Update copyright notices
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocateable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the <<creator>>
153 field of the hash table must be checked to make sure that the
154 hash table was created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the <<creator>> field before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is true, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table.
225
226 @findex _bfd_generic_link_add_archive_symbols
227 In most cases the work of looking through the symbols in the
228 archive should be done by the
229 <<_bfd_generic_link_add_archive_symbols>> function. This
230 function builds a hash table from the archive symbol table and
231 looks through the list of undefined symbols to see which
232 elements should be included.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table.
237
238 The function passed to
239 <<_bfd_generic_link_add_archive_symbols>> must read the
240 symbols of the archive element and decide whether the archive
241 element should be included in the link. If the element is to
242 be included, the <<add_archive_element>> linker callback
243 routine must be called with the element as an argument, and
244 the elements symbols must be added to the linker hash table
245 just as though the element had itself been passed to the
246 <<_bfd_link_add_symbols>> function.
247
248 When the a.out <<_bfd_link_add_symbols>> function receives an
249 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
250 passing <<aout_link_check_archive_element>> as the function
251 argument. <<aout_link_check_archive_element>> calls
252 <<aout_link_check_ar_symbols>>. If the latter decides to add
253 the element (an element is only added if it provides a real,
254 non-common, definition for a previously undefined or common
255 symbol) it calls the <<add_archive_element>> callback and then
256 <<aout_link_check_archive_element>> calls
257 <<aout_link_add_symbols>> to actually add the symbols to the
258 linker hash table.
259
260 The ECOFF back end is unusual in that it does not normally
261 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
262 archives already contain a hash table of symbols. The ECOFF
263 back end searches the archive itself to avoid the overhead of
264 creating a new hash table.
265
266 INODE
267 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
268 SUBSECTION
269 Performing the final link
270
271 @cindex _bfd_link_final_link in target vector
272 @cindex target vector (_bfd_final_link)
273 When all the input files have been processed, the linker calls
274 the <<_bfd_final_link>> entry point of the output BFD. This
275 routine is responsible for producing the final output file,
276 which has several aspects. It must relocate the contents of
277 the input sections and copy the data into the output sections.
278 It must build an output symbol table including any local
279 symbols from the input files and the global symbols from the
280 hash table. When producing relocateable output, it must
281 modify the input relocs and write them into the output file.
282 There may also be object format dependent work to be done.
283
284 The linker will also call the <<write_object_contents>> entry
285 point when the BFD is closed. The two entry points must work
286 together in order to produce the correct output file.
287
288 The details of how this works are inevitably dependent upon
289 the specific object file format. The a.out
290 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
291
292 @menu
293 @* Information provided by the linker::
294 @* Relocating the section contents::
295 @* Writing the symbol table::
296 @end menu
297
298 INODE
299 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
300 SUBSUBSECTION
301 Information provided by the linker
302
303 Before the linker calls the <<_bfd_final_link>> entry point,
304 it sets up some data structures for the function to use.
305
306 The <<input_bfds>> field of the <<bfd_link_info>> structure
307 will point to a list of all the input files included in the
308 link. These files are linked through the <<link_next>> field
309 of the <<bfd>> structure.
310
311 Each section in the output file will have a list of
312 <<link_order>> structures attached to the <<link_order_head>>
313 field (the <<link_order>> structure is defined in
314 <<bfdlink.h>>). These structures describe how to create the
315 contents of the output section in terms of the contents of
316 various input sections, fill constants, and, eventually, other
317 types of information. They also describe relocs that must be
318 created by the BFD backend, but do not correspond to any input
319 file; this is used to support -Ur, which builds constructors
320 while generating a relocateable object file.
321
322 INODE
323 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
324 SUBSUBSECTION
325 Relocating the section contents
326
327 The <<_bfd_final_link>> function should look through the
328 <<link_order>> structures attached to each section of the
329 output file. Each <<link_order>> structure should either be
330 handled specially, or it should be passed to the function
331 <<_bfd_default_link_order>> which will do the right thing
332 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
333
334 For efficiency, a <<link_order>> of type
335 <<bfd_indirect_link_order>> whose associated section belongs
336 to a BFD of the same format as the output BFD must be handled
337 specially. This type of <<link_order>> describes part of an
338 output section in terms of a section belonging to one of the
339 input files. The <<_bfd_final_link>> function should read the
340 contents of the section and any associated relocs, apply the
341 relocs to the section contents, and write out the modified
342 section contents. If performing a relocateable link, the
343 relocs themselves must also be modified and written out.
344
345 @findex _bfd_relocate_contents
346 @findex _bfd_final_link_relocate
347 The functions <<_bfd_relocate_contents>> and
348 <<_bfd_final_link_relocate>> provide some general support for
349 performing the actual relocations, notably overflow checking.
350 Their arguments include information about the symbol the
351 relocation is against and a <<reloc_howto_type>> argument
352 which describes the relocation to perform. These functions
353 are defined in <<reloc.c>>.
354
355 The a.out function which handles reading, relocating, and
356 writing section contents is <<aout_link_input_section>>. The
357 actual relocation is done in <<aout_link_input_section_std>>
358 and <<aout_link_input_section_ext>>.
359
360 INODE
361 Writing the symbol table, , Relocating the section contents, Performing the Final Link
362 SUBSUBSECTION
363 Writing the symbol table
364
365 The <<_bfd_final_link>> function must gather all the symbols
366 in the input files and write them out. It must also write out
367 all the symbols in the global hash table. This must be
368 controlled by the <<strip>> and <<discard>> fields of the
369 <<bfd_link_info>> structure.
370
371 The local symbols of the input files will not have been
372 entered into the linker hash table. The <<_bfd_final_link>>
373 routine must consider each input file and include the symbols
374 in the output file. It may be convenient to do this when
375 looking through the <<link_order>> structures, or it may be
376 done by stepping through the <<input_bfds>> list.
377
378 The <<_bfd_final_link>> routine must also traverse the global
379 hash table to gather all the externally visible symbols. It
380 is possible that most of the externally visible symbols may be
381 written out when considering the symbols of each input file,
382 but it is still necessary to traverse the hash table since the
383 linker script may have defined some symbols that are not in
384 any of the input files.
385
386 The <<strip>> field of the <<bfd_link_info>> structure
387 controls which symbols are written out. The possible values
388 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
389 then the <<keep_hash>> field of the <<bfd_link_info>>
390 structure is a hash table of symbols to keep; each symbol
391 should be looked up in this hash table, and only symbols which
392 are present should be included in the output file.
393
394 If the <<strip>> field of the <<bfd_link_info>> structure
395 permits local symbols to be written out, the <<discard>> field
396 is used to further controls which local symbols are included
397 in the output file. If the value is <<discard_l>>, then all
398 local symbols which begin with a certain prefix are discarded;
399 this is controlled by the <<bfd_is_local_label_name>> entry point.
400
401 The a.out backend handles symbols by calling
402 <<aout_link_write_symbols>> on each input BFD and then
403 traversing the global hash table with the function
404 <<aout_link_write_other_symbol>>. It builds a string table
405 while writing out the symbols, which is written to the output
406 file at the end of <<NAME(aout,final_link)>>.
407 */
408
409 static boolean generic_link_read_symbols
410 PARAMS ((bfd *));
411 static boolean generic_link_add_symbols
412 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
413 static boolean generic_link_add_object_symbols
414 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
415 static boolean generic_link_check_archive_element_no_collect
416 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
417 static boolean generic_link_check_archive_element_collect
418 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
419 static boolean generic_link_check_archive_element
420 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded, boolean collect));
421 static boolean generic_link_add_symbol_list
422 PARAMS ((bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
423 boolean collect));
424 static bfd *hash_entry_bfd PARAMS ((struct bfd_link_hash_entry *));
425 static void set_symbol_from_hash
426 PARAMS ((asymbol *, struct bfd_link_hash_entry *));
427 static boolean generic_add_output_symbol
428 PARAMS ((bfd *, size_t *psymalloc, asymbol *));
429 static boolean default_fill_link_order
430 PARAMS ((bfd *, struct bfd_link_info *, asection *,
431 struct bfd_link_order *));
432 static boolean default_indirect_link_order
433 PARAMS ((bfd *, struct bfd_link_info *, asection *,
434 struct bfd_link_order *, boolean));
435
436 /* The link hash table structure is defined in bfdlink.h. It provides
437 a base hash table which the backend specific hash tables are built
438 upon. */
439
440 /* Routine to create an entry in the link hash table. */
441
442 struct bfd_hash_entry *
443 _bfd_link_hash_newfunc (entry, table, string)
444 struct bfd_hash_entry *entry;
445 struct bfd_hash_table *table;
446 const char *string;
447 {
448 struct bfd_link_hash_entry *ret = (struct bfd_link_hash_entry *) entry;
449
450 /* Allocate the structure if it has not already been allocated by a
451 subclass. */
452 if (ret == (struct bfd_link_hash_entry *) NULL)
453 ret = ((struct bfd_link_hash_entry *)
454 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)));
455 if (ret == (struct bfd_link_hash_entry *) NULL)
456 return NULL;
457
458 /* Call the allocation method of the superclass. */
459 ret = ((struct bfd_link_hash_entry *)
460 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
461
462 if (ret)
463 {
464 /* Initialize the local fields. */
465 ret->type = bfd_link_hash_new;
466 ret->next = NULL;
467 }
468
469 return (struct bfd_hash_entry *) ret;
470 }
471
472 /* Initialize a link hash table. The BFD argument is the one
473 responsible for creating this table. */
474
475 boolean
476 _bfd_link_hash_table_init (table, abfd, newfunc)
477 struct bfd_link_hash_table *table;
478 bfd *abfd;
479 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
480 struct bfd_hash_table *,
481 const char *));
482 {
483 table->creator = abfd->xvec;
484 table->undefs = NULL;
485 table->undefs_tail = NULL;
486 return bfd_hash_table_init (&table->table, newfunc);
487 }
488
489 /* Look up a symbol in a link hash table. If follow is true, we
490 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
491 the real symbol. */
492
493 struct bfd_link_hash_entry *
494 bfd_link_hash_lookup (table, string, create, copy, follow)
495 struct bfd_link_hash_table *table;
496 const char *string;
497 boolean create;
498 boolean copy;
499 boolean follow;
500 {
501 struct bfd_link_hash_entry *ret;
502
503 ret = ((struct bfd_link_hash_entry *)
504 bfd_hash_lookup (&table->table, string, create, copy));
505
506 if (follow && ret != (struct bfd_link_hash_entry *) NULL)
507 {
508 while (ret->type == bfd_link_hash_indirect
509 || ret->type == bfd_link_hash_warning)
510 ret = ret->u.i.link;
511 }
512
513 return ret;
514 }
515
516 /* Look up a symbol in the main linker hash table if the symbol might
517 be wrapped. This should only be used for references to an
518 undefined symbol, not for definitions of a symbol. */
519
520 struct bfd_link_hash_entry *
521 bfd_wrapped_link_hash_lookup (abfd, info, string, create, copy, follow)
522 bfd *abfd;
523 struct bfd_link_info *info;
524 const char *string;
525 boolean create;
526 boolean copy;
527 boolean follow;
528 {
529 if (info->wrap_hash != NULL)
530 {
531 const char *l;
532
533 l = string;
534 if (*l == bfd_get_symbol_leading_char (abfd))
535 ++l;
536
537 #undef WRAP
538 #define WRAP "__wrap_"
539
540 if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
541 {
542 char *n;
543 struct bfd_link_hash_entry *h;
544
545 /* This symbol is being wrapped. We want to replace all
546 references to SYM with references to __wrap_SYM. */
547
548 n = (char *) bfd_malloc (strlen (l) + sizeof WRAP + 1);
549 if (n == NULL)
550 return NULL;
551
552 /* Note that symbol_leading_char may be '\0'. */
553 n[0] = bfd_get_symbol_leading_char (abfd);
554 n[1] = '\0';
555 strcat (n, WRAP);
556 strcat (n, l);
557 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
558 free (n);
559 return h;
560 }
561
562 #undef WRAP
563
564 #undef REAL
565 #define REAL "__real_"
566
567 if (*l == '_'
568 && strncmp (l, REAL, sizeof REAL - 1) == 0
569 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
570 false, false) != NULL)
571 {
572 char *n;
573 struct bfd_link_hash_entry *h;
574
575 /* This is a reference to __real_SYM, where SYM is being
576 wrapped. We want to replace all references to __real_SYM
577 with references to SYM. */
578
579 n = (char *) bfd_malloc (strlen (l + sizeof REAL - 1) + 2);
580 if (n == NULL)
581 return NULL;
582
583 /* Note that symbol_leading_char may be '\0'. */
584 n[0] = bfd_get_symbol_leading_char (abfd);
585 n[1] = '\0';
586 strcat (n, l + sizeof REAL - 1);
587 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
588 free (n);
589 return h;
590 }
591
592 #undef REAL
593 }
594
595 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
596 }
597
598 /* Traverse a generic link hash table. The only reason this is not a
599 macro is to do better type checking. This code presumes that an
600 argument passed as a struct bfd_hash_entry * may be caught as a
601 struct bfd_link_hash_entry * with no explicit cast required on the
602 call. */
603
604 void
605 bfd_link_hash_traverse (table, func, info)
606 struct bfd_link_hash_table *table;
607 boolean (*func) PARAMS ((struct bfd_link_hash_entry *, PTR));
608 PTR info;
609 {
610 bfd_hash_traverse (&table->table,
611 ((boolean (*) PARAMS ((struct bfd_hash_entry *, PTR)))
612 func),
613 info);
614 }
615
616 /* Add a symbol to the linker hash table undefs list. */
617
618 INLINE void
619 bfd_link_add_undef (table, h)
620 struct bfd_link_hash_table *table;
621 struct bfd_link_hash_entry *h;
622 {
623 BFD_ASSERT (h->next == NULL);
624 if (table->undefs_tail != (struct bfd_link_hash_entry *) NULL)
625 table->undefs_tail->next = h;
626 if (table->undefs == (struct bfd_link_hash_entry *) NULL)
627 table->undefs = h;
628 table->undefs_tail = h;
629 }
630 \f
631 /* Routine to create an entry in an generic link hash table. */
632
633 struct bfd_hash_entry *
634 _bfd_generic_link_hash_newfunc (entry, table, string)
635 struct bfd_hash_entry *entry;
636 struct bfd_hash_table *table;
637 const char *string;
638 {
639 struct generic_link_hash_entry *ret =
640 (struct generic_link_hash_entry *) entry;
641
642 /* Allocate the structure if it has not already been allocated by a
643 subclass. */
644 if (ret == (struct generic_link_hash_entry *) NULL)
645 ret = ((struct generic_link_hash_entry *)
646 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)));
647 if (ret == (struct generic_link_hash_entry *) NULL)
648 return NULL;
649
650 /* Call the allocation method of the superclass. */
651 ret = ((struct generic_link_hash_entry *)
652 _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
653 table, string));
654
655 if (ret)
656 {
657 /* Set local fields. */
658 ret->written = false;
659 ret->sym = NULL;
660 }
661
662 return (struct bfd_hash_entry *) ret;
663 }
664
665 /* Create an generic link hash table. */
666
667 struct bfd_link_hash_table *
668 _bfd_generic_link_hash_table_create (abfd)
669 bfd *abfd;
670 {
671 struct generic_link_hash_table *ret;
672
673 ret = ((struct generic_link_hash_table *)
674 bfd_alloc (abfd, sizeof (struct generic_link_hash_table)));
675 if (ret == NULL)
676 return (struct bfd_link_hash_table *) NULL;
677 if (! _bfd_link_hash_table_init (&ret->root, abfd,
678 _bfd_generic_link_hash_newfunc))
679 {
680 free (ret);
681 return (struct bfd_link_hash_table *) NULL;
682 }
683 return &ret->root;
684 }
685
686 /* Grab the symbols for an object file when doing a generic link. We
687 store the symbols in the outsymbols field. We need to keep them
688 around for the entire link to ensure that we only read them once.
689 If we read them multiple times, we might wind up with relocs and
690 the hash table pointing to different instances of the symbol
691 structure. */
692
693 static boolean
694 generic_link_read_symbols (abfd)
695 bfd *abfd;
696 {
697 if (bfd_get_outsymbols (abfd) == (asymbol **) NULL)
698 {
699 long symsize;
700 long symcount;
701
702 symsize = bfd_get_symtab_upper_bound (abfd);
703 if (symsize < 0)
704 return false;
705 bfd_get_outsymbols (abfd) = (asymbol **) bfd_alloc (abfd, symsize);
706 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
707 return false;
708 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
709 if (symcount < 0)
710 return false;
711 bfd_get_symcount (abfd) = symcount;
712 }
713
714 return true;
715 }
716 \f
717 /* Generic function to add symbols to from an object file to the
718 global hash table. This version does not automatically collect
719 constructors by name. */
720
721 boolean
722 _bfd_generic_link_add_symbols (abfd, info)
723 bfd *abfd;
724 struct bfd_link_info *info;
725 {
726 return generic_link_add_symbols (abfd, info, false);
727 }
728
729 /* Generic function to add symbols from an object file to the global
730 hash table. This version automatically collects constructors by
731 name, as the collect2 program does. It should be used for any
732 target which does not provide some other mechanism for setting up
733 constructors and destructors; these are approximately those targets
734 for which gcc uses collect2 and do not support stabs. */
735
736 boolean
737 _bfd_generic_link_add_symbols_collect (abfd, info)
738 bfd *abfd;
739 struct bfd_link_info *info;
740 {
741 return generic_link_add_symbols (abfd, info, true);
742 }
743
744 /* Add symbols from an object file to the global hash table. */
745
746 static boolean
747 generic_link_add_symbols (abfd, info, collect)
748 bfd *abfd;
749 struct bfd_link_info *info;
750 boolean collect;
751 {
752 boolean ret;
753
754 switch (bfd_get_format (abfd))
755 {
756 case bfd_object:
757 ret = generic_link_add_object_symbols (abfd, info, collect);
758 break;
759 case bfd_archive:
760 ret = (_bfd_generic_link_add_archive_symbols
761 (abfd, info,
762 (collect
763 ? generic_link_check_archive_element_collect
764 : generic_link_check_archive_element_no_collect)));
765 break;
766 default:
767 bfd_set_error (bfd_error_wrong_format);
768 ret = false;
769 }
770
771 return ret;
772 }
773
774 /* Add symbols from an object file to the global hash table. */
775
776 static boolean
777 generic_link_add_object_symbols (abfd, info, collect)
778 bfd *abfd;
779 struct bfd_link_info *info;
780 boolean collect;
781 {
782 if (! generic_link_read_symbols (abfd))
783 return false;
784 return generic_link_add_symbol_list (abfd, info,
785 _bfd_generic_link_get_symcount (abfd),
786 _bfd_generic_link_get_symbols (abfd),
787 collect);
788 }
789 \f
790 /* We build a hash table of all symbols defined in an archive. */
791
792 /* An archive symbol may be defined by multiple archive elements.
793 This linked list is used to hold the elements. */
794
795 struct archive_list
796 {
797 struct archive_list *next;
798 int indx;
799 };
800
801 /* An entry in an archive hash table. */
802
803 struct archive_hash_entry
804 {
805 struct bfd_hash_entry root;
806 /* Where the symbol is defined. */
807 struct archive_list *defs;
808 };
809
810 /* An archive hash table itself. */
811
812 struct archive_hash_table
813 {
814 struct bfd_hash_table table;
815 };
816
817 static struct bfd_hash_entry *archive_hash_newfunc
818 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
819 static boolean archive_hash_table_init
820 PARAMS ((struct archive_hash_table *,
821 struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
822 struct bfd_hash_table *,
823 const char *)));
824
825 /* Create a new entry for an archive hash table. */
826
827 static struct bfd_hash_entry *
828 archive_hash_newfunc (entry, table, string)
829 struct bfd_hash_entry *entry;
830 struct bfd_hash_table *table;
831 const char *string;
832 {
833 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
834
835 /* Allocate the structure if it has not already been allocated by a
836 subclass. */
837 if (ret == (struct archive_hash_entry *) NULL)
838 ret = ((struct archive_hash_entry *)
839 bfd_hash_allocate (table, sizeof (struct archive_hash_entry)));
840 if (ret == (struct archive_hash_entry *) NULL)
841 return NULL;
842
843 /* Call the allocation method of the superclass. */
844 ret = ((struct archive_hash_entry *)
845 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
846
847 if (ret)
848 {
849 /* Initialize the local fields. */
850 ret->defs = (struct archive_list *) NULL;
851 }
852
853 return (struct bfd_hash_entry *) ret;
854 }
855
856 /* Initialize an archive hash table. */
857
858 static boolean
859 archive_hash_table_init (table, newfunc)
860 struct archive_hash_table *table;
861 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
862 struct bfd_hash_table *,
863 const char *));
864 {
865 return bfd_hash_table_init (&table->table, newfunc);
866 }
867
868 /* Look up an entry in an archive hash table. */
869
870 #define archive_hash_lookup(t, string, create, copy) \
871 ((struct archive_hash_entry *) \
872 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
873
874 /* Allocate space in an archive hash table. */
875
876 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
877
878 /* Free an archive hash table. */
879
880 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
881
882 /* Generic function to add symbols from an archive file to the global
883 hash file. This function presumes that the archive symbol table
884 has already been read in (this is normally done by the
885 bfd_check_format entry point). It looks through the undefined and
886 common symbols and searches the archive symbol table for them. If
887 it finds an entry, it includes the associated object file in the
888 link.
889
890 The old linker looked through the archive symbol table for
891 undefined symbols. We do it the other way around, looking through
892 undefined symbols for symbols defined in the archive. The
893 advantage of the newer scheme is that we only have to look through
894 the list of undefined symbols once, whereas the old method had to
895 re-search the symbol table each time a new object file was added.
896
897 The CHECKFN argument is used to see if an object file should be
898 included. CHECKFN should set *PNEEDED to true if the object file
899 should be included, and must also call the bfd_link_info
900 add_archive_element callback function and handle adding the symbols
901 to the global hash table. CHECKFN should only return false if some
902 sort of error occurs.
903
904 For some formats, such as a.out, it is possible to look through an
905 object file but not actually include it in the link. The
906 archive_pass field in a BFD is used to avoid checking the symbols
907 of an object files too many times. When an object is included in
908 the link, archive_pass is set to -1. If an object is scanned but
909 not included, archive_pass is set to the pass number. The pass
910 number is incremented each time a new object file is included. The
911 pass number is used because when a new object file is included it
912 may create new undefined symbols which cause a previously examined
913 object file to be included. */
914
915 boolean
916 _bfd_generic_link_add_archive_symbols (abfd, info, checkfn)
917 bfd *abfd;
918 struct bfd_link_info *info;
919 boolean (*checkfn) PARAMS ((bfd *, struct bfd_link_info *,
920 boolean *pneeded));
921 {
922 carsym *arsyms;
923 carsym *arsym_end;
924 register carsym *arsym;
925 int pass;
926 struct archive_hash_table arsym_hash;
927 int indx;
928 struct bfd_link_hash_entry **pundef;
929
930 if (! bfd_has_map (abfd))
931 {
932 /* An empty archive is a special case. */
933 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
934 return true;
935 bfd_set_error (bfd_error_no_armap);
936 return false;
937 }
938
939 arsyms = bfd_ardata (abfd)->symdefs;
940 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
941
942 /* In order to quickly determine whether an symbol is defined in
943 this archive, we build a hash table of the symbols. */
944 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
945 return false;
946 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
947 {
948 struct archive_hash_entry *arh;
949 struct archive_list *l, **pp;
950
951 arh = archive_hash_lookup (&arsym_hash, arsym->name, true, false);
952 if (arh == (struct archive_hash_entry *) NULL)
953 goto error_return;
954 l = ((struct archive_list *)
955 archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
956 if (l == NULL)
957 goto error_return;
958 l->indx = indx;
959 for (pp = &arh->defs;
960 *pp != (struct archive_list *) NULL;
961 pp = &(*pp)->next)
962 ;
963 *pp = l;
964 l->next = NULL;
965 }
966
967 /* The archive_pass field in the archive itself is used to
968 initialize PASS, sine we may search the same archive multiple
969 times. */
970 pass = abfd->archive_pass + 1;
971
972 /* New undefined symbols are added to the end of the list, so we
973 only need to look through it once. */
974 pundef = &info->hash->undefs;
975 while (*pundef != (struct bfd_link_hash_entry *) NULL)
976 {
977 struct bfd_link_hash_entry *h;
978 struct archive_hash_entry *arh;
979 struct archive_list *l;
980
981 h = *pundef;
982
983 /* When a symbol is defined, it is not necessarily removed from
984 the list. */
985 if (h->type != bfd_link_hash_undefined
986 && h->type != bfd_link_hash_common)
987 {
988 /* Remove this entry from the list, for general cleanliness
989 and because we are going to look through the list again
990 if we search any more libraries. We can't remove the
991 entry if it is the tail, because that would lose any
992 entries we add to the list later on (it would also cause
993 us to lose track of whether the symbol has been
994 referenced). */
995 if (*pundef != info->hash->undefs_tail)
996 *pundef = (*pundef)->next;
997 else
998 pundef = &(*pundef)->next;
999 continue;
1000 }
1001
1002 /* Look for this symbol in the archive symbol map. */
1003 arh = archive_hash_lookup (&arsym_hash, h->root.string, false, false);
1004 if (arh == (struct archive_hash_entry *) NULL)
1005 {
1006 pundef = &(*pundef)->next;
1007 continue;
1008 }
1009
1010 /* Look at all the objects which define this symbol. */
1011 for (l = arh->defs; l != (struct archive_list *) NULL; l = l->next)
1012 {
1013 bfd *element;
1014 boolean needed;
1015
1016 /* If the symbol has gotten defined along the way, quit. */
1017 if (h->type != bfd_link_hash_undefined
1018 && h->type != bfd_link_hash_common)
1019 break;
1020
1021 element = bfd_get_elt_at_index (abfd, l->indx);
1022 if (element == (bfd *) NULL)
1023 goto error_return;
1024
1025 /* If we've already included this element, or if we've
1026 already checked it on this pass, continue. */
1027 if (element->archive_pass == -1
1028 || element->archive_pass == pass)
1029 continue;
1030
1031 /* If we can't figure this element out, just ignore it. */
1032 if (! bfd_check_format (element, bfd_object))
1033 {
1034 element->archive_pass = -1;
1035 continue;
1036 }
1037
1038 /* CHECKFN will see if this element should be included, and
1039 go ahead and include it if appropriate. */
1040 if (! (*checkfn) (element, info, &needed))
1041 goto error_return;
1042
1043 if (! needed)
1044 element->archive_pass = pass;
1045 else
1046 {
1047 element->archive_pass = -1;
1048
1049 /* Increment the pass count to show that we may need to
1050 recheck object files which were already checked. */
1051 ++pass;
1052 }
1053 }
1054
1055 pundef = &(*pundef)->next;
1056 }
1057
1058 archive_hash_table_free (&arsym_hash);
1059
1060 /* Save PASS in case we are called again. */
1061 abfd->archive_pass = pass;
1062
1063 return true;
1064
1065 error_return:
1066 archive_hash_table_free (&arsym_hash);
1067 return false;
1068 }
1069 \f
1070 /* See if we should include an archive element. This version is used
1071 when we do not want to automatically collect constructors based on
1072 the symbol name, presumably because we have some other mechanism
1073 for finding them. */
1074
1075 static boolean
1076 generic_link_check_archive_element_no_collect (abfd, info, pneeded)
1077 bfd *abfd;
1078 struct bfd_link_info *info;
1079 boolean *pneeded;
1080 {
1081 return generic_link_check_archive_element (abfd, info, pneeded, false);
1082 }
1083
1084 /* See if we should include an archive element. This version is used
1085 when we want to automatically collect constructors based on the
1086 symbol name, as collect2 does. */
1087
1088 static boolean
1089 generic_link_check_archive_element_collect (abfd, info, pneeded)
1090 bfd *abfd;
1091 struct bfd_link_info *info;
1092 boolean *pneeded;
1093 {
1094 return generic_link_check_archive_element (abfd, info, pneeded, true);
1095 }
1096
1097 /* See if we should include an archive element. Optionally collect
1098 constructors. */
1099
1100 static boolean
1101 generic_link_check_archive_element (abfd, info, pneeded, collect)
1102 bfd *abfd;
1103 struct bfd_link_info *info;
1104 boolean *pneeded;
1105 boolean collect;
1106 {
1107 asymbol **pp, **ppend;
1108
1109 *pneeded = false;
1110
1111 if (! generic_link_read_symbols (abfd))
1112 return false;
1113
1114 pp = _bfd_generic_link_get_symbols (abfd);
1115 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1116 for (; pp < ppend; pp++)
1117 {
1118 asymbol *p;
1119 struct bfd_link_hash_entry *h;
1120
1121 p = *pp;
1122
1123 /* We are only interested in globally visible symbols. */
1124 if (! bfd_is_com_section (p->section)
1125 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1126 continue;
1127
1128 /* We are only interested if we know something about this
1129 symbol, and it is undefined or common. An undefined weak
1130 symbol (type bfd_link_hash_undefweak) is not considered to be
1131 a reference when pulling files out of an archive. See the
1132 SVR4 ABI, p. 4-27. */
1133 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
1134 false, true);
1135 if (h == (struct bfd_link_hash_entry *) NULL
1136 || (h->type != bfd_link_hash_undefined
1137 && h->type != bfd_link_hash_common))
1138 continue;
1139
1140 /* P is a symbol we are looking for. */
1141
1142 if (! bfd_is_com_section (p->section))
1143 {
1144 bfd_size_type symcount;
1145 asymbol **symbols;
1146
1147 /* This object file defines this symbol, so pull it in. */
1148 if (! (*info->callbacks->add_archive_element) (info, abfd,
1149 bfd_asymbol_name (p)))
1150 return false;
1151 symcount = _bfd_generic_link_get_symcount (abfd);
1152 symbols = _bfd_generic_link_get_symbols (abfd);
1153 if (! generic_link_add_symbol_list (abfd, info, symcount,
1154 symbols, collect))
1155 return false;
1156 *pneeded = true;
1157 return true;
1158 }
1159
1160 /* P is a common symbol. */
1161
1162 if (h->type == bfd_link_hash_undefined)
1163 {
1164 bfd *symbfd;
1165 bfd_vma size;
1166 unsigned int power;
1167
1168 symbfd = h->u.undef.abfd;
1169 if (symbfd == (bfd *) NULL)
1170 {
1171 /* This symbol was created as undefined from outside
1172 BFD. We assume that we should link in the object
1173 file. This is for the -u option in the linker. */
1174 if (! (*info->callbacks->add_archive_element)
1175 (info, abfd, bfd_asymbol_name (p)))
1176 return false;
1177 *pneeded = true;
1178 return true;
1179 }
1180
1181 /* Turn the symbol into a common symbol but do not link in
1182 the object file. This is how a.out works. Object
1183 formats that require different semantics must implement
1184 this function differently. This symbol is already on the
1185 undefs list. We add the section to a common section
1186 attached to symbfd to ensure that it is in a BFD which
1187 will be linked in. */
1188 h->type = bfd_link_hash_common;
1189 h->u.c.p =
1190 ((struct bfd_link_hash_common_entry *)
1191 bfd_hash_allocate (&info->hash->table,
1192 sizeof (struct bfd_link_hash_common_entry)));
1193 if (h->u.c.p == NULL)
1194 return false;
1195
1196 size = bfd_asymbol_value (p);
1197 h->u.c.size = size;
1198
1199 power = bfd_log2 (size);
1200 if (power > 4)
1201 power = 4;
1202 h->u.c.p->alignment_power = power;
1203
1204 if (p->section == bfd_com_section_ptr)
1205 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1206 else
1207 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1208 p->section->name);
1209 h->u.c.p->section->flags = SEC_ALLOC;
1210 }
1211 else
1212 {
1213 /* Adjust the size of the common symbol if necessary. This
1214 is how a.out works. Object formats that require
1215 different semantics must implement this function
1216 differently. */
1217 if (bfd_asymbol_value (p) > h->u.c.size)
1218 h->u.c.size = bfd_asymbol_value (p);
1219 }
1220 }
1221
1222 /* This archive element is not needed. */
1223 return true;
1224 }
1225
1226 /* Add the symbols from an object file to the global hash table. ABFD
1227 is the object file. INFO is the linker information. SYMBOL_COUNT
1228 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1229 is true if constructors should be automatically collected by name
1230 as is done by collect2. */
1231
1232 static boolean
1233 generic_link_add_symbol_list (abfd, info, symbol_count, symbols, collect)
1234 bfd *abfd;
1235 struct bfd_link_info *info;
1236 bfd_size_type symbol_count;
1237 asymbol **symbols;
1238 boolean collect;
1239 {
1240 asymbol **pp, **ppend;
1241
1242 pp = symbols;
1243 ppend = symbols + symbol_count;
1244 for (; pp < ppend; pp++)
1245 {
1246 asymbol *p;
1247
1248 p = *pp;
1249
1250 if ((p->flags & (BSF_INDIRECT
1251 | BSF_WARNING
1252 | BSF_GLOBAL
1253 | BSF_CONSTRUCTOR
1254 | BSF_WEAK)) != 0
1255 || bfd_is_und_section (bfd_get_section (p))
1256 || bfd_is_com_section (bfd_get_section (p))
1257 || bfd_is_ind_section (bfd_get_section (p)))
1258 {
1259 const char *name;
1260 const char *string;
1261 struct generic_link_hash_entry *h;
1262
1263 name = bfd_asymbol_name (p);
1264 if (((p->flags & BSF_INDIRECT) != 0
1265 || bfd_is_ind_section (p->section))
1266 && pp + 1 < ppend)
1267 {
1268 pp++;
1269 string = bfd_asymbol_name (*pp);
1270 }
1271 else if ((p->flags & BSF_WARNING) != 0
1272 && pp + 1 < ppend)
1273 {
1274 /* The name of P is actually the warning string, and the
1275 next symbol is the one to warn about. */
1276 string = name;
1277 pp++;
1278 name = bfd_asymbol_name (*pp);
1279 }
1280 else
1281 string = NULL;
1282
1283 h = NULL;
1284 if (! (_bfd_generic_link_add_one_symbol
1285 (info, abfd, name, p->flags, bfd_get_section (p),
1286 p->value, string, false, collect,
1287 (struct bfd_link_hash_entry **) &h)))
1288 return false;
1289
1290 /* If this is a constructor symbol, and the linker didn't do
1291 anything with it, then we want to just pass the symbol
1292 through to the output file. This will happen when
1293 linking with -r. */
1294 if ((p->flags & BSF_CONSTRUCTOR) != 0
1295 && (h == NULL || h->root.type == bfd_link_hash_new))
1296 {
1297 p->udata.p = NULL;
1298 continue;
1299 }
1300
1301 /* Save the BFD symbol so that we don't lose any backend
1302 specific information that may be attached to it. We only
1303 want this one if it gives more information than the
1304 existing one; we don't want to replace a defined symbol
1305 with an undefined one. This routine may be called with a
1306 hash table other than the generic hash table, so we only
1307 do this if we are certain that the hash table is a
1308 generic one. */
1309 if (info->hash->creator == abfd->xvec)
1310 {
1311 if (h->sym == (asymbol *) NULL
1312 || (! bfd_is_und_section (bfd_get_section (p))
1313 && (! bfd_is_com_section (bfd_get_section (p))
1314 || bfd_is_und_section (bfd_get_section (h->sym)))))
1315 {
1316 h->sym = p;
1317 /* BSF_OLD_COMMON is a hack to support COFF reloc
1318 reading, and it should go away when the COFF
1319 linker is switched to the new version. */
1320 if (bfd_is_com_section (bfd_get_section (p)))
1321 p->flags |= BSF_OLD_COMMON;
1322 }
1323 }
1324
1325 /* Store a back pointer from the symbol to the hash
1326 table entry for the benefit of relaxation code until
1327 it gets rewritten to not use asymbol structures.
1328 Setting this is also used to check whether these
1329 symbols were set up by the generic linker. */
1330 p->udata.p = (PTR) h;
1331 }
1332 }
1333
1334 return true;
1335 }
1336 \f
1337 /* We use a state table to deal with adding symbols from an object
1338 file. The first index into the state table describes the symbol
1339 from the object file. The second index into the state table is the
1340 type of the symbol in the hash table. */
1341
1342 /* The symbol from the object file is turned into one of these row
1343 values. */
1344
1345 enum link_row
1346 {
1347 UNDEF_ROW, /* Undefined. */
1348 UNDEFW_ROW, /* Weak undefined. */
1349 DEF_ROW, /* Defined. */
1350 DEFW_ROW, /* Weak defined. */
1351 COMMON_ROW, /* Common. */
1352 INDR_ROW, /* Indirect. */
1353 WARN_ROW, /* Warning. */
1354 SET_ROW /* Member of set. */
1355 };
1356
1357 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1358 #undef FAIL
1359
1360 /* The actions to take in the state table. */
1361
1362 enum link_action
1363 {
1364 FAIL, /* Abort. */
1365 UND, /* Mark symbol undefined. */
1366 WEAK, /* Mark symbol weak undefined. */
1367 DEF, /* Mark symbol defined. */
1368 DEFW, /* Mark symbol weak defined. */
1369 COM, /* Mark symbol common. */
1370 REF, /* Mark defined symbol referenced. */
1371 CREF, /* Possibly warn about common reference to defined symbol. */
1372 CDEF, /* Define existing common symbol. */
1373 NOACT, /* No action. */
1374 BIG, /* Mark symbol common using largest size. */
1375 MDEF, /* Multiple definition error. */
1376 MIND, /* Multiple indirect symbols. */
1377 IND, /* Make indirect symbol. */
1378 CIND, /* Make indirect symbol from existing common symbol. */
1379 SET, /* Add value to set. */
1380 MWARN, /* Make warning symbol. */
1381 WARN, /* Issue warning. */
1382 CWARN, /* Warn if referenced, else MWARN. */
1383 CYCLE, /* Repeat with symbol pointed to. */
1384 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1385 WARNC /* Issue warning and then CYCLE. */
1386 };
1387
1388 /* The state table itself. The first index is a link_row and the
1389 second index is a bfd_link_hash_type. */
1390
1391 static const enum link_action link_action[8][8] =
1392 {
1393 /* current\prev new undef undefw def defw com indr warn */
1394 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1395 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1396 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1397 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1398 /* COMMON_ROW */ {COM, COM, COM, CREF, CREF, BIG, REFC, WARNC },
1399 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1400 /* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, MWARN },
1401 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1402 };
1403
1404 /* Most of the entries in the LINK_ACTION table are straightforward,
1405 but a few are somewhat subtle.
1406
1407 A reference to an indirect symbol (UNDEF_ROW/indr or
1408 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1409 symbol and to the symbol the indirect symbol points to.
1410
1411 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1412 causes the warning to be issued.
1413
1414 A common definition of an indirect symbol (COMMON_ROW/indr) is
1415 treated as a multiple definition error. Likewise for an indirect
1416 definition of a common symbol (INDR_ROW/com).
1417
1418 An indirect definition of a warning (INDR_ROW/warn) does not cause
1419 the warning to be issued.
1420
1421 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1422 warning is created for the symbol the indirect symbol points to.
1423
1424 Adding an entry to a set does not count as a reference to a set,
1425 and no warning is issued (SET_ROW/warn). */
1426
1427 /* Return the BFD in which a hash entry has been defined, if known. */
1428
1429 static bfd *
1430 hash_entry_bfd (h)
1431 struct bfd_link_hash_entry *h;
1432 {
1433 while (h->type == bfd_link_hash_warning)
1434 h = h->u.i.link;
1435 switch (h->type)
1436 {
1437 default:
1438 return NULL;
1439 case bfd_link_hash_undefined:
1440 case bfd_link_hash_undefweak:
1441 return h->u.undef.abfd;
1442 case bfd_link_hash_defined:
1443 case bfd_link_hash_defweak:
1444 return h->u.def.section->owner;
1445 case bfd_link_hash_common:
1446 return h->u.c.p->section->owner;
1447 }
1448 /*NOTREACHED*/
1449 }
1450
1451 /* Add a symbol to the global hash table.
1452 ABFD is the BFD the symbol comes from.
1453 NAME is the name of the symbol.
1454 FLAGS is the BSF_* bits associated with the symbol.
1455 SECTION is the section in which the symbol is defined; this may be
1456 bfd_und_section_ptr or bfd_com_section_ptr.
1457 VALUE is the value of the symbol, relative to the section.
1458 STRING is used for either an indirect symbol, in which case it is
1459 the name of the symbol to indirect to, or a warning symbol, in
1460 which case it is the warning string.
1461 COPY is true if NAME or STRING must be copied into locally
1462 allocated memory if they need to be saved.
1463 COLLECT is true if we should automatically collect gcc constructor
1464 or destructor names as collect2 does.
1465 HASHP, if not NULL, is a place to store the created hash table
1466 entry; if *HASHP is not NULL, the caller has already looked up
1467 the hash table entry, and stored it in *HASHP. */
1468
1469 boolean
1470 _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, value,
1471 string, copy, collect, hashp)
1472 struct bfd_link_info *info;
1473 bfd *abfd;
1474 const char *name;
1475 flagword flags;
1476 asection *section;
1477 bfd_vma value;
1478 const char *string;
1479 boolean copy;
1480 boolean collect;
1481 struct bfd_link_hash_entry **hashp;
1482 {
1483 enum link_row row;
1484 struct bfd_link_hash_entry *h;
1485 boolean cycle;
1486
1487 if (bfd_is_ind_section (section)
1488 || (flags & BSF_INDIRECT) != 0)
1489 row = INDR_ROW;
1490 else if ((flags & BSF_WARNING) != 0)
1491 row = WARN_ROW;
1492 else if ((flags & BSF_CONSTRUCTOR) != 0)
1493 row = SET_ROW;
1494 else if (bfd_is_und_section (section))
1495 {
1496 if ((flags & BSF_WEAK) != 0)
1497 row = UNDEFW_ROW;
1498 else
1499 row = UNDEF_ROW;
1500 }
1501 else if ((flags & BSF_WEAK) != 0)
1502 row = DEFW_ROW;
1503 else if (bfd_is_com_section (section))
1504 row = COMMON_ROW;
1505 else
1506 row = DEF_ROW;
1507
1508 if (hashp != NULL && *hashp != NULL)
1509 h = *hashp;
1510 else
1511 {
1512 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1513 h = bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false);
1514 else
1515 h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1516 if (h == NULL)
1517 {
1518 if (hashp != NULL)
1519 *hashp = NULL;
1520 return false;
1521 }
1522 }
1523
1524 if (info->notice_all
1525 || (info->notice_hash != (struct bfd_hash_table *) NULL
1526 && (bfd_hash_lookup (info->notice_hash, name, false, false)
1527 != (struct bfd_hash_entry *) NULL)))
1528 {
1529 if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1530 value))
1531 return false;
1532 }
1533
1534 if (hashp != (struct bfd_link_hash_entry **) NULL)
1535 *hashp = h;
1536
1537 do
1538 {
1539 enum link_action action;
1540
1541 cycle = false;
1542 action = link_action[(int) row][(int) h->type];
1543 switch (action)
1544 {
1545 case FAIL:
1546 abort ();
1547
1548 case NOACT:
1549 /* Do nothing. */
1550 break;
1551
1552 case UND:
1553 /* Make a new undefined symbol. */
1554 h->type = bfd_link_hash_undefined;
1555 h->u.undef.abfd = abfd;
1556 bfd_link_add_undef (info->hash, h);
1557 break;
1558
1559 case WEAK:
1560 /* Make a new weak undefined symbol. */
1561 h->type = bfd_link_hash_undefweak;
1562 h->u.undef.abfd = abfd;
1563 break;
1564
1565 case CDEF:
1566 /* We have found a definition for a symbol which was
1567 previously common. */
1568 BFD_ASSERT (h->type == bfd_link_hash_common);
1569 if (! ((*info->callbacks->multiple_common)
1570 (info, h->root.string,
1571 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1572 abfd, bfd_link_hash_defined, (bfd_vma) 0)))
1573 return false;
1574 /* Fall through. */
1575 case DEF:
1576 case DEFW:
1577 {
1578 enum bfd_link_hash_type oldtype;
1579
1580 /* Define a symbol. */
1581 oldtype = h->type;
1582 if (action == DEFW)
1583 h->type = bfd_link_hash_defweak;
1584 else
1585 h->type = bfd_link_hash_defined;
1586 h->u.def.section = section;
1587 h->u.def.value = value;
1588
1589 /* If we have been asked to, we act like collect2 and
1590 identify all functions that might be global
1591 constructors and destructors and pass them up in a
1592 callback. We only do this for certain object file
1593 types, since many object file types can handle this
1594 automatically. */
1595 if (collect && name[0] == '_')
1596 {
1597 const char *s;
1598
1599 /* A constructor or destructor name starts like this:
1600 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1601 the second are the same character (we accept any
1602 character there, in case a new object file format
1603 comes along with even worse naming restrictions). */
1604
1605 #define CONS_PREFIX "GLOBAL_"
1606 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1607
1608 s = name + 1;
1609 while (*s == '_')
1610 ++s;
1611 if (s[0] == 'G'
1612 && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1613 {
1614 char c;
1615
1616 c = s[CONS_PREFIX_LEN + 1];
1617 if ((c == 'I' || c == 'D')
1618 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1619 {
1620 /* If this is a definition of a symbol which
1621 was previously weakly defined, we are in
1622 trouble. We have already added a
1623 constructor entry for the weak defined
1624 symbol, and now we are trying to add one
1625 for the new symbol. Fortunately, this case
1626 should never arise in practice. */
1627 if (oldtype == bfd_link_hash_defweak)
1628 abort ();
1629
1630 if (! ((*info->callbacks->constructor)
1631 (info,
1632 c == 'I' ? true : false,
1633 h->root.string, abfd, section, value)))
1634 return false;
1635 }
1636 }
1637 }
1638 }
1639
1640 break;
1641
1642 case COM:
1643 /* We have found a common definition for a symbol. */
1644 if (h->type == bfd_link_hash_new)
1645 bfd_link_add_undef (info->hash, h);
1646 h->type = bfd_link_hash_common;
1647 h->u.c.p =
1648 ((struct bfd_link_hash_common_entry *)
1649 bfd_hash_allocate (&info->hash->table,
1650 sizeof (struct bfd_link_hash_common_entry)));
1651 if (h->u.c.p == NULL)
1652 return false;
1653
1654 h->u.c.size = value;
1655
1656 /* Select a default alignment based on the size. This may
1657 be overridden by the caller. */
1658 {
1659 unsigned int power;
1660
1661 power = bfd_log2 (value);
1662 if (power > 4)
1663 power = 4;
1664 h->u.c.p->alignment_power = power;
1665 }
1666
1667 /* The section of a common symbol is only used if the common
1668 symbol is actually allocated. It basically provides a
1669 hook for the linker script to decide which output section
1670 the common symbols should be put in. In most cases, the
1671 section of a common symbol will be bfd_com_section_ptr,
1672 the code here will choose a common symbol section named
1673 "COMMON", and the linker script will contain *(COMMON) in
1674 the appropriate place. A few targets use separate common
1675 sections for small symbols, and they require special
1676 handling. */
1677 if (section == bfd_com_section_ptr)
1678 {
1679 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1680 h->u.c.p->section->flags = SEC_ALLOC;
1681 }
1682 else if (section->owner != abfd)
1683 {
1684 h->u.c.p->section = bfd_make_section_old_way (abfd,
1685 section->name);
1686 h->u.c.p->section->flags = SEC_ALLOC;
1687 }
1688 else
1689 h->u.c.p->section = section;
1690 break;
1691
1692 case REF:
1693 /* A reference to a defined symbol. */
1694 if (h->next == NULL && info->hash->undefs_tail != h)
1695 h->next = h;
1696 break;
1697
1698 case BIG:
1699 /* We have found a common definition for a symbol which
1700 already had a common definition. Use the maximum of the
1701 two sizes. */
1702 BFD_ASSERT (h->type == bfd_link_hash_common);
1703 if (! ((*info->callbacks->multiple_common)
1704 (info, h->root.string,
1705 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1706 abfd, bfd_link_hash_common, value)))
1707 return false;
1708 if (value > h->u.c.size)
1709 {
1710 unsigned int power;
1711
1712 h->u.c.size = value;
1713
1714 /* Select a default alignment based on the size. This may
1715 be overridden by the caller. */
1716 power = bfd_log2 (value);
1717 if (power > 4)
1718 power = 4;
1719 h->u.c.p->alignment_power = power;
1720 }
1721 break;
1722
1723 case CREF:
1724 {
1725 bfd *obfd;
1726
1727 /* We have found a common definition for a symbol which
1728 was already defined. FIXME: It would nice if we could
1729 report the BFD which defined an indirect symbol, but we
1730 don't have anywhere to store the information. */
1731 if (h->type == bfd_link_hash_defined
1732 || h->type == bfd_link_hash_defweak)
1733 obfd = h->u.def.section->owner;
1734 else
1735 obfd = NULL;
1736 if (! ((*info->callbacks->multiple_common)
1737 (info, h->root.string, obfd, h->type, (bfd_vma) 0,
1738 abfd, bfd_link_hash_common, value)))
1739 return false;
1740 }
1741 break;
1742
1743 case MIND:
1744 /* Multiple indirect symbols. This is OK if they both point
1745 to the same symbol. */
1746 if (strcmp (h->u.i.link->root.string, string) == 0)
1747 break;
1748 /* Fall through. */
1749 case MDEF:
1750 /* Handle a multiple definition. */
1751 {
1752 asection *msec = NULL;
1753 bfd_vma mval = 0;
1754
1755 switch (h->type)
1756 {
1757 case bfd_link_hash_defined:
1758 msec = h->u.def.section;
1759 mval = h->u.def.value;
1760 break;
1761 case bfd_link_hash_indirect:
1762 msec = bfd_ind_section_ptr;
1763 mval = 0;
1764 break;
1765 default:
1766 abort ();
1767 }
1768
1769 /* Ignore a redefinition of an absolute symbol to the same
1770 value; it's harmless. */
1771 if (h->type == bfd_link_hash_defined
1772 && bfd_is_abs_section (msec)
1773 && bfd_is_abs_section (section)
1774 && value == mval)
1775 break;
1776
1777 if (! ((*info->callbacks->multiple_definition)
1778 (info, h->root.string, msec->owner, msec, mval, abfd,
1779 section, value)))
1780 return false;
1781 }
1782 break;
1783
1784 case CIND:
1785 /* Create an indirect symbol from an existing common symbol. */
1786 BFD_ASSERT (h->type == bfd_link_hash_common);
1787 if (! ((*info->callbacks->multiple_common)
1788 (info, h->root.string,
1789 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1790 abfd, bfd_link_hash_indirect, (bfd_vma) 0)))
1791 return false;
1792 /* Fall through. */
1793 case IND:
1794 /* Create an indirect symbol. */
1795 {
1796 struct bfd_link_hash_entry *inh;
1797
1798 /* STRING is the name of the symbol we want to indirect
1799 to. */
1800 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, true,
1801 copy, false);
1802 if (inh == (struct bfd_link_hash_entry *) NULL)
1803 return false;
1804 if (inh->type == bfd_link_hash_new)
1805 {
1806 inh->type = bfd_link_hash_undefined;
1807 inh->u.undef.abfd = abfd;
1808 bfd_link_add_undef (info->hash, inh);
1809 }
1810
1811 /* If the indirect symbol has been referenced, we need to
1812 push the reference down to the symbol we are
1813 referencing. */
1814 if (h->type != bfd_link_hash_new)
1815 {
1816 row = UNDEF_ROW;
1817 cycle = true;
1818 }
1819
1820 h->type = bfd_link_hash_indirect;
1821 h->u.i.link = inh;
1822 }
1823 break;
1824
1825 case SET:
1826 /* Add an entry to a set. */
1827 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1828 abfd, section, value))
1829 return false;
1830 break;
1831
1832 case WARNC:
1833 /* Issue a warning and cycle. */
1834 if (h->u.i.warning != NULL)
1835 {
1836 if (! (*info->callbacks->warning) (info, h->u.i.warning,
1837 h->root.string, abfd,
1838 (asection *) NULL,
1839 (bfd_vma) 0))
1840 return false;
1841 /* Only issue a warning once. */
1842 h->u.i.warning = NULL;
1843 }
1844 /* Fall through. */
1845 case CYCLE:
1846 /* Try again with the referenced symbol. */
1847 h = h->u.i.link;
1848 cycle = true;
1849 break;
1850
1851 case REFC:
1852 /* A reference to an indirect symbol. */
1853 if (h->next == NULL && info->hash->undefs_tail != h)
1854 h->next = h;
1855 h = h->u.i.link;
1856 cycle = true;
1857 break;
1858
1859 case WARN:
1860 /* Issue a warning. */
1861 if (! (*info->callbacks->warning) (info, string, h->root.string,
1862 hash_entry_bfd (h),
1863 (asection *) NULL, (bfd_vma) 0))
1864 return false;
1865 break;
1866
1867 case CWARN:
1868 /* Warn if this symbol has been referenced already,
1869 otherwise add a warning. A symbol has been referenced if
1870 the next field is not NULL, or it is the tail of the
1871 undefined symbol list. The REF case above helps to
1872 ensure this. */
1873 if (h->next != NULL || info->hash->undefs_tail == h)
1874 {
1875 if (! (*info->callbacks->warning) (info, string, h->root.string,
1876 hash_entry_bfd (h),
1877 (asection *) NULL,
1878 (bfd_vma) 0))
1879 return false;
1880 break;
1881 }
1882 /* Fall through. */
1883 case MWARN:
1884 /* Make a warning symbol. */
1885 {
1886 struct bfd_link_hash_entry *sub;
1887
1888 /* STRING is the warning to give. */
1889 sub = ((struct bfd_link_hash_entry *)
1890 ((*info->hash->table.newfunc)
1891 ((struct bfd_hash_entry *) NULL, &info->hash->table,
1892 h->root.string)));
1893 if (sub == NULL)
1894 return false;
1895 *sub = *h;
1896 sub->type = bfd_link_hash_warning;
1897 sub->u.i.link = h;
1898 if (! copy)
1899 sub->u.i.warning = string;
1900 else
1901 {
1902 char *w;
1903
1904 w = bfd_hash_allocate (&info->hash->table,
1905 strlen (string) + 1);
1906 if (w == NULL)
1907 return false;
1908 strcpy (w, string);
1909 sub->u.i.warning = w;
1910 }
1911
1912 bfd_hash_replace (&info->hash->table,
1913 (struct bfd_hash_entry *) h,
1914 (struct bfd_hash_entry *) sub);
1915 if (hashp != NULL)
1916 *hashp = sub;
1917 }
1918 break;
1919 }
1920 }
1921 while (cycle);
1922
1923 return true;
1924 }
1925 \f
1926 /* Generic final link routine. */
1927
1928 boolean
1929 _bfd_generic_final_link (abfd, info)
1930 bfd *abfd;
1931 struct bfd_link_info *info;
1932 {
1933 bfd *sub;
1934 asection *o;
1935 struct bfd_link_order *p;
1936 size_t outsymalloc;
1937 struct generic_write_global_symbol_info wginfo;
1938
1939 bfd_get_outsymbols (abfd) = (asymbol **) NULL;
1940 bfd_get_symcount (abfd) = 0;
1941 outsymalloc = 0;
1942
1943 /* Mark all sections which will be included in the output file. */
1944 for (o = abfd->sections; o != NULL; o = o->next)
1945 for (p = o->link_order_head; p != NULL; p = p->next)
1946 if (p->type == bfd_indirect_link_order)
1947 p->u.indirect.section->linker_mark = true;
1948
1949 /* Build the output symbol table. */
1950 for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
1951 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1952 return false;
1953
1954 /* Accumulate the global symbols. */
1955 wginfo.info = info;
1956 wginfo.output_bfd = abfd;
1957 wginfo.psymalloc = &outsymalloc;
1958 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1959 _bfd_generic_link_write_global_symbol,
1960 (PTR) &wginfo);
1961
1962 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1963 shouldn't really need one, since we have SYMCOUNT, but some old
1964 code still expects one. */
1965 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1966 return false;
1967
1968 if (info->relocateable)
1969 {
1970 /* Allocate space for the output relocs for each section. */
1971 for (o = abfd->sections;
1972 o != (asection *) NULL;
1973 o = o->next)
1974 {
1975 o->reloc_count = 0;
1976 for (p = o->link_order_head;
1977 p != (struct bfd_link_order *) NULL;
1978 p = p->next)
1979 {
1980 if (p->type == bfd_section_reloc_link_order
1981 || p->type == bfd_symbol_reloc_link_order)
1982 ++o->reloc_count;
1983 else if (p->type == bfd_indirect_link_order)
1984 {
1985 asection *input_section;
1986 bfd *input_bfd;
1987 long relsize;
1988 arelent **relocs;
1989 asymbol **symbols;
1990 long reloc_count;
1991
1992 input_section = p->u.indirect.section;
1993 input_bfd = input_section->owner;
1994 relsize = bfd_get_reloc_upper_bound (input_bfd,
1995 input_section);
1996 if (relsize < 0)
1997 return false;
1998 relocs = (arelent **) bfd_malloc ((size_t) relsize);
1999 if (!relocs && relsize != 0)
2000 return false;
2001 symbols = _bfd_generic_link_get_symbols (input_bfd);
2002 reloc_count = bfd_canonicalize_reloc (input_bfd,
2003 input_section,
2004 relocs,
2005 symbols);
2006 if (reloc_count < 0)
2007 return false;
2008 BFD_ASSERT ((unsigned long) reloc_count
2009 == input_section->reloc_count);
2010 o->reloc_count += reloc_count;
2011 free (relocs);
2012 }
2013 }
2014 if (o->reloc_count > 0)
2015 {
2016 o->orelocation = ((arelent **)
2017 bfd_alloc (abfd,
2018 (o->reloc_count
2019 * sizeof (arelent *))));
2020 if (!o->orelocation)
2021 return false;
2022 o->flags |= SEC_RELOC;
2023 /* Reset the count so that it can be used as an index
2024 when putting in the output relocs. */
2025 o->reloc_count = 0;
2026 }
2027 }
2028 }
2029
2030 /* Handle all the link order information for the sections. */
2031 for (o = abfd->sections;
2032 o != (asection *) NULL;
2033 o = o->next)
2034 {
2035 for (p = o->link_order_head;
2036 p != (struct bfd_link_order *) NULL;
2037 p = p->next)
2038 {
2039 switch (p->type)
2040 {
2041 case bfd_section_reloc_link_order:
2042 case bfd_symbol_reloc_link_order:
2043 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2044 return false;
2045 break;
2046 case bfd_indirect_link_order:
2047 if (! default_indirect_link_order (abfd, info, o, p, true))
2048 return false;
2049 break;
2050 default:
2051 if (! _bfd_default_link_order (abfd, info, o, p))
2052 return false;
2053 break;
2054 }
2055 }
2056 }
2057
2058 return true;
2059 }
2060
2061 /* Add an output symbol to the output BFD. */
2062
2063 static boolean
2064 generic_add_output_symbol (output_bfd, psymalloc, sym)
2065 bfd *output_bfd;
2066 size_t *psymalloc;
2067 asymbol *sym;
2068 {
2069 if (bfd_get_symcount (output_bfd) >= *psymalloc)
2070 {
2071 asymbol **newsyms;
2072
2073 if (*psymalloc == 0)
2074 *psymalloc = 124;
2075 else
2076 *psymalloc *= 2;
2077 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd),
2078 *psymalloc * sizeof (asymbol *));
2079 if (newsyms == (asymbol **) NULL)
2080 return false;
2081 bfd_get_outsymbols (output_bfd) = newsyms;
2082 }
2083
2084 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2085 if (sym != NULL)
2086 ++ bfd_get_symcount (output_bfd);
2087
2088 return true;
2089 }
2090
2091 /* Handle the symbols for an input BFD. */
2092
2093 boolean
2094 _bfd_generic_link_output_symbols (output_bfd, input_bfd, info, psymalloc)
2095 bfd *output_bfd;
2096 bfd *input_bfd;
2097 struct bfd_link_info *info;
2098 size_t *psymalloc;
2099 {
2100 asymbol **sym_ptr;
2101 asymbol **sym_end;
2102
2103 if (! generic_link_read_symbols (input_bfd))
2104 return false;
2105
2106 /* Create a filename symbol if we are supposed to. */
2107 if (info->create_object_symbols_section != (asection *) NULL)
2108 {
2109 asection *sec;
2110
2111 for (sec = input_bfd->sections;
2112 sec != (asection *) NULL;
2113 sec = sec->next)
2114 {
2115 if (sec->output_section == info->create_object_symbols_section)
2116 {
2117 asymbol *newsym;
2118
2119 newsym = bfd_make_empty_symbol (input_bfd);
2120 if (!newsym)
2121 return false;
2122 newsym->name = input_bfd->filename;
2123 newsym->value = 0;
2124 newsym->flags = BSF_LOCAL | BSF_FILE;
2125 newsym->section = sec;
2126
2127 if (! generic_add_output_symbol (output_bfd, psymalloc,
2128 newsym))
2129 return false;
2130
2131 break;
2132 }
2133 }
2134 }
2135
2136 /* Adjust the values of the globally visible symbols, and write out
2137 local symbols. */
2138 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2139 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2140 for (; sym_ptr < sym_end; sym_ptr++)
2141 {
2142 asymbol *sym;
2143 struct generic_link_hash_entry *h;
2144 boolean output;
2145
2146 h = (struct generic_link_hash_entry *) NULL;
2147 sym = *sym_ptr;
2148 if ((sym->flags & (BSF_INDIRECT
2149 | BSF_WARNING
2150 | BSF_GLOBAL
2151 | BSF_CONSTRUCTOR
2152 | BSF_WEAK)) != 0
2153 || bfd_is_und_section (bfd_get_section (sym))
2154 || bfd_is_com_section (bfd_get_section (sym))
2155 || bfd_is_ind_section (bfd_get_section (sym)))
2156 {
2157 if (sym->udata.p != NULL)
2158 h = (struct generic_link_hash_entry *) sym->udata.p;
2159 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2160 {
2161 /* This case normally means that the main linker code
2162 deliberately ignored this constructor symbol. We
2163 should just pass it through. This will screw up if
2164 the constructor symbol is from a different,
2165 non-generic, object file format, but the case will
2166 only arise when linking with -r, which will probably
2167 fail anyhow, since there will be no way to represent
2168 the relocs in the output format being used. */
2169 h = NULL;
2170 }
2171 else if (bfd_is_und_section (bfd_get_section (sym)))
2172 h = ((struct generic_link_hash_entry *)
2173 bfd_wrapped_link_hash_lookup (output_bfd, info,
2174 bfd_asymbol_name (sym),
2175 false, false, true));
2176 else
2177 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2178 bfd_asymbol_name (sym),
2179 false, false, true);
2180
2181 if (h != (struct generic_link_hash_entry *) NULL)
2182 {
2183 /* Force all references to this symbol to point to
2184 the same area in memory. It is possible that
2185 this routine will be called with a hash table
2186 other than a generic hash table, so we double
2187 check that. */
2188 if (info->hash->creator == input_bfd->xvec)
2189 {
2190 if (h->sym != (asymbol *) NULL)
2191 *sym_ptr = sym = h->sym;
2192 }
2193
2194 switch (h->root.type)
2195 {
2196 default:
2197 case bfd_link_hash_new:
2198 abort ();
2199 case bfd_link_hash_undefined:
2200 break;
2201 case bfd_link_hash_undefweak:
2202 sym->flags |= BSF_WEAK;
2203 break;
2204 case bfd_link_hash_indirect:
2205 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2206 /* fall through */
2207 case bfd_link_hash_defined:
2208 sym->flags |= BSF_GLOBAL;
2209 sym->flags &=~ BSF_CONSTRUCTOR;
2210 sym->value = h->root.u.def.value;
2211 sym->section = h->root.u.def.section;
2212 break;
2213 case bfd_link_hash_defweak:
2214 sym->flags |= BSF_WEAK;
2215 sym->flags &=~ BSF_CONSTRUCTOR;
2216 sym->value = h->root.u.def.value;
2217 sym->section = h->root.u.def.section;
2218 break;
2219 case bfd_link_hash_common:
2220 sym->value = h->root.u.c.size;
2221 sym->flags |= BSF_GLOBAL;
2222 if (! bfd_is_com_section (sym->section))
2223 {
2224 BFD_ASSERT (bfd_is_und_section (sym->section));
2225 sym->section = bfd_com_section_ptr;
2226 }
2227 /* We do not set the section of the symbol to
2228 h->root.u.c.p->section. That value was saved so
2229 that we would know where to allocate the symbol
2230 if it was defined. In this case the type is
2231 still bfd_link_hash_common, so we did not define
2232 it, so we do not want to use that section. */
2233 break;
2234 }
2235 }
2236 }
2237
2238 /* This switch is straight from the old code in
2239 write_file_locals in ldsym.c. */
2240 if (info->strip == strip_all
2241 || (info->strip == strip_some
2242 && (bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2243 false, false)
2244 == (struct bfd_hash_entry *) NULL)))
2245 output = false;
2246 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2247 {
2248 /* If this symbol is marked as occurring now, rather
2249 than at the end, output it now. This is used for
2250 COFF C_EXT FCN symbols. FIXME: There must be a
2251 better way. */
2252 if (bfd_asymbol_bfd (sym) == input_bfd
2253 && (sym->flags & BSF_NOT_AT_END) != 0)
2254 output = true;
2255 else
2256 output = false;
2257 }
2258 else if (bfd_is_ind_section (sym->section))
2259 output = false;
2260 else if ((sym->flags & BSF_DEBUGGING) != 0)
2261 {
2262 if (info->strip == strip_none)
2263 output = true;
2264 else
2265 output = false;
2266 }
2267 else if (bfd_is_und_section (sym->section)
2268 || bfd_is_com_section (sym->section))
2269 output = false;
2270 else if ((sym->flags & BSF_LOCAL) != 0)
2271 {
2272 if ((sym->flags & BSF_WARNING) != 0)
2273 output = false;
2274 else
2275 {
2276 switch (info->discard)
2277 {
2278 default:
2279 case discard_all:
2280 output = false;
2281 break;
2282 case discard_l:
2283 if (bfd_is_local_label (input_bfd, sym))
2284 output = false;
2285 else
2286 output = true;
2287 break;
2288 case discard_none:
2289 output = true;
2290 break;
2291 }
2292 }
2293 }
2294 else if ((sym->flags & BSF_CONSTRUCTOR))
2295 {
2296 if (info->strip != strip_all)
2297 output = true;
2298 else
2299 output = false;
2300 }
2301 else
2302 abort ();
2303
2304 /* If this symbol is in a section which is not being included
2305 in the output file, then we don't want to output the symbol.
2306
2307 Gross. .bss and similar sections won't have the linker_mark
2308 field set. */
2309 if ((sym->section->flags & SEC_HAS_CONTENTS) != 0
2310 && sym->section->linker_mark == false)
2311 output = false;
2312
2313 if (output)
2314 {
2315 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2316 return false;
2317 if (h != (struct generic_link_hash_entry *) NULL)
2318 h->written = true;
2319 }
2320 }
2321
2322 return true;
2323 }
2324
2325 /* Set the section and value of a generic BFD symbol based on a linker
2326 hash table entry. */
2327
2328 static void
2329 set_symbol_from_hash (sym, h)
2330 asymbol *sym;
2331 struct bfd_link_hash_entry *h;
2332 {
2333 switch (h->type)
2334 {
2335 default:
2336 abort ();
2337 break;
2338 case bfd_link_hash_new:
2339 /* This can happen when a constructor symbol is seen but we are
2340 not building constructors. */
2341 if (sym->section != NULL)
2342 {
2343 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2344 }
2345 else
2346 {
2347 sym->flags |= BSF_CONSTRUCTOR;
2348 sym->section = bfd_abs_section_ptr;
2349 sym->value = 0;
2350 }
2351 break;
2352 case bfd_link_hash_undefined:
2353 sym->section = bfd_und_section_ptr;
2354 sym->value = 0;
2355 break;
2356 case bfd_link_hash_undefweak:
2357 sym->section = bfd_und_section_ptr;
2358 sym->value = 0;
2359 sym->flags |= BSF_WEAK;
2360 break;
2361 case bfd_link_hash_defined:
2362 sym->section = h->u.def.section;
2363 sym->value = h->u.def.value;
2364 break;
2365 case bfd_link_hash_defweak:
2366 sym->flags |= BSF_WEAK;
2367 sym->section = h->u.def.section;
2368 sym->value = h->u.def.value;
2369 break;
2370 case bfd_link_hash_common:
2371 sym->value = h->u.c.size;
2372 if (sym->section == NULL)
2373 sym->section = bfd_com_section_ptr;
2374 else if (! bfd_is_com_section (sym->section))
2375 {
2376 BFD_ASSERT (bfd_is_und_section (sym->section));
2377 sym->section = bfd_com_section_ptr;
2378 }
2379 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2380 break;
2381 case bfd_link_hash_indirect:
2382 case bfd_link_hash_warning:
2383 /* FIXME: What should we do here? */
2384 break;
2385 }
2386 }
2387
2388 /* Write out a global symbol, if it hasn't already been written out.
2389 This is called for each symbol in the hash table. */
2390
2391 boolean
2392 _bfd_generic_link_write_global_symbol (h, data)
2393 struct generic_link_hash_entry *h;
2394 PTR data;
2395 {
2396 struct generic_write_global_symbol_info *wginfo =
2397 (struct generic_write_global_symbol_info *) data;
2398 asymbol *sym;
2399
2400 if (h->written)
2401 return true;
2402
2403 h->written = true;
2404
2405 if (wginfo->info->strip == strip_all
2406 || (wginfo->info->strip == strip_some
2407 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2408 false, false) == NULL))
2409 return true;
2410
2411 if (h->sym != (asymbol *) NULL)
2412 sym = h->sym;
2413 else
2414 {
2415 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2416 if (!sym)
2417 return false;
2418 sym->name = h->root.root.string;
2419 sym->flags = 0;
2420 }
2421
2422 set_symbol_from_hash (sym, &h->root);
2423
2424 sym->flags |= BSF_GLOBAL;
2425
2426 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2427 sym))
2428 {
2429 /* FIXME: No way to return failure. */
2430 abort ();
2431 }
2432
2433 return true;
2434 }
2435
2436 /* Create a relocation. */
2437
2438 boolean
2439 _bfd_generic_reloc_link_order (abfd, info, sec, link_order)
2440 bfd *abfd;
2441 struct bfd_link_info *info;
2442 asection *sec;
2443 struct bfd_link_order *link_order;
2444 {
2445 arelent *r;
2446
2447 if (! info->relocateable)
2448 abort ();
2449 if (sec->orelocation == (arelent **) NULL)
2450 abort ();
2451
2452 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2453 if (r == (arelent *) NULL)
2454 return false;
2455
2456 r->address = link_order->offset;
2457 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2458 if (r->howto == 0)
2459 {
2460 bfd_set_error (bfd_error_bad_value);
2461 return false;
2462 }
2463
2464 /* Get the symbol to use for the relocation. */
2465 if (link_order->type == bfd_section_reloc_link_order)
2466 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2467 else
2468 {
2469 struct generic_link_hash_entry *h;
2470
2471 h = ((struct generic_link_hash_entry *)
2472 bfd_wrapped_link_hash_lookup (abfd, info,
2473 link_order->u.reloc.p->u.name,
2474 false, false, true));
2475 if (h == (struct generic_link_hash_entry *) NULL
2476 || ! h->written)
2477 {
2478 if (! ((*info->callbacks->unattached_reloc)
2479 (info, link_order->u.reloc.p->u.name,
2480 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2481 return false;
2482 bfd_set_error (bfd_error_bad_value);
2483 return false;
2484 }
2485 r->sym_ptr_ptr = &h->sym;
2486 }
2487
2488 /* If this is an inplace reloc, write the addend to the object file.
2489 Otherwise, store it in the reloc addend. */
2490 if (! r->howto->partial_inplace)
2491 r->addend = link_order->u.reloc.p->addend;
2492 else
2493 {
2494 bfd_size_type size;
2495 bfd_reloc_status_type rstat;
2496 bfd_byte *buf;
2497 boolean ok;
2498
2499 size = bfd_get_reloc_size (r->howto);
2500 buf = (bfd_byte *) bfd_zmalloc (size);
2501 if (buf == (bfd_byte *) NULL)
2502 return false;
2503 rstat = _bfd_relocate_contents (r->howto, abfd,
2504 link_order->u.reloc.p->addend, buf);
2505 switch (rstat)
2506 {
2507 case bfd_reloc_ok:
2508 break;
2509 default:
2510 case bfd_reloc_outofrange:
2511 abort ();
2512 case bfd_reloc_overflow:
2513 if (! ((*info->callbacks->reloc_overflow)
2514 (info,
2515 (link_order->type == bfd_section_reloc_link_order
2516 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2517 : link_order->u.reloc.p->u.name),
2518 r->howto->name, link_order->u.reloc.p->addend,
2519 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2520 {
2521 free (buf);
2522 return false;
2523 }
2524 break;
2525 }
2526 ok = bfd_set_section_contents (abfd, sec, (PTR) buf,
2527 (file_ptr)
2528 (link_order->offset *
2529 bfd_octets_per_byte (abfd)), size);
2530 free (buf);
2531 if (! ok)
2532 return false;
2533
2534 r->addend = 0;
2535 }
2536
2537 sec->orelocation[sec->reloc_count] = r;
2538 ++sec->reloc_count;
2539
2540 return true;
2541 }
2542 \f
2543 /* Allocate a new link_order for a section. */
2544
2545 struct bfd_link_order *
2546 bfd_new_link_order (abfd, section)
2547 bfd *abfd;
2548 asection *section;
2549 {
2550 struct bfd_link_order *new;
2551
2552 new = ((struct bfd_link_order *)
2553 bfd_alloc (abfd, sizeof (struct bfd_link_order)));
2554 if (!new)
2555 return NULL;
2556
2557 new->type = bfd_undefined_link_order;
2558 new->offset = 0;
2559 new->size = 0;
2560 new->next = (struct bfd_link_order *) NULL;
2561
2562 if (section->link_order_tail != (struct bfd_link_order *) NULL)
2563 section->link_order_tail->next = new;
2564 else
2565 section->link_order_head = new;
2566 section->link_order_tail = new;
2567
2568 return new;
2569 }
2570
2571 /* Default link order processing routine. Note that we can not handle
2572 the reloc_link_order types here, since they depend upon the details
2573 of how the particular backends generates relocs. */
2574
2575 boolean
2576 _bfd_default_link_order (abfd, info, sec, link_order)
2577 bfd *abfd;
2578 struct bfd_link_info *info;
2579 asection *sec;
2580 struct bfd_link_order *link_order;
2581 {
2582 switch (link_order->type)
2583 {
2584 case bfd_undefined_link_order:
2585 case bfd_section_reloc_link_order:
2586 case bfd_symbol_reloc_link_order:
2587 default:
2588 abort ();
2589 case bfd_indirect_link_order:
2590 return default_indirect_link_order (abfd, info, sec, link_order,
2591 false);
2592 case bfd_fill_link_order:
2593 return default_fill_link_order (abfd, info, sec, link_order);
2594 case bfd_data_link_order:
2595 return bfd_set_section_contents (abfd, sec,
2596 (PTR) link_order->u.data.contents,
2597 (file_ptr)
2598 (link_order->offset *
2599 bfd_octets_per_byte (abfd)),
2600 link_order->size);
2601 }
2602 }
2603
2604 /* Default routine to handle a bfd_fill_link_order. */
2605
2606 static boolean
2607 default_fill_link_order (abfd, info, sec, link_order)
2608 bfd *abfd;
2609 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2610 asection *sec;
2611 struct bfd_link_order *link_order;
2612 {
2613 size_t size;
2614 char *space;
2615 size_t i;
2616 int fill;
2617 boolean result;
2618
2619 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2620
2621 size = (size_t) link_order->size;
2622 space = (char *) bfd_malloc (size);
2623 if (space == NULL && size != 0)
2624 return false;
2625
2626 fill = link_order->u.fill.value;
2627 for (i = 0; i < size; i += 2)
2628 space[i] = fill >> 8;
2629 for (i = 1; i < size; i += 2)
2630 space[i] = fill;
2631 result = bfd_set_section_contents (abfd, sec, space,
2632 (file_ptr)
2633 (link_order->offset *
2634 bfd_octets_per_byte (abfd)),
2635 link_order->size);
2636 free (space);
2637 return result;
2638 }
2639
2640 /* Default routine to handle a bfd_indirect_link_order. */
2641
2642 static boolean
2643 default_indirect_link_order (output_bfd, info, output_section, link_order,
2644 generic_linker)
2645 bfd *output_bfd;
2646 struct bfd_link_info *info;
2647 asection *output_section;
2648 struct bfd_link_order *link_order;
2649 boolean generic_linker;
2650 {
2651 asection *input_section;
2652 bfd *input_bfd;
2653 bfd_byte *contents = NULL;
2654 bfd_byte *new_contents;
2655
2656 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2657
2658 if (link_order->size == 0)
2659 return true;
2660
2661 input_section = link_order->u.indirect.section;
2662 input_bfd = input_section->owner;
2663
2664 BFD_ASSERT (input_section->output_section == output_section);
2665 BFD_ASSERT (input_section->output_offset == link_order->offset);
2666 BFD_ASSERT (input_section->_cooked_size == link_order->size);
2667
2668 if (info->relocateable
2669 && input_section->reloc_count > 0
2670 && output_section->orelocation == (arelent **) NULL)
2671 {
2672 /* Space has not been allocated for the output relocations.
2673 This can happen when we are called by a specific backend
2674 because somebody is attempting to link together different
2675 types of object files. Handling this case correctly is
2676 difficult, and sometimes impossible. */
2677 (*_bfd_error_handler)
2678 (_("Attempt to do relocateable link with %s input and %s output"),
2679 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2680 bfd_set_error (bfd_error_wrong_format);
2681 return false;
2682 }
2683
2684 if (! generic_linker)
2685 {
2686 asymbol **sympp;
2687 asymbol **symppend;
2688
2689 /* Get the canonical symbols. The generic linker will always
2690 have retrieved them by this point, but we are being called by
2691 a specific linker, presumably because we are linking
2692 different types of object files together. */
2693 if (! generic_link_read_symbols (input_bfd))
2694 return false;
2695
2696 /* Since we have been called by a specific linker, rather than
2697 the generic linker, the values of the symbols will not be
2698 right. They will be the values as seen in the input file,
2699 not the values of the final link. We need to fix them up
2700 before we can relocate the section. */
2701 sympp = _bfd_generic_link_get_symbols (input_bfd);
2702 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2703 for (; sympp < symppend; sympp++)
2704 {
2705 asymbol *sym;
2706 struct bfd_link_hash_entry *h;
2707
2708 sym = *sympp;
2709
2710 if ((sym->flags & (BSF_INDIRECT
2711 | BSF_WARNING
2712 | BSF_GLOBAL
2713 | BSF_CONSTRUCTOR
2714 | BSF_WEAK)) != 0
2715 || bfd_is_und_section (bfd_get_section (sym))
2716 || bfd_is_com_section (bfd_get_section (sym))
2717 || bfd_is_ind_section (bfd_get_section (sym)))
2718 {
2719 /* sym->udata may have been set by
2720 generic_link_add_symbol_list. */
2721 if (sym->udata.p != NULL)
2722 h = (struct bfd_link_hash_entry *) sym->udata.p;
2723 else if (bfd_is_und_section (bfd_get_section (sym)))
2724 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2725 bfd_asymbol_name (sym),
2726 false, false, true);
2727 else
2728 h = bfd_link_hash_lookup (info->hash,
2729 bfd_asymbol_name (sym),
2730 false, false, true);
2731 if (h != NULL)
2732 set_symbol_from_hash (sym, h);
2733 }
2734 }
2735 }
2736
2737 /* Get and relocate the section contents. */
2738 contents = ((bfd_byte *)
2739 bfd_malloc (bfd_section_size (input_bfd, input_section)));
2740 if (contents == NULL && bfd_section_size (input_bfd, input_section) != 0)
2741 goto error_return;
2742 new_contents = (bfd_get_relocated_section_contents
2743 (output_bfd, info, link_order, contents, info->relocateable,
2744 _bfd_generic_link_get_symbols (input_bfd)));
2745 if (!new_contents)
2746 goto error_return;
2747
2748 /* Output the section contents. */
2749 if (! bfd_set_section_contents (output_bfd, output_section,
2750 (PTR) new_contents,
2751 (file_ptr)
2752 (link_order->offset *
2753 bfd_octets_per_byte (output_bfd)),
2754 link_order->size))
2755 goto error_return;
2756
2757 if (contents != NULL)
2758 free (contents);
2759 return true;
2760
2761 error_return:
2762 if (contents != NULL)
2763 free (contents);
2764 return false;
2765 }
2766
2767 /* A little routine to count the number of relocs in a link_order
2768 list. */
2769
2770 unsigned int
2771 _bfd_count_link_order_relocs (link_order)
2772 struct bfd_link_order *link_order;
2773 {
2774 register unsigned int c;
2775 register struct bfd_link_order *l;
2776
2777 c = 0;
2778 for (l = link_order; l != (struct bfd_link_order *) NULL; l = l->next)
2779 {
2780 if (l->type == bfd_section_reloc_link_order
2781 || l->type == bfd_symbol_reloc_link_order)
2782 ++c;
2783 }
2784
2785 return c;
2786 }
2787
2788 /*
2789 FUNCTION
2790 bfd_link_split_section
2791
2792 SYNOPSIS
2793 boolean bfd_link_split_section(bfd *abfd, asection *sec);
2794
2795 DESCRIPTION
2796 Return nonzero if @var{sec} should be split during a
2797 reloceatable or final link.
2798
2799 .#define bfd_link_split_section(abfd, sec) \
2800 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2801 .
2802
2803 */
2804
2805 boolean
2806 _bfd_generic_link_split_section (abfd, sec)
2807 bfd *abfd ATTRIBUTE_UNUSED;
2808 asection *sec ATTRIBUTE_UNUSED;
2809 {
2810 return false;
2811 }
This page took 0.087479 seconds and 4 git commands to generate.