Unwrap symbols for debug information
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
228
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function. This
233 function builds a hash table from the archive symbol table and
234 looks through the list of undefined symbols to see which
235 elements should be included.
236 <<_bfd_generic_link_add_archive_symbols>> is passed a function
237 to call to make the final decision about adding an archive
238 element to the link and to do the actual work of adding the
239 symbols to the linker hash table.
240
241 The function passed to
242 <<_bfd_generic_link_add_archive_symbols>> must read the
243 symbols of the archive element and decide whether the archive
244 element should be included in the link. If the element is to
245 be included, the <<add_archive_element>> linker callback
246 routine must be called with the element as an argument, and
247 the element's symbols must be added to the linker hash table
248 just as though the element had itself been passed to the
249 <<_bfd_link_add_symbols>> function. The <<add_archive_element>>
250 callback has the option to indicate that it would like to
251 replace the element archive with a substitute BFD, in which
252 case it is the symbols of that substitute BFD that must be
253 added to the linker hash table instead.
254
255 When the a.out <<_bfd_link_add_symbols>> function receives an
256 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
257 passing <<aout_link_check_archive_element>> as the function
258 argument. <<aout_link_check_archive_element>> calls
259 <<aout_link_check_ar_symbols>>. If the latter decides to add
260 the element (an element is only added if it provides a real,
261 non-common, definition for a previously undefined or common
262 symbol) it calls the <<add_archive_element>> callback and then
263 <<aout_link_check_archive_element>> calls
264 <<aout_link_add_symbols>> to actually add the symbols to the
265 linker hash table - possibly those of a substitute BFD, if the
266 <<add_archive_element>> callback avails itself of that option.
267
268 The ECOFF back end is unusual in that it does not normally
269 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
270 archives already contain a hash table of symbols. The ECOFF
271 back end searches the archive itself to avoid the overhead of
272 creating a new hash table.
273
274 INODE
275 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
276 SUBSECTION
277 Performing the final link
278
279 @cindex _bfd_link_final_link in target vector
280 @cindex target vector (_bfd_final_link)
281 When all the input files have been processed, the linker calls
282 the <<_bfd_final_link>> entry point of the output BFD. This
283 routine is responsible for producing the final output file,
284 which has several aspects. It must relocate the contents of
285 the input sections and copy the data into the output sections.
286 It must build an output symbol table including any local
287 symbols from the input files and the global symbols from the
288 hash table. When producing relocatable output, it must
289 modify the input relocs and write them into the output file.
290 There may also be object format dependent work to be done.
291
292 The linker will also call the <<write_object_contents>> entry
293 point when the BFD is closed. The two entry points must work
294 together in order to produce the correct output file.
295
296 The details of how this works are inevitably dependent upon
297 the specific object file format. The a.out
298 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
299
300 @menu
301 @* Information provided by the linker::
302 @* Relocating the section contents::
303 @* Writing the symbol table::
304 @end menu
305
306 INODE
307 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
308 SUBSUBSECTION
309 Information provided by the linker
310
311 Before the linker calls the <<_bfd_final_link>> entry point,
312 it sets up some data structures for the function to use.
313
314 The <<input_bfds>> field of the <<bfd_link_info>> structure
315 will point to a list of all the input files included in the
316 link. These files are linked through the <<link_next>> field
317 of the <<bfd>> structure.
318
319 Each section in the output file will have a list of
320 <<link_order>> structures attached to the <<map_head.link_order>>
321 field (the <<link_order>> structure is defined in
322 <<bfdlink.h>>). These structures describe how to create the
323 contents of the output section in terms of the contents of
324 various input sections, fill constants, and, eventually, other
325 types of information. They also describe relocs that must be
326 created by the BFD backend, but do not correspond to any input
327 file; this is used to support -Ur, which builds constructors
328 while generating a relocatable object file.
329
330 INODE
331 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
332 SUBSUBSECTION
333 Relocating the section contents
334
335 The <<_bfd_final_link>> function should look through the
336 <<link_order>> structures attached to each section of the
337 output file. Each <<link_order>> structure should either be
338 handled specially, or it should be passed to the function
339 <<_bfd_default_link_order>> which will do the right thing
340 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
341
342 For efficiency, a <<link_order>> of type
343 <<bfd_indirect_link_order>> whose associated section belongs
344 to a BFD of the same format as the output BFD must be handled
345 specially. This type of <<link_order>> describes part of an
346 output section in terms of a section belonging to one of the
347 input files. The <<_bfd_final_link>> function should read the
348 contents of the section and any associated relocs, apply the
349 relocs to the section contents, and write out the modified
350 section contents. If performing a relocatable link, the
351 relocs themselves must also be modified and written out.
352
353 @findex _bfd_relocate_contents
354 @findex _bfd_final_link_relocate
355 The functions <<_bfd_relocate_contents>> and
356 <<_bfd_final_link_relocate>> provide some general support for
357 performing the actual relocations, notably overflow checking.
358 Their arguments include information about the symbol the
359 relocation is against and a <<reloc_howto_type>> argument
360 which describes the relocation to perform. These functions
361 are defined in <<reloc.c>>.
362
363 The a.out function which handles reading, relocating, and
364 writing section contents is <<aout_link_input_section>>. The
365 actual relocation is done in <<aout_link_input_section_std>>
366 and <<aout_link_input_section_ext>>.
367
368 INODE
369 Writing the symbol table, , Relocating the section contents, Performing the Final Link
370 SUBSUBSECTION
371 Writing the symbol table
372
373 The <<_bfd_final_link>> function must gather all the symbols
374 in the input files and write them out. It must also write out
375 all the symbols in the global hash table. This must be
376 controlled by the <<strip>> and <<discard>> fields of the
377 <<bfd_link_info>> structure.
378
379 The local symbols of the input files will not have been
380 entered into the linker hash table. The <<_bfd_final_link>>
381 routine must consider each input file and include the symbols
382 in the output file. It may be convenient to do this when
383 looking through the <<link_order>> structures, or it may be
384 done by stepping through the <<input_bfds>> list.
385
386 The <<_bfd_final_link>> routine must also traverse the global
387 hash table to gather all the externally visible symbols. It
388 is possible that most of the externally visible symbols may be
389 written out when considering the symbols of each input file,
390 but it is still necessary to traverse the hash table since the
391 linker script may have defined some symbols that are not in
392 any of the input files.
393
394 The <<strip>> field of the <<bfd_link_info>> structure
395 controls which symbols are written out. The possible values
396 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
397 then the <<keep_hash>> field of the <<bfd_link_info>>
398 structure is a hash table of symbols to keep; each symbol
399 should be looked up in this hash table, and only symbols which
400 are present should be included in the output file.
401
402 If the <<strip>> field of the <<bfd_link_info>> structure
403 permits local symbols to be written out, the <<discard>> field
404 is used to further controls which local symbols are included
405 in the output file. If the value is <<discard_l>>, then all
406 local symbols which begin with a certain prefix are discarded;
407 this is controlled by the <<bfd_is_local_label_name>> entry point.
408
409 The a.out backend handles symbols by calling
410 <<aout_link_write_symbols>> on each input BFD and then
411 traversing the global hash table with the function
412 <<aout_link_write_other_symbol>>. It builds a string table
413 while writing out the symbols, which is written to the output
414 file at the end of <<NAME(aout,final_link)>>.
415 */
416
417 static bfd_boolean generic_link_add_object_symbols
418 (bfd *, struct bfd_link_info *, bfd_boolean collect);
419 static bfd_boolean generic_link_add_symbols
420 (bfd *, struct bfd_link_info *, bfd_boolean);
421 static bfd_boolean generic_link_check_archive_element_no_collect
422 (bfd *, struct bfd_link_info *, bfd_boolean *);
423 static bfd_boolean generic_link_check_archive_element_collect
424 (bfd *, struct bfd_link_info *, bfd_boolean *);
425 static bfd_boolean generic_link_check_archive_element
426 (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
427 static bfd_boolean generic_link_add_symbol_list
428 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
429 bfd_boolean);
430 static bfd_boolean generic_add_output_symbol
431 (bfd *, size_t *psymalloc, asymbol *);
432 static bfd_boolean default_data_link_order
433 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
434 static bfd_boolean default_indirect_link_order
435 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
436 bfd_boolean);
437
438 /* The link hash table structure is defined in bfdlink.h. It provides
439 a base hash table which the backend specific hash tables are built
440 upon. */
441
442 /* Routine to create an entry in the link hash table. */
443
444 struct bfd_hash_entry *
445 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
446 struct bfd_hash_table *table,
447 const char *string)
448 {
449 /* Allocate the structure if it has not already been allocated by a
450 subclass. */
451 if (entry == NULL)
452 {
453 entry = (struct bfd_hash_entry *)
454 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
455 if (entry == NULL)
456 return entry;
457 }
458
459 /* Call the allocation method of the superclass. */
460 entry = bfd_hash_newfunc (entry, table, string);
461 if (entry)
462 {
463 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
464
465 /* Initialize the local fields. */
466 memset ((char *) &h->root + sizeof (h->root), 0,
467 sizeof (*h) - sizeof (h->root));
468 }
469
470 return entry;
471 }
472
473 /* Initialize a link hash table. The BFD argument is the one
474 responsible for creating this table. */
475
476 bfd_boolean
477 _bfd_link_hash_table_init
478 (struct bfd_link_hash_table *table,
479 bfd *abfd ATTRIBUTE_UNUSED,
480 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
481 struct bfd_hash_table *,
482 const char *),
483 unsigned int entsize)
484 {
485 table->undefs = NULL;
486 table->undefs_tail = NULL;
487 table->type = bfd_link_generic_hash_table;
488
489 return bfd_hash_table_init (&table->table, newfunc, entsize);
490 }
491
492 /* Look up a symbol in a link hash table. If follow is TRUE, we
493 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
494 the real symbol. */
495
496 struct bfd_link_hash_entry *
497 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
498 const char *string,
499 bfd_boolean create,
500 bfd_boolean copy,
501 bfd_boolean follow)
502 {
503 struct bfd_link_hash_entry *ret;
504
505 ret = ((struct bfd_link_hash_entry *)
506 bfd_hash_lookup (&table->table, string, create, copy));
507
508 if (follow && ret != NULL)
509 {
510 while (ret->type == bfd_link_hash_indirect
511 || ret->type == bfd_link_hash_warning)
512 ret = ret->u.i.link;
513 }
514
515 return ret;
516 }
517
518 /* Look up a symbol in the main linker hash table if the symbol might
519 be wrapped. This should only be used for references to an
520 undefined symbol, not for definitions of a symbol. */
521
522 struct bfd_link_hash_entry *
523 bfd_wrapped_link_hash_lookup (bfd *abfd,
524 struct bfd_link_info *info,
525 const char *string,
526 bfd_boolean create,
527 bfd_boolean copy,
528 bfd_boolean follow)
529 {
530 bfd_size_type amt;
531
532 if (info->wrap_hash != NULL)
533 {
534 const char *l;
535 char prefix = '\0';
536
537 l = string;
538 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
539 {
540 prefix = *l;
541 ++l;
542 }
543
544 #undef WRAP
545 #define WRAP "__wrap_"
546
547 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
548 {
549 char *n;
550 struct bfd_link_hash_entry *h;
551
552 /* This symbol is being wrapped. We want to replace all
553 references to SYM with references to __wrap_SYM. */
554
555 amt = strlen (l) + sizeof WRAP + 1;
556 n = (char *) bfd_malloc (amt);
557 if (n == NULL)
558 return NULL;
559
560 n[0] = prefix;
561 n[1] = '\0';
562 strcat (n, WRAP);
563 strcat (n, l);
564 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
565 free (n);
566 return h;
567 }
568
569 #undef REAL
570 #define REAL "__real_"
571
572 if (*l == '_'
573 && CONST_STRNEQ (l, REAL)
574 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
575 FALSE, FALSE) != NULL)
576 {
577 char *n;
578 struct bfd_link_hash_entry *h;
579
580 /* This is a reference to __real_SYM, where SYM is being
581 wrapped. We want to replace all references to __real_SYM
582 with references to SYM. */
583
584 amt = strlen (l + sizeof REAL - 1) + 2;
585 n = (char *) bfd_malloc (amt);
586 if (n == NULL)
587 return NULL;
588
589 n[0] = prefix;
590 n[1] = '\0';
591 strcat (n, l + sizeof REAL - 1);
592 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
593 free (n);
594 return h;
595 }
596
597 #undef REAL
598 }
599
600 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
601 }
602
603 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
604 and the remainder is found in wrap_hash, return the real symbol. */
605
606 struct bfd_link_hash_entry *
607 unwrap_hash_lookup (struct bfd_link_info *info,
608 bfd *input_bfd,
609 struct bfd_link_hash_entry *h)
610 {
611 const char *l = h->root.string;
612
613 if (*l == bfd_get_symbol_leading_char (input_bfd)
614 || *l == info->wrap_char)
615 ++l;
616
617 if (CONST_STRNEQ (l, WRAP))
618 {
619 l += sizeof WRAP - 1;
620
621 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
622 {
623 char save = 0;
624 if (l - sizeof WRAP - 1 != h->root.string)
625 {
626 --l;
627 save = *l;
628 *(char *) l = *h->root.string;
629 }
630 h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
631 if (save)
632 *(char *) l = save;
633 }
634 }
635 return h;
636 }
637 #undef WRAP
638
639 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
640 in the treatment of warning symbols. When warning symbols are
641 created they replace the real symbol, so you don't get to see the
642 real symbol in a bfd_hash_travere. This traversal calls func with
643 the real symbol. */
644
645 void
646 bfd_link_hash_traverse
647 (struct bfd_link_hash_table *htab,
648 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
649 void *info)
650 {
651 unsigned int i;
652
653 htab->table.frozen = 1;
654 for (i = 0; i < htab->table.size; i++)
655 {
656 struct bfd_link_hash_entry *p;
657
658 p = (struct bfd_link_hash_entry *) htab->table.table[i];
659 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
660 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
661 goto out;
662 }
663 out:
664 htab->table.frozen = 0;
665 }
666
667 /* Add a symbol to the linker hash table undefs list. */
668
669 void
670 bfd_link_add_undef (struct bfd_link_hash_table *table,
671 struct bfd_link_hash_entry *h)
672 {
673 BFD_ASSERT (h->u.undef.next == NULL);
674 if (table->undefs_tail != NULL)
675 table->undefs_tail->u.undef.next = h;
676 if (table->undefs == NULL)
677 table->undefs = h;
678 table->undefs_tail = h;
679 }
680
681 /* The undefs list was designed so that in normal use we don't need to
682 remove entries. However, if symbols on the list are changed from
683 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
684 bfd_link_hash_new for some reason, then they must be removed from the
685 list. Failure to do so might result in the linker attempting to add
686 the symbol to the list again at a later stage. */
687
688 void
689 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
690 {
691 struct bfd_link_hash_entry **pun;
692
693 pun = &table->undefs;
694 while (*pun != NULL)
695 {
696 struct bfd_link_hash_entry *h = *pun;
697
698 if (h->type == bfd_link_hash_new
699 || h->type == bfd_link_hash_undefweak)
700 {
701 *pun = h->u.undef.next;
702 h->u.undef.next = NULL;
703 if (h == table->undefs_tail)
704 {
705 if (pun == &table->undefs)
706 table->undefs_tail = NULL;
707 else
708 /* pun points at an u.undef.next field. Go back to
709 the start of the link_hash_entry. */
710 table->undefs_tail = (struct bfd_link_hash_entry *)
711 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
712 break;
713 }
714 }
715 else
716 pun = &h->u.undef.next;
717 }
718 }
719 \f
720 /* Routine to create an entry in a generic link hash table. */
721
722 struct bfd_hash_entry *
723 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
724 struct bfd_hash_table *table,
725 const char *string)
726 {
727 /* Allocate the structure if it has not already been allocated by a
728 subclass. */
729 if (entry == NULL)
730 {
731 entry = (struct bfd_hash_entry *)
732 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
733 if (entry == NULL)
734 return entry;
735 }
736
737 /* Call the allocation method of the superclass. */
738 entry = _bfd_link_hash_newfunc (entry, table, string);
739 if (entry)
740 {
741 struct generic_link_hash_entry *ret;
742
743 /* Set local fields. */
744 ret = (struct generic_link_hash_entry *) entry;
745 ret->written = FALSE;
746 ret->sym = NULL;
747 }
748
749 return entry;
750 }
751
752 /* Create a generic link hash table. */
753
754 struct bfd_link_hash_table *
755 _bfd_generic_link_hash_table_create (bfd *abfd)
756 {
757 struct generic_link_hash_table *ret;
758 bfd_size_type amt = sizeof (struct generic_link_hash_table);
759
760 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
761 if (ret == NULL)
762 return NULL;
763 if (! _bfd_link_hash_table_init (&ret->root, abfd,
764 _bfd_generic_link_hash_newfunc,
765 sizeof (struct generic_link_hash_entry)))
766 {
767 free (ret);
768 return NULL;
769 }
770 return &ret->root;
771 }
772
773 void
774 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
775 {
776 struct generic_link_hash_table *ret
777 = (struct generic_link_hash_table *) hash;
778
779 bfd_hash_table_free (&ret->root.table);
780 free (ret);
781 }
782
783 /* Grab the symbols for an object file when doing a generic link. We
784 store the symbols in the outsymbols field. We need to keep them
785 around for the entire link to ensure that we only read them once.
786 If we read them multiple times, we might wind up with relocs and
787 the hash table pointing to different instances of the symbol
788 structure. */
789
790 bfd_boolean
791 bfd_generic_link_read_symbols (bfd *abfd)
792 {
793 if (bfd_get_outsymbols (abfd) == NULL)
794 {
795 long symsize;
796 long symcount;
797
798 symsize = bfd_get_symtab_upper_bound (abfd);
799 if (symsize < 0)
800 return FALSE;
801 bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
802 symsize);
803 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
804 return FALSE;
805 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
806 if (symcount < 0)
807 return FALSE;
808 bfd_get_symcount (abfd) = symcount;
809 }
810
811 return TRUE;
812 }
813 \f
814 /* Generic function to add symbols to from an object file to the
815 global hash table. This version does not automatically collect
816 constructors by name. */
817
818 bfd_boolean
819 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
820 {
821 return generic_link_add_symbols (abfd, info, FALSE);
822 }
823
824 /* Generic function to add symbols from an object file to the global
825 hash table. This version automatically collects constructors by
826 name, as the collect2 program does. It should be used for any
827 target which does not provide some other mechanism for setting up
828 constructors and destructors; these are approximately those targets
829 for which gcc uses collect2 and do not support stabs. */
830
831 bfd_boolean
832 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
833 {
834 return generic_link_add_symbols (abfd, info, TRUE);
835 }
836
837 /* Indicate that we are only retrieving symbol values from this
838 section. We want the symbols to act as though the values in the
839 file are absolute. */
840
841 void
842 _bfd_generic_link_just_syms (asection *sec,
843 struct bfd_link_info *info ATTRIBUTE_UNUSED)
844 {
845 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
846 sec->output_section = bfd_abs_section_ptr;
847 sec->output_offset = sec->vma;
848 }
849
850 /* Copy the type of a symbol assiciated with a linker hast table entry.
851 Override this so that symbols created in linker scripts get their
852 type from the RHS of the assignment.
853 The default implementation does nothing. */
854 void
855 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
856 struct bfd_link_hash_entry * hdest ATTRIBUTE_UNUSED,
857 struct bfd_link_hash_entry * hsrc ATTRIBUTE_UNUSED)
858 {
859 }
860
861 /* Add symbols from an object file to the global hash table. */
862
863 static bfd_boolean
864 generic_link_add_symbols (bfd *abfd,
865 struct bfd_link_info *info,
866 bfd_boolean collect)
867 {
868 bfd_boolean ret;
869
870 switch (bfd_get_format (abfd))
871 {
872 case bfd_object:
873 ret = generic_link_add_object_symbols (abfd, info, collect);
874 break;
875 case bfd_archive:
876 ret = (_bfd_generic_link_add_archive_symbols
877 (abfd, info,
878 (collect
879 ? generic_link_check_archive_element_collect
880 : generic_link_check_archive_element_no_collect)));
881 break;
882 default:
883 bfd_set_error (bfd_error_wrong_format);
884 ret = FALSE;
885 }
886
887 return ret;
888 }
889
890 /* Add symbols from an object file to the global hash table. */
891
892 static bfd_boolean
893 generic_link_add_object_symbols (bfd *abfd,
894 struct bfd_link_info *info,
895 bfd_boolean collect)
896 {
897 bfd_size_type symcount;
898 struct bfd_symbol **outsyms;
899
900 if (!bfd_generic_link_read_symbols (abfd))
901 return FALSE;
902 symcount = _bfd_generic_link_get_symcount (abfd);
903 outsyms = _bfd_generic_link_get_symbols (abfd);
904 return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
905 }
906 \f
907 /* We build a hash table of all symbols defined in an archive. */
908
909 /* An archive symbol may be defined by multiple archive elements.
910 This linked list is used to hold the elements. */
911
912 struct archive_list
913 {
914 struct archive_list *next;
915 unsigned int indx;
916 };
917
918 /* An entry in an archive hash table. */
919
920 struct archive_hash_entry
921 {
922 struct bfd_hash_entry root;
923 /* Where the symbol is defined. */
924 struct archive_list *defs;
925 };
926
927 /* An archive hash table itself. */
928
929 struct archive_hash_table
930 {
931 struct bfd_hash_table table;
932 };
933
934 /* Create a new entry for an archive hash table. */
935
936 static struct bfd_hash_entry *
937 archive_hash_newfunc (struct bfd_hash_entry *entry,
938 struct bfd_hash_table *table,
939 const char *string)
940 {
941 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
942
943 /* Allocate the structure if it has not already been allocated by a
944 subclass. */
945 if (ret == NULL)
946 ret = (struct archive_hash_entry *)
947 bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
948 if (ret == NULL)
949 return NULL;
950
951 /* Call the allocation method of the superclass. */
952 ret = ((struct archive_hash_entry *)
953 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
954
955 if (ret)
956 {
957 /* Initialize the local fields. */
958 ret->defs = NULL;
959 }
960
961 return &ret->root;
962 }
963
964 /* Initialize an archive hash table. */
965
966 static bfd_boolean
967 archive_hash_table_init
968 (struct archive_hash_table *table,
969 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
970 struct bfd_hash_table *,
971 const char *),
972 unsigned int entsize)
973 {
974 return bfd_hash_table_init (&table->table, newfunc, entsize);
975 }
976
977 /* Look up an entry in an archive hash table. */
978
979 #define archive_hash_lookup(t, string, create, copy) \
980 ((struct archive_hash_entry *) \
981 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
982
983 /* Allocate space in an archive hash table. */
984
985 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
986
987 /* Free an archive hash table. */
988
989 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
990
991 /* Generic function to add symbols from an archive file to the global
992 hash file. This function presumes that the archive symbol table
993 has already been read in (this is normally done by the
994 bfd_check_format entry point). It looks through the undefined and
995 common symbols and searches the archive symbol table for them. If
996 it finds an entry, it includes the associated object file in the
997 link.
998
999 The old linker looked through the archive symbol table for
1000 undefined symbols. We do it the other way around, looking through
1001 undefined symbols for symbols defined in the archive. The
1002 advantage of the newer scheme is that we only have to look through
1003 the list of undefined symbols once, whereas the old method had to
1004 re-search the symbol table each time a new object file was added.
1005
1006 The CHECKFN argument is used to see if an object file should be
1007 included. CHECKFN should set *PNEEDED to TRUE if the object file
1008 should be included, and must also call the bfd_link_info
1009 add_archive_element callback function and handle adding the symbols
1010 to the global hash table. CHECKFN must notice if the callback
1011 indicates a substitute BFD, and arrange to add those symbols instead
1012 if it does so. CHECKFN should only return FALSE if some sort of
1013 error occurs.
1014
1015 For some formats, such as a.out, it is possible to look through an
1016 object file but not actually include it in the link. The
1017 archive_pass field in a BFD is used to avoid checking the symbols
1018 of an object files too many times. When an object is included in
1019 the link, archive_pass is set to -1. If an object is scanned but
1020 not included, archive_pass is set to the pass number. The pass
1021 number is incremented each time a new object file is included. The
1022 pass number is used because when a new object file is included it
1023 may create new undefined symbols which cause a previously examined
1024 object file to be included. */
1025
1026 bfd_boolean
1027 _bfd_generic_link_add_archive_symbols
1028 (bfd *abfd,
1029 struct bfd_link_info *info,
1030 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
1031 {
1032 carsym *arsyms;
1033 carsym *arsym_end;
1034 register carsym *arsym;
1035 int pass;
1036 struct archive_hash_table arsym_hash;
1037 unsigned int indx;
1038 struct bfd_link_hash_entry **pundef;
1039
1040 if (! bfd_has_map (abfd))
1041 {
1042 /* An empty archive is a special case. */
1043 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
1044 return TRUE;
1045 bfd_set_error (bfd_error_no_armap);
1046 return FALSE;
1047 }
1048
1049 arsyms = bfd_ardata (abfd)->symdefs;
1050 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
1051
1052 /* In order to quickly determine whether an symbol is defined in
1053 this archive, we build a hash table of the symbols. */
1054 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
1055 sizeof (struct archive_hash_entry)))
1056 return FALSE;
1057 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
1058 {
1059 struct archive_hash_entry *arh;
1060 struct archive_list *l, **pp;
1061
1062 arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
1063 if (arh == NULL)
1064 goto error_return;
1065 l = ((struct archive_list *)
1066 archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
1067 if (l == NULL)
1068 goto error_return;
1069 l->indx = indx;
1070 for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1071 ;
1072 *pp = l;
1073 l->next = NULL;
1074 }
1075
1076 /* The archive_pass field in the archive itself is used to
1077 initialize PASS, sine we may search the same archive multiple
1078 times. */
1079 pass = abfd->archive_pass + 1;
1080
1081 /* New undefined symbols are added to the end of the list, so we
1082 only need to look through it once. */
1083 pundef = &info->hash->undefs;
1084 while (*pundef != NULL)
1085 {
1086 struct bfd_link_hash_entry *h;
1087 struct archive_hash_entry *arh;
1088 struct archive_list *l;
1089
1090 h = *pundef;
1091
1092 /* When a symbol is defined, it is not necessarily removed from
1093 the list. */
1094 if (h->type != bfd_link_hash_undefined
1095 && h->type != bfd_link_hash_common)
1096 {
1097 /* Remove this entry from the list, for general cleanliness
1098 and because we are going to look through the list again
1099 if we search any more libraries. We can't remove the
1100 entry if it is the tail, because that would lose any
1101 entries we add to the list later on (it would also cause
1102 us to lose track of whether the symbol has been
1103 referenced). */
1104 if (*pundef != info->hash->undefs_tail)
1105 *pundef = (*pundef)->u.undef.next;
1106 else
1107 pundef = &(*pundef)->u.undef.next;
1108 continue;
1109 }
1110
1111 /* Look for this symbol in the archive symbol map. */
1112 arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1113 if (arh == NULL)
1114 {
1115 /* If we haven't found the exact symbol we're looking for,
1116 let's look for its import thunk */
1117 if (info->pei386_auto_import)
1118 {
1119 bfd_size_type amt = strlen (h->root.string) + 10;
1120 char *buf = (char *) bfd_malloc (amt);
1121 if (buf == NULL)
1122 return FALSE;
1123
1124 sprintf (buf, "__imp_%s", h->root.string);
1125 arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1126 free(buf);
1127 }
1128 if (arh == NULL)
1129 {
1130 pundef = &(*pundef)->u.undef.next;
1131 continue;
1132 }
1133 }
1134 /* Look at all the objects which define this symbol. */
1135 for (l = arh->defs; l != NULL; l = l->next)
1136 {
1137 bfd *element;
1138 bfd_boolean needed;
1139
1140 /* If the symbol has gotten defined along the way, quit. */
1141 if (h->type != bfd_link_hash_undefined
1142 && h->type != bfd_link_hash_common)
1143 break;
1144
1145 element = bfd_get_elt_at_index (abfd, l->indx);
1146 if (element == NULL)
1147 goto error_return;
1148
1149 /* If we've already included this element, or if we've
1150 already checked it on this pass, continue. */
1151 if (element->archive_pass == -1
1152 || element->archive_pass == pass)
1153 continue;
1154
1155 /* If we can't figure this element out, just ignore it. */
1156 if (! bfd_check_format (element, bfd_object))
1157 {
1158 element->archive_pass = -1;
1159 continue;
1160 }
1161
1162 /* CHECKFN will see if this element should be included, and
1163 go ahead and include it if appropriate. */
1164 if (! (*checkfn) (element, info, &needed))
1165 goto error_return;
1166
1167 if (! needed)
1168 element->archive_pass = pass;
1169 else
1170 {
1171 element->archive_pass = -1;
1172
1173 /* Increment the pass count to show that we may need to
1174 recheck object files which were already checked. */
1175 ++pass;
1176 }
1177 }
1178
1179 pundef = &(*pundef)->u.undef.next;
1180 }
1181
1182 archive_hash_table_free (&arsym_hash);
1183
1184 /* Save PASS in case we are called again. */
1185 abfd->archive_pass = pass;
1186
1187 return TRUE;
1188
1189 error_return:
1190 archive_hash_table_free (&arsym_hash);
1191 return FALSE;
1192 }
1193 \f
1194 /* See if we should include an archive element. This version is used
1195 when we do not want to automatically collect constructors based on
1196 the symbol name, presumably because we have some other mechanism
1197 for finding them. */
1198
1199 static bfd_boolean
1200 generic_link_check_archive_element_no_collect (
1201 bfd *abfd,
1202 struct bfd_link_info *info,
1203 bfd_boolean *pneeded)
1204 {
1205 return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1206 }
1207
1208 /* See if we should include an archive element. This version is used
1209 when we want to automatically collect constructors based on the
1210 symbol name, as collect2 does. */
1211
1212 static bfd_boolean
1213 generic_link_check_archive_element_collect (bfd *abfd,
1214 struct bfd_link_info *info,
1215 bfd_boolean *pneeded)
1216 {
1217 return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1218 }
1219
1220 /* See if we should include an archive element. Optionally collect
1221 constructors. */
1222
1223 static bfd_boolean
1224 generic_link_check_archive_element (bfd *abfd,
1225 struct bfd_link_info *info,
1226 bfd_boolean *pneeded,
1227 bfd_boolean collect)
1228 {
1229 asymbol **pp, **ppend;
1230
1231 *pneeded = FALSE;
1232
1233 if (!bfd_generic_link_read_symbols (abfd))
1234 return FALSE;
1235
1236 pp = _bfd_generic_link_get_symbols (abfd);
1237 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1238 for (; pp < ppend; pp++)
1239 {
1240 asymbol *p;
1241 struct bfd_link_hash_entry *h;
1242
1243 p = *pp;
1244
1245 /* We are only interested in globally visible symbols. */
1246 if (! bfd_is_com_section (p->section)
1247 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1248 continue;
1249
1250 /* We are only interested if we know something about this
1251 symbol, and it is undefined or common. An undefined weak
1252 symbol (type bfd_link_hash_undefweak) is not considered to be
1253 a reference when pulling files out of an archive. See the
1254 SVR4 ABI, p. 4-27. */
1255 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1256 FALSE, TRUE);
1257 if (h == NULL
1258 || (h->type != bfd_link_hash_undefined
1259 && h->type != bfd_link_hash_common))
1260 continue;
1261
1262 /* P is a symbol we are looking for. */
1263
1264 if (! bfd_is_com_section (p->section))
1265 {
1266 bfd_size_type symcount;
1267 asymbol **symbols;
1268 bfd *oldbfd = abfd;
1269
1270 /* This object file defines this symbol, so pull it in. */
1271 if (!(*info->callbacks
1272 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1273 &abfd))
1274 return FALSE;
1275 /* Potentially, the add_archive_element hook may have set a
1276 substitute BFD for us. */
1277 if (abfd != oldbfd
1278 && !bfd_generic_link_read_symbols (abfd))
1279 return FALSE;
1280 symcount = _bfd_generic_link_get_symcount (abfd);
1281 symbols = _bfd_generic_link_get_symbols (abfd);
1282 if (! generic_link_add_symbol_list (abfd, info, symcount,
1283 symbols, collect))
1284 return FALSE;
1285 *pneeded = TRUE;
1286 return TRUE;
1287 }
1288
1289 /* P is a common symbol. */
1290
1291 if (h->type == bfd_link_hash_undefined)
1292 {
1293 bfd *symbfd;
1294 bfd_vma size;
1295 unsigned int power;
1296
1297 symbfd = h->u.undef.abfd;
1298 if (symbfd == NULL)
1299 {
1300 /* This symbol was created as undefined from outside
1301 BFD. We assume that we should link in the object
1302 file. This is for the -u option in the linker. */
1303 if (!(*info->callbacks
1304 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1305 &abfd))
1306 return FALSE;
1307 /* Potentially, the add_archive_element hook may have set a
1308 substitute BFD for us. But no symbols are going to get
1309 registered by anything we're returning to from here. */
1310 *pneeded = TRUE;
1311 return TRUE;
1312 }
1313
1314 /* Turn the symbol into a common symbol but do not link in
1315 the object file. This is how a.out works. Object
1316 formats that require different semantics must implement
1317 this function differently. This symbol is already on the
1318 undefs list. We add the section to a common section
1319 attached to symbfd to ensure that it is in a BFD which
1320 will be linked in. */
1321 h->type = bfd_link_hash_common;
1322 h->u.c.p = (struct bfd_link_hash_common_entry *)
1323 bfd_hash_allocate (&info->hash->table,
1324 sizeof (struct bfd_link_hash_common_entry));
1325 if (h->u.c.p == NULL)
1326 return FALSE;
1327
1328 size = bfd_asymbol_value (p);
1329 h->u.c.size = size;
1330
1331 power = bfd_log2 (size);
1332 if (power > 4)
1333 power = 4;
1334 h->u.c.p->alignment_power = power;
1335
1336 if (p->section == bfd_com_section_ptr)
1337 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1338 else
1339 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1340 p->section->name);
1341 h->u.c.p->section->flags |= SEC_ALLOC;
1342 }
1343 else
1344 {
1345 /* Adjust the size of the common symbol if necessary. This
1346 is how a.out works. Object formats that require
1347 different semantics must implement this function
1348 differently. */
1349 if (bfd_asymbol_value (p) > h->u.c.size)
1350 h->u.c.size = bfd_asymbol_value (p);
1351 }
1352 }
1353
1354 /* This archive element is not needed. */
1355 return TRUE;
1356 }
1357
1358 /* Add the symbols from an object file to the global hash table. ABFD
1359 is the object file. INFO is the linker information. SYMBOL_COUNT
1360 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1361 is TRUE if constructors should be automatically collected by name
1362 as is done by collect2. */
1363
1364 static bfd_boolean
1365 generic_link_add_symbol_list (bfd *abfd,
1366 struct bfd_link_info *info,
1367 bfd_size_type symbol_count,
1368 asymbol **symbols,
1369 bfd_boolean collect)
1370 {
1371 asymbol **pp, **ppend;
1372
1373 pp = symbols;
1374 ppend = symbols + symbol_count;
1375 for (; pp < ppend; pp++)
1376 {
1377 asymbol *p;
1378
1379 p = *pp;
1380
1381 if ((p->flags & (BSF_INDIRECT
1382 | BSF_WARNING
1383 | BSF_GLOBAL
1384 | BSF_CONSTRUCTOR
1385 | BSF_WEAK)) != 0
1386 || bfd_is_und_section (bfd_get_section (p))
1387 || bfd_is_com_section (bfd_get_section (p))
1388 || bfd_is_ind_section (bfd_get_section (p)))
1389 {
1390 const char *name;
1391 const char *string;
1392 struct generic_link_hash_entry *h;
1393 struct bfd_link_hash_entry *bh;
1394
1395 string = name = bfd_asymbol_name (p);
1396 if (((p->flags & BSF_INDIRECT) != 0
1397 || bfd_is_ind_section (p->section))
1398 && pp + 1 < ppend)
1399 {
1400 pp++;
1401 string = bfd_asymbol_name (*pp);
1402 }
1403 else if ((p->flags & BSF_WARNING) != 0
1404 && pp + 1 < ppend)
1405 {
1406 /* The name of P is actually the warning string, and the
1407 next symbol is the one to warn about. */
1408 pp++;
1409 name = bfd_asymbol_name (*pp);
1410 }
1411
1412 bh = NULL;
1413 if (! (_bfd_generic_link_add_one_symbol
1414 (info, abfd, name, p->flags, bfd_get_section (p),
1415 p->value, string, FALSE, collect, &bh)))
1416 return FALSE;
1417 h = (struct generic_link_hash_entry *) bh;
1418
1419 /* If this is a constructor symbol, and the linker didn't do
1420 anything with it, then we want to just pass the symbol
1421 through to the output file. This will happen when
1422 linking with -r. */
1423 if ((p->flags & BSF_CONSTRUCTOR) != 0
1424 && (h == NULL || h->root.type == bfd_link_hash_new))
1425 {
1426 p->udata.p = NULL;
1427 continue;
1428 }
1429
1430 /* Save the BFD symbol so that we don't lose any backend
1431 specific information that may be attached to it. We only
1432 want this one if it gives more information than the
1433 existing one; we don't want to replace a defined symbol
1434 with an undefined one. This routine may be called with a
1435 hash table other than the generic hash table, so we only
1436 do this if we are certain that the hash table is a
1437 generic one. */
1438 if (info->output_bfd->xvec == abfd->xvec)
1439 {
1440 if (h->sym == NULL
1441 || (! bfd_is_und_section (bfd_get_section (p))
1442 && (! bfd_is_com_section (bfd_get_section (p))
1443 || bfd_is_und_section (bfd_get_section (h->sym)))))
1444 {
1445 h->sym = p;
1446 /* BSF_OLD_COMMON is a hack to support COFF reloc
1447 reading, and it should go away when the COFF
1448 linker is switched to the new version. */
1449 if (bfd_is_com_section (bfd_get_section (p)))
1450 p->flags |= BSF_OLD_COMMON;
1451 }
1452 }
1453
1454 /* Store a back pointer from the symbol to the hash
1455 table entry for the benefit of relaxation code until
1456 it gets rewritten to not use asymbol structures.
1457 Setting this is also used to check whether these
1458 symbols were set up by the generic linker. */
1459 p->udata.p = h;
1460 }
1461 }
1462
1463 return TRUE;
1464 }
1465 \f
1466 /* We use a state table to deal with adding symbols from an object
1467 file. The first index into the state table describes the symbol
1468 from the object file. The second index into the state table is the
1469 type of the symbol in the hash table. */
1470
1471 /* The symbol from the object file is turned into one of these row
1472 values. */
1473
1474 enum link_row
1475 {
1476 UNDEF_ROW, /* Undefined. */
1477 UNDEFW_ROW, /* Weak undefined. */
1478 DEF_ROW, /* Defined. */
1479 DEFW_ROW, /* Weak defined. */
1480 COMMON_ROW, /* Common. */
1481 INDR_ROW, /* Indirect. */
1482 WARN_ROW, /* Warning. */
1483 SET_ROW /* Member of set. */
1484 };
1485
1486 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1487 #undef FAIL
1488
1489 /* The actions to take in the state table. */
1490
1491 enum link_action
1492 {
1493 FAIL, /* Abort. */
1494 UND, /* Mark symbol undefined. */
1495 WEAK, /* Mark symbol weak undefined. */
1496 DEF, /* Mark symbol defined. */
1497 DEFW, /* Mark symbol weak defined. */
1498 COM, /* Mark symbol common. */
1499 REF, /* Mark defined symbol referenced. */
1500 CREF, /* Possibly warn about common reference to defined symbol. */
1501 CDEF, /* Define existing common symbol. */
1502 NOACT, /* No action. */
1503 BIG, /* Mark symbol common using largest size. */
1504 MDEF, /* Multiple definition error. */
1505 MIND, /* Multiple indirect symbols. */
1506 IND, /* Make indirect symbol. */
1507 CIND, /* Make indirect symbol from existing common symbol. */
1508 SET, /* Add value to set. */
1509 MWARN, /* Make warning symbol. */
1510 WARN, /* Issue warning. */
1511 CWARN, /* Warn if referenced, else MWARN. */
1512 CYCLE, /* Repeat with symbol pointed to. */
1513 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1514 WARNC /* Issue warning and then CYCLE. */
1515 };
1516
1517 /* The state table itself. The first index is a link_row and the
1518 second index is a bfd_link_hash_type. */
1519
1520 static const enum link_action link_action[8][8] =
1521 {
1522 /* current\prev new undef undefw def defw com indr warn */
1523 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1524 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1525 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1526 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1527 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1528 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1529 /* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, NOACT },
1530 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1531 };
1532
1533 /* Most of the entries in the LINK_ACTION table are straightforward,
1534 but a few are somewhat subtle.
1535
1536 A reference to an indirect symbol (UNDEF_ROW/indr or
1537 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1538 symbol and to the symbol the indirect symbol points to.
1539
1540 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1541 causes the warning to be issued.
1542
1543 A common definition of an indirect symbol (COMMON_ROW/indr) is
1544 treated as a multiple definition error. Likewise for an indirect
1545 definition of a common symbol (INDR_ROW/com).
1546
1547 An indirect definition of a warning (INDR_ROW/warn) does not cause
1548 the warning to be issued.
1549
1550 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1551 warning is created for the symbol the indirect symbol points to.
1552
1553 Adding an entry to a set does not count as a reference to a set,
1554 and no warning is issued (SET_ROW/warn). */
1555
1556 /* Return the BFD in which a hash entry has been defined, if known. */
1557
1558 static bfd *
1559 hash_entry_bfd (struct bfd_link_hash_entry *h)
1560 {
1561 while (h->type == bfd_link_hash_warning)
1562 h = h->u.i.link;
1563 switch (h->type)
1564 {
1565 default:
1566 return NULL;
1567 case bfd_link_hash_undefined:
1568 case bfd_link_hash_undefweak:
1569 return h->u.undef.abfd;
1570 case bfd_link_hash_defined:
1571 case bfd_link_hash_defweak:
1572 return h->u.def.section->owner;
1573 case bfd_link_hash_common:
1574 return h->u.c.p->section->owner;
1575 }
1576 /*NOTREACHED*/
1577 }
1578
1579 /* Add a symbol to the global hash table.
1580 ABFD is the BFD the symbol comes from.
1581 NAME is the name of the symbol.
1582 FLAGS is the BSF_* bits associated with the symbol.
1583 SECTION is the section in which the symbol is defined; this may be
1584 bfd_und_section_ptr or bfd_com_section_ptr.
1585 VALUE is the value of the symbol, relative to the section.
1586 STRING is used for either an indirect symbol, in which case it is
1587 the name of the symbol to indirect to, or a warning symbol, in
1588 which case it is the warning string.
1589 COPY is TRUE if NAME or STRING must be copied into locally
1590 allocated memory if they need to be saved.
1591 COLLECT is TRUE if we should automatically collect gcc constructor
1592 or destructor names as collect2 does.
1593 HASHP, if not NULL, is a place to store the created hash table
1594 entry; if *HASHP is not NULL, the caller has already looked up
1595 the hash table entry, and stored it in *HASHP. */
1596
1597 bfd_boolean
1598 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1599 bfd *abfd,
1600 const char *name,
1601 flagword flags,
1602 asection *section,
1603 bfd_vma value,
1604 const char *string,
1605 bfd_boolean copy,
1606 bfd_boolean collect,
1607 struct bfd_link_hash_entry **hashp)
1608 {
1609 enum link_row row;
1610 struct bfd_link_hash_entry *h;
1611 bfd_boolean cycle;
1612
1613 BFD_ASSERT (section != NULL);
1614
1615 if (bfd_is_ind_section (section)
1616 || (flags & BSF_INDIRECT) != 0)
1617 row = INDR_ROW;
1618 else if ((flags & BSF_WARNING) != 0)
1619 row = WARN_ROW;
1620 else if ((flags & BSF_CONSTRUCTOR) != 0)
1621 row = SET_ROW;
1622 else if (bfd_is_und_section (section))
1623 {
1624 if ((flags & BSF_WEAK) != 0)
1625 row = UNDEFW_ROW;
1626 else
1627 row = UNDEF_ROW;
1628 }
1629 else if ((flags & BSF_WEAK) != 0)
1630 row = DEFW_ROW;
1631 else if (bfd_is_com_section (section))
1632 row = COMMON_ROW;
1633 else
1634 row = DEF_ROW;
1635
1636 if (hashp != NULL && *hashp != NULL)
1637 h = *hashp;
1638 else
1639 {
1640 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1641 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1642 else
1643 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1644 if (h == NULL)
1645 {
1646 if (hashp != NULL)
1647 *hashp = NULL;
1648 return FALSE;
1649 }
1650 }
1651
1652 if (info->notice_all
1653 || (info->notice_hash != NULL
1654 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1655 {
1656 if (! (*info->callbacks->notice) (info, h,
1657 abfd, section, value, flags, string))
1658 return FALSE;
1659 }
1660
1661 if (hashp != NULL)
1662 *hashp = h;
1663
1664 do
1665 {
1666 enum link_action action;
1667
1668 cycle = FALSE;
1669 action = link_action[(int) row][(int) h->type];
1670 switch (action)
1671 {
1672 case FAIL:
1673 abort ();
1674
1675 case NOACT:
1676 /* Do nothing. */
1677 break;
1678
1679 case UND:
1680 /* Make a new undefined symbol. */
1681 h->type = bfd_link_hash_undefined;
1682 h->u.undef.abfd = abfd;
1683 bfd_link_add_undef (info->hash, h);
1684 break;
1685
1686 case WEAK:
1687 /* Make a new weak undefined symbol. */
1688 h->type = bfd_link_hash_undefweak;
1689 h->u.undef.abfd = abfd;
1690 break;
1691
1692 case CDEF:
1693 /* We have found a definition for a symbol which was
1694 previously common. */
1695 BFD_ASSERT (h->type == bfd_link_hash_common);
1696 if (! ((*info->callbacks->multiple_common)
1697 (info, h, abfd, bfd_link_hash_defined, 0)))
1698 return FALSE;
1699 /* Fall through. */
1700 case DEF:
1701 case DEFW:
1702 {
1703 enum bfd_link_hash_type oldtype;
1704
1705 /* Define a symbol. */
1706 oldtype = h->type;
1707 if (action == DEFW)
1708 h->type = bfd_link_hash_defweak;
1709 else
1710 h->type = bfd_link_hash_defined;
1711 h->u.def.section = section;
1712 h->u.def.value = value;
1713
1714 /* If we have been asked to, we act like collect2 and
1715 identify all functions that might be global
1716 constructors and destructors and pass them up in a
1717 callback. We only do this for certain object file
1718 types, since many object file types can handle this
1719 automatically. */
1720 if (collect && name[0] == '_')
1721 {
1722 const char *s;
1723
1724 /* A constructor or destructor name starts like this:
1725 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1726 the second are the same character (we accept any
1727 character there, in case a new object file format
1728 comes along with even worse naming restrictions). */
1729
1730 #define CONS_PREFIX "GLOBAL_"
1731 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1732
1733 s = name + 1;
1734 while (*s == '_')
1735 ++s;
1736 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1737 {
1738 char c;
1739
1740 c = s[CONS_PREFIX_LEN + 1];
1741 if ((c == 'I' || c == 'D')
1742 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1743 {
1744 /* If this is a definition of a symbol which
1745 was previously weakly defined, we are in
1746 trouble. We have already added a
1747 constructor entry for the weak defined
1748 symbol, and now we are trying to add one
1749 for the new symbol. Fortunately, this case
1750 should never arise in practice. */
1751 if (oldtype == bfd_link_hash_defweak)
1752 abort ();
1753
1754 if (! ((*info->callbacks->constructor)
1755 (info, c == 'I',
1756 h->root.string, abfd, section, value)))
1757 return FALSE;
1758 }
1759 }
1760 }
1761 }
1762
1763 break;
1764
1765 case COM:
1766 /* We have found a common definition for a symbol. */
1767 if (h->type == bfd_link_hash_new)
1768 bfd_link_add_undef (info->hash, h);
1769 h->type = bfd_link_hash_common;
1770 h->u.c.p = (struct bfd_link_hash_common_entry *)
1771 bfd_hash_allocate (&info->hash->table,
1772 sizeof (struct bfd_link_hash_common_entry));
1773 if (h->u.c.p == NULL)
1774 return FALSE;
1775
1776 h->u.c.size = value;
1777
1778 /* Select a default alignment based on the size. This may
1779 be overridden by the caller. */
1780 {
1781 unsigned int power;
1782
1783 power = bfd_log2 (value);
1784 if (power > 4)
1785 power = 4;
1786 h->u.c.p->alignment_power = power;
1787 }
1788
1789 /* The section of a common symbol is only used if the common
1790 symbol is actually allocated. It basically provides a
1791 hook for the linker script to decide which output section
1792 the common symbols should be put in. In most cases, the
1793 section of a common symbol will be bfd_com_section_ptr,
1794 the code here will choose a common symbol section named
1795 "COMMON", and the linker script will contain *(COMMON) in
1796 the appropriate place. A few targets use separate common
1797 sections for small symbols, and they require special
1798 handling. */
1799 if (section == bfd_com_section_ptr)
1800 {
1801 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1802 h->u.c.p->section->flags |= SEC_ALLOC;
1803 }
1804 else if (section->owner != abfd)
1805 {
1806 h->u.c.p->section = bfd_make_section_old_way (abfd,
1807 section->name);
1808 h->u.c.p->section->flags |= SEC_ALLOC;
1809 }
1810 else
1811 h->u.c.p->section = section;
1812 break;
1813
1814 case REF:
1815 /* A reference to a defined symbol. */
1816 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1817 h->u.undef.next = h;
1818 break;
1819
1820 case BIG:
1821 /* We have found a common definition for a symbol which
1822 already had a common definition. Use the maximum of the
1823 two sizes, and use the section required by the larger symbol. */
1824 BFD_ASSERT (h->type == bfd_link_hash_common);
1825 if (! ((*info->callbacks->multiple_common)
1826 (info, h, abfd, bfd_link_hash_common, value)))
1827 return FALSE;
1828 if (value > h->u.c.size)
1829 {
1830 unsigned int power;
1831
1832 h->u.c.size = value;
1833
1834 /* Select a default alignment based on the size. This may
1835 be overridden by the caller. */
1836 power = bfd_log2 (value);
1837 if (power > 4)
1838 power = 4;
1839 h->u.c.p->alignment_power = power;
1840
1841 /* Some systems have special treatment for small commons,
1842 hence we want to select the section used by the larger
1843 symbol. This makes sure the symbol does not go in a
1844 small common section if it is now too large. */
1845 if (section == bfd_com_section_ptr)
1846 {
1847 h->u.c.p->section
1848 = bfd_make_section_old_way (abfd, "COMMON");
1849 h->u.c.p->section->flags |= SEC_ALLOC;
1850 }
1851 else if (section->owner != abfd)
1852 {
1853 h->u.c.p->section
1854 = bfd_make_section_old_way (abfd, section->name);
1855 h->u.c.p->section->flags |= SEC_ALLOC;
1856 }
1857 else
1858 h->u.c.p->section = section;
1859 }
1860 break;
1861
1862 case CREF:
1863 /* We have found a common definition for a symbol which
1864 was already defined. */
1865 if (! ((*info->callbacks->multiple_common)
1866 (info, h, abfd, bfd_link_hash_common, value)))
1867 return FALSE;
1868 break;
1869
1870 case MIND:
1871 /* Multiple indirect symbols. This is OK if they both point
1872 to the same symbol. */
1873 if (strcmp (h->u.i.link->root.string, string) == 0)
1874 break;
1875 /* Fall through. */
1876 case MDEF:
1877 /* Handle a multiple definition. */
1878 if (! ((*info->callbacks->multiple_definition)
1879 (info, h, abfd, section, value)))
1880 return FALSE;
1881 break;
1882
1883 case CIND:
1884 /* Create an indirect symbol from an existing common symbol. */
1885 BFD_ASSERT (h->type == bfd_link_hash_common);
1886 if (! ((*info->callbacks->multiple_common)
1887 (info, h, abfd, bfd_link_hash_indirect, 0)))
1888 return FALSE;
1889 /* Fall through. */
1890 case IND:
1891 /* Create an indirect symbol. */
1892 {
1893 struct bfd_link_hash_entry *inh;
1894
1895 /* STRING is the name of the symbol we want to indirect
1896 to. */
1897 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1898 copy, FALSE);
1899 if (inh == NULL)
1900 return FALSE;
1901 if (inh->type == bfd_link_hash_indirect
1902 && inh->u.i.link == h)
1903 {
1904 (*_bfd_error_handler)
1905 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1906 abfd, name, string);
1907 bfd_set_error (bfd_error_invalid_operation);
1908 return FALSE;
1909 }
1910 if (inh->type == bfd_link_hash_new)
1911 {
1912 inh->type = bfd_link_hash_undefined;
1913 inh->u.undef.abfd = abfd;
1914 bfd_link_add_undef (info->hash, inh);
1915 }
1916
1917 /* If the indirect symbol has been referenced, we need to
1918 push the reference down to the symbol we are
1919 referencing. */
1920 if (h->type != bfd_link_hash_new)
1921 {
1922 row = UNDEF_ROW;
1923 cycle = TRUE;
1924 }
1925
1926 h->type = bfd_link_hash_indirect;
1927 h->u.i.link = inh;
1928 }
1929 break;
1930
1931 case SET:
1932 /* Add an entry to a set. */
1933 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1934 abfd, section, value))
1935 return FALSE;
1936 break;
1937
1938 case WARNC:
1939 /* Issue a warning and cycle. */
1940 if (h->u.i.warning != NULL)
1941 {
1942 if (! (*info->callbacks->warning) (info, h->u.i.warning,
1943 h->root.string, abfd,
1944 NULL, 0))
1945 return FALSE;
1946 /* Only issue a warning once. */
1947 h->u.i.warning = NULL;
1948 }
1949 /* Fall through. */
1950 case CYCLE:
1951 /* Try again with the referenced symbol. */
1952 h = h->u.i.link;
1953 cycle = TRUE;
1954 break;
1955
1956 case REFC:
1957 /* A reference to an indirect symbol. */
1958 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1959 h->u.undef.next = h;
1960 h = h->u.i.link;
1961 cycle = TRUE;
1962 break;
1963
1964 case WARN:
1965 /* Issue a warning. */
1966 if (! (*info->callbacks->warning) (info, string, h->root.string,
1967 hash_entry_bfd (h), NULL, 0))
1968 return FALSE;
1969 break;
1970
1971 case CWARN:
1972 /* Warn if this symbol has been referenced already,
1973 otherwise add a warning. A symbol has been referenced if
1974 the u.undef.next field is not NULL, or it is the tail of the
1975 undefined symbol list. The REF case above helps to
1976 ensure this. */
1977 if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1978 {
1979 if (! (*info->callbacks->warning) (info, string, h->root.string,
1980 hash_entry_bfd (h), NULL, 0))
1981 return FALSE;
1982 break;
1983 }
1984 /* Fall through. */
1985 case MWARN:
1986 /* Make a warning symbol. */
1987 {
1988 struct bfd_link_hash_entry *sub;
1989
1990 /* STRING is the warning to give. */
1991 sub = ((struct bfd_link_hash_entry *)
1992 ((*info->hash->table.newfunc)
1993 (NULL, &info->hash->table, h->root.string)));
1994 if (sub == NULL)
1995 return FALSE;
1996 *sub = *h;
1997 sub->type = bfd_link_hash_warning;
1998 sub->u.i.link = h;
1999 if (! copy)
2000 sub->u.i.warning = string;
2001 else
2002 {
2003 char *w;
2004 size_t len = strlen (string) + 1;
2005
2006 w = (char *) bfd_hash_allocate (&info->hash->table, len);
2007 if (w == NULL)
2008 return FALSE;
2009 memcpy (w, string, len);
2010 sub->u.i.warning = w;
2011 }
2012
2013 bfd_hash_replace (&info->hash->table,
2014 (struct bfd_hash_entry *) h,
2015 (struct bfd_hash_entry *) sub);
2016 if (hashp != NULL)
2017 *hashp = sub;
2018 }
2019 break;
2020 }
2021 }
2022 while (cycle);
2023
2024 return TRUE;
2025 }
2026 \f
2027 /* Generic final link routine. */
2028
2029 bfd_boolean
2030 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
2031 {
2032 bfd *sub;
2033 asection *o;
2034 struct bfd_link_order *p;
2035 size_t outsymalloc;
2036 struct generic_write_global_symbol_info wginfo;
2037
2038 bfd_get_outsymbols (abfd) = NULL;
2039 bfd_get_symcount (abfd) = 0;
2040 outsymalloc = 0;
2041
2042 /* Mark all sections which will be included in the output file. */
2043 for (o = abfd->sections; o != NULL; o = o->next)
2044 for (p = o->map_head.link_order; p != NULL; p = p->next)
2045 if (p->type == bfd_indirect_link_order)
2046 p->u.indirect.section->linker_mark = TRUE;
2047
2048 /* Build the output symbol table. */
2049 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2050 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2051 return FALSE;
2052
2053 /* Accumulate the global symbols. */
2054 wginfo.info = info;
2055 wginfo.output_bfd = abfd;
2056 wginfo.psymalloc = &outsymalloc;
2057 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2058 _bfd_generic_link_write_global_symbol,
2059 &wginfo);
2060
2061 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
2062 shouldn't really need one, since we have SYMCOUNT, but some old
2063 code still expects one. */
2064 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2065 return FALSE;
2066
2067 if (info->relocatable)
2068 {
2069 /* Allocate space for the output relocs for each section. */
2070 for (o = abfd->sections; o != NULL; o = o->next)
2071 {
2072 o->reloc_count = 0;
2073 for (p = o->map_head.link_order; p != NULL; p = p->next)
2074 {
2075 if (p->type == bfd_section_reloc_link_order
2076 || p->type == bfd_symbol_reloc_link_order)
2077 ++o->reloc_count;
2078 else if (p->type == bfd_indirect_link_order)
2079 {
2080 asection *input_section;
2081 bfd *input_bfd;
2082 long relsize;
2083 arelent **relocs;
2084 asymbol **symbols;
2085 long reloc_count;
2086
2087 input_section = p->u.indirect.section;
2088 input_bfd = input_section->owner;
2089 relsize = bfd_get_reloc_upper_bound (input_bfd,
2090 input_section);
2091 if (relsize < 0)
2092 return FALSE;
2093 relocs = (arelent **) bfd_malloc (relsize);
2094 if (!relocs && relsize != 0)
2095 return FALSE;
2096 symbols = _bfd_generic_link_get_symbols (input_bfd);
2097 reloc_count = bfd_canonicalize_reloc (input_bfd,
2098 input_section,
2099 relocs,
2100 symbols);
2101 free (relocs);
2102 if (reloc_count < 0)
2103 return FALSE;
2104 BFD_ASSERT ((unsigned long) reloc_count
2105 == input_section->reloc_count);
2106 o->reloc_count += reloc_count;
2107 }
2108 }
2109 if (o->reloc_count > 0)
2110 {
2111 bfd_size_type amt;
2112
2113 amt = o->reloc_count;
2114 amt *= sizeof (arelent *);
2115 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
2116 if (!o->orelocation)
2117 return FALSE;
2118 o->flags |= SEC_RELOC;
2119 /* Reset the count so that it can be used as an index
2120 when putting in the output relocs. */
2121 o->reloc_count = 0;
2122 }
2123 }
2124 }
2125
2126 /* Handle all the link order information for the sections. */
2127 for (o = abfd->sections; o != NULL; o = o->next)
2128 {
2129 for (p = o->map_head.link_order; p != NULL; p = p->next)
2130 {
2131 switch (p->type)
2132 {
2133 case bfd_section_reloc_link_order:
2134 case bfd_symbol_reloc_link_order:
2135 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2136 return FALSE;
2137 break;
2138 case bfd_indirect_link_order:
2139 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2140 return FALSE;
2141 break;
2142 default:
2143 if (! _bfd_default_link_order (abfd, info, o, p))
2144 return FALSE;
2145 break;
2146 }
2147 }
2148 }
2149
2150 return TRUE;
2151 }
2152
2153 /* Add an output symbol to the output BFD. */
2154
2155 static bfd_boolean
2156 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2157 {
2158 if (bfd_get_symcount (output_bfd) >= *psymalloc)
2159 {
2160 asymbol **newsyms;
2161 bfd_size_type amt;
2162
2163 if (*psymalloc == 0)
2164 *psymalloc = 124;
2165 else
2166 *psymalloc *= 2;
2167 amt = *psymalloc;
2168 amt *= sizeof (asymbol *);
2169 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2170 if (newsyms == NULL)
2171 return FALSE;
2172 bfd_get_outsymbols (output_bfd) = newsyms;
2173 }
2174
2175 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2176 if (sym != NULL)
2177 ++ bfd_get_symcount (output_bfd);
2178
2179 return TRUE;
2180 }
2181
2182 /* Handle the symbols for an input BFD. */
2183
2184 bfd_boolean
2185 _bfd_generic_link_output_symbols (bfd *output_bfd,
2186 bfd *input_bfd,
2187 struct bfd_link_info *info,
2188 size_t *psymalloc)
2189 {
2190 asymbol **sym_ptr;
2191 asymbol **sym_end;
2192
2193 if (!bfd_generic_link_read_symbols (input_bfd))
2194 return FALSE;
2195
2196 /* Create a filename symbol if we are supposed to. */
2197 if (info->create_object_symbols_section != NULL)
2198 {
2199 asection *sec;
2200
2201 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2202 {
2203 if (sec->output_section == info->create_object_symbols_section)
2204 {
2205 asymbol *newsym;
2206
2207 newsym = bfd_make_empty_symbol (input_bfd);
2208 if (!newsym)
2209 return FALSE;
2210 newsym->name = input_bfd->filename;
2211 newsym->value = 0;
2212 newsym->flags = BSF_LOCAL | BSF_FILE;
2213 newsym->section = sec;
2214
2215 if (! generic_add_output_symbol (output_bfd, psymalloc,
2216 newsym))
2217 return FALSE;
2218
2219 break;
2220 }
2221 }
2222 }
2223
2224 /* Adjust the values of the globally visible symbols, and write out
2225 local symbols. */
2226 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2227 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2228 for (; sym_ptr < sym_end; sym_ptr++)
2229 {
2230 asymbol *sym;
2231 struct generic_link_hash_entry *h;
2232 bfd_boolean output;
2233
2234 h = NULL;
2235 sym = *sym_ptr;
2236 if ((sym->flags & (BSF_INDIRECT
2237 | BSF_WARNING
2238 | BSF_GLOBAL
2239 | BSF_CONSTRUCTOR
2240 | BSF_WEAK)) != 0
2241 || bfd_is_und_section (bfd_get_section (sym))
2242 || bfd_is_com_section (bfd_get_section (sym))
2243 || bfd_is_ind_section (bfd_get_section (sym)))
2244 {
2245 if (sym->udata.p != NULL)
2246 h = (struct generic_link_hash_entry *) sym->udata.p;
2247 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2248 {
2249 /* This case normally means that the main linker code
2250 deliberately ignored this constructor symbol. We
2251 should just pass it through. This will screw up if
2252 the constructor symbol is from a different,
2253 non-generic, object file format, but the case will
2254 only arise when linking with -r, which will probably
2255 fail anyhow, since there will be no way to represent
2256 the relocs in the output format being used. */
2257 h = NULL;
2258 }
2259 else if (bfd_is_und_section (bfd_get_section (sym)))
2260 h = ((struct generic_link_hash_entry *)
2261 bfd_wrapped_link_hash_lookup (output_bfd, info,
2262 bfd_asymbol_name (sym),
2263 FALSE, FALSE, TRUE));
2264 else
2265 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2266 bfd_asymbol_name (sym),
2267 FALSE, FALSE, TRUE);
2268
2269 if (h != NULL)
2270 {
2271 /* Force all references to this symbol to point to
2272 the same area in memory. It is possible that
2273 this routine will be called with a hash table
2274 other than a generic hash table, so we double
2275 check that. */
2276 if (info->output_bfd->xvec == input_bfd->xvec)
2277 {
2278 if (h->sym != NULL)
2279 *sym_ptr = sym = h->sym;
2280 }
2281
2282 switch (h->root.type)
2283 {
2284 default:
2285 case bfd_link_hash_new:
2286 abort ();
2287 case bfd_link_hash_undefined:
2288 break;
2289 case bfd_link_hash_undefweak:
2290 sym->flags |= BSF_WEAK;
2291 break;
2292 case bfd_link_hash_indirect:
2293 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2294 /* fall through */
2295 case bfd_link_hash_defined:
2296 sym->flags |= BSF_GLOBAL;
2297 sym->flags &=~ BSF_CONSTRUCTOR;
2298 sym->value = h->root.u.def.value;
2299 sym->section = h->root.u.def.section;
2300 break;
2301 case bfd_link_hash_defweak:
2302 sym->flags |= BSF_WEAK;
2303 sym->flags &=~ BSF_CONSTRUCTOR;
2304 sym->value = h->root.u.def.value;
2305 sym->section = h->root.u.def.section;
2306 break;
2307 case bfd_link_hash_common:
2308 sym->value = h->root.u.c.size;
2309 sym->flags |= BSF_GLOBAL;
2310 if (! bfd_is_com_section (sym->section))
2311 {
2312 BFD_ASSERT (bfd_is_und_section (sym->section));
2313 sym->section = bfd_com_section_ptr;
2314 }
2315 /* We do not set the section of the symbol to
2316 h->root.u.c.p->section. That value was saved so
2317 that we would know where to allocate the symbol
2318 if it was defined. In this case the type is
2319 still bfd_link_hash_common, so we did not define
2320 it, so we do not want to use that section. */
2321 break;
2322 }
2323 }
2324 }
2325
2326 /* This switch is straight from the old code in
2327 write_file_locals in ldsym.c. */
2328 if (info->strip == strip_all
2329 || (info->strip == strip_some
2330 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2331 FALSE, FALSE) == NULL))
2332 output = FALSE;
2333 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2334 {
2335 /* If this symbol is marked as occurring now, rather
2336 than at the end, output it now. This is used for
2337 COFF C_EXT FCN symbols. FIXME: There must be a
2338 better way. */
2339 if (bfd_asymbol_bfd (sym) == input_bfd
2340 && (sym->flags & BSF_NOT_AT_END) != 0)
2341 output = TRUE;
2342 else
2343 output = FALSE;
2344 }
2345 else if (bfd_is_ind_section (sym->section))
2346 output = FALSE;
2347 else if ((sym->flags & BSF_DEBUGGING) != 0)
2348 {
2349 if (info->strip == strip_none)
2350 output = TRUE;
2351 else
2352 output = FALSE;
2353 }
2354 else if (bfd_is_und_section (sym->section)
2355 || bfd_is_com_section (sym->section))
2356 output = FALSE;
2357 else if ((sym->flags & BSF_LOCAL) != 0)
2358 {
2359 if ((sym->flags & BSF_WARNING) != 0)
2360 output = FALSE;
2361 else
2362 {
2363 switch (info->discard)
2364 {
2365 default:
2366 case discard_all:
2367 output = FALSE;
2368 break;
2369 case discard_sec_merge:
2370 output = TRUE;
2371 if (info->relocatable
2372 || ! (sym->section->flags & SEC_MERGE))
2373 break;
2374 /* FALLTHROUGH */
2375 case discard_l:
2376 if (bfd_is_local_label (input_bfd, sym))
2377 output = FALSE;
2378 else
2379 output = TRUE;
2380 break;
2381 case discard_none:
2382 output = TRUE;
2383 break;
2384 }
2385 }
2386 }
2387 else if ((sym->flags & BSF_CONSTRUCTOR))
2388 {
2389 if (info->strip != strip_all)
2390 output = TRUE;
2391 else
2392 output = FALSE;
2393 }
2394 else if (sym->flags == 0
2395 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2396 /* LTO doesn't set symbol information. We get here with the
2397 generic linker for a symbol that was "common" but no longer
2398 needs to be global. */
2399 output = FALSE;
2400 else
2401 abort ();
2402
2403 /* If this symbol is in a section which is not being included
2404 in the output file, then we don't want to output the
2405 symbol. */
2406 if (!bfd_is_abs_section (sym->section)
2407 && bfd_section_removed_from_list (output_bfd,
2408 sym->section->output_section))
2409 output = FALSE;
2410
2411 if (output)
2412 {
2413 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2414 return FALSE;
2415 if (h != NULL)
2416 h->written = TRUE;
2417 }
2418 }
2419
2420 return TRUE;
2421 }
2422
2423 /* Set the section and value of a generic BFD symbol based on a linker
2424 hash table entry. */
2425
2426 static void
2427 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2428 {
2429 switch (h->type)
2430 {
2431 default:
2432 abort ();
2433 break;
2434 case bfd_link_hash_new:
2435 /* This can happen when a constructor symbol is seen but we are
2436 not building constructors. */
2437 if (sym->section != NULL)
2438 {
2439 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2440 }
2441 else
2442 {
2443 sym->flags |= BSF_CONSTRUCTOR;
2444 sym->section = bfd_abs_section_ptr;
2445 sym->value = 0;
2446 }
2447 break;
2448 case bfd_link_hash_undefined:
2449 sym->section = bfd_und_section_ptr;
2450 sym->value = 0;
2451 break;
2452 case bfd_link_hash_undefweak:
2453 sym->section = bfd_und_section_ptr;
2454 sym->value = 0;
2455 sym->flags |= BSF_WEAK;
2456 break;
2457 case bfd_link_hash_defined:
2458 sym->section = h->u.def.section;
2459 sym->value = h->u.def.value;
2460 break;
2461 case bfd_link_hash_defweak:
2462 sym->flags |= BSF_WEAK;
2463 sym->section = h->u.def.section;
2464 sym->value = h->u.def.value;
2465 break;
2466 case bfd_link_hash_common:
2467 sym->value = h->u.c.size;
2468 if (sym->section == NULL)
2469 sym->section = bfd_com_section_ptr;
2470 else if (! bfd_is_com_section (sym->section))
2471 {
2472 BFD_ASSERT (bfd_is_und_section (sym->section));
2473 sym->section = bfd_com_section_ptr;
2474 }
2475 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2476 break;
2477 case bfd_link_hash_indirect:
2478 case bfd_link_hash_warning:
2479 /* FIXME: What should we do here? */
2480 break;
2481 }
2482 }
2483
2484 /* Write out a global symbol, if it hasn't already been written out.
2485 This is called for each symbol in the hash table. */
2486
2487 bfd_boolean
2488 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2489 void *data)
2490 {
2491 struct generic_write_global_symbol_info *wginfo =
2492 (struct generic_write_global_symbol_info *) data;
2493 asymbol *sym;
2494
2495 if (h->written)
2496 return TRUE;
2497
2498 h->written = TRUE;
2499
2500 if (wginfo->info->strip == strip_all
2501 || (wginfo->info->strip == strip_some
2502 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2503 FALSE, FALSE) == NULL))
2504 return TRUE;
2505
2506 if (h->sym != NULL)
2507 sym = h->sym;
2508 else
2509 {
2510 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2511 if (!sym)
2512 return FALSE;
2513 sym->name = h->root.root.string;
2514 sym->flags = 0;
2515 }
2516
2517 set_symbol_from_hash (sym, &h->root);
2518
2519 sym->flags |= BSF_GLOBAL;
2520
2521 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2522 sym))
2523 {
2524 /* FIXME: No way to return failure. */
2525 abort ();
2526 }
2527
2528 return TRUE;
2529 }
2530
2531 /* Create a relocation. */
2532
2533 bfd_boolean
2534 _bfd_generic_reloc_link_order (bfd *abfd,
2535 struct bfd_link_info *info,
2536 asection *sec,
2537 struct bfd_link_order *link_order)
2538 {
2539 arelent *r;
2540
2541 if (! info->relocatable)
2542 abort ();
2543 if (sec->orelocation == NULL)
2544 abort ();
2545
2546 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2547 if (r == NULL)
2548 return FALSE;
2549
2550 r->address = link_order->offset;
2551 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2552 if (r->howto == 0)
2553 {
2554 bfd_set_error (bfd_error_bad_value);
2555 return FALSE;
2556 }
2557
2558 /* Get the symbol to use for the relocation. */
2559 if (link_order->type == bfd_section_reloc_link_order)
2560 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2561 else
2562 {
2563 struct generic_link_hash_entry *h;
2564
2565 h = ((struct generic_link_hash_entry *)
2566 bfd_wrapped_link_hash_lookup (abfd, info,
2567 link_order->u.reloc.p->u.name,
2568 FALSE, FALSE, TRUE));
2569 if (h == NULL
2570 || ! h->written)
2571 {
2572 if (! ((*info->callbacks->unattached_reloc)
2573 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2574 return FALSE;
2575 bfd_set_error (bfd_error_bad_value);
2576 return FALSE;
2577 }
2578 r->sym_ptr_ptr = &h->sym;
2579 }
2580
2581 /* If this is an inplace reloc, write the addend to the object file.
2582 Otherwise, store it in the reloc addend. */
2583 if (! r->howto->partial_inplace)
2584 r->addend = link_order->u.reloc.p->addend;
2585 else
2586 {
2587 bfd_size_type size;
2588 bfd_reloc_status_type rstat;
2589 bfd_byte *buf;
2590 bfd_boolean ok;
2591 file_ptr loc;
2592
2593 size = bfd_get_reloc_size (r->howto);
2594 buf = (bfd_byte *) bfd_zmalloc (size);
2595 if (buf == NULL)
2596 return FALSE;
2597 rstat = _bfd_relocate_contents (r->howto, abfd,
2598 (bfd_vma) link_order->u.reloc.p->addend,
2599 buf);
2600 switch (rstat)
2601 {
2602 case bfd_reloc_ok:
2603 break;
2604 default:
2605 case bfd_reloc_outofrange:
2606 abort ();
2607 case bfd_reloc_overflow:
2608 if (! ((*info->callbacks->reloc_overflow)
2609 (info, NULL,
2610 (link_order->type == bfd_section_reloc_link_order
2611 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2612 : link_order->u.reloc.p->u.name),
2613 r->howto->name, link_order->u.reloc.p->addend,
2614 NULL, NULL, 0)))
2615 {
2616 free (buf);
2617 return FALSE;
2618 }
2619 break;
2620 }
2621 loc = link_order->offset * bfd_octets_per_byte (abfd);
2622 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2623 free (buf);
2624 if (! ok)
2625 return FALSE;
2626
2627 r->addend = 0;
2628 }
2629
2630 sec->orelocation[sec->reloc_count] = r;
2631 ++sec->reloc_count;
2632
2633 return TRUE;
2634 }
2635 \f
2636 /* Allocate a new link_order for a section. */
2637
2638 struct bfd_link_order *
2639 bfd_new_link_order (bfd *abfd, asection *section)
2640 {
2641 bfd_size_type amt = sizeof (struct bfd_link_order);
2642 struct bfd_link_order *new_lo;
2643
2644 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2645 if (!new_lo)
2646 return NULL;
2647
2648 new_lo->type = bfd_undefined_link_order;
2649
2650 if (section->map_tail.link_order != NULL)
2651 section->map_tail.link_order->next = new_lo;
2652 else
2653 section->map_head.link_order = new_lo;
2654 section->map_tail.link_order = new_lo;
2655
2656 return new_lo;
2657 }
2658
2659 /* Default link order processing routine. Note that we can not handle
2660 the reloc_link_order types here, since they depend upon the details
2661 of how the particular backends generates relocs. */
2662
2663 bfd_boolean
2664 _bfd_default_link_order (bfd *abfd,
2665 struct bfd_link_info *info,
2666 asection *sec,
2667 struct bfd_link_order *link_order)
2668 {
2669 switch (link_order->type)
2670 {
2671 case bfd_undefined_link_order:
2672 case bfd_section_reloc_link_order:
2673 case bfd_symbol_reloc_link_order:
2674 default:
2675 abort ();
2676 case bfd_indirect_link_order:
2677 return default_indirect_link_order (abfd, info, sec, link_order,
2678 FALSE);
2679 case bfd_data_link_order:
2680 return default_data_link_order (abfd, info, sec, link_order);
2681 }
2682 }
2683
2684 /* Default routine to handle a bfd_data_link_order. */
2685
2686 static bfd_boolean
2687 default_data_link_order (bfd *abfd,
2688 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2689 asection *sec,
2690 struct bfd_link_order *link_order)
2691 {
2692 bfd_size_type size;
2693 size_t fill_size;
2694 bfd_byte *fill;
2695 file_ptr loc;
2696 bfd_boolean result;
2697
2698 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2699
2700 size = link_order->size;
2701 if (size == 0)
2702 return TRUE;
2703
2704 fill = link_order->u.data.contents;
2705 fill_size = link_order->u.data.size;
2706 if (fill_size == 0)
2707 {
2708 fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2709 (sec->flags & SEC_CODE) != 0);
2710 if (fill == NULL)
2711 return FALSE;
2712 }
2713 else if (fill_size < size)
2714 {
2715 bfd_byte *p;
2716 fill = (bfd_byte *) bfd_malloc (size);
2717 if (fill == NULL)
2718 return FALSE;
2719 p = fill;
2720 if (fill_size == 1)
2721 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2722 else
2723 {
2724 do
2725 {
2726 memcpy (p, link_order->u.data.contents, fill_size);
2727 p += fill_size;
2728 size -= fill_size;
2729 }
2730 while (size >= fill_size);
2731 if (size != 0)
2732 memcpy (p, link_order->u.data.contents, (size_t) size);
2733 size = link_order->size;
2734 }
2735 }
2736
2737 loc = link_order->offset * bfd_octets_per_byte (abfd);
2738 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2739
2740 if (fill != link_order->u.data.contents)
2741 free (fill);
2742 return result;
2743 }
2744
2745 /* Default routine to handle a bfd_indirect_link_order. */
2746
2747 static bfd_boolean
2748 default_indirect_link_order (bfd *output_bfd,
2749 struct bfd_link_info *info,
2750 asection *output_section,
2751 struct bfd_link_order *link_order,
2752 bfd_boolean generic_linker)
2753 {
2754 asection *input_section;
2755 bfd *input_bfd;
2756 bfd_byte *contents = NULL;
2757 bfd_byte *new_contents;
2758 bfd_size_type sec_size;
2759 file_ptr loc;
2760
2761 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2762
2763 input_section = link_order->u.indirect.section;
2764 input_bfd = input_section->owner;
2765 if (input_section->size == 0)
2766 return TRUE;
2767
2768 BFD_ASSERT (input_section->output_section == output_section);
2769 BFD_ASSERT (input_section->output_offset == link_order->offset);
2770 BFD_ASSERT (input_section->size == link_order->size);
2771
2772 if (info->relocatable
2773 && input_section->reloc_count > 0
2774 && output_section->orelocation == NULL)
2775 {
2776 /* Space has not been allocated for the output relocations.
2777 This can happen when we are called by a specific backend
2778 because somebody is attempting to link together different
2779 types of object files. Handling this case correctly is
2780 difficult, and sometimes impossible. */
2781 (*_bfd_error_handler)
2782 (_("Attempt to do relocatable link with %s input and %s output"),
2783 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2784 bfd_set_error (bfd_error_wrong_format);
2785 return FALSE;
2786 }
2787
2788 if (! generic_linker)
2789 {
2790 asymbol **sympp;
2791 asymbol **symppend;
2792
2793 /* Get the canonical symbols. The generic linker will always
2794 have retrieved them by this point, but we are being called by
2795 a specific linker, presumably because we are linking
2796 different types of object files together. */
2797 if (!bfd_generic_link_read_symbols (input_bfd))
2798 return FALSE;
2799
2800 /* Since we have been called by a specific linker, rather than
2801 the generic linker, the values of the symbols will not be
2802 right. They will be the values as seen in the input file,
2803 not the values of the final link. We need to fix them up
2804 before we can relocate the section. */
2805 sympp = _bfd_generic_link_get_symbols (input_bfd);
2806 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2807 for (; sympp < symppend; sympp++)
2808 {
2809 asymbol *sym;
2810 struct bfd_link_hash_entry *h;
2811
2812 sym = *sympp;
2813
2814 if ((sym->flags & (BSF_INDIRECT
2815 | BSF_WARNING
2816 | BSF_GLOBAL
2817 | BSF_CONSTRUCTOR
2818 | BSF_WEAK)) != 0
2819 || bfd_is_und_section (bfd_get_section (sym))
2820 || bfd_is_com_section (bfd_get_section (sym))
2821 || bfd_is_ind_section (bfd_get_section (sym)))
2822 {
2823 /* sym->udata may have been set by
2824 generic_link_add_symbol_list. */
2825 if (sym->udata.p != NULL)
2826 h = (struct bfd_link_hash_entry *) sym->udata.p;
2827 else if (bfd_is_und_section (bfd_get_section (sym)))
2828 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2829 bfd_asymbol_name (sym),
2830 FALSE, FALSE, TRUE);
2831 else
2832 h = bfd_link_hash_lookup (info->hash,
2833 bfd_asymbol_name (sym),
2834 FALSE, FALSE, TRUE);
2835 if (h != NULL)
2836 set_symbol_from_hash (sym, h);
2837 }
2838 }
2839 }
2840
2841 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2842 && input_section->size != 0)
2843 {
2844 /* Group section contents are set by bfd_elf_set_group_contents. */
2845 if (!output_bfd->output_has_begun)
2846 {
2847 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2848 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2849 goto error_return;
2850 }
2851 new_contents = output_section->contents;
2852 BFD_ASSERT (new_contents != NULL);
2853 BFD_ASSERT (input_section->output_offset == 0);
2854 }
2855 else
2856 {
2857 /* Get and relocate the section contents. */
2858 sec_size = (input_section->rawsize > input_section->size
2859 ? input_section->rawsize
2860 : input_section->size);
2861 contents = (bfd_byte *) bfd_malloc (sec_size);
2862 if (contents == NULL && sec_size != 0)
2863 goto error_return;
2864 new_contents = (bfd_get_relocated_section_contents
2865 (output_bfd, info, link_order, contents,
2866 info->relocatable,
2867 _bfd_generic_link_get_symbols (input_bfd)));
2868 if (!new_contents)
2869 goto error_return;
2870 }
2871
2872 /* Output the section contents. */
2873 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2874 if (! bfd_set_section_contents (output_bfd, output_section,
2875 new_contents, loc, input_section->size))
2876 goto error_return;
2877
2878 if (contents != NULL)
2879 free (contents);
2880 return TRUE;
2881
2882 error_return:
2883 if (contents != NULL)
2884 free (contents);
2885 return FALSE;
2886 }
2887
2888 /* A little routine to count the number of relocs in a link_order
2889 list. */
2890
2891 unsigned int
2892 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2893 {
2894 register unsigned int c;
2895 register struct bfd_link_order *l;
2896
2897 c = 0;
2898 for (l = link_order; l != NULL; l = l->next)
2899 {
2900 if (l->type == bfd_section_reloc_link_order
2901 || l->type == bfd_symbol_reloc_link_order)
2902 ++c;
2903 }
2904
2905 return c;
2906 }
2907
2908 /*
2909 FUNCTION
2910 bfd_link_split_section
2911
2912 SYNOPSIS
2913 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2914
2915 DESCRIPTION
2916 Return nonzero if @var{sec} should be split during a
2917 reloceatable or final link.
2918
2919 .#define bfd_link_split_section(abfd, sec) \
2920 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2921 .
2922
2923 */
2924
2925 bfd_boolean
2926 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2927 asection *sec ATTRIBUTE_UNUSED)
2928 {
2929 return FALSE;
2930 }
2931
2932 /*
2933 FUNCTION
2934 bfd_section_already_linked
2935
2936 SYNOPSIS
2937 bfd_boolean bfd_section_already_linked (bfd *abfd,
2938 asection *sec,
2939 struct bfd_link_info *info);
2940
2941 DESCRIPTION
2942 Check if @var{data} has been already linked during a reloceatable
2943 or final link. Return TRUE if it has.
2944
2945 .#define bfd_section_already_linked(abfd, sec, info) \
2946 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2947 .
2948
2949 */
2950
2951 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2952 once into the output. This routine checks each section, and
2953 arrange to discard it if a section of the same name has already
2954 been linked. This code assumes that all relevant sections have the
2955 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2956 section name. bfd_section_already_linked is called via
2957 bfd_map_over_sections. */
2958
2959 /* The hash table. */
2960
2961 static struct bfd_hash_table _bfd_section_already_linked_table;
2962
2963 /* Support routines for the hash table used by section_already_linked,
2964 initialize the table, traverse, lookup, fill in an entry and remove
2965 the table. */
2966
2967 void
2968 bfd_section_already_linked_table_traverse
2969 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2970 void *), void *info)
2971 {
2972 bfd_hash_traverse (&_bfd_section_already_linked_table,
2973 (bfd_boolean (*) (struct bfd_hash_entry *,
2974 void *)) func,
2975 info);
2976 }
2977
2978 struct bfd_section_already_linked_hash_entry *
2979 bfd_section_already_linked_table_lookup (const char *name)
2980 {
2981 return ((struct bfd_section_already_linked_hash_entry *)
2982 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2983 TRUE, FALSE));
2984 }
2985
2986 bfd_boolean
2987 bfd_section_already_linked_table_insert
2988 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2989 asection *sec)
2990 {
2991 struct bfd_section_already_linked *l;
2992
2993 /* Allocate the memory from the same obstack as the hash table is
2994 kept in. */
2995 l = (struct bfd_section_already_linked *)
2996 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2997 if (l == NULL)
2998 return FALSE;
2999 l->sec = sec;
3000 l->next = already_linked_list->entry;
3001 already_linked_list->entry = l;
3002 return TRUE;
3003 }
3004
3005 static struct bfd_hash_entry *
3006 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
3007 struct bfd_hash_table *table,
3008 const char *string ATTRIBUTE_UNUSED)
3009 {
3010 struct bfd_section_already_linked_hash_entry *ret =
3011 (struct bfd_section_already_linked_hash_entry *)
3012 bfd_hash_allocate (table, sizeof *ret);
3013
3014 if (ret == NULL)
3015 return NULL;
3016
3017 ret->entry = NULL;
3018
3019 return &ret->root;
3020 }
3021
3022 bfd_boolean
3023 bfd_section_already_linked_table_init (void)
3024 {
3025 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
3026 already_linked_newfunc,
3027 sizeof (struct bfd_section_already_linked_hash_entry),
3028 42);
3029 }
3030
3031 void
3032 bfd_section_already_linked_table_free (void)
3033 {
3034 bfd_hash_table_free (&_bfd_section_already_linked_table);
3035 }
3036
3037 /* Report warnings as appropriate for duplicate section SEC.
3038 Return FALSE if we decide to keep SEC after all. */
3039
3040 bfd_boolean
3041 _bfd_handle_already_linked (asection *sec,
3042 struct bfd_section_already_linked *l,
3043 struct bfd_link_info *info)
3044 {
3045 switch (sec->flags & SEC_LINK_DUPLICATES)
3046 {
3047 default:
3048 abort ();
3049
3050 case SEC_LINK_DUPLICATES_DISCARD:
3051 /* If we found an LTO IR match for this comdat group on
3052 the first pass, replace it with the LTO output on the
3053 second pass. We can't simply choose real object
3054 files over IR because the first pass may contain a
3055 mix of LTO and normal objects and we must keep the
3056 first match, be it IR or real. */
3057 if (info->loading_lto_outputs
3058 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
3059 {
3060 l->sec = sec;
3061 return FALSE;
3062 }
3063 break;
3064
3065 case SEC_LINK_DUPLICATES_ONE_ONLY:
3066 info->callbacks->einfo
3067 (_("%B: ignoring duplicate section `%A'\n"),
3068 sec->owner, sec);
3069 break;
3070
3071 case SEC_LINK_DUPLICATES_SAME_SIZE:
3072 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
3073 ;
3074 else if (sec->size != l->sec->size)
3075 info->callbacks->einfo
3076 (_("%B: duplicate section `%A' has different size\n"),
3077 sec->owner, sec);
3078 break;
3079
3080 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3081 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
3082 ;
3083 else if (sec->size != l->sec->size)
3084 info->callbacks->einfo
3085 (_("%B: duplicate section `%A' has different size\n"),
3086 sec->owner, sec);
3087 else if (sec->size != 0)
3088 {
3089 bfd_byte *sec_contents, *l_sec_contents = NULL;
3090
3091 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
3092 info->callbacks->einfo
3093 (_("%B: could not read contents of section `%A'\n"),
3094 sec->owner, sec);
3095 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
3096 &l_sec_contents))
3097 info->callbacks->einfo
3098 (_("%B: could not read contents of section `%A'\n"),
3099 l->sec->owner, l->sec);
3100 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
3101 info->callbacks->einfo
3102 (_("%B: duplicate section `%A' has different contents\n"),
3103 sec->owner, sec);
3104
3105 if (sec_contents)
3106 free (sec_contents);
3107 if (l_sec_contents)
3108 free (l_sec_contents);
3109 }
3110 break;
3111 }
3112
3113 /* Set the output_section field so that lang_add_section
3114 does not create a lang_input_section structure for this
3115 section. Since there might be a symbol in the section
3116 being discarded, we must retain a pointer to the section
3117 which we are really going to use. */
3118 sec->output_section = bfd_abs_section_ptr;
3119 sec->kept_section = l->sec;
3120 return TRUE;
3121 }
3122
3123 /* This is used on non-ELF inputs. */
3124
3125 bfd_boolean
3126 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
3127 asection *sec,
3128 struct bfd_link_info *info)
3129 {
3130 const char *name;
3131 struct bfd_section_already_linked *l;
3132 struct bfd_section_already_linked_hash_entry *already_linked_list;
3133
3134 if ((sec->flags & SEC_LINK_ONCE) == 0)
3135 return FALSE;
3136
3137 /* The generic linker doesn't handle section groups. */
3138 if ((sec->flags & SEC_GROUP) != 0)
3139 return FALSE;
3140
3141 /* FIXME: When doing a relocatable link, we may have trouble
3142 copying relocations in other sections that refer to local symbols
3143 in the section being discarded. Those relocations will have to
3144 be converted somehow; as of this writing I'm not sure that any of
3145 the backends handle that correctly.
3146
3147 It is tempting to instead not discard link once sections when
3148 doing a relocatable link (technically, they should be discarded
3149 whenever we are building constructors). However, that fails,
3150 because the linker winds up combining all the link once sections
3151 into a single large link once section, which defeats the purpose
3152 of having link once sections in the first place. */
3153
3154 name = bfd_get_section_name (abfd, sec);
3155
3156 already_linked_list = bfd_section_already_linked_table_lookup (name);
3157
3158 l = already_linked_list->entry;
3159 if (l != NULL)
3160 {
3161 /* The section has already been linked. See if we should
3162 issue a warning. */
3163 return _bfd_handle_already_linked (sec, l, info);
3164 }
3165
3166 /* This is the first section with this name. Record it. */
3167 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
3168 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
3169 return FALSE;
3170 }
3171
3172 /* Choose a neighbouring section to S in OBFD that will be output, or
3173 the absolute section if ADDR is out of bounds of the neighbours. */
3174
3175 asection *
3176 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
3177 {
3178 asection *next, *prev, *best;
3179
3180 /* Find preceding kept section. */
3181 for (prev = s->prev; prev != NULL; prev = prev->prev)
3182 if ((prev->flags & SEC_EXCLUDE) == 0
3183 && !bfd_section_removed_from_list (obfd, prev))
3184 break;
3185
3186 /* Find following kept section. Start at prev->next because
3187 other sections may have been added after S was removed. */
3188 if (s->prev != NULL)
3189 next = s->prev->next;
3190 else
3191 next = s->owner->sections;
3192 for (; next != NULL; next = next->next)
3193 if ((next->flags & SEC_EXCLUDE) == 0
3194 && !bfd_section_removed_from_list (obfd, next))
3195 break;
3196
3197 /* Choose better of two sections, based on flags. The idea
3198 is to choose a section that will be in the same segment
3199 as S would have been if it was kept. */
3200 best = next;
3201 if (prev == NULL)
3202 {
3203 if (next == NULL)
3204 best = bfd_abs_section_ptr;
3205 }
3206 else if (next == NULL)
3207 best = prev;
3208 else if (((prev->flags ^ next->flags)
3209 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3210 {
3211 if (((next->flags ^ s->flags)
3212 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3213 /* We prefer to choose a loaded section. Section S
3214 doesn't have SEC_LOAD set (it being excluded, that
3215 part of the flag processing didn't happen) so we
3216 can't compare that flag to those of NEXT and PREV. */
3217 || ((prev->flags & SEC_LOAD) != 0
3218 && (next->flags & SEC_LOAD) == 0))
3219 best = prev;
3220 }
3221 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3222 {
3223 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3224 best = prev;
3225 }
3226 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3227 {
3228 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3229 best = prev;
3230 }
3231 else
3232 {
3233 /* Flags we care about are the same. Prefer the following
3234 section if that will result in a positive valued sym. */
3235 if (addr < next->vma)
3236 best = prev;
3237 }
3238
3239 return best;
3240 }
3241
3242 /* Convert symbols in excluded output sections to use a kept section. */
3243
3244 static bfd_boolean
3245 fix_syms (struct bfd_link_hash_entry *h, void *data)
3246 {
3247 bfd *obfd = (bfd *) data;
3248
3249 if (h->type == bfd_link_hash_defined
3250 || h->type == bfd_link_hash_defweak)
3251 {
3252 asection *s = h->u.def.section;
3253 if (s != NULL
3254 && s->output_section != NULL
3255 && (s->output_section->flags & SEC_EXCLUDE) != 0
3256 && bfd_section_removed_from_list (obfd, s->output_section))
3257 {
3258 asection *op;
3259
3260 h->u.def.value += s->output_offset + s->output_section->vma;
3261 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3262 h->u.def.value -= op->vma;
3263 h->u.def.section = op;
3264 }
3265 }
3266
3267 return TRUE;
3268 }
3269
3270 void
3271 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3272 {
3273 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3274 }
3275
3276 /*
3277 FUNCTION
3278 bfd_generic_define_common_symbol
3279
3280 SYNOPSIS
3281 bfd_boolean bfd_generic_define_common_symbol
3282 (bfd *output_bfd, struct bfd_link_info *info,
3283 struct bfd_link_hash_entry *h);
3284
3285 DESCRIPTION
3286 Convert common symbol @var{h} into a defined symbol.
3287 Return TRUE on success and FALSE on failure.
3288
3289 .#define bfd_define_common_symbol(output_bfd, info, h) \
3290 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3291 .
3292 */
3293
3294 bfd_boolean
3295 bfd_generic_define_common_symbol (bfd *output_bfd,
3296 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3297 struct bfd_link_hash_entry *h)
3298 {
3299 unsigned int power_of_two;
3300 bfd_vma alignment, size;
3301 asection *section;
3302
3303 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3304
3305 size = h->u.c.size;
3306 power_of_two = h->u.c.p->alignment_power;
3307 section = h->u.c.p->section;
3308
3309 /* Increase the size of the section to align the common symbol.
3310 The alignment must be a power of two. */
3311 alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3312 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3313 section->size += alignment - 1;
3314 section->size &= -alignment;
3315
3316 /* Adjust the section's overall alignment if necessary. */
3317 if (power_of_two > section->alignment_power)
3318 section->alignment_power = power_of_two;
3319
3320 /* Change the symbol from common to defined. */
3321 h->type = bfd_link_hash_defined;
3322 h->u.def.section = section;
3323 h->u.def.value = section->size;
3324
3325 /* Increase the size of the section. */
3326 section->size += size;
3327
3328 /* Make sure the section is allocated in memory, and make sure that
3329 it is no longer a common section. */
3330 section->flags |= SEC_ALLOC;
3331 section->flags &= ~SEC_IS_COMMON;
3332 return TRUE;
3333 }
3334
3335 /*
3336 FUNCTION
3337 bfd_find_version_for_sym
3338
3339 SYNOPSIS
3340 struct bfd_elf_version_tree * bfd_find_version_for_sym
3341 (struct bfd_elf_version_tree *verdefs,
3342 const char *sym_name, bfd_boolean *hide);
3343
3344 DESCRIPTION
3345 Search an elf version script tree for symbol versioning
3346 info and export / don't-export status for a given symbol.
3347 Return non-NULL on success and NULL on failure; also sets
3348 the output @samp{hide} boolean parameter.
3349
3350 */
3351
3352 struct bfd_elf_version_tree *
3353 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3354 const char *sym_name,
3355 bfd_boolean *hide)
3356 {
3357 struct bfd_elf_version_tree *t;
3358 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3359 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3360
3361 local_ver = NULL;
3362 global_ver = NULL;
3363 star_local_ver = NULL;
3364 star_global_ver = NULL;
3365 exist_ver = NULL;
3366 for (t = verdefs; t != NULL; t = t->next)
3367 {
3368 if (t->globals.list != NULL)
3369 {
3370 struct bfd_elf_version_expr *d = NULL;
3371
3372 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3373 {
3374 if (d->literal || strcmp (d->pattern, "*") != 0)
3375 global_ver = t;
3376 else
3377 star_global_ver = t;
3378 if (d->symver)
3379 exist_ver = t;
3380 d->script = 1;
3381 /* If the match is a wildcard pattern, keep looking for
3382 a more explicit, perhaps even local, match. */
3383 if (d->literal)
3384 break;
3385 }
3386
3387 if (d != NULL)
3388 break;
3389 }
3390
3391 if (t->locals.list != NULL)
3392 {
3393 struct bfd_elf_version_expr *d = NULL;
3394
3395 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3396 {
3397 if (d->literal || strcmp (d->pattern, "*") != 0)
3398 local_ver = t;
3399 else
3400 star_local_ver = t;
3401 /* If the match is a wildcard pattern, keep looking for
3402 a more explicit, perhaps even global, match. */
3403 if (d->literal)
3404 {
3405 /* An exact match overrides a global wildcard. */
3406 global_ver = NULL;
3407 star_global_ver = NULL;
3408 break;
3409 }
3410 }
3411
3412 if (d != NULL)
3413 break;
3414 }
3415 }
3416
3417 if (global_ver == NULL && local_ver == NULL)
3418 global_ver = star_global_ver;
3419
3420 if (global_ver != NULL)
3421 {
3422 /* If we already have a versioned symbol that matches the
3423 node for this symbol, then we don't want to create a
3424 duplicate from the unversioned symbol. Instead hide the
3425 unversioned symbol. */
3426 *hide = exist_ver == global_ver;
3427 return global_ver;
3428 }
3429
3430 if (local_ver == NULL)
3431 local_ver = star_local_ver;
3432
3433 if (local_ver != NULL)
3434 {
3435 *hide = TRUE;
3436 return local_ver;
3437 }
3438
3439 return NULL;
3440 }
3441
3442 /*
3443 FUNCTION
3444 bfd_hide_sym_by_version
3445
3446 SYNOPSIS
3447 bfd_boolean bfd_hide_sym_by_version
3448 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3449
3450 DESCRIPTION
3451 Search an elf version script tree for symbol versioning
3452 info for a given symbol. Return TRUE if the symbol is hidden.
3453
3454 */
3455
3456 bfd_boolean
3457 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3458 const char *sym_name)
3459 {
3460 bfd_boolean hidden = FALSE;
3461 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3462 return hidden;
3463 }
This page took 0.115694 seconds and 5 git commands to generate.