Copy st_other for linker script symbol assignments
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
228
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function. This
233 function builds a hash table from the archive symbol table and
234 looks through the list of undefined symbols to see which
235 elements should be included.
236 <<_bfd_generic_link_add_archive_symbols>> is passed a function
237 to call to make the final decision about adding an archive
238 element to the link and to do the actual work of adding the
239 symbols to the linker hash table.
240
241 The function passed to
242 <<_bfd_generic_link_add_archive_symbols>> must read the
243 symbols of the archive element and decide whether the archive
244 element should be included in the link. If the element is to
245 be included, the <<add_archive_element>> linker callback
246 routine must be called with the element as an argument, and
247 the element's symbols must be added to the linker hash table
248 just as though the element had itself been passed to the
249 <<_bfd_link_add_symbols>> function. The <<add_archive_element>>
250 callback has the option to indicate that it would like to
251 replace the element archive with a substitute BFD, in which
252 case it is the symbols of that substitute BFD that must be
253 added to the linker hash table instead.
254
255 When the a.out <<_bfd_link_add_symbols>> function receives an
256 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
257 passing <<aout_link_check_archive_element>> as the function
258 argument. <<aout_link_check_archive_element>> calls
259 <<aout_link_check_ar_symbols>>. If the latter decides to add
260 the element (an element is only added if it provides a real,
261 non-common, definition for a previously undefined or common
262 symbol) it calls the <<add_archive_element>> callback and then
263 <<aout_link_check_archive_element>> calls
264 <<aout_link_add_symbols>> to actually add the symbols to the
265 linker hash table - possibly those of a substitute BFD, if the
266 <<add_archive_element>> callback avails itself of that option.
267
268 The ECOFF back end is unusual in that it does not normally
269 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
270 archives already contain a hash table of symbols. The ECOFF
271 back end searches the archive itself to avoid the overhead of
272 creating a new hash table.
273
274 INODE
275 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
276 SUBSECTION
277 Performing the final link
278
279 @cindex _bfd_link_final_link in target vector
280 @cindex target vector (_bfd_final_link)
281 When all the input files have been processed, the linker calls
282 the <<_bfd_final_link>> entry point of the output BFD. This
283 routine is responsible for producing the final output file,
284 which has several aspects. It must relocate the contents of
285 the input sections and copy the data into the output sections.
286 It must build an output symbol table including any local
287 symbols from the input files and the global symbols from the
288 hash table. When producing relocatable output, it must
289 modify the input relocs and write them into the output file.
290 There may also be object format dependent work to be done.
291
292 The linker will also call the <<write_object_contents>> entry
293 point when the BFD is closed. The two entry points must work
294 together in order to produce the correct output file.
295
296 The details of how this works are inevitably dependent upon
297 the specific object file format. The a.out
298 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
299
300 @menu
301 @* Information provided by the linker::
302 @* Relocating the section contents::
303 @* Writing the symbol table::
304 @end menu
305
306 INODE
307 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
308 SUBSUBSECTION
309 Information provided by the linker
310
311 Before the linker calls the <<_bfd_final_link>> entry point,
312 it sets up some data structures for the function to use.
313
314 The <<input_bfds>> field of the <<bfd_link_info>> structure
315 will point to a list of all the input files included in the
316 link. These files are linked through the <<link.next>> field
317 of the <<bfd>> structure.
318
319 Each section in the output file will have a list of
320 <<link_order>> structures attached to the <<map_head.link_order>>
321 field (the <<link_order>> structure is defined in
322 <<bfdlink.h>>). These structures describe how to create the
323 contents of the output section in terms of the contents of
324 various input sections, fill constants, and, eventually, other
325 types of information. They also describe relocs that must be
326 created by the BFD backend, but do not correspond to any input
327 file; this is used to support -Ur, which builds constructors
328 while generating a relocatable object file.
329
330 INODE
331 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
332 SUBSUBSECTION
333 Relocating the section contents
334
335 The <<_bfd_final_link>> function should look through the
336 <<link_order>> structures attached to each section of the
337 output file. Each <<link_order>> structure should either be
338 handled specially, or it should be passed to the function
339 <<_bfd_default_link_order>> which will do the right thing
340 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
341
342 For efficiency, a <<link_order>> of type
343 <<bfd_indirect_link_order>> whose associated section belongs
344 to a BFD of the same format as the output BFD must be handled
345 specially. This type of <<link_order>> describes part of an
346 output section in terms of a section belonging to one of the
347 input files. The <<_bfd_final_link>> function should read the
348 contents of the section and any associated relocs, apply the
349 relocs to the section contents, and write out the modified
350 section contents. If performing a relocatable link, the
351 relocs themselves must also be modified and written out.
352
353 @findex _bfd_relocate_contents
354 @findex _bfd_final_link_relocate
355 The functions <<_bfd_relocate_contents>> and
356 <<_bfd_final_link_relocate>> provide some general support for
357 performing the actual relocations, notably overflow checking.
358 Their arguments include information about the symbol the
359 relocation is against and a <<reloc_howto_type>> argument
360 which describes the relocation to perform. These functions
361 are defined in <<reloc.c>>.
362
363 The a.out function which handles reading, relocating, and
364 writing section contents is <<aout_link_input_section>>. The
365 actual relocation is done in <<aout_link_input_section_std>>
366 and <<aout_link_input_section_ext>>.
367
368 INODE
369 Writing the symbol table, , Relocating the section contents, Performing the Final Link
370 SUBSUBSECTION
371 Writing the symbol table
372
373 The <<_bfd_final_link>> function must gather all the symbols
374 in the input files and write them out. It must also write out
375 all the symbols in the global hash table. This must be
376 controlled by the <<strip>> and <<discard>> fields of the
377 <<bfd_link_info>> structure.
378
379 The local symbols of the input files will not have been
380 entered into the linker hash table. The <<_bfd_final_link>>
381 routine must consider each input file and include the symbols
382 in the output file. It may be convenient to do this when
383 looking through the <<link_order>> structures, or it may be
384 done by stepping through the <<input_bfds>> list.
385
386 The <<_bfd_final_link>> routine must also traverse the global
387 hash table to gather all the externally visible symbols. It
388 is possible that most of the externally visible symbols may be
389 written out when considering the symbols of each input file,
390 but it is still necessary to traverse the hash table since the
391 linker script may have defined some symbols that are not in
392 any of the input files.
393
394 The <<strip>> field of the <<bfd_link_info>> structure
395 controls which symbols are written out. The possible values
396 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
397 then the <<keep_hash>> field of the <<bfd_link_info>>
398 structure is a hash table of symbols to keep; each symbol
399 should be looked up in this hash table, and only symbols which
400 are present should be included in the output file.
401
402 If the <<strip>> field of the <<bfd_link_info>> structure
403 permits local symbols to be written out, the <<discard>> field
404 is used to further controls which local symbols are included
405 in the output file. If the value is <<discard_l>>, then all
406 local symbols which begin with a certain prefix are discarded;
407 this is controlled by the <<bfd_is_local_label_name>> entry point.
408
409 The a.out backend handles symbols by calling
410 <<aout_link_write_symbols>> on each input BFD and then
411 traversing the global hash table with the function
412 <<aout_link_write_other_symbol>>. It builds a string table
413 while writing out the symbols, which is written to the output
414 file at the end of <<NAME(aout,final_link)>>.
415 */
416
417 static bfd_boolean generic_link_add_object_symbols
418 (bfd *, struct bfd_link_info *, bfd_boolean collect);
419 static bfd_boolean generic_link_add_symbols
420 (bfd *, struct bfd_link_info *, bfd_boolean);
421 static bfd_boolean generic_link_check_archive_element_no_collect
422 (bfd *, struct bfd_link_info *, bfd_boolean *);
423 static bfd_boolean generic_link_check_archive_element_collect
424 (bfd *, struct bfd_link_info *, bfd_boolean *);
425 static bfd_boolean generic_link_check_archive_element
426 (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
427 static bfd_boolean generic_link_add_symbol_list
428 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
429 bfd_boolean);
430 static bfd_boolean generic_add_output_symbol
431 (bfd *, size_t *psymalloc, asymbol *);
432 static bfd_boolean default_data_link_order
433 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
434 static bfd_boolean default_indirect_link_order
435 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
436 bfd_boolean);
437
438 /* The link hash table structure is defined in bfdlink.h. It provides
439 a base hash table which the backend specific hash tables are built
440 upon. */
441
442 /* Routine to create an entry in the link hash table. */
443
444 struct bfd_hash_entry *
445 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
446 struct bfd_hash_table *table,
447 const char *string)
448 {
449 /* Allocate the structure if it has not already been allocated by a
450 subclass. */
451 if (entry == NULL)
452 {
453 entry = (struct bfd_hash_entry *)
454 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
455 if (entry == NULL)
456 return entry;
457 }
458
459 /* Call the allocation method of the superclass. */
460 entry = bfd_hash_newfunc (entry, table, string);
461 if (entry)
462 {
463 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
464
465 /* Initialize the local fields. */
466 memset ((char *) &h->root + sizeof (h->root), 0,
467 sizeof (*h) - sizeof (h->root));
468 }
469
470 return entry;
471 }
472
473 /* Initialize a link hash table. The BFD argument is the one
474 responsible for creating this table. */
475
476 bfd_boolean
477 _bfd_link_hash_table_init
478 (struct bfd_link_hash_table *table,
479 bfd *abfd ATTRIBUTE_UNUSED,
480 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
481 struct bfd_hash_table *,
482 const char *),
483 unsigned int entsize)
484 {
485 bfd_boolean ret;
486
487 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
488 table->undefs = NULL;
489 table->undefs_tail = NULL;
490 table->type = bfd_link_generic_hash_table;
491
492 ret = bfd_hash_table_init (&table->table, newfunc, entsize);
493 if (ret)
494 {
495 /* Arrange for destruction of this hash table on closing ABFD. */
496 table->hash_table_free = _bfd_generic_link_hash_table_free;
497 abfd->link.hash = table;
498 abfd->is_linker_output = TRUE;
499 }
500 return ret;
501 }
502
503 /* Look up a symbol in a link hash table. If follow is TRUE, we
504 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
505 the real symbol. */
506
507 struct bfd_link_hash_entry *
508 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
509 const char *string,
510 bfd_boolean create,
511 bfd_boolean copy,
512 bfd_boolean follow)
513 {
514 struct bfd_link_hash_entry *ret;
515
516 ret = ((struct bfd_link_hash_entry *)
517 bfd_hash_lookup (&table->table, string, create, copy));
518
519 if (follow && ret != NULL)
520 {
521 while (ret->type == bfd_link_hash_indirect
522 || ret->type == bfd_link_hash_warning)
523 ret = ret->u.i.link;
524 }
525
526 return ret;
527 }
528
529 /* Look up a symbol in the main linker hash table if the symbol might
530 be wrapped. This should only be used for references to an
531 undefined symbol, not for definitions of a symbol. */
532
533 struct bfd_link_hash_entry *
534 bfd_wrapped_link_hash_lookup (bfd *abfd,
535 struct bfd_link_info *info,
536 const char *string,
537 bfd_boolean create,
538 bfd_boolean copy,
539 bfd_boolean follow)
540 {
541 bfd_size_type amt;
542
543 if (info->wrap_hash != NULL)
544 {
545 const char *l;
546 char prefix = '\0';
547
548 l = string;
549 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
550 {
551 prefix = *l;
552 ++l;
553 }
554
555 #undef WRAP
556 #define WRAP "__wrap_"
557
558 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
559 {
560 char *n;
561 struct bfd_link_hash_entry *h;
562
563 /* This symbol is being wrapped. We want to replace all
564 references to SYM with references to __wrap_SYM. */
565
566 amt = strlen (l) + sizeof WRAP + 1;
567 n = (char *) bfd_malloc (amt);
568 if (n == NULL)
569 return NULL;
570
571 n[0] = prefix;
572 n[1] = '\0';
573 strcat (n, WRAP);
574 strcat (n, l);
575 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
576 free (n);
577 return h;
578 }
579
580 #undef REAL
581 #define REAL "__real_"
582
583 if (*l == '_'
584 && CONST_STRNEQ (l, REAL)
585 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
586 FALSE, FALSE) != NULL)
587 {
588 char *n;
589 struct bfd_link_hash_entry *h;
590
591 /* This is a reference to __real_SYM, where SYM is being
592 wrapped. We want to replace all references to __real_SYM
593 with references to SYM. */
594
595 amt = strlen (l + sizeof REAL - 1) + 2;
596 n = (char *) bfd_malloc (amt);
597 if (n == NULL)
598 return NULL;
599
600 n[0] = prefix;
601 n[1] = '\0';
602 strcat (n, l + sizeof REAL - 1);
603 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
604 free (n);
605 return h;
606 }
607
608 #undef REAL
609 }
610
611 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
612 }
613
614 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
615 and the remainder is found in wrap_hash, return the real symbol. */
616
617 struct bfd_link_hash_entry *
618 unwrap_hash_lookup (struct bfd_link_info *info,
619 bfd *input_bfd,
620 struct bfd_link_hash_entry *h)
621 {
622 const char *l = h->root.string;
623
624 if (*l == bfd_get_symbol_leading_char (input_bfd)
625 || *l == info->wrap_char)
626 ++l;
627
628 if (CONST_STRNEQ (l, WRAP))
629 {
630 l += sizeof WRAP - 1;
631
632 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
633 {
634 char save = 0;
635 if (l - (sizeof WRAP - 1) != h->root.string)
636 {
637 --l;
638 save = *l;
639 *(char *) l = *h->root.string;
640 }
641 h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
642 if (save)
643 *(char *) l = save;
644 }
645 }
646 return h;
647 }
648 #undef WRAP
649
650 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
651 in the treatment of warning symbols. When warning symbols are
652 created they replace the real symbol, so you don't get to see the
653 real symbol in a bfd_hash_travere. This traversal calls func with
654 the real symbol. */
655
656 void
657 bfd_link_hash_traverse
658 (struct bfd_link_hash_table *htab,
659 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
660 void *info)
661 {
662 unsigned int i;
663
664 htab->table.frozen = 1;
665 for (i = 0; i < htab->table.size; i++)
666 {
667 struct bfd_link_hash_entry *p;
668
669 p = (struct bfd_link_hash_entry *) htab->table.table[i];
670 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
671 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
672 goto out;
673 }
674 out:
675 htab->table.frozen = 0;
676 }
677
678 /* Add a symbol to the linker hash table undefs list. */
679
680 void
681 bfd_link_add_undef (struct bfd_link_hash_table *table,
682 struct bfd_link_hash_entry *h)
683 {
684 BFD_ASSERT (h->u.undef.next == NULL);
685 if (table->undefs_tail != NULL)
686 table->undefs_tail->u.undef.next = h;
687 if (table->undefs == NULL)
688 table->undefs = h;
689 table->undefs_tail = h;
690 }
691
692 /* The undefs list was designed so that in normal use we don't need to
693 remove entries. However, if symbols on the list are changed from
694 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
695 bfd_link_hash_new for some reason, then they must be removed from the
696 list. Failure to do so might result in the linker attempting to add
697 the symbol to the list again at a later stage. */
698
699 void
700 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
701 {
702 struct bfd_link_hash_entry **pun;
703
704 pun = &table->undefs;
705 while (*pun != NULL)
706 {
707 struct bfd_link_hash_entry *h = *pun;
708
709 if (h->type == bfd_link_hash_new
710 || h->type == bfd_link_hash_undefweak)
711 {
712 *pun = h->u.undef.next;
713 h->u.undef.next = NULL;
714 if (h == table->undefs_tail)
715 {
716 if (pun == &table->undefs)
717 table->undefs_tail = NULL;
718 else
719 /* pun points at an u.undef.next field. Go back to
720 the start of the link_hash_entry. */
721 table->undefs_tail = (struct bfd_link_hash_entry *)
722 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
723 break;
724 }
725 }
726 else
727 pun = &h->u.undef.next;
728 }
729 }
730 \f
731 /* Routine to create an entry in a generic link hash table. */
732
733 struct bfd_hash_entry *
734 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
735 struct bfd_hash_table *table,
736 const char *string)
737 {
738 /* Allocate the structure if it has not already been allocated by a
739 subclass. */
740 if (entry == NULL)
741 {
742 entry = (struct bfd_hash_entry *)
743 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
744 if (entry == NULL)
745 return entry;
746 }
747
748 /* Call the allocation method of the superclass. */
749 entry = _bfd_link_hash_newfunc (entry, table, string);
750 if (entry)
751 {
752 struct generic_link_hash_entry *ret;
753
754 /* Set local fields. */
755 ret = (struct generic_link_hash_entry *) entry;
756 ret->written = FALSE;
757 ret->sym = NULL;
758 }
759
760 return entry;
761 }
762
763 /* Create a generic link hash table. */
764
765 struct bfd_link_hash_table *
766 _bfd_generic_link_hash_table_create (bfd *abfd)
767 {
768 struct generic_link_hash_table *ret;
769 bfd_size_type amt = sizeof (struct generic_link_hash_table);
770
771 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
772 if (ret == NULL)
773 return NULL;
774 if (! _bfd_link_hash_table_init (&ret->root, abfd,
775 _bfd_generic_link_hash_newfunc,
776 sizeof (struct generic_link_hash_entry)))
777 {
778 free (ret);
779 return NULL;
780 }
781 return &ret->root;
782 }
783
784 void
785 _bfd_generic_link_hash_table_free (bfd *obfd)
786 {
787 struct generic_link_hash_table *ret;
788
789 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
790 ret = (struct generic_link_hash_table *) obfd->link.hash;
791 bfd_hash_table_free (&ret->root.table);
792 free (ret);
793 obfd->link.hash = NULL;
794 obfd->is_linker_output = FALSE;
795 }
796
797 /* Grab the symbols for an object file when doing a generic link. We
798 store the symbols in the outsymbols field. We need to keep them
799 around for the entire link to ensure that we only read them once.
800 If we read them multiple times, we might wind up with relocs and
801 the hash table pointing to different instances of the symbol
802 structure. */
803
804 bfd_boolean
805 bfd_generic_link_read_symbols (bfd *abfd)
806 {
807 if (bfd_get_outsymbols (abfd) == NULL)
808 {
809 long symsize;
810 long symcount;
811
812 symsize = bfd_get_symtab_upper_bound (abfd);
813 if (symsize < 0)
814 return FALSE;
815 bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
816 symsize);
817 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
818 return FALSE;
819 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
820 if (symcount < 0)
821 return FALSE;
822 bfd_get_symcount (abfd) = symcount;
823 }
824
825 return TRUE;
826 }
827 \f
828 /* Generic function to add symbols to from an object file to the
829 global hash table. This version does not automatically collect
830 constructors by name. */
831
832 bfd_boolean
833 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
834 {
835 return generic_link_add_symbols (abfd, info, FALSE);
836 }
837
838 /* Generic function to add symbols from an object file to the global
839 hash table. This version automatically collects constructors by
840 name, as the collect2 program does. It should be used for any
841 target which does not provide some other mechanism for setting up
842 constructors and destructors; these are approximately those targets
843 for which gcc uses collect2 and do not support stabs. */
844
845 bfd_boolean
846 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
847 {
848 return generic_link_add_symbols (abfd, info, TRUE);
849 }
850
851 /* Indicate that we are only retrieving symbol values from this
852 section. We want the symbols to act as though the values in the
853 file are absolute. */
854
855 void
856 _bfd_generic_link_just_syms (asection *sec,
857 struct bfd_link_info *info ATTRIBUTE_UNUSED)
858 {
859 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
860 sec->output_section = bfd_abs_section_ptr;
861 sec->output_offset = sec->vma;
862 }
863
864 /* Copy the symbol type and other attributes for a linker script
865 assignment from HSRC to HDEST.
866 The default implementation does nothing. */
867 void
868 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
869 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
870 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
871 {
872 }
873
874 /* Add symbols from an object file to the global hash table. */
875
876 static bfd_boolean
877 generic_link_add_symbols (bfd *abfd,
878 struct bfd_link_info *info,
879 bfd_boolean collect)
880 {
881 bfd_boolean ret;
882
883 switch (bfd_get_format (abfd))
884 {
885 case bfd_object:
886 ret = generic_link_add_object_symbols (abfd, info, collect);
887 break;
888 case bfd_archive:
889 ret = (_bfd_generic_link_add_archive_symbols
890 (abfd, info,
891 (collect
892 ? generic_link_check_archive_element_collect
893 : generic_link_check_archive_element_no_collect)));
894 break;
895 default:
896 bfd_set_error (bfd_error_wrong_format);
897 ret = FALSE;
898 }
899
900 return ret;
901 }
902
903 /* Add symbols from an object file to the global hash table. */
904
905 static bfd_boolean
906 generic_link_add_object_symbols (bfd *abfd,
907 struct bfd_link_info *info,
908 bfd_boolean collect)
909 {
910 bfd_size_type symcount;
911 struct bfd_symbol **outsyms;
912
913 if (!bfd_generic_link_read_symbols (abfd))
914 return FALSE;
915 symcount = _bfd_generic_link_get_symcount (abfd);
916 outsyms = _bfd_generic_link_get_symbols (abfd);
917 return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
918 }
919 \f
920 /* We build a hash table of all symbols defined in an archive. */
921
922 /* An archive symbol may be defined by multiple archive elements.
923 This linked list is used to hold the elements. */
924
925 struct archive_list
926 {
927 struct archive_list *next;
928 unsigned int indx;
929 };
930
931 /* An entry in an archive hash table. */
932
933 struct archive_hash_entry
934 {
935 struct bfd_hash_entry root;
936 /* Where the symbol is defined. */
937 struct archive_list *defs;
938 };
939
940 /* An archive hash table itself. */
941
942 struct archive_hash_table
943 {
944 struct bfd_hash_table table;
945 };
946
947 /* Create a new entry for an archive hash table. */
948
949 static struct bfd_hash_entry *
950 archive_hash_newfunc (struct bfd_hash_entry *entry,
951 struct bfd_hash_table *table,
952 const char *string)
953 {
954 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
955
956 /* Allocate the structure if it has not already been allocated by a
957 subclass. */
958 if (ret == NULL)
959 ret = (struct archive_hash_entry *)
960 bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
961 if (ret == NULL)
962 return NULL;
963
964 /* Call the allocation method of the superclass. */
965 ret = ((struct archive_hash_entry *)
966 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
967
968 if (ret)
969 {
970 /* Initialize the local fields. */
971 ret->defs = NULL;
972 }
973
974 return &ret->root;
975 }
976
977 /* Initialize an archive hash table. */
978
979 static bfd_boolean
980 archive_hash_table_init
981 (struct archive_hash_table *table,
982 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
983 struct bfd_hash_table *,
984 const char *),
985 unsigned int entsize)
986 {
987 return bfd_hash_table_init (&table->table, newfunc, entsize);
988 }
989
990 /* Look up an entry in an archive hash table. */
991
992 #define archive_hash_lookup(t, string, create, copy) \
993 ((struct archive_hash_entry *) \
994 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
995
996 /* Allocate space in an archive hash table. */
997
998 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
999
1000 /* Free an archive hash table. */
1001
1002 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
1003
1004 /* Generic function to add symbols from an archive file to the global
1005 hash file. This function presumes that the archive symbol table
1006 has already been read in (this is normally done by the
1007 bfd_check_format entry point). It looks through the undefined and
1008 common symbols and searches the archive symbol table for them. If
1009 it finds an entry, it includes the associated object file in the
1010 link.
1011
1012 The old linker looked through the archive symbol table for
1013 undefined symbols. We do it the other way around, looking through
1014 undefined symbols for symbols defined in the archive. The
1015 advantage of the newer scheme is that we only have to look through
1016 the list of undefined symbols once, whereas the old method had to
1017 re-search the symbol table each time a new object file was added.
1018
1019 The CHECKFN argument is used to see if an object file should be
1020 included. CHECKFN should set *PNEEDED to TRUE if the object file
1021 should be included, and must also call the bfd_link_info
1022 add_archive_element callback function and handle adding the symbols
1023 to the global hash table. CHECKFN must notice if the callback
1024 indicates a substitute BFD, and arrange to add those symbols instead
1025 if it does so. CHECKFN should only return FALSE if some sort of
1026 error occurs.
1027
1028 For some formats, such as a.out, it is possible to look through an
1029 object file but not actually include it in the link. The
1030 archive_pass field in a BFD is used to avoid checking the symbols
1031 of an object files too many times. When an object is included in
1032 the link, archive_pass is set to -1. If an object is scanned but
1033 not included, archive_pass is set to the pass number. The pass
1034 number is incremented each time a new object file is included. The
1035 pass number is used because when a new object file is included it
1036 may create new undefined symbols which cause a previously examined
1037 object file to be included. */
1038
1039 bfd_boolean
1040 _bfd_generic_link_add_archive_symbols
1041 (bfd *abfd,
1042 struct bfd_link_info *info,
1043 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
1044 {
1045 carsym *arsyms;
1046 carsym *arsym_end;
1047 register carsym *arsym;
1048 int pass;
1049 struct archive_hash_table arsym_hash;
1050 unsigned int indx;
1051 struct bfd_link_hash_entry **pundef;
1052
1053 if (! bfd_has_map (abfd))
1054 {
1055 /* An empty archive is a special case. */
1056 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
1057 return TRUE;
1058 bfd_set_error (bfd_error_no_armap);
1059 return FALSE;
1060 }
1061
1062 arsyms = bfd_ardata (abfd)->symdefs;
1063 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
1064
1065 /* In order to quickly determine whether an symbol is defined in
1066 this archive, we build a hash table of the symbols. */
1067 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
1068 sizeof (struct archive_hash_entry)))
1069 return FALSE;
1070 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
1071 {
1072 struct archive_hash_entry *arh;
1073 struct archive_list *l, **pp;
1074
1075 arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
1076 if (arh == NULL)
1077 goto error_return;
1078 l = ((struct archive_list *)
1079 archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
1080 if (l == NULL)
1081 goto error_return;
1082 l->indx = indx;
1083 for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1084 ;
1085 *pp = l;
1086 l->next = NULL;
1087 }
1088
1089 /* The archive_pass field in the archive itself is used to
1090 initialize PASS, sine we may search the same archive multiple
1091 times. */
1092 pass = abfd->archive_pass + 1;
1093
1094 /* New undefined symbols are added to the end of the list, so we
1095 only need to look through it once. */
1096 pundef = &info->hash->undefs;
1097 while (*pundef != NULL)
1098 {
1099 struct bfd_link_hash_entry *h;
1100 struct archive_hash_entry *arh;
1101 struct archive_list *l;
1102
1103 h = *pundef;
1104
1105 /* When a symbol is defined, it is not necessarily removed from
1106 the list. */
1107 if (h->type != bfd_link_hash_undefined
1108 && h->type != bfd_link_hash_common)
1109 {
1110 /* Remove this entry from the list, for general cleanliness
1111 and because we are going to look through the list again
1112 if we search any more libraries. We can't remove the
1113 entry if it is the tail, because that would lose any
1114 entries we add to the list later on (it would also cause
1115 us to lose track of whether the symbol has been
1116 referenced). */
1117 if (*pundef != info->hash->undefs_tail)
1118 *pundef = (*pundef)->u.undef.next;
1119 else
1120 pundef = &(*pundef)->u.undef.next;
1121 continue;
1122 }
1123
1124 /* Look for this symbol in the archive symbol map. */
1125 arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1126 if (arh == NULL)
1127 {
1128 /* If we haven't found the exact symbol we're looking for,
1129 let's look for its import thunk */
1130 if (info->pei386_auto_import)
1131 {
1132 bfd_size_type amt = strlen (h->root.string) + 10;
1133 char *buf = (char *) bfd_malloc (amt);
1134 if (buf == NULL)
1135 return FALSE;
1136
1137 sprintf (buf, "__imp_%s", h->root.string);
1138 arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1139 free(buf);
1140 }
1141 if (arh == NULL)
1142 {
1143 pundef = &(*pundef)->u.undef.next;
1144 continue;
1145 }
1146 }
1147 /* Look at all the objects which define this symbol. */
1148 for (l = arh->defs; l != NULL; l = l->next)
1149 {
1150 bfd *element;
1151 bfd_boolean needed;
1152
1153 /* If the symbol has gotten defined along the way, quit. */
1154 if (h->type != bfd_link_hash_undefined
1155 && h->type != bfd_link_hash_common)
1156 break;
1157
1158 element = bfd_get_elt_at_index (abfd, l->indx);
1159 if (element == NULL)
1160 goto error_return;
1161
1162 /* If we've already included this element, or if we've
1163 already checked it on this pass, continue. */
1164 if (element->archive_pass == -1
1165 || element->archive_pass == pass)
1166 continue;
1167
1168 /* If we can't figure this element out, just ignore it. */
1169 if (! bfd_check_format (element, bfd_object))
1170 {
1171 element->archive_pass = -1;
1172 continue;
1173 }
1174
1175 /* CHECKFN will see if this element should be included, and
1176 go ahead and include it if appropriate. */
1177 if (! (*checkfn) (element, info, &needed))
1178 goto error_return;
1179
1180 if (! needed)
1181 element->archive_pass = pass;
1182 else
1183 {
1184 element->archive_pass = -1;
1185
1186 /* Increment the pass count to show that we may need to
1187 recheck object files which were already checked. */
1188 ++pass;
1189 }
1190 }
1191
1192 pundef = &(*pundef)->u.undef.next;
1193 }
1194
1195 archive_hash_table_free (&arsym_hash);
1196
1197 /* Save PASS in case we are called again. */
1198 abfd->archive_pass = pass;
1199
1200 return TRUE;
1201
1202 error_return:
1203 archive_hash_table_free (&arsym_hash);
1204 return FALSE;
1205 }
1206 \f
1207 /* See if we should include an archive element. This version is used
1208 when we do not want to automatically collect constructors based on
1209 the symbol name, presumably because we have some other mechanism
1210 for finding them. */
1211
1212 static bfd_boolean
1213 generic_link_check_archive_element_no_collect (
1214 bfd *abfd,
1215 struct bfd_link_info *info,
1216 bfd_boolean *pneeded)
1217 {
1218 return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1219 }
1220
1221 /* See if we should include an archive element. This version is used
1222 when we want to automatically collect constructors based on the
1223 symbol name, as collect2 does. */
1224
1225 static bfd_boolean
1226 generic_link_check_archive_element_collect (bfd *abfd,
1227 struct bfd_link_info *info,
1228 bfd_boolean *pneeded)
1229 {
1230 return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1231 }
1232
1233 /* See if we should include an archive element. Optionally collect
1234 constructors. */
1235
1236 static bfd_boolean
1237 generic_link_check_archive_element (bfd *abfd,
1238 struct bfd_link_info *info,
1239 bfd_boolean *pneeded,
1240 bfd_boolean collect)
1241 {
1242 asymbol **pp, **ppend;
1243
1244 *pneeded = FALSE;
1245
1246 if (!bfd_generic_link_read_symbols (abfd))
1247 return FALSE;
1248
1249 pp = _bfd_generic_link_get_symbols (abfd);
1250 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1251 for (; pp < ppend; pp++)
1252 {
1253 asymbol *p;
1254 struct bfd_link_hash_entry *h;
1255
1256 p = *pp;
1257
1258 /* We are only interested in globally visible symbols. */
1259 if (! bfd_is_com_section (p->section)
1260 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1261 continue;
1262
1263 /* We are only interested if we know something about this
1264 symbol, and it is undefined or common. An undefined weak
1265 symbol (type bfd_link_hash_undefweak) is not considered to be
1266 a reference when pulling files out of an archive. See the
1267 SVR4 ABI, p. 4-27. */
1268 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1269 FALSE, TRUE);
1270 if (h == NULL
1271 || (h->type != bfd_link_hash_undefined
1272 && h->type != bfd_link_hash_common))
1273 continue;
1274
1275 /* P is a symbol we are looking for. */
1276
1277 if (! bfd_is_com_section (p->section))
1278 {
1279 bfd_size_type symcount;
1280 asymbol **symbols;
1281 bfd *oldbfd = abfd;
1282
1283 /* This object file defines this symbol, so pull it in. */
1284 if (!(*info->callbacks
1285 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1286 &abfd))
1287 return FALSE;
1288 /* Potentially, the add_archive_element hook may have set a
1289 substitute BFD for us. */
1290 if (abfd != oldbfd
1291 && !bfd_generic_link_read_symbols (abfd))
1292 return FALSE;
1293 symcount = _bfd_generic_link_get_symcount (abfd);
1294 symbols = _bfd_generic_link_get_symbols (abfd);
1295 if (! generic_link_add_symbol_list (abfd, info, symcount,
1296 symbols, collect))
1297 return FALSE;
1298 *pneeded = TRUE;
1299 return TRUE;
1300 }
1301
1302 /* P is a common symbol. */
1303
1304 if (h->type == bfd_link_hash_undefined)
1305 {
1306 bfd *symbfd;
1307 bfd_vma size;
1308 unsigned int power;
1309
1310 symbfd = h->u.undef.abfd;
1311 if (symbfd == NULL)
1312 {
1313 /* This symbol was created as undefined from outside
1314 BFD. We assume that we should link in the object
1315 file. This is for the -u option in the linker. */
1316 if (!(*info->callbacks
1317 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1318 &abfd))
1319 return FALSE;
1320 /* Potentially, the add_archive_element hook may have set a
1321 substitute BFD for us. But no symbols are going to get
1322 registered by anything we're returning to from here. */
1323 *pneeded = TRUE;
1324 return TRUE;
1325 }
1326
1327 /* Turn the symbol into a common symbol but do not link in
1328 the object file. This is how a.out works. Object
1329 formats that require different semantics must implement
1330 this function differently. This symbol is already on the
1331 undefs list. We add the section to a common section
1332 attached to symbfd to ensure that it is in a BFD which
1333 will be linked in. */
1334 h->type = bfd_link_hash_common;
1335 h->u.c.p = (struct bfd_link_hash_common_entry *)
1336 bfd_hash_allocate (&info->hash->table,
1337 sizeof (struct bfd_link_hash_common_entry));
1338 if (h->u.c.p == NULL)
1339 return FALSE;
1340
1341 size = bfd_asymbol_value (p);
1342 h->u.c.size = size;
1343
1344 power = bfd_log2 (size);
1345 if (power > 4)
1346 power = 4;
1347 h->u.c.p->alignment_power = power;
1348
1349 if (p->section == bfd_com_section_ptr)
1350 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1351 else
1352 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1353 p->section->name);
1354 h->u.c.p->section->flags |= SEC_ALLOC;
1355 }
1356 else
1357 {
1358 /* Adjust the size of the common symbol if necessary. This
1359 is how a.out works. Object formats that require
1360 different semantics must implement this function
1361 differently. */
1362 if (bfd_asymbol_value (p) > h->u.c.size)
1363 h->u.c.size = bfd_asymbol_value (p);
1364 }
1365 }
1366
1367 /* This archive element is not needed. */
1368 return TRUE;
1369 }
1370
1371 /* Add the symbols from an object file to the global hash table. ABFD
1372 is the object file. INFO is the linker information. SYMBOL_COUNT
1373 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1374 is TRUE if constructors should be automatically collected by name
1375 as is done by collect2. */
1376
1377 static bfd_boolean
1378 generic_link_add_symbol_list (bfd *abfd,
1379 struct bfd_link_info *info,
1380 bfd_size_type symbol_count,
1381 asymbol **symbols,
1382 bfd_boolean collect)
1383 {
1384 asymbol **pp, **ppend;
1385
1386 pp = symbols;
1387 ppend = symbols + symbol_count;
1388 for (; pp < ppend; pp++)
1389 {
1390 asymbol *p;
1391
1392 p = *pp;
1393
1394 if ((p->flags & (BSF_INDIRECT
1395 | BSF_WARNING
1396 | BSF_GLOBAL
1397 | BSF_CONSTRUCTOR
1398 | BSF_WEAK)) != 0
1399 || bfd_is_und_section (bfd_get_section (p))
1400 || bfd_is_com_section (bfd_get_section (p))
1401 || bfd_is_ind_section (bfd_get_section (p)))
1402 {
1403 const char *name;
1404 const char *string;
1405 struct generic_link_hash_entry *h;
1406 struct bfd_link_hash_entry *bh;
1407
1408 string = name = bfd_asymbol_name (p);
1409 if (((p->flags & BSF_INDIRECT) != 0
1410 || bfd_is_ind_section (p->section))
1411 && pp + 1 < ppend)
1412 {
1413 pp++;
1414 string = bfd_asymbol_name (*pp);
1415 }
1416 else if ((p->flags & BSF_WARNING) != 0
1417 && pp + 1 < ppend)
1418 {
1419 /* The name of P is actually the warning string, and the
1420 next symbol is the one to warn about. */
1421 pp++;
1422 name = bfd_asymbol_name (*pp);
1423 }
1424
1425 bh = NULL;
1426 if (! (_bfd_generic_link_add_one_symbol
1427 (info, abfd, name, p->flags, bfd_get_section (p),
1428 p->value, string, FALSE, collect, &bh)))
1429 return FALSE;
1430 h = (struct generic_link_hash_entry *) bh;
1431
1432 /* If this is a constructor symbol, and the linker didn't do
1433 anything with it, then we want to just pass the symbol
1434 through to the output file. This will happen when
1435 linking with -r. */
1436 if ((p->flags & BSF_CONSTRUCTOR) != 0
1437 && (h == NULL || h->root.type == bfd_link_hash_new))
1438 {
1439 p->udata.p = NULL;
1440 continue;
1441 }
1442
1443 /* Save the BFD symbol so that we don't lose any backend
1444 specific information that may be attached to it. We only
1445 want this one if it gives more information than the
1446 existing one; we don't want to replace a defined symbol
1447 with an undefined one. This routine may be called with a
1448 hash table other than the generic hash table, so we only
1449 do this if we are certain that the hash table is a
1450 generic one. */
1451 if (info->output_bfd->xvec == abfd->xvec)
1452 {
1453 if (h->sym == NULL
1454 || (! bfd_is_und_section (bfd_get_section (p))
1455 && (! bfd_is_com_section (bfd_get_section (p))
1456 || bfd_is_und_section (bfd_get_section (h->sym)))))
1457 {
1458 h->sym = p;
1459 /* BSF_OLD_COMMON is a hack to support COFF reloc
1460 reading, and it should go away when the COFF
1461 linker is switched to the new version. */
1462 if (bfd_is_com_section (bfd_get_section (p)))
1463 p->flags |= BSF_OLD_COMMON;
1464 }
1465 }
1466
1467 /* Store a back pointer from the symbol to the hash
1468 table entry for the benefit of relaxation code until
1469 it gets rewritten to not use asymbol structures.
1470 Setting this is also used to check whether these
1471 symbols were set up by the generic linker. */
1472 p->udata.p = h;
1473 }
1474 }
1475
1476 return TRUE;
1477 }
1478 \f
1479 /* We use a state table to deal with adding symbols from an object
1480 file. The first index into the state table describes the symbol
1481 from the object file. The second index into the state table is the
1482 type of the symbol in the hash table. */
1483
1484 /* The symbol from the object file is turned into one of these row
1485 values. */
1486
1487 enum link_row
1488 {
1489 UNDEF_ROW, /* Undefined. */
1490 UNDEFW_ROW, /* Weak undefined. */
1491 DEF_ROW, /* Defined. */
1492 DEFW_ROW, /* Weak defined. */
1493 COMMON_ROW, /* Common. */
1494 INDR_ROW, /* Indirect. */
1495 WARN_ROW, /* Warning. */
1496 SET_ROW /* Member of set. */
1497 };
1498
1499 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1500 #undef FAIL
1501
1502 /* The actions to take in the state table. */
1503
1504 enum link_action
1505 {
1506 FAIL, /* Abort. */
1507 UND, /* Mark symbol undefined. */
1508 WEAK, /* Mark symbol weak undefined. */
1509 DEF, /* Mark symbol defined. */
1510 DEFW, /* Mark symbol weak defined. */
1511 COM, /* Mark symbol common. */
1512 REF, /* Mark defined symbol referenced. */
1513 CREF, /* Possibly warn about common reference to defined symbol. */
1514 CDEF, /* Define existing common symbol. */
1515 NOACT, /* No action. */
1516 BIG, /* Mark symbol common using largest size. */
1517 MDEF, /* Multiple definition error. */
1518 MIND, /* Multiple indirect symbols. */
1519 IND, /* Make indirect symbol. */
1520 CIND, /* Make indirect symbol from existing common symbol. */
1521 SET, /* Add value to set. */
1522 MWARN, /* Make warning symbol. */
1523 WARN, /* Issue warning. */
1524 CWARN, /* Warn if referenced, else MWARN. */
1525 CYCLE, /* Repeat with symbol pointed to. */
1526 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1527 WARNC /* Issue warning and then CYCLE. */
1528 };
1529
1530 /* The state table itself. The first index is a link_row and the
1531 second index is a bfd_link_hash_type. */
1532
1533 static const enum link_action link_action[8][8] =
1534 {
1535 /* current\prev new undef undefw def defw com indr warn */
1536 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1537 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1538 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1539 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1540 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1541 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1542 /* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, NOACT },
1543 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1544 };
1545
1546 /* Most of the entries in the LINK_ACTION table are straightforward,
1547 but a few are somewhat subtle.
1548
1549 A reference to an indirect symbol (UNDEF_ROW/indr or
1550 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1551 symbol and to the symbol the indirect symbol points to.
1552
1553 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1554 causes the warning to be issued.
1555
1556 A common definition of an indirect symbol (COMMON_ROW/indr) is
1557 treated as a multiple definition error. Likewise for an indirect
1558 definition of a common symbol (INDR_ROW/com).
1559
1560 An indirect definition of a warning (INDR_ROW/warn) does not cause
1561 the warning to be issued.
1562
1563 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1564 warning is created for the symbol the indirect symbol points to.
1565
1566 Adding an entry to a set does not count as a reference to a set,
1567 and no warning is issued (SET_ROW/warn). */
1568
1569 /* Return the BFD in which a hash entry has been defined, if known. */
1570
1571 static bfd *
1572 hash_entry_bfd (struct bfd_link_hash_entry *h)
1573 {
1574 while (h->type == bfd_link_hash_warning)
1575 h = h->u.i.link;
1576 switch (h->type)
1577 {
1578 default:
1579 return NULL;
1580 case bfd_link_hash_undefined:
1581 case bfd_link_hash_undefweak:
1582 return h->u.undef.abfd;
1583 case bfd_link_hash_defined:
1584 case bfd_link_hash_defweak:
1585 return h->u.def.section->owner;
1586 case bfd_link_hash_common:
1587 return h->u.c.p->section->owner;
1588 }
1589 /*NOTREACHED*/
1590 }
1591
1592 /* Add a symbol to the global hash table.
1593 ABFD is the BFD the symbol comes from.
1594 NAME is the name of the symbol.
1595 FLAGS is the BSF_* bits associated with the symbol.
1596 SECTION is the section in which the symbol is defined; this may be
1597 bfd_und_section_ptr or bfd_com_section_ptr.
1598 VALUE is the value of the symbol, relative to the section.
1599 STRING is used for either an indirect symbol, in which case it is
1600 the name of the symbol to indirect to, or a warning symbol, in
1601 which case it is the warning string.
1602 COPY is TRUE if NAME or STRING must be copied into locally
1603 allocated memory if they need to be saved.
1604 COLLECT is TRUE if we should automatically collect gcc constructor
1605 or destructor names as collect2 does.
1606 HASHP, if not NULL, is a place to store the created hash table
1607 entry; if *HASHP is not NULL, the caller has already looked up
1608 the hash table entry, and stored it in *HASHP. */
1609
1610 bfd_boolean
1611 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1612 bfd *abfd,
1613 const char *name,
1614 flagword flags,
1615 asection *section,
1616 bfd_vma value,
1617 const char *string,
1618 bfd_boolean copy,
1619 bfd_boolean collect,
1620 struct bfd_link_hash_entry **hashp)
1621 {
1622 enum link_row row;
1623 struct bfd_link_hash_entry *h;
1624 bfd_boolean cycle;
1625
1626 BFD_ASSERT (section != NULL);
1627
1628 if (bfd_is_ind_section (section)
1629 || (flags & BSF_INDIRECT) != 0)
1630 row = INDR_ROW;
1631 else if ((flags & BSF_WARNING) != 0)
1632 row = WARN_ROW;
1633 else if ((flags & BSF_CONSTRUCTOR) != 0)
1634 row = SET_ROW;
1635 else if (bfd_is_und_section (section))
1636 {
1637 if ((flags & BSF_WEAK) != 0)
1638 row = UNDEFW_ROW;
1639 else
1640 row = UNDEF_ROW;
1641 }
1642 else if ((flags & BSF_WEAK) != 0)
1643 row = DEFW_ROW;
1644 else if (bfd_is_com_section (section))
1645 row = COMMON_ROW;
1646 else
1647 row = DEF_ROW;
1648
1649 if (hashp != NULL && *hashp != NULL)
1650 h = *hashp;
1651 else
1652 {
1653 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1654 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1655 else
1656 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1657 if (h == NULL)
1658 {
1659 if (hashp != NULL)
1660 *hashp = NULL;
1661 return FALSE;
1662 }
1663 }
1664
1665 if (info->notice_all
1666 || (info->notice_hash != NULL
1667 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1668 {
1669 if (! (*info->callbacks->notice) (info, h,
1670 abfd, section, value, flags, string))
1671 return FALSE;
1672 }
1673
1674 if (hashp != NULL)
1675 *hashp = h;
1676
1677 do
1678 {
1679 enum link_action action;
1680
1681 cycle = FALSE;
1682 action = link_action[(int) row][(int) h->type];
1683 switch (action)
1684 {
1685 case FAIL:
1686 abort ();
1687
1688 case NOACT:
1689 /* Do nothing. */
1690 break;
1691
1692 case UND:
1693 /* Make a new undefined symbol. */
1694 h->type = bfd_link_hash_undefined;
1695 h->u.undef.abfd = abfd;
1696 bfd_link_add_undef (info->hash, h);
1697 break;
1698
1699 case WEAK:
1700 /* Make a new weak undefined symbol. */
1701 h->type = bfd_link_hash_undefweak;
1702 h->u.undef.abfd = abfd;
1703 break;
1704
1705 case CDEF:
1706 /* We have found a definition for a symbol which was
1707 previously common. */
1708 BFD_ASSERT (h->type == bfd_link_hash_common);
1709 if (! ((*info->callbacks->multiple_common)
1710 (info, h, abfd, bfd_link_hash_defined, 0)))
1711 return FALSE;
1712 /* Fall through. */
1713 case DEF:
1714 case DEFW:
1715 {
1716 enum bfd_link_hash_type oldtype;
1717
1718 /* Define a symbol. */
1719 oldtype = h->type;
1720 if (action == DEFW)
1721 h->type = bfd_link_hash_defweak;
1722 else
1723 h->type = bfd_link_hash_defined;
1724 h->u.def.section = section;
1725 h->u.def.value = value;
1726
1727 /* If we have been asked to, we act like collect2 and
1728 identify all functions that might be global
1729 constructors and destructors and pass them up in a
1730 callback. We only do this for certain object file
1731 types, since many object file types can handle this
1732 automatically. */
1733 if (collect && name[0] == '_')
1734 {
1735 const char *s;
1736
1737 /* A constructor or destructor name starts like this:
1738 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1739 the second are the same character (we accept any
1740 character there, in case a new object file format
1741 comes along with even worse naming restrictions). */
1742
1743 #define CONS_PREFIX "GLOBAL_"
1744 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1745
1746 s = name + 1;
1747 while (*s == '_')
1748 ++s;
1749 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1750 {
1751 char c;
1752
1753 c = s[CONS_PREFIX_LEN + 1];
1754 if ((c == 'I' || c == 'D')
1755 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1756 {
1757 /* If this is a definition of a symbol which
1758 was previously weakly defined, we are in
1759 trouble. We have already added a
1760 constructor entry for the weak defined
1761 symbol, and now we are trying to add one
1762 for the new symbol. Fortunately, this case
1763 should never arise in practice. */
1764 if (oldtype == bfd_link_hash_defweak)
1765 abort ();
1766
1767 if (! ((*info->callbacks->constructor)
1768 (info, c == 'I',
1769 h->root.string, abfd, section, value)))
1770 return FALSE;
1771 }
1772 }
1773 }
1774 }
1775
1776 break;
1777
1778 case COM:
1779 /* We have found a common definition for a symbol. */
1780 if (h->type == bfd_link_hash_new)
1781 bfd_link_add_undef (info->hash, h);
1782 h->type = bfd_link_hash_common;
1783 h->u.c.p = (struct bfd_link_hash_common_entry *)
1784 bfd_hash_allocate (&info->hash->table,
1785 sizeof (struct bfd_link_hash_common_entry));
1786 if (h->u.c.p == NULL)
1787 return FALSE;
1788
1789 h->u.c.size = value;
1790
1791 /* Select a default alignment based on the size. This may
1792 be overridden by the caller. */
1793 {
1794 unsigned int power;
1795
1796 power = bfd_log2 (value);
1797 if (power > 4)
1798 power = 4;
1799 h->u.c.p->alignment_power = power;
1800 }
1801
1802 /* The section of a common symbol is only used if the common
1803 symbol is actually allocated. It basically provides a
1804 hook for the linker script to decide which output section
1805 the common symbols should be put in. In most cases, the
1806 section of a common symbol will be bfd_com_section_ptr,
1807 the code here will choose a common symbol section named
1808 "COMMON", and the linker script will contain *(COMMON) in
1809 the appropriate place. A few targets use separate common
1810 sections for small symbols, and they require special
1811 handling. */
1812 if (section == bfd_com_section_ptr)
1813 {
1814 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1815 h->u.c.p->section->flags |= SEC_ALLOC;
1816 }
1817 else if (section->owner != abfd)
1818 {
1819 h->u.c.p->section = bfd_make_section_old_way (abfd,
1820 section->name);
1821 h->u.c.p->section->flags |= SEC_ALLOC;
1822 }
1823 else
1824 h->u.c.p->section = section;
1825 break;
1826
1827 case REF:
1828 /* A reference to a defined symbol. */
1829 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1830 h->u.undef.next = h;
1831 break;
1832
1833 case BIG:
1834 /* We have found a common definition for a symbol which
1835 already had a common definition. Use the maximum of the
1836 two sizes, and use the section required by the larger symbol. */
1837 BFD_ASSERT (h->type == bfd_link_hash_common);
1838 if (! ((*info->callbacks->multiple_common)
1839 (info, h, abfd, bfd_link_hash_common, value)))
1840 return FALSE;
1841 if (value > h->u.c.size)
1842 {
1843 unsigned int power;
1844
1845 h->u.c.size = value;
1846
1847 /* Select a default alignment based on the size. This may
1848 be overridden by the caller. */
1849 power = bfd_log2 (value);
1850 if (power > 4)
1851 power = 4;
1852 h->u.c.p->alignment_power = power;
1853
1854 /* Some systems have special treatment for small commons,
1855 hence we want to select the section used by the larger
1856 symbol. This makes sure the symbol does not go in a
1857 small common section if it is now too large. */
1858 if (section == bfd_com_section_ptr)
1859 {
1860 h->u.c.p->section
1861 = bfd_make_section_old_way (abfd, "COMMON");
1862 h->u.c.p->section->flags |= SEC_ALLOC;
1863 }
1864 else if (section->owner != abfd)
1865 {
1866 h->u.c.p->section
1867 = bfd_make_section_old_way (abfd, section->name);
1868 h->u.c.p->section->flags |= SEC_ALLOC;
1869 }
1870 else
1871 h->u.c.p->section = section;
1872 }
1873 break;
1874
1875 case CREF:
1876 /* We have found a common definition for a symbol which
1877 was already defined. */
1878 if (! ((*info->callbacks->multiple_common)
1879 (info, h, abfd, bfd_link_hash_common, value)))
1880 return FALSE;
1881 break;
1882
1883 case MIND:
1884 /* Multiple indirect symbols. This is OK if they both point
1885 to the same symbol. */
1886 if (strcmp (h->u.i.link->root.string, string) == 0)
1887 break;
1888 /* Fall through. */
1889 case MDEF:
1890 /* Handle a multiple definition. */
1891 if (! ((*info->callbacks->multiple_definition)
1892 (info, h, abfd, section, value)))
1893 return FALSE;
1894 break;
1895
1896 case CIND:
1897 /* Create an indirect symbol from an existing common symbol. */
1898 BFD_ASSERT (h->type == bfd_link_hash_common);
1899 if (! ((*info->callbacks->multiple_common)
1900 (info, h, abfd, bfd_link_hash_indirect, 0)))
1901 return FALSE;
1902 /* Fall through. */
1903 case IND:
1904 /* Create an indirect symbol. */
1905 {
1906 struct bfd_link_hash_entry *inh;
1907
1908 /* STRING is the name of the symbol we want to indirect
1909 to. */
1910 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1911 copy, FALSE);
1912 if (inh == NULL)
1913 return FALSE;
1914 if (inh->type == bfd_link_hash_indirect
1915 && inh->u.i.link == h)
1916 {
1917 (*_bfd_error_handler)
1918 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1919 abfd, name, string);
1920 bfd_set_error (bfd_error_invalid_operation);
1921 return FALSE;
1922 }
1923 if (inh->type == bfd_link_hash_new)
1924 {
1925 inh->type = bfd_link_hash_undefined;
1926 inh->u.undef.abfd = abfd;
1927 bfd_link_add_undef (info->hash, inh);
1928 }
1929
1930 /* If the indirect symbol has been referenced, we need to
1931 push the reference down to the symbol we are
1932 referencing. */
1933 if (h->type != bfd_link_hash_new)
1934 {
1935 row = UNDEF_ROW;
1936 cycle = TRUE;
1937 }
1938
1939 h->type = bfd_link_hash_indirect;
1940 h->u.i.link = inh;
1941 }
1942 break;
1943
1944 case SET:
1945 /* Add an entry to a set. */
1946 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1947 abfd, section, value))
1948 return FALSE;
1949 break;
1950
1951 case WARNC:
1952 /* Issue a warning and cycle. */
1953 if (h->u.i.warning != NULL)
1954 {
1955 if (! (*info->callbacks->warning) (info, h->u.i.warning,
1956 h->root.string, abfd,
1957 NULL, 0))
1958 return FALSE;
1959 /* Only issue a warning once. */
1960 h->u.i.warning = NULL;
1961 }
1962 /* Fall through. */
1963 case CYCLE:
1964 /* Try again with the referenced symbol. */
1965 h = h->u.i.link;
1966 cycle = TRUE;
1967 break;
1968
1969 case REFC:
1970 /* A reference to an indirect symbol. */
1971 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1972 h->u.undef.next = h;
1973 h = h->u.i.link;
1974 cycle = TRUE;
1975 break;
1976
1977 case WARN:
1978 /* Issue a warning. */
1979 if (! (*info->callbacks->warning) (info, string, h->root.string,
1980 hash_entry_bfd (h), NULL, 0))
1981 return FALSE;
1982 break;
1983
1984 case CWARN:
1985 /* Warn if this symbol has been referenced already,
1986 otherwise add a warning. A symbol has been referenced if
1987 the u.undef.next field is not NULL, or it is the tail of the
1988 undefined symbol list. The REF case above helps to
1989 ensure this. */
1990 if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1991 {
1992 if (! (*info->callbacks->warning) (info, string, h->root.string,
1993 hash_entry_bfd (h), NULL, 0))
1994 return FALSE;
1995 break;
1996 }
1997 /* Fall through. */
1998 case MWARN:
1999 /* Make a warning symbol. */
2000 {
2001 struct bfd_link_hash_entry *sub;
2002
2003 /* STRING is the warning to give. */
2004 sub = ((struct bfd_link_hash_entry *)
2005 ((*info->hash->table.newfunc)
2006 (NULL, &info->hash->table, h->root.string)));
2007 if (sub == NULL)
2008 return FALSE;
2009 *sub = *h;
2010 sub->type = bfd_link_hash_warning;
2011 sub->u.i.link = h;
2012 if (! copy)
2013 sub->u.i.warning = string;
2014 else
2015 {
2016 char *w;
2017 size_t len = strlen (string) + 1;
2018
2019 w = (char *) bfd_hash_allocate (&info->hash->table, len);
2020 if (w == NULL)
2021 return FALSE;
2022 memcpy (w, string, len);
2023 sub->u.i.warning = w;
2024 }
2025
2026 bfd_hash_replace (&info->hash->table,
2027 (struct bfd_hash_entry *) h,
2028 (struct bfd_hash_entry *) sub);
2029 if (hashp != NULL)
2030 *hashp = sub;
2031 }
2032 break;
2033 }
2034 }
2035 while (cycle);
2036
2037 return TRUE;
2038 }
2039 \f
2040 /* Generic final link routine. */
2041
2042 bfd_boolean
2043 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
2044 {
2045 bfd *sub;
2046 asection *o;
2047 struct bfd_link_order *p;
2048 size_t outsymalloc;
2049 struct generic_write_global_symbol_info wginfo;
2050
2051 bfd_get_outsymbols (abfd) = NULL;
2052 bfd_get_symcount (abfd) = 0;
2053 outsymalloc = 0;
2054
2055 /* Mark all sections which will be included in the output file. */
2056 for (o = abfd->sections; o != NULL; o = o->next)
2057 for (p = o->map_head.link_order; p != NULL; p = p->next)
2058 if (p->type == bfd_indirect_link_order)
2059 p->u.indirect.section->linker_mark = TRUE;
2060
2061 /* Build the output symbol table. */
2062 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
2063 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2064 return FALSE;
2065
2066 /* Accumulate the global symbols. */
2067 wginfo.info = info;
2068 wginfo.output_bfd = abfd;
2069 wginfo.psymalloc = &outsymalloc;
2070 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2071 _bfd_generic_link_write_global_symbol,
2072 &wginfo);
2073
2074 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
2075 shouldn't really need one, since we have SYMCOUNT, but some old
2076 code still expects one. */
2077 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2078 return FALSE;
2079
2080 if (info->relocatable)
2081 {
2082 /* Allocate space for the output relocs for each section. */
2083 for (o = abfd->sections; o != NULL; o = o->next)
2084 {
2085 o->reloc_count = 0;
2086 for (p = o->map_head.link_order; p != NULL; p = p->next)
2087 {
2088 if (p->type == bfd_section_reloc_link_order
2089 || p->type == bfd_symbol_reloc_link_order)
2090 ++o->reloc_count;
2091 else if (p->type == bfd_indirect_link_order)
2092 {
2093 asection *input_section;
2094 bfd *input_bfd;
2095 long relsize;
2096 arelent **relocs;
2097 asymbol **symbols;
2098 long reloc_count;
2099
2100 input_section = p->u.indirect.section;
2101 input_bfd = input_section->owner;
2102 relsize = bfd_get_reloc_upper_bound (input_bfd,
2103 input_section);
2104 if (relsize < 0)
2105 return FALSE;
2106 relocs = (arelent **) bfd_malloc (relsize);
2107 if (!relocs && relsize != 0)
2108 return FALSE;
2109 symbols = _bfd_generic_link_get_symbols (input_bfd);
2110 reloc_count = bfd_canonicalize_reloc (input_bfd,
2111 input_section,
2112 relocs,
2113 symbols);
2114 free (relocs);
2115 if (reloc_count < 0)
2116 return FALSE;
2117 BFD_ASSERT ((unsigned long) reloc_count
2118 == input_section->reloc_count);
2119 o->reloc_count += reloc_count;
2120 }
2121 }
2122 if (o->reloc_count > 0)
2123 {
2124 bfd_size_type amt;
2125
2126 amt = o->reloc_count;
2127 amt *= sizeof (arelent *);
2128 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
2129 if (!o->orelocation)
2130 return FALSE;
2131 o->flags |= SEC_RELOC;
2132 /* Reset the count so that it can be used as an index
2133 when putting in the output relocs. */
2134 o->reloc_count = 0;
2135 }
2136 }
2137 }
2138
2139 /* Handle all the link order information for the sections. */
2140 for (o = abfd->sections; o != NULL; o = o->next)
2141 {
2142 for (p = o->map_head.link_order; p != NULL; p = p->next)
2143 {
2144 switch (p->type)
2145 {
2146 case bfd_section_reloc_link_order:
2147 case bfd_symbol_reloc_link_order:
2148 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2149 return FALSE;
2150 break;
2151 case bfd_indirect_link_order:
2152 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2153 return FALSE;
2154 break;
2155 default:
2156 if (! _bfd_default_link_order (abfd, info, o, p))
2157 return FALSE;
2158 break;
2159 }
2160 }
2161 }
2162
2163 return TRUE;
2164 }
2165
2166 /* Add an output symbol to the output BFD. */
2167
2168 static bfd_boolean
2169 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2170 {
2171 if (bfd_get_symcount (output_bfd) >= *psymalloc)
2172 {
2173 asymbol **newsyms;
2174 bfd_size_type amt;
2175
2176 if (*psymalloc == 0)
2177 *psymalloc = 124;
2178 else
2179 *psymalloc *= 2;
2180 amt = *psymalloc;
2181 amt *= sizeof (asymbol *);
2182 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2183 if (newsyms == NULL)
2184 return FALSE;
2185 bfd_get_outsymbols (output_bfd) = newsyms;
2186 }
2187
2188 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2189 if (sym != NULL)
2190 ++ bfd_get_symcount (output_bfd);
2191
2192 return TRUE;
2193 }
2194
2195 /* Handle the symbols for an input BFD. */
2196
2197 bfd_boolean
2198 _bfd_generic_link_output_symbols (bfd *output_bfd,
2199 bfd *input_bfd,
2200 struct bfd_link_info *info,
2201 size_t *psymalloc)
2202 {
2203 asymbol **sym_ptr;
2204 asymbol **sym_end;
2205
2206 if (!bfd_generic_link_read_symbols (input_bfd))
2207 return FALSE;
2208
2209 /* Create a filename symbol if we are supposed to. */
2210 if (info->create_object_symbols_section != NULL)
2211 {
2212 asection *sec;
2213
2214 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2215 {
2216 if (sec->output_section == info->create_object_symbols_section)
2217 {
2218 asymbol *newsym;
2219
2220 newsym = bfd_make_empty_symbol (input_bfd);
2221 if (!newsym)
2222 return FALSE;
2223 newsym->name = input_bfd->filename;
2224 newsym->value = 0;
2225 newsym->flags = BSF_LOCAL | BSF_FILE;
2226 newsym->section = sec;
2227
2228 if (! generic_add_output_symbol (output_bfd, psymalloc,
2229 newsym))
2230 return FALSE;
2231
2232 break;
2233 }
2234 }
2235 }
2236
2237 /* Adjust the values of the globally visible symbols, and write out
2238 local symbols. */
2239 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2240 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2241 for (; sym_ptr < sym_end; sym_ptr++)
2242 {
2243 asymbol *sym;
2244 struct generic_link_hash_entry *h;
2245 bfd_boolean output;
2246
2247 h = NULL;
2248 sym = *sym_ptr;
2249 if ((sym->flags & (BSF_INDIRECT
2250 | BSF_WARNING
2251 | BSF_GLOBAL
2252 | BSF_CONSTRUCTOR
2253 | BSF_WEAK)) != 0
2254 || bfd_is_und_section (bfd_get_section (sym))
2255 || bfd_is_com_section (bfd_get_section (sym))
2256 || bfd_is_ind_section (bfd_get_section (sym)))
2257 {
2258 if (sym->udata.p != NULL)
2259 h = (struct generic_link_hash_entry *) sym->udata.p;
2260 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2261 {
2262 /* This case normally means that the main linker code
2263 deliberately ignored this constructor symbol. We
2264 should just pass it through. This will screw up if
2265 the constructor symbol is from a different,
2266 non-generic, object file format, but the case will
2267 only arise when linking with -r, which will probably
2268 fail anyhow, since there will be no way to represent
2269 the relocs in the output format being used. */
2270 h = NULL;
2271 }
2272 else if (bfd_is_und_section (bfd_get_section (sym)))
2273 h = ((struct generic_link_hash_entry *)
2274 bfd_wrapped_link_hash_lookup (output_bfd, info,
2275 bfd_asymbol_name (sym),
2276 FALSE, FALSE, TRUE));
2277 else
2278 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2279 bfd_asymbol_name (sym),
2280 FALSE, FALSE, TRUE);
2281
2282 if (h != NULL)
2283 {
2284 /* Force all references to this symbol to point to
2285 the same area in memory. It is possible that
2286 this routine will be called with a hash table
2287 other than a generic hash table, so we double
2288 check that. */
2289 if (info->output_bfd->xvec == input_bfd->xvec)
2290 {
2291 if (h->sym != NULL)
2292 *sym_ptr = sym = h->sym;
2293 }
2294
2295 switch (h->root.type)
2296 {
2297 default:
2298 case bfd_link_hash_new:
2299 abort ();
2300 case bfd_link_hash_undefined:
2301 break;
2302 case bfd_link_hash_undefweak:
2303 sym->flags |= BSF_WEAK;
2304 break;
2305 case bfd_link_hash_indirect:
2306 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2307 /* fall through */
2308 case bfd_link_hash_defined:
2309 sym->flags |= BSF_GLOBAL;
2310 sym->flags &=~ BSF_CONSTRUCTOR;
2311 sym->value = h->root.u.def.value;
2312 sym->section = h->root.u.def.section;
2313 break;
2314 case bfd_link_hash_defweak:
2315 sym->flags |= BSF_WEAK;
2316 sym->flags &=~ BSF_CONSTRUCTOR;
2317 sym->value = h->root.u.def.value;
2318 sym->section = h->root.u.def.section;
2319 break;
2320 case bfd_link_hash_common:
2321 sym->value = h->root.u.c.size;
2322 sym->flags |= BSF_GLOBAL;
2323 if (! bfd_is_com_section (sym->section))
2324 {
2325 BFD_ASSERT (bfd_is_und_section (sym->section));
2326 sym->section = bfd_com_section_ptr;
2327 }
2328 /* We do not set the section of the symbol to
2329 h->root.u.c.p->section. That value was saved so
2330 that we would know where to allocate the symbol
2331 if it was defined. In this case the type is
2332 still bfd_link_hash_common, so we did not define
2333 it, so we do not want to use that section. */
2334 break;
2335 }
2336 }
2337 }
2338
2339 /* This switch is straight from the old code in
2340 write_file_locals in ldsym.c. */
2341 if (info->strip == strip_all
2342 || (info->strip == strip_some
2343 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2344 FALSE, FALSE) == NULL))
2345 output = FALSE;
2346 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2347 {
2348 /* If this symbol is marked as occurring now, rather
2349 than at the end, output it now. This is used for
2350 COFF C_EXT FCN symbols. FIXME: There must be a
2351 better way. */
2352 if (bfd_asymbol_bfd (sym) == input_bfd
2353 && (sym->flags & BSF_NOT_AT_END) != 0)
2354 output = TRUE;
2355 else
2356 output = FALSE;
2357 }
2358 else if (bfd_is_ind_section (sym->section))
2359 output = FALSE;
2360 else if ((sym->flags & BSF_DEBUGGING) != 0)
2361 {
2362 if (info->strip == strip_none)
2363 output = TRUE;
2364 else
2365 output = FALSE;
2366 }
2367 else if (bfd_is_und_section (sym->section)
2368 || bfd_is_com_section (sym->section))
2369 output = FALSE;
2370 else if ((sym->flags & BSF_LOCAL) != 0)
2371 {
2372 if ((sym->flags & BSF_WARNING) != 0)
2373 output = FALSE;
2374 else
2375 {
2376 switch (info->discard)
2377 {
2378 default:
2379 case discard_all:
2380 output = FALSE;
2381 break;
2382 case discard_sec_merge:
2383 output = TRUE;
2384 if (info->relocatable
2385 || ! (sym->section->flags & SEC_MERGE))
2386 break;
2387 /* FALLTHROUGH */
2388 case discard_l:
2389 if (bfd_is_local_label (input_bfd, sym))
2390 output = FALSE;
2391 else
2392 output = TRUE;
2393 break;
2394 case discard_none:
2395 output = TRUE;
2396 break;
2397 }
2398 }
2399 }
2400 else if ((sym->flags & BSF_CONSTRUCTOR))
2401 {
2402 if (info->strip != strip_all)
2403 output = TRUE;
2404 else
2405 output = FALSE;
2406 }
2407 else if (sym->flags == 0
2408 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2409 /* LTO doesn't set symbol information. We get here with the
2410 generic linker for a symbol that was "common" but no longer
2411 needs to be global. */
2412 output = FALSE;
2413 else
2414 abort ();
2415
2416 /* If this symbol is in a section which is not being included
2417 in the output file, then we don't want to output the
2418 symbol. */
2419 if (!bfd_is_abs_section (sym->section)
2420 && bfd_section_removed_from_list (output_bfd,
2421 sym->section->output_section))
2422 output = FALSE;
2423
2424 if (output)
2425 {
2426 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2427 return FALSE;
2428 if (h != NULL)
2429 h->written = TRUE;
2430 }
2431 }
2432
2433 return TRUE;
2434 }
2435
2436 /* Set the section and value of a generic BFD symbol based on a linker
2437 hash table entry. */
2438
2439 static void
2440 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2441 {
2442 switch (h->type)
2443 {
2444 default:
2445 abort ();
2446 break;
2447 case bfd_link_hash_new:
2448 /* This can happen when a constructor symbol is seen but we are
2449 not building constructors. */
2450 if (sym->section != NULL)
2451 {
2452 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2453 }
2454 else
2455 {
2456 sym->flags |= BSF_CONSTRUCTOR;
2457 sym->section = bfd_abs_section_ptr;
2458 sym->value = 0;
2459 }
2460 break;
2461 case bfd_link_hash_undefined:
2462 sym->section = bfd_und_section_ptr;
2463 sym->value = 0;
2464 break;
2465 case bfd_link_hash_undefweak:
2466 sym->section = bfd_und_section_ptr;
2467 sym->value = 0;
2468 sym->flags |= BSF_WEAK;
2469 break;
2470 case bfd_link_hash_defined:
2471 sym->section = h->u.def.section;
2472 sym->value = h->u.def.value;
2473 break;
2474 case bfd_link_hash_defweak:
2475 sym->flags |= BSF_WEAK;
2476 sym->section = h->u.def.section;
2477 sym->value = h->u.def.value;
2478 break;
2479 case bfd_link_hash_common:
2480 sym->value = h->u.c.size;
2481 if (sym->section == NULL)
2482 sym->section = bfd_com_section_ptr;
2483 else if (! bfd_is_com_section (sym->section))
2484 {
2485 BFD_ASSERT (bfd_is_und_section (sym->section));
2486 sym->section = bfd_com_section_ptr;
2487 }
2488 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2489 break;
2490 case bfd_link_hash_indirect:
2491 case bfd_link_hash_warning:
2492 /* FIXME: What should we do here? */
2493 break;
2494 }
2495 }
2496
2497 /* Write out a global symbol, if it hasn't already been written out.
2498 This is called for each symbol in the hash table. */
2499
2500 bfd_boolean
2501 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2502 void *data)
2503 {
2504 struct generic_write_global_symbol_info *wginfo =
2505 (struct generic_write_global_symbol_info *) data;
2506 asymbol *sym;
2507
2508 if (h->written)
2509 return TRUE;
2510
2511 h->written = TRUE;
2512
2513 if (wginfo->info->strip == strip_all
2514 || (wginfo->info->strip == strip_some
2515 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2516 FALSE, FALSE) == NULL))
2517 return TRUE;
2518
2519 if (h->sym != NULL)
2520 sym = h->sym;
2521 else
2522 {
2523 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2524 if (!sym)
2525 return FALSE;
2526 sym->name = h->root.root.string;
2527 sym->flags = 0;
2528 }
2529
2530 set_symbol_from_hash (sym, &h->root);
2531
2532 sym->flags |= BSF_GLOBAL;
2533
2534 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2535 sym))
2536 {
2537 /* FIXME: No way to return failure. */
2538 abort ();
2539 }
2540
2541 return TRUE;
2542 }
2543
2544 /* Create a relocation. */
2545
2546 bfd_boolean
2547 _bfd_generic_reloc_link_order (bfd *abfd,
2548 struct bfd_link_info *info,
2549 asection *sec,
2550 struct bfd_link_order *link_order)
2551 {
2552 arelent *r;
2553
2554 if (! info->relocatable)
2555 abort ();
2556 if (sec->orelocation == NULL)
2557 abort ();
2558
2559 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2560 if (r == NULL)
2561 return FALSE;
2562
2563 r->address = link_order->offset;
2564 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2565 if (r->howto == 0)
2566 {
2567 bfd_set_error (bfd_error_bad_value);
2568 return FALSE;
2569 }
2570
2571 /* Get the symbol to use for the relocation. */
2572 if (link_order->type == bfd_section_reloc_link_order)
2573 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2574 else
2575 {
2576 struct generic_link_hash_entry *h;
2577
2578 h = ((struct generic_link_hash_entry *)
2579 bfd_wrapped_link_hash_lookup (abfd, info,
2580 link_order->u.reloc.p->u.name,
2581 FALSE, FALSE, TRUE));
2582 if (h == NULL
2583 || ! h->written)
2584 {
2585 if (! ((*info->callbacks->unattached_reloc)
2586 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2587 return FALSE;
2588 bfd_set_error (bfd_error_bad_value);
2589 return FALSE;
2590 }
2591 r->sym_ptr_ptr = &h->sym;
2592 }
2593
2594 /* If this is an inplace reloc, write the addend to the object file.
2595 Otherwise, store it in the reloc addend. */
2596 if (! r->howto->partial_inplace)
2597 r->addend = link_order->u.reloc.p->addend;
2598 else
2599 {
2600 bfd_size_type size;
2601 bfd_reloc_status_type rstat;
2602 bfd_byte *buf;
2603 bfd_boolean ok;
2604 file_ptr loc;
2605
2606 size = bfd_get_reloc_size (r->howto);
2607 buf = (bfd_byte *) bfd_zmalloc (size);
2608 if (buf == NULL)
2609 return FALSE;
2610 rstat = _bfd_relocate_contents (r->howto, abfd,
2611 (bfd_vma) link_order->u.reloc.p->addend,
2612 buf);
2613 switch (rstat)
2614 {
2615 case bfd_reloc_ok:
2616 break;
2617 default:
2618 case bfd_reloc_outofrange:
2619 abort ();
2620 case bfd_reloc_overflow:
2621 if (! ((*info->callbacks->reloc_overflow)
2622 (info, NULL,
2623 (link_order->type == bfd_section_reloc_link_order
2624 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2625 : link_order->u.reloc.p->u.name),
2626 r->howto->name, link_order->u.reloc.p->addend,
2627 NULL, NULL, 0)))
2628 {
2629 free (buf);
2630 return FALSE;
2631 }
2632 break;
2633 }
2634 loc = link_order->offset * bfd_octets_per_byte (abfd);
2635 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2636 free (buf);
2637 if (! ok)
2638 return FALSE;
2639
2640 r->addend = 0;
2641 }
2642
2643 sec->orelocation[sec->reloc_count] = r;
2644 ++sec->reloc_count;
2645
2646 return TRUE;
2647 }
2648 \f
2649 /* Allocate a new link_order for a section. */
2650
2651 struct bfd_link_order *
2652 bfd_new_link_order (bfd *abfd, asection *section)
2653 {
2654 bfd_size_type amt = sizeof (struct bfd_link_order);
2655 struct bfd_link_order *new_lo;
2656
2657 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2658 if (!new_lo)
2659 return NULL;
2660
2661 new_lo->type = bfd_undefined_link_order;
2662
2663 if (section->map_tail.link_order != NULL)
2664 section->map_tail.link_order->next = new_lo;
2665 else
2666 section->map_head.link_order = new_lo;
2667 section->map_tail.link_order = new_lo;
2668
2669 return new_lo;
2670 }
2671
2672 /* Default link order processing routine. Note that we can not handle
2673 the reloc_link_order types here, since they depend upon the details
2674 of how the particular backends generates relocs. */
2675
2676 bfd_boolean
2677 _bfd_default_link_order (bfd *abfd,
2678 struct bfd_link_info *info,
2679 asection *sec,
2680 struct bfd_link_order *link_order)
2681 {
2682 switch (link_order->type)
2683 {
2684 case bfd_undefined_link_order:
2685 case bfd_section_reloc_link_order:
2686 case bfd_symbol_reloc_link_order:
2687 default:
2688 abort ();
2689 case bfd_indirect_link_order:
2690 return default_indirect_link_order (abfd, info, sec, link_order,
2691 FALSE);
2692 case bfd_data_link_order:
2693 return default_data_link_order (abfd, info, sec, link_order);
2694 }
2695 }
2696
2697 /* Default routine to handle a bfd_data_link_order. */
2698
2699 static bfd_boolean
2700 default_data_link_order (bfd *abfd,
2701 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2702 asection *sec,
2703 struct bfd_link_order *link_order)
2704 {
2705 bfd_size_type size;
2706 size_t fill_size;
2707 bfd_byte *fill;
2708 file_ptr loc;
2709 bfd_boolean result;
2710
2711 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2712
2713 size = link_order->size;
2714 if (size == 0)
2715 return TRUE;
2716
2717 fill = link_order->u.data.contents;
2718 fill_size = link_order->u.data.size;
2719 if (fill_size == 0)
2720 {
2721 fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2722 (sec->flags & SEC_CODE) != 0);
2723 if (fill == NULL)
2724 return FALSE;
2725 }
2726 else if (fill_size < size)
2727 {
2728 bfd_byte *p;
2729 fill = (bfd_byte *) bfd_malloc (size);
2730 if (fill == NULL)
2731 return FALSE;
2732 p = fill;
2733 if (fill_size == 1)
2734 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2735 else
2736 {
2737 do
2738 {
2739 memcpy (p, link_order->u.data.contents, fill_size);
2740 p += fill_size;
2741 size -= fill_size;
2742 }
2743 while (size >= fill_size);
2744 if (size != 0)
2745 memcpy (p, link_order->u.data.contents, (size_t) size);
2746 size = link_order->size;
2747 }
2748 }
2749
2750 loc = link_order->offset * bfd_octets_per_byte (abfd);
2751 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2752
2753 if (fill != link_order->u.data.contents)
2754 free (fill);
2755 return result;
2756 }
2757
2758 /* Default routine to handle a bfd_indirect_link_order. */
2759
2760 static bfd_boolean
2761 default_indirect_link_order (bfd *output_bfd,
2762 struct bfd_link_info *info,
2763 asection *output_section,
2764 struct bfd_link_order *link_order,
2765 bfd_boolean generic_linker)
2766 {
2767 asection *input_section;
2768 bfd *input_bfd;
2769 bfd_byte *contents = NULL;
2770 bfd_byte *new_contents;
2771 bfd_size_type sec_size;
2772 file_ptr loc;
2773
2774 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2775
2776 input_section = link_order->u.indirect.section;
2777 input_bfd = input_section->owner;
2778 if (input_section->size == 0)
2779 return TRUE;
2780
2781 BFD_ASSERT (input_section->output_section == output_section);
2782 BFD_ASSERT (input_section->output_offset == link_order->offset);
2783 BFD_ASSERT (input_section->size == link_order->size);
2784
2785 if (info->relocatable
2786 && input_section->reloc_count > 0
2787 && output_section->orelocation == NULL)
2788 {
2789 /* Space has not been allocated for the output relocations.
2790 This can happen when we are called by a specific backend
2791 because somebody is attempting to link together different
2792 types of object files. Handling this case correctly is
2793 difficult, and sometimes impossible. */
2794 (*_bfd_error_handler)
2795 (_("Attempt to do relocatable link with %s input and %s output"),
2796 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2797 bfd_set_error (bfd_error_wrong_format);
2798 return FALSE;
2799 }
2800
2801 if (! generic_linker)
2802 {
2803 asymbol **sympp;
2804 asymbol **symppend;
2805
2806 /* Get the canonical symbols. The generic linker will always
2807 have retrieved them by this point, but we are being called by
2808 a specific linker, presumably because we are linking
2809 different types of object files together. */
2810 if (!bfd_generic_link_read_symbols (input_bfd))
2811 return FALSE;
2812
2813 /* Since we have been called by a specific linker, rather than
2814 the generic linker, the values of the symbols will not be
2815 right. They will be the values as seen in the input file,
2816 not the values of the final link. We need to fix them up
2817 before we can relocate the section. */
2818 sympp = _bfd_generic_link_get_symbols (input_bfd);
2819 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2820 for (; sympp < symppend; sympp++)
2821 {
2822 asymbol *sym;
2823 struct bfd_link_hash_entry *h;
2824
2825 sym = *sympp;
2826
2827 if ((sym->flags & (BSF_INDIRECT
2828 | BSF_WARNING
2829 | BSF_GLOBAL
2830 | BSF_CONSTRUCTOR
2831 | BSF_WEAK)) != 0
2832 || bfd_is_und_section (bfd_get_section (sym))
2833 || bfd_is_com_section (bfd_get_section (sym))
2834 || bfd_is_ind_section (bfd_get_section (sym)))
2835 {
2836 /* sym->udata may have been set by
2837 generic_link_add_symbol_list. */
2838 if (sym->udata.p != NULL)
2839 h = (struct bfd_link_hash_entry *) sym->udata.p;
2840 else if (bfd_is_und_section (bfd_get_section (sym)))
2841 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2842 bfd_asymbol_name (sym),
2843 FALSE, FALSE, TRUE);
2844 else
2845 h = bfd_link_hash_lookup (info->hash,
2846 bfd_asymbol_name (sym),
2847 FALSE, FALSE, TRUE);
2848 if (h != NULL)
2849 set_symbol_from_hash (sym, h);
2850 }
2851 }
2852 }
2853
2854 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2855 && input_section->size != 0)
2856 {
2857 /* Group section contents are set by bfd_elf_set_group_contents. */
2858 if (!output_bfd->output_has_begun)
2859 {
2860 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2861 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2862 goto error_return;
2863 }
2864 new_contents = output_section->contents;
2865 BFD_ASSERT (new_contents != NULL);
2866 BFD_ASSERT (input_section->output_offset == 0);
2867 }
2868 else
2869 {
2870 /* Get and relocate the section contents. */
2871 sec_size = (input_section->rawsize > input_section->size
2872 ? input_section->rawsize
2873 : input_section->size);
2874 contents = (bfd_byte *) bfd_malloc (sec_size);
2875 if (contents == NULL && sec_size != 0)
2876 goto error_return;
2877 new_contents = (bfd_get_relocated_section_contents
2878 (output_bfd, info, link_order, contents,
2879 info->relocatable,
2880 _bfd_generic_link_get_symbols (input_bfd)));
2881 if (!new_contents)
2882 goto error_return;
2883 }
2884
2885 /* Output the section contents. */
2886 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2887 if (! bfd_set_section_contents (output_bfd, output_section,
2888 new_contents, loc, input_section->size))
2889 goto error_return;
2890
2891 if (contents != NULL)
2892 free (contents);
2893 return TRUE;
2894
2895 error_return:
2896 if (contents != NULL)
2897 free (contents);
2898 return FALSE;
2899 }
2900
2901 /* A little routine to count the number of relocs in a link_order
2902 list. */
2903
2904 unsigned int
2905 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2906 {
2907 register unsigned int c;
2908 register struct bfd_link_order *l;
2909
2910 c = 0;
2911 for (l = link_order; l != NULL; l = l->next)
2912 {
2913 if (l->type == bfd_section_reloc_link_order
2914 || l->type == bfd_symbol_reloc_link_order)
2915 ++c;
2916 }
2917
2918 return c;
2919 }
2920
2921 /*
2922 FUNCTION
2923 bfd_link_split_section
2924
2925 SYNOPSIS
2926 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2927
2928 DESCRIPTION
2929 Return nonzero if @var{sec} should be split during a
2930 reloceatable or final link.
2931
2932 .#define bfd_link_split_section(abfd, sec) \
2933 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2934 .
2935
2936 */
2937
2938 bfd_boolean
2939 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2940 asection *sec ATTRIBUTE_UNUSED)
2941 {
2942 return FALSE;
2943 }
2944
2945 /*
2946 FUNCTION
2947 bfd_section_already_linked
2948
2949 SYNOPSIS
2950 bfd_boolean bfd_section_already_linked (bfd *abfd,
2951 asection *sec,
2952 struct bfd_link_info *info);
2953
2954 DESCRIPTION
2955 Check if @var{data} has been already linked during a reloceatable
2956 or final link. Return TRUE if it has.
2957
2958 .#define bfd_section_already_linked(abfd, sec, info) \
2959 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2960 .
2961
2962 */
2963
2964 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2965 once into the output. This routine checks each section, and
2966 arrange to discard it if a section of the same name has already
2967 been linked. This code assumes that all relevant sections have the
2968 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2969 section name. bfd_section_already_linked is called via
2970 bfd_map_over_sections. */
2971
2972 /* The hash table. */
2973
2974 static struct bfd_hash_table _bfd_section_already_linked_table;
2975
2976 /* Support routines for the hash table used by section_already_linked,
2977 initialize the table, traverse, lookup, fill in an entry and remove
2978 the table. */
2979
2980 void
2981 bfd_section_already_linked_table_traverse
2982 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2983 void *), void *info)
2984 {
2985 bfd_hash_traverse (&_bfd_section_already_linked_table,
2986 (bfd_boolean (*) (struct bfd_hash_entry *,
2987 void *)) func,
2988 info);
2989 }
2990
2991 struct bfd_section_already_linked_hash_entry *
2992 bfd_section_already_linked_table_lookup (const char *name)
2993 {
2994 return ((struct bfd_section_already_linked_hash_entry *)
2995 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2996 TRUE, FALSE));
2997 }
2998
2999 bfd_boolean
3000 bfd_section_already_linked_table_insert
3001 (struct bfd_section_already_linked_hash_entry *already_linked_list,
3002 asection *sec)
3003 {
3004 struct bfd_section_already_linked *l;
3005
3006 /* Allocate the memory from the same obstack as the hash table is
3007 kept in. */
3008 l = (struct bfd_section_already_linked *)
3009 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
3010 if (l == NULL)
3011 return FALSE;
3012 l->sec = sec;
3013 l->next = already_linked_list->entry;
3014 already_linked_list->entry = l;
3015 return TRUE;
3016 }
3017
3018 static struct bfd_hash_entry *
3019 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
3020 struct bfd_hash_table *table,
3021 const char *string ATTRIBUTE_UNUSED)
3022 {
3023 struct bfd_section_already_linked_hash_entry *ret =
3024 (struct bfd_section_already_linked_hash_entry *)
3025 bfd_hash_allocate (table, sizeof *ret);
3026
3027 if (ret == NULL)
3028 return NULL;
3029
3030 ret->entry = NULL;
3031
3032 return &ret->root;
3033 }
3034
3035 bfd_boolean
3036 bfd_section_already_linked_table_init (void)
3037 {
3038 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
3039 already_linked_newfunc,
3040 sizeof (struct bfd_section_already_linked_hash_entry),
3041 42);
3042 }
3043
3044 void
3045 bfd_section_already_linked_table_free (void)
3046 {
3047 bfd_hash_table_free (&_bfd_section_already_linked_table);
3048 }
3049
3050 /* Report warnings as appropriate for duplicate section SEC.
3051 Return FALSE if we decide to keep SEC after all. */
3052
3053 bfd_boolean
3054 _bfd_handle_already_linked (asection *sec,
3055 struct bfd_section_already_linked *l,
3056 struct bfd_link_info *info)
3057 {
3058 switch (sec->flags & SEC_LINK_DUPLICATES)
3059 {
3060 default:
3061 abort ();
3062
3063 case SEC_LINK_DUPLICATES_DISCARD:
3064 /* If we found an LTO IR match for this comdat group on
3065 the first pass, replace it with the LTO output on the
3066 second pass. We can't simply choose real object
3067 files over IR because the first pass may contain a
3068 mix of LTO and normal objects and we must keep the
3069 first match, be it IR or real. */
3070 if (info->loading_lto_outputs
3071 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
3072 {
3073 l->sec = sec;
3074 return FALSE;
3075 }
3076 break;
3077
3078 case SEC_LINK_DUPLICATES_ONE_ONLY:
3079 info->callbacks->einfo
3080 (_("%B: ignoring duplicate section `%A'\n"),
3081 sec->owner, sec);
3082 break;
3083
3084 case SEC_LINK_DUPLICATES_SAME_SIZE:
3085 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
3086 ;
3087 else if (sec->size != l->sec->size)
3088 info->callbacks->einfo
3089 (_("%B: duplicate section `%A' has different size\n"),
3090 sec->owner, sec);
3091 break;
3092
3093 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3094 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
3095 ;
3096 else if (sec->size != l->sec->size)
3097 info->callbacks->einfo
3098 (_("%B: duplicate section `%A' has different size\n"),
3099 sec->owner, sec);
3100 else if (sec->size != 0)
3101 {
3102 bfd_byte *sec_contents, *l_sec_contents = NULL;
3103
3104 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
3105 info->callbacks->einfo
3106 (_("%B: could not read contents of section `%A'\n"),
3107 sec->owner, sec);
3108 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
3109 &l_sec_contents))
3110 info->callbacks->einfo
3111 (_("%B: could not read contents of section `%A'\n"),
3112 l->sec->owner, l->sec);
3113 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
3114 info->callbacks->einfo
3115 (_("%B: duplicate section `%A' has different contents\n"),
3116 sec->owner, sec);
3117
3118 if (sec_contents)
3119 free (sec_contents);
3120 if (l_sec_contents)
3121 free (l_sec_contents);
3122 }
3123 break;
3124 }
3125
3126 /* Set the output_section field so that lang_add_section
3127 does not create a lang_input_section structure for this
3128 section. Since there might be a symbol in the section
3129 being discarded, we must retain a pointer to the section
3130 which we are really going to use. */
3131 sec->output_section = bfd_abs_section_ptr;
3132 sec->kept_section = l->sec;
3133 return TRUE;
3134 }
3135
3136 /* This is used on non-ELF inputs. */
3137
3138 bfd_boolean
3139 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
3140 asection *sec,
3141 struct bfd_link_info *info)
3142 {
3143 const char *name;
3144 struct bfd_section_already_linked *l;
3145 struct bfd_section_already_linked_hash_entry *already_linked_list;
3146
3147 if ((sec->flags & SEC_LINK_ONCE) == 0)
3148 return FALSE;
3149
3150 /* The generic linker doesn't handle section groups. */
3151 if ((sec->flags & SEC_GROUP) != 0)
3152 return FALSE;
3153
3154 /* FIXME: When doing a relocatable link, we may have trouble
3155 copying relocations in other sections that refer to local symbols
3156 in the section being discarded. Those relocations will have to
3157 be converted somehow; as of this writing I'm not sure that any of
3158 the backends handle that correctly.
3159
3160 It is tempting to instead not discard link once sections when
3161 doing a relocatable link (technically, they should be discarded
3162 whenever we are building constructors). However, that fails,
3163 because the linker winds up combining all the link once sections
3164 into a single large link once section, which defeats the purpose
3165 of having link once sections in the first place. */
3166
3167 name = bfd_get_section_name (abfd, sec);
3168
3169 already_linked_list = bfd_section_already_linked_table_lookup (name);
3170
3171 l = already_linked_list->entry;
3172 if (l != NULL)
3173 {
3174 /* The section has already been linked. See if we should
3175 issue a warning. */
3176 return _bfd_handle_already_linked (sec, l, info);
3177 }
3178
3179 /* This is the first section with this name. Record it. */
3180 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
3181 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
3182 return FALSE;
3183 }
3184
3185 /* Choose a neighbouring section to S in OBFD that will be output, or
3186 the absolute section if ADDR is out of bounds of the neighbours. */
3187
3188 asection *
3189 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
3190 {
3191 asection *next, *prev, *best;
3192
3193 /* Find preceding kept section. */
3194 for (prev = s->prev; prev != NULL; prev = prev->prev)
3195 if ((prev->flags & SEC_EXCLUDE) == 0
3196 && !bfd_section_removed_from_list (obfd, prev))
3197 break;
3198
3199 /* Find following kept section. Start at prev->next because
3200 other sections may have been added after S was removed. */
3201 if (s->prev != NULL)
3202 next = s->prev->next;
3203 else
3204 next = s->owner->sections;
3205 for (; next != NULL; next = next->next)
3206 if ((next->flags & SEC_EXCLUDE) == 0
3207 && !bfd_section_removed_from_list (obfd, next))
3208 break;
3209
3210 /* Choose better of two sections, based on flags. The idea
3211 is to choose a section that will be in the same segment
3212 as S would have been if it was kept. */
3213 best = next;
3214 if (prev == NULL)
3215 {
3216 if (next == NULL)
3217 best = bfd_abs_section_ptr;
3218 }
3219 else if (next == NULL)
3220 best = prev;
3221 else if (((prev->flags ^ next->flags)
3222 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3223 {
3224 if (((next->flags ^ s->flags)
3225 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3226 /* We prefer to choose a loaded section. Section S
3227 doesn't have SEC_LOAD set (it being excluded, that
3228 part of the flag processing didn't happen) so we
3229 can't compare that flag to those of NEXT and PREV. */
3230 || ((prev->flags & SEC_LOAD) != 0
3231 && (next->flags & SEC_LOAD) == 0))
3232 best = prev;
3233 }
3234 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3235 {
3236 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3237 best = prev;
3238 }
3239 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3240 {
3241 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3242 best = prev;
3243 }
3244 else
3245 {
3246 /* Flags we care about are the same. Prefer the following
3247 section if that will result in a positive valued sym. */
3248 if (addr < next->vma)
3249 best = prev;
3250 }
3251
3252 return best;
3253 }
3254
3255 /* Convert symbols in excluded output sections to use a kept section. */
3256
3257 static bfd_boolean
3258 fix_syms (struct bfd_link_hash_entry *h, void *data)
3259 {
3260 bfd *obfd = (bfd *) data;
3261
3262 if (h->type == bfd_link_hash_defined
3263 || h->type == bfd_link_hash_defweak)
3264 {
3265 asection *s = h->u.def.section;
3266 if (s != NULL
3267 && s->output_section != NULL
3268 && (s->output_section->flags & SEC_EXCLUDE) != 0
3269 && bfd_section_removed_from_list (obfd, s->output_section))
3270 {
3271 asection *op;
3272
3273 h->u.def.value += s->output_offset + s->output_section->vma;
3274 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3275 h->u.def.value -= op->vma;
3276 h->u.def.section = op;
3277 }
3278 }
3279
3280 return TRUE;
3281 }
3282
3283 void
3284 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3285 {
3286 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3287 }
3288
3289 /*
3290 FUNCTION
3291 bfd_generic_define_common_symbol
3292
3293 SYNOPSIS
3294 bfd_boolean bfd_generic_define_common_symbol
3295 (bfd *output_bfd, struct bfd_link_info *info,
3296 struct bfd_link_hash_entry *h);
3297
3298 DESCRIPTION
3299 Convert common symbol @var{h} into a defined symbol.
3300 Return TRUE on success and FALSE on failure.
3301
3302 .#define bfd_define_common_symbol(output_bfd, info, h) \
3303 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3304 .
3305 */
3306
3307 bfd_boolean
3308 bfd_generic_define_common_symbol (bfd *output_bfd,
3309 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3310 struct bfd_link_hash_entry *h)
3311 {
3312 unsigned int power_of_two;
3313 bfd_vma alignment, size;
3314 asection *section;
3315
3316 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3317
3318 size = h->u.c.size;
3319 power_of_two = h->u.c.p->alignment_power;
3320 section = h->u.c.p->section;
3321
3322 /* Increase the size of the section to align the common symbol.
3323 The alignment must be a power of two. */
3324 alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3325 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3326 section->size += alignment - 1;
3327 section->size &= -alignment;
3328
3329 /* Adjust the section's overall alignment if necessary. */
3330 if (power_of_two > section->alignment_power)
3331 section->alignment_power = power_of_two;
3332
3333 /* Change the symbol from common to defined. */
3334 h->type = bfd_link_hash_defined;
3335 h->u.def.section = section;
3336 h->u.def.value = section->size;
3337
3338 /* Increase the size of the section. */
3339 section->size += size;
3340
3341 /* Make sure the section is allocated in memory, and make sure that
3342 it is no longer a common section. */
3343 section->flags |= SEC_ALLOC;
3344 section->flags &= ~SEC_IS_COMMON;
3345 return TRUE;
3346 }
3347
3348 /*
3349 FUNCTION
3350 bfd_find_version_for_sym
3351
3352 SYNOPSIS
3353 struct bfd_elf_version_tree * bfd_find_version_for_sym
3354 (struct bfd_elf_version_tree *verdefs,
3355 const char *sym_name, bfd_boolean *hide);
3356
3357 DESCRIPTION
3358 Search an elf version script tree for symbol versioning
3359 info and export / don't-export status for a given symbol.
3360 Return non-NULL on success and NULL on failure; also sets
3361 the output @samp{hide} boolean parameter.
3362
3363 */
3364
3365 struct bfd_elf_version_tree *
3366 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3367 const char *sym_name,
3368 bfd_boolean *hide)
3369 {
3370 struct bfd_elf_version_tree *t;
3371 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3372 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3373
3374 local_ver = NULL;
3375 global_ver = NULL;
3376 star_local_ver = NULL;
3377 star_global_ver = NULL;
3378 exist_ver = NULL;
3379 for (t = verdefs; t != NULL; t = t->next)
3380 {
3381 if (t->globals.list != NULL)
3382 {
3383 struct bfd_elf_version_expr *d = NULL;
3384
3385 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3386 {
3387 if (d->literal || strcmp (d->pattern, "*") != 0)
3388 global_ver = t;
3389 else
3390 star_global_ver = t;
3391 if (d->symver)
3392 exist_ver = t;
3393 d->script = 1;
3394 /* If the match is a wildcard pattern, keep looking for
3395 a more explicit, perhaps even local, match. */
3396 if (d->literal)
3397 break;
3398 }
3399
3400 if (d != NULL)
3401 break;
3402 }
3403
3404 if (t->locals.list != NULL)
3405 {
3406 struct bfd_elf_version_expr *d = NULL;
3407
3408 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3409 {
3410 if (d->literal || strcmp (d->pattern, "*") != 0)
3411 local_ver = t;
3412 else
3413 star_local_ver = t;
3414 /* If the match is a wildcard pattern, keep looking for
3415 a more explicit, perhaps even global, match. */
3416 if (d->literal)
3417 {
3418 /* An exact match overrides a global wildcard. */
3419 global_ver = NULL;
3420 star_global_ver = NULL;
3421 break;
3422 }
3423 }
3424
3425 if (d != NULL)
3426 break;
3427 }
3428 }
3429
3430 if (global_ver == NULL && local_ver == NULL)
3431 global_ver = star_global_ver;
3432
3433 if (global_ver != NULL)
3434 {
3435 /* If we already have a versioned symbol that matches the
3436 node for this symbol, then we don't want to create a
3437 duplicate from the unversioned symbol. Instead hide the
3438 unversioned symbol. */
3439 *hide = exist_ver == global_ver;
3440 return global_ver;
3441 }
3442
3443 if (local_ver == NULL)
3444 local_ver = star_local_ver;
3445
3446 if (local_ver != NULL)
3447 {
3448 *hide = TRUE;
3449 return local_ver;
3450 }
3451
3452 return NULL;
3453 }
3454
3455 /*
3456 FUNCTION
3457 bfd_hide_sym_by_version
3458
3459 SYNOPSIS
3460 bfd_boolean bfd_hide_sym_by_version
3461 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3462
3463 DESCRIPTION
3464 Search an elf version script tree for symbol versioning
3465 info for a given symbol. Return TRUE if the symbol is hidden.
3466
3467 */
3468
3469 bfd_boolean
3470 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3471 const char *sym_name)
3472 {
3473 bfd_boolean hidden = FALSE;
3474 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3475 return hidden;
3476 }
This page took 0.152187 seconds and 4 git commands to generate.