Allow for __gnu_lto_slim prefixed with extra "_"
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
228
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table. If the element is to
237 be included, the <<add_archive_element>> linker callback
238 routine must be called with the element as an argument, and
239 the element's symbols must be added to the linker hash table
240 just as though the element had itself been passed to the
241 <<_bfd_link_add_symbols>> function.
242
243 When the a.out <<_bfd_link_add_symbols>> function receives an
244 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 passing <<aout_link_check_archive_element>> as the function
246 argument. <<aout_link_check_archive_element>> calls
247 <<aout_link_check_ar_symbols>>. If the latter decides to add
248 the element (an element is only added if it provides a real,
249 non-common, definition for a previously undefined or common
250 symbol) it calls the <<add_archive_element>> callback and then
251 <<aout_link_check_archive_element>> calls
252 <<aout_link_add_symbols>> to actually add the symbols to the
253 linker hash table - possibly those of a substitute BFD, if the
254 <<add_archive_element>> callback avails itself of that option.
255
256 The ECOFF back end is unusual in that it does not normally
257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 archives already contain a hash table of symbols. The ECOFF
259 back end searches the archive itself to avoid the overhead of
260 creating a new hash table.
261
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 Performing the final link
266
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 When all the input files have been processed, the linker calls
270 the <<_bfd_final_link>> entry point of the output BFD. This
271 routine is responsible for producing the final output file,
272 which has several aspects. It must relocate the contents of
273 the input sections and copy the data into the output sections.
274 It must build an output symbol table including any local
275 symbols from the input files and the global symbols from the
276 hash table. When producing relocatable output, it must
277 modify the input relocs and write them into the output file.
278 There may also be object format dependent work to be done.
279
280 The linker will also call the <<write_object_contents>> entry
281 point when the BFD is closed. The two entry points must work
282 together in order to produce the correct output file.
283
284 The details of how this works are inevitably dependent upon
285 the specific object file format. The a.out
286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 Information provided by the linker
298
299 Before the linker calls the <<_bfd_final_link>> entry point,
300 it sets up some data structures for the function to use.
301
302 The <<input_bfds>> field of the <<bfd_link_info>> structure
303 will point to a list of all the input files included in the
304 link. These files are linked through the <<link.next>> field
305 of the <<bfd>> structure.
306
307 Each section in the output file will have a list of
308 <<link_order>> structures attached to the <<map_head.link_order>>
309 field (the <<link_order>> structure is defined in
310 <<bfdlink.h>>). These structures describe how to create the
311 contents of the output section in terms of the contents of
312 various input sections, fill constants, and, eventually, other
313 types of information. They also describe relocs that must be
314 created by the BFD backend, but do not correspond to any input
315 file; this is used to support -Ur, which builds constructors
316 while generating a relocatable object file.
317
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 Relocating the section contents
322
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
329
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocatable link, the
339 relocs themselves must also be modified and written out.
340
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
350
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
355
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 Writing the symbol table
360
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
366
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
373
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files.
381
382 The <<strip>> field of the <<bfd_link_info>> structure
383 controls which symbols are written out. The possible values
384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
385 then the <<keep_hash>> field of the <<bfd_link_info>>
386 structure is a hash table of symbols to keep; each symbol
387 should be looked up in this hash table, and only symbols which
388 are present should be included in the output file.
389
390 If the <<strip>> field of the <<bfd_link_info>> structure
391 permits local symbols to be written out, the <<discard>> field
392 is used to further controls which local symbols are included
393 in the output file. If the value is <<discard_l>>, then all
394 local symbols which begin with a certain prefix are discarded;
395 this is controlled by the <<bfd_is_local_label_name>> entry point.
396
397 The a.out backend handles symbols by calling
398 <<aout_link_write_symbols>> on each input BFD and then
399 traversing the global hash table with the function
400 <<aout_link_write_other_symbol>>. It builds a string table
401 while writing out the symbols, which is written to the output
402 file at the end of <<NAME(aout,final_link)>>.
403 */
404
405 static bfd_boolean generic_link_add_object_symbols
406 (bfd *, struct bfd_link_info *);
407 static bfd_boolean generic_link_check_archive_element
408 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
409 bfd_boolean *);
410 static bfd_boolean generic_link_add_symbol_list
411 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **);
412 static bfd_boolean generic_add_output_symbol
413 (bfd *, size_t *psymalloc, asymbol *);
414 static bfd_boolean default_data_link_order
415 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
416 static bfd_boolean default_indirect_link_order
417 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
418 bfd_boolean);
419
420 /* The link hash table structure is defined in bfdlink.h. It provides
421 a base hash table which the backend specific hash tables are built
422 upon. */
423
424 /* Routine to create an entry in the link hash table. */
425
426 struct bfd_hash_entry *
427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
428 struct bfd_hash_table *table,
429 const char *string)
430 {
431 /* Allocate the structure if it has not already been allocated by a
432 subclass. */
433 if (entry == NULL)
434 {
435 entry = (struct bfd_hash_entry *)
436 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
437 if (entry == NULL)
438 return entry;
439 }
440
441 /* Call the allocation method of the superclass. */
442 entry = bfd_hash_newfunc (entry, table, string);
443 if (entry)
444 {
445 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
446
447 /* Initialize the local fields. */
448 memset ((char *) &h->root + sizeof (h->root), 0,
449 sizeof (*h) - sizeof (h->root));
450 }
451
452 return entry;
453 }
454
455 /* Initialize a link hash table. The BFD argument is the one
456 responsible for creating this table. */
457
458 bfd_boolean
459 _bfd_link_hash_table_init
460 (struct bfd_link_hash_table *table,
461 bfd *abfd ATTRIBUTE_UNUSED,
462 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
463 struct bfd_hash_table *,
464 const char *),
465 unsigned int entsize)
466 {
467 bfd_boolean ret;
468
469 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
470 table->undefs = NULL;
471 table->undefs_tail = NULL;
472 table->type = bfd_link_generic_hash_table;
473
474 ret = bfd_hash_table_init (&table->table, newfunc, entsize);
475 if (ret)
476 {
477 /* Arrange for destruction of this hash table on closing ABFD. */
478 table->hash_table_free = _bfd_generic_link_hash_table_free;
479 abfd->link.hash = table;
480 abfd->is_linker_output = TRUE;
481 }
482 return ret;
483 }
484
485 /* Look up a symbol in a link hash table. If follow is TRUE, we
486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
487 the real symbol. */
488
489 struct bfd_link_hash_entry *
490 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
491 const char *string,
492 bfd_boolean create,
493 bfd_boolean copy,
494 bfd_boolean follow)
495 {
496 struct bfd_link_hash_entry *ret;
497
498 ret = ((struct bfd_link_hash_entry *)
499 bfd_hash_lookup (&table->table, string, create, copy));
500
501 if (follow && ret != NULL)
502 {
503 while (ret->type == bfd_link_hash_indirect
504 || ret->type == bfd_link_hash_warning)
505 ret = ret->u.i.link;
506 }
507
508 return ret;
509 }
510
511 /* Look up a symbol in the main linker hash table if the symbol might
512 be wrapped. This should only be used for references to an
513 undefined symbol, not for definitions of a symbol. */
514
515 struct bfd_link_hash_entry *
516 bfd_wrapped_link_hash_lookup (bfd *abfd,
517 struct bfd_link_info *info,
518 const char *string,
519 bfd_boolean create,
520 bfd_boolean copy,
521 bfd_boolean follow)
522 {
523 bfd_size_type amt;
524
525 if (info->wrap_hash != NULL)
526 {
527 const char *l;
528 char prefix = '\0';
529
530 l = string;
531 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
532 {
533 prefix = *l;
534 ++l;
535 }
536
537 #undef WRAP
538 #define WRAP "__wrap_"
539
540 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
541 {
542 char *n;
543 struct bfd_link_hash_entry *h;
544
545 /* This symbol is being wrapped. We want to replace all
546 references to SYM with references to __wrap_SYM. */
547
548 amt = strlen (l) + sizeof WRAP + 1;
549 n = (char *) bfd_malloc (amt);
550 if (n == NULL)
551 return NULL;
552
553 n[0] = prefix;
554 n[1] = '\0';
555 strcat (n, WRAP);
556 strcat (n, l);
557 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
558 free (n);
559 return h;
560 }
561
562 #undef REAL
563 #define REAL "__real_"
564
565 if (*l == '_'
566 && CONST_STRNEQ (l, REAL)
567 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
568 FALSE, FALSE) != NULL)
569 {
570 char *n;
571 struct bfd_link_hash_entry *h;
572
573 /* This is a reference to __real_SYM, where SYM is being
574 wrapped. We want to replace all references to __real_SYM
575 with references to SYM. */
576
577 amt = strlen (l + sizeof REAL - 1) + 2;
578 n = (char *) bfd_malloc (amt);
579 if (n == NULL)
580 return NULL;
581
582 n[0] = prefix;
583 n[1] = '\0';
584 strcat (n, l + sizeof REAL - 1);
585 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
586 free (n);
587 return h;
588 }
589
590 #undef REAL
591 }
592
593 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
594 }
595
596 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
597 and the remainder is found in wrap_hash, return the real symbol. */
598
599 struct bfd_link_hash_entry *
600 unwrap_hash_lookup (struct bfd_link_info *info,
601 bfd *input_bfd,
602 struct bfd_link_hash_entry *h)
603 {
604 const char *l = h->root.string;
605
606 if (*l == bfd_get_symbol_leading_char (input_bfd)
607 || *l == info->wrap_char)
608 ++l;
609
610 if (CONST_STRNEQ (l, WRAP))
611 {
612 l += sizeof WRAP - 1;
613
614 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
615 {
616 char save = 0;
617 if (l - (sizeof WRAP - 1) != h->root.string)
618 {
619 --l;
620 save = *l;
621 *(char *) l = *h->root.string;
622 }
623 h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
624 if (save)
625 *(char *) l = save;
626 }
627 }
628 return h;
629 }
630 #undef WRAP
631
632 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
633 in the treatment of warning symbols. When warning symbols are
634 created they replace the real symbol, so you don't get to see the
635 real symbol in a bfd_hash_travere. This traversal calls func with
636 the real symbol. */
637
638 void
639 bfd_link_hash_traverse
640 (struct bfd_link_hash_table *htab,
641 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
642 void *info)
643 {
644 unsigned int i;
645
646 htab->table.frozen = 1;
647 for (i = 0; i < htab->table.size; i++)
648 {
649 struct bfd_link_hash_entry *p;
650
651 p = (struct bfd_link_hash_entry *) htab->table.table[i];
652 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
653 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
654 goto out;
655 }
656 out:
657 htab->table.frozen = 0;
658 }
659
660 /* Add a symbol to the linker hash table undefs list. */
661
662 void
663 bfd_link_add_undef (struct bfd_link_hash_table *table,
664 struct bfd_link_hash_entry *h)
665 {
666 BFD_ASSERT (h->u.undef.next == NULL);
667 if (table->undefs_tail != NULL)
668 table->undefs_tail->u.undef.next = h;
669 if (table->undefs == NULL)
670 table->undefs = h;
671 table->undefs_tail = h;
672 }
673
674 /* The undefs list was designed so that in normal use we don't need to
675 remove entries. However, if symbols on the list are changed from
676 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
677 bfd_link_hash_new for some reason, then they must be removed from the
678 list. Failure to do so might result in the linker attempting to add
679 the symbol to the list again at a later stage. */
680
681 void
682 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
683 {
684 struct bfd_link_hash_entry **pun;
685
686 pun = &table->undefs;
687 while (*pun != NULL)
688 {
689 struct bfd_link_hash_entry *h = *pun;
690
691 if (h->type == bfd_link_hash_new
692 || h->type == bfd_link_hash_undefweak)
693 {
694 *pun = h->u.undef.next;
695 h->u.undef.next = NULL;
696 if (h == table->undefs_tail)
697 {
698 if (pun == &table->undefs)
699 table->undefs_tail = NULL;
700 else
701 /* pun points at an u.undef.next field. Go back to
702 the start of the link_hash_entry. */
703 table->undefs_tail = (struct bfd_link_hash_entry *)
704 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
705 break;
706 }
707 }
708 else
709 pun = &h->u.undef.next;
710 }
711 }
712 \f
713 /* Routine to create an entry in a generic link hash table. */
714
715 struct bfd_hash_entry *
716 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
717 struct bfd_hash_table *table,
718 const char *string)
719 {
720 /* Allocate the structure if it has not already been allocated by a
721 subclass. */
722 if (entry == NULL)
723 {
724 entry = (struct bfd_hash_entry *)
725 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
726 if (entry == NULL)
727 return entry;
728 }
729
730 /* Call the allocation method of the superclass. */
731 entry = _bfd_link_hash_newfunc (entry, table, string);
732 if (entry)
733 {
734 struct generic_link_hash_entry *ret;
735
736 /* Set local fields. */
737 ret = (struct generic_link_hash_entry *) entry;
738 ret->written = FALSE;
739 ret->sym = NULL;
740 }
741
742 return entry;
743 }
744
745 /* Create a generic link hash table. */
746
747 struct bfd_link_hash_table *
748 _bfd_generic_link_hash_table_create (bfd *abfd)
749 {
750 struct generic_link_hash_table *ret;
751 bfd_size_type amt = sizeof (struct generic_link_hash_table);
752
753 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
754 if (ret == NULL)
755 return NULL;
756 if (! _bfd_link_hash_table_init (&ret->root, abfd,
757 _bfd_generic_link_hash_newfunc,
758 sizeof (struct generic_link_hash_entry)))
759 {
760 free (ret);
761 return NULL;
762 }
763 return &ret->root;
764 }
765
766 void
767 _bfd_generic_link_hash_table_free (bfd *obfd)
768 {
769 struct generic_link_hash_table *ret;
770
771 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
772 ret = (struct generic_link_hash_table *) obfd->link.hash;
773 bfd_hash_table_free (&ret->root.table);
774 free (ret);
775 obfd->link.hash = NULL;
776 obfd->is_linker_output = FALSE;
777 }
778
779 /* Grab the symbols for an object file when doing a generic link. We
780 store the symbols in the outsymbols field. We need to keep them
781 around for the entire link to ensure that we only read them once.
782 If we read them multiple times, we might wind up with relocs and
783 the hash table pointing to different instances of the symbol
784 structure. */
785
786 bfd_boolean
787 bfd_generic_link_read_symbols (bfd *abfd)
788 {
789 if (bfd_get_outsymbols (abfd) == NULL)
790 {
791 long symsize;
792 long symcount;
793
794 symsize = bfd_get_symtab_upper_bound (abfd);
795 if (symsize < 0)
796 return FALSE;
797 bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
798 symsize);
799 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
800 return FALSE;
801 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
802 if (symcount < 0)
803 return FALSE;
804 bfd_get_symcount (abfd) = symcount;
805 }
806
807 return TRUE;
808 }
809 \f
810 /* Indicate that we are only retrieving symbol values from this
811 section. We want the symbols to act as though the values in the
812 file are absolute. */
813
814 void
815 _bfd_generic_link_just_syms (asection *sec,
816 struct bfd_link_info *info ATTRIBUTE_UNUSED)
817 {
818 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
819 sec->output_section = bfd_abs_section_ptr;
820 sec->output_offset = sec->vma;
821 }
822
823 /* Copy the symbol type and other attributes for a linker script
824 assignment from HSRC to HDEST.
825 The default implementation does nothing. */
826 void
827 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
828 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
829 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
830 {
831 }
832
833 /* Generic function to add symbols from an object file to the
834 global hash table. */
835
836 bfd_boolean
837 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
838 {
839 bfd_boolean ret;
840
841 switch (bfd_get_format (abfd))
842 {
843 case bfd_object:
844 ret = generic_link_add_object_symbols (abfd, info);
845 break;
846 case bfd_archive:
847 ret = (_bfd_generic_link_add_archive_symbols
848 (abfd, info, generic_link_check_archive_element));
849 break;
850 default:
851 bfd_set_error (bfd_error_wrong_format);
852 ret = FALSE;
853 }
854
855 return ret;
856 }
857
858 /* Add symbols from an object file to the global hash table. */
859
860 static bfd_boolean
861 generic_link_add_object_symbols (bfd *abfd,
862 struct bfd_link_info *info)
863 {
864 bfd_size_type symcount;
865 struct bfd_symbol **outsyms;
866
867 if (!bfd_generic_link_read_symbols (abfd))
868 return FALSE;
869 symcount = _bfd_generic_link_get_symcount (abfd);
870 outsyms = _bfd_generic_link_get_symbols (abfd);
871 return generic_link_add_symbol_list (abfd, info, symcount, outsyms);
872 }
873 \f
874 /* Generic function to add symbols from an archive file to the global
875 hash file. This function presumes that the archive symbol table
876 has already been read in (this is normally done by the
877 bfd_check_format entry point). It looks through the archive symbol
878 table for symbols that are undefined or common in the linker global
879 symbol hash table. When one is found, the CHECKFN argument is used
880 to see if an object file should be included. This allows targets
881 to customize common symbol behaviour. CHECKFN should set *PNEEDED
882 to TRUE if the object file should be included, and must also call
883 the bfd_link_info add_archive_element callback function and handle
884 adding the symbols to the global hash table. CHECKFN must notice
885 if the callback indicates a substitute BFD, and arrange to add
886 those symbols instead if it does so. CHECKFN should only return
887 FALSE if some sort of error occurs. */
888
889 bfd_boolean
890 _bfd_generic_link_add_archive_symbols
891 (bfd *abfd,
892 struct bfd_link_info *info,
893 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
894 struct bfd_link_hash_entry *, const char *,
895 bfd_boolean *))
896 {
897 bfd_boolean loop;
898 bfd_size_type amt;
899 unsigned char *included;
900
901 if (! bfd_has_map (abfd))
902 {
903 /* An empty archive is a special case. */
904 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
905 return TRUE;
906 bfd_set_error (bfd_error_no_armap);
907 return FALSE;
908 }
909
910 amt = bfd_ardata (abfd)->symdef_count;
911 if (amt == 0)
912 return TRUE;
913 amt *= sizeof (*included);
914 included = (unsigned char *) bfd_zmalloc (amt);
915 if (included == NULL)
916 return FALSE;
917
918 do
919 {
920 carsym *arsyms;
921 carsym *arsym_end;
922 carsym *arsym;
923 unsigned int indx;
924 file_ptr last_ar_offset = -1;
925 bfd_boolean needed = FALSE;
926 bfd *element = NULL;
927
928 loop = FALSE;
929 arsyms = bfd_ardata (abfd)->symdefs;
930 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
931 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
932 {
933 struct bfd_link_hash_entry *h;
934 struct bfd_link_hash_entry *undefs_tail;
935
936 if (included[indx])
937 continue;
938 if (needed && arsym->file_offset == last_ar_offset)
939 {
940 included[indx] = 1;
941 continue;
942 }
943
944 h = bfd_link_hash_lookup (info->hash, arsym->name,
945 FALSE, FALSE, TRUE);
946
947 if (h == NULL
948 && info->pei386_auto_import
949 && CONST_STRNEQ (arsym->name, "__imp_"))
950 h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
951 FALSE, FALSE, TRUE);
952 if (h == NULL)
953 continue;
954
955 if (h->type != bfd_link_hash_undefined
956 && h->type != bfd_link_hash_common)
957 {
958 if (h->type != bfd_link_hash_undefweak)
959 /* Symbol must be defined. Don't check it again. */
960 included[indx] = 1;
961 continue;
962 }
963
964 if (last_ar_offset != arsym->file_offset)
965 {
966 last_ar_offset = arsym->file_offset;
967 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
968 if (element == NULL
969 || !bfd_check_format (element, bfd_object))
970 goto error_return;
971 }
972
973 undefs_tail = info->hash->undefs_tail;
974
975 /* CHECKFN will see if this element should be included, and
976 go ahead and include it if appropriate. */
977 if (! (*checkfn) (element, info, h, arsym->name, &needed))
978 goto error_return;
979
980 if (needed)
981 {
982 unsigned int mark;
983
984 /* Look backward to mark all symbols from this object file
985 which we have already seen in this pass. */
986 mark = indx;
987 do
988 {
989 included[mark] = 1;
990 if (mark == 0)
991 break;
992 --mark;
993 }
994 while (arsyms[mark].file_offset == last_ar_offset);
995
996 if (undefs_tail != info->hash->undefs_tail)
997 loop = TRUE;
998 }
999 }
1000 } while (loop);
1001
1002 free (included);
1003 return TRUE;
1004
1005 error_return:
1006 free (included);
1007 return FALSE;
1008 }
1009 \f
1010 /* See if we should include an archive element. */
1011
1012 static bfd_boolean
1013 generic_link_check_archive_element (bfd *abfd,
1014 struct bfd_link_info *info,
1015 struct bfd_link_hash_entry *h,
1016 const char *name ATTRIBUTE_UNUSED,
1017 bfd_boolean *pneeded)
1018 {
1019 asymbol **pp, **ppend;
1020
1021 *pneeded = FALSE;
1022
1023 if (!bfd_generic_link_read_symbols (abfd))
1024 return FALSE;
1025
1026 pp = _bfd_generic_link_get_symbols (abfd);
1027 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1028 for (; pp < ppend; pp++)
1029 {
1030 asymbol *p;
1031
1032 p = *pp;
1033
1034 /* We are only interested in globally visible symbols. */
1035 if (! bfd_is_com_section (p->section)
1036 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1037 continue;
1038
1039 /* We are only interested if we know something about this
1040 symbol, and it is undefined or common. An undefined weak
1041 symbol (type bfd_link_hash_undefweak) is not considered to be
1042 a reference when pulling files out of an archive. See the
1043 SVR4 ABI, p. 4-27. */
1044 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1045 FALSE, TRUE);
1046 if (h == NULL
1047 || (h->type != bfd_link_hash_undefined
1048 && h->type != bfd_link_hash_common))
1049 continue;
1050
1051 /* P is a symbol we are looking for. */
1052
1053 if (! bfd_is_com_section (p->section)
1054 || (h->type == bfd_link_hash_undefined
1055 && h->u.undef.abfd == NULL))
1056 {
1057 /* P is not a common symbol, or an undefined reference was
1058 created from outside BFD such as from a linker -u option.
1059 This object file defines the symbol, so pull it in. */
1060 *pneeded = TRUE;
1061 if (!(*info->callbacks
1062 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1063 &abfd))
1064 return FALSE;
1065 /* Potentially, the add_archive_element hook may have set a
1066 substitute BFD for us. */
1067 return bfd_link_add_symbols (abfd, info);
1068 }
1069
1070 /* P is a common symbol. */
1071
1072 if (h->type == bfd_link_hash_undefined)
1073 {
1074 bfd *symbfd;
1075 bfd_vma size;
1076 unsigned int power;
1077
1078 /* Turn the symbol into a common symbol but do not link in
1079 the object file. This is how a.out works. Object
1080 formats that require different semantics must implement
1081 this function differently. This symbol is already on the
1082 undefs list. We add the section to a common section
1083 attached to symbfd to ensure that it is in a BFD which
1084 will be linked in. */
1085 symbfd = h->u.undef.abfd;
1086 h->type = bfd_link_hash_common;
1087 h->u.c.p = (struct bfd_link_hash_common_entry *)
1088 bfd_hash_allocate (&info->hash->table,
1089 sizeof (struct bfd_link_hash_common_entry));
1090 if (h->u.c.p == NULL)
1091 return FALSE;
1092
1093 size = bfd_asymbol_value (p);
1094 h->u.c.size = size;
1095
1096 power = bfd_log2 (size);
1097 if (power > 4)
1098 power = 4;
1099 h->u.c.p->alignment_power = power;
1100
1101 if (p->section == bfd_com_section_ptr)
1102 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1103 else
1104 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1105 p->section->name);
1106 h->u.c.p->section->flags |= SEC_ALLOC;
1107 }
1108 else
1109 {
1110 /* Adjust the size of the common symbol if necessary. This
1111 is how a.out works. Object formats that require
1112 different semantics must implement this function
1113 differently. */
1114 if (bfd_asymbol_value (p) > h->u.c.size)
1115 h->u.c.size = bfd_asymbol_value (p);
1116 }
1117 }
1118
1119 /* This archive element is not needed. */
1120 return TRUE;
1121 }
1122
1123 /* Add the symbols from an object file to the global hash table. ABFD
1124 is the object file. INFO is the linker information. SYMBOL_COUNT
1125 is the number of symbols. SYMBOLS is the list of symbols. */
1126
1127 static bfd_boolean
1128 generic_link_add_symbol_list (bfd *abfd,
1129 struct bfd_link_info *info,
1130 bfd_size_type symbol_count,
1131 asymbol **symbols)
1132 {
1133 asymbol **pp, **ppend;
1134
1135 pp = symbols;
1136 ppend = symbols + symbol_count;
1137 for (; pp < ppend; pp++)
1138 {
1139 asymbol *p;
1140
1141 p = *pp;
1142
1143 if ((p->flags & (BSF_INDIRECT
1144 | BSF_WARNING
1145 | BSF_GLOBAL
1146 | BSF_CONSTRUCTOR
1147 | BSF_WEAK)) != 0
1148 || bfd_is_und_section (bfd_get_section (p))
1149 || bfd_is_com_section (bfd_get_section (p))
1150 || bfd_is_ind_section (bfd_get_section (p)))
1151 {
1152 const char *name;
1153 const char *string;
1154 struct generic_link_hash_entry *h;
1155 struct bfd_link_hash_entry *bh;
1156
1157 string = name = bfd_asymbol_name (p);
1158 if (((p->flags & BSF_INDIRECT) != 0
1159 || bfd_is_ind_section (p->section))
1160 && pp + 1 < ppend)
1161 {
1162 pp++;
1163 string = bfd_asymbol_name (*pp);
1164 }
1165 else if ((p->flags & BSF_WARNING) != 0
1166 && pp + 1 < ppend)
1167 {
1168 /* The name of P is actually the warning string, and the
1169 next symbol is the one to warn about. */
1170 pp++;
1171 name = bfd_asymbol_name (*pp);
1172 }
1173
1174 bh = NULL;
1175 if (! (_bfd_generic_link_add_one_symbol
1176 (info, abfd, name, p->flags, bfd_get_section (p),
1177 p->value, string, FALSE, FALSE, &bh)))
1178 return FALSE;
1179 h = (struct generic_link_hash_entry *) bh;
1180
1181 /* If this is a constructor symbol, and the linker didn't do
1182 anything with it, then we want to just pass the symbol
1183 through to the output file. This will happen when
1184 linking with -r. */
1185 if ((p->flags & BSF_CONSTRUCTOR) != 0
1186 && (h == NULL || h->root.type == bfd_link_hash_new))
1187 {
1188 p->udata.p = NULL;
1189 continue;
1190 }
1191
1192 /* Save the BFD symbol so that we don't lose any backend
1193 specific information that may be attached to it. We only
1194 want this one if it gives more information than the
1195 existing one; we don't want to replace a defined symbol
1196 with an undefined one. This routine may be called with a
1197 hash table other than the generic hash table, so we only
1198 do this if we are certain that the hash table is a
1199 generic one. */
1200 if (info->output_bfd->xvec == abfd->xvec)
1201 {
1202 if (h->sym == NULL
1203 || (! bfd_is_und_section (bfd_get_section (p))
1204 && (! bfd_is_com_section (bfd_get_section (p))
1205 || bfd_is_und_section (bfd_get_section (h->sym)))))
1206 {
1207 h->sym = p;
1208 /* BSF_OLD_COMMON is a hack to support COFF reloc
1209 reading, and it should go away when the COFF
1210 linker is switched to the new version. */
1211 if (bfd_is_com_section (bfd_get_section (p)))
1212 p->flags |= BSF_OLD_COMMON;
1213 }
1214 }
1215
1216 /* Store a back pointer from the symbol to the hash
1217 table entry for the benefit of relaxation code until
1218 it gets rewritten to not use asymbol structures.
1219 Setting this is also used to check whether these
1220 symbols were set up by the generic linker. */
1221 p->udata.p = h;
1222 }
1223 }
1224
1225 return TRUE;
1226 }
1227 \f
1228 /* We use a state table to deal with adding symbols from an object
1229 file. The first index into the state table describes the symbol
1230 from the object file. The second index into the state table is the
1231 type of the symbol in the hash table. */
1232
1233 /* The symbol from the object file is turned into one of these row
1234 values. */
1235
1236 enum link_row
1237 {
1238 UNDEF_ROW, /* Undefined. */
1239 UNDEFW_ROW, /* Weak undefined. */
1240 DEF_ROW, /* Defined. */
1241 DEFW_ROW, /* Weak defined. */
1242 COMMON_ROW, /* Common. */
1243 INDR_ROW, /* Indirect. */
1244 WARN_ROW, /* Warning. */
1245 SET_ROW /* Member of set. */
1246 };
1247
1248 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1249 #undef FAIL
1250
1251 /* The actions to take in the state table. */
1252
1253 enum link_action
1254 {
1255 FAIL, /* Abort. */
1256 UND, /* Mark symbol undefined. */
1257 WEAK, /* Mark symbol weak undefined. */
1258 DEF, /* Mark symbol defined. */
1259 DEFW, /* Mark symbol weak defined. */
1260 COM, /* Mark symbol common. */
1261 REF, /* Mark defined symbol referenced. */
1262 CREF, /* Possibly warn about common reference to defined symbol. */
1263 CDEF, /* Define existing common symbol. */
1264 NOACT, /* No action. */
1265 BIG, /* Mark symbol common using largest size. */
1266 MDEF, /* Multiple definition error. */
1267 MIND, /* Multiple indirect symbols. */
1268 IND, /* Make indirect symbol. */
1269 CIND, /* Make indirect symbol from existing common symbol. */
1270 SET, /* Add value to set. */
1271 MWARN, /* Make warning symbol. */
1272 WARN, /* Warn if referenced, else MWARN. */
1273 CYCLE, /* Repeat with symbol pointed to. */
1274 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1275 WARNC /* Issue warning and then CYCLE. */
1276 };
1277
1278 /* The state table itself. The first index is a link_row and the
1279 second index is a bfd_link_hash_type. */
1280
1281 static const enum link_action link_action[8][8] =
1282 {
1283 /* current\prev new undef undefw def defw com indr warn */
1284 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1285 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1286 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1287 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1288 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1289 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1290 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT },
1291 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1292 };
1293
1294 /* Most of the entries in the LINK_ACTION table are straightforward,
1295 but a few are somewhat subtle.
1296
1297 A reference to an indirect symbol (UNDEF_ROW/indr or
1298 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1299 symbol and to the symbol the indirect symbol points to.
1300
1301 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1302 causes the warning to be issued.
1303
1304 A common definition of an indirect symbol (COMMON_ROW/indr) is
1305 treated as a multiple definition error. Likewise for an indirect
1306 definition of a common symbol (INDR_ROW/com).
1307
1308 An indirect definition of a warning (INDR_ROW/warn) does not cause
1309 the warning to be issued.
1310
1311 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1312 warning is created for the symbol the indirect symbol points to.
1313
1314 Adding an entry to a set does not count as a reference to a set,
1315 and no warning is issued (SET_ROW/warn). */
1316
1317 /* Return the BFD in which a hash entry has been defined, if known. */
1318
1319 static bfd *
1320 hash_entry_bfd (struct bfd_link_hash_entry *h)
1321 {
1322 while (h->type == bfd_link_hash_warning)
1323 h = h->u.i.link;
1324 switch (h->type)
1325 {
1326 default:
1327 return NULL;
1328 case bfd_link_hash_undefined:
1329 case bfd_link_hash_undefweak:
1330 return h->u.undef.abfd;
1331 case bfd_link_hash_defined:
1332 case bfd_link_hash_defweak:
1333 return h->u.def.section->owner;
1334 case bfd_link_hash_common:
1335 return h->u.c.p->section->owner;
1336 }
1337 /*NOTREACHED*/
1338 }
1339
1340 /* Add a symbol to the global hash table.
1341 ABFD is the BFD the symbol comes from.
1342 NAME is the name of the symbol.
1343 FLAGS is the BSF_* bits associated with the symbol.
1344 SECTION is the section in which the symbol is defined; this may be
1345 bfd_und_section_ptr or bfd_com_section_ptr.
1346 VALUE is the value of the symbol, relative to the section.
1347 STRING is used for either an indirect symbol, in which case it is
1348 the name of the symbol to indirect to, or a warning symbol, in
1349 which case it is the warning string.
1350 COPY is TRUE if NAME or STRING must be copied into locally
1351 allocated memory if they need to be saved.
1352 COLLECT is TRUE if we should automatically collect gcc constructor
1353 or destructor names as collect2 does.
1354 HASHP, if not NULL, is a place to store the created hash table
1355 entry; if *HASHP is not NULL, the caller has already looked up
1356 the hash table entry, and stored it in *HASHP. */
1357
1358 bfd_boolean
1359 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1360 bfd *abfd,
1361 const char *name,
1362 flagword flags,
1363 asection *section,
1364 bfd_vma value,
1365 const char *string,
1366 bfd_boolean copy,
1367 bfd_boolean collect,
1368 struct bfd_link_hash_entry **hashp)
1369 {
1370 enum link_row row;
1371 struct bfd_link_hash_entry *h;
1372 struct bfd_link_hash_entry *inh = NULL;
1373 bfd_boolean cycle;
1374
1375 BFD_ASSERT (section != NULL);
1376
1377 if (bfd_is_ind_section (section)
1378 || (flags & BSF_INDIRECT) != 0)
1379 {
1380 row = INDR_ROW;
1381 /* Create the indirect symbol here. This is for the benefit of
1382 the plugin "notice" function.
1383 STRING is the name of the symbol we want to indirect to. */
1384 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1385 copy, FALSE);
1386 if (inh == NULL)
1387 return FALSE;
1388 }
1389 else if ((flags & BSF_WARNING) != 0)
1390 row = WARN_ROW;
1391 else if ((flags & BSF_CONSTRUCTOR) != 0)
1392 row = SET_ROW;
1393 else if (bfd_is_und_section (section))
1394 {
1395 if ((flags & BSF_WEAK) != 0)
1396 row = UNDEFW_ROW;
1397 else
1398 row = UNDEF_ROW;
1399 }
1400 else if ((flags & BSF_WEAK) != 0)
1401 row = DEFW_ROW;
1402 else if (bfd_is_com_section (section))
1403 {
1404 row = COMMON_ROW;
1405 if (!bfd_link_relocatable (info)
1406 && name[0] == '_'
1407 && name[1] == '_'
1408 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1409 _bfd_error_handler
1410 (_("%B: plugin needed to handle lto object"), abfd);
1411 }
1412 else
1413 row = DEF_ROW;
1414
1415 if (hashp != NULL && *hashp != NULL)
1416 h = *hashp;
1417 else
1418 {
1419 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1420 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1421 else
1422 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1423 if (h == NULL)
1424 {
1425 if (hashp != NULL)
1426 *hashp = NULL;
1427 return FALSE;
1428 }
1429 }
1430
1431 if (info->notice_all
1432 || (info->notice_hash != NULL
1433 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1434 {
1435 if (! (*info->callbacks->notice) (info, h, inh,
1436 abfd, section, value, flags))
1437 return FALSE;
1438 }
1439
1440 if (hashp != NULL)
1441 *hashp = h;
1442
1443 do
1444 {
1445 enum link_action action;
1446
1447 cycle = FALSE;
1448 action = link_action[(int) row][(int) h->type];
1449 switch (action)
1450 {
1451 case FAIL:
1452 abort ();
1453
1454 case NOACT:
1455 /* Do nothing. */
1456 break;
1457
1458 case UND:
1459 /* Make a new undefined symbol. */
1460 h->type = bfd_link_hash_undefined;
1461 h->u.undef.abfd = abfd;
1462 bfd_link_add_undef (info->hash, h);
1463 break;
1464
1465 case WEAK:
1466 /* Make a new weak undefined symbol. */
1467 h->type = bfd_link_hash_undefweak;
1468 h->u.undef.abfd = abfd;
1469 break;
1470
1471 case CDEF:
1472 /* We have found a definition for a symbol which was
1473 previously common. */
1474 BFD_ASSERT (h->type == bfd_link_hash_common);
1475 (*info->callbacks->multiple_common) (info, h, abfd,
1476 bfd_link_hash_defined, 0);
1477 /* Fall through. */
1478 case DEF:
1479 case DEFW:
1480 {
1481 enum bfd_link_hash_type oldtype;
1482
1483 /* Define a symbol. */
1484 oldtype = h->type;
1485 if (action == DEFW)
1486 h->type = bfd_link_hash_defweak;
1487 else
1488 h->type = bfd_link_hash_defined;
1489 h->u.def.section = section;
1490 h->u.def.value = value;
1491 h->linker_def = 0;
1492
1493 /* If we have been asked to, we act like collect2 and
1494 identify all functions that might be global
1495 constructors and destructors and pass them up in a
1496 callback. We only do this for certain object file
1497 types, since many object file types can handle this
1498 automatically. */
1499 if (collect && name[0] == '_')
1500 {
1501 const char *s;
1502
1503 /* A constructor or destructor name starts like this:
1504 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1505 the second are the same character (we accept any
1506 character there, in case a new object file format
1507 comes along with even worse naming restrictions). */
1508
1509 #define CONS_PREFIX "GLOBAL_"
1510 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1511
1512 s = name + 1;
1513 while (*s == '_')
1514 ++s;
1515 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1516 {
1517 char c;
1518
1519 c = s[CONS_PREFIX_LEN + 1];
1520 if ((c == 'I' || c == 'D')
1521 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1522 {
1523 /* If this is a definition of a symbol which
1524 was previously weakly defined, we are in
1525 trouble. We have already added a
1526 constructor entry for the weak defined
1527 symbol, and now we are trying to add one
1528 for the new symbol. Fortunately, this case
1529 should never arise in practice. */
1530 if (oldtype == bfd_link_hash_defweak)
1531 abort ();
1532
1533 (*info->callbacks->constructor) (info, c == 'I',
1534 h->root.string, abfd,
1535 section, value);
1536 }
1537 }
1538 }
1539 }
1540
1541 break;
1542
1543 case COM:
1544 /* We have found a common definition for a symbol. */
1545 if (h->type == bfd_link_hash_new)
1546 bfd_link_add_undef (info->hash, h);
1547 h->type = bfd_link_hash_common;
1548 h->u.c.p = (struct bfd_link_hash_common_entry *)
1549 bfd_hash_allocate (&info->hash->table,
1550 sizeof (struct bfd_link_hash_common_entry));
1551 if (h->u.c.p == NULL)
1552 return FALSE;
1553
1554 h->u.c.size = value;
1555
1556 /* Select a default alignment based on the size. This may
1557 be overridden by the caller. */
1558 {
1559 unsigned int power;
1560
1561 power = bfd_log2 (value);
1562 if (power > 4)
1563 power = 4;
1564 h->u.c.p->alignment_power = power;
1565 }
1566
1567 /* The section of a common symbol is only used if the common
1568 symbol is actually allocated. It basically provides a
1569 hook for the linker script to decide which output section
1570 the common symbols should be put in. In most cases, the
1571 section of a common symbol will be bfd_com_section_ptr,
1572 the code here will choose a common symbol section named
1573 "COMMON", and the linker script will contain *(COMMON) in
1574 the appropriate place. A few targets use separate common
1575 sections for small symbols, and they require special
1576 handling. */
1577 if (section == bfd_com_section_ptr)
1578 {
1579 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1580 h->u.c.p->section->flags |= SEC_ALLOC;
1581 }
1582 else if (section->owner != abfd)
1583 {
1584 h->u.c.p->section = bfd_make_section_old_way (abfd,
1585 section->name);
1586 h->u.c.p->section->flags |= SEC_ALLOC;
1587 }
1588 else
1589 h->u.c.p->section = section;
1590 h->linker_def = 0;
1591 break;
1592
1593 case REF:
1594 /* A reference to a defined symbol. */
1595 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1596 h->u.undef.next = h;
1597 break;
1598
1599 case BIG:
1600 /* We have found a common definition for a symbol which
1601 already had a common definition. Use the maximum of the
1602 two sizes, and use the section required by the larger symbol. */
1603 BFD_ASSERT (h->type == bfd_link_hash_common);
1604 (*info->callbacks->multiple_common) (info, h, abfd,
1605 bfd_link_hash_common, value);
1606 if (value > h->u.c.size)
1607 {
1608 unsigned int power;
1609
1610 h->u.c.size = value;
1611
1612 /* Select a default alignment based on the size. This may
1613 be overridden by the caller. */
1614 power = bfd_log2 (value);
1615 if (power > 4)
1616 power = 4;
1617 h->u.c.p->alignment_power = power;
1618
1619 /* Some systems have special treatment for small commons,
1620 hence we want to select the section used by the larger
1621 symbol. This makes sure the symbol does not go in a
1622 small common section if it is now too large. */
1623 if (section == bfd_com_section_ptr)
1624 {
1625 h->u.c.p->section
1626 = bfd_make_section_old_way (abfd, "COMMON");
1627 h->u.c.p->section->flags |= SEC_ALLOC;
1628 }
1629 else if (section->owner != abfd)
1630 {
1631 h->u.c.p->section
1632 = bfd_make_section_old_way (abfd, section->name);
1633 h->u.c.p->section->flags |= SEC_ALLOC;
1634 }
1635 else
1636 h->u.c.p->section = section;
1637 }
1638 break;
1639
1640 case CREF:
1641 /* We have found a common definition for a symbol which
1642 was already defined. */
1643 (*info->callbacks->multiple_common) (info, h, abfd,
1644 bfd_link_hash_common, value);
1645 break;
1646
1647 case MIND:
1648 /* Multiple indirect symbols. This is OK if they both point
1649 to the same symbol. */
1650 if (strcmp (h->u.i.link->root.string, string) == 0)
1651 break;
1652 /* Fall through. */
1653 case MDEF:
1654 /* Handle a multiple definition. */
1655 (*info->callbacks->multiple_definition) (info, h,
1656 abfd, section, value);
1657 break;
1658
1659 case CIND:
1660 /* Create an indirect symbol from an existing common symbol. */
1661 BFD_ASSERT (h->type == bfd_link_hash_common);
1662 (*info->callbacks->multiple_common) (info, h, abfd,
1663 bfd_link_hash_indirect, 0);
1664 /* Fall through. */
1665 case IND:
1666 if (inh->type == bfd_link_hash_indirect
1667 && inh->u.i.link == h)
1668 {
1669 _bfd_error_handler
1670 /* xgettext:c-format */
1671 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1672 abfd, name, string);
1673 bfd_set_error (bfd_error_invalid_operation);
1674 return FALSE;
1675 }
1676 if (inh->type == bfd_link_hash_new)
1677 {
1678 inh->type = bfd_link_hash_undefined;
1679 inh->u.undef.abfd = abfd;
1680 bfd_link_add_undef (info->hash, inh);
1681 }
1682
1683 /* If the indirect symbol has been referenced, we need to
1684 push the reference down to the symbol we are referencing. */
1685 if (h->type != bfd_link_hash_new)
1686 {
1687 /* ??? If inh->type == bfd_link_hash_undefweak this
1688 converts inh to bfd_link_hash_undefined. */
1689 row = UNDEF_ROW;
1690 cycle = TRUE;
1691 }
1692
1693 h->type = bfd_link_hash_indirect;
1694 h->u.i.link = inh;
1695 /* Not setting h = h->u.i.link here means that when cycle is
1696 set above we'll always go to REFC, and then cycle again
1697 to the indirected symbol. This means that any successful
1698 change of an existing symbol to indirect counts as a
1699 reference. ??? That may not be correct when the existing
1700 symbol was defweak. */
1701 break;
1702
1703 case SET:
1704 /* Add an entry to a set. */
1705 (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1706 abfd, section, value);
1707 break;
1708
1709 case WARNC:
1710 /* Issue a warning and cycle, except when the reference is
1711 in LTO IR. */
1712 if (h->u.i.warning != NULL
1713 && (abfd->flags & BFD_PLUGIN) == 0)
1714 {
1715 (*info->callbacks->warning) (info, h->u.i.warning,
1716 h->root.string, abfd, NULL, 0);
1717 /* Only issue a warning once. */
1718 h->u.i.warning = NULL;
1719 }
1720 /* Fall through. */
1721 case CYCLE:
1722 /* Try again with the referenced symbol. */
1723 h = h->u.i.link;
1724 cycle = TRUE;
1725 break;
1726
1727 case REFC:
1728 /* A reference to an indirect symbol. */
1729 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1730 h->u.undef.next = h;
1731 h = h->u.i.link;
1732 cycle = TRUE;
1733 break;
1734
1735 case WARN:
1736 /* Warn if this symbol has been referenced already from non-IR,
1737 otherwise add a warning. */
1738 if ((!info->lto_plugin_active
1739 && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1740 || h->non_ir_ref_regular
1741 || h->non_ir_ref_dynamic)
1742 {
1743 (*info->callbacks->warning) (info, string, h->root.string,
1744 hash_entry_bfd (h), NULL, 0);
1745 break;
1746 }
1747 /* Fall through. */
1748 case MWARN:
1749 /* Make a warning symbol. */
1750 {
1751 struct bfd_link_hash_entry *sub;
1752
1753 /* STRING is the warning to give. */
1754 sub = ((struct bfd_link_hash_entry *)
1755 ((*info->hash->table.newfunc)
1756 (NULL, &info->hash->table, h->root.string)));
1757 if (sub == NULL)
1758 return FALSE;
1759 *sub = *h;
1760 sub->type = bfd_link_hash_warning;
1761 sub->u.i.link = h;
1762 if (! copy)
1763 sub->u.i.warning = string;
1764 else
1765 {
1766 char *w;
1767 size_t len = strlen (string) + 1;
1768
1769 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1770 if (w == NULL)
1771 return FALSE;
1772 memcpy (w, string, len);
1773 sub->u.i.warning = w;
1774 }
1775
1776 bfd_hash_replace (&info->hash->table,
1777 (struct bfd_hash_entry *) h,
1778 (struct bfd_hash_entry *) sub);
1779 if (hashp != NULL)
1780 *hashp = sub;
1781 }
1782 break;
1783 }
1784 }
1785 while (cycle);
1786
1787 return TRUE;
1788 }
1789 \f
1790 /* Generic final link routine. */
1791
1792 bfd_boolean
1793 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1794 {
1795 bfd *sub;
1796 asection *o;
1797 struct bfd_link_order *p;
1798 size_t outsymalloc;
1799 struct generic_write_global_symbol_info wginfo;
1800
1801 bfd_get_outsymbols (abfd) = NULL;
1802 bfd_get_symcount (abfd) = 0;
1803 outsymalloc = 0;
1804
1805 /* Mark all sections which will be included in the output file. */
1806 for (o = abfd->sections; o != NULL; o = o->next)
1807 for (p = o->map_head.link_order; p != NULL; p = p->next)
1808 if (p->type == bfd_indirect_link_order)
1809 p->u.indirect.section->linker_mark = TRUE;
1810
1811 /* Build the output symbol table. */
1812 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1813 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1814 return FALSE;
1815
1816 /* Accumulate the global symbols. */
1817 wginfo.info = info;
1818 wginfo.output_bfd = abfd;
1819 wginfo.psymalloc = &outsymalloc;
1820 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1821 _bfd_generic_link_write_global_symbol,
1822 &wginfo);
1823
1824 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1825 shouldn't really need one, since we have SYMCOUNT, but some old
1826 code still expects one. */
1827 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1828 return FALSE;
1829
1830 if (bfd_link_relocatable (info))
1831 {
1832 /* Allocate space for the output relocs for each section. */
1833 for (o = abfd->sections; o != NULL; o = o->next)
1834 {
1835 o->reloc_count = 0;
1836 for (p = o->map_head.link_order; p != NULL; p = p->next)
1837 {
1838 if (p->type == bfd_section_reloc_link_order
1839 || p->type == bfd_symbol_reloc_link_order)
1840 ++o->reloc_count;
1841 else if (p->type == bfd_indirect_link_order)
1842 {
1843 asection *input_section;
1844 bfd *input_bfd;
1845 long relsize;
1846 arelent **relocs;
1847 asymbol **symbols;
1848 long reloc_count;
1849
1850 input_section = p->u.indirect.section;
1851 input_bfd = input_section->owner;
1852 relsize = bfd_get_reloc_upper_bound (input_bfd,
1853 input_section);
1854 if (relsize < 0)
1855 return FALSE;
1856 relocs = (arelent **) bfd_malloc (relsize);
1857 if (!relocs && relsize != 0)
1858 return FALSE;
1859 symbols = _bfd_generic_link_get_symbols (input_bfd);
1860 reloc_count = bfd_canonicalize_reloc (input_bfd,
1861 input_section,
1862 relocs,
1863 symbols);
1864 free (relocs);
1865 if (reloc_count < 0)
1866 return FALSE;
1867 BFD_ASSERT ((unsigned long) reloc_count
1868 == input_section->reloc_count);
1869 o->reloc_count += reloc_count;
1870 }
1871 }
1872 if (o->reloc_count > 0)
1873 {
1874 bfd_size_type amt;
1875
1876 amt = o->reloc_count;
1877 amt *= sizeof (arelent *);
1878 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1879 if (!o->orelocation)
1880 return FALSE;
1881 o->flags |= SEC_RELOC;
1882 /* Reset the count so that it can be used as an index
1883 when putting in the output relocs. */
1884 o->reloc_count = 0;
1885 }
1886 }
1887 }
1888
1889 /* Handle all the link order information for the sections. */
1890 for (o = abfd->sections; o != NULL; o = o->next)
1891 {
1892 for (p = o->map_head.link_order; p != NULL; p = p->next)
1893 {
1894 switch (p->type)
1895 {
1896 case bfd_section_reloc_link_order:
1897 case bfd_symbol_reloc_link_order:
1898 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1899 return FALSE;
1900 break;
1901 case bfd_indirect_link_order:
1902 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
1903 return FALSE;
1904 break;
1905 default:
1906 if (! _bfd_default_link_order (abfd, info, o, p))
1907 return FALSE;
1908 break;
1909 }
1910 }
1911 }
1912
1913 return TRUE;
1914 }
1915
1916 /* Add an output symbol to the output BFD. */
1917
1918 static bfd_boolean
1919 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1920 {
1921 if (bfd_get_symcount (output_bfd) >= *psymalloc)
1922 {
1923 asymbol **newsyms;
1924 bfd_size_type amt;
1925
1926 if (*psymalloc == 0)
1927 *psymalloc = 124;
1928 else
1929 *psymalloc *= 2;
1930 amt = *psymalloc;
1931 amt *= sizeof (asymbol *);
1932 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
1933 if (newsyms == NULL)
1934 return FALSE;
1935 bfd_get_outsymbols (output_bfd) = newsyms;
1936 }
1937
1938 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
1939 if (sym != NULL)
1940 ++ bfd_get_symcount (output_bfd);
1941
1942 return TRUE;
1943 }
1944
1945 /* Handle the symbols for an input BFD. */
1946
1947 bfd_boolean
1948 _bfd_generic_link_output_symbols (bfd *output_bfd,
1949 bfd *input_bfd,
1950 struct bfd_link_info *info,
1951 size_t *psymalloc)
1952 {
1953 asymbol **sym_ptr;
1954 asymbol **sym_end;
1955
1956 if (!bfd_generic_link_read_symbols (input_bfd))
1957 return FALSE;
1958
1959 /* Create a filename symbol if we are supposed to. */
1960 if (info->create_object_symbols_section != NULL)
1961 {
1962 asection *sec;
1963
1964 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
1965 {
1966 if (sec->output_section == info->create_object_symbols_section)
1967 {
1968 asymbol *newsym;
1969
1970 newsym = bfd_make_empty_symbol (input_bfd);
1971 if (!newsym)
1972 return FALSE;
1973 newsym->name = input_bfd->filename;
1974 newsym->value = 0;
1975 newsym->flags = BSF_LOCAL | BSF_FILE;
1976 newsym->section = sec;
1977
1978 if (! generic_add_output_symbol (output_bfd, psymalloc,
1979 newsym))
1980 return FALSE;
1981
1982 break;
1983 }
1984 }
1985 }
1986
1987 /* Adjust the values of the globally visible symbols, and write out
1988 local symbols. */
1989 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
1990 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
1991 for (; sym_ptr < sym_end; sym_ptr++)
1992 {
1993 asymbol *sym;
1994 struct generic_link_hash_entry *h;
1995 bfd_boolean output;
1996
1997 h = NULL;
1998 sym = *sym_ptr;
1999 if ((sym->flags & (BSF_INDIRECT
2000 | BSF_WARNING
2001 | BSF_GLOBAL
2002 | BSF_CONSTRUCTOR
2003 | BSF_WEAK)) != 0
2004 || bfd_is_und_section (bfd_get_section (sym))
2005 || bfd_is_com_section (bfd_get_section (sym))
2006 || bfd_is_ind_section (bfd_get_section (sym)))
2007 {
2008 if (sym->udata.p != NULL)
2009 h = (struct generic_link_hash_entry *) sym->udata.p;
2010 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2011 {
2012 /* This case normally means that the main linker code
2013 deliberately ignored this constructor symbol. We
2014 should just pass it through. This will screw up if
2015 the constructor symbol is from a different,
2016 non-generic, object file format, but the case will
2017 only arise when linking with -r, which will probably
2018 fail anyhow, since there will be no way to represent
2019 the relocs in the output format being used. */
2020 h = NULL;
2021 }
2022 else if (bfd_is_und_section (bfd_get_section (sym)))
2023 h = ((struct generic_link_hash_entry *)
2024 bfd_wrapped_link_hash_lookup (output_bfd, info,
2025 bfd_asymbol_name (sym),
2026 FALSE, FALSE, TRUE));
2027 else
2028 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2029 bfd_asymbol_name (sym),
2030 FALSE, FALSE, TRUE);
2031
2032 if (h != NULL)
2033 {
2034 /* Force all references to this symbol to point to
2035 the same area in memory. It is possible that
2036 this routine will be called with a hash table
2037 other than a generic hash table, so we double
2038 check that. */
2039 if (info->output_bfd->xvec == input_bfd->xvec)
2040 {
2041 if (h->sym != NULL)
2042 *sym_ptr = sym = h->sym;
2043 }
2044
2045 switch (h->root.type)
2046 {
2047 default:
2048 case bfd_link_hash_new:
2049 abort ();
2050 case bfd_link_hash_undefined:
2051 break;
2052 case bfd_link_hash_undefweak:
2053 sym->flags |= BSF_WEAK;
2054 break;
2055 case bfd_link_hash_indirect:
2056 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2057 /* fall through */
2058 case bfd_link_hash_defined:
2059 sym->flags |= BSF_GLOBAL;
2060 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2061 sym->value = h->root.u.def.value;
2062 sym->section = h->root.u.def.section;
2063 break;
2064 case bfd_link_hash_defweak:
2065 sym->flags |= BSF_WEAK;
2066 sym->flags &=~ BSF_CONSTRUCTOR;
2067 sym->value = h->root.u.def.value;
2068 sym->section = h->root.u.def.section;
2069 break;
2070 case bfd_link_hash_common:
2071 sym->value = h->root.u.c.size;
2072 sym->flags |= BSF_GLOBAL;
2073 if (! bfd_is_com_section (sym->section))
2074 {
2075 BFD_ASSERT (bfd_is_und_section (sym->section));
2076 sym->section = bfd_com_section_ptr;
2077 }
2078 /* We do not set the section of the symbol to
2079 h->root.u.c.p->section. That value was saved so
2080 that we would know where to allocate the symbol
2081 if it was defined. In this case the type is
2082 still bfd_link_hash_common, so we did not define
2083 it, so we do not want to use that section. */
2084 break;
2085 }
2086 }
2087 }
2088
2089 /* This switch is straight from the old code in
2090 write_file_locals in ldsym.c. */
2091 if (info->strip == strip_all
2092 || (info->strip == strip_some
2093 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2094 FALSE, FALSE) == NULL))
2095 output = FALSE;
2096 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0)
2097 {
2098 /* If this symbol is marked as occurring now, rather
2099 than at the end, output it now. This is used for
2100 COFF C_EXT FCN symbols. FIXME: There must be a
2101 better way. */
2102 if (bfd_asymbol_bfd (sym) == input_bfd
2103 && (sym->flags & BSF_NOT_AT_END) != 0)
2104 output = TRUE;
2105 else
2106 output = FALSE;
2107 }
2108 else if (bfd_is_ind_section (sym->section))
2109 output = FALSE;
2110 else if ((sym->flags & BSF_DEBUGGING) != 0)
2111 {
2112 if (info->strip == strip_none)
2113 output = TRUE;
2114 else
2115 output = FALSE;
2116 }
2117 else if (bfd_is_und_section (sym->section)
2118 || bfd_is_com_section (sym->section))
2119 output = FALSE;
2120 else if ((sym->flags & BSF_LOCAL) != 0)
2121 {
2122 if ((sym->flags & BSF_WARNING) != 0)
2123 output = FALSE;
2124 else
2125 {
2126 switch (info->discard)
2127 {
2128 default:
2129 case discard_all:
2130 output = FALSE;
2131 break;
2132 case discard_sec_merge:
2133 output = TRUE;
2134 if (bfd_link_relocatable (info)
2135 || ! (sym->section->flags & SEC_MERGE))
2136 break;
2137 /* FALLTHROUGH */
2138 case discard_l:
2139 if (bfd_is_local_label (input_bfd, sym))
2140 output = FALSE;
2141 else
2142 output = TRUE;
2143 break;
2144 case discard_none:
2145 output = TRUE;
2146 break;
2147 }
2148 }
2149 }
2150 else if ((sym->flags & BSF_CONSTRUCTOR))
2151 {
2152 if (info->strip != strip_all)
2153 output = TRUE;
2154 else
2155 output = FALSE;
2156 }
2157 else if (sym->flags == 0
2158 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2159 /* LTO doesn't set symbol information. We get here with the
2160 generic linker for a symbol that was "common" but no longer
2161 needs to be global. */
2162 output = FALSE;
2163 else
2164 abort ();
2165
2166 /* If this symbol is in a section which is not being included
2167 in the output file, then we don't want to output the
2168 symbol. */
2169 if (!bfd_is_abs_section (sym->section)
2170 && bfd_section_removed_from_list (output_bfd,
2171 sym->section->output_section))
2172 output = FALSE;
2173
2174 if (output)
2175 {
2176 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2177 return FALSE;
2178 if (h != NULL)
2179 h->written = TRUE;
2180 }
2181 }
2182
2183 return TRUE;
2184 }
2185
2186 /* Set the section and value of a generic BFD symbol based on a linker
2187 hash table entry. */
2188
2189 static void
2190 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2191 {
2192 switch (h->type)
2193 {
2194 default:
2195 abort ();
2196 break;
2197 case bfd_link_hash_new:
2198 /* This can happen when a constructor symbol is seen but we are
2199 not building constructors. */
2200 if (sym->section != NULL)
2201 {
2202 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2203 }
2204 else
2205 {
2206 sym->flags |= BSF_CONSTRUCTOR;
2207 sym->section = bfd_abs_section_ptr;
2208 sym->value = 0;
2209 }
2210 break;
2211 case bfd_link_hash_undefined:
2212 sym->section = bfd_und_section_ptr;
2213 sym->value = 0;
2214 break;
2215 case bfd_link_hash_undefweak:
2216 sym->section = bfd_und_section_ptr;
2217 sym->value = 0;
2218 sym->flags |= BSF_WEAK;
2219 break;
2220 case bfd_link_hash_defined:
2221 sym->section = h->u.def.section;
2222 sym->value = h->u.def.value;
2223 break;
2224 case bfd_link_hash_defweak:
2225 sym->flags |= BSF_WEAK;
2226 sym->section = h->u.def.section;
2227 sym->value = h->u.def.value;
2228 break;
2229 case bfd_link_hash_common:
2230 sym->value = h->u.c.size;
2231 if (sym->section == NULL)
2232 sym->section = bfd_com_section_ptr;
2233 else if (! bfd_is_com_section (sym->section))
2234 {
2235 BFD_ASSERT (bfd_is_und_section (sym->section));
2236 sym->section = bfd_com_section_ptr;
2237 }
2238 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2239 break;
2240 case bfd_link_hash_indirect:
2241 case bfd_link_hash_warning:
2242 /* FIXME: What should we do here? */
2243 break;
2244 }
2245 }
2246
2247 /* Write out a global symbol, if it hasn't already been written out.
2248 This is called for each symbol in the hash table. */
2249
2250 bfd_boolean
2251 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2252 void *data)
2253 {
2254 struct generic_write_global_symbol_info *wginfo =
2255 (struct generic_write_global_symbol_info *) data;
2256 asymbol *sym;
2257
2258 if (h->written)
2259 return TRUE;
2260
2261 h->written = TRUE;
2262
2263 if (wginfo->info->strip == strip_all
2264 || (wginfo->info->strip == strip_some
2265 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2266 FALSE, FALSE) == NULL))
2267 return TRUE;
2268
2269 if (h->sym != NULL)
2270 sym = h->sym;
2271 else
2272 {
2273 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2274 if (!sym)
2275 return FALSE;
2276 sym->name = h->root.root.string;
2277 sym->flags = 0;
2278 }
2279
2280 set_symbol_from_hash (sym, &h->root);
2281
2282 sym->flags |= BSF_GLOBAL;
2283
2284 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2285 sym))
2286 {
2287 /* FIXME: No way to return failure. */
2288 abort ();
2289 }
2290
2291 return TRUE;
2292 }
2293
2294 /* Create a relocation. */
2295
2296 bfd_boolean
2297 _bfd_generic_reloc_link_order (bfd *abfd,
2298 struct bfd_link_info *info,
2299 asection *sec,
2300 struct bfd_link_order *link_order)
2301 {
2302 arelent *r;
2303
2304 if (! bfd_link_relocatable (info))
2305 abort ();
2306 if (sec->orelocation == NULL)
2307 abort ();
2308
2309 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2310 if (r == NULL)
2311 return FALSE;
2312
2313 r->address = link_order->offset;
2314 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2315 if (r->howto == 0)
2316 {
2317 bfd_set_error (bfd_error_bad_value);
2318 return FALSE;
2319 }
2320
2321 /* Get the symbol to use for the relocation. */
2322 if (link_order->type == bfd_section_reloc_link_order)
2323 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2324 else
2325 {
2326 struct generic_link_hash_entry *h;
2327
2328 h = ((struct generic_link_hash_entry *)
2329 bfd_wrapped_link_hash_lookup (abfd, info,
2330 link_order->u.reloc.p->u.name,
2331 FALSE, FALSE, TRUE));
2332 if (h == NULL
2333 || ! h->written)
2334 {
2335 (*info->callbacks->unattached_reloc)
2336 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
2337 bfd_set_error (bfd_error_bad_value);
2338 return FALSE;
2339 }
2340 r->sym_ptr_ptr = &h->sym;
2341 }
2342
2343 /* If this is an inplace reloc, write the addend to the object file.
2344 Otherwise, store it in the reloc addend. */
2345 if (! r->howto->partial_inplace)
2346 r->addend = link_order->u.reloc.p->addend;
2347 else
2348 {
2349 bfd_size_type size;
2350 bfd_reloc_status_type rstat;
2351 bfd_byte *buf;
2352 bfd_boolean ok;
2353 file_ptr loc;
2354
2355 size = bfd_get_reloc_size (r->howto);
2356 buf = (bfd_byte *) bfd_zmalloc (size);
2357 if (buf == NULL && size != 0)
2358 return FALSE;
2359 rstat = _bfd_relocate_contents (r->howto, abfd,
2360 (bfd_vma) link_order->u.reloc.p->addend,
2361 buf);
2362 switch (rstat)
2363 {
2364 case bfd_reloc_ok:
2365 break;
2366 default:
2367 case bfd_reloc_outofrange:
2368 abort ();
2369 case bfd_reloc_overflow:
2370 (*info->callbacks->reloc_overflow)
2371 (info, NULL,
2372 (link_order->type == bfd_section_reloc_link_order
2373 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2374 : link_order->u.reloc.p->u.name),
2375 r->howto->name, link_order->u.reloc.p->addend,
2376 NULL, NULL, 0);
2377 break;
2378 }
2379 loc = link_order->offset * bfd_octets_per_byte (abfd);
2380 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2381 free (buf);
2382 if (! ok)
2383 return FALSE;
2384
2385 r->addend = 0;
2386 }
2387
2388 sec->orelocation[sec->reloc_count] = r;
2389 ++sec->reloc_count;
2390
2391 return TRUE;
2392 }
2393 \f
2394 /* Allocate a new link_order for a section. */
2395
2396 struct bfd_link_order *
2397 bfd_new_link_order (bfd *abfd, asection *section)
2398 {
2399 bfd_size_type amt = sizeof (struct bfd_link_order);
2400 struct bfd_link_order *new_lo;
2401
2402 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2403 if (!new_lo)
2404 return NULL;
2405
2406 new_lo->type = bfd_undefined_link_order;
2407
2408 if (section->map_tail.link_order != NULL)
2409 section->map_tail.link_order->next = new_lo;
2410 else
2411 section->map_head.link_order = new_lo;
2412 section->map_tail.link_order = new_lo;
2413
2414 return new_lo;
2415 }
2416
2417 /* Default link order processing routine. Note that we can not handle
2418 the reloc_link_order types here, since they depend upon the details
2419 of how the particular backends generates relocs. */
2420
2421 bfd_boolean
2422 _bfd_default_link_order (bfd *abfd,
2423 struct bfd_link_info *info,
2424 asection *sec,
2425 struct bfd_link_order *link_order)
2426 {
2427 switch (link_order->type)
2428 {
2429 case bfd_undefined_link_order:
2430 case bfd_section_reloc_link_order:
2431 case bfd_symbol_reloc_link_order:
2432 default:
2433 abort ();
2434 case bfd_indirect_link_order:
2435 return default_indirect_link_order (abfd, info, sec, link_order,
2436 FALSE);
2437 case bfd_data_link_order:
2438 return default_data_link_order (abfd, info, sec, link_order);
2439 }
2440 }
2441
2442 /* Default routine to handle a bfd_data_link_order. */
2443
2444 static bfd_boolean
2445 default_data_link_order (bfd *abfd,
2446 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2447 asection *sec,
2448 struct bfd_link_order *link_order)
2449 {
2450 bfd_size_type size;
2451 size_t fill_size;
2452 bfd_byte *fill;
2453 file_ptr loc;
2454 bfd_boolean result;
2455
2456 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2457
2458 size = link_order->size;
2459 if (size == 0)
2460 return TRUE;
2461
2462 fill = link_order->u.data.contents;
2463 fill_size = link_order->u.data.size;
2464 if (fill_size == 0)
2465 {
2466 fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2467 (sec->flags & SEC_CODE) != 0);
2468 if (fill == NULL)
2469 return FALSE;
2470 }
2471 else if (fill_size < size)
2472 {
2473 bfd_byte *p;
2474 fill = (bfd_byte *) bfd_malloc (size);
2475 if (fill == NULL)
2476 return FALSE;
2477 p = fill;
2478 if (fill_size == 1)
2479 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2480 else
2481 {
2482 do
2483 {
2484 memcpy (p, link_order->u.data.contents, fill_size);
2485 p += fill_size;
2486 size -= fill_size;
2487 }
2488 while (size >= fill_size);
2489 if (size != 0)
2490 memcpy (p, link_order->u.data.contents, (size_t) size);
2491 size = link_order->size;
2492 }
2493 }
2494
2495 loc = link_order->offset * bfd_octets_per_byte (abfd);
2496 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2497
2498 if (fill != link_order->u.data.contents)
2499 free (fill);
2500 return result;
2501 }
2502
2503 /* Default routine to handle a bfd_indirect_link_order. */
2504
2505 static bfd_boolean
2506 default_indirect_link_order (bfd *output_bfd,
2507 struct bfd_link_info *info,
2508 asection *output_section,
2509 struct bfd_link_order *link_order,
2510 bfd_boolean generic_linker)
2511 {
2512 asection *input_section;
2513 bfd *input_bfd;
2514 bfd_byte *contents = NULL;
2515 bfd_byte *new_contents;
2516 bfd_size_type sec_size;
2517 file_ptr loc;
2518
2519 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2520
2521 input_section = link_order->u.indirect.section;
2522 input_bfd = input_section->owner;
2523 if (input_section->size == 0)
2524 return TRUE;
2525
2526 BFD_ASSERT (input_section->output_section == output_section);
2527 BFD_ASSERT (input_section->output_offset == link_order->offset);
2528 BFD_ASSERT (input_section->size == link_order->size);
2529
2530 if (bfd_link_relocatable (info)
2531 && input_section->reloc_count > 0
2532 && output_section->orelocation == NULL)
2533 {
2534 /* Space has not been allocated for the output relocations.
2535 This can happen when we are called by a specific backend
2536 because somebody is attempting to link together different
2537 types of object files. Handling this case correctly is
2538 difficult, and sometimes impossible. */
2539 _bfd_error_handler
2540 /* xgettext:c-format */
2541 (_("Attempt to do relocatable link with %s input and %s output"),
2542 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2543 bfd_set_error (bfd_error_wrong_format);
2544 return FALSE;
2545 }
2546
2547 if (! generic_linker)
2548 {
2549 asymbol **sympp;
2550 asymbol **symppend;
2551
2552 /* Get the canonical symbols. The generic linker will always
2553 have retrieved them by this point, but we are being called by
2554 a specific linker, presumably because we are linking
2555 different types of object files together. */
2556 if (!bfd_generic_link_read_symbols (input_bfd))
2557 return FALSE;
2558
2559 /* Since we have been called by a specific linker, rather than
2560 the generic linker, the values of the symbols will not be
2561 right. They will be the values as seen in the input file,
2562 not the values of the final link. We need to fix them up
2563 before we can relocate the section. */
2564 sympp = _bfd_generic_link_get_symbols (input_bfd);
2565 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2566 for (; sympp < symppend; sympp++)
2567 {
2568 asymbol *sym;
2569 struct bfd_link_hash_entry *h;
2570
2571 sym = *sympp;
2572
2573 if ((sym->flags & (BSF_INDIRECT
2574 | BSF_WARNING
2575 | BSF_GLOBAL
2576 | BSF_CONSTRUCTOR
2577 | BSF_WEAK)) != 0
2578 || bfd_is_und_section (bfd_get_section (sym))
2579 || bfd_is_com_section (bfd_get_section (sym))
2580 || bfd_is_ind_section (bfd_get_section (sym)))
2581 {
2582 /* sym->udata may have been set by
2583 generic_link_add_symbol_list. */
2584 if (sym->udata.p != NULL)
2585 h = (struct bfd_link_hash_entry *) sym->udata.p;
2586 else if (bfd_is_und_section (bfd_get_section (sym)))
2587 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2588 bfd_asymbol_name (sym),
2589 FALSE, FALSE, TRUE);
2590 else
2591 h = bfd_link_hash_lookup (info->hash,
2592 bfd_asymbol_name (sym),
2593 FALSE, FALSE, TRUE);
2594 if (h != NULL)
2595 set_symbol_from_hash (sym, h);
2596 }
2597 }
2598 }
2599
2600 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2601 && input_section->size != 0)
2602 {
2603 /* Group section contents are set by bfd_elf_set_group_contents. */
2604 if (!output_bfd->output_has_begun)
2605 {
2606 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2607 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2608 goto error_return;
2609 }
2610 new_contents = output_section->contents;
2611 BFD_ASSERT (new_contents != NULL);
2612 BFD_ASSERT (input_section->output_offset == 0);
2613 }
2614 else
2615 {
2616 /* Get and relocate the section contents. */
2617 sec_size = (input_section->rawsize > input_section->size
2618 ? input_section->rawsize
2619 : input_section->size);
2620 contents = (bfd_byte *) bfd_malloc (sec_size);
2621 if (contents == NULL && sec_size != 0)
2622 goto error_return;
2623 new_contents = (bfd_get_relocated_section_contents
2624 (output_bfd, info, link_order, contents,
2625 bfd_link_relocatable (info),
2626 _bfd_generic_link_get_symbols (input_bfd)));
2627 if (!new_contents)
2628 goto error_return;
2629 }
2630
2631 /* Output the section contents. */
2632 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2633 if (! bfd_set_section_contents (output_bfd, output_section,
2634 new_contents, loc, input_section->size))
2635 goto error_return;
2636
2637 if (contents != NULL)
2638 free (contents);
2639 return TRUE;
2640
2641 error_return:
2642 if (contents != NULL)
2643 free (contents);
2644 return FALSE;
2645 }
2646
2647 /* A little routine to count the number of relocs in a link_order
2648 list. */
2649
2650 unsigned int
2651 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2652 {
2653 register unsigned int c;
2654 register struct bfd_link_order *l;
2655
2656 c = 0;
2657 for (l = link_order; l != NULL; l = l->next)
2658 {
2659 if (l->type == bfd_section_reloc_link_order
2660 || l->type == bfd_symbol_reloc_link_order)
2661 ++c;
2662 }
2663
2664 return c;
2665 }
2666
2667 /*
2668 FUNCTION
2669 bfd_link_split_section
2670
2671 SYNOPSIS
2672 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2673
2674 DESCRIPTION
2675 Return nonzero if @var{sec} should be split during a
2676 reloceatable or final link.
2677
2678 .#define bfd_link_split_section(abfd, sec) \
2679 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2680 .
2681
2682 */
2683
2684 bfd_boolean
2685 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2686 asection *sec ATTRIBUTE_UNUSED)
2687 {
2688 return FALSE;
2689 }
2690
2691 /*
2692 FUNCTION
2693 bfd_section_already_linked
2694
2695 SYNOPSIS
2696 bfd_boolean bfd_section_already_linked (bfd *abfd,
2697 asection *sec,
2698 struct bfd_link_info *info);
2699
2700 DESCRIPTION
2701 Check if @var{data} has been already linked during a reloceatable
2702 or final link. Return TRUE if it has.
2703
2704 .#define bfd_section_already_linked(abfd, sec, info) \
2705 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2706 .
2707
2708 */
2709
2710 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2711 once into the output. This routine checks each section, and
2712 arrange to discard it if a section of the same name has already
2713 been linked. This code assumes that all relevant sections have the
2714 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2715 section name. bfd_section_already_linked is called via
2716 bfd_map_over_sections. */
2717
2718 /* The hash table. */
2719
2720 static struct bfd_hash_table _bfd_section_already_linked_table;
2721
2722 /* Support routines for the hash table used by section_already_linked,
2723 initialize the table, traverse, lookup, fill in an entry and remove
2724 the table. */
2725
2726 void
2727 bfd_section_already_linked_table_traverse
2728 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2729 void *), void *info)
2730 {
2731 bfd_hash_traverse (&_bfd_section_already_linked_table,
2732 (bfd_boolean (*) (struct bfd_hash_entry *,
2733 void *)) func,
2734 info);
2735 }
2736
2737 struct bfd_section_already_linked_hash_entry *
2738 bfd_section_already_linked_table_lookup (const char *name)
2739 {
2740 return ((struct bfd_section_already_linked_hash_entry *)
2741 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2742 TRUE, FALSE));
2743 }
2744
2745 bfd_boolean
2746 bfd_section_already_linked_table_insert
2747 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2748 asection *sec)
2749 {
2750 struct bfd_section_already_linked *l;
2751
2752 /* Allocate the memory from the same obstack as the hash table is
2753 kept in. */
2754 l = (struct bfd_section_already_linked *)
2755 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2756 if (l == NULL)
2757 return FALSE;
2758 l->sec = sec;
2759 l->next = already_linked_list->entry;
2760 already_linked_list->entry = l;
2761 return TRUE;
2762 }
2763
2764 static struct bfd_hash_entry *
2765 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2766 struct bfd_hash_table *table,
2767 const char *string ATTRIBUTE_UNUSED)
2768 {
2769 struct bfd_section_already_linked_hash_entry *ret =
2770 (struct bfd_section_already_linked_hash_entry *)
2771 bfd_hash_allocate (table, sizeof *ret);
2772
2773 if (ret == NULL)
2774 return NULL;
2775
2776 ret->entry = NULL;
2777
2778 return &ret->root;
2779 }
2780
2781 bfd_boolean
2782 bfd_section_already_linked_table_init (void)
2783 {
2784 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2785 already_linked_newfunc,
2786 sizeof (struct bfd_section_already_linked_hash_entry),
2787 42);
2788 }
2789
2790 void
2791 bfd_section_already_linked_table_free (void)
2792 {
2793 bfd_hash_table_free (&_bfd_section_already_linked_table);
2794 }
2795
2796 /* Report warnings as appropriate for duplicate section SEC.
2797 Return FALSE if we decide to keep SEC after all. */
2798
2799 bfd_boolean
2800 _bfd_handle_already_linked (asection *sec,
2801 struct bfd_section_already_linked *l,
2802 struct bfd_link_info *info)
2803 {
2804 switch (sec->flags & SEC_LINK_DUPLICATES)
2805 {
2806 default:
2807 abort ();
2808
2809 case SEC_LINK_DUPLICATES_DISCARD:
2810 /* If we found an LTO IR match for this comdat group on
2811 the first pass, replace it with the LTO output on the
2812 second pass. We can't simply choose real object
2813 files over IR because the first pass may contain a
2814 mix of LTO and normal objects and we must keep the
2815 first match, be it IR or real. */
2816 if (sec->owner->lto_output
2817 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2818 {
2819 l->sec = sec;
2820 return FALSE;
2821 }
2822 break;
2823
2824 case SEC_LINK_DUPLICATES_ONE_ONLY:
2825 info->callbacks->einfo
2826 /* xgettext:c-format */
2827 (_("%B: ignoring duplicate section `%A'\n"),
2828 sec->owner, sec);
2829 break;
2830
2831 case SEC_LINK_DUPLICATES_SAME_SIZE:
2832 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2833 ;
2834 else if (sec->size != l->sec->size)
2835 info->callbacks->einfo
2836 /* xgettext:c-format */
2837 (_("%B: duplicate section `%A' has different size\n"),
2838 sec->owner, sec);
2839 break;
2840
2841 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2842 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2843 ;
2844 else if (sec->size != l->sec->size)
2845 info->callbacks->einfo
2846 /* xgettext:c-format */
2847 (_("%B: duplicate section `%A' has different size\n"),
2848 sec->owner, sec);
2849 else if (sec->size != 0)
2850 {
2851 bfd_byte *sec_contents, *l_sec_contents = NULL;
2852
2853 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2854 info->callbacks->einfo
2855 /* xgettext:c-format */
2856 (_("%B: could not read contents of section `%A'\n"),
2857 sec->owner, sec);
2858 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2859 &l_sec_contents))
2860 info->callbacks->einfo
2861 /* xgettext:c-format */
2862 (_("%B: could not read contents of section `%A'\n"),
2863 l->sec->owner, l->sec);
2864 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2865 info->callbacks->einfo
2866 /* xgettext:c-format */
2867 (_("%B: duplicate section `%A' has different contents\n"),
2868 sec->owner, sec);
2869
2870 if (sec_contents)
2871 free (sec_contents);
2872 if (l_sec_contents)
2873 free (l_sec_contents);
2874 }
2875 break;
2876 }
2877
2878 /* Set the output_section field so that lang_add_section
2879 does not create a lang_input_section structure for this
2880 section. Since there might be a symbol in the section
2881 being discarded, we must retain a pointer to the section
2882 which we are really going to use. */
2883 sec->output_section = bfd_abs_section_ptr;
2884 sec->kept_section = l->sec;
2885 return TRUE;
2886 }
2887
2888 /* This is used on non-ELF inputs. */
2889
2890 bfd_boolean
2891 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2892 asection *sec,
2893 struct bfd_link_info *info)
2894 {
2895 const char *name;
2896 struct bfd_section_already_linked *l;
2897 struct bfd_section_already_linked_hash_entry *already_linked_list;
2898
2899 if ((sec->flags & SEC_LINK_ONCE) == 0)
2900 return FALSE;
2901
2902 /* The generic linker doesn't handle section groups. */
2903 if ((sec->flags & SEC_GROUP) != 0)
2904 return FALSE;
2905
2906 /* FIXME: When doing a relocatable link, we may have trouble
2907 copying relocations in other sections that refer to local symbols
2908 in the section being discarded. Those relocations will have to
2909 be converted somehow; as of this writing I'm not sure that any of
2910 the backends handle that correctly.
2911
2912 It is tempting to instead not discard link once sections when
2913 doing a relocatable link (technically, they should be discarded
2914 whenever we are building constructors). However, that fails,
2915 because the linker winds up combining all the link once sections
2916 into a single large link once section, which defeats the purpose
2917 of having link once sections in the first place. */
2918
2919 name = bfd_get_section_name (abfd, sec);
2920
2921 already_linked_list = bfd_section_already_linked_table_lookup (name);
2922
2923 l = already_linked_list->entry;
2924 if (l != NULL)
2925 {
2926 /* The section has already been linked. See if we should
2927 issue a warning. */
2928 return _bfd_handle_already_linked (sec, l, info);
2929 }
2930
2931 /* This is the first section with this name. Record it. */
2932 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
2933 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
2934 return FALSE;
2935 }
2936
2937 /* Choose a neighbouring section to S in OBFD that will be output, or
2938 the absolute section if ADDR is out of bounds of the neighbours. */
2939
2940 asection *
2941 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
2942 {
2943 asection *next, *prev, *best;
2944
2945 /* Find preceding kept section. */
2946 for (prev = s->prev; prev != NULL; prev = prev->prev)
2947 if ((prev->flags & SEC_EXCLUDE) == 0
2948 && !bfd_section_removed_from_list (obfd, prev))
2949 break;
2950
2951 /* Find following kept section. Start at prev->next because
2952 other sections may have been added after S was removed. */
2953 if (s->prev != NULL)
2954 next = s->prev->next;
2955 else
2956 next = s->owner->sections;
2957 for (; next != NULL; next = next->next)
2958 if ((next->flags & SEC_EXCLUDE) == 0
2959 && !bfd_section_removed_from_list (obfd, next))
2960 break;
2961
2962 /* Choose better of two sections, based on flags. The idea
2963 is to choose a section that will be in the same segment
2964 as S would have been if it was kept. */
2965 best = next;
2966 if (prev == NULL)
2967 {
2968 if (next == NULL)
2969 best = bfd_abs_section_ptr;
2970 }
2971 else if (next == NULL)
2972 best = prev;
2973 else if (((prev->flags ^ next->flags)
2974 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
2975 {
2976 if (((next->flags ^ s->flags)
2977 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
2978 /* We prefer to choose a loaded section. Section S
2979 doesn't have SEC_LOAD set (it being excluded, that
2980 part of the flag processing didn't happen) so we
2981 can't compare that flag to those of NEXT and PREV. */
2982 || ((prev->flags & SEC_LOAD) != 0
2983 && (next->flags & SEC_LOAD) == 0))
2984 best = prev;
2985 }
2986 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
2987 {
2988 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
2989 best = prev;
2990 }
2991 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
2992 {
2993 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
2994 best = prev;
2995 }
2996 else
2997 {
2998 /* Flags we care about are the same. Prefer the following
2999 section if that will result in a positive valued sym. */
3000 if (addr < next->vma)
3001 best = prev;
3002 }
3003
3004 return best;
3005 }
3006
3007 /* Convert symbols in excluded output sections to use a kept section. */
3008
3009 static bfd_boolean
3010 fix_syms (struct bfd_link_hash_entry *h, void *data)
3011 {
3012 bfd *obfd = (bfd *) data;
3013
3014 if (h->type == bfd_link_hash_defined
3015 || h->type == bfd_link_hash_defweak)
3016 {
3017 asection *s = h->u.def.section;
3018 if (s != NULL
3019 && s->output_section != NULL
3020 && (s->output_section->flags & SEC_EXCLUDE) != 0
3021 && bfd_section_removed_from_list (obfd, s->output_section))
3022 {
3023 asection *op;
3024
3025 h->u.def.value += s->output_offset + s->output_section->vma;
3026 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3027 h->u.def.value -= op->vma;
3028 h->u.def.section = op;
3029 }
3030 }
3031
3032 return TRUE;
3033 }
3034
3035 void
3036 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3037 {
3038 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3039 }
3040
3041 /*
3042 FUNCTION
3043 bfd_generic_define_common_symbol
3044
3045 SYNOPSIS
3046 bfd_boolean bfd_generic_define_common_symbol
3047 (bfd *output_bfd, struct bfd_link_info *info,
3048 struct bfd_link_hash_entry *h);
3049
3050 DESCRIPTION
3051 Convert common symbol @var{h} into a defined symbol.
3052 Return TRUE on success and FALSE on failure.
3053
3054 .#define bfd_define_common_symbol(output_bfd, info, h) \
3055 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3056 .
3057 */
3058
3059 bfd_boolean
3060 bfd_generic_define_common_symbol (bfd *output_bfd,
3061 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3062 struct bfd_link_hash_entry *h)
3063 {
3064 unsigned int power_of_two;
3065 bfd_vma alignment, size;
3066 asection *section;
3067
3068 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3069
3070 size = h->u.c.size;
3071 power_of_two = h->u.c.p->alignment_power;
3072 section = h->u.c.p->section;
3073
3074 /* Increase the size of the section to align the common symbol.
3075 The alignment must be a power of two. */
3076 alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3077 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3078 section->size += alignment - 1;
3079 section->size &= -alignment;
3080
3081 /* Adjust the section's overall alignment if necessary. */
3082 if (power_of_two > section->alignment_power)
3083 section->alignment_power = power_of_two;
3084
3085 /* Change the symbol from common to defined. */
3086 h->type = bfd_link_hash_defined;
3087 h->u.def.section = section;
3088 h->u.def.value = section->size;
3089
3090 /* Increase the size of the section. */
3091 section->size += size;
3092
3093 /* Make sure the section is allocated in memory, and make sure that
3094 it is no longer a common section. */
3095 section->flags |= SEC_ALLOC;
3096 section->flags &= ~SEC_IS_COMMON;
3097 return TRUE;
3098 }
3099
3100 /*
3101 FUNCTION
3102 bfd_generic_define_start_stop
3103
3104 SYNOPSIS
3105 struct bfd_link_hash_entry *bfd_generic_define_start_stop
3106 (struct bfd_link_info *info,
3107 const char *symbol, asection *sec);
3108
3109 DESCRIPTION
3110 Define a __start, __stop, .startof. or .sizeof. symbol.
3111 Return the symbol or NULL if no such undefined symbol exists.
3112
3113 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \
3114 . BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec))
3115 .
3116 */
3117
3118 struct bfd_link_hash_entry *
3119 bfd_generic_define_start_stop (struct bfd_link_info *info,
3120 const char *symbol, asection *sec)
3121 {
3122 struct bfd_link_hash_entry *h;
3123
3124 h = bfd_link_hash_lookup (info->hash, symbol, FALSE, FALSE, TRUE);
3125 if (h != NULL
3126 && (h->type == bfd_link_hash_undefined
3127 || h->type == bfd_link_hash_undefweak))
3128 {
3129 h->type = bfd_link_hash_defined;
3130 h->u.def.section = sec;
3131 h->u.def.value = 0;
3132 return h;
3133 }
3134 return NULL;
3135 }
3136
3137 /*
3138 FUNCTION
3139 bfd_find_version_for_sym
3140
3141 SYNOPSIS
3142 struct bfd_elf_version_tree * bfd_find_version_for_sym
3143 (struct bfd_elf_version_tree *verdefs,
3144 const char *sym_name, bfd_boolean *hide);
3145
3146 DESCRIPTION
3147 Search an elf version script tree for symbol versioning
3148 info and export / don't-export status for a given symbol.
3149 Return non-NULL on success and NULL on failure; also sets
3150 the output @samp{hide} boolean parameter.
3151
3152 */
3153
3154 struct bfd_elf_version_tree *
3155 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3156 const char *sym_name,
3157 bfd_boolean *hide)
3158 {
3159 struct bfd_elf_version_tree *t;
3160 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3161 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3162
3163 local_ver = NULL;
3164 global_ver = NULL;
3165 star_local_ver = NULL;
3166 star_global_ver = NULL;
3167 exist_ver = NULL;
3168 for (t = verdefs; t != NULL; t = t->next)
3169 {
3170 if (t->globals.list != NULL)
3171 {
3172 struct bfd_elf_version_expr *d = NULL;
3173
3174 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3175 {
3176 if (d->literal || strcmp (d->pattern, "*") != 0)
3177 global_ver = t;
3178 else
3179 star_global_ver = t;
3180 if (d->symver)
3181 exist_ver = t;
3182 d->script = 1;
3183 /* If the match is a wildcard pattern, keep looking for
3184 a more explicit, perhaps even local, match. */
3185 if (d->literal)
3186 break;
3187 }
3188
3189 if (d != NULL)
3190 break;
3191 }
3192
3193 if (t->locals.list != NULL)
3194 {
3195 struct bfd_elf_version_expr *d = NULL;
3196
3197 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3198 {
3199 if (d->literal || strcmp (d->pattern, "*") != 0)
3200 local_ver = t;
3201 else
3202 star_local_ver = t;
3203 /* If the match is a wildcard pattern, keep looking for
3204 a more explicit, perhaps even global, match. */
3205 if (d->literal)
3206 {
3207 /* An exact match overrides a global wildcard. */
3208 global_ver = NULL;
3209 star_global_ver = NULL;
3210 break;
3211 }
3212 }
3213
3214 if (d != NULL)
3215 break;
3216 }
3217 }
3218
3219 if (global_ver == NULL && local_ver == NULL)
3220 global_ver = star_global_ver;
3221
3222 if (global_ver != NULL)
3223 {
3224 /* If we already have a versioned symbol that matches the
3225 node for this symbol, then we don't want to create a
3226 duplicate from the unversioned symbol. Instead hide the
3227 unversioned symbol. */
3228 *hide = exist_ver == global_ver;
3229 return global_ver;
3230 }
3231
3232 if (local_ver == NULL)
3233 local_ver = star_local_ver;
3234
3235 if (local_ver != NULL)
3236 {
3237 *hide = TRUE;
3238 return local_ver;
3239 }
3240
3241 return NULL;
3242 }
3243
3244 /*
3245 FUNCTION
3246 bfd_hide_sym_by_version
3247
3248 SYNOPSIS
3249 bfd_boolean bfd_hide_sym_by_version
3250 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3251
3252 DESCRIPTION
3253 Search an elf version script tree for symbol versioning
3254 info for a given symbol. Return TRUE if the symbol is hidden.
3255
3256 */
3257
3258 bfd_boolean
3259 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3260 const char *sym_name)
3261 {
3262 bfd_boolean hidden = FALSE;
3263 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3264 return hidden;
3265 }
3266
3267 /*
3268 FUNCTION
3269 bfd_link_check_relocs
3270
3271 SYNOPSIS
3272 bfd_boolean bfd_link_check_relocs
3273 (bfd *abfd, struct bfd_link_info *info);
3274
3275 DESCRIPTION
3276 Checks the relocs in ABFD for validity.
3277 Does not execute the relocs.
3278 Return TRUE if everything is OK, FALSE otherwise.
3279 This is the external entry point to this code.
3280 */
3281
3282 bfd_boolean
3283 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3284 {
3285 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3286 }
3287
3288 /*
3289 FUNCTION
3290 _bfd_generic_link_check_relocs
3291
3292 SYNOPSIS
3293 bfd_boolean _bfd_generic_link_check_relocs
3294 (bfd *abfd, struct bfd_link_info *info);
3295
3296 DESCRIPTION
3297 Stub function for targets that do not implement reloc checking.
3298 Return TRUE.
3299 This is an internal function. It should not be called from
3300 outside the BFD library.
3301 */
3302
3303 bfd_boolean
3304 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3305 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3306 {
3307 return TRUE;
3308 }
3309
3310 /*
3311 FUNCTION
3312 bfd_merge_private_bfd_data
3313
3314 SYNOPSIS
3315 bfd_boolean bfd_merge_private_bfd_data
3316 (bfd *ibfd, struct bfd_link_info *info);
3317
3318 DESCRIPTION
3319 Merge private BFD information from the BFD @var{ibfd} to the
3320 the output file BFD when linking. Return <<TRUE>> on success,
3321 <<FALSE>> on error. Possible error returns are:
3322
3323 o <<bfd_error_no_memory>> -
3324 Not enough memory exists to create private data for @var{obfd}.
3325
3326 .#define bfd_merge_private_bfd_data(ibfd, info) \
3327 . BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \
3328 . (ibfd, info))
3329 */
3330
3331 /*
3332 INTERNAL_FUNCTION
3333 _bfd_generic_verify_endian_match
3334
3335 SYNOPSIS
3336 bfd_boolean _bfd_generic_verify_endian_match
3337 (bfd *ibfd, struct bfd_link_info *info);
3338
3339 DESCRIPTION
3340 Can be used from / for bfd_merge_private_bfd_data to check that
3341 endianness matches between input and output file. Returns
3342 TRUE for a match, otherwise returns FALSE and emits an error.
3343 */
3344
3345 bfd_boolean
3346 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info)
3347 {
3348 bfd *obfd = info->output_bfd;
3349
3350 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
3351 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
3352 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
3353 {
3354 if (bfd_big_endian (ibfd))
3355 _bfd_error_handler (_("%B: compiled for a big endian system "
3356 "and target is little endian"), ibfd);
3357 else
3358 _bfd_error_handler (_("%B: compiled for a little endian system "
3359 "and target is big endian"), ibfd);
3360 bfd_set_error (bfd_error_wrong_format);
3361 return FALSE;
3362 }
3363
3364 return TRUE;
3365 }
This page took 0.155245 seconds and 5 git commands to generate.