next)
1970 {
1971 switch (p->type)
1972 {
1973 case bfd_section_reloc_link_order:
1974 case bfd_symbol_reloc_link_order:
1975 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1976 return FALSE;
1977 break;
1978 case bfd_indirect_link_order:
1979 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
1980 return FALSE;
1981 break;
1982 default:
1983 if (! _bfd_default_link_order (abfd, info, o, p))
1984 return FALSE;
1985 break;
1986 }
1987 }
1988 }
1989
1990 return TRUE;
1991 }
1992
1993 /* Add an output symbol to the output BFD. */
1994
1995 static bfd_boolean
1996 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1997 {
1998 if (bfd_get_symcount (output_bfd) >= *psymalloc)
1999 {
2000 asymbol **newsyms;
2001 bfd_size_type amt;
2002
2003 if (*psymalloc == 0)
2004 *psymalloc = 124;
2005 else
2006 *psymalloc *= 2;
2007 amt = *psymalloc;
2008 amt *= sizeof (asymbol *);
2009 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2010 if (newsyms == NULL)
2011 return FALSE;
2012 bfd_get_outsymbols (output_bfd) = newsyms;
2013 }
2014
2015 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2016 if (sym != NULL)
2017 ++ bfd_get_symcount (output_bfd);
2018
2019 return TRUE;
2020 }
2021
2022 /* Handle the symbols for an input BFD. */
2023
2024 bfd_boolean
2025 _bfd_generic_link_output_symbols (bfd *output_bfd,
2026 bfd *input_bfd,
2027 struct bfd_link_info *info,
2028 size_t *psymalloc)
2029 {
2030 asymbol **sym_ptr;
2031 asymbol **sym_end;
2032
2033 if (!bfd_generic_link_read_symbols (input_bfd))
2034 return FALSE;
2035
2036 /* Create a filename symbol if we are supposed to. */
2037 if (info->create_object_symbols_section != NULL)
2038 {
2039 asection *sec;
2040
2041 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2042 {
2043 if (sec->output_section == info->create_object_symbols_section)
2044 {
2045 asymbol *newsym;
2046
2047 newsym = bfd_make_empty_symbol (input_bfd);
2048 if (!newsym)
2049 return FALSE;
2050 newsym->name = input_bfd->filename;
2051 newsym->value = 0;
2052 newsym->flags = BSF_LOCAL | BSF_FILE;
2053 newsym->section = sec;
2054
2055 if (! generic_add_output_symbol (output_bfd, psymalloc,
2056 newsym))
2057 return FALSE;
2058
2059 break;
2060 }
2061 }
2062 }
2063
2064 /* Adjust the values of the globally visible symbols, and write out
2065 local symbols. */
2066 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2067 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2068 for (; sym_ptr < sym_end; sym_ptr++)
2069 {
2070 asymbol *sym;
2071 struct generic_link_hash_entry *h;
2072 bfd_boolean output;
2073
2074 h = NULL;
2075 sym = *sym_ptr;
2076 if ((sym->flags & (BSF_INDIRECT
2077 | BSF_WARNING
2078 | BSF_GLOBAL
2079 | BSF_CONSTRUCTOR
2080 | BSF_WEAK)) != 0
2081 || bfd_is_und_section (bfd_get_section (sym))
2082 || bfd_is_com_section (bfd_get_section (sym))
2083 || bfd_is_ind_section (bfd_get_section (sym)))
2084 {
2085 if (sym->udata.p != NULL)
2086 h = (struct generic_link_hash_entry *) sym->udata.p;
2087 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2088 {
2089 /* This case normally means that the main linker code
2090 deliberately ignored this constructor symbol. We
2091 should just pass it through. This will screw up if
2092 the constructor symbol is from a different,
2093 non-generic, object file format, but the case will
2094 only arise when linking with -r, which will probably
2095 fail anyhow, since there will be no way to represent
2096 the relocs in the output format being used. */
2097 h = NULL;
2098 }
2099 else if (bfd_is_und_section (bfd_get_section (sym)))
2100 h = ((struct generic_link_hash_entry *)
2101 bfd_wrapped_link_hash_lookup (output_bfd, info,
2102 bfd_asymbol_name (sym),
2103 FALSE, FALSE, TRUE));
2104 else
2105 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2106 bfd_asymbol_name (sym),
2107 FALSE, FALSE, TRUE);
2108
2109 if (h != NULL)
2110 {
2111 /* Force all references to this symbol to point to
2112 the same area in memory. It is possible that
2113 this routine will be called with a hash table
2114 other than a generic hash table, so we double
2115 check that. */
2116 if (info->output_bfd->xvec == input_bfd->xvec)
2117 {
2118 if (h->sym != NULL)
2119 *sym_ptr = sym = h->sym;
2120 }
2121
2122 switch (h->root.type)
2123 {
2124 default:
2125 case bfd_link_hash_new:
2126 abort ();
2127 case bfd_link_hash_undefined:
2128 break;
2129 case bfd_link_hash_undefweak:
2130 sym->flags |= BSF_WEAK;
2131 break;
2132 case bfd_link_hash_indirect:
2133 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2134 /* fall through */
2135 case bfd_link_hash_defined:
2136 sym->flags |= BSF_GLOBAL;
2137 sym->flags &=~ BSF_CONSTRUCTOR;
2138 sym->value = h->root.u.def.value;
2139 sym->section = h->root.u.def.section;
2140 break;
2141 case bfd_link_hash_defweak:
2142 sym->flags |= BSF_WEAK;
2143 sym->flags &=~ BSF_CONSTRUCTOR;
2144 sym->value = h->root.u.def.value;
2145 sym->section = h->root.u.def.section;
2146 break;
2147 case bfd_link_hash_common:
2148 sym->value = h->root.u.c.size;
2149 sym->flags |= BSF_GLOBAL;
2150 if (! bfd_is_com_section (sym->section))
2151 {
2152 BFD_ASSERT (bfd_is_und_section (sym->section));
2153 sym->section = bfd_com_section_ptr;
2154 }
2155 /* We do not set the section of the symbol to
2156 h->root.u.c.p->section. That value was saved so
2157 that we would know where to allocate the symbol
2158 if it was defined. In this case the type is
2159 still bfd_link_hash_common, so we did not define
2160 it, so we do not want to use that section. */
2161 break;
2162 }
2163 }
2164 }
2165
2166 /* This switch is straight from the old code in
2167 write_file_locals in ldsym.c. */
2168 if (info->strip == strip_all
2169 || (info->strip == strip_some
2170 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2171 FALSE, FALSE) == NULL))
2172 output = FALSE;
2173 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2174 {
2175 /* If this symbol is marked as occurring now, rather
2176 than at the end, output it now. This is used for
2177 COFF C_EXT FCN symbols. FIXME: There must be a
2178 better way. */
2179 if (bfd_asymbol_bfd (sym) == input_bfd
2180 && (sym->flags & BSF_NOT_AT_END) != 0)
2181 output = TRUE;
2182 else
2183 output = FALSE;
2184 }
2185 else if (bfd_is_ind_section (sym->section))
2186 output = FALSE;
2187 else if ((sym->flags & BSF_DEBUGGING) != 0)
2188 {
2189 if (info->strip == strip_none)
2190 output = TRUE;
2191 else
2192 output = FALSE;
2193 }
2194 else if (bfd_is_und_section (sym->section)
2195 || bfd_is_com_section (sym->section))
2196 output = FALSE;
2197 else if ((sym->flags & BSF_LOCAL) != 0)
2198 {
2199 if ((sym->flags & BSF_WARNING) != 0)
2200 output = FALSE;
2201 else
2202 {
2203 switch (info->discard)
2204 {
2205 default:
2206 case discard_all:
2207 output = FALSE;
2208 break;
2209 case discard_sec_merge:
2210 output = TRUE;
2211 if (info->relocatable
2212 || ! (sym->section->flags & SEC_MERGE))
2213 break;
2214 /* FALLTHROUGH */
2215 case discard_l:
2216 if (bfd_is_local_label (input_bfd, sym))
2217 output = FALSE;
2218 else
2219 output = TRUE;
2220 break;
2221 case discard_none:
2222 output = TRUE;
2223 break;
2224 }
2225 }
2226 }
2227 else if ((sym->flags & BSF_CONSTRUCTOR))
2228 {
2229 if (info->strip != strip_all)
2230 output = TRUE;
2231 else
2232 output = FALSE;
2233 }
2234 else if (sym->flags == 0
2235 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2236 /* LTO doesn't set symbol information. We get here with the
2237 generic linker for a symbol that was "common" but no longer
2238 needs to be global. */
2239 output = FALSE;
2240 else
2241 abort ();
2242
2243 /* If this symbol is in a section which is not being included
2244 in the output file, then we don't want to output the
2245 symbol. */
2246 if (!bfd_is_abs_section (sym->section)
2247 && bfd_section_removed_from_list (output_bfd,
2248 sym->section->output_section))
2249 output = FALSE;
2250
2251 if (output)
2252 {
2253 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2254 return FALSE;
2255 if (h != NULL)
2256 h->written = TRUE;
2257 }
2258 }
2259
2260 return TRUE;
2261 }
2262
2263 /* Set the section and value of a generic BFD symbol based on a linker
2264 hash table entry. */
2265
2266 static void
2267 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2268 {
2269 switch (h->type)
2270 {
2271 default:
2272 abort ();
2273 break;
2274 case bfd_link_hash_new:
2275 /* This can happen when a constructor symbol is seen but we are
2276 not building constructors. */
2277 if (sym->section != NULL)
2278 {
2279 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2280 }
2281 else
2282 {
2283 sym->flags |= BSF_CONSTRUCTOR;
2284 sym->section = bfd_abs_section_ptr;
2285 sym->value = 0;
2286 }
2287 break;
2288 case bfd_link_hash_undefined:
2289 sym->section = bfd_und_section_ptr;
2290 sym->value = 0;
2291 break;
2292 case bfd_link_hash_undefweak:
2293 sym->section = bfd_und_section_ptr;
2294 sym->value = 0;
2295 sym->flags |= BSF_WEAK;
2296 break;
2297 case bfd_link_hash_defined:
2298 sym->section = h->u.def.section;
2299 sym->value = h->u.def.value;
2300 break;
2301 case bfd_link_hash_defweak:
2302 sym->flags |= BSF_WEAK;
2303 sym->section = h->u.def.section;
2304 sym->value = h->u.def.value;
2305 break;
2306 case bfd_link_hash_common:
2307 sym->value = h->u.c.size;
2308 if (sym->section == NULL)
2309 sym->section = bfd_com_section_ptr;
2310 else if (! bfd_is_com_section (sym->section))
2311 {
2312 BFD_ASSERT (bfd_is_und_section (sym->section));
2313 sym->section = bfd_com_section_ptr;
2314 }
2315 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2316 break;
2317 case bfd_link_hash_indirect:
2318 case bfd_link_hash_warning:
2319 /* FIXME: What should we do here? */
2320 break;
2321 }
2322 }
2323
2324 /* Write out a global symbol, if it hasn't already been written out.
2325 This is called for each symbol in the hash table. */
2326
2327 bfd_boolean
2328 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2329 void *data)
2330 {
2331 struct generic_write_global_symbol_info *wginfo =
2332 (struct generic_write_global_symbol_info *) data;
2333 asymbol *sym;
2334
2335 if (h->written)
2336 return TRUE;
2337
2338 h->written = TRUE;
2339
2340 if (wginfo->info->strip == strip_all
2341 || (wginfo->info->strip == strip_some
2342 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2343 FALSE, FALSE) == NULL))
2344 return TRUE;
2345
2346 if (h->sym != NULL)
2347 sym = h->sym;
2348 else
2349 {
2350 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2351 if (!sym)
2352 return FALSE;
2353 sym->name = h->root.root.string;
2354 sym->flags = 0;
2355 }
2356
2357 set_symbol_from_hash (sym, &h->root);
2358
2359 sym->flags |= BSF_GLOBAL;
2360
2361 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2362 sym))
2363 {
2364 /* FIXME: No way to return failure. */
2365 abort ();
2366 }
2367
2368 return TRUE;
2369 }
2370
2371 /* Create a relocation. */
2372
2373 bfd_boolean
2374 _bfd_generic_reloc_link_order (bfd *abfd,
2375 struct bfd_link_info *info,
2376 asection *sec,
2377 struct bfd_link_order *link_order)
2378 {
2379 arelent *r;
2380
2381 if (! info->relocatable)
2382 abort ();
2383 if (sec->orelocation == NULL)
2384 abort ();
2385
2386 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2387 if (r == NULL)
2388 return FALSE;
2389
2390 r->address = link_order->offset;
2391 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2392 if (r->howto == 0)
2393 {
2394 bfd_set_error (bfd_error_bad_value);
2395 return FALSE;
2396 }
2397
2398 /* Get the symbol to use for the relocation. */
2399 if (link_order->type == bfd_section_reloc_link_order)
2400 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2401 else
2402 {
2403 struct generic_link_hash_entry *h;
2404
2405 h = ((struct generic_link_hash_entry *)
2406 bfd_wrapped_link_hash_lookup (abfd, info,
2407 link_order->u.reloc.p->u.name,
2408 FALSE, FALSE, TRUE));
2409 if (h == NULL
2410 || ! h->written)
2411 {
2412 if (! ((*info->callbacks->unattached_reloc)
2413 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2414 return FALSE;
2415 bfd_set_error (bfd_error_bad_value);
2416 return FALSE;
2417 }
2418 r->sym_ptr_ptr = &h->sym;
2419 }
2420
2421 /* If this is an inplace reloc, write the addend to the object file.
2422 Otherwise, store it in the reloc addend. */
2423 if (! r->howto->partial_inplace)
2424 r->addend = link_order->u.reloc.p->addend;
2425 else
2426 {
2427 bfd_size_type size;
2428 bfd_reloc_status_type rstat;
2429 bfd_byte *buf;
2430 bfd_boolean ok;
2431 file_ptr loc;
2432
2433 size = bfd_get_reloc_size (r->howto);
2434 buf = (bfd_byte *) bfd_zmalloc (size);
2435 if (buf == NULL)
2436 return FALSE;
2437 rstat = _bfd_relocate_contents (r->howto, abfd,
2438 (bfd_vma) link_order->u.reloc.p->addend,
2439 buf);
2440 switch (rstat)
2441 {
2442 case bfd_reloc_ok:
2443 break;
2444 default:
2445 case bfd_reloc_outofrange:
2446 abort ();
2447 case bfd_reloc_overflow:
2448 if (! ((*info->callbacks->reloc_overflow)
2449 (info, NULL,
2450 (link_order->type == bfd_section_reloc_link_order
2451 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2452 : link_order->u.reloc.p->u.name),
2453 r->howto->name, link_order->u.reloc.p->addend,
2454 NULL, NULL, 0)))
2455 {
2456 free (buf);
2457 return FALSE;
2458 }
2459 break;
2460 }
2461 loc = link_order->offset * bfd_octets_per_byte (abfd);
2462 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2463 free (buf);
2464 if (! ok)
2465 return FALSE;
2466
2467 r->addend = 0;
2468 }
2469
2470 sec->orelocation[sec->reloc_count] = r;
2471 ++sec->reloc_count;
2472
2473 return TRUE;
2474 }
2475 \f
2476 /* Allocate a new link_order for a section. */
2477
2478 struct bfd_link_order *
2479 bfd_new_link_order (bfd *abfd, asection *section)
2480 {
2481 bfd_size_type amt = sizeof (struct bfd_link_order);
2482 struct bfd_link_order *new_lo;
2483
2484 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2485 if (!new_lo)
2486 return NULL;
2487
2488 new_lo->type = bfd_undefined_link_order;
2489
2490 if (section->map_tail.link_order != NULL)
2491 section->map_tail.link_order->next = new_lo;
2492 else
2493 section->map_head.link_order = new_lo;
2494 section->map_tail.link_order = new_lo;
2495
2496 return new_lo;
2497 }
2498
2499 /* Default link order processing routine. Note that we can not handle
2500 the reloc_link_order types here, since they depend upon the details
2501 of how the particular backends generates relocs. */
2502
2503 bfd_boolean
2504 _bfd_default_link_order (bfd *abfd,
2505 struct bfd_link_info *info,
2506 asection *sec,
2507 struct bfd_link_order *link_order)
2508 {
2509 switch (link_order->type)
2510 {
2511 case bfd_undefined_link_order:
2512 case bfd_section_reloc_link_order:
2513 case bfd_symbol_reloc_link_order:
2514 default:
2515 abort ();
2516 case bfd_indirect_link_order:
2517 return default_indirect_link_order (abfd, info, sec, link_order,
2518 FALSE);
2519 case bfd_data_link_order:
2520 return default_data_link_order (abfd, info, sec, link_order);
2521 }
2522 }
2523
2524 /* Default routine to handle a bfd_data_link_order. */
2525
2526 static bfd_boolean
2527 default_data_link_order (bfd *abfd,
2528 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2529 asection *sec,
2530 struct bfd_link_order *link_order)
2531 {
2532 bfd_size_type size;
2533 size_t fill_size;
2534 bfd_byte *fill;
2535 file_ptr loc;
2536 bfd_boolean result;
2537
2538 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2539
2540 size = link_order->size;
2541 if (size == 0)
2542 return TRUE;
2543
2544 fill = link_order->u.data.contents;
2545 fill_size = link_order->u.data.size;
2546 if (fill_size == 0)
2547 {
2548 fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2549 (sec->flags & SEC_CODE) != 0);
2550 if (fill == NULL)
2551 return FALSE;
2552 }
2553 else if (fill_size < size)
2554 {
2555 bfd_byte *p;
2556 fill = (bfd_byte *) bfd_malloc (size);
2557 if (fill == NULL)
2558 return FALSE;
2559 p = fill;
2560 if (fill_size == 1)
2561 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2562 else
2563 {
2564 do
2565 {
2566 memcpy (p, link_order->u.data.contents, fill_size);
2567 p += fill_size;
2568 size -= fill_size;
2569 }
2570 while (size >= fill_size);
2571 if (size != 0)
2572 memcpy (p, link_order->u.data.contents, (size_t) size);
2573 size = link_order->size;
2574 }
2575 }
2576
2577 loc = link_order->offset * bfd_octets_per_byte (abfd);
2578 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2579
2580 if (fill != link_order->u.data.contents)
2581 free (fill);
2582 return result;
2583 }
2584
2585 /* Default routine to handle a bfd_indirect_link_order. */
2586
2587 static bfd_boolean
2588 default_indirect_link_order (bfd *output_bfd,
2589 struct bfd_link_info *info,
2590 asection *output_section,
2591 struct bfd_link_order *link_order,
2592 bfd_boolean generic_linker)
2593 {
2594 asection *input_section;
2595 bfd *input_bfd;
2596 bfd_byte *contents = NULL;
2597 bfd_byte *new_contents;
2598 bfd_size_type sec_size;
2599 file_ptr loc;
2600
2601 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2602
2603 input_section = link_order->u.indirect.section;
2604 input_bfd = input_section->owner;
2605 if (input_section->size == 0)
2606 return TRUE;
2607
2608 BFD_ASSERT (input_section->output_section == output_section);
2609 BFD_ASSERT (input_section->output_offset == link_order->offset);
2610 BFD_ASSERT (input_section->size == link_order->size);
2611
2612 if (info->relocatable
2613 && input_section->reloc_count > 0
2614 && output_section->orelocation == NULL)
2615 {
2616 /* Space has not been allocated for the output relocations.
2617 This can happen when we are called by a specific backend
2618 because somebody is attempting to link together different
2619 types of object files. Handling this case correctly is
2620 difficult, and sometimes impossible. */
2621 (*_bfd_error_handler)
2622 (_("Attempt to do relocatable link with %s input and %s output"),
2623 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2624 bfd_set_error (bfd_error_wrong_format);
2625 return FALSE;
2626 }
2627
2628 if (! generic_linker)
2629 {
2630 asymbol **sympp;
2631 asymbol **symppend;
2632
2633 /* Get the canonical symbols. The generic linker will always
2634 have retrieved them by this point, but we are being called by
2635 a specific linker, presumably because we are linking
2636 different types of object files together. */
2637 if (!bfd_generic_link_read_symbols (input_bfd))
2638 return FALSE;
2639
2640 /* Since we have been called by a specific linker, rather than
2641 the generic linker, the values of the symbols will not be
2642 right. They will be the values as seen in the input file,
2643 not the values of the final link. We need to fix them up
2644 before we can relocate the section. */
2645 sympp = _bfd_generic_link_get_symbols (input_bfd);
2646 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2647 for (; sympp < symppend; sympp++)
2648 {
2649 asymbol *sym;
2650 struct bfd_link_hash_entry *h;
2651
2652 sym = *sympp;
2653
2654 if ((sym->flags & (BSF_INDIRECT
2655 | BSF_WARNING
2656 | BSF_GLOBAL
2657 | BSF_CONSTRUCTOR
2658 | BSF_WEAK)) != 0
2659 || bfd_is_und_section (bfd_get_section (sym))
2660 || bfd_is_com_section (bfd_get_section (sym))
2661 || bfd_is_ind_section (bfd_get_section (sym)))
2662 {
2663 /* sym->udata may have been set by
2664 generic_link_add_symbol_list. */
2665 if (sym->udata.p != NULL)
2666 h = (struct bfd_link_hash_entry *) sym->udata.p;
2667 else if (bfd_is_und_section (bfd_get_section (sym)))
2668 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2669 bfd_asymbol_name (sym),
2670 FALSE, FALSE, TRUE);
2671 else
2672 h = bfd_link_hash_lookup (info->hash,
2673 bfd_asymbol_name (sym),
2674 FALSE, FALSE, TRUE);
2675 if (h != NULL)
2676 set_symbol_from_hash (sym, h);
2677 }
2678 }
2679 }
2680
2681 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2682 && input_section->size != 0)
2683 {
2684 /* Group section contents are set by bfd_elf_set_group_contents. */
2685 if (!output_bfd->output_has_begun)
2686 {
2687 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2688 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2689 goto error_return;
2690 }
2691 new_contents = output_section->contents;
2692 BFD_ASSERT (new_contents != NULL);
2693 BFD_ASSERT (input_section->output_offset == 0);
2694 }
2695 else
2696 {
2697 /* Get and relocate the section contents. */
2698 sec_size = (input_section->rawsize > input_section->size
2699 ? input_section->rawsize
2700 : input_section->size);
2701 contents = (bfd_byte *) bfd_malloc (sec_size);
2702 if (contents == NULL && sec_size != 0)
2703 goto error_return;
2704 new_contents = (bfd_get_relocated_section_contents
2705 (output_bfd, info, link_order, contents,
2706 info->relocatable,
2707 _bfd_generic_link_get_symbols (input_bfd)));
2708 if (!new_contents)
2709 goto error_return;
2710 }
2711
2712 /* Output the section contents. */
2713 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2714 if (! bfd_set_section_contents (output_bfd, output_section,
2715 new_contents, loc, input_section->size))
2716 goto error_return;
2717
2718 if (contents != NULL)
2719 free (contents);
2720 return TRUE;
2721
2722 error_return:
2723 if (contents != NULL)
2724 free (contents);
2725 return FALSE;
2726 }
2727
2728 /* A little routine to count the number of relocs in a link_order
2729 list. */
2730
2731 unsigned int
2732 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2733 {
2734 register unsigned int c;
2735 register struct bfd_link_order *l;
2736
2737 c = 0;
2738 for (l = link_order; l != NULL; l = l->next)
2739 {
2740 if (l->type == bfd_section_reloc_link_order
2741 || l->type == bfd_symbol_reloc_link_order)
2742 ++c;
2743 }
2744
2745 return c;
2746 }
2747
2748 /*
2749 FUNCTION
2750 bfd_link_split_section
2751
2752 SYNOPSIS
2753 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2754
2755 DESCRIPTION
2756 Return nonzero if @var{sec} should be split during a
2757 reloceatable or final link.
2758
2759 .#define bfd_link_split_section(abfd, sec) \
2760 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2761 .
2762
2763 */
2764
2765 bfd_boolean
2766 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2767 asection *sec ATTRIBUTE_UNUSED)
2768 {
2769 return FALSE;
2770 }
2771
2772 /*
2773 FUNCTION
2774 bfd_section_already_linked
2775
2776 SYNOPSIS
2777 bfd_boolean bfd_section_already_linked (bfd *abfd,
2778 asection *sec,
2779 struct bfd_link_info *info);
2780
2781 DESCRIPTION
2782 Check if @var{data} has been already linked during a reloceatable
2783 or final link. Return TRUE if it has.
2784
2785 .#define bfd_section_already_linked(abfd, sec, info) \
2786 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2787 .
2788
2789 */
2790
2791 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2792 once into the output. This routine checks each section, and
2793 arrange to discard it if a section of the same name has already
2794 been linked. This code assumes that all relevant sections have the
2795 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2796 section name. bfd_section_already_linked is called via
2797 bfd_map_over_sections. */
2798
2799 /* The hash table. */
2800
2801 static struct bfd_hash_table _bfd_section_already_linked_table;
2802
2803 /* Support routines for the hash table used by section_already_linked,
2804 initialize the table, traverse, lookup, fill in an entry and remove
2805 the table. */
2806
2807 void
2808 bfd_section_already_linked_table_traverse
2809 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2810 void *), void *info)
2811 {
2812 bfd_hash_traverse (&_bfd_section_already_linked_table,
2813 (bfd_boolean (*) (struct bfd_hash_entry *,
2814 void *)) func,
2815 info);
2816 }
2817
2818 struct bfd_section_already_linked_hash_entry *
2819 bfd_section_already_linked_table_lookup (const char *name)
2820 {
2821 return ((struct bfd_section_already_linked_hash_entry *)
2822 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2823 TRUE, FALSE));
2824 }
2825
2826 bfd_boolean
2827 bfd_section_already_linked_table_insert
2828 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2829 asection *sec)
2830 {
2831 struct bfd_section_already_linked *l;
2832
2833 /* Allocate the memory from the same obstack as the hash table is
2834 kept in. */
2835 l = (struct bfd_section_already_linked *)
2836 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2837 if (l == NULL)
2838 return FALSE;
2839 l->sec = sec;
2840 l->next = already_linked_list->entry;
2841 already_linked_list->entry = l;
2842 return TRUE;
2843 }
2844
2845 static struct bfd_hash_entry *
2846 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2847 struct bfd_hash_table *table,
2848 const char *string ATTRIBUTE_UNUSED)
2849 {
2850 struct bfd_section_already_linked_hash_entry *ret =
2851 (struct bfd_section_already_linked_hash_entry *)
2852 bfd_hash_allocate (table, sizeof *ret);
2853
2854 if (ret == NULL)
2855 return NULL;
2856
2857 ret->entry = NULL;
2858
2859 return &ret->root;
2860 }
2861
2862 bfd_boolean
2863 bfd_section_already_linked_table_init (void)
2864 {
2865 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2866 already_linked_newfunc,
2867 sizeof (struct bfd_section_already_linked_hash_entry),
2868 42);
2869 }
2870
2871 void
2872 bfd_section_already_linked_table_free (void)
2873 {
2874 bfd_hash_table_free (&_bfd_section_already_linked_table);
2875 }
2876
2877 /* Report warnings as appropriate for duplicate section SEC.
2878 Return FALSE if we decide to keep SEC after all. */
2879
2880 bfd_boolean
2881 _bfd_handle_already_linked (asection *sec,
2882 struct bfd_section_already_linked *l,
2883 struct bfd_link_info *info)
2884 {
2885 switch (sec->flags & SEC_LINK_DUPLICATES)
2886 {
2887 default:
2888 abort ();
2889
2890 case SEC_LINK_DUPLICATES_DISCARD:
2891 /* If we found an LTO IR match for this comdat group on
2892 the first pass, replace it with the LTO output on the
2893 second pass. We can't simply choose real object
2894 files over IR because the first pass may contain a
2895 mix of LTO and normal objects and we must keep the
2896 first match, be it IR or real. */
2897 if (info->loading_lto_outputs
2898 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2899 {
2900 l->sec = sec;
2901 return FALSE;
2902 }
2903 break;
2904
2905 case SEC_LINK_DUPLICATES_ONE_ONLY:
2906 info->callbacks->einfo
2907 (_("%B: ignoring duplicate section `%A'\n"),
2908 sec->owner, sec);
2909 break;
2910
2911 case SEC_LINK_DUPLICATES_SAME_SIZE:
2912 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2913 ;
2914 else if (sec->size != l->sec->size)
2915 info->callbacks->einfo
2916 (_("%B: duplicate section `%A' has different size\n"),
2917 sec->owner, sec);
2918 break;
2919
2920 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2921 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2922 ;
2923 else if (sec->size != l->sec->size)
2924 info->callbacks->einfo
2925 (_("%B: duplicate section `%A' has different size\n"),
2926 sec->owner, sec);
2927 else if (sec->size != 0)
2928 {
2929 bfd_byte *sec_contents, *l_sec_contents = NULL;
2930
2931 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2932 info->callbacks->einfo
2933 (_("%B: could not read contents of section `%A'\n"),
2934 sec->owner, sec);
2935 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2936 &l_sec_contents))
2937 info->callbacks->einfo
2938 (_("%B: could not read contents of section `%A'\n"),
2939 l->sec->owner, l->sec);
2940 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2941 info->callbacks->einfo
2942 (_("%B: duplicate section `%A' has different contents\n"),
2943 sec->owner, sec);
2944
2945 if (sec_contents)
2946 free (sec_contents);
2947 if (l_sec_contents)
2948 free (l_sec_contents);
2949 }
2950 break;
2951 }
2952
2953 /* Set the output_section field so that lang_add_section
2954 does not create a lang_input_section structure for this
2955 section. Since there might be a symbol in the section
2956 being discarded, we must retain a pointer to the section
2957 which we are really going to use. */
2958 sec->output_section = bfd_abs_section_ptr;
2959 sec->kept_section = l->sec;
2960 return TRUE;
2961 }
2962
2963 /* This is used on non-ELF inputs. */
2964
2965 bfd_boolean
2966 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2967 asection *sec,
2968 struct bfd_link_info *info)
2969 {
2970 const char *name;
2971 struct bfd_section_already_linked *l;
2972 struct bfd_section_already_linked_hash_entry *already_linked_list;
2973
2974 if ((sec->flags & SEC_LINK_ONCE) == 0)
2975 return FALSE;
2976
2977 /* The generic linker doesn't handle section groups. */
2978 if ((sec->flags & SEC_GROUP) != 0)
2979 return FALSE;
2980
2981 /* FIXME: When doing a relocatable link, we may have trouble
2982 copying relocations in other sections that refer to local symbols
2983 in the section being discarded. Those relocations will have to
2984 be converted somehow; as of this writing I'm not sure that any of
2985 the backends handle that correctly.
2986
2987 It is tempting to instead not discard link once sections when
2988 doing a relocatable link (technically, they should be discarded
2989 whenever we are building constructors). However, that fails,
2990 because the linker winds up combining all the link once sections
2991 into a single large link once section, which defeats the purpose
2992 of having link once sections in the first place. */
2993
2994 name = bfd_get_section_name (abfd, sec);
2995
2996 already_linked_list = bfd_section_already_linked_table_lookup (name);
2997
2998 l = already_linked_list->entry;
2999 if (l != NULL)
3000 {
3001 /* The section has already been linked. See if we should
3002 issue a warning. */
3003 return _bfd_handle_already_linked (sec, l, info);
3004 }
3005
3006 /* This is the first section with this name. Record it. */
3007 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
3008 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
3009 return FALSE;
3010 }
3011
3012 /* Choose a neighbouring section to S in OBFD that will be output, or
3013 the absolute section if ADDR is out of bounds of the neighbours. */
3014
3015 asection *
3016 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
3017 {
3018 asection *next, *prev, *best;
3019
3020 /* Find preceding kept section. */
3021 for (prev = s->prev; prev != NULL; prev = prev->prev)
3022 if ((prev->flags & SEC_EXCLUDE) == 0
3023 && !bfd_section_removed_from_list (obfd, prev))
3024 break;
3025
3026 /* Find following kept section. Start at prev->next because
3027 other sections may have been added after S was removed. */
3028 if (s->prev != NULL)
3029 next = s->prev->next;
3030 else
3031 next = s->owner->sections;
3032 for (; next != NULL; next = next->next)
3033 if ((next->flags & SEC_EXCLUDE) == 0
3034 && !bfd_section_removed_from_list (obfd, next))
3035 break;
3036
3037 /* Choose better of two sections, based on flags. The idea
3038 is to choose a section that will be in the same segment
3039 as S would have been if it was kept. */
3040 best = next;
3041 if (prev == NULL)
3042 {
3043 if (next == NULL)
3044 best = bfd_abs_section_ptr;
3045 }
3046 else if (next == NULL)
3047 best = prev;
3048 else if (((prev->flags ^ next->flags)
3049 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3050 {
3051 if (((next->flags ^ s->flags)
3052 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3053 /* We prefer to choose a loaded section. Section S
3054 doesn't have SEC_LOAD set (it being excluded, that
3055 part of the flag processing didn't happen) so we
3056 can't compare that flag to those of NEXT and PREV. */
3057 || ((prev->flags & SEC_LOAD) != 0
3058 && (next->flags & SEC_LOAD) == 0))
3059 best = prev;
3060 }
3061 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3062 {
3063 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3064 best = prev;
3065 }
3066 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3067 {
3068 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3069 best = prev;
3070 }
3071 else
3072 {
3073 /* Flags we care about are the same. Prefer the following
3074 section if that will result in a positive valued sym. */
3075 if (addr < next->vma)
3076 best = prev;
3077 }
3078
3079 return best;
3080 }
3081
3082 /* Convert symbols in excluded output sections to use a kept section. */
3083
3084 static bfd_boolean
3085 fix_syms (struct bfd_link_hash_entry *h, void *data)
3086 {
3087 bfd *obfd = (bfd *) data;
3088
3089 if (h->type == bfd_link_hash_defined
3090 || h->type == bfd_link_hash_defweak)
3091 {
3092 asection *s = h->u.def.section;
3093 if (s != NULL
3094 && s->output_section != NULL
3095 && (s->output_section->flags & SEC_EXCLUDE) != 0
3096 && bfd_section_removed_from_list (obfd, s->output_section))
3097 {
3098 asection *op;
3099
3100 h->u.def.value += s->output_offset + s->output_section->vma;
3101 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3102 h->u.def.value -= op->vma;
3103 h->u.def.section = op;
3104 }
3105 }
3106
3107 return TRUE;
3108 }
3109
3110 void
3111 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3112 {
3113 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3114 }
3115
3116 /*
3117 FUNCTION
3118 bfd_generic_define_common_symbol
3119
3120 SYNOPSIS
3121 bfd_boolean bfd_generic_define_common_symbol
3122 (bfd *output_bfd, struct bfd_link_info *info,
3123 struct bfd_link_hash_entry *h);
3124
3125 DESCRIPTION
3126 Convert common symbol @var{h} into a defined symbol.
3127 Return TRUE on success and FALSE on failure.
3128
3129 .#define bfd_define_common_symbol(output_bfd, info, h) \
3130 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3131 .
3132 */
3133
3134 bfd_boolean
3135 bfd_generic_define_common_symbol (bfd *output_bfd,
3136 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3137 struct bfd_link_hash_entry *h)
3138 {
3139 unsigned int power_of_two;
3140 bfd_vma alignment, size;
3141 asection *section;
3142
3143 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3144
3145 size = h->u.c.size;
3146 power_of_two = h->u.c.p->alignment_power;
3147 section = h->u.c.p->section;
3148
3149 /* Increase the size of the section to align the common symbol.
3150 The alignment must be a power of two. */
3151 alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3152 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3153 section->size += alignment - 1;
3154 section->size &= -alignment;
3155
3156 /* Adjust the section's overall alignment if necessary. */
3157 if (power_of_two > section->alignment_power)
3158 section->alignment_power = power_of_two;
3159
3160 /* Change the symbol from common to defined. */
3161 h->type = bfd_link_hash_defined;
3162 h->u.def.section = section;
3163 h->u.def.value = section->size;
3164
3165 /* Increase the size of the section. */
3166 section->size += size;
3167
3168 /* Make sure the section is allocated in memory, and make sure that
3169 it is no longer a common section. */
3170 section->flags |= SEC_ALLOC;
3171 section->flags &= ~SEC_IS_COMMON;
3172 return TRUE;
3173 }
3174
3175 /*
3176 FUNCTION
3177 bfd_find_version_for_sym
3178
3179 SYNOPSIS
3180 struct bfd_elf_version_tree * bfd_find_version_for_sym
3181 (struct bfd_elf_version_tree *verdefs,
3182 const char *sym_name, bfd_boolean *hide);
3183
3184 DESCRIPTION
3185 Search an elf version script tree for symbol versioning
3186 info and export / don't-export status for a given symbol.
3187 Return non-NULL on success and NULL on failure; also sets
3188 the output @samp{hide} boolean parameter.
3189
3190 */
3191
3192 struct bfd_elf_version_tree *
3193 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3194 const char *sym_name,
3195 bfd_boolean *hide)
3196 {
3197 struct bfd_elf_version_tree *t;
3198 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3199 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3200
3201 local_ver = NULL;
3202 global_ver = NULL;
3203 star_local_ver = NULL;
3204 star_global_ver = NULL;
3205 exist_ver = NULL;
3206 for (t = verdefs; t != NULL; t = t->next)
3207 {
3208 if (t->globals.list != NULL)
3209 {
3210 struct bfd_elf_version_expr *d = NULL;
3211
3212 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3213 {
3214 if (d->literal || strcmp (d->pattern, "*") != 0)
3215 global_ver = t;
3216 else
3217 star_global_ver = t;
3218 if (d->symver)
3219 exist_ver = t;
3220 d->script = 1;
3221 /* If the match is a wildcard pattern, keep looking for
3222 a more explicit, perhaps even local, match. */
3223 if (d->literal)
3224 break;
3225 }
3226
3227 if (d != NULL)
3228 break;
3229 }
3230
3231 if (t->locals.list != NULL)
3232 {
3233 struct bfd_elf_version_expr *d = NULL;
3234
3235 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3236 {
3237 if (d->literal || strcmp (d->pattern, "*") != 0)
3238 local_ver = t;
3239 else
3240 star_local_ver = t;
3241 /* If the match is a wildcard pattern, keep looking for
3242 a more explicit, perhaps even global, match. */
3243 if (d->literal)
3244 {
3245 /* An exact match overrides a global wildcard. */
3246 global_ver = NULL;
3247 star_global_ver = NULL;
3248 break;
3249 }
3250 }
3251
3252 if (d != NULL)
3253 break;
3254 }
3255 }
3256
3257 if (global_ver == NULL && local_ver == NULL)
3258 global_ver = star_global_ver;
3259
3260 if (global_ver != NULL)
3261 {
3262 /* If we already have a versioned symbol that matches the
3263 node for this symbol, then we don't want to create a
3264 duplicate from the unversioned symbol. Instead hide the
3265 unversioned symbol. */
3266 *hide = exist_ver == global_ver;
3267 return global_ver;
3268 }
3269
3270 if (local_ver == NULL)
3271 local_ver = star_local_ver;
3272
3273 if (local_ver != NULL)
3274 {
3275 *hide = TRUE;
3276 return local_ver;
3277 }
3278
3279 return NULL;
3280 }
3281
3282 /*
3283 FUNCTION
3284 bfd_hide_sym_by_version
3285
3286 SYNOPSIS
3287 bfd_boolean bfd_hide_sym_by_version
3288 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3289
3290 DESCRIPTION
3291 Search an elf version script tree for symbol versioning
3292 info for a given symbol. Return TRUE if the symbol is hidden.
3293
3294 */
3295
3296 bfd_boolean
3297 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3298 const char *sym_name)
3299 {
3300 bfd_boolean hidden = FALSE;
3301 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3302 return hidden;
3303 }
This page took 0.111185 seconds and 4 git commands to generate.