* bfd.c (bfd_get_error, bfd_set_error): New functions.
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993, 94 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "bfdlink.h"
25 #include "genlink.h"
26
27 /*
28 SECTION
29 Linker Functions
30
31 @cindex Linker
32 The linker uses three special entry points in the BFD target
33 vector. It is not necessary to write special routines for
34 these entry points when creating a new BFD back end, since
35 generic versions are provided. However, writing them can
36 speed up linking and make it use significantly less runtime
37 memory.
38
39 The first routine creates a hash table used by the other
40 routines. The second routine adds the symbols from an object
41 file to the hash table. The third routine takes all the
42 object files and links them together to create the output
43 file. These routines are designed so that the linker proper
44 does not need to know anything about the symbols in the object
45 files that it is linking. The linker merely arranges the
46 sections as directed by the linker script and lets BFD handle
47 the details of symbols and relocs.
48
49 The second routine and third routines are passed a pointer to
50 a <<struct bfd_link_info>> structure (defined in
51 <<bfdlink.h>>) which holds information relevant to the link,
52 including the linker hash table (which was created by the
53 first routine) and a set of callback functions to the linker
54 proper.
55
56 The generic linker routines are in <<linker.c>>, and use the
57 header file <<genlink.h>>. As of this writing, the only back
58 ends which have implemented versions of these routines are
59 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
60 routines are used as examples throughout this section.
61
62 @menu
63 @* Creating a Linker Hash Table::
64 @* Adding Symbols to the Hash Table::
65 @* Performing the Final Link::
66 @end menu
67
68 INODE
69 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
70 SUBSECTION
71 Creating a linker hash table
72
73 @cindex _bfd_link_hash_table_create in target vector
74 @cindex target vector (_bfd_link_hash_table_create)
75 The linker routines must create a hash table, which must be
76 derived from <<struct bfd_link_hash_table>> described in
77 <<bfdlink.c>>. @xref{Hash Tables} for information on how to
78 create a derived hash table. This entry point is called using
79 the target vector of the linker output file.
80
81 The <<_bfd_link_hash_table_create>> entry point must allocate
82 and initialize an instance of the desired hash table. If the
83 back end does not require any additional information to be
84 stored with the entries in the hash table, the entry point may
85 simply create a <<struct bfd_link_hash_table>>. Most likely,
86 however, some additional information will be needed.
87
88 For example, with each entry in the hash table the a.out
89 linker keeps the index the symbol has in the final output file
90 (this index number is used so that when doing a relocateable
91 link the symbol index used in the output file can be quickly
92 filled in when copying over a reloc). The a.out linker code
93 defines the required structures and functions for a hash table
94 derived from <<struct bfd_link_hash_table>>. The a.out linker
95 hash table is created by the function
96 <<NAME(aout,link_hash_table_create)>>; it simply allocates
97 space for the hash table, initializes it, and returns a
98 pointer to it.
99
100 When writing the linker routines for a new back end, you will
101 generally not know exactly which fields will be required until
102 you have finished. You should simply create a new hash table
103 which defines no additional fields, and then simply add fields
104 as they become necessary.
105
106 INODE
107 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
108 SUBSECTION
109 Adding symbols to the hash table
110
111 @cindex _bfd_link_add_symbols in target vector
112 @cindex target vector (_bfd_link_add_symbols)
113 The linker proper will call the <<_bfd_link_add_symbols>>
114 entry point for each object file or archive which is to be
115 linked (typically these are the files named on the command
116 line, but some may also come from the linker script). The
117 entry point is responsible for examining the file. For an
118 object file, BFD must add any relevant symbol information to
119 the hash table. For an archive, BFD must determine which
120 elements of the archive should be used and adding them to the
121 link.
122
123 The a.out version of this entry point is
124 <<NAME(aout,link_add_symbols)>>.
125
126 @menu
127 @* Differing file formats::
128 @* Adding symbols from an object file::
129 @* Adding symbols from an archive::
130 @end menu
131
132 INODE
133 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
134 SUBSUBSECTION
135 Differing file formats
136
137 Normally all the files involved in a link will be of the same
138 format, but it is also possible to link together different
139 format object files, and the back end must support that. The
140 <<_bfd_link_add_symbols>> entry point is called via the target
141 vector of the file to be added. This has an important
142 consequence: the function may not assume that the hash table
143 is the type created by the corresponding
144 <<_bfd_link_hash_table_create>> vector. All the
145 <<_bfd_link_add_symbols>> function can assume about the hash
146 table is that it is derived from <<struct
147 bfd_link_hash_table>>.
148
149 Sometimes the <<_bfd_link_add_symbols>> function must store
150 some information in the hash table entry to be used by the
151 <<_bfd_final_link>> function. In such a case the <<creator>>
152 field of the hash table must be checked to make sure that the
153 hash table was created by an object file of the same format.
154
155 The <<_bfd_final_link>> routine must be prepared to handle a
156 hash entry without any extra information added by the
157 <<_bfd_link_add_symbols>> function. A hash entry without
158 extra information will also occur when the linker script
159 directs the linker to create a symbol. Note that, regardless
160 of how a hash table entry is added, all the fields will be
161 initialized to some sort of null value by the hash table entry
162 initialization function.
163
164 See <<ecoff_link_add_externals>> for an example of how to
165 check the <<creator>> field before saving information (in this
166 case, the ECOFF external symbol debugging information) in a
167 hash table entry.
168
169 INODE
170 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
171 SUBSUBSECTION
172 Adding symbols from an object file
173
174 When the <<_bfd_link_add_symbols>> routine is passed an object
175 file, it must add all externally visible symbols in that
176 object file to the hash table. The actual work of adding the
177 symbol to the hash table is normally handled by the function
178 <<_bfd_generic_link_add_one_symbol>>. The
179 <<_bfd_link_add_symbols>> routine is responsible for reading
180 all the symbols from the object file and passing the correct
181 information to <<_bfd_generic_link_add_one_symbol>>.
182
183 The <<_bfd_link_add_symbols>> routine should not use
184 <<bfd_canonicalize_symtab>> to read the symbols. The point of
185 providing this routine is to avoid the overhead of converting
186 the symbols into generic <<asymbol>> structures.
187
188 @findex _bfd_generic_link_add_one_symbol
189 <<_bfd_generic_link_add_one_symbol>> handles the details of
190 combining common symbols, warning about multiple definitions,
191 and so forth. It takes arguments which describe the symbol to
192 add, notably symbol flags, a section, and an offset. The
193 symbol flags include such things as <<BSF_WEAK>> or
194 <<BSF_INDIRECT>>. The section is a section in the object
195 file, or something like <<bfd_und_section>> for an undefined
196 symbol or <<bfd_com_section>> for a common symbol.
197
198 If the <<_bfd_final_link>> routine is also going to need to
199 read the symbol information, the <<_bfd_link_add_symbols>>
200 routine should save it somewhere attached to the object file
201 BFD. However, the information should only be saved if the
202 <<keep_memory>> field of the <<info>> argument is true, so
203 that the <<-no-keep-memory>> linker switch is effective.
204
205 The a.out function which adds symbols from an object file is
206 <<aout_link_add_object_symbols>>, and most of the interesting
207 work is in <<aout_link_add_symbols>>. The latter saves
208 pointers to the hash tables entries created by
209 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
210 so that the <<_bfd_final_link>> routine does not have to call
211 the hash table lookup routine to locate the entry.
212
213 INODE
214 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
215 SUBSUBSECTION
216 Adding symbols from an archive
217
218 When the <<_bfd_link_add_symbols>> routine is passed an
219 archive, it must look through the symbols defined by the
220 archive and decide which elements of the archive should be
221 included in the link. For each such element it must call the
222 <<add_archive_element>> linker callback, and it must add the
223 symbols from the object file to the linker hash table.
224
225 @findex _bfd_generic_link_add_archive_symbols
226 In most cases the work of looking through the symbols in the
227 archive should be done by the
228 <<_bfd_generic_link_add_archive_symbols>> function. This
229 function builds a hash table from the archive symbol table and
230 looks through the list of undefined symbols to see which
231 elements should be included.
232 <<_bfd_generic_link_add_archive_symbols>> is passed a function
233 to call to make the final decision about adding an archive
234 element to the link and to do the actual work of adding the
235 symbols to the linker hash table.
236
237 The function passed to
238 <<_bfd_generic_link_add_archive_symbols>> must read the
239 symbols of the archive element and decide whether the archive
240 element should be included in the link. If the element is to
241 be included, the <<add_archive_element>> linker callback
242 routine must be called with the element as an argument, and
243 the elements symbols must be added to the linker hash table
244 just as though the element had itself been passed to the
245 <<_bfd_link_add_symbols>> function.
246
247 When the a.out <<_bfd_link_add_symbols>> function receives an
248 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
249 passing <<aout_link_check_archive_element>> as the function
250 argument. <<aout_link_check_archive_element>> calls
251 <<aout_link_check_ar_symbols>>. If the latter decides to add
252 the element (an element is only added if it provides a real,
253 non-common, definition for a previously undefined or common
254 symbol) it calls the <<add_archive_element>> callback and then
255 <<aout_link_check_archive_element>> calls
256 <<aout_link_add_symbols>> to actually add the symbols to the
257 linker hash table.
258
259 The ECOFF back end is unusual in that it does not normally
260 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
261 archives already contain a hash table of symbols. The ECOFF
262 back end searches the archive itself to avoid the overhead of
263 creating a new hash table.
264
265 INODE
266 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
267 SUBSECTION
268 Performing the final link
269
270 @cindex _bfd_link_final_link in target vector
271 @cindex target vector (_bfd_final_link)
272 When all the input files have been processed, the linker calls
273 the <<_bfd_final_link>> entry point of the output BFD. This
274 routine is responsible for producing the final output file,
275 which has several aspects. It must relocate the contents of
276 the input sections and copy the data into the output sections.
277 It must build an output symbol table including any local
278 symbols from the input files and the global symbols from the
279 hash table. When producing relocateable output, it must
280 modify the input relocs and write them into the output file.
281 There may also be object format dependent work to be done.
282
283 The linker will also call the <<write_object_contents>> entry
284 point when the BFD is closed. The two entry points must work
285 together in order to produce the correct output file.
286
287 The details of how this works are inevitably dependent upon
288 the specific object file format. The a.out
289 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
290
291 @menu
292 @* Information provided by the linker::
293 @* Relocating the section contents::
294 @* Writing the symbol table::
295 @end menu
296
297 INODE
298 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
299 SUBSUBSECTION
300 Information provided by the linker
301
302 Before the linker calls the <<_bfd_final_link>> entry point,
303 it sets up some data structures for the function to use.
304
305 The <<input_bfds>> field of the <<bfd_link_info>> structure
306 will point to a list of all the input files included in the
307 link. These files are linked through the <<link_next>> field
308 of the <<bfd>> structure.
309
310 Each section in the output file will have a list of
311 <<link_order>> structures attached to the <<link_order_head>>
312 field (the <<link_order>> structure is defined in
313 <<bfdlink.h>>). These structures describe how to create the
314 contents of the output section in terms of the contents of
315 various input sections, fill constants, and, eventually, other
316 types of information.
317
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 Relocating the section contents
322
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
329
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocateable link, the
339 relocs themselves must also be modified and written out.
340
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
350
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
355
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 Writing the symbol table
360
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
366
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
373
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files. The <<written>> field in the
381 <<bfd_link_hash_entry>> structure may be used to determine
382 which entries in the hash table have not already been written
383 out.
384
385 The <<strip>> field of the <<bfd_link_info>> structure
386 controls which symbols are written out. The possible values
387 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
388 then the <<keep_hash>> field of the <<bfd_link_info>>
389 structure is a hash table of symbols to keep; each symbol
390 should be looked up in this hash table, and only symbols which
391 are present should be included in the output file.
392
393 If the <<strip>> field of the <<bfd_link_info>> structure
394 permits local symbols to be written out, the <<discard>> field
395 is used to further controls which local symbols are included
396 in the output file. If the value is <<discard_l>>, then all
397 local symbols which begin with a certain prefix are discarded;
398 this prefix is described by the <<lprefix>> and
399 <<lprefix_len>> fields of the <<bfd_link_info>> structure.
400
401 The a.out backend handles symbols by calling
402 <<aout_link_write_symbols>> on each input BFD and then
403 traversing the global hash table with the function
404 <<aout_link_write_other_symbol>>. It builds a string table
405 while writing out the symbols, which is written to the output
406 file at the end of <<NAME(aout,final_link)>>.
407 */
408
409 static struct bfd_hash_entry *generic_link_hash_newfunc
410 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *,
411 const char *));
412 static boolean generic_link_add_object_symbols
413 PARAMS ((bfd *, struct bfd_link_info *));
414 static boolean generic_link_check_archive_element
415 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
416 static boolean generic_link_add_symbol_list
417 PARAMS ((bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **));
418 static boolean generic_add_output_symbol
419 PARAMS ((bfd *, size_t *psymalloc, asymbol *));
420 static boolean default_fill_link_order
421 PARAMS ((bfd *, struct bfd_link_info *, asection *,
422 struct bfd_link_order *));
423 static boolean default_indirect_link_order
424 PARAMS ((bfd *, struct bfd_link_info *, asection *,
425 struct bfd_link_order *));
426
427 /* The link hash table structure is defined in bfdlink.h. It provides
428 a base hash table which the backend specific hash tables are built
429 upon. */
430
431 /* Routine to create an entry in the link hash table. */
432
433 struct bfd_hash_entry *
434 _bfd_link_hash_newfunc (entry, table, string)
435 struct bfd_hash_entry *entry;
436 struct bfd_hash_table *table;
437 const char *string;
438 {
439 struct bfd_link_hash_entry *ret = (struct bfd_link_hash_entry *) entry;
440
441 /* Allocate the structure if it has not already been allocated by a
442 subclass. */
443 if (ret == (struct bfd_link_hash_entry *) NULL)
444 ret = ((struct bfd_link_hash_entry *)
445 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)));
446 if (ret == (struct bfd_link_hash_entry *) NULL)
447 {
448 bfd_set_error (bfd_error_no_memory);
449 return NULL;
450 }
451
452 /* Call the allocation method of the superclass. */
453 ret = ((struct bfd_link_hash_entry *)
454 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
455
456 if (ret)
457 {
458 /* Initialize the local fields. */
459 ret->type = bfd_link_hash_new;
460 ret->written = false;
461 ret->next = NULL;
462 }
463
464 return (struct bfd_hash_entry *) ret;
465 }
466
467 /* Initialize a link hash table. The BFD argument is the one
468 responsible for creating this table. */
469
470 boolean
471 _bfd_link_hash_table_init (table, abfd, newfunc)
472 struct bfd_link_hash_table *table;
473 bfd *abfd;
474 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
475 struct bfd_hash_table *,
476 const char *));
477 {
478 table->creator = abfd->xvec;
479 table->undefs = NULL;
480 table->undefs_tail = NULL;
481 return bfd_hash_table_init (&table->table, newfunc);
482 }
483
484 /* Look up a symbol in a link hash table. If follow is true, we
485 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
486 the real symbol. */
487
488 struct bfd_link_hash_entry *
489 bfd_link_hash_lookup (table, string, create, copy, follow)
490 struct bfd_link_hash_table *table;
491 const char *string;
492 boolean create;
493 boolean copy;
494 boolean follow;
495 {
496 struct bfd_link_hash_entry *ret;
497
498 ret = ((struct bfd_link_hash_entry *)
499 bfd_hash_lookup (&table->table, string, create, copy));
500
501 if (follow && ret != (struct bfd_link_hash_entry *) NULL)
502 {
503 while (ret->type == bfd_link_hash_indirect
504 || ret->type == bfd_link_hash_warning)
505 ret = ret->u.i.link;
506 }
507
508 return ret;
509 }
510
511 /* Traverse a generic link hash table. The only reason this is not a
512 macro is to do better type checking. This code presumes that an
513 argument passed as a struct bfd_hash_entry * may be caught as a
514 struct bfd_link_hash_entry * with no explicit cast required on the
515 call. */
516
517 void
518 bfd_link_hash_traverse (table, func, info)
519 struct bfd_link_hash_table *table;
520 boolean (*func) PARAMS ((struct bfd_link_hash_entry *, PTR));
521 PTR info;
522 {
523 bfd_hash_traverse (&table->table,
524 ((boolean (*) PARAMS ((struct bfd_hash_entry *, PTR)))
525 func),
526 info);
527 }
528
529 /* Add a symbol to the linker hash table undefs list. */
530
531 INLINE void
532 bfd_link_add_undef (table, h)
533 struct bfd_link_hash_table *table;
534 struct bfd_link_hash_entry *h;
535 {
536 BFD_ASSERT (h->next == NULL);
537 if (table->undefs_tail != (struct bfd_link_hash_entry *) NULL)
538 table->undefs_tail->next = h;
539 if (table->undefs == (struct bfd_link_hash_entry *) NULL)
540 table->undefs = h;
541 table->undefs_tail = h;
542 }
543 \f
544 /* Routine to create an entry in an generic link hash table. */
545
546 static struct bfd_hash_entry *
547 generic_link_hash_newfunc (entry, table, string)
548 struct bfd_hash_entry *entry;
549 struct bfd_hash_table *table;
550 const char *string;
551 {
552 struct generic_link_hash_entry *ret =
553 (struct generic_link_hash_entry *) entry;
554
555 /* Allocate the structure if it has not already been allocated by a
556 subclass. */
557 if (ret == (struct generic_link_hash_entry *) NULL)
558 ret = ((struct generic_link_hash_entry *)
559 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)));
560 if (ret == (struct generic_link_hash_entry *) NULL)
561 {
562 bfd_set_error (bfd_error_no_memory);
563 return NULL;
564 }
565
566 /* Call the allocation method of the superclass. */
567 ret = ((struct generic_link_hash_entry *)
568 _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
569 table, string));
570
571 if (ret)
572 {
573 /* Set local fields. */
574 ret->sym = NULL;
575 }
576
577 return (struct bfd_hash_entry *) ret;
578 }
579
580 /* Create an generic link hash table. */
581
582 struct bfd_link_hash_table *
583 _bfd_generic_link_hash_table_create (abfd)
584 bfd *abfd;
585 {
586 struct generic_link_hash_table *ret;
587
588 ret = ((struct generic_link_hash_table *)
589 malloc (sizeof (struct generic_link_hash_table)));
590 if (!ret)
591 {
592 bfd_set_error (bfd_error_no_memory);
593 return (struct bfd_link_hash_table *) NULL;
594 }
595 if (! _bfd_link_hash_table_init (&ret->root, abfd,
596 generic_link_hash_newfunc))
597 {
598 free (ret);
599 return (struct bfd_link_hash_table *) NULL;
600 }
601 return &ret->root;
602 }
603 \f
604 /* Generic function to add symbols from an object file to the global
605 hash table. */
606
607 boolean
608 _bfd_generic_link_add_symbols (abfd, info)
609 bfd *abfd;
610 struct bfd_link_info *info;
611 {
612 boolean ret;
613
614 switch (bfd_get_format (abfd))
615 {
616 case bfd_object:
617 ret = generic_link_add_object_symbols (abfd, info);
618 break;
619 case bfd_archive:
620 ret = _bfd_generic_link_add_archive_symbols
621 (abfd, info, generic_link_check_archive_element);
622 break;
623 default:
624 bfd_set_error (bfd_error_wrong_format);
625 ret = false;
626 }
627
628 /* If we might be using the C based alloca function, make sure we
629 have dumped the symbol tables we just allocated. */
630 #ifndef __GNUC__
631 #ifndef alloca
632 alloca (0);
633 #endif
634 #endif
635
636 return ret;
637 }
638
639 /* Add symbols from an object file to the global hash table. */
640
641 static boolean
642 generic_link_add_object_symbols (abfd, info)
643 bfd *abfd;
644 struct bfd_link_info *info;
645 {
646 size_t symsize;
647 asymbol **symbols;
648 bfd_size_type symbol_count;
649
650 symsize = get_symtab_upper_bound (abfd);
651 symbols = (asymbol **) alloca (symsize);
652 symbol_count = bfd_canonicalize_symtab (abfd, symbols);
653
654 return generic_link_add_symbol_list (abfd, info, symbol_count, symbols);
655 }
656 \f
657 /* We build a hash table of all symbols defined in an archive. */
658
659 /* An archive symbol may be defined by multiple archive elements.
660 This linked list is used to hold the elements. */
661
662 struct archive_list
663 {
664 struct archive_list *next;
665 int indx;
666 };
667
668 /* An entry in an archive hash table. */
669
670 struct archive_hash_entry
671 {
672 struct bfd_hash_entry root;
673 /* Where the symbol is defined. */
674 struct archive_list *defs;
675 };
676
677 /* An archive hash table itself. */
678
679 struct archive_hash_table
680 {
681 struct bfd_hash_table table;
682 };
683
684 static struct bfd_hash_entry *archive_hash_newfunc
685 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
686 static boolean archive_hash_table_init
687 PARAMS ((struct archive_hash_table *,
688 struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
689 struct bfd_hash_table *,
690 const char *)));
691
692 /* Create a new entry for an archive hash table. */
693
694 static struct bfd_hash_entry *
695 archive_hash_newfunc (entry, table, string)
696 struct bfd_hash_entry *entry;
697 struct bfd_hash_table *table;
698 const char *string;
699 {
700 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
701
702 /* Allocate the structure if it has not already been allocated by a
703 subclass. */
704 if (ret == (struct archive_hash_entry *) NULL)
705 ret = ((struct archive_hash_entry *)
706 bfd_hash_allocate (table, sizeof (struct archive_hash_entry)));
707 if (ret == (struct archive_hash_entry *) NULL)
708 {
709 bfd_set_error (bfd_error_no_memory);
710 return NULL;
711 }
712
713 /* Call the allocation method of the superclass. */
714 ret = ((struct archive_hash_entry *)
715 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
716
717 if (ret)
718 {
719 /* Initialize the local fields. */
720 ret->defs = (struct archive_list *) NULL;
721 }
722
723 return (struct bfd_hash_entry *) ret;
724 }
725
726 /* Initialize an archive hash table. */
727
728 static boolean
729 archive_hash_table_init (table, newfunc)
730 struct archive_hash_table *table;
731 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
732 struct bfd_hash_table *,
733 const char *));
734 {
735 return bfd_hash_table_init (&table->table, newfunc);
736 }
737
738 /* Look up an entry in an archive hash table. */
739
740 #define archive_hash_lookup(t, string, create, copy) \
741 ((struct archive_hash_entry *) \
742 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
743
744 /* Free an archive hash table. */
745
746 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
747
748 /* Generic function to add symbols from an archive file to the global
749 hash file. This function presumes that the archive symbol table
750 has already been read in (this is normally done by the
751 bfd_check_format entry point). It looks through the undefined and
752 common symbols and searches the archive symbol table for them. If
753 it finds an entry, it includes the associated object file in the
754 link.
755
756 The old linker looked through the archive symbol table for
757 undefined symbols. We do it the other way around, looking through
758 undefined symbols for symbols defined in the archive. The
759 advantage of the newer scheme is that we only have to look through
760 the list of undefined symbols once, whereas the old method had to
761 re-search the symbol table each time a new object file was added.
762
763 The CHECKFN argument is used to see if an object file should be
764 included. CHECKFN should set *PNEEDED to true if the object file
765 should be included, and must also call the bfd_link_info
766 add_archive_element callback function and handle adding the symbols
767 to the global hash table. CHECKFN should only return false if some
768 sort of error occurs.
769
770 For some formats, such as a.out, it is possible to look through an
771 object file but not actually include it in the link. The
772 archive_pass field in a BFD is used to avoid checking the symbols
773 of an object files too many times. When an object is included in
774 the link, archive_pass is set to -1. If an object is scanned but
775 not included, archive_pass is set to the pass number. The pass
776 number is incremented each time a new object file is included. The
777 pass number is used because when a new object file is included it
778 may create new undefined symbols which cause a previously examined
779 object file to be included. */
780
781 boolean
782 _bfd_generic_link_add_archive_symbols (abfd, info, checkfn)
783 bfd *abfd;
784 struct bfd_link_info *info;
785 boolean (*checkfn) PARAMS ((bfd *, struct bfd_link_info *,
786 boolean *pneeded));
787 {
788 carsym *arsyms;
789 carsym *arsym_end;
790 register carsym *arsym;
791 int pass;
792 struct archive_hash_table arsym_hash;
793 int indx;
794 struct bfd_link_hash_entry **pundef;
795
796 if (! bfd_has_map (abfd))
797 {
798 bfd_set_error (bfd_error_no_symbols);
799 return false;
800 }
801
802 arsyms = bfd_ardata (abfd)->symdefs;
803 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
804
805 /* In order to quickly determine whether an symbol is defined in
806 this archive, we build a hash table of the symbols. */
807 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
808 return false;
809 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
810 {
811 struct archive_hash_entry *arh;
812 struct archive_list *l;
813
814 arh = archive_hash_lookup (&arsym_hash, arsym->name, true, false);
815 if (arh == (struct archive_hash_entry *) NULL)
816 return false;
817 l = (struct archive_list *) alloca (sizeof (struct archive_list));
818 l->next = arh->defs;
819 arh->defs = l;
820 l->indx = indx;
821 }
822
823 pass = 1;
824
825 /* New undefined symbols are added to the end of the list, so we
826 only need to look through it once. */
827 pundef = &info->hash->undefs;
828 while (*pundef != (struct bfd_link_hash_entry *) NULL)
829 {
830 struct bfd_link_hash_entry *h;
831 struct archive_hash_entry *arh;
832 struct archive_list *l;
833
834 h = *pundef;
835
836 /* When a symbol is defined, it is not necessarily removed from
837 the list. */
838 if (h->type != bfd_link_hash_undefined
839 && h->type != bfd_link_hash_common)
840 {
841 /* Remove this entry from the list, for general cleanliness
842 and because we are going to look through the list again
843 if we search any more libraries. We can't remove the
844 entry if it is the tail, because that would lose any
845 entries we add to the list later on. */
846 if (*pundef != info->hash->undefs_tail)
847 *pundef = (*pundef)->next;
848 else
849 pundef = &(*pundef)->next;
850 continue;
851 }
852
853 /* Look for this symbol in the archive symbol map. */
854 arh = archive_hash_lookup (&arsym_hash, h->root.string, false, false);
855 if (arh == (struct archive_hash_entry *) NULL)
856 {
857 pundef = &(*pundef)->next;
858 continue;
859 }
860
861 /* Look at all the objects which define this symbol. */
862 for (l = arh->defs; l != (struct archive_list *) NULL; l = l->next)
863 {
864 bfd *element;
865 boolean needed;
866
867 /* If the symbol has gotten defined along the way, quit. */
868 if (h->type != bfd_link_hash_undefined
869 && h->type != bfd_link_hash_common)
870 break;
871
872 element = bfd_get_elt_at_index (abfd, l->indx);
873 if (element == (bfd *) NULL)
874 return false;
875
876 /* If we've already included this element, or if we've
877 already checked it on this pass, continue. */
878 if (element->archive_pass == -1
879 || element->archive_pass == pass)
880 continue;
881
882 /* If we can't figure this element out, just ignore it. */
883 if (! bfd_check_format (element, bfd_object))
884 {
885 element->archive_pass = -1;
886 continue;
887 }
888
889 /* CHECKFN will see if this element should be included, and
890 go ahead and include it if appropriate. */
891 if (! (*checkfn) (element, info, &needed))
892 return false;
893
894 if (! needed)
895 element->archive_pass = pass;
896 else
897 {
898 element->archive_pass = -1;
899
900 /* Increment the pass count to show that we may need to
901 recheck object files which were already checked. */
902 ++pass;
903 }
904 }
905
906 pundef = &(*pundef)->next;
907 }
908
909 archive_hash_table_free (&arsym_hash);
910
911 return true;
912 }
913 \f
914 /* See if we should include an archive element. */
915
916 static boolean
917 generic_link_check_archive_element (abfd, info, pneeded)
918 bfd *abfd;
919 struct bfd_link_info *info;
920 boolean *pneeded;
921 {
922 size_t symsize;
923 asymbol **symbols;
924 bfd_size_type symbol_count;
925 asymbol **pp, **ppend;
926
927 *pneeded = false;
928
929 symsize = get_symtab_upper_bound (abfd);
930 symbols = (asymbol **) alloca (symsize);
931 symbol_count = bfd_canonicalize_symtab (abfd, symbols);
932
933 pp = symbols;
934 ppend = symbols + symbol_count;
935 for (; pp < ppend; pp++)
936 {
937 asymbol *p;
938 struct bfd_link_hash_entry *h;
939
940 p = *pp;
941
942 /* We are only interested in globally visible symbols. */
943 if (! bfd_is_com_section (p->section)
944 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
945 continue;
946
947 /* We are only interested if we know something about this
948 symbol, and it is undefined or common. An undefined weak
949 symbol (type bfd_link_hash_weak) is not considered to be a
950 reference when pulling files out of an archive. See the SVR4
951 ABI, p. 4-27. */
952 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
953 false, true);
954 if (h == (struct bfd_link_hash_entry *) NULL
955 || (h->type != bfd_link_hash_undefined
956 && h->type != bfd_link_hash_common))
957 continue;
958
959 /* P is a symbol we are looking for. */
960
961 if (! bfd_is_com_section (p->section))
962 {
963 /* This object file defines this symbol, so pull it in. */
964 if (! (*info->callbacks->add_archive_element) (info, abfd,
965 bfd_asymbol_name (p)))
966 return false;
967 if (! generic_link_add_symbol_list (abfd, info, symbol_count,
968 symbols))
969 return false;
970 *pneeded = true;
971 return true;
972 }
973
974 /* P is a common symbol. */
975
976 if (h->type == bfd_link_hash_undefined)
977 {
978 bfd *symbfd;
979
980 symbfd = h->u.undef.abfd;
981 if (symbfd == (bfd *) NULL)
982 {
983 /* This symbol was created as undefined from outside
984 BFD. We assume that we should link in the object
985 file. This is for the -u option in the linker. */
986 if (! (*info->callbacks->add_archive_element)
987 (info, abfd, bfd_asymbol_name (p)))
988 return false;
989 *pneeded = true;
990 return true;
991 }
992
993 /* Turn the symbol into a common symbol but do not link in
994 the object file. This is how a.out works. Object
995 formats that require different semantics must implement
996 this function differently. This symbol is already on the
997 undefs list. We add the section to a common section
998 attached to symbfd to ensure that it is in a BFD which
999 will be linked in. */
1000 h->type = bfd_link_hash_common;
1001 h->u.c.size = bfd_asymbol_value (p);
1002 if (p->section == &bfd_com_section)
1003 h->u.c.section = bfd_make_section_old_way (symbfd, "COMMON");
1004 else
1005 h->u.c.section = bfd_make_section_old_way (symbfd,
1006 p->section->name);
1007 h->u.c.section->flags = SEC_ALLOC;
1008 }
1009 else
1010 {
1011 /* Adjust the size of the common symbol if necessary. This
1012 is how a.out works. Object formats that require
1013 different semantics must implement this function
1014 differently. */
1015 if (bfd_asymbol_value (p) > h->u.c.size)
1016 h->u.c.size = bfd_asymbol_value (p);
1017 }
1018 }
1019
1020 /* This archive element is not needed. */
1021 return true;
1022 }
1023
1024 /* Add the symbol from an object file to the global hash table. */
1025
1026 static boolean
1027 generic_link_add_symbol_list (abfd, info, symbol_count, symbols)
1028 bfd *abfd;
1029 struct bfd_link_info *info;
1030 bfd_size_type symbol_count;
1031 asymbol **symbols;
1032 {
1033 asymbol **pp, **ppend;
1034
1035 pp = symbols;
1036 ppend = symbols + symbol_count;
1037 for (; pp < ppend; pp++)
1038 {
1039 asymbol *p;
1040
1041 p = *pp;
1042
1043 if ((p->flags & (BSF_INDIRECT
1044 | BSF_WARNING
1045 | BSF_GLOBAL
1046 | BSF_CONSTRUCTOR
1047 | BSF_WEAK)) != 0
1048 || bfd_get_section (p) == &bfd_und_section
1049 || bfd_is_com_section (bfd_get_section (p))
1050 || bfd_get_section (p) == &bfd_ind_section)
1051 {
1052 const char *name;
1053 const char *string;
1054 struct generic_link_hash_entry *h;
1055
1056 name = bfd_asymbol_name (p);
1057 if ((p->flags & BSF_INDIRECT) != 0
1058 || p->section == &bfd_ind_section)
1059 string = bfd_asymbol_name ((asymbol *) p->value);
1060 else if ((p->flags & BSF_WARNING) != 0)
1061 {
1062 /* The name of P is actually the warning string, and the
1063 value is actually a pointer to the symbol to warn
1064 about. */
1065 string = name;
1066 name = bfd_asymbol_name ((asymbol *) p->value);
1067 }
1068 else
1069 string = NULL;
1070
1071 /* We pass the constructor argument as false, for
1072 compatibility. As backends are converted they can
1073 arrange to pass the right value (the right value is the
1074 size of a function pointer if gcc uses collect2 for the
1075 object file format, zero if it does not).
1076 FIXME: We pass the bitsize as 32, which is just plain
1077 wrong, but actually doesn't matter very much. */
1078 if (! (_bfd_generic_link_add_one_symbol
1079 (info, abfd, name, p->flags, bfd_get_section (p),
1080 p->value, string, false, 0, 32,
1081 (struct bfd_link_hash_entry **) &h)))
1082 return false;
1083
1084 /* Save the BFD symbol so that we don't lose any backend
1085 specific information that may be attached to it. We only
1086 want this one if it gives more information than the
1087 existing one; we don't want to replace a defined symbol
1088 with an undefined one. This routine may be called with a
1089 hash table other than the generic hash table, so we only
1090 do this if we are certain that the hash table is a
1091 generic one. */
1092 if (info->hash->creator == abfd->xvec)
1093 {
1094 if (h->sym == (asymbol *) NULL
1095 || (bfd_get_section (p) != &bfd_und_section
1096 && (! bfd_is_com_section (bfd_get_section (p))
1097 || (bfd_get_section (h->sym) == &bfd_und_section))))
1098 {
1099 h->sym = p;
1100 /* BSF_OLD_COMMON is a hack to support COFF reloc
1101 reading, and it should go away when the COFF
1102 linker is switched to the new version. */
1103 if (bfd_is_com_section (bfd_get_section (p)))
1104 p->flags |= BSF_OLD_COMMON;
1105 }
1106 }
1107 }
1108 }
1109
1110 return true;
1111 }
1112 \f
1113 /* We use a state table to deal with adding symbols from an object
1114 file. The first index into the state table describes the symbol
1115 from the object file. The second index into the state table is the
1116 type of the symbol in the hash table. */
1117
1118 /* The symbol from the object file is turned into one of these row
1119 values. */
1120
1121 enum link_row
1122 {
1123 UNDEF_ROW, /* Undefined. */
1124 UNDEFW_ROW, /* Weak undefined. */
1125 DEF_ROW, /* Defined. */
1126 DEFW_ROW, /* Weak defined. */
1127 COMMON_ROW, /* Common. */
1128 INDR_ROW, /* Indirect. */
1129 WARN_ROW, /* Warning. */
1130 SET_ROW /* Member of set. */
1131 };
1132
1133 /* The actions to take in the state table. */
1134
1135 enum link_action
1136 {
1137 FAIL, /* Abort. */
1138 UND, /* Mark symbol undefined. */
1139 WEAK, /* Mark symbol weak undefined. */
1140 DEF, /* Mark symbol defined. */
1141 COM, /* Mark symbol common. */
1142 CREF, /* Possibly warn about common reference to defined symbol. */
1143 CDEF, /* Define existing common symbol. */
1144 NOACT, /* No action. */
1145 BIG, /* Mark symbol common using largest size. */
1146 MDEF, /* Multiple definition error. */
1147 IND, /* Make indirect symbol. */
1148 SET, /* Add value to set. */
1149 MWARN, /* Make warning symbol. */
1150 WARN, /* Issue warning. */
1151 CYCLE, /* Repeat with symbol pointed to. */
1152 WARNC /* Issue warning and then CYCLE. */
1153 };
1154
1155 /* The state table itself. The first index is a link_row and the
1156 second index is a bfd_link_hash_type. */
1157
1158 static const enum link_action link_action[8][7] =
1159 {
1160 /* current\prev new undef weak def com indr warn */
1161 /* UNDEF_ROW */ {UND, NOACT, NOACT, NOACT, NOACT, CYCLE, WARNC },
1162 /* UNDEFW_ROW */ {WEAK, WEAK, NOACT, NOACT, NOACT, CYCLE, WARNC },
1163 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, CDEF, CYCLE, CYCLE },
1164 /* DEFW_ROW */ {DEF, DEF, DEF, NOACT, NOACT, CYCLE, CYCLE },
1165 /* COMMON_ROW */ {COM, COM, COM, CREF, BIG, CYCLE, WARNC },
1166 /* INDR_ROW */ {IND, IND, IND, MDEF, MDEF, MDEF, WARNC },
1167 /* WARN_ROW */ {MWARN, WARN, WARN, MWARN, MWARN, MWARN, NOACT },
1168 /* SET_ROW */ {SET, SET, SET, SET, SET, CYCLE, WARNC }
1169 };
1170
1171 /* Add a symbol to the global hash table.
1172 ABFD is the BFD the symbol comes from.
1173 NAME is the name of the symbol.
1174 FLAGS is the BSF_* bits associated with the symbol.
1175 SECTION is the section in which the symbol is defined; this may be
1176 bfd_und_section or bfd_com_section.
1177 VALUE is the value of the symbol, relative to the section.
1178 STRING is used for either an indirect symbol, in which case it is
1179 the name of the symbol to indirect to, or a warning symbol, in
1180 which case it is the warning string.
1181 COPY is true if NAME or STRING must be copied into locally
1182 allocated memory if they need to be saved.
1183 CONSTRUCTOR is true if we should automatically collect gcc
1184 constructor or destructor names.
1185 BITSIZE is the number of bits in constructor or set entries.
1186 HASHP, if not NULL, is a place to store the created hash table
1187 entry. */
1188
1189 boolean
1190 _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, value,
1191 string, copy, constructor, bitsize, hashp)
1192 struct bfd_link_info *info;
1193 bfd *abfd;
1194 const char *name;
1195 flagword flags;
1196 asection *section;
1197 bfd_vma value;
1198 const char *string;
1199 boolean copy;
1200 boolean constructor;
1201 unsigned int bitsize;
1202 struct bfd_link_hash_entry **hashp;
1203 {
1204 enum link_row row;
1205 struct bfd_link_hash_entry *h;
1206 boolean cycle;
1207
1208 if (section == &bfd_ind_section
1209 || (flags & BSF_INDIRECT) != 0)
1210 row = INDR_ROW;
1211 else if ((flags & BSF_WARNING) != 0)
1212 row = WARN_ROW;
1213 else if ((flags & BSF_CONSTRUCTOR) != 0)
1214 row = SET_ROW;
1215 else if (section == &bfd_und_section)
1216 {
1217 if ((flags & BSF_WEAK) != 0)
1218 row = UNDEFW_ROW;
1219 else
1220 row = UNDEF_ROW;
1221 }
1222 else if ((flags & BSF_WEAK) != 0)
1223 row = DEFW_ROW;
1224 else if (bfd_is_com_section (section))
1225 row = COMMON_ROW;
1226 else
1227 row = DEF_ROW;
1228
1229 h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1230 if (h == (struct bfd_link_hash_entry *) NULL)
1231 {
1232 if (hashp != (struct bfd_link_hash_entry **) NULL)
1233 *hashp = NULL;
1234 return false;
1235 }
1236
1237 if (info->notice_hash != (struct bfd_hash_table *) NULL
1238 && (bfd_hash_lookup (info->notice_hash, name, false, false)
1239 != (struct bfd_hash_entry *) NULL))
1240 {
1241 if (! (*info->callbacks->notice) (info, name, abfd, section, value))
1242 return false;
1243 }
1244
1245 if (hashp != (struct bfd_link_hash_entry **) NULL)
1246 *hashp = h;
1247
1248 do
1249 {
1250 enum link_action action;
1251
1252 cycle = false;
1253 action = link_action[(int) row][(int) h->type];
1254 switch (action)
1255 {
1256 case FAIL:
1257 abort ();
1258 case UND:
1259 h->type = bfd_link_hash_undefined;
1260 h->u.undef.abfd = abfd;
1261 bfd_link_add_undef (info->hash, h);
1262 break;
1263 case WEAK:
1264 h->type = bfd_link_hash_weak;
1265 h->u.undef.abfd = abfd;
1266 break;
1267 case CDEF:
1268 BFD_ASSERT (h->type == bfd_link_hash_common);
1269 if (! ((*info->callbacks->multiple_common)
1270 (info, name,
1271 h->u.c.section->owner, bfd_link_hash_common, h->u.c.size,
1272 abfd, bfd_link_hash_defined, (bfd_vma) 0)))
1273 return false;
1274 /* Fall through. */
1275 case DEF:
1276 h->type = bfd_link_hash_defined;
1277 h->u.def.section = section;
1278 h->u.def.value = value;
1279
1280 /* If we have been asked to, we act like collect2 and
1281 identify all functions that might be global constructors
1282 and destructors and pass them up in a callback. We only
1283 do this for certain object file types, since many object
1284 file types can handle this automatically. */
1285 if (constructor && name[0] == '_')
1286 {
1287 const char *s;
1288
1289 /* A constructor or destructor name starts like this:
1290 _+GLOBAL_[_.$][ID][_.$]
1291 where the first [_.$] and the second are the same
1292 character (we accept any character there, in case a
1293 new object file format comes along with even worse
1294 naming restrictions). */
1295
1296 #define CONS_PREFIX "GLOBAL_"
1297 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1298
1299 s = name + 1;
1300 while (*s == '_')
1301 ++s;
1302 if (s[0] == 'G'
1303 && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1304 {
1305 char c;
1306
1307 c = s[CONS_PREFIX_LEN + 1];
1308 if ((c == 'I' || c == 'D')
1309 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1310 {
1311 if (! ((*info->callbacks->constructor)
1312 (info,
1313 c == 'I' ? true : false, bitsize,
1314 name, abfd, section, value)))
1315 return false;
1316 }
1317 }
1318 }
1319
1320 break;
1321 case COM:
1322 if (h->type == bfd_link_hash_new)
1323 bfd_link_add_undef (info->hash, h);
1324 h->type = bfd_link_hash_common;
1325 h->u.c.size = value;
1326 if (section == &bfd_com_section)
1327 {
1328 h->u.c.section = bfd_make_section_old_way (abfd, "COMMON");
1329 h->u.c.section->flags = SEC_ALLOC;
1330 }
1331 else if (section->owner != abfd)
1332 {
1333 h->u.c.section = bfd_make_section_old_way (abfd, section->name);
1334 h->u.c.section->flags = SEC_ALLOC;
1335 }
1336 else
1337 h->u.c.section = section;
1338 break;
1339 case NOACT:
1340 break;
1341 case BIG:
1342 BFD_ASSERT (h->type == bfd_link_hash_common);
1343 if (! ((*info->callbacks->multiple_common)
1344 (info, name,
1345 h->u.c.section->owner, bfd_link_hash_common, h->u.c.size,
1346 abfd, bfd_link_hash_common, value)))
1347 return false;
1348 if (value > h->u.c.size)
1349 h->u.c.size = value;
1350 break;
1351 case CREF:
1352 BFD_ASSERT (h->type == bfd_link_hash_defined);
1353 if (! ((*info->callbacks->multiple_common)
1354 (info, name,
1355 h->u.def.section->owner, bfd_link_hash_defined, (bfd_vma) 0,
1356 abfd, bfd_link_hash_common, value)))
1357 return false;
1358 break;
1359 case MDEF:
1360 {
1361 asection *msec;
1362 bfd_vma mval;
1363
1364 switch (h->type)
1365 {
1366 case bfd_link_hash_defined:
1367 msec = h->u.def.section;
1368 mval = h->u.def.value;
1369 break;
1370 case bfd_link_hash_common:
1371 msec = &bfd_com_section;
1372 mval = h->u.c.size;
1373 break;
1374 case bfd_link_hash_indirect:
1375 msec = &bfd_ind_section;
1376 mval = 0;
1377 break;
1378 default:
1379 abort ();
1380 }
1381
1382 if (! ((*info->callbacks->multiple_definition)
1383 (info, name, msec->owner, msec, mval, abfd, section,
1384 value)))
1385 return false;
1386 }
1387 break;
1388 case IND:
1389 {
1390 struct bfd_link_hash_entry *inh;
1391
1392 /* STRING is the name of the symbol we want to indirect
1393 to. */
1394 inh = bfd_link_hash_lookup (info->hash, string, true, copy,
1395 false);
1396 if (inh == (struct bfd_link_hash_entry *) NULL)
1397 return false;
1398 if (inh->type == bfd_link_hash_new)
1399 {
1400 inh->type = bfd_link_hash_undefined;
1401 inh->u.undef.abfd = abfd;
1402 bfd_link_add_undef (info->hash, inh);
1403 }
1404 h->type = bfd_link_hash_indirect;
1405 h->u.i.link = inh;
1406 }
1407 break;
1408 case SET:
1409 if (! (*info->callbacks->add_to_set) (info, h, bitsize, abfd,
1410 section, value))
1411 return false;
1412 break;
1413 case WARN:
1414 case WARNC:
1415 if (h->u.i.warning != NULL)
1416 {
1417 if (! (*info->callbacks->warning) (info, h->u.i.warning))
1418 return false;
1419 /* Only issue a warning once. */
1420 h->u.i.warning = NULL;
1421 }
1422 if (action == WARN)
1423 break;
1424 /* Fall through. */
1425 case CYCLE:
1426 h = h->u.i.link;
1427 cycle = true;
1428 break;
1429 case MWARN:
1430 {
1431 struct bfd_link_hash_entry *sub;
1432
1433 /* STRING is the warning to give. */
1434 sub = ((struct bfd_link_hash_entry *)
1435 bfd_hash_allocate (&info->hash->table,
1436 sizeof (struct bfd_link_hash_entry)));
1437 if (!sub)
1438 {
1439 bfd_set_error (bfd_error_no_memory);
1440 return false;
1441 }
1442 *sub = *h;
1443 h->type = bfd_link_hash_warning;
1444 h->u.i.link = sub;
1445 if (! copy)
1446 h->u.i.warning = string;
1447 else
1448 {
1449 char *w;
1450
1451 w = bfd_hash_allocate (&info->hash->table,
1452 strlen (string) + 1);
1453 strcpy (w, string);
1454 h->u.i.warning = w;
1455 }
1456 }
1457 break;
1458 }
1459 }
1460 while (cycle);
1461
1462 return true;
1463 }
1464 \f
1465 /* Generic final link routine. */
1466
1467 boolean
1468 _bfd_generic_final_link (abfd, info)
1469 bfd *abfd;
1470 struct bfd_link_info *info;
1471 {
1472 bfd *sub;
1473 asection *o;
1474 struct bfd_link_order *p;
1475 size_t outsymalloc;
1476 struct generic_write_global_symbol_info wginfo;
1477
1478 abfd->outsymbols = (asymbol **) NULL;
1479 abfd->symcount = 0;
1480 outsymalloc = 0;
1481
1482 /* Build the output symbol table. This also reads in the symbols
1483 for all the input BFDs, keeping them in the outsymbols field. */
1484 for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
1485 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1486 return false;
1487
1488 /* Accumulate the global symbols. */
1489 wginfo.info = info;
1490 wginfo.output_bfd = abfd;
1491 wginfo.psymalloc = &outsymalloc;
1492 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1493 _bfd_generic_link_write_global_symbol,
1494 (PTR) &wginfo);
1495
1496 if (info->relocateable)
1497 {
1498 /* Allocate space for the output relocs for each section. */
1499 for (o = abfd->sections;
1500 o != (asection *) NULL;
1501 o = o->next)
1502 {
1503 o->reloc_count = 0;
1504 for (p = o->link_order_head;
1505 p != (struct bfd_link_order *) NULL;
1506 p = p->next)
1507 {
1508 if (p->type == bfd_indirect_link_order)
1509 {
1510 asection *input_section;
1511 bfd *input_bfd;
1512 bfd_size_type relsize;
1513 arelent **relocs;
1514 bfd_size_type reloc_count;
1515
1516 input_section = p->u.indirect.section;
1517 input_bfd = input_section->owner;
1518 relsize = bfd_get_reloc_upper_bound (input_bfd,
1519 input_section);
1520 relocs = (arelent **) malloc ((size_t) relsize);
1521 if (!relocs)
1522 {
1523 bfd_set_error (bfd_error_no_memory);
1524 return false;
1525 }
1526 reloc_count =
1527 bfd_canonicalize_reloc (input_bfd, input_section,
1528 relocs,
1529 bfd_get_outsymbols (input_bfd));
1530 BFD_ASSERT (reloc_count == input_section->reloc_count);
1531 o->reloc_count += reloc_count;
1532 free (relocs);
1533 }
1534 }
1535 if (o->reloc_count > 0)
1536 {
1537 o->orelocation = ((arelent **)
1538 bfd_alloc (abfd,
1539 (o->reloc_count
1540 * sizeof (arelent *))));
1541 if (!o->orelocation)
1542 {
1543 bfd_set_error (bfd_error_no_memory);
1544 return false;
1545 }
1546 /* Reset the count so that it can be used as an index
1547 when putting in the output relocs. */
1548 o->reloc_count = 0;
1549 }
1550 }
1551 }
1552
1553 /* Handle all the link order information for the sections. */
1554 for (o = abfd->sections;
1555 o != (asection *) NULL;
1556 o = o->next)
1557 {
1558 for (p = o->link_order_head;
1559 p != (struct bfd_link_order *) NULL;
1560 p = p->next)
1561 {
1562 if (! _bfd_default_link_order (abfd, info, o, p))
1563 return false;
1564 }
1565 }
1566
1567 return true;
1568 }
1569
1570 /* Add an output symbol to the output BFD. */
1571
1572 static boolean
1573 generic_add_output_symbol (output_bfd, psymalloc, sym)
1574 bfd *output_bfd;
1575 size_t *psymalloc;
1576 asymbol *sym;
1577 {
1578 if (output_bfd->symcount >= *psymalloc)
1579 {
1580 asymbol **newsyms;
1581
1582 if (*psymalloc == 0)
1583 *psymalloc = 124;
1584 else
1585 *psymalloc *= 2;
1586 if (output_bfd->outsymbols == (asymbol **) NULL)
1587 newsyms = (asymbol **) malloc (*psymalloc * sizeof (asymbol *));
1588 else
1589 newsyms = (asymbol **) realloc (output_bfd->outsymbols,
1590 *psymalloc * sizeof (asymbol *));
1591 if (newsyms == (asymbol **) NULL)
1592 {
1593 bfd_set_error (bfd_error_no_memory);
1594 return false;
1595 }
1596 output_bfd->outsymbols = newsyms;
1597 }
1598
1599 output_bfd->outsymbols[output_bfd->symcount] = sym;
1600 ++output_bfd->symcount;
1601
1602 return true;
1603 }
1604
1605 /* Handle the symbols for an input BFD. */
1606
1607 boolean
1608 _bfd_generic_link_output_symbols (output_bfd, input_bfd, info, psymalloc)
1609 bfd *output_bfd;
1610 bfd *input_bfd;
1611 struct bfd_link_info *info;
1612 size_t *psymalloc;
1613 {
1614 size_t symsize;
1615 asymbol **sym_ptr;
1616 asymbol **sym_end;
1617
1618 symsize = get_symtab_upper_bound (input_bfd);
1619 input_bfd->outsymbols = (asymbol **) bfd_alloc (input_bfd, symsize);
1620 if (!input_bfd->outsymbols)
1621 {
1622 bfd_set_error (bfd_error_no_memory);
1623 return false;
1624 }
1625 input_bfd->symcount = bfd_canonicalize_symtab (input_bfd,
1626 input_bfd->outsymbols);
1627
1628 /* Create a filename symbol if we are supposed to. */
1629 if (info->create_object_symbols_section != (asection *) NULL)
1630 {
1631 asection *sec;
1632
1633 for (sec = input_bfd->sections;
1634 sec != (asection *) NULL;
1635 sec = sec->next)
1636 {
1637 if (sec->output_section == info->create_object_symbols_section)
1638 {
1639 asymbol *newsym;
1640
1641 newsym = bfd_make_empty_symbol (input_bfd);
1642 if (!newsym)
1643 return false;
1644 newsym->name = input_bfd->filename;
1645 newsym->value = 0;
1646 newsym->flags = BSF_LOCAL | BSF_FILE;
1647 newsym->section = sec;
1648
1649 if (! generic_add_output_symbol (output_bfd, psymalloc,
1650 newsym))
1651 return false;
1652
1653 break;
1654 }
1655 }
1656 }
1657
1658 /* Adjust the values of the globally visible symbols, and write out
1659 local symbols. */
1660 sym_ptr = bfd_get_outsymbols (input_bfd);
1661 sym_end = sym_ptr + bfd_get_symcount (input_bfd);
1662 for (; sym_ptr < sym_end; sym_ptr++)
1663 {
1664 asymbol *sym;
1665 struct generic_link_hash_entry *h;
1666 boolean output;
1667
1668 h = (struct generic_link_hash_entry *) NULL;
1669 sym = *sym_ptr;
1670 if ((sym->flags & (BSF_INDIRECT
1671 | BSF_WARNING
1672 | BSF_GLOBAL
1673 | BSF_CONSTRUCTOR
1674 | BSF_WEAK)) != 0
1675 || bfd_get_section (sym) == &bfd_und_section
1676 || bfd_is_com_section (bfd_get_section (sym))
1677 || bfd_get_section (sym) == &bfd_ind_section)
1678 {
1679 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
1680 bfd_asymbol_name (sym),
1681 false, false, true);
1682 if (h != (struct generic_link_hash_entry *) NULL)
1683 {
1684 /* Force all references to this symbol to point to
1685 the same area in memory. It is possible that
1686 this routine will be called with a hash table
1687 other than a generic hash table, so we double
1688 check that. */
1689 if (info->hash->creator == input_bfd->xvec)
1690 {
1691 if (h->sym != (asymbol *) NULL)
1692 *sym_ptr = sym = h->sym;
1693 }
1694
1695 switch (h->root.type)
1696 {
1697 default:
1698 case bfd_link_hash_new:
1699 abort ();
1700 case bfd_link_hash_undefined:
1701 case bfd_link_hash_weak:
1702 break;
1703 case bfd_link_hash_defined:
1704 sym->value = h->root.u.def.value;
1705 sym->section = h->root.u.def.section;
1706 sym->flags |= BSF_GLOBAL;
1707 break;
1708 case bfd_link_hash_common:
1709 sym->value = h->root.u.c.size;
1710 sym->flags |= BSF_GLOBAL;
1711 if (! bfd_is_com_section (sym->section))
1712 {
1713 BFD_ASSERT (sym->section == &bfd_und_section);
1714 sym->section = &bfd_com_section;
1715 }
1716 /* We do not set the section of the symbol to
1717 h->root.u.c.section. That value was saved so
1718 that we would know where to allocate the symbol
1719 if it was defined. In this case the type is
1720 still bfd_link_hash_common, so we did not define
1721 it, so we do not want to use that section. */
1722 break;
1723 }
1724 }
1725 }
1726
1727 /* This switch is straight from the old code in
1728 write_file_locals in ldsym.c. */
1729 if (info->strip == strip_some
1730 && (bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
1731 false, false)
1732 == (struct bfd_hash_entry *) NULL))
1733 output = false;
1734 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
1735 {
1736 /* If this symbol is marked as occurring now, rather
1737 than at the end, output it now. This is used for
1738 COFF C_EXT FCN symbols. FIXME: There must be a
1739 better way. */
1740 if (bfd_asymbol_bfd (sym) == input_bfd
1741 && (sym->flags & BSF_NOT_AT_END) != 0)
1742 output = true;
1743 else
1744 output = false;
1745 }
1746 else if (sym->section == &bfd_ind_section)
1747 output = false;
1748 else if ((sym->flags & BSF_DEBUGGING) != 0)
1749 {
1750 if (info->strip == strip_none)
1751 output = true;
1752 else
1753 output = false;
1754 }
1755 else if (sym->section == &bfd_und_section
1756 || bfd_is_com_section (sym->section))
1757 output = false;
1758 else if ((sym->flags & BSF_LOCAL) != 0)
1759 {
1760 if ((sym->flags & BSF_WARNING) != 0)
1761 output = false;
1762 else
1763 {
1764 switch (info->discard)
1765 {
1766 default:
1767 case discard_all:
1768 output = false;
1769 break;
1770 case discard_l:
1771 if (bfd_asymbol_name (sym)[0] == info->lprefix[0]
1772 && (info->lprefix_len == 1
1773 || strncmp (bfd_asymbol_name (sym), info->lprefix,
1774 info->lprefix_len) == 0))
1775 output = false;
1776 else
1777 output = true;
1778 break;
1779 case discard_none:
1780 output = true;
1781 break;
1782 }
1783 }
1784 }
1785 else if ((sym->flags & BSF_CONSTRUCTOR))
1786 {
1787 if (info->strip != strip_all)
1788 output = true;
1789 else
1790 output = false;
1791 }
1792 else
1793 abort ();
1794
1795 if (output)
1796 {
1797 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
1798 return false;
1799 if (h != (struct generic_link_hash_entry *) NULL)
1800 h->root.written = true;
1801 }
1802 }
1803
1804 return true;
1805 }
1806
1807 /* Write out a global symbol, if it hasn't already been written out.
1808 This is called for each symbol in the hash table. */
1809
1810 boolean
1811 _bfd_generic_link_write_global_symbol (h, data)
1812 struct generic_link_hash_entry *h;
1813 PTR data;
1814 {
1815 struct generic_write_global_symbol_info *wginfo =
1816 (struct generic_write_global_symbol_info *) data;
1817 asymbol *sym;
1818
1819 if (h->root.written)
1820 return true;
1821
1822 h->root.written = true;
1823
1824 if (wginfo->info->strip == strip_all
1825 || (wginfo->info->strip == strip_some
1826 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
1827 false, false) == NULL))
1828 return true;
1829
1830 if (h->sym != (asymbol *) NULL)
1831 {
1832 sym = h->sym;
1833 BFD_ASSERT (strcmp (bfd_asymbol_name (sym), h->root.root.string) == 0);
1834 }
1835 else
1836 {
1837 sym = bfd_make_empty_symbol (wginfo->output_bfd);
1838 if (!sym)
1839 return false;
1840 sym->name = h->root.root.string;
1841 sym->flags = 0;
1842 }
1843
1844 switch (h->root.type)
1845 {
1846 default:
1847 case bfd_link_hash_new:
1848 abort ();
1849 case bfd_link_hash_undefined:
1850 sym->section = &bfd_und_section;
1851 sym->value = 0;
1852 break;
1853 case bfd_link_hash_weak:
1854 sym->section = &bfd_und_section;
1855 sym->value = 0;
1856 sym->flags |= BSF_WEAK;
1857 case bfd_link_hash_defined:
1858 sym->section = h->root.u.def.section;
1859 sym->value = h->root.u.def.value;
1860 break;
1861 case bfd_link_hash_common:
1862 sym->value = h->root.u.c.size;
1863 if (! bfd_is_com_section (sym->section))
1864 {
1865 BFD_ASSERT (sym->section == &bfd_und_section);
1866 sym->section = &bfd_com_section;
1867 }
1868 /* Do not set the section; see _bfd_generic_link_output_symbols. */
1869 break;
1870 case bfd_link_hash_indirect:
1871 case bfd_link_hash_warning:
1872 /* FIXME: What should we do here? */
1873 break;
1874 }
1875
1876 sym->flags |= BSF_GLOBAL;
1877
1878 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
1879 sym))
1880 {
1881 /* FIXME: No way to return failure. */
1882 abort ();
1883 }
1884
1885 return true;
1886 }
1887 \f
1888 /* Allocate a new link_order for a section. */
1889
1890 struct bfd_link_order *
1891 bfd_new_link_order (abfd, section)
1892 bfd *abfd;
1893 asection *section;
1894 {
1895 struct bfd_link_order *new;
1896
1897 new = ((struct bfd_link_order *)
1898 bfd_alloc_by_size_t (abfd, sizeof (struct bfd_link_order)));
1899 if (!new)
1900 {
1901 bfd_set_error (bfd_error_no_memory);
1902 return NULL;
1903 }
1904
1905 new->type = bfd_undefined_link_order;
1906 new->offset = 0;
1907 new->size = 0;
1908 new->next = (struct bfd_link_order *) NULL;
1909
1910 if (section->link_order_tail != (struct bfd_link_order *) NULL)
1911 section->link_order_tail->next = new;
1912 else
1913 section->link_order_head = new;
1914 section->link_order_tail = new;
1915
1916 return new;
1917 }
1918
1919 /* Default link order processing routine. */
1920
1921 boolean
1922 _bfd_default_link_order (abfd, info, sec, link_order)
1923 bfd *abfd;
1924 struct bfd_link_info *info;
1925 asection *sec;
1926 struct bfd_link_order *link_order;
1927 {
1928 switch (link_order->type)
1929 {
1930 case bfd_undefined_link_order:
1931 default:
1932 abort ();
1933 case bfd_indirect_link_order:
1934 return default_indirect_link_order (abfd, info, sec, link_order);
1935 case bfd_fill_link_order:
1936 return default_fill_link_order (abfd, info, sec, link_order);
1937 }
1938 }
1939
1940 /* Default routine to handle a bfd_fill_link_order. */
1941
1942 /*ARGSUSED*/
1943 static boolean
1944 default_fill_link_order (abfd, info, sec, link_order)
1945 bfd *abfd;
1946 struct bfd_link_info *info;
1947 asection *sec;
1948 struct bfd_link_order *link_order;
1949 {
1950 size_t size;
1951 char *space;
1952 size_t i;
1953 int fill;
1954
1955 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
1956
1957 size = (size_t) link_order->size;
1958 space = (char *) alloca (size);
1959 fill = link_order->u.fill.value;
1960 for (i = 0; i < size; i += 2)
1961 space[i] = fill >> 8;
1962 for (i = 1; i < size; i += 2)
1963 space[i] = fill;
1964 return bfd_set_section_contents (abfd, sec, space,
1965 (file_ptr) link_order->offset,
1966 link_order->size);
1967 }
1968
1969 /* Default routine to handle a bfd_indirect_link_order. */
1970
1971 static boolean
1972 default_indirect_link_order (output_bfd, info, output_section, link_order)
1973 bfd *output_bfd;
1974 struct bfd_link_info *info;
1975 asection *output_section;
1976 struct bfd_link_order *link_order;
1977 {
1978 asection *input_section;
1979 bfd *input_bfd;
1980 bfd_byte *contents;
1981
1982 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
1983
1984 if (link_order->size == 0)
1985 return true;
1986
1987 input_section = link_order->u.indirect.section;
1988 input_bfd = input_section->owner;
1989
1990 BFD_ASSERT (input_section->output_section == output_section);
1991 BFD_ASSERT (input_section->output_offset == link_order->offset);
1992 BFD_ASSERT (input_section->_cooked_size == link_order->size);
1993
1994 if (info->relocateable
1995 && input_section->reloc_count > 0
1996 && output_section->orelocation == (arelent **) NULL)
1997 {
1998 /* Space has not been allocated for the output relocations.
1999 This can happen when we are called by a specific backend
2000 because somebody is attempting to link together different
2001 types of object files. Handling this case correctly is
2002 difficult, and sometimes impossible. */
2003 abort ();
2004 }
2005
2006 /* Get the canonical symbols. The generic linker will always have
2007 retrieved them by this point, but we may be being called by a
2008 specific linker when linking different types of object files
2009 together. */
2010 if (bfd_get_outsymbols (input_bfd) == (asymbol **) NULL)
2011 {
2012 size_t symsize;
2013
2014 symsize = get_symtab_upper_bound (input_bfd);
2015 input_bfd->outsymbols = (asymbol **) bfd_alloc (input_bfd, symsize);
2016 if (!input_bfd->outsymbols)
2017 {
2018 bfd_set_error (bfd_error_no_memory);
2019 return false;
2020 }
2021 input_bfd->symcount = bfd_canonicalize_symtab (input_bfd,
2022 input_bfd->outsymbols);
2023 }
2024
2025 /* Get and relocate the section contents. */
2026 contents = (bfd_byte *) alloca (bfd_section_size (input_bfd, input_section));
2027 contents = (bfd_get_relocated_section_contents
2028 (output_bfd, info, link_order, contents, info->relocateable,
2029 bfd_get_outsymbols (input_bfd)));
2030 if (!contents)
2031 return false;
2032
2033 /* Output the section contents. */
2034 if (! bfd_set_section_contents (output_bfd, output_section, (PTR) contents,
2035 link_order->offset, link_order->size))
2036 return false;
2037
2038 return true;
2039 }
This page took 0.078145 seconds and 4 git commands to generate.