* aoutx.h (KEEPIT): Change definition to udata.i.
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "bfdlink.h"
25 #include "genlink.h"
26
27 /*
28 SECTION
29 Linker Functions
30
31 @cindex Linker
32 The linker uses three special entry points in the BFD target
33 vector. It is not necessary to write special routines for
34 these entry points when creating a new BFD back end, since
35 generic versions are provided. However, writing them can
36 speed up linking and make it use significantly less runtime
37 memory.
38
39 The first routine creates a hash table used by the other
40 routines. The second routine adds the symbols from an object
41 file to the hash table. The third routine takes all the
42 object files and links them together to create the output
43 file. These routines are designed so that the linker proper
44 does not need to know anything about the symbols in the object
45 files that it is linking. The linker merely arranges the
46 sections as directed by the linker script and lets BFD handle
47 the details of symbols and relocs.
48
49 The second routine and third routines are passed a pointer to
50 a <<struct bfd_link_info>> structure (defined in
51 <<bfdlink.h>>) which holds information relevant to the link,
52 including the linker hash table (which was created by the
53 first routine) and a set of callback functions to the linker
54 proper.
55
56 The generic linker routines are in <<linker.c>>, and use the
57 header file <<genlink.h>>. As of this writing, the only back
58 ends which have implemented versions of these routines are
59 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
60 routines are used as examples throughout this section.
61
62 @menu
63 @* Creating a Linker Hash Table::
64 @* Adding Symbols to the Hash Table::
65 @* Performing the Final Link::
66 @end menu
67
68 INODE
69 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
70 SUBSECTION
71 Creating a linker hash table
72
73 @cindex _bfd_link_hash_table_create in target vector
74 @cindex target vector (_bfd_link_hash_table_create)
75 The linker routines must create a hash table, which must be
76 derived from <<struct bfd_link_hash_table>> described in
77 <<bfdlink.c>>. @xref{Hash Tables} for information on how to
78 create a derived hash table. This entry point is called using
79 the target vector of the linker output file.
80
81 The <<_bfd_link_hash_table_create>> entry point must allocate
82 and initialize an instance of the desired hash table. If the
83 back end does not require any additional information to be
84 stored with the entries in the hash table, the entry point may
85 simply create a <<struct bfd_link_hash_table>>. Most likely,
86 however, some additional information will be needed.
87
88 For example, with each entry in the hash table the a.out
89 linker keeps the index the symbol has in the final output file
90 (this index number is used so that when doing a relocateable
91 link the symbol index used in the output file can be quickly
92 filled in when copying over a reloc). The a.out linker code
93 defines the required structures and functions for a hash table
94 derived from <<struct bfd_link_hash_table>>. The a.out linker
95 hash table is created by the function
96 <<NAME(aout,link_hash_table_create)>>; it simply allocates
97 space for the hash table, initializes it, and returns a
98 pointer to it.
99
100 When writing the linker routines for a new back end, you will
101 generally not know exactly which fields will be required until
102 you have finished. You should simply create a new hash table
103 which defines no additional fields, and then simply add fields
104 as they become necessary.
105
106 INODE
107 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
108 SUBSECTION
109 Adding symbols to the hash table
110
111 @cindex _bfd_link_add_symbols in target vector
112 @cindex target vector (_bfd_link_add_symbols)
113 The linker proper will call the <<_bfd_link_add_symbols>>
114 entry point for each object file or archive which is to be
115 linked (typically these are the files named on the command
116 line, but some may also come from the linker script). The
117 entry point is responsible for examining the file. For an
118 object file, BFD must add any relevant symbol information to
119 the hash table. For an archive, BFD must determine which
120 elements of the archive should be used and adding them to the
121 link.
122
123 The a.out version of this entry point is
124 <<NAME(aout,link_add_symbols)>>.
125
126 @menu
127 @* Differing file formats::
128 @* Adding symbols from an object file::
129 @* Adding symbols from an archive::
130 @end menu
131
132 INODE
133 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
134 SUBSUBSECTION
135 Differing file formats
136
137 Normally all the files involved in a link will be of the same
138 format, but it is also possible to link together different
139 format object files, and the back end must support that. The
140 <<_bfd_link_add_symbols>> entry point is called via the target
141 vector of the file to be added. This has an important
142 consequence: the function may not assume that the hash table
143 is the type created by the corresponding
144 <<_bfd_link_hash_table_create>> vector. All the
145 <<_bfd_link_add_symbols>> function can assume about the hash
146 table is that it is derived from <<struct
147 bfd_link_hash_table>>.
148
149 Sometimes the <<_bfd_link_add_symbols>> function must store
150 some information in the hash table entry to be used by the
151 <<_bfd_final_link>> function. In such a case the <<creator>>
152 field of the hash table must be checked to make sure that the
153 hash table was created by an object file of the same format.
154
155 The <<_bfd_final_link>> routine must be prepared to handle a
156 hash entry without any extra information added by the
157 <<_bfd_link_add_symbols>> function. A hash entry without
158 extra information will also occur when the linker script
159 directs the linker to create a symbol. Note that, regardless
160 of how a hash table entry is added, all the fields will be
161 initialized to some sort of null value by the hash table entry
162 initialization function.
163
164 See <<ecoff_link_add_externals>> for an example of how to
165 check the <<creator>> field before saving information (in this
166 case, the ECOFF external symbol debugging information) in a
167 hash table entry.
168
169 INODE
170 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
171 SUBSUBSECTION
172 Adding symbols from an object file
173
174 When the <<_bfd_link_add_symbols>> routine is passed an object
175 file, it must add all externally visible symbols in that
176 object file to the hash table. The actual work of adding the
177 symbol to the hash table is normally handled by the function
178 <<_bfd_generic_link_add_one_symbol>>. The
179 <<_bfd_link_add_symbols>> routine is responsible for reading
180 all the symbols from the object file and passing the correct
181 information to <<_bfd_generic_link_add_one_symbol>>.
182
183 The <<_bfd_link_add_symbols>> routine should not use
184 <<bfd_canonicalize_symtab>> to read the symbols. The point of
185 providing this routine is to avoid the overhead of converting
186 the symbols into generic <<asymbol>> structures.
187
188 @findex _bfd_generic_link_add_one_symbol
189 <<_bfd_generic_link_add_one_symbol>> handles the details of
190 combining common symbols, warning about multiple definitions,
191 and so forth. It takes arguments which describe the symbol to
192 add, notably symbol flags, a section, and an offset. The
193 symbol flags include such things as <<BSF_WEAK>> or
194 <<BSF_INDIRECT>>. The section is a section in the object
195 file, or something like <<bfd_und_section_ptr>> for an undefined
196 symbol or <<bfd_com_section_ptr>> for a common symbol.
197
198 If the <<_bfd_final_link>> routine is also going to need to
199 read the symbol information, the <<_bfd_link_add_symbols>>
200 routine should save it somewhere attached to the object file
201 BFD. However, the information should only be saved if the
202 <<keep_memory>> field of the <<info>> argument is true, so
203 that the <<-no-keep-memory>> linker switch is effective.
204
205 The a.out function which adds symbols from an object file is
206 <<aout_link_add_object_symbols>>, and most of the interesting
207 work is in <<aout_link_add_symbols>>. The latter saves
208 pointers to the hash tables entries created by
209 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
210 so that the <<_bfd_final_link>> routine does not have to call
211 the hash table lookup routine to locate the entry.
212
213 INODE
214 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
215 SUBSUBSECTION
216 Adding symbols from an archive
217
218 When the <<_bfd_link_add_symbols>> routine is passed an
219 archive, it must look through the symbols defined by the
220 archive and decide which elements of the archive should be
221 included in the link. For each such element it must call the
222 <<add_archive_element>> linker callback, and it must add the
223 symbols from the object file to the linker hash table.
224
225 @findex _bfd_generic_link_add_archive_symbols
226 In most cases the work of looking through the symbols in the
227 archive should be done by the
228 <<_bfd_generic_link_add_archive_symbols>> function. This
229 function builds a hash table from the archive symbol table and
230 looks through the list of undefined symbols to see which
231 elements should be included.
232 <<_bfd_generic_link_add_archive_symbols>> is passed a function
233 to call to make the final decision about adding an archive
234 element to the link and to do the actual work of adding the
235 symbols to the linker hash table.
236
237 The function passed to
238 <<_bfd_generic_link_add_archive_symbols>> must read the
239 symbols of the archive element and decide whether the archive
240 element should be included in the link. If the element is to
241 be included, the <<add_archive_element>> linker callback
242 routine must be called with the element as an argument, and
243 the elements symbols must be added to the linker hash table
244 just as though the element had itself been passed to the
245 <<_bfd_link_add_symbols>> function.
246
247 When the a.out <<_bfd_link_add_symbols>> function receives an
248 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
249 passing <<aout_link_check_archive_element>> as the function
250 argument. <<aout_link_check_archive_element>> calls
251 <<aout_link_check_ar_symbols>>. If the latter decides to add
252 the element (an element is only added if it provides a real,
253 non-common, definition for a previously undefined or common
254 symbol) it calls the <<add_archive_element>> callback and then
255 <<aout_link_check_archive_element>> calls
256 <<aout_link_add_symbols>> to actually add the symbols to the
257 linker hash table.
258
259 The ECOFF back end is unusual in that it does not normally
260 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
261 archives already contain a hash table of symbols. The ECOFF
262 back end searches the archive itself to avoid the overhead of
263 creating a new hash table.
264
265 INODE
266 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
267 SUBSECTION
268 Performing the final link
269
270 @cindex _bfd_link_final_link in target vector
271 @cindex target vector (_bfd_final_link)
272 When all the input files have been processed, the linker calls
273 the <<_bfd_final_link>> entry point of the output BFD. This
274 routine is responsible for producing the final output file,
275 which has several aspects. It must relocate the contents of
276 the input sections and copy the data into the output sections.
277 It must build an output symbol table including any local
278 symbols from the input files and the global symbols from the
279 hash table. When producing relocateable output, it must
280 modify the input relocs and write them into the output file.
281 There may also be object format dependent work to be done.
282
283 The linker will also call the <<write_object_contents>> entry
284 point when the BFD is closed. The two entry points must work
285 together in order to produce the correct output file.
286
287 The details of how this works are inevitably dependent upon
288 the specific object file format. The a.out
289 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
290
291 @menu
292 @* Information provided by the linker::
293 @* Relocating the section contents::
294 @* Writing the symbol table::
295 @end menu
296
297 INODE
298 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
299 SUBSUBSECTION
300 Information provided by the linker
301
302 Before the linker calls the <<_bfd_final_link>> entry point,
303 it sets up some data structures for the function to use.
304
305 The <<input_bfds>> field of the <<bfd_link_info>> structure
306 will point to a list of all the input files included in the
307 link. These files are linked through the <<link_next>> field
308 of the <<bfd>> structure.
309
310 Each section in the output file will have a list of
311 <<link_order>> structures attached to the <<link_order_head>>
312 field (the <<link_order>> structure is defined in
313 <<bfdlink.h>>). These structures describe how to create the
314 contents of the output section in terms of the contents of
315 various input sections, fill constants, and, eventually, other
316 types of information. They also describe relocs that must be
317 created by the BFD backend, but do not correspond to any input
318 file; this is used to support -Ur, which builds constructors
319 while generating a relocateable object file.
320
321 INODE
322 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
323 SUBSUBSECTION
324 Relocating the section contents
325
326 The <<_bfd_final_link>> function should look through the
327 <<link_order>> structures attached to each section of the
328 output file. Each <<link_order>> structure should either be
329 handled specially, or it should be passed to the function
330 <<_bfd_default_link_order>> which will do the right thing
331 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
332
333 For efficiency, a <<link_order>> of type
334 <<bfd_indirect_link_order>> whose associated section belongs
335 to a BFD of the same format as the output BFD must be handled
336 specially. This type of <<link_order>> describes part of an
337 output section in terms of a section belonging to one of the
338 input files. The <<_bfd_final_link>> function should read the
339 contents of the section and any associated relocs, apply the
340 relocs to the section contents, and write out the modified
341 section contents. If performing a relocateable link, the
342 relocs themselves must also be modified and written out.
343
344 @findex _bfd_relocate_contents
345 @findex _bfd_final_link_relocate
346 The functions <<_bfd_relocate_contents>> and
347 <<_bfd_final_link_relocate>> provide some general support for
348 performing the actual relocations, notably overflow checking.
349 Their arguments include information about the symbol the
350 relocation is against and a <<reloc_howto_type>> argument
351 which describes the relocation to perform. These functions
352 are defined in <<reloc.c>>.
353
354 The a.out function which handles reading, relocating, and
355 writing section contents is <<aout_link_input_section>>. The
356 actual relocation is done in <<aout_link_input_section_std>>
357 and <<aout_link_input_section_ext>>.
358
359 INODE
360 Writing the symbol table, , Relocating the section contents, Performing the Final Link
361 SUBSUBSECTION
362 Writing the symbol table
363
364 The <<_bfd_final_link>> function must gather all the symbols
365 in the input files and write them out. It must also write out
366 all the symbols in the global hash table. This must be
367 controlled by the <<strip>> and <<discard>> fields of the
368 <<bfd_link_info>> structure.
369
370 The local symbols of the input files will not have been
371 entered into the linker hash table. The <<_bfd_final_link>>
372 routine must consider each input file and include the symbols
373 in the output file. It may be convenient to do this when
374 looking through the <<link_order>> structures, or it may be
375 done by stepping through the <<input_bfds>> list.
376
377 The <<_bfd_final_link>> routine must also traverse the global
378 hash table to gather all the externally visible symbols. It
379 is possible that most of the externally visible symbols may be
380 written out when considering the symbols of each input file,
381 but it is still necessary to traverse the hash table since the
382 linker script may have defined some symbols that are not in
383 any of the input files.
384
385 The <<strip>> field of the <<bfd_link_info>> structure
386 controls which symbols are written out. The possible values
387 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
388 then the <<keep_hash>> field of the <<bfd_link_info>>
389 structure is a hash table of symbols to keep; each symbol
390 should be looked up in this hash table, and only symbols which
391 are present should be included in the output file.
392
393 If the <<strip>> field of the <<bfd_link_info>> structure
394 permits local symbols to be written out, the <<discard>> field
395 is used to further controls which local symbols are included
396 in the output file. If the value is <<discard_l>>, then all
397 local symbols which begin with a certain prefix are discarded;
398 this prefix is described by the <<lprefix>> and
399 <<lprefix_len>> fields of the <<bfd_link_info>> structure.
400
401 The a.out backend handles symbols by calling
402 <<aout_link_write_symbols>> on each input BFD and then
403 traversing the global hash table with the function
404 <<aout_link_write_other_symbol>>. It builds a string table
405 while writing out the symbols, which is written to the output
406 file at the end of <<NAME(aout,final_link)>>.
407 */
408
409 static struct bfd_hash_entry *generic_link_hash_newfunc
410 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *,
411 const char *));
412 static boolean generic_link_read_symbols
413 PARAMS ((bfd *));
414 static boolean generic_link_add_symbols
415 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
416 static boolean generic_link_add_object_symbols
417 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
418 static boolean generic_link_check_archive_element_no_collect
419 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
420 static boolean generic_link_check_archive_element_collect
421 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
422 static boolean generic_link_check_archive_element
423 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded, boolean collect));
424 static boolean generic_link_add_symbol_list
425 PARAMS ((bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
426 boolean collect));
427 static void set_symbol_from_hash
428 PARAMS ((asymbol *, struct bfd_link_hash_entry *));
429 static boolean generic_add_output_symbol
430 PARAMS ((bfd *, size_t *psymalloc, asymbol *));
431 static boolean default_fill_link_order
432 PARAMS ((bfd *, struct bfd_link_info *, asection *,
433 struct bfd_link_order *));
434 static boolean default_indirect_link_order
435 PARAMS ((bfd *, struct bfd_link_info *, asection *,
436 struct bfd_link_order *, boolean));
437
438 /* The link hash table structure is defined in bfdlink.h. It provides
439 a base hash table which the backend specific hash tables are built
440 upon. */
441
442 /* Routine to create an entry in the link hash table. */
443
444 struct bfd_hash_entry *
445 _bfd_link_hash_newfunc (entry, table, string)
446 struct bfd_hash_entry *entry;
447 struct bfd_hash_table *table;
448 const char *string;
449 {
450 struct bfd_link_hash_entry *ret = (struct bfd_link_hash_entry *) entry;
451
452 /* Allocate the structure if it has not already been allocated by a
453 subclass. */
454 if (ret == (struct bfd_link_hash_entry *) NULL)
455 ret = ((struct bfd_link_hash_entry *)
456 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)));
457 if (ret == (struct bfd_link_hash_entry *) NULL)
458 {
459 bfd_set_error (bfd_error_no_memory);
460 return NULL;
461 }
462
463 /* Call the allocation method of the superclass. */
464 ret = ((struct bfd_link_hash_entry *)
465 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
466
467 if (ret)
468 {
469 /* Initialize the local fields. */
470 ret->type = bfd_link_hash_new;
471 ret->next = NULL;
472 }
473
474 return (struct bfd_hash_entry *) ret;
475 }
476
477 /* Initialize a link hash table. The BFD argument is the one
478 responsible for creating this table. */
479
480 boolean
481 _bfd_link_hash_table_init (table, abfd, newfunc)
482 struct bfd_link_hash_table *table;
483 bfd *abfd;
484 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
485 struct bfd_hash_table *,
486 const char *));
487 {
488 table->creator = abfd->xvec;
489 table->undefs = NULL;
490 table->undefs_tail = NULL;
491 return bfd_hash_table_init (&table->table, newfunc);
492 }
493
494 /* Look up a symbol in a link hash table. If follow is true, we
495 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
496 the real symbol. */
497
498 struct bfd_link_hash_entry *
499 bfd_link_hash_lookup (table, string, create, copy, follow)
500 struct bfd_link_hash_table *table;
501 const char *string;
502 boolean create;
503 boolean copy;
504 boolean follow;
505 {
506 struct bfd_link_hash_entry *ret;
507
508 ret = ((struct bfd_link_hash_entry *)
509 bfd_hash_lookup (&table->table, string, create, copy));
510
511 if (follow && ret != (struct bfd_link_hash_entry *) NULL)
512 {
513 while (ret->type == bfd_link_hash_indirect
514 || ret->type == bfd_link_hash_warning)
515 ret = ret->u.i.link;
516 }
517
518 return ret;
519 }
520
521 /* Traverse a generic link hash table. The only reason this is not a
522 macro is to do better type checking. This code presumes that an
523 argument passed as a struct bfd_hash_entry * may be caught as a
524 struct bfd_link_hash_entry * with no explicit cast required on the
525 call. */
526
527 void
528 bfd_link_hash_traverse (table, func, info)
529 struct bfd_link_hash_table *table;
530 boolean (*func) PARAMS ((struct bfd_link_hash_entry *, PTR));
531 PTR info;
532 {
533 bfd_hash_traverse (&table->table,
534 ((boolean (*) PARAMS ((struct bfd_hash_entry *, PTR)))
535 func),
536 info);
537 }
538
539 /* Add a symbol to the linker hash table undefs list. */
540
541 INLINE void
542 bfd_link_add_undef (table, h)
543 struct bfd_link_hash_table *table;
544 struct bfd_link_hash_entry *h;
545 {
546 BFD_ASSERT (h->next == NULL);
547 if (table->undefs_tail != (struct bfd_link_hash_entry *) NULL)
548 table->undefs_tail->next = h;
549 if (table->undefs == (struct bfd_link_hash_entry *) NULL)
550 table->undefs = h;
551 table->undefs_tail = h;
552 }
553 \f
554 /* Routine to create an entry in an generic link hash table. */
555
556 static struct bfd_hash_entry *
557 generic_link_hash_newfunc (entry, table, string)
558 struct bfd_hash_entry *entry;
559 struct bfd_hash_table *table;
560 const char *string;
561 {
562 struct generic_link_hash_entry *ret =
563 (struct generic_link_hash_entry *) entry;
564
565 /* Allocate the structure if it has not already been allocated by a
566 subclass. */
567 if (ret == (struct generic_link_hash_entry *) NULL)
568 ret = ((struct generic_link_hash_entry *)
569 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)));
570 if (ret == (struct generic_link_hash_entry *) NULL)
571 {
572 bfd_set_error (bfd_error_no_memory);
573 return NULL;
574 }
575
576 /* Call the allocation method of the superclass. */
577 ret = ((struct generic_link_hash_entry *)
578 _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
579 table, string));
580
581 if (ret)
582 {
583 /* Set local fields. */
584 ret->written = false;
585 ret->sym = NULL;
586 }
587
588 return (struct bfd_hash_entry *) ret;
589 }
590
591 /* Create an generic link hash table. */
592
593 struct bfd_link_hash_table *
594 _bfd_generic_link_hash_table_create (abfd)
595 bfd *abfd;
596 {
597 struct generic_link_hash_table *ret;
598
599 ret = ((struct generic_link_hash_table *)
600 bfd_alloc (abfd, sizeof (struct generic_link_hash_table)));
601 if (ret == NULL)
602 {
603 bfd_set_error (bfd_error_no_memory);
604 return (struct bfd_link_hash_table *) NULL;
605 }
606 if (! _bfd_link_hash_table_init (&ret->root, abfd,
607 generic_link_hash_newfunc))
608 {
609 free (ret);
610 return (struct bfd_link_hash_table *) NULL;
611 }
612 return &ret->root;
613 }
614
615 /* Grab the symbols for an object file when doing a generic link. We
616 store the symbols in the outsymbols field. We need to keep them
617 around for the entire link to ensure that we only read them once.
618 If we read them multiple times, we might wind up with relocs and
619 the hash table pointing to different instances of the symbol
620 structure. */
621
622 static boolean
623 generic_link_read_symbols (abfd)
624 bfd *abfd;
625 {
626 if (abfd->outsymbols == (asymbol **) NULL)
627 {
628 long symsize;
629 long symcount;
630
631 symsize = bfd_get_symtab_upper_bound (abfd);
632 if (symsize < 0)
633 return false;
634 abfd->outsymbols = (asymbol **) bfd_alloc (abfd, symsize);
635 if (abfd->outsymbols == NULL && symsize != 0)
636 {
637 bfd_set_error (bfd_error_no_memory);
638 return false;
639 }
640 symcount = bfd_canonicalize_symtab (abfd, abfd->outsymbols);
641 if (symcount < 0)
642 return false;
643 abfd->symcount = symcount;
644 }
645
646 return true;
647 }
648 \f
649 /* Generic function to add symbols to from an object file to the
650 global hash table. This version does not automatically collect
651 constructors by name. */
652
653 boolean
654 _bfd_generic_link_add_symbols (abfd, info)
655 bfd *abfd;
656 struct bfd_link_info *info;
657 {
658 return generic_link_add_symbols (abfd, info, false);
659 }
660
661 /* Generic function to add symbols from an object file to the global
662 hash table. This version automatically collects constructors by
663 name, as the collect2 program does. It should be used for any
664 target which does not provide some other mechanism for setting up
665 constructors and destructors; these are approximately those targets
666 for which gcc uses collect2 and do not support stabs. */
667
668 boolean
669 _bfd_generic_link_add_symbols_collect (abfd, info)
670 bfd *abfd;
671 struct bfd_link_info *info;
672 {
673 return generic_link_add_symbols (abfd, info, true);
674 }
675
676 /* Add symbols from an object file to the global hash table. */
677
678 static boolean
679 generic_link_add_symbols (abfd, info, collect)
680 bfd *abfd;
681 struct bfd_link_info *info;
682 boolean collect;
683 {
684 boolean ret;
685
686 switch (bfd_get_format (abfd))
687 {
688 case bfd_object:
689 ret = generic_link_add_object_symbols (abfd, info, collect);
690 break;
691 case bfd_archive:
692 ret = (_bfd_generic_link_add_archive_symbols
693 (abfd, info,
694 (collect
695 ? generic_link_check_archive_element_collect
696 : generic_link_check_archive_element_no_collect)));
697 break;
698 default:
699 bfd_set_error (bfd_error_wrong_format);
700 ret = false;
701 }
702
703 return ret;
704 }
705
706 /* Add symbols from an object file to the global hash table. */
707
708 static boolean
709 generic_link_add_object_symbols (abfd, info, collect)
710 bfd *abfd;
711 struct bfd_link_info *info;
712 boolean collect;
713 {
714 if (! generic_link_read_symbols (abfd))
715 return false;
716 return generic_link_add_symbol_list (abfd, info,
717 _bfd_generic_link_get_symcount (abfd),
718 _bfd_generic_link_get_symbols (abfd),
719 collect);
720 }
721 \f
722 /* We build a hash table of all symbols defined in an archive. */
723
724 /* An archive symbol may be defined by multiple archive elements.
725 This linked list is used to hold the elements. */
726
727 struct archive_list
728 {
729 struct archive_list *next;
730 int indx;
731 };
732
733 /* An entry in an archive hash table. */
734
735 struct archive_hash_entry
736 {
737 struct bfd_hash_entry root;
738 /* Where the symbol is defined. */
739 struct archive_list *defs;
740 };
741
742 /* An archive hash table itself. */
743
744 struct archive_hash_table
745 {
746 struct bfd_hash_table table;
747 };
748
749 static struct bfd_hash_entry *archive_hash_newfunc
750 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
751 static boolean archive_hash_table_init
752 PARAMS ((struct archive_hash_table *,
753 struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
754 struct bfd_hash_table *,
755 const char *)));
756
757 /* Create a new entry for an archive hash table. */
758
759 static struct bfd_hash_entry *
760 archive_hash_newfunc (entry, table, string)
761 struct bfd_hash_entry *entry;
762 struct bfd_hash_table *table;
763 const char *string;
764 {
765 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
766
767 /* Allocate the structure if it has not already been allocated by a
768 subclass. */
769 if (ret == (struct archive_hash_entry *) NULL)
770 ret = ((struct archive_hash_entry *)
771 bfd_hash_allocate (table, sizeof (struct archive_hash_entry)));
772 if (ret == (struct archive_hash_entry *) NULL)
773 {
774 bfd_set_error (bfd_error_no_memory);
775 return NULL;
776 }
777
778 /* Call the allocation method of the superclass. */
779 ret = ((struct archive_hash_entry *)
780 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
781
782 if (ret)
783 {
784 /* Initialize the local fields. */
785 ret->defs = (struct archive_list *) NULL;
786 }
787
788 return (struct bfd_hash_entry *) ret;
789 }
790
791 /* Initialize an archive hash table. */
792
793 static boolean
794 archive_hash_table_init (table, newfunc)
795 struct archive_hash_table *table;
796 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
797 struct bfd_hash_table *,
798 const char *));
799 {
800 return bfd_hash_table_init (&table->table, newfunc);
801 }
802
803 /* Look up an entry in an archive hash table. */
804
805 #define archive_hash_lookup(t, string, create, copy) \
806 ((struct archive_hash_entry *) \
807 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
808
809 /* Allocate space in an archive hash table. */
810
811 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
812
813 /* Free an archive hash table. */
814
815 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
816
817 /* Generic function to add symbols from an archive file to the global
818 hash file. This function presumes that the archive symbol table
819 has already been read in (this is normally done by the
820 bfd_check_format entry point). It looks through the undefined and
821 common symbols and searches the archive symbol table for them. If
822 it finds an entry, it includes the associated object file in the
823 link.
824
825 The old linker looked through the archive symbol table for
826 undefined symbols. We do it the other way around, looking through
827 undefined symbols for symbols defined in the archive. The
828 advantage of the newer scheme is that we only have to look through
829 the list of undefined symbols once, whereas the old method had to
830 re-search the symbol table each time a new object file was added.
831
832 The CHECKFN argument is used to see if an object file should be
833 included. CHECKFN should set *PNEEDED to true if the object file
834 should be included, and must also call the bfd_link_info
835 add_archive_element callback function and handle adding the symbols
836 to the global hash table. CHECKFN should only return false if some
837 sort of error occurs.
838
839 For some formats, such as a.out, it is possible to look through an
840 object file but not actually include it in the link. The
841 archive_pass field in a BFD is used to avoid checking the symbols
842 of an object files too many times. When an object is included in
843 the link, archive_pass is set to -1. If an object is scanned but
844 not included, archive_pass is set to the pass number. The pass
845 number is incremented each time a new object file is included. The
846 pass number is used because when a new object file is included it
847 may create new undefined symbols which cause a previously examined
848 object file to be included. */
849
850 boolean
851 _bfd_generic_link_add_archive_symbols (abfd, info, checkfn)
852 bfd *abfd;
853 struct bfd_link_info *info;
854 boolean (*checkfn) PARAMS ((bfd *, struct bfd_link_info *,
855 boolean *pneeded));
856 {
857 carsym *arsyms;
858 carsym *arsym_end;
859 register carsym *arsym;
860 int pass;
861 struct archive_hash_table arsym_hash;
862 int indx;
863 struct bfd_link_hash_entry **pundef;
864
865 if (! bfd_has_map (abfd))
866 {
867 /* An empty archive is a special case. */
868 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
869 return true;
870 bfd_set_error (bfd_error_no_armap);
871 return false;
872 }
873
874 arsyms = bfd_ardata (abfd)->symdefs;
875 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
876
877 /* In order to quickly determine whether an symbol is defined in
878 this archive, we build a hash table of the symbols. */
879 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
880 return false;
881 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
882 {
883 struct archive_hash_entry *arh;
884 struct archive_list *l, **pp;
885
886 arh = archive_hash_lookup (&arsym_hash, arsym->name, true, false);
887 if (arh == (struct archive_hash_entry *) NULL)
888 goto error_return;
889 l = ((struct archive_list *)
890 archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
891 if (l == NULL)
892 goto error_return;
893 l->indx = indx;
894 for (pp = &arh->defs;
895 *pp != (struct archive_list *) NULL;
896 pp = &(*pp)->next)
897 ;
898 *pp = l;
899 l->next = NULL;
900 }
901
902 /* The archive_pass field in the archive itself is used to
903 initialize PASS, sine we may search the same archive multiple
904 times. */
905 pass = abfd->archive_pass + 1;
906
907 /* New undefined symbols are added to the end of the list, so we
908 only need to look through it once. */
909 pundef = &info->hash->undefs;
910 while (*pundef != (struct bfd_link_hash_entry *) NULL)
911 {
912 struct bfd_link_hash_entry *h;
913 struct archive_hash_entry *arh;
914 struct archive_list *l;
915
916 h = *pundef;
917
918 /* When a symbol is defined, it is not necessarily removed from
919 the list. */
920 if (h->type != bfd_link_hash_undefined
921 && h->type != bfd_link_hash_common)
922 {
923 /* Remove this entry from the list, for general cleanliness
924 and because we are going to look through the list again
925 if we search any more libraries. We can't remove the
926 entry if it is the tail, because that would lose any
927 entries we add to the list later on (it would also cause
928 us to lose track of whether the symbol has been
929 referenced). */
930 if (*pundef != info->hash->undefs_tail)
931 *pundef = (*pundef)->next;
932 else
933 pundef = &(*pundef)->next;
934 continue;
935 }
936
937 /* Look for this symbol in the archive symbol map. */
938 arh = archive_hash_lookup (&arsym_hash, h->root.string, false, false);
939 if (arh == (struct archive_hash_entry *) NULL)
940 {
941 pundef = &(*pundef)->next;
942 continue;
943 }
944
945 /* Look at all the objects which define this symbol. */
946 for (l = arh->defs; l != (struct archive_list *) NULL; l = l->next)
947 {
948 bfd *element;
949 boolean needed;
950
951 /* If the symbol has gotten defined along the way, quit. */
952 if (h->type != bfd_link_hash_undefined
953 && h->type != bfd_link_hash_common)
954 break;
955
956 element = bfd_get_elt_at_index (abfd, l->indx);
957 if (element == (bfd *) NULL)
958 goto error_return;
959
960 /* If we've already included this element, or if we've
961 already checked it on this pass, continue. */
962 if (element->archive_pass == -1
963 || element->archive_pass == pass)
964 continue;
965
966 /* If we can't figure this element out, just ignore it. */
967 if (! bfd_check_format (element, bfd_object))
968 {
969 element->archive_pass = -1;
970 continue;
971 }
972
973 /* CHECKFN will see if this element should be included, and
974 go ahead and include it if appropriate. */
975 if (! (*checkfn) (element, info, &needed))
976 goto error_return;
977
978 if (! needed)
979 element->archive_pass = pass;
980 else
981 {
982 element->archive_pass = -1;
983
984 /* Increment the pass count to show that we may need to
985 recheck object files which were already checked. */
986 ++pass;
987 }
988 }
989
990 pundef = &(*pundef)->next;
991 }
992
993 archive_hash_table_free (&arsym_hash);
994
995 /* Save PASS in case we are called again. */
996 abfd->archive_pass = pass;
997
998 return true;
999
1000 error_return:
1001 archive_hash_table_free (&arsym_hash);
1002 return false;
1003 }
1004 \f
1005 /* See if we should include an archive element. This version is used
1006 when we do not want to automatically collect constructors based on
1007 the symbol name, presumably because we have some other mechanism
1008 for finding them. */
1009
1010 static boolean
1011 generic_link_check_archive_element_no_collect (abfd, info, pneeded)
1012 bfd *abfd;
1013 struct bfd_link_info *info;
1014 boolean *pneeded;
1015 {
1016 return generic_link_check_archive_element (abfd, info, pneeded, false);
1017 }
1018
1019 /* See if we should include an archive element. This version is used
1020 when we want to automatically collect constructors based on the
1021 symbol name, as collect2 does. */
1022
1023 static boolean
1024 generic_link_check_archive_element_collect (abfd, info, pneeded)
1025 bfd *abfd;
1026 struct bfd_link_info *info;
1027 boolean *pneeded;
1028 {
1029 return generic_link_check_archive_element (abfd, info, pneeded, true);
1030 }
1031
1032 /* See if we should include an archive element. Optionally collect
1033 constructors. */
1034
1035 static boolean
1036 generic_link_check_archive_element (abfd, info, pneeded, collect)
1037 bfd *abfd;
1038 struct bfd_link_info *info;
1039 boolean *pneeded;
1040 boolean collect;
1041 {
1042 asymbol **pp, **ppend;
1043
1044 *pneeded = false;
1045
1046 if (! generic_link_read_symbols (abfd))
1047 return false;
1048
1049 pp = _bfd_generic_link_get_symbols (abfd);
1050 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1051 for (; pp < ppend; pp++)
1052 {
1053 asymbol *p;
1054 struct bfd_link_hash_entry *h;
1055
1056 p = *pp;
1057
1058 /* We are only interested in globally visible symbols. */
1059 if (! bfd_is_com_section (p->section)
1060 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1061 continue;
1062
1063 /* We are only interested if we know something about this
1064 symbol, and it is undefined or common. An undefined weak
1065 symbol (type bfd_link_hash_undefweak) is not considered to be
1066 a reference when pulling files out of an archive. See the
1067 SVR4 ABI, p. 4-27. */
1068 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
1069 false, true);
1070 if (h == (struct bfd_link_hash_entry *) NULL
1071 || (h->type != bfd_link_hash_undefined
1072 && h->type != bfd_link_hash_common))
1073 continue;
1074
1075 /* P is a symbol we are looking for. */
1076
1077 if (! bfd_is_com_section (p->section))
1078 {
1079 bfd_size_type symcount;
1080 asymbol **symbols;
1081
1082 /* This object file defines this symbol, so pull it in. */
1083 if (! (*info->callbacks->add_archive_element) (info, abfd,
1084 bfd_asymbol_name (p)))
1085 return false;
1086 symcount = _bfd_generic_link_get_symcount (abfd);
1087 symbols = _bfd_generic_link_get_symbols (abfd);
1088 if (! generic_link_add_symbol_list (abfd, info, symcount,
1089 symbols, collect))
1090 return false;
1091 *pneeded = true;
1092 return true;
1093 }
1094
1095 /* P is a common symbol. */
1096
1097 if (h->type == bfd_link_hash_undefined)
1098 {
1099 bfd *symbfd;
1100 bfd_vma size;
1101 unsigned int power;
1102
1103 symbfd = h->u.undef.abfd;
1104 if (symbfd == (bfd *) NULL)
1105 {
1106 /* This symbol was created as undefined from outside
1107 BFD. We assume that we should link in the object
1108 file. This is for the -u option in the linker. */
1109 if (! (*info->callbacks->add_archive_element)
1110 (info, abfd, bfd_asymbol_name (p)))
1111 return false;
1112 *pneeded = true;
1113 return true;
1114 }
1115
1116 /* Turn the symbol into a common symbol but do not link in
1117 the object file. This is how a.out works. Object
1118 formats that require different semantics must implement
1119 this function differently. This symbol is already on the
1120 undefs list. We add the section to a common section
1121 attached to symbfd to ensure that it is in a BFD which
1122 will be linked in. */
1123 h->type = bfd_link_hash_common;
1124 h->u.c.p =
1125 ((struct bfd_link_hash_common_entry *)
1126 bfd_hash_allocate (&info->hash->table,
1127 sizeof (struct bfd_link_hash_common_entry)));
1128 if (h->u.c.p == NULL)
1129 return false;
1130
1131 size = bfd_asymbol_value (p);
1132 h->u.c.size = size;
1133
1134 power = bfd_log2 (size);
1135 if (power > 4)
1136 power = 4;
1137 h->u.c.p->alignment_power = power;
1138
1139 if (p->section == bfd_com_section_ptr)
1140 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1141 else
1142 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1143 p->section->name);
1144 h->u.c.p->section->flags = SEC_ALLOC;
1145 }
1146 else
1147 {
1148 /* Adjust the size of the common symbol if necessary. This
1149 is how a.out works. Object formats that require
1150 different semantics must implement this function
1151 differently. */
1152 if (bfd_asymbol_value (p) > h->u.c.size)
1153 h->u.c.size = bfd_asymbol_value (p);
1154 }
1155 }
1156
1157 /* This archive element is not needed. */
1158 return true;
1159 }
1160
1161 /* Add the symbols from an object file to the global hash table. ABFD
1162 is the object file. INFO is the linker information. SYMBOL_COUNT
1163 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1164 is true if constructors should be automatically collected by name
1165 as is done by collect2. */
1166
1167 static boolean
1168 generic_link_add_symbol_list (abfd, info, symbol_count, symbols, collect)
1169 bfd *abfd;
1170 struct bfd_link_info *info;
1171 bfd_size_type symbol_count;
1172 asymbol **symbols;
1173 boolean collect;
1174 {
1175 asymbol **pp, **ppend;
1176
1177 pp = symbols;
1178 ppend = symbols + symbol_count;
1179 for (; pp < ppend; pp++)
1180 {
1181 asymbol *p;
1182
1183 p = *pp;
1184
1185 if ((p->flags & (BSF_INDIRECT
1186 | BSF_WARNING
1187 | BSF_GLOBAL
1188 | BSF_CONSTRUCTOR
1189 | BSF_WEAK)) != 0
1190 || bfd_is_und_section (bfd_get_section (p))
1191 || bfd_is_com_section (bfd_get_section (p))
1192 || bfd_is_ind_section (bfd_get_section (p)))
1193 {
1194 const char *name;
1195 const char *string;
1196 struct generic_link_hash_entry *h;
1197
1198 name = bfd_asymbol_name (p);
1199 if ((p->flags & BSF_INDIRECT) != 0
1200 || bfd_is_ind_section (p->section))
1201 string = bfd_asymbol_name ((asymbol *) p->value);
1202 else if ((p->flags & BSF_WARNING) != 0)
1203 {
1204 /* The name of P is actually the warning string, and the
1205 value is actually a pointer to the symbol to warn
1206 about. */
1207 string = name;
1208 name = bfd_asymbol_name ((asymbol *) p->value);
1209 }
1210 else
1211 string = NULL;
1212
1213 h = NULL;
1214 if (! (_bfd_generic_link_add_one_symbol
1215 (info, abfd, name, p->flags, bfd_get_section (p),
1216 p->value, string, false, collect,
1217 (struct bfd_link_hash_entry **) &h)))
1218 return false;
1219
1220 /* If this is a constructor symbol, and the linker didn't do
1221 anything with it, then we want to just pass the symbol
1222 through to the output file. This will happen when
1223 linking with -r. */
1224 if ((p->flags & BSF_CONSTRUCTOR) != 0
1225 && (h == NULL || h->root.type == bfd_link_hash_new))
1226 {
1227 p->udata.p = NULL;
1228 continue;
1229 }
1230
1231 /* Save the BFD symbol so that we don't lose any backend
1232 specific information that may be attached to it. We only
1233 want this one if it gives more information than the
1234 existing one; we don't want to replace a defined symbol
1235 with an undefined one. This routine may be called with a
1236 hash table other than the generic hash table, so we only
1237 do this if we are certain that the hash table is a
1238 generic one. */
1239 if (info->hash->creator == abfd->xvec)
1240 {
1241 if (h->sym == (asymbol *) NULL
1242 || (! bfd_is_und_section (bfd_get_section (p))
1243 && (! bfd_is_com_section (bfd_get_section (p))
1244 || bfd_is_und_section (bfd_get_section (h->sym)))))
1245 {
1246 h->sym = p;
1247 /* BSF_OLD_COMMON is a hack to support COFF reloc
1248 reading, and it should go away when the COFF
1249 linker is switched to the new version. */
1250 if (bfd_is_com_section (bfd_get_section (p)))
1251 p->flags |= BSF_OLD_COMMON;
1252 }
1253
1254 /* Store a back pointer from the symbol to the hash
1255 table entry for the benefit of relaxation code until
1256 it gets rewritten to not use asymbol structures.
1257 Setting this is also used to check whether these
1258 symbols were set up by the generic linker. */
1259 p->udata.p = (PTR) h;
1260 }
1261 }
1262 }
1263
1264 return true;
1265 }
1266 \f
1267 /* We use a state table to deal with adding symbols from an object
1268 file. The first index into the state table describes the symbol
1269 from the object file. The second index into the state table is the
1270 type of the symbol in the hash table. */
1271
1272 /* The symbol from the object file is turned into one of these row
1273 values. */
1274
1275 enum link_row
1276 {
1277 UNDEF_ROW, /* Undefined. */
1278 UNDEFW_ROW, /* Weak undefined. */
1279 DEF_ROW, /* Defined. */
1280 DEFW_ROW, /* Weak defined. */
1281 COMMON_ROW, /* Common. */
1282 INDR_ROW, /* Indirect. */
1283 WARN_ROW, /* Warning. */
1284 SET_ROW /* Member of set. */
1285 };
1286
1287 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1288 #undef FAIL
1289
1290 /* The actions to take in the state table. */
1291
1292 enum link_action
1293 {
1294 FAIL, /* Abort. */
1295 UND, /* Mark symbol undefined. */
1296 WEAK, /* Mark symbol weak undefined. */
1297 DEF, /* Mark symbol defined. */
1298 DEFW, /* Mark symbol weak defined. */
1299 COM, /* Mark symbol common. */
1300 REF, /* Mark defined symbol referenced. */
1301 CREF, /* Possibly warn about common reference to defined symbol. */
1302 CDEF, /* Define existing common symbol. */
1303 NOACT, /* No action. */
1304 BIG, /* Mark symbol common using largest size. */
1305 MDEF, /* Multiple definition error. */
1306 MIND, /* Multiple indirect symbols. */
1307 IND, /* Make indirect symbol. */
1308 CIND, /* Make indirect symbol from existing common symbol. */
1309 SET, /* Add value to set. */
1310 MWARN, /* Make warning symbol. */
1311 WARN, /* Issue warning. */
1312 CWARN, /* Warn if referenced, else MWARN. */
1313 CYCLE, /* Repeat with symbol pointed to. */
1314 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1315 WARNC /* Issue warning and then CYCLE. */
1316 };
1317
1318 /* The state table itself. The first index is a link_row and the
1319 second index is a bfd_link_hash_type. */
1320
1321 static const enum link_action link_action[8][8] =
1322 {
1323 /* current\prev new undef undefw def defw com indr warn */
1324 /* UNDEF_ROW */ {UND, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1325 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1326 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1327 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1328 /* COMMON_ROW */ {COM, COM, COM, CREF, CREF, BIG, CREF, WARNC },
1329 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1330 /* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, CYCLE },
1331 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1332 };
1333
1334 /* Most of the entries in the LINK_ACTION table are straightforward,
1335 but a few are somewhat subtle.
1336
1337 A reference to an indirect symbol (UNDEF_ROW/indr or
1338 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1339 symbol and to the symbol the indirect symbol points to.
1340
1341 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1342 causes the warning to be issued.
1343
1344 A common definition of an indirect symbol (COMMON_ROW/indr) is
1345 treated as a multiple definition error. Likewise for an indirect
1346 definition of a common symbol (INDR_ROW/com).
1347
1348 An indirect definition of a warning (INDR_ROW/warn) does not cause
1349 the warning to be issued.
1350
1351 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1352 warning is created for the symbol the indirect symbol points to.
1353
1354 Adding an entry to a set does not count as a reference to a set,
1355 and no warning is issued (SET_ROW/warn). */
1356
1357 /* Add a symbol to the global hash table.
1358 ABFD is the BFD the symbol comes from.
1359 NAME is the name of the symbol.
1360 FLAGS is the BSF_* bits associated with the symbol.
1361 SECTION is the section in which the symbol is defined; this may be
1362 bfd_und_section_ptr or bfd_com_section_ptr.
1363 VALUE is the value of the symbol, relative to the section.
1364 STRING is used for either an indirect symbol, in which case it is
1365 the name of the symbol to indirect to, or a warning symbol, in
1366 which case it is the warning string.
1367 COPY is true if NAME or STRING must be copied into locally
1368 allocated memory if they need to be saved.
1369 COLLECT is true if we should automatically collect gcc constructor
1370 or destructor names as collect2 does.
1371 HASHP, if not NULL, is a place to store the created hash table
1372 entry; if *HASHP is not NULL, the caller has already looked up
1373 the hash table entry, and stored it in *HASHP. */
1374
1375 boolean
1376 _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, value,
1377 string, copy, collect, hashp)
1378 struct bfd_link_info *info;
1379 bfd *abfd;
1380 const char *name;
1381 flagword flags;
1382 asection *section;
1383 bfd_vma value;
1384 const char *string;
1385 boolean copy;
1386 boolean collect;
1387 struct bfd_link_hash_entry **hashp;
1388 {
1389 enum link_row row;
1390 struct bfd_link_hash_entry *h;
1391 boolean cycle;
1392
1393 if (bfd_is_ind_section (section)
1394 || (flags & BSF_INDIRECT) != 0)
1395 row = INDR_ROW;
1396 else if ((flags & BSF_WARNING) != 0)
1397 row = WARN_ROW;
1398 else if ((flags & BSF_CONSTRUCTOR) != 0)
1399 row = SET_ROW;
1400 else if (bfd_is_und_section (section))
1401 {
1402 if ((flags & BSF_WEAK) != 0)
1403 row = UNDEFW_ROW;
1404 else
1405 row = UNDEF_ROW;
1406 }
1407 else if ((flags & BSF_WEAK) != 0)
1408 row = DEFW_ROW;
1409 else if (bfd_is_com_section (section))
1410 row = COMMON_ROW;
1411 else
1412 row = DEF_ROW;
1413
1414 if (hashp != NULL && *hashp != NULL)
1415 {
1416 h = *hashp;
1417 BFD_ASSERT (strcmp (h->root.string, name) == 0);
1418 }
1419 else
1420 {
1421 h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1422 if (h == NULL)
1423 {
1424 if (hashp != NULL)
1425 *hashp = NULL;
1426 return false;
1427 }
1428 }
1429
1430 if (info->notice_hash != (struct bfd_hash_table *) NULL
1431 && (bfd_hash_lookup (info->notice_hash, name, false, false)
1432 != (struct bfd_hash_entry *) NULL))
1433 {
1434 if (! (*info->callbacks->notice) (info, name, abfd, section, value))
1435 return false;
1436 }
1437
1438 if (hashp != (struct bfd_link_hash_entry **) NULL)
1439 *hashp = h;
1440
1441 do
1442 {
1443 enum link_action action;
1444
1445 cycle = false;
1446 action = link_action[(int) row][(int) h->type];
1447 switch (action)
1448 {
1449 case FAIL:
1450 abort ();
1451
1452 case NOACT:
1453 /* Do nothing. */
1454 break;
1455
1456 case UND:
1457 /* Make a new undefined symbol. */
1458 h->type = bfd_link_hash_undefined;
1459 h->u.undef.abfd = abfd;
1460 bfd_link_add_undef (info->hash, h);
1461 break;
1462
1463 case WEAK:
1464 /* Make a new weak undefined symbol. */
1465 h->type = bfd_link_hash_undefweak;
1466 h->u.undef.abfd = abfd;
1467 break;
1468
1469 case CDEF:
1470 /* We have found a definition for a symbol which was
1471 previously common. */
1472 BFD_ASSERT (h->type == bfd_link_hash_common);
1473 if (! ((*info->callbacks->multiple_common)
1474 (info, name,
1475 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1476 abfd, bfd_link_hash_defined, (bfd_vma) 0)))
1477 return false;
1478 /* Fall through. */
1479 case DEF:
1480 case DEFW:
1481 {
1482 enum bfd_link_order_type oldtype;
1483
1484 /* Define a symbol. */
1485 oldtype = h->type;
1486 if (action == DEFW)
1487 h->type = bfd_link_hash_defweak;
1488 else
1489 h->type = bfd_link_hash_defined;
1490 h->u.def.section = section;
1491 h->u.def.value = value;
1492
1493 /* If we have been asked to, we act like collect2 and
1494 identify all functions that might be global
1495 constructors and destructors and pass them up in a
1496 callback. We only do this for certain object file
1497 types, since many object file types can handle this
1498 automatically. */
1499 if (collect && name[0] == '_')
1500 {
1501 const char *s;
1502
1503 /* A constructor or destructor name starts like this:
1504 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1505 the second are the same character (we accept any
1506 character there, in case a new object file format
1507 comes along with even worse naming restrictions). */
1508
1509 #define CONS_PREFIX "GLOBAL_"
1510 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1511
1512 s = name + 1;
1513 while (*s == '_')
1514 ++s;
1515 if (s[0] == 'G'
1516 && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1517 {
1518 char c;
1519
1520 c = s[CONS_PREFIX_LEN + 1];
1521 if ((c == 'I' || c == 'D')
1522 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1523 {
1524 /* If this is a definition of a symbol which
1525 was previously weakly defined, we are in
1526 trouble. We have already added a
1527 constructor entry for the weak defined
1528 symbol, and now we are trying to add one
1529 for the new symbol. Fortunately, this case
1530 should never arise in practice. */
1531 if (oldtype == bfd_link_hash_defweak)
1532 abort ();
1533
1534 if (! ((*info->callbacks->constructor)
1535 (info,
1536 c == 'I' ? true : false,
1537 name, abfd, section, value)))
1538 return false;
1539 }
1540 }
1541 }
1542 }
1543
1544 break;
1545
1546 case COM:
1547 /* We have found a common definition for a symbol. */
1548 if (h->type == bfd_link_hash_new)
1549 bfd_link_add_undef (info->hash, h);
1550 h->type = bfd_link_hash_common;
1551 h->u.c.p =
1552 ((struct bfd_link_hash_common_entry *)
1553 bfd_hash_allocate (&info->hash->table,
1554 sizeof (struct bfd_link_hash_common_entry)));
1555 if (h->u.c.p == NULL)
1556 return false;
1557
1558 h->u.c.size = value;
1559
1560 /* Select a default alignment based on the size. This may
1561 be overridden by the caller. */
1562 {
1563 unsigned int power;
1564
1565 power = bfd_log2 (value);
1566 if (power > 4)
1567 power = 4;
1568 h->u.c.p->alignment_power = power;
1569 }
1570
1571 /* The section of a common symbol is only used if the common
1572 symbol is actually allocated. It basically provides a
1573 hook for the linker script to decide which output section
1574 the common symbols should be put in. In most cases, the
1575 section of a common symbol will be bfd_com_section_ptr,
1576 the code here will choose a common symbol section named
1577 "COMMON", and the linker script will contain *(COMMON) in
1578 the appropriate place. A few targets use separate common
1579 sections for small symbols, and they require special
1580 handling. */
1581 if (section == bfd_com_section_ptr)
1582 {
1583 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1584 h->u.c.p->section->flags = SEC_ALLOC;
1585 }
1586 else if (section->owner != abfd)
1587 {
1588 h->u.c.p->section = bfd_make_section_old_way (abfd,
1589 section->name);
1590 h->u.c.p->section->flags = SEC_ALLOC;
1591 }
1592 else
1593 h->u.c.p->section = section;
1594 break;
1595
1596 case REF:
1597 /* A reference to a defined symbol. */
1598 if (h->next == NULL && info->hash->undefs_tail != h)
1599 h->next = h;
1600 break;
1601
1602 case BIG:
1603 /* We have found a common definition for a symbol which
1604 already had a common definition. Use the maximum of the
1605 two sizes. */
1606 BFD_ASSERT (h->type == bfd_link_hash_common);
1607 if (! ((*info->callbacks->multiple_common)
1608 (info, name,
1609 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1610 abfd, bfd_link_hash_common, value)))
1611 return false;
1612 if (value > h->u.c.size)
1613 {
1614 unsigned int power;
1615
1616 h->u.c.size = value;
1617
1618 /* Select a default alignment based on the size. This may
1619 be overridden by the caller. */
1620 power = bfd_log2 (value);
1621 if (power > 4)
1622 power = 4;
1623 h->u.c.p->alignment_power = power;
1624 }
1625 break;
1626
1627 case CREF:
1628 {
1629 bfd *obfd;
1630
1631 /* We have found a common definition for a symbol which
1632 was already defined. FIXME: It would nice if we could
1633 report the BFD which defined an indirect symbol, but we
1634 don't have anywhere to store the information. */
1635 if (h->type == bfd_link_hash_defined
1636 || h->type == bfd_link_hash_defweak)
1637 obfd = h->u.def.section->owner;
1638 else
1639 obfd = NULL;
1640 if (! ((*info->callbacks->multiple_common)
1641 (info, name, obfd, h->type, (bfd_vma) 0,
1642 abfd, bfd_link_hash_common, value)))
1643 return false;
1644 }
1645 break;
1646
1647 case MIND:
1648 /* Multiple indirect symbols. This is OK if they both point
1649 to the same symbol. */
1650 if (strcmp (h->u.i.link->root.string, string) == 0)
1651 break;
1652 /* Fall through. */
1653 case MDEF:
1654 /* Handle a multiple definition. */
1655 {
1656 asection *msec;
1657 bfd_vma mval;
1658
1659 switch (h->type)
1660 {
1661 case bfd_link_hash_defined:
1662 msec = h->u.def.section;
1663 mval = h->u.def.value;
1664 break;
1665 case bfd_link_hash_indirect:
1666 msec = bfd_ind_section_ptr;
1667 mval = 0;
1668 break;
1669 default:
1670 abort ();
1671 }
1672
1673 /* Ignore a redefinition of an absolute symbol to the same
1674 value; it's harmless. */
1675 if (h->type == bfd_link_hash_defined
1676 && bfd_is_abs_section (msec)
1677 && bfd_is_abs_section (section)
1678 && value == mval)
1679 break;
1680
1681 if (! ((*info->callbacks->multiple_definition)
1682 (info, name, msec->owner, msec, mval, abfd, section,
1683 value)))
1684 return false;
1685 }
1686 break;
1687
1688 case CIND:
1689 /* Create an indirect symbol from an existing common symbol. */
1690 BFD_ASSERT (h->type == bfd_link_hash_common);
1691 if (! ((*info->callbacks->multiple_common)
1692 (info, name,
1693 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1694 abfd, bfd_link_hash_indirect, (bfd_vma) 0)))
1695 return false;
1696 /* Fall through. */
1697 case IND:
1698 /* Create an indirect symbol. */
1699 {
1700 struct bfd_link_hash_entry *inh;
1701
1702 /* STRING is the name of the symbol we want to indirect
1703 to. */
1704 inh = bfd_link_hash_lookup (info->hash, string, true, copy,
1705 false);
1706 if (inh == (struct bfd_link_hash_entry *) NULL)
1707 return false;
1708 if (inh->type == bfd_link_hash_new)
1709 {
1710 inh->type = bfd_link_hash_undefined;
1711 inh->u.undef.abfd = abfd;
1712 bfd_link_add_undef (info->hash, inh);
1713 }
1714
1715 /* If the indirect symbol has been referenced, we need to
1716 push the reference down to the symbol we are
1717 referencing. */
1718 if (h->type != bfd_link_hash_new)
1719 {
1720 row = UNDEF_ROW;
1721 cycle = true;
1722 }
1723
1724 h->type = bfd_link_hash_indirect;
1725 h->u.i.link = inh;
1726 }
1727 break;
1728
1729 case SET:
1730 /* Add an entry to a set. */
1731 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1732 abfd, section, value))
1733 return false;
1734 break;
1735
1736 case WARNC:
1737 /* Issue a warning and cycle. */
1738 if (h->u.i.warning != NULL)
1739 {
1740 if (! (*info->callbacks->warning) (info, h->u.i.warning))
1741 return false;
1742 /* Only issue a warning once. */
1743 h->u.i.warning = NULL;
1744 }
1745 /* Fall through. */
1746 case CYCLE:
1747 /* Try again with the referenced symbol. */
1748 h = h->u.i.link;
1749 cycle = true;
1750 break;
1751
1752 case REFC:
1753 /* A reference to an indirect symbol. */
1754 if (h->next == NULL && info->hash->undefs_tail != h)
1755 h->next = h;
1756 h = h->u.i.link;
1757 cycle = true;
1758 break;
1759
1760 case WARN:
1761 /* Issue a warning. */
1762 if (! (*info->callbacks->warning) (info, string))
1763 return false;
1764 break;
1765
1766 case CWARN:
1767 /* Warn if this symbol has been referenced already,
1768 otherwise add a warning. A symbol has been referenced if
1769 the next field is not NULL, or it is the tail of the
1770 undefined symbol list. The REF case above helps to
1771 ensure this. */
1772 if (h->next != NULL || info->hash->undefs_tail == h)
1773 {
1774 if (! (*info->callbacks->warning) (info, string))
1775 return false;
1776 break;
1777 }
1778 /* Fall through. */
1779 case MWARN:
1780 /* Make a warning symbol. */
1781 {
1782 struct bfd_link_hash_entry *sub;
1783
1784 /* STRING is the warning to give. */
1785 sub = ((struct bfd_link_hash_entry *)
1786 bfd_hash_allocate (&info->hash->table,
1787 sizeof (struct bfd_link_hash_entry)));
1788 if (!sub)
1789 {
1790 bfd_set_error (bfd_error_no_memory);
1791 return false;
1792 }
1793 *sub = *h;
1794 h->type = bfd_link_hash_warning;
1795 h->u.i.link = sub;
1796 if (! copy)
1797 h->u.i.warning = string;
1798 else
1799 {
1800 char *w;
1801
1802 w = bfd_hash_allocate (&info->hash->table,
1803 strlen (string) + 1);
1804 strcpy (w, string);
1805 h->u.i.warning = w;
1806 }
1807 }
1808 break;
1809 }
1810 }
1811 while (cycle);
1812
1813 return true;
1814 }
1815 \f
1816 /* Generic final link routine. */
1817
1818 boolean
1819 _bfd_generic_final_link (abfd, info)
1820 bfd *abfd;
1821 struct bfd_link_info *info;
1822 {
1823 bfd *sub;
1824 asection *o;
1825 struct bfd_link_order *p;
1826 size_t outsymalloc;
1827 struct generic_write_global_symbol_info wginfo;
1828
1829 abfd->outsymbols = (asymbol **) NULL;
1830 abfd->symcount = 0;
1831 outsymalloc = 0;
1832
1833 /* Build the output symbol table. */
1834 for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
1835 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1836 return false;
1837
1838 /* Accumulate the global symbols. */
1839 wginfo.info = info;
1840 wginfo.output_bfd = abfd;
1841 wginfo.psymalloc = &outsymalloc;
1842 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1843 _bfd_generic_link_write_global_symbol,
1844 (PTR) &wginfo);
1845
1846 if (info->relocateable)
1847 {
1848 /* Allocate space for the output relocs for each section. */
1849 for (o = abfd->sections;
1850 o != (asection *) NULL;
1851 o = o->next)
1852 {
1853 o->reloc_count = 0;
1854 for (p = o->link_order_head;
1855 p != (struct bfd_link_order *) NULL;
1856 p = p->next)
1857 {
1858 if (p->type == bfd_section_reloc_link_order
1859 || p->type == bfd_symbol_reloc_link_order)
1860 ++o->reloc_count;
1861 else if (p->type == bfd_indirect_link_order)
1862 {
1863 asection *input_section;
1864 bfd *input_bfd;
1865 long relsize;
1866 arelent **relocs;
1867 asymbol **symbols;
1868 long reloc_count;
1869
1870 input_section = p->u.indirect.section;
1871 input_bfd = input_section->owner;
1872 relsize = bfd_get_reloc_upper_bound (input_bfd,
1873 input_section);
1874 if (relsize < 0)
1875 return false;
1876 relocs = (arelent **) malloc ((size_t) relsize);
1877 if (!relocs && relsize != 0)
1878 {
1879 bfd_set_error (bfd_error_no_memory);
1880 return false;
1881 }
1882 symbols = _bfd_generic_link_get_symbols (input_bfd);
1883 reloc_count = bfd_canonicalize_reloc (input_bfd,
1884 input_section,
1885 relocs,
1886 symbols);
1887 if (reloc_count < 0)
1888 return false;
1889 BFD_ASSERT (reloc_count == input_section->reloc_count);
1890 o->reloc_count += reloc_count;
1891 free (relocs);
1892 }
1893 }
1894 if (o->reloc_count > 0)
1895 {
1896 o->orelocation = ((arelent **)
1897 bfd_alloc (abfd,
1898 (o->reloc_count
1899 * sizeof (arelent *))));
1900 if (!o->orelocation)
1901 {
1902 bfd_set_error (bfd_error_no_memory);
1903 return false;
1904 }
1905 o->flags |= SEC_RELOC;
1906 /* Reset the count so that it can be used as an index
1907 when putting in the output relocs. */
1908 o->reloc_count = 0;
1909 }
1910 }
1911 }
1912
1913 /* Handle all the link order information for the sections. */
1914 for (o = abfd->sections;
1915 o != (asection *) NULL;
1916 o = o->next)
1917 {
1918 for (p = o->link_order_head;
1919 p != (struct bfd_link_order *) NULL;
1920 p = p->next)
1921 {
1922 switch (p->type)
1923 {
1924 case bfd_section_reloc_link_order:
1925 case bfd_symbol_reloc_link_order:
1926 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1927 return false;
1928 break;
1929 case bfd_indirect_link_order:
1930 if (! default_indirect_link_order (abfd, info, o, p, true))
1931 return false;
1932 break;
1933 default:
1934 if (! _bfd_default_link_order (abfd, info, o, p))
1935 return false;
1936 break;
1937 }
1938 }
1939 }
1940
1941 return true;
1942 }
1943
1944 /* Add an output symbol to the output BFD. */
1945
1946 static boolean
1947 generic_add_output_symbol (output_bfd, psymalloc, sym)
1948 bfd *output_bfd;
1949 size_t *psymalloc;
1950 asymbol *sym;
1951 {
1952 if (output_bfd->symcount >= *psymalloc)
1953 {
1954 asymbol **newsyms;
1955
1956 if (*psymalloc == 0)
1957 *psymalloc = 124;
1958 else
1959 *psymalloc *= 2;
1960 if (output_bfd->outsymbols == (asymbol **) NULL)
1961 newsyms = (asymbol **) malloc (*psymalloc * sizeof (asymbol *));
1962 else
1963 newsyms = (asymbol **) realloc (output_bfd->outsymbols,
1964 *psymalloc * sizeof (asymbol *));
1965 if (newsyms == (asymbol **) NULL)
1966 {
1967 bfd_set_error (bfd_error_no_memory);
1968 return false;
1969 }
1970 output_bfd->outsymbols = newsyms;
1971 }
1972
1973 output_bfd->outsymbols[output_bfd->symcount] = sym;
1974 ++output_bfd->symcount;
1975
1976 return true;
1977 }
1978
1979 /* Handle the symbols for an input BFD. */
1980
1981 boolean
1982 _bfd_generic_link_output_symbols (output_bfd, input_bfd, info, psymalloc)
1983 bfd *output_bfd;
1984 bfd *input_bfd;
1985 struct bfd_link_info *info;
1986 size_t *psymalloc;
1987 {
1988 asymbol **sym_ptr;
1989 asymbol **sym_end;
1990
1991 if (! generic_link_read_symbols (input_bfd))
1992 return false;
1993
1994 /* Create a filename symbol if we are supposed to. */
1995 if (info->create_object_symbols_section != (asection *) NULL)
1996 {
1997 asection *sec;
1998
1999 for (sec = input_bfd->sections;
2000 sec != (asection *) NULL;
2001 sec = sec->next)
2002 {
2003 if (sec->output_section == info->create_object_symbols_section)
2004 {
2005 asymbol *newsym;
2006
2007 newsym = bfd_make_empty_symbol (input_bfd);
2008 if (!newsym)
2009 return false;
2010 newsym->name = input_bfd->filename;
2011 newsym->value = 0;
2012 newsym->flags = BSF_LOCAL | BSF_FILE;
2013 newsym->section = sec;
2014
2015 if (! generic_add_output_symbol (output_bfd, psymalloc,
2016 newsym))
2017 return false;
2018
2019 break;
2020 }
2021 }
2022 }
2023
2024 /* Adjust the values of the globally visible symbols, and write out
2025 local symbols. */
2026 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2027 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2028 for (; sym_ptr < sym_end; sym_ptr++)
2029 {
2030 asymbol *sym;
2031 struct generic_link_hash_entry *h;
2032 boolean output;
2033
2034 h = (struct generic_link_hash_entry *) NULL;
2035 sym = *sym_ptr;
2036 if ((sym->flags & (BSF_INDIRECT
2037 | BSF_WARNING
2038 | BSF_GLOBAL
2039 | BSF_CONSTRUCTOR
2040 | BSF_WEAK)) != 0
2041 || bfd_is_und_section (bfd_get_section (sym))
2042 || bfd_is_com_section (bfd_get_section (sym))
2043 || bfd_is_ind_section (bfd_get_section (sym)))
2044 {
2045 if (sym->udata.p != NULL)
2046 h = (struct generic_link_hash_entry *) sym->udata.p;
2047 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2048 {
2049 /* This case normally means that the main linker code
2050 deliberately ignored this constructor symbol. We
2051 should just pass it through. This will screw up if
2052 the constructor symbol is from a different,
2053 non-generic, object file format, but the case will
2054 only arise when linking with -r, which will probably
2055 fail anyhow, since there will be no way to represent
2056 the relocs in the output format being used. */
2057 h = NULL;
2058 }
2059 else
2060 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2061 bfd_asymbol_name (sym),
2062 false, false, true);
2063
2064 if (h != (struct generic_link_hash_entry *) NULL)
2065 {
2066 /* Force all references to this symbol to point to
2067 the same area in memory. It is possible that
2068 this routine will be called with a hash table
2069 other than a generic hash table, so we double
2070 check that. */
2071 if (info->hash->creator == input_bfd->xvec)
2072 {
2073 if (h->sym != (asymbol *) NULL)
2074 *sym_ptr = sym = h->sym;
2075 }
2076
2077 switch (h->root.type)
2078 {
2079 default:
2080 case bfd_link_hash_new:
2081 abort ();
2082 case bfd_link_hash_undefined:
2083 break;
2084 case bfd_link_hash_undefweak:
2085 sym->flags |= BSF_WEAK;
2086 break;
2087 case bfd_link_hash_indirect:
2088 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2089 /* fall through */
2090 case bfd_link_hash_defined:
2091 sym->flags |= BSF_GLOBAL;
2092 sym->flags &=~ BSF_CONSTRUCTOR;
2093 sym->value = h->root.u.def.value;
2094 sym->section = h->root.u.def.section;
2095 break;
2096 case bfd_link_hash_defweak:
2097 sym->flags |= BSF_WEAK;
2098 sym->flags &=~ BSF_CONSTRUCTOR;
2099 sym->value = h->root.u.def.value;
2100 sym->section = h->root.u.def.section;
2101 break;
2102 case bfd_link_hash_common:
2103 sym->value = h->root.u.c.size;
2104 sym->flags |= BSF_GLOBAL;
2105 if (! bfd_is_com_section (sym->section))
2106 {
2107 BFD_ASSERT (bfd_is_und_section (sym->section));
2108 sym->section = bfd_com_section_ptr;
2109 }
2110 /* We do not set the section of the symbol to
2111 h->root.u.c.p->section. That value was saved so
2112 that we would know where to allocate the symbol
2113 if it was defined. In this case the type is
2114 still bfd_link_hash_common, so we did not define
2115 it, so we do not want to use that section. */
2116 break;
2117 }
2118 }
2119 }
2120
2121 /* This switch is straight from the old code in
2122 write_file_locals in ldsym.c. */
2123 if (info->strip == strip_some
2124 && (bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2125 false, false)
2126 == (struct bfd_hash_entry *) NULL))
2127 output = false;
2128 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2129 {
2130 /* If this symbol is marked as occurring now, rather
2131 than at the end, output it now. This is used for
2132 COFF C_EXT FCN symbols. FIXME: There must be a
2133 better way. */
2134 if (bfd_asymbol_bfd (sym) == input_bfd
2135 && (sym->flags & BSF_NOT_AT_END) != 0)
2136 output = true;
2137 else
2138 output = false;
2139 }
2140 else if (bfd_is_ind_section (sym->section))
2141 output = false;
2142 else if ((sym->flags & BSF_DEBUGGING) != 0)
2143 {
2144 if (info->strip == strip_none)
2145 output = true;
2146 else
2147 output = false;
2148 }
2149 else if (bfd_is_und_section (sym->section)
2150 || bfd_is_com_section (sym->section))
2151 output = false;
2152 else if ((sym->flags & BSF_LOCAL) != 0)
2153 {
2154 if ((sym->flags & BSF_WARNING) != 0)
2155 output = false;
2156 else
2157 {
2158 switch (info->discard)
2159 {
2160 default:
2161 case discard_all:
2162 output = false;
2163 break;
2164 case discard_l:
2165 if (bfd_asymbol_name (sym)[0] == info->lprefix[0]
2166 && (info->lprefix_len == 1
2167 || strncmp (bfd_asymbol_name (sym), info->lprefix,
2168 info->lprefix_len) == 0))
2169 output = false;
2170 else
2171 output = true;
2172 break;
2173 case discard_none:
2174 output = true;
2175 break;
2176 }
2177 }
2178 }
2179 else if ((sym->flags & BSF_CONSTRUCTOR))
2180 {
2181 if (info->strip != strip_all)
2182 output = true;
2183 else
2184 output = false;
2185 }
2186 else
2187 abort ();
2188
2189 if (output)
2190 {
2191 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2192 return false;
2193 if (h != (struct generic_link_hash_entry *) NULL)
2194 h->written = true;
2195 }
2196 }
2197
2198 return true;
2199 }
2200
2201 /* Set the section and value of a generic BFD symbol based on a linker
2202 hash table entry. */
2203
2204 static void
2205 set_symbol_from_hash (sym, h)
2206 asymbol *sym;
2207 struct bfd_link_hash_entry *h;
2208 {
2209 switch (h->type)
2210 {
2211 default:
2212 case bfd_link_hash_new:
2213 abort ();
2214 case bfd_link_hash_undefined:
2215 sym->section = bfd_und_section_ptr;
2216 sym->value = 0;
2217 break;
2218 case bfd_link_hash_undefweak:
2219 sym->section = bfd_und_section_ptr;
2220 sym->value = 0;
2221 sym->flags |= BSF_WEAK;
2222 break;
2223 case bfd_link_hash_defined:
2224 sym->section = h->u.def.section;
2225 sym->value = h->u.def.value;
2226 break;
2227 case bfd_link_hash_defweak:
2228 sym->flags |= BSF_WEAK;
2229 sym->section = h->u.def.section;
2230 sym->value = h->u.def.value;
2231 break;
2232 case bfd_link_hash_common:
2233 sym->value = h->u.c.size;
2234 if (sym->section == NULL)
2235 sym->section = bfd_com_section_ptr;
2236 else if (! bfd_is_com_section (sym->section))
2237 {
2238 BFD_ASSERT (bfd_is_und_section (sym->section));
2239 sym->section = bfd_com_section_ptr;
2240 }
2241 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2242 break;
2243 case bfd_link_hash_indirect:
2244 case bfd_link_hash_warning:
2245 /* FIXME: What should we do here? */
2246 break;
2247 }
2248 }
2249
2250 /* Write out a global symbol, if it hasn't already been written out.
2251 This is called for each symbol in the hash table. */
2252
2253 boolean
2254 _bfd_generic_link_write_global_symbol (h, data)
2255 struct generic_link_hash_entry *h;
2256 PTR data;
2257 {
2258 struct generic_write_global_symbol_info *wginfo =
2259 (struct generic_write_global_symbol_info *) data;
2260 asymbol *sym;
2261
2262 if (h->written)
2263 return true;
2264
2265 h->written = true;
2266
2267 if (wginfo->info->strip == strip_all
2268 || (wginfo->info->strip == strip_some
2269 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2270 false, false) == NULL))
2271 return true;
2272
2273 if (h->sym != (asymbol *) NULL)
2274 {
2275 sym = h->sym;
2276 BFD_ASSERT (strcmp (bfd_asymbol_name (sym), h->root.root.string) == 0);
2277 }
2278 else
2279 {
2280 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2281 if (!sym)
2282 return false;
2283 sym->name = h->root.root.string;
2284 sym->flags = 0;
2285 }
2286
2287 set_symbol_from_hash (sym, &h->root);
2288
2289 sym->flags |= BSF_GLOBAL;
2290
2291 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2292 sym))
2293 {
2294 /* FIXME: No way to return failure. */
2295 abort ();
2296 }
2297
2298 return true;
2299 }
2300
2301 /* Create a relocation. */
2302
2303 boolean
2304 _bfd_generic_reloc_link_order (abfd, info, sec, link_order)
2305 bfd *abfd;
2306 struct bfd_link_info *info;
2307 asection *sec;
2308 struct bfd_link_order *link_order;
2309 {
2310 arelent *r;
2311
2312 if (! info->relocateable)
2313 abort ();
2314 if (sec->orelocation == (arelent **) NULL)
2315 abort ();
2316
2317 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2318 if (r == (arelent *) NULL)
2319 {
2320 bfd_set_error (bfd_error_no_memory);
2321 return false;
2322 }
2323
2324 r->address = link_order->offset;
2325 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2326 if (r->howto == 0)
2327 {
2328 bfd_set_error (bfd_error_bad_value);
2329 return false;
2330 }
2331
2332 /* Get the symbol to use for the relocation. */
2333 if (link_order->type == bfd_section_reloc_link_order)
2334 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2335 else
2336 {
2337 struct generic_link_hash_entry *h;
2338
2339 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2340 link_order->u.reloc.p->u.name,
2341 false, false, true);
2342 if (h == (struct generic_link_hash_entry *) NULL
2343 || ! h->written)
2344 {
2345 if (! ((*info->callbacks->unattached_reloc)
2346 (info, link_order->u.reloc.p->u.name,
2347 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2348 return false;
2349 bfd_set_error (bfd_error_bad_value);
2350 return false;
2351 }
2352 r->sym_ptr_ptr = &h->sym;
2353 }
2354
2355 /* If this is an inplace reloc, write the addend to the object file.
2356 Otherwise, store it in the reloc addend. */
2357 if (! r->howto->partial_inplace)
2358 r->addend = link_order->u.reloc.p->addend;
2359 else
2360 {
2361 bfd_size_type size;
2362 bfd_reloc_status_type rstat;
2363 bfd_byte *buf;
2364 boolean ok;
2365
2366 size = bfd_get_reloc_size (r->howto);
2367 buf = (bfd_byte *) bfd_zmalloc (size);
2368 if (buf == (bfd_byte *) NULL)
2369 {
2370 bfd_set_error (bfd_error_no_memory);
2371 return false;
2372 }
2373 rstat = _bfd_relocate_contents (r->howto, abfd,
2374 link_order->u.reloc.p->addend, buf);
2375 switch (rstat)
2376 {
2377 case bfd_reloc_ok:
2378 break;
2379 default:
2380 case bfd_reloc_outofrange:
2381 abort ();
2382 case bfd_reloc_overflow:
2383 if (! ((*info->callbacks->reloc_overflow)
2384 (info,
2385 (link_order->type == bfd_section_reloc_link_order
2386 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2387 : link_order->u.reloc.p->u.name),
2388 r->howto->name, link_order->u.reloc.p->addend,
2389 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2390 {
2391 free (buf);
2392 return false;
2393 }
2394 break;
2395 }
2396 ok = bfd_set_section_contents (abfd, sec, (PTR) buf,
2397 (file_ptr) link_order->offset, size);
2398 free (buf);
2399 if (! ok)
2400 return false;
2401
2402 r->addend = 0;
2403 }
2404
2405 sec->orelocation[sec->reloc_count] = r;
2406 ++sec->reloc_count;
2407
2408 return true;
2409 }
2410 \f
2411 /* Allocate a new link_order for a section. */
2412
2413 struct bfd_link_order *
2414 bfd_new_link_order (abfd, section)
2415 bfd *abfd;
2416 asection *section;
2417 {
2418 struct bfd_link_order *new;
2419
2420 new = ((struct bfd_link_order *)
2421 bfd_alloc_by_size_t (abfd, sizeof (struct bfd_link_order)));
2422 if (!new)
2423 {
2424 bfd_set_error (bfd_error_no_memory);
2425 return NULL;
2426 }
2427
2428 new->type = bfd_undefined_link_order;
2429 new->offset = 0;
2430 new->size = 0;
2431 new->next = (struct bfd_link_order *) NULL;
2432
2433 if (section->link_order_tail != (struct bfd_link_order *) NULL)
2434 section->link_order_tail->next = new;
2435 else
2436 section->link_order_head = new;
2437 section->link_order_tail = new;
2438
2439 return new;
2440 }
2441
2442 /* Default link order processing routine. Note that we can not handle
2443 the reloc_link_order types here, since they depend upon the details
2444 of how the particular backends generates relocs. */
2445
2446 boolean
2447 _bfd_default_link_order (abfd, info, sec, link_order)
2448 bfd *abfd;
2449 struct bfd_link_info *info;
2450 asection *sec;
2451 struct bfd_link_order *link_order;
2452 {
2453 switch (link_order->type)
2454 {
2455 case bfd_undefined_link_order:
2456 case bfd_section_reloc_link_order:
2457 case bfd_symbol_reloc_link_order:
2458 default:
2459 abort ();
2460 case bfd_indirect_link_order:
2461 return default_indirect_link_order (abfd, info, sec, link_order,
2462 false);
2463 case bfd_fill_link_order:
2464 return default_fill_link_order (abfd, info, sec, link_order);
2465 case bfd_data_link_order:
2466 return bfd_set_section_contents (abfd, sec,
2467 (PTR) link_order->u.data.contents,
2468 (file_ptr) link_order->offset,
2469 link_order->size);
2470 }
2471 }
2472
2473 /* Default routine to handle a bfd_fill_link_order. */
2474
2475 /*ARGSUSED*/
2476 static boolean
2477 default_fill_link_order (abfd, info, sec, link_order)
2478 bfd *abfd;
2479 struct bfd_link_info *info;
2480 asection *sec;
2481 struct bfd_link_order *link_order;
2482 {
2483 size_t size;
2484 char *space;
2485 size_t i;
2486 int fill;
2487 boolean result;
2488
2489 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2490
2491 size = (size_t) link_order->size;
2492 space = (char *) malloc (size);
2493 if (space == NULL && size != 0)
2494 {
2495 bfd_set_error (bfd_error_no_memory);
2496 return false;
2497 }
2498
2499 fill = link_order->u.fill.value;
2500 for (i = 0; i < size; i += 2)
2501 space[i] = fill >> 8;
2502 for (i = 1; i < size; i += 2)
2503 space[i] = fill;
2504 result = bfd_set_section_contents (abfd, sec, space,
2505 (file_ptr) link_order->offset,
2506 link_order->size);
2507 free (space);
2508 return result;
2509 }
2510
2511 /* Default routine to handle a bfd_indirect_link_order. */
2512
2513 static boolean
2514 default_indirect_link_order (output_bfd, info, output_section, link_order,
2515 generic_linker)
2516 bfd *output_bfd;
2517 struct bfd_link_info *info;
2518 asection *output_section;
2519 struct bfd_link_order *link_order;
2520 boolean generic_linker;
2521 {
2522 asection *input_section;
2523 bfd *input_bfd;
2524 bfd_byte *contents = NULL;
2525 bfd_byte *new_contents;
2526
2527 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2528
2529 if (link_order->size == 0)
2530 return true;
2531
2532 input_section = link_order->u.indirect.section;
2533 input_bfd = input_section->owner;
2534
2535 BFD_ASSERT (input_section->output_section == output_section);
2536 BFD_ASSERT (input_section->output_offset == link_order->offset);
2537 BFD_ASSERT (input_section->_cooked_size == link_order->size);
2538
2539 if (info->relocateable
2540 && input_section->reloc_count > 0
2541 && output_section->orelocation == (arelent **) NULL)
2542 {
2543 /* Space has not been allocated for the output relocations.
2544 This can happen when we are called by a specific backend
2545 because somebody is attempting to link together different
2546 types of object files. Handling this case correctly is
2547 difficult, and sometimes impossible. */
2548 abort ();
2549 }
2550
2551 if (! generic_linker)
2552 {
2553 asymbol **sympp;
2554 asymbol **symppend;
2555
2556 /* Get the canonical symbols. The generic linker will always
2557 have retrieved them by this point, but we are being called by
2558 a specific linker, presumably because we are linking
2559 different types of object files together. */
2560 if (! generic_link_read_symbols (input_bfd))
2561 return false;
2562
2563 /* Since we have been called by a specific linker, rather than
2564 the generic linker, the values of the symbols will not be
2565 right. They will be the values as seen in the input file,
2566 not the values of the final link. We need to fix them up
2567 before we can relocate the section. */
2568 sympp = _bfd_generic_link_get_symbols (input_bfd);
2569 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2570 for (; sympp < symppend; sympp++)
2571 {
2572 asymbol *sym;
2573 struct bfd_link_hash_entry *h;
2574
2575 sym = *sympp;
2576
2577 if ((sym->flags & (BSF_INDIRECT
2578 | BSF_WARNING
2579 | BSF_GLOBAL
2580 | BSF_CONSTRUCTOR
2581 | BSF_WEAK)) != 0
2582 || bfd_is_und_section (bfd_get_section (sym))
2583 || bfd_is_com_section (bfd_get_section (sym))
2584 || bfd_is_ind_section (bfd_get_section (sym)))
2585 {
2586 /* sym->udata may have been set by
2587 generic_link_add_symbol_list. */
2588 if (sym->udata.p != NULL)
2589 h = (struct bfd_link_hash_entry *) sym->udata.p;
2590 else
2591 h = bfd_link_hash_lookup (info->hash,
2592 bfd_asymbol_name (sym),
2593 false, false, true);
2594 if (h != NULL)
2595 set_symbol_from_hash (sym, h);
2596 }
2597 }
2598 }
2599
2600 /* Get and relocate the section contents. */
2601 contents = (bfd_byte *) malloc (bfd_section_size (input_bfd, input_section));
2602 if (contents == NULL && bfd_section_size (input_bfd, input_section) != 0)
2603 {
2604 bfd_set_error (bfd_error_no_memory);
2605 goto error_return;
2606 }
2607 new_contents = (bfd_get_relocated_section_contents
2608 (output_bfd, info, link_order, contents, info->relocateable,
2609 _bfd_generic_link_get_symbols (input_bfd)));
2610 if (!new_contents)
2611 goto error_return;
2612
2613 /* Output the section contents. */
2614 if (! bfd_set_section_contents (output_bfd, output_section,
2615 (PTR) new_contents,
2616 link_order->offset, link_order->size))
2617 goto error_return;
2618
2619 if (contents != NULL)
2620 free (contents);
2621 return true;
2622
2623 error_return:
2624 if (contents != NULL)
2625 free (contents);
2626 return false;
2627 }
2628
2629 /* A little routine to count the number of relocs in a link_order
2630 list. */
2631
2632 unsigned int
2633 _bfd_count_link_order_relocs (link_order)
2634 struct bfd_link_order *link_order;
2635 {
2636 register unsigned int c;
2637 register struct bfd_link_order *l;
2638
2639 c = 0;
2640 for (l = link_order; l != (struct bfd_link_order *) NULL; l = l->next)
2641 {
2642 if (l->type == bfd_section_reloc_link_order
2643 || l->type == bfd_symbol_reloc_link_order)
2644 ++c;
2645 }
2646
2647 return c;
2648 }
2649
2650 /*
2651 FUNCTION
2652 bfd_link_split_section
2653
2654 SYNOPSIS
2655 boolean bfd_link_split_section(bfd *abfd, asection *sec);
2656
2657 DESCRIPTION
2658 Return nonzero if @var{sec} should be split during a
2659 reloceatable or final link.
2660
2661 .#define bfd_link_split_section(abfd, sec) \
2662 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2663 .
2664
2665 */
2666
2667
2668
2669 boolean
2670 _bfd_generic_link_split_section (abfd, sec)
2671 bfd *abfd;
2672 asection *sec;
2673 {
2674 return false;
2675 }
This page took 0.172311 seconds and 4 git commands to generate.