* peXXigen.c (u16_mbtouc): Avoid unused function warning by excluding if
[deliverable/binutils-gdb.git] / bfd / peXXigen.c
1 /* Support for the generic parts of PE/PEI; the common executable parts.
2 Copyright 1995-2013 Free Software Foundation, Inc.
3 Written by Cygnus Solutions.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /* Most of this hacked by Steve Chamberlain <sac@cygnus.com>.
24
25 PE/PEI rearrangement (and code added): Donn Terry
26 Softway Systems, Inc. */
27
28 /* Hey look, some documentation [and in a place you expect to find it]!
29
30 The main reference for the pei format is "Microsoft Portable Executable
31 and Common Object File Format Specification 4.1". Get it if you need to
32 do some serious hacking on this code.
33
34 Another reference:
35 "Peering Inside the PE: A Tour of the Win32 Portable Executable
36 File Format", MSJ 1994, Volume 9.
37
38 The *sole* difference between the pe format and the pei format is that the
39 latter has an MSDOS 2.0 .exe header on the front that prints the message
40 "This app must be run under Windows." (or some such).
41 (FIXME: Whether that statement is *really* true or not is unknown.
42 Are there more subtle differences between pe and pei formats?
43 For now assume there aren't. If you find one, then for God sakes
44 document it here!)
45
46 The Microsoft docs use the word "image" instead of "executable" because
47 the former can also refer to a DLL (shared library). Confusion can arise
48 because the `i' in `pei' also refers to "image". The `pe' format can
49 also create images (i.e. executables), it's just that to run on a win32
50 system you need to use the pei format.
51
52 FIXME: Please add more docs here so the next poor fool that has to hack
53 on this code has a chance of getting something accomplished without
54 wasting too much time. */
55
56 /* This expands into COFF_WITH_pe, COFF_WITH_pep, or COFF_WITH_pex64
57 depending on whether we're compiling for straight PE or PE+. */
58 #define COFF_WITH_XX
59
60 #include "sysdep.h"
61 #include "bfd.h"
62 #include "libbfd.h"
63 #include "coff/internal.h"
64 #include "bfdver.h"
65 #ifdef HAVE_WCHAR_H
66 #include <wchar.h>
67 #endif
68
69 /* NOTE: it's strange to be including an architecture specific header
70 in what's supposed to be general (to PE/PEI) code. However, that's
71 where the definitions are, and they don't vary per architecture
72 within PE/PEI, so we get them from there. FIXME: The lack of
73 variance is an assumption which may prove to be incorrect if new
74 PE/PEI targets are created. */
75 #if defined COFF_WITH_pex64
76 # include "coff/x86_64.h"
77 #elif defined COFF_WITH_pep
78 # include "coff/ia64.h"
79 #else
80 # include "coff/i386.h"
81 #endif
82
83 #include "coff/pe.h"
84 #include "libcoff.h"
85 #include "libpei.h"
86 #include "safe-ctype.h"
87
88 #if defined COFF_WITH_pep || defined COFF_WITH_pex64
89 # undef AOUTSZ
90 # define AOUTSZ PEPAOUTSZ
91 # define PEAOUTHDR PEPAOUTHDR
92 #endif
93
94 #define HighBitSet(val) ((val) & 0x80000000)
95 #define SetHighBit(val) ((val) | 0x80000000)
96 #define WithoutHighBit(val) ((val) & 0x7fffffff)
97
98 /* FIXME: This file has various tests of POWERPC_LE_PE. Those tests
99 worked when the code was in peicode.h, but no longer work now that
100 the code is in peigen.c. PowerPC NT is said to be dead. If
101 anybody wants to revive the code, you will have to figure out how
102 to handle those issues. */
103 \f
104 void
105 _bfd_XXi_swap_sym_in (bfd * abfd, void * ext1, void * in1)
106 {
107 SYMENT *ext = (SYMENT *) ext1;
108 struct internal_syment *in = (struct internal_syment *) in1;
109
110 if (ext->e.e_name[0] == 0)
111 {
112 in->_n._n_n._n_zeroes = 0;
113 in->_n._n_n._n_offset = H_GET_32 (abfd, ext->e.e.e_offset);
114 }
115 else
116 memcpy (in->_n._n_name, ext->e.e_name, SYMNMLEN);
117
118 in->n_value = H_GET_32 (abfd, ext->e_value);
119 in->n_scnum = H_GET_16 (abfd, ext->e_scnum);
120
121 if (sizeof (ext->e_type) == 2)
122 in->n_type = H_GET_16 (abfd, ext->e_type);
123 else
124 in->n_type = H_GET_32 (abfd, ext->e_type);
125
126 in->n_sclass = H_GET_8 (abfd, ext->e_sclass);
127 in->n_numaux = H_GET_8 (abfd, ext->e_numaux);
128
129 #ifndef STRICT_PE_FORMAT
130 /* This is for Gnu-created DLLs. */
131
132 /* The section symbols for the .idata$ sections have class 0x68
133 (C_SECTION), which MS documentation indicates is a section
134 symbol. Unfortunately, the value field in the symbol is simply a
135 copy of the .idata section's flags rather than something useful.
136 When these symbols are encountered, change the value to 0 so that
137 they will be handled somewhat correctly in the bfd code. */
138 if (in->n_sclass == C_SECTION)
139 {
140 char namebuf[SYMNMLEN + 1];
141 const char *name = NULL;
142
143 in->n_value = 0x0;
144
145 /* Create synthetic empty sections as needed. DJ */
146 if (in->n_scnum == 0)
147 {
148 asection *sec;
149
150 name = _bfd_coff_internal_syment_name (abfd, in, namebuf);
151 if (name == NULL)
152 /* FIXME: Return error. */
153 abort ();
154 sec = bfd_get_section_by_name (abfd, name);
155 if (sec != NULL)
156 in->n_scnum = sec->target_index;
157 }
158
159 if (in->n_scnum == 0)
160 {
161 int unused_section_number = 0;
162 asection *sec;
163 flagword flags;
164
165 for (sec = abfd->sections; sec; sec = sec->next)
166 if (unused_section_number <= sec->target_index)
167 unused_section_number = sec->target_index + 1;
168
169 if (name == namebuf)
170 {
171 name = (const char *) bfd_alloc (abfd, strlen (namebuf) + 1);
172 if (name == NULL)
173 /* FIXME: Return error. */
174 abort ();
175 strcpy ((char *) name, namebuf);
176 }
177 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_DATA | SEC_LOAD;
178 sec = bfd_make_section_anyway_with_flags (abfd, name, flags);
179 if (sec == NULL)
180 /* FIXME: Return error. */
181 abort ();
182
183 sec->vma = 0;
184 sec->lma = 0;
185 sec->size = 0;
186 sec->filepos = 0;
187 sec->rel_filepos = 0;
188 sec->reloc_count = 0;
189 sec->line_filepos = 0;
190 sec->lineno_count = 0;
191 sec->userdata = NULL;
192 sec->next = NULL;
193 sec->alignment_power = 2;
194
195 sec->target_index = unused_section_number;
196
197 in->n_scnum = unused_section_number;
198 }
199 in->n_sclass = C_STAT;
200 }
201 #endif
202
203 #ifdef coff_swap_sym_in_hook
204 /* This won't work in peigen.c, but since it's for PPC PE, it's not
205 worth fixing. */
206 coff_swap_sym_in_hook (abfd, ext1, in1);
207 #endif
208 }
209
210 unsigned int
211 _bfd_XXi_swap_sym_out (bfd * abfd, void * inp, void * extp)
212 {
213 struct internal_syment *in = (struct internal_syment *) inp;
214 SYMENT *ext = (SYMENT *) extp;
215
216 if (in->_n._n_name[0] == 0)
217 {
218 H_PUT_32 (abfd, 0, ext->e.e.e_zeroes);
219 H_PUT_32 (abfd, in->_n._n_n._n_offset, ext->e.e.e_offset);
220 }
221 else
222 memcpy (ext->e.e_name, in->_n._n_name, SYMNMLEN);
223
224 H_PUT_32 (abfd, in->n_value, ext->e_value);
225 H_PUT_16 (abfd, in->n_scnum, ext->e_scnum);
226
227 if (sizeof (ext->e_type) == 2)
228 H_PUT_16 (abfd, in->n_type, ext->e_type);
229 else
230 H_PUT_32 (abfd, in->n_type, ext->e_type);
231
232 H_PUT_8 (abfd, in->n_sclass, ext->e_sclass);
233 H_PUT_8 (abfd, in->n_numaux, ext->e_numaux);
234
235 return SYMESZ;
236 }
237
238 void
239 _bfd_XXi_swap_aux_in (bfd * abfd,
240 void * ext1,
241 int type,
242 int in_class,
243 int indx ATTRIBUTE_UNUSED,
244 int numaux ATTRIBUTE_UNUSED,
245 void * in1)
246 {
247 AUXENT *ext = (AUXENT *) ext1;
248 union internal_auxent *in = (union internal_auxent *) in1;
249
250 switch (in_class)
251 {
252 case C_FILE:
253 if (ext->x_file.x_fname[0] == 0)
254 {
255 in->x_file.x_n.x_zeroes = 0;
256 in->x_file.x_n.x_offset = H_GET_32 (abfd, ext->x_file.x_n.x_offset);
257 }
258 else
259 memcpy (in->x_file.x_fname, ext->x_file.x_fname, FILNMLEN);
260 return;
261
262 case C_STAT:
263 case C_LEAFSTAT:
264 case C_HIDDEN:
265 if (type == T_NULL)
266 {
267 in->x_scn.x_scnlen = GET_SCN_SCNLEN (abfd, ext);
268 in->x_scn.x_nreloc = GET_SCN_NRELOC (abfd, ext);
269 in->x_scn.x_nlinno = GET_SCN_NLINNO (abfd, ext);
270 in->x_scn.x_checksum = H_GET_32 (abfd, ext->x_scn.x_checksum);
271 in->x_scn.x_associated = H_GET_16 (abfd, ext->x_scn.x_associated);
272 in->x_scn.x_comdat = H_GET_8 (abfd, ext->x_scn.x_comdat);
273 return;
274 }
275 break;
276 }
277
278 in->x_sym.x_tagndx.l = H_GET_32 (abfd, ext->x_sym.x_tagndx);
279 in->x_sym.x_tvndx = H_GET_16 (abfd, ext->x_sym.x_tvndx);
280
281 if (in_class == C_BLOCK || in_class == C_FCN || ISFCN (type)
282 || ISTAG (in_class))
283 {
284 in->x_sym.x_fcnary.x_fcn.x_lnnoptr = GET_FCN_LNNOPTR (abfd, ext);
285 in->x_sym.x_fcnary.x_fcn.x_endndx.l = GET_FCN_ENDNDX (abfd, ext);
286 }
287 else
288 {
289 in->x_sym.x_fcnary.x_ary.x_dimen[0] =
290 H_GET_16 (abfd, ext->x_sym.x_fcnary.x_ary.x_dimen[0]);
291 in->x_sym.x_fcnary.x_ary.x_dimen[1] =
292 H_GET_16 (abfd, ext->x_sym.x_fcnary.x_ary.x_dimen[1]);
293 in->x_sym.x_fcnary.x_ary.x_dimen[2] =
294 H_GET_16 (abfd, ext->x_sym.x_fcnary.x_ary.x_dimen[2]);
295 in->x_sym.x_fcnary.x_ary.x_dimen[3] =
296 H_GET_16 (abfd, ext->x_sym.x_fcnary.x_ary.x_dimen[3]);
297 }
298
299 if (ISFCN (type))
300 {
301 in->x_sym.x_misc.x_fsize = H_GET_32 (abfd, ext->x_sym.x_misc.x_fsize);
302 }
303 else
304 {
305 in->x_sym.x_misc.x_lnsz.x_lnno = GET_LNSZ_LNNO (abfd, ext);
306 in->x_sym.x_misc.x_lnsz.x_size = GET_LNSZ_SIZE (abfd, ext);
307 }
308 }
309
310 unsigned int
311 _bfd_XXi_swap_aux_out (bfd * abfd,
312 void * inp,
313 int type,
314 int in_class,
315 int indx ATTRIBUTE_UNUSED,
316 int numaux ATTRIBUTE_UNUSED,
317 void * extp)
318 {
319 union internal_auxent *in = (union internal_auxent *) inp;
320 AUXENT *ext = (AUXENT *) extp;
321
322 memset (ext, 0, AUXESZ);
323
324 switch (in_class)
325 {
326 case C_FILE:
327 if (in->x_file.x_fname[0] == 0)
328 {
329 H_PUT_32 (abfd, 0, ext->x_file.x_n.x_zeroes);
330 H_PUT_32 (abfd, in->x_file.x_n.x_offset, ext->x_file.x_n.x_offset);
331 }
332 else
333 memcpy (ext->x_file.x_fname, in->x_file.x_fname, FILNMLEN);
334
335 return AUXESZ;
336
337 case C_STAT:
338 case C_LEAFSTAT:
339 case C_HIDDEN:
340 if (type == T_NULL)
341 {
342 PUT_SCN_SCNLEN (abfd, in->x_scn.x_scnlen, ext);
343 PUT_SCN_NRELOC (abfd, in->x_scn.x_nreloc, ext);
344 PUT_SCN_NLINNO (abfd, in->x_scn.x_nlinno, ext);
345 H_PUT_32 (abfd, in->x_scn.x_checksum, ext->x_scn.x_checksum);
346 H_PUT_16 (abfd, in->x_scn.x_associated, ext->x_scn.x_associated);
347 H_PUT_8 (abfd, in->x_scn.x_comdat, ext->x_scn.x_comdat);
348 return AUXESZ;
349 }
350 break;
351 }
352
353 H_PUT_32 (abfd, in->x_sym.x_tagndx.l, ext->x_sym.x_tagndx);
354 H_PUT_16 (abfd, in->x_sym.x_tvndx, ext->x_sym.x_tvndx);
355
356 if (in_class == C_BLOCK || in_class == C_FCN || ISFCN (type)
357 || ISTAG (in_class))
358 {
359 PUT_FCN_LNNOPTR (abfd, in->x_sym.x_fcnary.x_fcn.x_lnnoptr, ext);
360 PUT_FCN_ENDNDX (abfd, in->x_sym.x_fcnary.x_fcn.x_endndx.l, ext);
361 }
362 else
363 {
364 H_PUT_16 (abfd, in->x_sym.x_fcnary.x_ary.x_dimen[0],
365 ext->x_sym.x_fcnary.x_ary.x_dimen[0]);
366 H_PUT_16 (abfd, in->x_sym.x_fcnary.x_ary.x_dimen[1],
367 ext->x_sym.x_fcnary.x_ary.x_dimen[1]);
368 H_PUT_16 (abfd, in->x_sym.x_fcnary.x_ary.x_dimen[2],
369 ext->x_sym.x_fcnary.x_ary.x_dimen[2]);
370 H_PUT_16 (abfd, in->x_sym.x_fcnary.x_ary.x_dimen[3],
371 ext->x_sym.x_fcnary.x_ary.x_dimen[3]);
372 }
373
374 if (ISFCN (type))
375 H_PUT_32 (abfd, in->x_sym.x_misc.x_fsize, ext->x_sym.x_misc.x_fsize);
376 else
377 {
378 PUT_LNSZ_LNNO (abfd, in->x_sym.x_misc.x_lnsz.x_lnno, ext);
379 PUT_LNSZ_SIZE (abfd, in->x_sym.x_misc.x_lnsz.x_size, ext);
380 }
381
382 return AUXESZ;
383 }
384
385 void
386 _bfd_XXi_swap_lineno_in (bfd * abfd, void * ext1, void * in1)
387 {
388 LINENO *ext = (LINENO *) ext1;
389 struct internal_lineno *in = (struct internal_lineno *) in1;
390
391 in->l_addr.l_symndx = H_GET_32 (abfd, ext->l_addr.l_symndx);
392 in->l_lnno = GET_LINENO_LNNO (abfd, ext);
393 }
394
395 unsigned int
396 _bfd_XXi_swap_lineno_out (bfd * abfd, void * inp, void * outp)
397 {
398 struct internal_lineno *in = (struct internal_lineno *) inp;
399 struct external_lineno *ext = (struct external_lineno *) outp;
400 H_PUT_32 (abfd, in->l_addr.l_symndx, ext->l_addr.l_symndx);
401
402 PUT_LINENO_LNNO (abfd, in->l_lnno, ext);
403 return LINESZ;
404 }
405
406 void
407 _bfd_XXi_swap_aouthdr_in (bfd * abfd,
408 void * aouthdr_ext1,
409 void * aouthdr_int1)
410 {
411 PEAOUTHDR * src = (PEAOUTHDR *) aouthdr_ext1;
412 AOUTHDR * aouthdr_ext = (AOUTHDR *) aouthdr_ext1;
413 struct internal_aouthdr *aouthdr_int
414 = (struct internal_aouthdr *) aouthdr_int1;
415 struct internal_extra_pe_aouthdr *a = &aouthdr_int->pe;
416
417 aouthdr_int->magic = H_GET_16 (abfd, aouthdr_ext->magic);
418 aouthdr_int->vstamp = H_GET_16 (abfd, aouthdr_ext->vstamp);
419 aouthdr_int->tsize = GET_AOUTHDR_TSIZE (abfd, aouthdr_ext->tsize);
420 aouthdr_int->dsize = GET_AOUTHDR_DSIZE (abfd, aouthdr_ext->dsize);
421 aouthdr_int->bsize = GET_AOUTHDR_BSIZE (abfd, aouthdr_ext->bsize);
422 aouthdr_int->entry = GET_AOUTHDR_ENTRY (abfd, aouthdr_ext->entry);
423 aouthdr_int->text_start =
424 GET_AOUTHDR_TEXT_START (abfd, aouthdr_ext->text_start);
425 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
426 /* PE32+ does not have data_start member! */
427 aouthdr_int->data_start =
428 GET_AOUTHDR_DATA_START (abfd, aouthdr_ext->data_start);
429 a->BaseOfData = aouthdr_int->data_start;
430 #endif
431
432 a->Magic = aouthdr_int->magic;
433 a->MajorLinkerVersion = H_GET_8 (abfd, aouthdr_ext->vstamp);
434 a->MinorLinkerVersion = H_GET_8 (abfd, aouthdr_ext->vstamp + 1);
435 a->SizeOfCode = aouthdr_int->tsize ;
436 a->SizeOfInitializedData = aouthdr_int->dsize ;
437 a->SizeOfUninitializedData = aouthdr_int->bsize ;
438 a->AddressOfEntryPoint = aouthdr_int->entry;
439 a->BaseOfCode = aouthdr_int->text_start;
440 a->ImageBase = GET_OPTHDR_IMAGE_BASE (abfd, src->ImageBase);
441 a->SectionAlignment = H_GET_32 (abfd, src->SectionAlignment);
442 a->FileAlignment = H_GET_32 (abfd, src->FileAlignment);
443 a->MajorOperatingSystemVersion =
444 H_GET_16 (abfd, src->MajorOperatingSystemVersion);
445 a->MinorOperatingSystemVersion =
446 H_GET_16 (abfd, src->MinorOperatingSystemVersion);
447 a->MajorImageVersion = H_GET_16 (abfd, src->MajorImageVersion);
448 a->MinorImageVersion = H_GET_16 (abfd, src->MinorImageVersion);
449 a->MajorSubsystemVersion = H_GET_16 (abfd, src->MajorSubsystemVersion);
450 a->MinorSubsystemVersion = H_GET_16 (abfd, src->MinorSubsystemVersion);
451 a->Reserved1 = H_GET_32 (abfd, src->Reserved1);
452 a->SizeOfImage = H_GET_32 (abfd, src->SizeOfImage);
453 a->SizeOfHeaders = H_GET_32 (abfd, src->SizeOfHeaders);
454 a->CheckSum = H_GET_32 (abfd, src->CheckSum);
455 a->Subsystem = H_GET_16 (abfd, src->Subsystem);
456 a->DllCharacteristics = H_GET_16 (abfd, src->DllCharacteristics);
457 a->SizeOfStackReserve =
458 GET_OPTHDR_SIZE_OF_STACK_RESERVE (abfd, src->SizeOfStackReserve);
459 a->SizeOfStackCommit =
460 GET_OPTHDR_SIZE_OF_STACK_COMMIT (abfd, src->SizeOfStackCommit);
461 a->SizeOfHeapReserve =
462 GET_OPTHDR_SIZE_OF_HEAP_RESERVE (abfd, src->SizeOfHeapReserve);
463 a->SizeOfHeapCommit =
464 GET_OPTHDR_SIZE_OF_HEAP_COMMIT (abfd, src->SizeOfHeapCommit);
465 a->LoaderFlags = H_GET_32 (abfd, src->LoaderFlags);
466 a->NumberOfRvaAndSizes = H_GET_32 (abfd, src->NumberOfRvaAndSizes);
467
468 {
469 int idx;
470
471 for (idx = 0; idx < a->NumberOfRvaAndSizes; idx++)
472 {
473 /* If data directory is empty, rva also should be 0. */
474 int size =
475 H_GET_32 (abfd, src->DataDirectory[idx][1]);
476
477 a->DataDirectory[idx].Size = size;
478
479 if (size)
480 a->DataDirectory[idx].VirtualAddress =
481 H_GET_32 (abfd, src->DataDirectory[idx][0]);
482 else
483 a->DataDirectory[idx].VirtualAddress = 0;
484 }
485 }
486
487 if (aouthdr_int->entry)
488 {
489 aouthdr_int->entry += a->ImageBase;
490 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
491 aouthdr_int->entry &= 0xffffffff;
492 #endif
493 }
494
495 if (aouthdr_int->tsize)
496 {
497 aouthdr_int->text_start += a->ImageBase;
498 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
499 aouthdr_int->text_start &= 0xffffffff;
500 #endif
501 }
502
503 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
504 /* PE32+ does not have data_start member! */
505 if (aouthdr_int->dsize)
506 {
507 aouthdr_int->data_start += a->ImageBase;
508 aouthdr_int->data_start &= 0xffffffff;
509 }
510 #endif
511
512 #ifdef POWERPC_LE_PE
513 /* These three fields are normally set up by ppc_relocate_section.
514 In the case of reading a file in, we can pick them up from the
515 DataDirectory. */
516 first_thunk_address = a->DataDirectory[PE_IMPORT_ADDRESS_TABLE].VirtualAddress;
517 thunk_size = a->DataDirectory[PE_IMPORT_ADDRESS_TABLE].Size;
518 import_table_size = a->DataDirectory[PE_IMPORT_TABLE].Size;
519 #endif
520 }
521
522 /* A support function for below. */
523
524 static void
525 add_data_entry (bfd * abfd,
526 struct internal_extra_pe_aouthdr *aout,
527 int idx,
528 char *name,
529 bfd_vma base)
530 {
531 asection *sec = bfd_get_section_by_name (abfd, name);
532
533 /* Add import directory information if it exists. */
534 if ((sec != NULL)
535 && (coff_section_data (abfd, sec) != NULL)
536 && (pei_section_data (abfd, sec) != NULL))
537 {
538 /* If data directory is empty, rva also should be 0. */
539 int size = pei_section_data (abfd, sec)->virt_size;
540 aout->DataDirectory[idx].Size = size;
541
542 if (size)
543 {
544 aout->DataDirectory[idx].VirtualAddress =
545 (sec->vma - base) & 0xffffffff;
546 sec->flags |= SEC_DATA;
547 }
548 }
549 }
550
551 unsigned int
552 _bfd_XXi_swap_aouthdr_out (bfd * abfd, void * in, void * out)
553 {
554 struct internal_aouthdr *aouthdr_in = (struct internal_aouthdr *) in;
555 pe_data_type *pe = pe_data (abfd);
556 struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr;
557 PEAOUTHDR *aouthdr_out = (PEAOUTHDR *) out;
558 bfd_vma sa, fa, ib;
559 IMAGE_DATA_DIRECTORY idata2, idata5, tls;
560
561 sa = extra->SectionAlignment;
562 fa = extra->FileAlignment;
563 ib = extra->ImageBase;
564
565 idata2 = pe->pe_opthdr.DataDirectory[PE_IMPORT_TABLE];
566 idata5 = pe->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE];
567 tls = pe->pe_opthdr.DataDirectory[PE_TLS_TABLE];
568
569 if (aouthdr_in->tsize)
570 {
571 aouthdr_in->text_start -= ib;
572 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
573 aouthdr_in->text_start &= 0xffffffff;
574 #endif
575 }
576
577 if (aouthdr_in->dsize)
578 {
579 aouthdr_in->data_start -= ib;
580 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
581 aouthdr_in->data_start &= 0xffffffff;
582 #endif
583 }
584
585 if (aouthdr_in->entry)
586 {
587 aouthdr_in->entry -= ib;
588 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
589 aouthdr_in->entry &= 0xffffffff;
590 #endif
591 }
592
593 #define FA(x) (((x) + fa -1 ) & (- fa))
594 #define SA(x) (((x) + sa -1 ) & (- sa))
595
596 /* We like to have the sizes aligned. */
597 aouthdr_in->bsize = FA (aouthdr_in->bsize);
598
599 extra->NumberOfRvaAndSizes = IMAGE_NUMBEROF_DIRECTORY_ENTRIES;
600
601 add_data_entry (abfd, extra, 0, ".edata", ib);
602 add_data_entry (abfd, extra, 2, ".rsrc", ib);
603 add_data_entry (abfd, extra, 3, ".pdata", ib);
604
605 /* In theory we do not need to call add_data_entry for .idata$2 or
606 .idata$5. It will be done in bfd_coff_final_link where all the
607 required information is available. If however, we are not going
608 to perform a final link, eg because we have been invoked by objcopy
609 or strip, then we need to make sure that these Data Directory
610 entries are initialised properly.
611
612 So - we copy the input values into the output values, and then, if
613 a final link is going to be performed, it can overwrite them. */
614 extra->DataDirectory[PE_IMPORT_TABLE] = idata2;
615 extra->DataDirectory[PE_IMPORT_ADDRESS_TABLE] = idata5;
616 extra->DataDirectory[PE_TLS_TABLE] = tls;
617
618 if (extra->DataDirectory[PE_IMPORT_TABLE].VirtualAddress == 0)
619 /* Until other .idata fixes are made (pending patch), the entry for
620 .idata is needed for backwards compatibility. FIXME. */
621 add_data_entry (abfd, extra, 1, ".idata", ib);
622
623 /* For some reason, the virtual size (which is what's set by
624 add_data_entry) for .reloc is not the same as the size recorded
625 in this slot by MSVC; it doesn't seem to cause problems (so far),
626 but since it's the best we've got, use it. It does do the right
627 thing for .pdata. */
628 if (pe->has_reloc_section)
629 add_data_entry (abfd, extra, 5, ".reloc", ib);
630
631 {
632 asection *sec;
633 bfd_vma hsize = 0;
634 bfd_vma dsize = 0;
635 bfd_vma isize = 0;
636 bfd_vma tsize = 0;
637
638 for (sec = abfd->sections; sec; sec = sec->next)
639 {
640 int rounded = FA (sec->size);
641
642 /* The first non-zero section filepos is the header size.
643 Sections without contents will have a filepos of 0. */
644 if (hsize == 0)
645 hsize = sec->filepos;
646 if (sec->flags & SEC_DATA)
647 dsize += rounded;
648 if (sec->flags & SEC_CODE)
649 tsize += rounded;
650 /* The image size is the total VIRTUAL size (which is what is
651 in the virt_size field). Files have been seen (from MSVC
652 5.0 link.exe) where the file size of the .data segment is
653 quite small compared to the virtual size. Without this
654 fix, strip munges the file.
655
656 FIXME: We need to handle holes between sections, which may
657 happpen when we covert from another format. We just use
658 the virtual address and virtual size of the last section
659 for the image size. */
660 if (coff_section_data (abfd, sec) != NULL
661 && pei_section_data (abfd, sec) != NULL)
662 isize = (sec->vma - extra->ImageBase
663 + SA (FA (pei_section_data (abfd, sec)->virt_size)));
664 }
665
666 aouthdr_in->dsize = dsize;
667 aouthdr_in->tsize = tsize;
668 extra->SizeOfHeaders = hsize;
669 extra->SizeOfImage = isize;
670 }
671
672 H_PUT_16 (abfd, aouthdr_in->magic, aouthdr_out->standard.magic);
673
674 /* e.g. 219510000 is linker version 2.19 */
675 #define LINKER_VERSION ((short) (BFD_VERSION / 1000000))
676
677 /* This piece of magic sets the "linker version" field to
678 LINKER_VERSION. */
679 H_PUT_16 (abfd, (LINKER_VERSION / 100 + (LINKER_VERSION % 100) * 256),
680 aouthdr_out->standard.vstamp);
681
682 PUT_AOUTHDR_TSIZE (abfd, aouthdr_in->tsize, aouthdr_out->standard.tsize);
683 PUT_AOUTHDR_DSIZE (abfd, aouthdr_in->dsize, aouthdr_out->standard.dsize);
684 PUT_AOUTHDR_BSIZE (abfd, aouthdr_in->bsize, aouthdr_out->standard.bsize);
685 PUT_AOUTHDR_ENTRY (abfd, aouthdr_in->entry, aouthdr_out->standard.entry);
686 PUT_AOUTHDR_TEXT_START (abfd, aouthdr_in->text_start,
687 aouthdr_out->standard.text_start);
688
689 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
690 /* PE32+ does not have data_start member! */
691 PUT_AOUTHDR_DATA_START (abfd, aouthdr_in->data_start,
692 aouthdr_out->standard.data_start);
693 #endif
694
695 PUT_OPTHDR_IMAGE_BASE (abfd, extra->ImageBase, aouthdr_out->ImageBase);
696 H_PUT_32 (abfd, extra->SectionAlignment, aouthdr_out->SectionAlignment);
697 H_PUT_32 (abfd, extra->FileAlignment, aouthdr_out->FileAlignment);
698 H_PUT_16 (abfd, extra->MajorOperatingSystemVersion,
699 aouthdr_out->MajorOperatingSystemVersion);
700 H_PUT_16 (abfd, extra->MinorOperatingSystemVersion,
701 aouthdr_out->MinorOperatingSystemVersion);
702 H_PUT_16 (abfd, extra->MajorImageVersion, aouthdr_out->MajorImageVersion);
703 H_PUT_16 (abfd, extra->MinorImageVersion, aouthdr_out->MinorImageVersion);
704 H_PUT_16 (abfd, extra->MajorSubsystemVersion,
705 aouthdr_out->MajorSubsystemVersion);
706 H_PUT_16 (abfd, extra->MinorSubsystemVersion,
707 aouthdr_out->MinorSubsystemVersion);
708 H_PUT_32 (abfd, extra->Reserved1, aouthdr_out->Reserved1);
709 H_PUT_32 (abfd, extra->SizeOfImage, aouthdr_out->SizeOfImage);
710 H_PUT_32 (abfd, extra->SizeOfHeaders, aouthdr_out->SizeOfHeaders);
711 H_PUT_32 (abfd, extra->CheckSum, aouthdr_out->CheckSum);
712 H_PUT_16 (abfd, extra->Subsystem, aouthdr_out->Subsystem);
713 H_PUT_16 (abfd, extra->DllCharacteristics, aouthdr_out->DllCharacteristics);
714 PUT_OPTHDR_SIZE_OF_STACK_RESERVE (abfd, extra->SizeOfStackReserve,
715 aouthdr_out->SizeOfStackReserve);
716 PUT_OPTHDR_SIZE_OF_STACK_COMMIT (abfd, extra->SizeOfStackCommit,
717 aouthdr_out->SizeOfStackCommit);
718 PUT_OPTHDR_SIZE_OF_HEAP_RESERVE (abfd, extra->SizeOfHeapReserve,
719 aouthdr_out->SizeOfHeapReserve);
720 PUT_OPTHDR_SIZE_OF_HEAP_COMMIT (abfd, extra->SizeOfHeapCommit,
721 aouthdr_out->SizeOfHeapCommit);
722 H_PUT_32 (abfd, extra->LoaderFlags, aouthdr_out->LoaderFlags);
723 H_PUT_32 (abfd, extra->NumberOfRvaAndSizes,
724 aouthdr_out->NumberOfRvaAndSizes);
725 {
726 int idx;
727
728 for (idx = 0; idx < 16; idx++)
729 {
730 H_PUT_32 (abfd, extra->DataDirectory[idx].VirtualAddress,
731 aouthdr_out->DataDirectory[idx][0]);
732 H_PUT_32 (abfd, extra->DataDirectory[idx].Size,
733 aouthdr_out->DataDirectory[idx][1]);
734 }
735 }
736
737 return AOUTSZ;
738 }
739
740 unsigned int
741 _bfd_XXi_only_swap_filehdr_out (bfd * abfd, void * in, void * out)
742 {
743 int idx;
744 struct internal_filehdr *filehdr_in = (struct internal_filehdr *) in;
745 struct external_PEI_filehdr *filehdr_out = (struct external_PEI_filehdr *) out;
746
747 if (pe_data (abfd)->has_reloc_section
748 || pe_data (abfd)->dont_strip_reloc)
749 filehdr_in->f_flags &= ~F_RELFLG;
750
751 if (pe_data (abfd)->dll)
752 filehdr_in->f_flags |= F_DLL;
753
754 filehdr_in->pe.e_magic = DOSMAGIC;
755 filehdr_in->pe.e_cblp = 0x90;
756 filehdr_in->pe.e_cp = 0x3;
757 filehdr_in->pe.e_crlc = 0x0;
758 filehdr_in->pe.e_cparhdr = 0x4;
759 filehdr_in->pe.e_minalloc = 0x0;
760 filehdr_in->pe.e_maxalloc = 0xffff;
761 filehdr_in->pe.e_ss = 0x0;
762 filehdr_in->pe.e_sp = 0xb8;
763 filehdr_in->pe.e_csum = 0x0;
764 filehdr_in->pe.e_ip = 0x0;
765 filehdr_in->pe.e_cs = 0x0;
766 filehdr_in->pe.e_lfarlc = 0x40;
767 filehdr_in->pe.e_ovno = 0x0;
768
769 for (idx = 0; idx < 4; idx++)
770 filehdr_in->pe.e_res[idx] = 0x0;
771
772 filehdr_in->pe.e_oemid = 0x0;
773 filehdr_in->pe.e_oeminfo = 0x0;
774
775 for (idx = 0; idx < 10; idx++)
776 filehdr_in->pe.e_res2[idx] = 0x0;
777
778 filehdr_in->pe.e_lfanew = 0x80;
779
780 /* This next collection of data are mostly just characters. It
781 appears to be constant within the headers put on NT exes. */
782 filehdr_in->pe.dos_message[0] = 0x0eba1f0e;
783 filehdr_in->pe.dos_message[1] = 0xcd09b400;
784 filehdr_in->pe.dos_message[2] = 0x4c01b821;
785 filehdr_in->pe.dos_message[3] = 0x685421cd;
786 filehdr_in->pe.dos_message[4] = 0x70207369;
787 filehdr_in->pe.dos_message[5] = 0x72676f72;
788 filehdr_in->pe.dos_message[6] = 0x63206d61;
789 filehdr_in->pe.dos_message[7] = 0x6f6e6e61;
790 filehdr_in->pe.dos_message[8] = 0x65622074;
791 filehdr_in->pe.dos_message[9] = 0x6e757220;
792 filehdr_in->pe.dos_message[10] = 0x206e6920;
793 filehdr_in->pe.dos_message[11] = 0x20534f44;
794 filehdr_in->pe.dos_message[12] = 0x65646f6d;
795 filehdr_in->pe.dos_message[13] = 0x0a0d0d2e;
796 filehdr_in->pe.dos_message[14] = 0x24;
797 filehdr_in->pe.dos_message[15] = 0x0;
798 filehdr_in->pe.nt_signature = NT_SIGNATURE;
799
800 H_PUT_16 (abfd, filehdr_in->f_magic, filehdr_out->f_magic);
801 H_PUT_16 (abfd, filehdr_in->f_nscns, filehdr_out->f_nscns);
802
803 /* Only use a real timestamp if the option was chosen. */
804 if ((pe_data (abfd)->insert_timestamp))
805 H_PUT_32 (abfd, time(0), filehdr_out->f_timdat);
806
807 PUT_FILEHDR_SYMPTR (abfd, filehdr_in->f_symptr,
808 filehdr_out->f_symptr);
809 H_PUT_32 (abfd, filehdr_in->f_nsyms, filehdr_out->f_nsyms);
810 H_PUT_16 (abfd, filehdr_in->f_opthdr, filehdr_out->f_opthdr);
811 H_PUT_16 (abfd, filehdr_in->f_flags, filehdr_out->f_flags);
812
813 /* Put in extra dos header stuff. This data remains essentially
814 constant, it just has to be tacked on to the beginning of all exes
815 for NT. */
816 H_PUT_16 (abfd, filehdr_in->pe.e_magic, filehdr_out->e_magic);
817 H_PUT_16 (abfd, filehdr_in->pe.e_cblp, filehdr_out->e_cblp);
818 H_PUT_16 (abfd, filehdr_in->pe.e_cp, filehdr_out->e_cp);
819 H_PUT_16 (abfd, filehdr_in->pe.e_crlc, filehdr_out->e_crlc);
820 H_PUT_16 (abfd, filehdr_in->pe.e_cparhdr, filehdr_out->e_cparhdr);
821 H_PUT_16 (abfd, filehdr_in->pe.e_minalloc, filehdr_out->e_minalloc);
822 H_PUT_16 (abfd, filehdr_in->pe.e_maxalloc, filehdr_out->e_maxalloc);
823 H_PUT_16 (abfd, filehdr_in->pe.e_ss, filehdr_out->e_ss);
824 H_PUT_16 (abfd, filehdr_in->pe.e_sp, filehdr_out->e_sp);
825 H_PUT_16 (abfd, filehdr_in->pe.e_csum, filehdr_out->e_csum);
826 H_PUT_16 (abfd, filehdr_in->pe.e_ip, filehdr_out->e_ip);
827 H_PUT_16 (abfd, filehdr_in->pe.e_cs, filehdr_out->e_cs);
828 H_PUT_16 (abfd, filehdr_in->pe.e_lfarlc, filehdr_out->e_lfarlc);
829 H_PUT_16 (abfd, filehdr_in->pe.e_ovno, filehdr_out->e_ovno);
830
831 for (idx = 0; idx < 4; idx++)
832 H_PUT_16 (abfd, filehdr_in->pe.e_res[idx], filehdr_out->e_res[idx]);
833
834 H_PUT_16 (abfd, filehdr_in->pe.e_oemid, filehdr_out->e_oemid);
835 H_PUT_16 (abfd, filehdr_in->pe.e_oeminfo, filehdr_out->e_oeminfo);
836
837 for (idx = 0; idx < 10; idx++)
838 H_PUT_16 (abfd, filehdr_in->pe.e_res2[idx], filehdr_out->e_res2[idx]);
839
840 H_PUT_32 (abfd, filehdr_in->pe.e_lfanew, filehdr_out->e_lfanew);
841
842 for (idx = 0; idx < 16; idx++)
843 H_PUT_32 (abfd, filehdr_in->pe.dos_message[idx],
844 filehdr_out->dos_message[idx]);
845
846 /* Also put in the NT signature. */
847 H_PUT_32 (abfd, filehdr_in->pe.nt_signature, filehdr_out->nt_signature);
848
849 return FILHSZ;
850 }
851
852 unsigned int
853 _bfd_XX_only_swap_filehdr_out (bfd * abfd, void * in, void * out)
854 {
855 struct internal_filehdr *filehdr_in = (struct internal_filehdr *) in;
856 FILHDR *filehdr_out = (FILHDR *) out;
857
858 H_PUT_16 (abfd, filehdr_in->f_magic, filehdr_out->f_magic);
859 H_PUT_16 (abfd, filehdr_in->f_nscns, filehdr_out->f_nscns);
860 H_PUT_32 (abfd, filehdr_in->f_timdat, filehdr_out->f_timdat);
861 PUT_FILEHDR_SYMPTR (abfd, filehdr_in->f_symptr, filehdr_out->f_symptr);
862 H_PUT_32 (abfd, filehdr_in->f_nsyms, filehdr_out->f_nsyms);
863 H_PUT_16 (abfd, filehdr_in->f_opthdr, filehdr_out->f_opthdr);
864 H_PUT_16 (abfd, filehdr_in->f_flags, filehdr_out->f_flags);
865
866 return FILHSZ;
867 }
868
869 unsigned int
870 _bfd_XXi_swap_scnhdr_out (bfd * abfd, void * in, void * out)
871 {
872 struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in;
873 SCNHDR *scnhdr_ext = (SCNHDR *) out;
874 unsigned int ret = SCNHSZ;
875 bfd_vma ps;
876 bfd_vma ss;
877
878 memcpy (scnhdr_ext->s_name, scnhdr_int->s_name, sizeof (scnhdr_int->s_name));
879
880 PUT_SCNHDR_VADDR (abfd,
881 ((scnhdr_int->s_vaddr
882 - pe_data (abfd)->pe_opthdr.ImageBase)
883 & 0xffffffff),
884 scnhdr_ext->s_vaddr);
885
886 /* NT wants the size data to be rounded up to the next
887 NT_FILE_ALIGNMENT, but zero if it has no content (as in .bss,
888 sometimes). */
889 if ((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0)
890 {
891 if (bfd_pei_p (abfd))
892 {
893 ps = scnhdr_int->s_size;
894 ss = 0;
895 }
896 else
897 {
898 ps = 0;
899 ss = scnhdr_int->s_size;
900 }
901 }
902 else
903 {
904 if (bfd_pei_p (abfd))
905 ps = scnhdr_int->s_paddr;
906 else
907 ps = 0;
908
909 ss = scnhdr_int->s_size;
910 }
911
912 PUT_SCNHDR_SIZE (abfd, ss,
913 scnhdr_ext->s_size);
914
915 /* s_paddr in PE is really the virtual size. */
916 PUT_SCNHDR_PADDR (abfd, ps, scnhdr_ext->s_paddr);
917
918 PUT_SCNHDR_SCNPTR (abfd, scnhdr_int->s_scnptr,
919 scnhdr_ext->s_scnptr);
920 PUT_SCNHDR_RELPTR (abfd, scnhdr_int->s_relptr,
921 scnhdr_ext->s_relptr);
922 PUT_SCNHDR_LNNOPTR (abfd, scnhdr_int->s_lnnoptr,
923 scnhdr_ext->s_lnnoptr);
924
925 {
926 /* Extra flags must be set when dealing with PE. All sections should also
927 have the IMAGE_SCN_MEM_READ (0x40000000) flag set. In addition, the
928 .text section must have IMAGE_SCN_MEM_EXECUTE (0x20000000) and the data
929 sections (.idata, .data, .bss, .CRT) must have IMAGE_SCN_MEM_WRITE set
930 (this is especially important when dealing with the .idata section since
931 the addresses for routines from .dlls must be overwritten). If .reloc
932 section data is ever generated, we must add IMAGE_SCN_MEM_DISCARDABLE
933 (0x02000000). Also, the resource data should also be read and
934 writable. */
935
936 /* FIXME: Alignment is also encoded in this field, at least on PPC and
937 ARM-WINCE. Although - how do we get the original alignment field
938 back ? */
939
940 typedef struct
941 {
942 const char * section_name;
943 unsigned long must_have;
944 }
945 pe_required_section_flags;
946
947 pe_required_section_flags known_sections [] =
948 {
949 { ".arch", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_DISCARDABLE | IMAGE_SCN_ALIGN_8BYTES },
950 { ".bss", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_WRITE },
951 { ".data", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_WRITE },
952 { ".edata", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA },
953 { ".idata", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_WRITE },
954 { ".pdata", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA },
955 { ".rdata", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA },
956 { ".reloc", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_DISCARDABLE },
957 { ".rsrc", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_WRITE },
958 { ".text" , IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_CODE | IMAGE_SCN_MEM_EXECUTE },
959 { ".tls", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_WRITE },
960 { ".xdata", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA },
961 { NULL, 0}
962 };
963
964 pe_required_section_flags * p;
965
966 /* We have defaulted to adding the IMAGE_SCN_MEM_WRITE flag, but now
967 we know exactly what this specific section wants so we remove it
968 and then allow the must_have field to add it back in if necessary.
969 However, we don't remove IMAGE_SCN_MEM_WRITE flag from .text if the
970 default WP_TEXT file flag has been cleared. WP_TEXT may be cleared
971 by ld --enable-auto-import (if auto-import is actually needed),
972 by ld --omagic, or by obcopy --writable-text. */
973
974 for (p = known_sections; p->section_name; p++)
975 if (strcmp (scnhdr_int->s_name, p->section_name) == 0)
976 {
977 if (strcmp (scnhdr_int->s_name, ".text")
978 || (bfd_get_file_flags (abfd) & WP_TEXT))
979 scnhdr_int->s_flags &= ~IMAGE_SCN_MEM_WRITE;
980 scnhdr_int->s_flags |= p->must_have;
981 break;
982 }
983
984 H_PUT_32 (abfd, scnhdr_int->s_flags, scnhdr_ext->s_flags);
985 }
986
987 if (coff_data (abfd)->link_info
988 && ! coff_data (abfd)->link_info->relocatable
989 && ! coff_data (abfd)->link_info->shared
990 && strcmp (scnhdr_int->s_name, ".text") == 0)
991 {
992 /* By inference from looking at MS output, the 32 bit field
993 which is the combination of the number_of_relocs and
994 number_of_linenos is used for the line number count in
995 executables. A 16-bit field won't do for cc1. The MS
996 document says that the number of relocs is zero for
997 executables, but the 17-th bit has been observed to be there.
998 Overflow is not an issue: a 4G-line program will overflow a
999 bunch of other fields long before this! */
1000 H_PUT_16 (abfd, (scnhdr_int->s_nlnno & 0xffff), scnhdr_ext->s_nlnno);
1001 H_PUT_16 (abfd, (scnhdr_int->s_nlnno >> 16), scnhdr_ext->s_nreloc);
1002 }
1003 else
1004 {
1005 if (scnhdr_int->s_nlnno <= 0xffff)
1006 H_PUT_16 (abfd, scnhdr_int->s_nlnno, scnhdr_ext->s_nlnno);
1007 else
1008 {
1009 (*_bfd_error_handler) (_("%s: line number overflow: 0x%lx > 0xffff"),
1010 bfd_get_filename (abfd),
1011 scnhdr_int->s_nlnno);
1012 bfd_set_error (bfd_error_file_truncated);
1013 H_PUT_16 (abfd, 0xffff, scnhdr_ext->s_nlnno);
1014 ret = 0;
1015 }
1016
1017 /* Although we could encode 0xffff relocs here, we do not, to be
1018 consistent with other parts of bfd. Also it lets us warn, as
1019 we should never see 0xffff here w/o having the overflow flag
1020 set. */
1021 if (scnhdr_int->s_nreloc < 0xffff)
1022 H_PUT_16 (abfd, scnhdr_int->s_nreloc, scnhdr_ext->s_nreloc);
1023 else
1024 {
1025 /* PE can deal with large #s of relocs, but not here. */
1026 H_PUT_16 (abfd, 0xffff, scnhdr_ext->s_nreloc);
1027 scnhdr_int->s_flags |= IMAGE_SCN_LNK_NRELOC_OVFL;
1028 H_PUT_32 (abfd, scnhdr_int->s_flags, scnhdr_ext->s_flags);
1029 }
1030 }
1031 return ret;
1032 }
1033
1034 static char * dir_names[IMAGE_NUMBEROF_DIRECTORY_ENTRIES] =
1035 {
1036 N_("Export Directory [.edata (or where ever we found it)]"),
1037 N_("Import Directory [parts of .idata]"),
1038 N_("Resource Directory [.rsrc]"),
1039 N_("Exception Directory [.pdata]"),
1040 N_("Security Directory"),
1041 N_("Base Relocation Directory [.reloc]"),
1042 N_("Debug Directory"),
1043 N_("Description Directory"),
1044 N_("Special Directory"),
1045 N_("Thread Storage Directory [.tls]"),
1046 N_("Load Configuration Directory"),
1047 N_("Bound Import Directory"),
1048 N_("Import Address Table Directory"),
1049 N_("Delay Import Directory"),
1050 N_("CLR Runtime Header"),
1051 N_("Reserved")
1052 };
1053
1054 #ifdef POWERPC_LE_PE
1055 /* The code for the PPC really falls in the "architecture dependent"
1056 category. However, it's not clear that anyone will ever care, so
1057 we're ignoring the issue for now; if/when PPC matters, some of this
1058 may need to go into peicode.h, or arguments passed to enable the
1059 PPC- specific code. */
1060 #endif
1061
1062 static bfd_boolean
1063 pe_print_idata (bfd * abfd, void * vfile)
1064 {
1065 FILE *file = (FILE *) vfile;
1066 bfd_byte *data;
1067 asection *section;
1068 bfd_signed_vma adj;
1069
1070 #ifdef POWERPC_LE_PE
1071 asection *rel_section = bfd_get_section_by_name (abfd, ".reldata");
1072 #endif
1073
1074 bfd_size_type datasize = 0;
1075 bfd_size_type dataoff;
1076 bfd_size_type i;
1077 int onaline = 20;
1078
1079 pe_data_type *pe = pe_data (abfd);
1080 struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr;
1081
1082 bfd_vma addr;
1083
1084 addr = extra->DataDirectory[PE_IMPORT_TABLE].VirtualAddress;
1085
1086 if (addr == 0 && extra->DataDirectory[PE_IMPORT_TABLE].Size == 0)
1087 {
1088 /* Maybe the extra header isn't there. Look for the section. */
1089 section = bfd_get_section_by_name (abfd, ".idata");
1090 if (section == NULL)
1091 return TRUE;
1092
1093 addr = section->vma;
1094 datasize = section->size;
1095 if (datasize == 0)
1096 return TRUE;
1097 }
1098 else
1099 {
1100 addr += extra->ImageBase;
1101 for (section = abfd->sections; section != NULL; section = section->next)
1102 {
1103 datasize = section->size;
1104 if (addr >= section->vma && addr < section->vma + datasize)
1105 break;
1106 }
1107
1108 if (section == NULL)
1109 {
1110 fprintf (file,
1111 _("\nThere is an import table, but the section containing it could not be found\n"));
1112 return TRUE;
1113 }
1114 }
1115
1116 fprintf (file, _("\nThere is an import table in %s at 0x%lx\n"),
1117 section->name, (unsigned long) addr);
1118
1119 dataoff = addr - section->vma;
1120
1121 #ifdef POWERPC_LE_PE
1122 if (rel_section != 0 && rel_section->size != 0)
1123 {
1124 /* The toc address can be found by taking the starting address,
1125 which on the PPC locates a function descriptor. The
1126 descriptor consists of the function code starting address
1127 followed by the address of the toc. The starting address we
1128 get from the bfd, and the descriptor is supposed to be in the
1129 .reldata section. */
1130
1131 bfd_vma loadable_toc_address;
1132 bfd_vma toc_address;
1133 bfd_vma start_address;
1134 bfd_byte *data;
1135 bfd_vma offset;
1136
1137 if (!bfd_malloc_and_get_section (abfd, rel_section, &data))
1138 {
1139 if (data != NULL)
1140 free (data);
1141 return FALSE;
1142 }
1143
1144 offset = abfd->start_address - rel_section->vma;
1145
1146 if (offset >= rel_section->size || offset + 8 > rel_section->size)
1147 {
1148 if (data != NULL)
1149 free (data);
1150 return FALSE;
1151 }
1152
1153 start_address = bfd_get_32 (abfd, data + offset);
1154 loadable_toc_address = bfd_get_32 (abfd, data + offset + 4);
1155 toc_address = loadable_toc_address - 32768;
1156
1157 fprintf (file,
1158 _("\nFunction descriptor located at the start address: %04lx\n"),
1159 (unsigned long int) (abfd->start_address));
1160 fprintf (file,
1161 _("\tcode-base %08lx toc (loadable/actual) %08lx/%08lx\n"),
1162 start_address, loadable_toc_address, toc_address);
1163 if (data != NULL)
1164 free (data);
1165 }
1166 else
1167 {
1168 fprintf (file,
1169 _("\nNo reldata section! Function descriptor not decoded.\n"));
1170 }
1171 #endif
1172
1173 fprintf (file,
1174 _("\nThe Import Tables (interpreted %s section contents)\n"),
1175 section->name);
1176 fprintf (file,
1177 _("\
1178 vma: Hint Time Forward DLL First\n\
1179 Table Stamp Chain Name Thunk\n"));
1180
1181 /* Read the whole section. Some of the fields might be before dataoff. */
1182 if (!bfd_malloc_and_get_section (abfd, section, &data))
1183 {
1184 if (data != NULL)
1185 free (data);
1186 return FALSE;
1187 }
1188
1189 adj = section->vma - extra->ImageBase;
1190
1191 /* Print all image import descriptors. */
1192 for (i = dataoff; i + onaline <= datasize; i += onaline)
1193 {
1194 bfd_vma hint_addr;
1195 bfd_vma time_stamp;
1196 bfd_vma forward_chain;
1197 bfd_vma dll_name;
1198 bfd_vma first_thunk;
1199 int idx = 0;
1200 bfd_size_type j;
1201 char *dll;
1202
1203 /* Print (i + extra->DataDirectory[PE_IMPORT_TABLE].VirtualAddress). */
1204 fprintf (file, " %08lx\t", (unsigned long) (i + adj));
1205 hint_addr = bfd_get_32 (abfd, data + i);
1206 time_stamp = bfd_get_32 (abfd, data + i + 4);
1207 forward_chain = bfd_get_32 (abfd, data + i + 8);
1208 dll_name = bfd_get_32 (abfd, data + i + 12);
1209 first_thunk = bfd_get_32 (abfd, data + i + 16);
1210
1211 fprintf (file, "%08lx %08lx %08lx %08lx %08lx\n",
1212 (unsigned long) hint_addr,
1213 (unsigned long) time_stamp,
1214 (unsigned long) forward_chain,
1215 (unsigned long) dll_name,
1216 (unsigned long) first_thunk);
1217
1218 if (hint_addr == 0 && first_thunk == 0)
1219 break;
1220
1221 if (dll_name - adj >= section->size)
1222 break;
1223
1224 dll = (char *) data + dll_name - adj;
1225 fprintf (file, _("\n\tDLL Name: %s\n"), dll);
1226
1227 if (hint_addr != 0)
1228 {
1229 bfd_byte *ft_data;
1230 asection *ft_section;
1231 bfd_vma ft_addr;
1232 bfd_size_type ft_datasize;
1233 int ft_idx;
1234 int ft_allocated;
1235
1236 fprintf (file, _("\tvma: Hint/Ord Member-Name Bound-To\n"));
1237
1238 idx = hint_addr - adj;
1239
1240 ft_addr = first_thunk + extra->ImageBase;
1241 ft_idx = first_thunk - adj;
1242 ft_data = data + ft_idx;
1243 ft_datasize = datasize - ft_idx;
1244 ft_allocated = 0;
1245
1246 if (first_thunk != hint_addr)
1247 {
1248 /* Find the section which contains the first thunk. */
1249 for (ft_section = abfd->sections;
1250 ft_section != NULL;
1251 ft_section = ft_section->next)
1252 {
1253 if (ft_addr >= ft_section->vma
1254 && ft_addr < ft_section->vma + ft_section->size)
1255 break;
1256 }
1257
1258 if (ft_section == NULL)
1259 {
1260 fprintf (file,
1261 _("\nThere is a first thunk, but the section containing it could not be found\n"));
1262 continue;
1263 }
1264
1265 /* Now check to see if this section is the same as our current
1266 section. If it is not then we will have to load its data in. */
1267 if (ft_section != section)
1268 {
1269 ft_idx = first_thunk - (ft_section->vma - extra->ImageBase);
1270 ft_datasize = ft_section->size - ft_idx;
1271 ft_data = (bfd_byte *) bfd_malloc (ft_datasize);
1272 if (ft_data == NULL)
1273 continue;
1274
1275 /* Read ft_datasize bytes starting at offset ft_idx. */
1276 if (!bfd_get_section_contents (abfd, ft_section, ft_data,
1277 (bfd_vma) ft_idx, ft_datasize))
1278 {
1279 free (ft_data);
1280 continue;
1281 }
1282 ft_allocated = 1;
1283 }
1284 }
1285
1286 /* Print HintName vector entries. */
1287 #ifdef COFF_WITH_pex64
1288 for (j = 0; idx + j + 8 <= datasize; j += 8)
1289 {
1290 unsigned long member = bfd_get_32 (abfd, data + idx + j);
1291 unsigned long member_high = bfd_get_32 (abfd, data + idx + j + 4);
1292
1293 if (!member && !member_high)
1294 break;
1295
1296 if (HighBitSet (member_high))
1297 fprintf (file, "\t%lx%08lx\t %4lx%08lx <none>",
1298 member_high, member,
1299 WithoutHighBit (member_high), member);
1300 else
1301 {
1302 int ordinal;
1303 char *member_name;
1304
1305 ordinal = bfd_get_16 (abfd, data + member - adj);
1306 member_name = (char *) data + member - adj + 2;
1307 fprintf (file, "\t%04lx\t %4d %s",member, ordinal, member_name);
1308 }
1309
1310 /* If the time stamp is not zero, the import address
1311 table holds actual addresses. */
1312 if (time_stamp != 0
1313 && first_thunk != 0
1314 && first_thunk != hint_addr
1315 && j + 4 <= ft_datasize)
1316 fprintf (file, "\t%04lx",
1317 (unsigned long) bfd_get_32 (abfd, ft_data + j));
1318 fprintf (file, "\n");
1319 }
1320 #else
1321 for (j = 0; idx + j + 4 <= datasize; j += 4)
1322 {
1323 unsigned long member = bfd_get_32 (abfd, data + idx + j);
1324
1325 /* Print single IMAGE_IMPORT_BY_NAME vector. */
1326 if (member == 0)
1327 break;
1328
1329 if (HighBitSet (member))
1330 fprintf (file, "\t%04lx\t %4lu <none>",
1331 member, WithoutHighBit (member));
1332 else
1333 {
1334 int ordinal;
1335 char *member_name;
1336
1337 ordinal = bfd_get_16 (abfd, data + member - adj);
1338 member_name = (char *) data + member - adj + 2;
1339 fprintf (file, "\t%04lx\t %4d %s",
1340 member, ordinal, member_name);
1341 }
1342
1343 /* If the time stamp is not zero, the import address
1344 table holds actual addresses. */
1345 if (time_stamp != 0
1346 && first_thunk != 0
1347 && first_thunk != hint_addr
1348 && j + 4 <= ft_datasize)
1349 fprintf (file, "\t%04lx",
1350 (unsigned long) bfd_get_32 (abfd, ft_data + j));
1351
1352 fprintf (file, "\n");
1353 }
1354 #endif
1355 if (ft_allocated)
1356 free (ft_data);
1357 }
1358
1359 fprintf (file, "\n");
1360 }
1361
1362 free (data);
1363
1364 return TRUE;
1365 }
1366
1367 static bfd_boolean
1368 pe_print_edata (bfd * abfd, void * vfile)
1369 {
1370 FILE *file = (FILE *) vfile;
1371 bfd_byte *data;
1372 asection *section;
1373 bfd_size_type datasize = 0;
1374 bfd_size_type dataoff;
1375 bfd_size_type i;
1376 bfd_signed_vma adj;
1377 struct EDT_type
1378 {
1379 long export_flags; /* Reserved - should be zero. */
1380 long time_stamp;
1381 short major_ver;
1382 short minor_ver;
1383 bfd_vma name; /* RVA - relative to image base. */
1384 long base; /* Ordinal base. */
1385 unsigned long num_functions;/* Number in the export address table. */
1386 unsigned long num_names; /* Number in the name pointer table. */
1387 bfd_vma eat_addr; /* RVA to the export address table. */
1388 bfd_vma npt_addr; /* RVA to the Export Name Pointer Table. */
1389 bfd_vma ot_addr; /* RVA to the Ordinal Table. */
1390 } edt;
1391
1392 pe_data_type *pe = pe_data (abfd);
1393 struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr;
1394
1395 bfd_vma addr;
1396
1397 addr = extra->DataDirectory[PE_EXPORT_TABLE].VirtualAddress;
1398
1399 if (addr == 0 && extra->DataDirectory[PE_EXPORT_TABLE].Size == 0)
1400 {
1401 /* Maybe the extra header isn't there. Look for the section. */
1402 section = bfd_get_section_by_name (abfd, ".edata");
1403 if (section == NULL)
1404 return TRUE;
1405
1406 addr = section->vma;
1407 dataoff = 0;
1408 datasize = section->size;
1409 if (datasize == 0)
1410 return TRUE;
1411 }
1412 else
1413 {
1414 addr += extra->ImageBase;
1415
1416 for (section = abfd->sections; section != NULL; section = section->next)
1417 if (addr >= section->vma && addr < section->vma + section->size)
1418 break;
1419
1420 if (section == NULL)
1421 {
1422 fprintf (file,
1423 _("\nThere is an export table, but the section containing it could not be found\n"));
1424 return TRUE;
1425 }
1426
1427 dataoff = addr - section->vma;
1428 datasize = extra->DataDirectory[PE_EXPORT_TABLE].Size;
1429 if (datasize > section->size - dataoff)
1430 {
1431 fprintf (file,
1432 _("\nThere is an export table in %s, but it does not fit into that section\n"),
1433 section->name);
1434 return TRUE;
1435 }
1436 }
1437
1438 fprintf (file, _("\nThere is an export table in %s at 0x%lx\n"),
1439 section->name, (unsigned long) addr);
1440
1441 data = (bfd_byte *) bfd_malloc (datasize);
1442 if (data == NULL)
1443 return FALSE;
1444
1445 if (! bfd_get_section_contents (abfd, section, data,
1446 (file_ptr) dataoff, datasize))
1447 return FALSE;
1448
1449 /* Go get Export Directory Table. */
1450 edt.export_flags = bfd_get_32 (abfd, data + 0);
1451 edt.time_stamp = bfd_get_32 (abfd, data + 4);
1452 edt.major_ver = bfd_get_16 (abfd, data + 8);
1453 edt.minor_ver = bfd_get_16 (abfd, data + 10);
1454 edt.name = bfd_get_32 (abfd, data + 12);
1455 edt.base = bfd_get_32 (abfd, data + 16);
1456 edt.num_functions = bfd_get_32 (abfd, data + 20);
1457 edt.num_names = bfd_get_32 (abfd, data + 24);
1458 edt.eat_addr = bfd_get_32 (abfd, data + 28);
1459 edt.npt_addr = bfd_get_32 (abfd, data + 32);
1460 edt.ot_addr = bfd_get_32 (abfd, data + 36);
1461
1462 adj = section->vma - extra->ImageBase + dataoff;
1463
1464 /* Dump the EDT first. */
1465 fprintf (file,
1466 _("\nThe Export Tables (interpreted %s section contents)\n\n"),
1467 section->name);
1468
1469 fprintf (file,
1470 _("Export Flags \t\t\t%lx\n"), (unsigned long) edt.export_flags);
1471
1472 fprintf (file,
1473 _("Time/Date stamp \t\t%lx\n"), (unsigned long) edt.time_stamp);
1474
1475 fprintf (file,
1476 _("Major/Minor \t\t\t%d/%d\n"), edt.major_ver, edt.minor_ver);
1477
1478 fprintf (file,
1479 _("Name \t\t\t\t"));
1480 bfd_fprintf_vma (abfd, file, edt.name);
1481 fprintf (file,
1482 " %s\n", data + edt.name - adj);
1483
1484 fprintf (file,
1485 _("Ordinal Base \t\t\t%ld\n"), edt.base);
1486
1487 fprintf (file,
1488 _("Number in:\n"));
1489
1490 fprintf (file,
1491 _("\tExport Address Table \t\t%08lx\n"),
1492 edt.num_functions);
1493
1494 fprintf (file,
1495 _("\t[Name Pointer/Ordinal] Table\t%08lx\n"), edt.num_names);
1496
1497 fprintf (file,
1498 _("Table Addresses\n"));
1499
1500 fprintf (file,
1501 _("\tExport Address Table \t\t"));
1502 bfd_fprintf_vma (abfd, file, edt.eat_addr);
1503 fprintf (file, "\n");
1504
1505 fprintf (file,
1506 _("\tName Pointer Table \t\t"));
1507 bfd_fprintf_vma (abfd, file, edt.npt_addr);
1508 fprintf (file, "\n");
1509
1510 fprintf (file,
1511 _("\tOrdinal Table \t\t\t"));
1512 bfd_fprintf_vma (abfd, file, edt.ot_addr);
1513 fprintf (file, "\n");
1514
1515 /* The next table to find is the Export Address Table. It's basically
1516 a list of pointers that either locate a function in this dll, or
1517 forward the call to another dll. Something like:
1518 typedef union
1519 {
1520 long export_rva;
1521 long forwarder_rva;
1522 } export_address_table_entry; */
1523
1524 fprintf (file,
1525 _("\nExport Address Table -- Ordinal Base %ld\n"),
1526 edt.base);
1527
1528 for (i = 0; i < edt.num_functions; ++i)
1529 {
1530 bfd_vma eat_member = bfd_get_32 (abfd,
1531 data + edt.eat_addr + (i * 4) - adj);
1532 if (eat_member == 0)
1533 continue;
1534
1535 if (eat_member - adj <= datasize)
1536 {
1537 /* This rva is to a name (forwarding function) in our section. */
1538 /* Should locate a function descriptor. */
1539 fprintf (file,
1540 "\t[%4ld] +base[%4ld] %04lx %s -- %s\n",
1541 (long) i,
1542 (long) (i + edt.base),
1543 (unsigned long) eat_member,
1544 _("Forwarder RVA"),
1545 data + eat_member - adj);
1546 }
1547 else
1548 {
1549 /* Should locate a function descriptor in the reldata section. */
1550 fprintf (file,
1551 "\t[%4ld] +base[%4ld] %04lx %s\n",
1552 (long) i,
1553 (long) (i + edt.base),
1554 (unsigned long) eat_member,
1555 _("Export RVA"));
1556 }
1557 }
1558
1559 /* The Export Name Pointer Table is paired with the Export Ordinal Table. */
1560 /* Dump them in parallel for clarity. */
1561 fprintf (file,
1562 _("\n[Ordinal/Name Pointer] Table\n"));
1563
1564 for (i = 0; i < edt.num_names; ++i)
1565 {
1566 bfd_vma name_ptr = bfd_get_32 (abfd,
1567 data +
1568 edt.npt_addr
1569 + (i*4) - adj);
1570
1571 char *name = (char *) data + name_ptr - adj;
1572
1573 bfd_vma ord = bfd_get_16 (abfd,
1574 data +
1575 edt.ot_addr
1576 + (i*2) - adj);
1577 fprintf (file,
1578 "\t[%4ld] %s\n", (long) ord, name);
1579 }
1580
1581 free (data);
1582
1583 return TRUE;
1584 }
1585
1586 /* This really is architecture dependent. On IA-64, a .pdata entry
1587 consists of three dwords containing relative virtual addresses that
1588 specify the start and end address of the code range the entry
1589 covers and the address of the corresponding unwind info data.
1590
1591 On ARM and SH-4, a compressed PDATA structure is used :
1592 _IMAGE_CE_RUNTIME_FUNCTION_ENTRY, whereas MIPS is documented to use
1593 _IMAGE_ALPHA_RUNTIME_FUNCTION_ENTRY.
1594 See http://msdn2.microsoft.com/en-us/library/ms253988(VS.80).aspx .
1595
1596 This is the version for uncompressed data. */
1597
1598 static bfd_boolean
1599 pe_print_pdata (bfd * abfd, void * vfile)
1600 {
1601 #if defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
1602 # define PDATA_ROW_SIZE (3 * 8)
1603 #else
1604 # define PDATA_ROW_SIZE (5 * 4)
1605 #endif
1606 FILE *file = (FILE *) vfile;
1607 bfd_byte *data = 0;
1608 asection *section = bfd_get_section_by_name (abfd, ".pdata");
1609 bfd_size_type datasize = 0;
1610 bfd_size_type i;
1611 bfd_size_type start, stop;
1612 int onaline = PDATA_ROW_SIZE;
1613
1614 if (section == NULL
1615 || coff_section_data (abfd, section) == NULL
1616 || pei_section_data (abfd, section) == NULL)
1617 return TRUE;
1618
1619 stop = pei_section_data (abfd, section)->virt_size;
1620 if ((stop % onaline) != 0)
1621 fprintf (file,
1622 _("Warning, .pdata section size (%ld) is not a multiple of %d\n"),
1623 (long) stop, onaline);
1624
1625 fprintf (file,
1626 _("\nThe Function Table (interpreted .pdata section contents)\n"));
1627 #if defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
1628 fprintf (file,
1629 _(" vma:\t\t\tBegin Address End Address Unwind Info\n"));
1630 #else
1631 fprintf (file, _("\
1632 vma:\t\tBegin End EH EH PrologEnd Exception\n\
1633 \t\tAddress Address Handler Data Address Mask\n"));
1634 #endif
1635
1636 datasize = section->size;
1637 if (datasize == 0)
1638 return TRUE;
1639
1640 if (! bfd_malloc_and_get_section (abfd, section, &data))
1641 {
1642 if (data != NULL)
1643 free (data);
1644 return FALSE;
1645 }
1646
1647 start = 0;
1648
1649 for (i = start; i < stop; i += onaline)
1650 {
1651 bfd_vma begin_addr;
1652 bfd_vma end_addr;
1653 bfd_vma eh_handler;
1654 bfd_vma eh_data;
1655 bfd_vma prolog_end_addr;
1656 #if !defined(COFF_WITH_pep) || defined(COFF_WITH_pex64)
1657 int em_data;
1658 #endif
1659
1660 if (i + PDATA_ROW_SIZE > stop)
1661 break;
1662
1663 begin_addr = GET_PDATA_ENTRY (abfd, data + i );
1664 end_addr = GET_PDATA_ENTRY (abfd, data + i + 4);
1665 eh_handler = GET_PDATA_ENTRY (abfd, data + i + 8);
1666 eh_data = GET_PDATA_ENTRY (abfd, data + i + 12);
1667 prolog_end_addr = GET_PDATA_ENTRY (abfd, data + i + 16);
1668
1669 if (begin_addr == 0 && end_addr == 0 && eh_handler == 0
1670 && eh_data == 0 && prolog_end_addr == 0)
1671 /* We are probably into the padding of the section now. */
1672 break;
1673
1674 #if !defined(COFF_WITH_pep) || defined(COFF_WITH_pex64)
1675 em_data = ((eh_handler & 0x1) << 2) | (prolog_end_addr & 0x3);
1676 #endif
1677 eh_handler &= ~(bfd_vma) 0x3;
1678 prolog_end_addr &= ~(bfd_vma) 0x3;
1679
1680 fputc (' ', file);
1681 bfd_fprintf_vma (abfd, file, i + section->vma); fputc ('\t', file);
1682 bfd_fprintf_vma (abfd, file, begin_addr); fputc (' ', file);
1683 bfd_fprintf_vma (abfd, file, end_addr); fputc (' ', file);
1684 bfd_fprintf_vma (abfd, file, eh_handler);
1685 #if !defined(COFF_WITH_pep) || defined(COFF_WITH_pex64)
1686 fputc (' ', file);
1687 bfd_fprintf_vma (abfd, file, eh_data); fputc (' ', file);
1688 bfd_fprintf_vma (abfd, file, prolog_end_addr);
1689 fprintf (file, " %x", em_data);
1690 #endif
1691
1692 #ifdef POWERPC_LE_PE
1693 if (eh_handler == 0 && eh_data != 0)
1694 {
1695 /* Special bits here, although the meaning may be a little
1696 mysterious. The only one I know for sure is 0x03
1697 Code Significance
1698 0x00 None
1699 0x01 Register Save Millicode
1700 0x02 Register Restore Millicode
1701 0x03 Glue Code Sequence. */
1702 switch (eh_data)
1703 {
1704 case 0x01:
1705 fprintf (file, _(" Register save millicode"));
1706 break;
1707 case 0x02:
1708 fprintf (file, _(" Register restore millicode"));
1709 break;
1710 case 0x03:
1711 fprintf (file, _(" Glue code sequence"));
1712 break;
1713 default:
1714 break;
1715 }
1716 }
1717 #endif
1718 fprintf (file, "\n");
1719 }
1720
1721 free (data);
1722
1723 return TRUE;
1724 #undef PDATA_ROW_SIZE
1725 }
1726
1727 typedef struct sym_cache
1728 {
1729 int symcount;
1730 asymbol ** syms;
1731 } sym_cache;
1732
1733 static asymbol **
1734 slurp_symtab (bfd *abfd, sym_cache *psc)
1735 {
1736 asymbol ** sy = NULL;
1737 long storage;
1738
1739 if (!(bfd_get_file_flags (abfd) & HAS_SYMS))
1740 {
1741 psc->symcount = 0;
1742 return NULL;
1743 }
1744
1745 storage = bfd_get_symtab_upper_bound (abfd);
1746 if (storage < 0)
1747 return NULL;
1748 if (storage)
1749 sy = (asymbol **) bfd_malloc (storage);
1750
1751 psc->symcount = bfd_canonicalize_symtab (abfd, sy);
1752 if (psc->symcount < 0)
1753 return NULL;
1754 return sy;
1755 }
1756
1757 static const char *
1758 my_symbol_for_address (bfd *abfd, bfd_vma func, sym_cache *psc)
1759 {
1760 int i;
1761
1762 if (psc->syms == 0)
1763 psc->syms = slurp_symtab (abfd, psc);
1764
1765 for (i = 0; i < psc->symcount; i++)
1766 {
1767 if (psc->syms[i]->section->vma + psc->syms[i]->value == func)
1768 return psc->syms[i]->name;
1769 }
1770
1771 return NULL;
1772 }
1773
1774 static void
1775 cleanup_syms (sym_cache *psc)
1776 {
1777 psc->symcount = 0;
1778 free (psc->syms);
1779 psc->syms = NULL;
1780 }
1781
1782 /* This is the version for "compressed" pdata. */
1783
1784 bfd_boolean
1785 _bfd_XX_print_ce_compressed_pdata (bfd * abfd, void * vfile)
1786 {
1787 # define PDATA_ROW_SIZE (2 * 4)
1788 FILE *file = (FILE *) vfile;
1789 bfd_byte *data = NULL;
1790 asection *section = bfd_get_section_by_name (abfd, ".pdata");
1791 bfd_size_type datasize = 0;
1792 bfd_size_type i;
1793 bfd_size_type start, stop;
1794 int onaline = PDATA_ROW_SIZE;
1795 struct sym_cache cache = {0, 0} ;
1796
1797 if (section == NULL
1798 || coff_section_data (abfd, section) == NULL
1799 || pei_section_data (abfd, section) == NULL)
1800 return TRUE;
1801
1802 stop = pei_section_data (abfd, section)->virt_size;
1803 if ((stop % onaline) != 0)
1804 fprintf (file,
1805 _("Warning, .pdata section size (%ld) is not a multiple of %d\n"),
1806 (long) stop, onaline);
1807
1808 fprintf (file,
1809 _("\nThe Function Table (interpreted .pdata section contents)\n"));
1810
1811 fprintf (file, _("\
1812 vma:\t\tBegin Prolog Function Flags Exception EH\n\
1813 \t\tAddress Length Length 32b exc Handler Data\n"));
1814
1815 datasize = section->size;
1816 if (datasize == 0)
1817 return TRUE;
1818
1819 if (! bfd_malloc_and_get_section (abfd, section, &data))
1820 {
1821 if (data != NULL)
1822 free (data);
1823 return FALSE;
1824 }
1825
1826 start = 0;
1827
1828 for (i = start; i < stop; i += onaline)
1829 {
1830 bfd_vma begin_addr;
1831 bfd_vma other_data;
1832 bfd_vma prolog_length, function_length;
1833 int flag32bit, exception_flag;
1834 asection *tsection;
1835
1836 if (i + PDATA_ROW_SIZE > stop)
1837 break;
1838
1839 begin_addr = GET_PDATA_ENTRY (abfd, data + i );
1840 other_data = GET_PDATA_ENTRY (abfd, data + i + 4);
1841
1842 if (begin_addr == 0 && other_data == 0)
1843 /* We are probably into the padding of the section now. */
1844 break;
1845
1846 prolog_length = (other_data & 0x000000FF);
1847 function_length = (other_data & 0x3FFFFF00) >> 8;
1848 flag32bit = (int)((other_data & 0x40000000) >> 30);
1849 exception_flag = (int)((other_data & 0x80000000) >> 31);
1850
1851 fputc (' ', file);
1852 bfd_fprintf_vma (abfd, file, i + section->vma); fputc ('\t', file);
1853 bfd_fprintf_vma (abfd, file, begin_addr); fputc (' ', file);
1854 bfd_fprintf_vma (abfd, file, prolog_length); fputc (' ', file);
1855 bfd_fprintf_vma (abfd, file, function_length); fputc (' ', file);
1856 fprintf (file, "%2d %2d ", flag32bit, exception_flag);
1857
1858 /* Get the exception handler's address and the data passed from the
1859 .text section. This is really the data that belongs with the .pdata
1860 but got "compressed" out for the ARM and SH4 architectures. */
1861 tsection = bfd_get_section_by_name (abfd, ".text");
1862 if (tsection && coff_section_data (abfd, tsection)
1863 && pei_section_data (abfd, tsection))
1864 {
1865 bfd_vma eh_off = (begin_addr - 8) - tsection->vma;
1866 bfd_byte *tdata;
1867
1868 tdata = (bfd_byte *) bfd_malloc (8);
1869 if (tdata)
1870 {
1871 if (bfd_get_section_contents (abfd, tsection, tdata, eh_off, 8))
1872 {
1873 bfd_vma eh, eh_data;
1874
1875 eh = bfd_get_32 (abfd, tdata);
1876 eh_data = bfd_get_32 (abfd, tdata + 4);
1877 fprintf (file, "%08x ", (unsigned int) eh);
1878 fprintf (file, "%08x", (unsigned int) eh_data);
1879 if (eh != 0)
1880 {
1881 const char *s = my_symbol_for_address (abfd, eh, &cache);
1882
1883 if (s)
1884 fprintf (file, " (%s) ", s);
1885 }
1886 }
1887 free (tdata);
1888 }
1889 }
1890
1891 fprintf (file, "\n");
1892 }
1893
1894 free (data);
1895
1896 cleanup_syms (& cache);
1897
1898 return TRUE;
1899 #undef PDATA_ROW_SIZE
1900 }
1901
1902 \f
1903 #define IMAGE_REL_BASED_HIGHADJ 4
1904 static const char * const tbl[] =
1905 {
1906 "ABSOLUTE",
1907 "HIGH",
1908 "LOW",
1909 "HIGHLOW",
1910 "HIGHADJ",
1911 "MIPS_JMPADDR",
1912 "SECTION",
1913 "REL32",
1914 "RESERVED1",
1915 "MIPS_JMPADDR16",
1916 "DIR64",
1917 "HIGH3ADJ",
1918 "UNKNOWN", /* MUST be last. */
1919 };
1920
1921 static bfd_boolean
1922 pe_print_reloc (bfd * abfd, void * vfile)
1923 {
1924 FILE *file = (FILE *) vfile;
1925 bfd_byte *data = 0;
1926 asection *section = bfd_get_section_by_name (abfd, ".reloc");
1927 bfd_size_type i;
1928 bfd_size_type start, stop;
1929
1930 if (section == NULL)
1931 return TRUE;
1932
1933 if (section->size == 0)
1934 return TRUE;
1935
1936 fprintf (file,
1937 _("\n\nPE File Base Relocations (interpreted .reloc section contents)\n"));
1938
1939 if (! bfd_malloc_and_get_section (abfd, section, &data))
1940 {
1941 if (data != NULL)
1942 free (data);
1943 return FALSE;
1944 }
1945
1946 start = 0;
1947
1948 stop = section->size;
1949
1950 for (i = start; i < stop;)
1951 {
1952 int j;
1953 bfd_vma virtual_address;
1954 long number, size;
1955
1956 /* The .reloc section is a sequence of blocks, with a header consisting
1957 of two 32 bit quantities, followed by a number of 16 bit entries. */
1958 virtual_address = bfd_get_32 (abfd, data+i);
1959 size = bfd_get_32 (abfd, data+i+4);
1960 number = (size - 8) / 2;
1961
1962 if (size == 0)
1963 break;
1964
1965 fprintf (file,
1966 _("\nVirtual Address: %08lx Chunk size %ld (0x%lx) Number of fixups %ld\n"),
1967 (unsigned long) virtual_address, size, (unsigned long) size, number);
1968
1969 for (j = 0; j < number; ++j)
1970 {
1971 unsigned short e = bfd_get_16 (abfd, data + i + 8 + j * 2);
1972 unsigned int t = (e & 0xF000) >> 12;
1973 int off = e & 0x0FFF;
1974
1975 if (t >= sizeof (tbl) / sizeof (tbl[0]))
1976 t = (sizeof (tbl) / sizeof (tbl[0])) - 1;
1977
1978 fprintf (file,
1979 _("\treloc %4d offset %4x [%4lx] %s"),
1980 j, off, (unsigned long) (off + virtual_address), tbl[t]);
1981
1982 /* HIGHADJ takes an argument, - the next record *is* the
1983 low 16 bits of addend. */
1984 if (t == IMAGE_REL_BASED_HIGHADJ)
1985 {
1986 fprintf (file, " (%4x)",
1987 ((unsigned int)
1988 bfd_get_16 (abfd, data + i + 8 + j * 2 + 2)));
1989 j++;
1990 }
1991
1992 fprintf (file, "\n");
1993 }
1994
1995 i += size;
1996 }
1997
1998 free (data);
1999
2000 return TRUE;
2001 }
2002 \f
2003
2004 static bfd_byte *
2005 rsrc_print_resource_directory (FILE * , bfd *, unsigned int,
2006 bfd_byte *, bfd_byte *, bfd_byte *, bfd_vma);
2007
2008 static bfd_byte *
2009 rsrc_print_resource_entries (FILE * file,
2010 bfd * abfd,
2011 unsigned int indent,
2012 bfd_boolean is_name,
2013 bfd_byte * datastart,
2014 bfd_byte * data,
2015 bfd_byte * dataend,
2016 bfd_vma rva_bias)
2017 {
2018 unsigned long entry, addr, size;
2019
2020 if (data + 8 >= dataend)
2021 return dataend + 1;
2022
2023 fprintf (file, _("%*.s Entry: "), indent, " ");
2024
2025 entry = (long) bfd_get_32 (abfd, data);
2026 if (is_name)
2027 {
2028 bfd_byte * name;
2029
2030 /* Note - the documenation says that this field is an RVA value
2031 but windres appears to produce a section relative offset with
2032 the top bit set. Support both styles for now. */
2033 if (HighBitSet (entry))
2034 name = datastart + WithoutHighBit (entry);
2035 else
2036 name = datastart + entry - rva_bias;
2037
2038 if (name + 2 < dataend)
2039 {
2040 unsigned int len;
2041 len = bfd_get_16 (abfd, name);
2042
2043 fprintf (file, _("name: [val: %08lx len %d]: "), entry, len);
2044 if (name + 2 + len * 2 < dataend)
2045 {
2046 /* This strange loop is to cope with multibyte characters. */
2047 while (len --)
2048 {
2049 name += 2;
2050 fprintf (file, "%.1s", name);
2051 }
2052 }
2053 else
2054 fprintf (file, _("<corrupt string length: %#x>"), len);
2055 }
2056 else
2057 fprintf (file, _("<corrupt string offset: %#lx>"), entry);
2058 }
2059 else
2060 fprintf (file, _("ID: %#08lx"), entry);
2061
2062 entry = (long) bfd_get_32 (abfd, data + 4);
2063 fprintf (file, _(", Value: %#08lx\n"), entry);
2064
2065 if (HighBitSet (entry))
2066 return rsrc_print_resource_directory (file, abfd, indent + 1,
2067 datastart,
2068 datastart + WithoutHighBit (entry),
2069 dataend, rva_bias);
2070
2071 if (datastart + entry + 16 >= dataend)
2072 return dataend + 1;
2073
2074 fprintf (file, _("%*.s Leaf: Addr: %#08lx, Size: %#08lx, Codepage: %d\n"),
2075 indent, " ",
2076 addr = (long) bfd_get_32 (abfd, datastart + entry),
2077 size = (long) bfd_get_32 (abfd, datastart + entry + 4),
2078 (int) bfd_get_32 (abfd, datastart + entry + 8));
2079
2080 /* Check that the reserved entry is 0. */
2081 if (bfd_get_32 (abfd, datastart + entry + 12) != 0
2082 /* And that the data address/size is valid too. */
2083 || (datastart + (addr - rva_bias) + size > dataend))
2084 return dataend + 1;
2085
2086 return datastart + (addr - rva_bias) + size;
2087 }
2088
2089 #define max(a,b) ((a) > (b) ? (a) : (b))
2090 #define min(a,b) ((a) < (b) ? (a) : (b))
2091
2092 static bfd_byte *
2093 rsrc_print_resource_directory (FILE * file,
2094 bfd * abfd,
2095 unsigned int indent,
2096 bfd_byte * datastart,
2097 bfd_byte * data,
2098 bfd_byte * dataend,
2099 bfd_vma rva_bias)
2100 {
2101 unsigned int num_names, num_ids;
2102 bfd_byte * highest_data = data;
2103
2104 if (data + 16 >= dataend)
2105 return dataend + 1;
2106
2107 fprintf (file, "%*.s ", indent, " ");
2108 switch (indent)
2109 {
2110 case 0: fprintf (file, "Type"); break;
2111 case 2: fprintf (file, "Name"); break;
2112 case 4: fprintf (file, "Language"); break;
2113 default: fprintf (file, "<unknown>"); break;
2114 }
2115
2116 fprintf (file, _(" Table: Char: %d, Time: %08lx, Ver: %d/%d, Num Names: %d, IDs: %d\n"),
2117 (int) bfd_get_32 (abfd, data),
2118 (long) bfd_get_32 (abfd, data + 4),
2119 (int) bfd_get_16 (abfd, data + 8),
2120 (int) bfd_get_16 (abfd, data + 10),
2121 num_names = (int) bfd_get_16 (abfd, data + 12),
2122 num_ids = (int) bfd_get_16 (abfd, data + 14));
2123 data += 16;
2124
2125 while (num_names --)
2126 {
2127 bfd_byte * entry_end;
2128
2129 entry_end = rsrc_print_resource_entries (file, abfd, indent + 1, TRUE,
2130 datastart, data, dataend, rva_bias);
2131 data += 8;
2132 highest_data = max (highest_data, entry_end);
2133 if (entry_end >= dataend)
2134 return entry_end;
2135 }
2136
2137 while (num_ids --)
2138 {
2139 bfd_byte * entry_end;
2140
2141 entry_end = rsrc_print_resource_entries (file, abfd, indent + 1, FALSE,
2142 datastart, data, dataend,
2143 rva_bias);
2144 data += 8;
2145 highest_data = max (highest_data, entry_end);
2146 if (entry_end >= dataend)
2147 return entry_end;
2148 }
2149
2150 return max (highest_data, data);
2151 }
2152
2153 /* Display the contents of a .rsrc section. We do not try to
2154 reproduce the resources, windres does that. Instead we dump
2155 the tables in a human readable format. */
2156
2157 static bfd_boolean
2158 rsrc_print_section (bfd * abfd, void * vfile)
2159 {
2160 bfd_vma rva_bias;
2161 pe_data_type * pe;
2162 FILE * file = (FILE *) vfile;
2163 bfd_size_type datasize;
2164 asection * section;
2165 bfd_byte * data;
2166 bfd_byte * dataend;
2167 bfd_byte * datastart;
2168
2169
2170 pe = pe_data (abfd);
2171 if (pe == NULL)
2172 return TRUE;
2173
2174 section = bfd_get_section_by_name (abfd, ".rsrc");
2175 if (section == NULL)
2176 return TRUE;
2177
2178 rva_bias = section->vma - pe->pe_opthdr.ImageBase;
2179
2180 datasize = section->size;
2181 if (datasize == 0)
2182 return TRUE;
2183
2184 if (! bfd_malloc_and_get_section (abfd, section, & data))
2185 {
2186 if (data != NULL)
2187 free (data);
2188 return FALSE;
2189 }
2190 datastart = data;
2191 dataend = data + datasize;
2192
2193 fflush (file);
2194 fprintf (file, "\nThe .rsrc Resource Directory section:\n");
2195
2196 while (data < dataend)
2197 {
2198 bfd_byte * p = data;
2199
2200 data = rsrc_print_resource_directory (file, abfd, 0, data, data,
2201 dataend, rva_bias);
2202
2203 if (data == dataend + 1)
2204 fprintf (file, _("Corrupt .rsrc section detected!\n"));
2205 else
2206 {
2207 /* Align data before continuing. */
2208 int align = (1 << section->alignment_power) - 1;
2209
2210 data = (bfd_byte *) (((ptrdiff_t) (data + align)) & ~ align);
2211 rva_bias += data - p;
2212
2213 /* For reasons that are unclear .rsrc sections are sometimes created
2214 aligned to a 1^3 boundary even when their alignment is set at
2215 1^2. Catch that case here before we issue a spurious warning
2216 message. */
2217 if (data == (dataend - 4))
2218 data = dataend;
2219 else if (data < dataend)
2220 fprintf (file, _("\nWARNING: Extra data in .rsrc section - it will be ignored by Windows:\n"));
2221 }
2222 }
2223
2224 free (datastart);
2225 return TRUE;
2226 }
2227
2228 /* Print out the program headers. */
2229
2230 bfd_boolean
2231 _bfd_XX_print_private_bfd_data_common (bfd * abfd, void * vfile)
2232 {
2233 FILE *file = (FILE *) vfile;
2234 int j;
2235 pe_data_type *pe = pe_data (abfd);
2236 struct internal_extra_pe_aouthdr *i = &pe->pe_opthdr;
2237 const char *subsystem_name = NULL;
2238 const char *name;
2239
2240 /* The MS dumpbin program reportedly ands with 0xff0f before
2241 printing the characteristics field. Not sure why. No reason to
2242 emulate it here. */
2243 fprintf (file, _("\nCharacteristics 0x%x\n"), pe->real_flags);
2244 #undef PF
2245 #define PF(x, y) if (pe->real_flags & x) { fprintf (file, "\t%s\n", y); }
2246 PF (IMAGE_FILE_RELOCS_STRIPPED, "relocations stripped");
2247 PF (IMAGE_FILE_EXECUTABLE_IMAGE, "executable");
2248 PF (IMAGE_FILE_LINE_NUMS_STRIPPED, "line numbers stripped");
2249 PF (IMAGE_FILE_LOCAL_SYMS_STRIPPED, "symbols stripped");
2250 PF (IMAGE_FILE_LARGE_ADDRESS_AWARE, "large address aware");
2251 PF (IMAGE_FILE_BYTES_REVERSED_LO, "little endian");
2252 PF (IMAGE_FILE_32BIT_MACHINE, "32 bit words");
2253 PF (IMAGE_FILE_DEBUG_STRIPPED, "debugging information removed");
2254 PF (IMAGE_FILE_SYSTEM, "system file");
2255 PF (IMAGE_FILE_DLL, "DLL");
2256 PF (IMAGE_FILE_BYTES_REVERSED_HI, "big endian");
2257 #undef PF
2258
2259 /* ctime implies '\n'. */
2260 {
2261 time_t t = pe->coff.timestamp;
2262 fprintf (file, "\nTime/Date\t\t%s", ctime (&t));
2263 }
2264
2265 #ifndef IMAGE_NT_OPTIONAL_HDR_MAGIC
2266 # define IMAGE_NT_OPTIONAL_HDR_MAGIC 0x10b
2267 #endif
2268 #ifndef IMAGE_NT_OPTIONAL_HDR64_MAGIC
2269 # define IMAGE_NT_OPTIONAL_HDR64_MAGIC 0x20b
2270 #endif
2271 #ifndef IMAGE_NT_OPTIONAL_HDRROM_MAGIC
2272 # define IMAGE_NT_OPTIONAL_HDRROM_MAGIC 0x107
2273 #endif
2274
2275 switch (i->Magic)
2276 {
2277 case IMAGE_NT_OPTIONAL_HDR_MAGIC:
2278 name = "PE32";
2279 break;
2280 case IMAGE_NT_OPTIONAL_HDR64_MAGIC:
2281 name = "PE32+";
2282 break;
2283 case IMAGE_NT_OPTIONAL_HDRROM_MAGIC:
2284 name = "ROM";
2285 break;
2286 default:
2287 name = NULL;
2288 break;
2289 }
2290 fprintf (file, "Magic\t\t\t%04x", i->Magic);
2291 if (name)
2292 fprintf (file, "\t(%s)",name);
2293 fprintf (file, "\nMajorLinkerVersion\t%d\n", i->MajorLinkerVersion);
2294 fprintf (file, "MinorLinkerVersion\t%d\n", i->MinorLinkerVersion);
2295 fprintf (file, "SizeOfCode\t\t%08lx\n", (unsigned long) i->SizeOfCode);
2296 fprintf (file, "SizeOfInitializedData\t%08lx\n",
2297 (unsigned long) i->SizeOfInitializedData);
2298 fprintf (file, "SizeOfUninitializedData\t%08lx\n",
2299 (unsigned long) i->SizeOfUninitializedData);
2300 fprintf (file, "AddressOfEntryPoint\t");
2301 bfd_fprintf_vma (abfd, file, i->AddressOfEntryPoint);
2302 fprintf (file, "\nBaseOfCode\t\t");
2303 bfd_fprintf_vma (abfd, file, i->BaseOfCode);
2304 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
2305 /* PE32+ does not have BaseOfData member! */
2306 fprintf (file, "\nBaseOfData\t\t");
2307 bfd_fprintf_vma (abfd, file, i->BaseOfData);
2308 #endif
2309
2310 fprintf (file, "\nImageBase\t\t");
2311 bfd_fprintf_vma (abfd, file, i->ImageBase);
2312 fprintf (file, "\nSectionAlignment\t");
2313 bfd_fprintf_vma (abfd, file, i->SectionAlignment);
2314 fprintf (file, "\nFileAlignment\t\t");
2315 bfd_fprintf_vma (abfd, file, i->FileAlignment);
2316 fprintf (file, "\nMajorOSystemVersion\t%d\n", i->MajorOperatingSystemVersion);
2317 fprintf (file, "MinorOSystemVersion\t%d\n", i->MinorOperatingSystemVersion);
2318 fprintf (file, "MajorImageVersion\t%d\n", i->MajorImageVersion);
2319 fprintf (file, "MinorImageVersion\t%d\n", i->MinorImageVersion);
2320 fprintf (file, "MajorSubsystemVersion\t%d\n", i->MajorSubsystemVersion);
2321 fprintf (file, "MinorSubsystemVersion\t%d\n", i->MinorSubsystemVersion);
2322 fprintf (file, "Win32Version\t\t%08lx\n", (unsigned long) i->Reserved1);
2323 fprintf (file, "SizeOfImage\t\t%08lx\n", (unsigned long) i->SizeOfImage);
2324 fprintf (file, "SizeOfHeaders\t\t%08lx\n", (unsigned long) i->SizeOfHeaders);
2325 fprintf (file, "CheckSum\t\t%08lx\n", (unsigned long) i->CheckSum);
2326
2327 switch (i->Subsystem)
2328 {
2329 case IMAGE_SUBSYSTEM_UNKNOWN:
2330 subsystem_name = "unspecified";
2331 break;
2332 case IMAGE_SUBSYSTEM_NATIVE:
2333 subsystem_name = "NT native";
2334 break;
2335 case IMAGE_SUBSYSTEM_WINDOWS_GUI:
2336 subsystem_name = "Windows GUI";
2337 break;
2338 case IMAGE_SUBSYSTEM_WINDOWS_CUI:
2339 subsystem_name = "Windows CUI";
2340 break;
2341 case IMAGE_SUBSYSTEM_POSIX_CUI:
2342 subsystem_name = "POSIX CUI";
2343 break;
2344 case IMAGE_SUBSYSTEM_WINDOWS_CE_GUI:
2345 subsystem_name = "Wince CUI";
2346 break;
2347 // These are from UEFI Platform Initialization Specification 1.1.
2348 case IMAGE_SUBSYSTEM_EFI_APPLICATION:
2349 subsystem_name = "EFI application";
2350 break;
2351 case IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER:
2352 subsystem_name = "EFI boot service driver";
2353 break;
2354 case IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER:
2355 subsystem_name = "EFI runtime driver";
2356 break;
2357 case IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER:
2358 subsystem_name = "SAL runtime driver";
2359 break;
2360 // This is from revision 8.0 of the MS PE/COFF spec
2361 case IMAGE_SUBSYSTEM_XBOX:
2362 subsystem_name = "XBOX";
2363 break;
2364 // Added default case for clarity - subsystem_name is NULL anyway.
2365 default:
2366 subsystem_name = NULL;
2367 }
2368
2369 fprintf (file, "Subsystem\t\t%08x", i->Subsystem);
2370 if (subsystem_name)
2371 fprintf (file, "\t(%s)", subsystem_name);
2372 fprintf (file, "\nDllCharacteristics\t%08x\n", i->DllCharacteristics);
2373 fprintf (file, "SizeOfStackReserve\t");
2374 bfd_fprintf_vma (abfd, file, i->SizeOfStackReserve);
2375 fprintf (file, "\nSizeOfStackCommit\t");
2376 bfd_fprintf_vma (abfd, file, i->SizeOfStackCommit);
2377 fprintf (file, "\nSizeOfHeapReserve\t");
2378 bfd_fprintf_vma (abfd, file, i->SizeOfHeapReserve);
2379 fprintf (file, "\nSizeOfHeapCommit\t");
2380 bfd_fprintf_vma (abfd, file, i->SizeOfHeapCommit);
2381 fprintf (file, "\nLoaderFlags\t\t%08lx\n", (unsigned long) i->LoaderFlags);
2382 fprintf (file, "NumberOfRvaAndSizes\t%08lx\n",
2383 (unsigned long) i->NumberOfRvaAndSizes);
2384
2385 fprintf (file, "\nThe Data Directory\n");
2386 for (j = 0; j < IMAGE_NUMBEROF_DIRECTORY_ENTRIES; j++)
2387 {
2388 fprintf (file, "Entry %1x ", j);
2389 bfd_fprintf_vma (abfd, file, i->DataDirectory[j].VirtualAddress);
2390 fprintf (file, " %08lx ", (unsigned long) i->DataDirectory[j].Size);
2391 fprintf (file, "%s\n", dir_names[j]);
2392 }
2393
2394 pe_print_idata (abfd, vfile);
2395 pe_print_edata (abfd, vfile);
2396 if (bfd_coff_have_print_pdata (abfd))
2397 bfd_coff_print_pdata (abfd, vfile);
2398 else
2399 pe_print_pdata (abfd, vfile);
2400 pe_print_reloc (abfd, vfile);
2401
2402 rsrc_print_section (abfd, vfile);
2403
2404 return TRUE;
2405 }
2406
2407 /* Copy any private info we understand from the input bfd
2408 to the output bfd. */
2409
2410 bfd_boolean
2411 _bfd_XX_bfd_copy_private_bfd_data_common (bfd * ibfd, bfd * obfd)
2412 {
2413 pe_data_type *ipe, *ope;
2414
2415 /* One day we may try to grok other private data. */
2416 if (ibfd->xvec->flavour != bfd_target_coff_flavour
2417 || obfd->xvec->flavour != bfd_target_coff_flavour)
2418 return TRUE;
2419
2420 ipe = pe_data (ibfd);
2421 ope = pe_data (obfd);
2422
2423 /* pe_opthdr is copied in copy_object. */
2424 ope->dll = ipe->dll;
2425
2426 /* Don't copy input subsystem if output is different from input. */
2427 if (obfd->xvec != ibfd->xvec)
2428 ope->pe_opthdr.Subsystem = IMAGE_SUBSYSTEM_UNKNOWN;
2429
2430 /* For strip: if we removed .reloc, we'll make a real mess of things
2431 if we don't remove this entry as well. */
2432 if (! pe_data (obfd)->has_reloc_section)
2433 {
2434 pe_data (obfd)->pe_opthdr.DataDirectory[PE_BASE_RELOCATION_TABLE].VirtualAddress = 0;
2435 pe_data (obfd)->pe_opthdr.DataDirectory[PE_BASE_RELOCATION_TABLE].Size = 0;
2436 }
2437
2438 /* For PIE, if there is .reloc, we won't add IMAGE_FILE_RELOCS_STRIPPED.
2439 But there is no .reloc, we make sure that IMAGE_FILE_RELOCS_STRIPPED
2440 won't be added. */
2441 if (! pe_data (ibfd)->has_reloc_section
2442 && ! (pe_data (ibfd)->real_flags & IMAGE_FILE_RELOCS_STRIPPED))
2443 pe_data (obfd)->dont_strip_reloc = 1;
2444
2445 return TRUE;
2446 }
2447
2448 /* Copy private section data. */
2449
2450 bfd_boolean
2451 _bfd_XX_bfd_copy_private_section_data (bfd *ibfd,
2452 asection *isec,
2453 bfd *obfd,
2454 asection *osec)
2455 {
2456 if (bfd_get_flavour (ibfd) != bfd_target_coff_flavour
2457 || bfd_get_flavour (obfd) != bfd_target_coff_flavour)
2458 return TRUE;
2459
2460 if (coff_section_data (ibfd, isec) != NULL
2461 && pei_section_data (ibfd, isec) != NULL)
2462 {
2463 if (coff_section_data (obfd, osec) == NULL)
2464 {
2465 bfd_size_type amt = sizeof (struct coff_section_tdata);
2466 osec->used_by_bfd = bfd_zalloc (obfd, amt);
2467 if (osec->used_by_bfd == NULL)
2468 return FALSE;
2469 }
2470
2471 if (pei_section_data (obfd, osec) == NULL)
2472 {
2473 bfd_size_type amt = sizeof (struct pei_section_tdata);
2474 coff_section_data (obfd, osec)->tdata = bfd_zalloc (obfd, amt);
2475 if (coff_section_data (obfd, osec)->tdata == NULL)
2476 return FALSE;
2477 }
2478
2479 pei_section_data (obfd, osec)->virt_size =
2480 pei_section_data (ibfd, isec)->virt_size;
2481 pei_section_data (obfd, osec)->pe_flags =
2482 pei_section_data (ibfd, isec)->pe_flags;
2483 }
2484
2485 return TRUE;
2486 }
2487
2488 void
2489 _bfd_XX_get_symbol_info (bfd * abfd, asymbol *symbol, symbol_info *ret)
2490 {
2491 coff_get_symbol_info (abfd, symbol, ret);
2492 }
2493
2494 #if !defined(COFF_WITH_pep) && defined(COFF_WITH_pex64)
2495 static int
2496 sort_x64_pdata (const void *l, const void *r)
2497 {
2498 const char *lp = (const char *) l;
2499 const char *rp = (const char *) r;
2500 bfd_vma vl, vr;
2501 vl = bfd_getl32 (lp); vr = bfd_getl32 (rp);
2502 if (vl != vr)
2503 return (vl < vr ? -1 : 1);
2504 /* We compare just begin address. */
2505 return 0;
2506 }
2507 #endif
2508 \f
2509 /* Functions to process a .rsrc section. */
2510
2511 static unsigned int sizeof_leaves;
2512 static unsigned int sizeof_strings;
2513 static unsigned int sizeof_tables_and_entries;
2514
2515 static bfd_byte *
2516 rsrc_count_directory (bfd *, bfd_byte *, bfd_byte *, bfd_byte *, bfd_vma);
2517
2518 static bfd_byte *
2519 rsrc_count_entries (bfd * abfd,
2520 bfd_boolean is_name,
2521 bfd_byte * datastart,
2522 bfd_byte * data,
2523 bfd_byte * dataend,
2524 bfd_vma rva_bias)
2525 {
2526 unsigned long entry, addr, size;
2527
2528 if (data + 8 >= dataend)
2529 return dataend + 1;
2530
2531 if (is_name)
2532 {
2533 bfd_byte * name;
2534
2535 entry = (long) bfd_get_32 (abfd, data);
2536
2537 if (HighBitSet (entry))
2538 name = datastart + WithoutHighBit (entry);
2539 else
2540 name = datastart + entry - rva_bias;
2541
2542 if (name + 2 >= dataend)
2543 return dataend + 1;
2544
2545 unsigned int len = bfd_get_16 (abfd, name);
2546 if (len == 0 || len > 256)
2547 return dataend + 1;
2548
2549 sizeof_strings += (len + 1) * 2;
2550 }
2551
2552 entry = (long) bfd_get_32 (abfd, data + 4);
2553
2554 if (HighBitSet (entry))
2555 return rsrc_count_directory (abfd,
2556 datastart,
2557 datastart + WithoutHighBit (entry),
2558 dataend, rva_bias);
2559
2560 if (datastart + entry + 16 >= dataend)
2561 return dataend + 1;
2562
2563 addr = (long) bfd_get_32 (abfd, datastart + entry);
2564 size = (long) bfd_get_32 (abfd, datastart + entry + 4);
2565
2566 sizeof_leaves += 16;
2567
2568 return datastart + addr - rva_bias + size;
2569 }
2570
2571 static bfd_byte *
2572 rsrc_count_directory (bfd * abfd,
2573 bfd_byte * datastart,
2574 bfd_byte * data,
2575 bfd_byte * dataend,
2576 bfd_vma rva_bias)
2577 {
2578 unsigned int num_entries, num_ids;
2579 bfd_byte * highest_data = data;
2580
2581 if (data + 16 >= dataend)
2582 return dataend + 1;
2583
2584 num_entries = (int) bfd_get_16 (abfd, data + 12);
2585 num_ids = (int) bfd_get_16 (abfd, data + 14);
2586
2587 num_entries += num_ids;
2588
2589 data += 16;
2590 sizeof_tables_and_entries += 16;
2591
2592 while (num_entries --)
2593 {
2594 bfd_byte * entry_end;
2595
2596 entry_end = rsrc_count_entries (abfd, num_entries >= num_ids,
2597 datastart, data, dataend, rva_bias);
2598 data += 8;
2599 sizeof_tables_and_entries += 8;
2600 highest_data = max (highest_data, entry_end);
2601 if (entry_end >= dataend)
2602 break;
2603 }
2604
2605 return max (highest_data, data);
2606 }
2607
2608 typedef struct rsrc_dir_chain
2609 {
2610 unsigned int num_entries;
2611 struct rsrc_entry * first_entry;
2612 struct rsrc_entry * last_entry;
2613 } rsrc_dir_chain;
2614
2615 typedef struct rsrc_directory
2616 {
2617 unsigned int characteristics;
2618 unsigned int time;
2619 unsigned int major;
2620 unsigned int minor;
2621
2622 rsrc_dir_chain names;
2623 rsrc_dir_chain ids;
2624
2625 struct rsrc_entry * entry;
2626 } rsrc_directory;
2627
2628 typedef struct rsrc_string
2629 {
2630 unsigned int len;
2631 bfd_byte * string;
2632 } rsrc_string;
2633
2634 typedef struct rsrc_leaf
2635 {
2636 unsigned int size;
2637 unsigned int codepage;
2638 bfd_byte * data;
2639 } rsrc_leaf;
2640
2641 typedef struct rsrc_entry
2642 {
2643 bfd_boolean is_name;
2644 union
2645 {
2646 unsigned int id;
2647 struct rsrc_string name;
2648 } name_id;
2649
2650 bfd_boolean is_dir;
2651 union
2652 {
2653 struct rsrc_directory * directory;
2654 struct rsrc_leaf * leaf;
2655 } value;
2656
2657 struct rsrc_entry * next_entry;
2658 struct rsrc_directory * parent;
2659 } rsrc_entry;
2660
2661 static bfd_byte *
2662 rsrc_parse_directory (bfd *, rsrc_directory *, bfd_byte *,
2663 bfd_byte *, bfd_byte *, bfd_vma, rsrc_entry *);
2664
2665 static bfd_byte *
2666 rsrc_parse_entry (bfd * abfd,
2667 bfd_boolean is_name,
2668 rsrc_entry * entry,
2669 bfd_byte * datastart,
2670 bfd_byte * data,
2671 bfd_byte * dataend,
2672 bfd_vma rva_bias,
2673 rsrc_directory * parent)
2674 {
2675 unsigned long val, addr, size;
2676
2677 val = bfd_get_32 (abfd, data);
2678
2679 entry->parent = parent;
2680 entry->is_name = is_name;
2681
2682 if (is_name)
2683 {
2684 /* FIXME: Add range checking ? */
2685 if (HighBitSet (val))
2686 {
2687 val = WithoutHighBit (val);
2688
2689 entry->name_id.name.len = bfd_get_16 (abfd, datastart + val);
2690 entry->name_id.name.string = datastart + val + 2;
2691 }
2692 else
2693 {
2694 entry->name_id.name.len = bfd_get_16 (abfd, datastart + val
2695 - rva_bias);
2696 entry->name_id.name.string = datastart + val - rva_bias + 2;
2697 }
2698 }
2699 else
2700 entry->name_id.id = val;
2701
2702 val = bfd_get_32 (abfd, data + 4);
2703
2704 if (HighBitSet (val))
2705 {
2706 entry->is_dir = TRUE;
2707 entry->value.directory = bfd_malloc (sizeof * entry->value.directory);
2708 if (entry->value.directory == NULL)
2709 return dataend;
2710
2711 return rsrc_parse_directory (abfd, entry->value.directory,
2712 datastart,
2713 datastart + WithoutHighBit (val),
2714 dataend, rva_bias, entry);
2715 }
2716
2717 entry->is_dir = FALSE;
2718 entry->value.leaf = bfd_malloc (sizeof * entry->value.leaf);
2719 if (entry->value.leaf == NULL)
2720 return dataend;
2721
2722 addr = bfd_get_32 (abfd, datastart + val);
2723 size = entry->value.leaf->size = bfd_get_32 (abfd, datastart + val + 4);
2724 entry->value.leaf->codepage = bfd_get_32 (abfd, datastart + val + 8);
2725
2726 entry->value.leaf->data = bfd_malloc (size);
2727 if (entry->value.leaf->data == NULL)
2728 return dataend;
2729
2730 memcpy (entry->value.leaf->data, datastart + addr - rva_bias, size);
2731 return datastart + (addr - rva_bias) + size;
2732 }
2733
2734 static bfd_byte *
2735 rsrc_parse_entries (bfd * abfd,
2736 rsrc_dir_chain * chain,
2737 bfd_boolean is_name,
2738 bfd_byte * highest_data,
2739 bfd_byte * datastart,
2740 bfd_byte * data,
2741 bfd_byte * dataend,
2742 bfd_vma rva_bias,
2743 rsrc_directory * parent)
2744 {
2745 unsigned int i;
2746 rsrc_entry * entry;
2747
2748 if (chain->num_entries == 0)
2749 {
2750 chain->first_entry = chain->last_entry = NULL;
2751 return highest_data;
2752 }
2753
2754 entry = bfd_malloc (sizeof * entry);
2755 if (entry == NULL)
2756 return dataend;
2757
2758 chain->first_entry = entry;
2759
2760 for (i = chain->num_entries; i--;)
2761 {
2762 bfd_byte * entry_end;
2763
2764 entry_end = rsrc_parse_entry (abfd, is_name, entry, datastart,
2765 data, dataend, rva_bias, parent);
2766 data += 8;
2767 highest_data = max (entry_end, highest_data);
2768 if (entry_end > dataend)
2769 return dataend;
2770
2771 if (i)
2772 {
2773 entry->next_entry = bfd_malloc (sizeof * entry);
2774 entry = entry->next_entry;
2775 if (entry == NULL)
2776 return dataend;
2777 }
2778 else
2779 entry->next_entry = NULL;
2780 }
2781
2782 chain->last_entry = entry;
2783
2784 return highest_data;
2785 }
2786
2787 static bfd_byte *
2788 rsrc_parse_directory (bfd * abfd,
2789 rsrc_directory * table,
2790 bfd_byte * datastart,
2791 bfd_byte * data,
2792 bfd_byte * dataend,
2793 bfd_vma rva_bias,
2794 rsrc_entry * entry)
2795 {
2796 bfd_byte * highest_data = data;
2797
2798 if (table == NULL)
2799 return dataend;
2800
2801 table->characteristics = bfd_get_32 (abfd, data);
2802 table->time = bfd_get_32 (abfd, data + 4);
2803 table->major = bfd_get_16 (abfd, data + 8);
2804 table->minor = bfd_get_16 (abfd, data + 10);
2805 table->names.num_entries = bfd_get_16 (abfd, data + 12);
2806 table->ids.num_entries = bfd_get_16 (abfd, data + 14);
2807 table->entry = entry;
2808
2809 data += 16;
2810
2811 highest_data = rsrc_parse_entries (abfd, & table->names, TRUE, data,
2812 datastart, data, dataend, rva_bias, table);
2813 data += table->names.num_entries * 8;
2814
2815 highest_data = rsrc_parse_entries (abfd, & table->ids, FALSE, highest_data,
2816 datastart, data, dataend, rva_bias, table);
2817 data += table->ids.num_entries * 8;
2818
2819 return max (highest_data, data);
2820 }
2821
2822 typedef struct rsrc_write_data
2823 {
2824 bfd * abfd;
2825 bfd_byte * datastart;
2826 bfd_byte * next_table;
2827 bfd_byte * next_leaf;
2828 bfd_byte * next_string;
2829 bfd_byte * next_data;
2830 bfd_vma rva_bias;
2831 } rsrc_write_data;
2832
2833 static void
2834 rsrc_write_string (rsrc_write_data * data,
2835 rsrc_string * string)
2836 {
2837 bfd_put_16 (data->abfd, string->len, data->next_string);
2838 memcpy (data->next_string + 2, string->string, string->len * 2);
2839 data->next_string += (string->len + 1) * 2;
2840 }
2841
2842 static inline unsigned int
2843 rsrc_compute_rva (rsrc_write_data * data,
2844 bfd_byte * addr)
2845 {
2846 return (addr - data->datastart) + data->rva_bias;
2847 }
2848
2849 static void
2850 rsrc_write_leaf (rsrc_write_data * data,
2851 rsrc_leaf * leaf)
2852 {
2853 bfd_put_32 (data->abfd, rsrc_compute_rva (data, data->next_data),
2854 data->next_leaf);
2855 bfd_put_32 (data->abfd, leaf->size, data->next_leaf + 4);
2856 bfd_put_32 (data->abfd, leaf->codepage, data->next_leaf + 8);
2857 bfd_put_32 (data->abfd, 0 /*reserved*/, data->next_leaf + 12);
2858 data->next_leaf += 16;
2859
2860 memcpy (data->next_data, leaf->data, leaf->size);
2861 data->next_data += leaf->size;
2862 }
2863
2864 static void rsrc_write_directory (rsrc_write_data *, rsrc_directory *);
2865
2866 static void
2867 rsrc_write_entry (rsrc_write_data * data,
2868 bfd_byte * where,
2869 rsrc_entry * entry)
2870 {
2871 if (entry->is_name)
2872 {
2873 bfd_put_32 (data->abfd,
2874 SetHighBit (data->next_string - data->datastart),
2875 where);
2876 rsrc_write_string (data, & entry->name_id.name);
2877 }
2878 else
2879 bfd_put_32 (data->abfd, entry->name_id.id, where);
2880
2881 if (entry->is_dir)
2882 {
2883 bfd_put_32 (data->abfd,
2884 SetHighBit (data->next_table - data->datastart),
2885 where + 4);
2886 rsrc_write_directory (data, entry->value.directory);
2887 }
2888 else
2889 {
2890 bfd_put_32 (data->abfd, data->next_leaf - data->datastart, where + 4);
2891 rsrc_write_leaf (data, entry->value.leaf);
2892 }
2893 }
2894
2895 static void
2896 rsrc_write_directory (rsrc_write_data * data,
2897 rsrc_directory * dir)
2898 {
2899 rsrc_entry * entry;
2900 unsigned int i;
2901 bfd_byte * next_entry;
2902 bfd_byte * nt;
2903
2904 bfd_put_32 (data->abfd, dir->characteristics, data->next_table);
2905 bfd_put_32 (data->abfd, 0 /*dir->time*/, data->next_table + 4);
2906 bfd_put_16 (data->abfd, dir->major, data->next_table + 8);
2907 bfd_put_16 (data->abfd, dir->minor, data->next_table + 10);
2908 bfd_put_16 (data->abfd, dir->names.num_entries, data->next_table + 12);
2909 bfd_put_16 (data->abfd, dir->ids.num_entries, data->next_table + 14);
2910
2911 /* Compute where the entries and the next table will be placed. */
2912 next_entry = data->next_table + 16;
2913 data->next_table = next_entry + (dir->names.num_entries * 8)
2914 + (dir->ids.num_entries * 8);
2915 nt = data->next_table;
2916
2917 /* Write the entries. */
2918 for (i = dir->names.num_entries, entry = dir->names.first_entry;
2919 i > 0 && entry != NULL;
2920 i--, entry = entry->next_entry)
2921 {
2922 rsrc_write_entry (data, next_entry, entry);
2923 next_entry += 8;
2924 }
2925 BFD_ASSERT (i == 0);
2926 BFD_ASSERT (entry == NULL);
2927
2928 for (i = dir->ids.num_entries, entry = dir->ids.first_entry;
2929 i > 0 && entry != NULL;
2930 i--, entry = entry->next_entry)
2931 {
2932 rsrc_write_entry (data, next_entry, entry);
2933 next_entry += 8;
2934 }
2935 BFD_ASSERT (i == 0);
2936 BFD_ASSERT (entry == NULL);
2937 BFD_ASSERT (nt == next_entry);
2938 }
2939
2940 #if defined HAVE_WCHAR_H && ! defined __CYGWIN__ && ! defined __MINGW32__
2941 /* Return the length (number of units) of the first character in S,
2942 putting its 'ucs4_t' representation in *PUC. */
2943
2944 static unsigned int
2945 u16_mbtouc (wchar_t * puc, const unsigned short * s, unsigned int n)
2946 {
2947 unsigned short c = * s;
2948
2949 if (c < 0xd800 || c >= 0xe000)
2950 {
2951 *puc = c;
2952 return 1;
2953 }
2954
2955 if (c < 0xdc00)
2956 {
2957 if (n >= 2)
2958 {
2959 if (s[1] >= 0xdc00 && s[1] < 0xe000)
2960 {
2961 *puc = 0x10000 + ((c - 0xd800) << 10) + (s[1] - 0xdc00);
2962 return 2;
2963 }
2964 }
2965 else
2966 {
2967 /* Incomplete multibyte character. */
2968 *puc = 0xfffd;
2969 return n;
2970 }
2971 }
2972
2973 /* Invalid multibyte character. */
2974 *puc = 0xfffd;
2975 return 1;
2976 }
2977 #endif /* HAVE_WCHAR_H and not Cygwin/Mingw */
2978
2979 /* Perform a comparison of two entries. */
2980 static signed int
2981 rsrc_cmp (bfd_boolean is_name, rsrc_entry * a, rsrc_entry * b)
2982 {
2983 signed int res;
2984 unsigned int i;
2985 bfd_byte * astring;
2986 unsigned int alen;
2987 bfd_byte * bstring;
2988 unsigned int blen;
2989
2990 if (! is_name)
2991 return a->name_id.id - b->name_id.id;
2992
2993 /* We have to perform a case insenstive, unicode string comparison... */
2994 astring = a->name_id.name.string;
2995 alen = a->name_id.name.len;
2996 bstring = b->name_id.name.string;
2997 blen = b->name_id.name.len;
2998
2999 #if defined __CYGWIN__ || defined __MINGW32__
3000 /* Under Windows hosts (both Cygwin and Mingw types),
3001 unicode == UTF-16 == wchar_t. The case insensitive string comparison
3002 function however goes by different names in the two environments... */
3003
3004 #undef rscpcmp
3005 #ifdef __CYGWIN__
3006 #define rscpcmp wcsncasecmp
3007 #endif
3008 #ifdef __MINGW32__
3009 #define rscpcmp wcsnicmp
3010 #endif
3011
3012 res = rscpcmp ((const wchar_t *) astring, (const wchar_t *) bstring,
3013 min (alen, blen));
3014
3015 #elif defined HAVE_WCHAR_H
3016 res = 0;
3017 for (i = min (alen, blen); i--; astring += 2, bstring += 2)
3018 {
3019 wchar_t awc;
3020 wchar_t bwc;
3021
3022 /* Convert UTF-16 unicode characters into wchar_t characters so
3023 that we can then perform a case insensitive comparison. */
3024 int Alen = u16_mbtouc (& awc, (const unsigned short *) astring, 2);
3025 int Blen = u16_mbtouc (& bwc, (const unsigned short *) bstring, 2);
3026
3027 if (Alen != Blen)
3028 return Alen - Blen;
3029 res = wcsncasecmp (& awc, & bwc, 1);
3030 if (res)
3031 break;
3032 }
3033
3034 #else
3035 /* Do the best we can - a case sensitive, untranslated comparison. */
3036 res = memcmp (astring, bstring, min (alen, blen) * 2);
3037 #endif
3038
3039 if (res == 0)
3040 res = alen - blen;
3041
3042 return res;
3043 }
3044
3045 static void
3046 rsrc_print_name (char * buffer, rsrc_string string)
3047 {
3048 unsigned int i;
3049 bfd_byte * name = string.string;
3050
3051 for (i = string.len; i--; name += 2)
3052 sprintf (buffer + strlen (buffer), "%.1s", name);
3053 }
3054
3055 static const char *
3056 rsrc_resource_name (rsrc_entry * entry, rsrc_directory * dir)
3057 {
3058 static char buffer [256];
3059 bfd_boolean is_string = FALSE;
3060
3061 buffer[0] = 0;
3062
3063 if (dir != NULL && dir->entry != NULL && dir->entry->parent != NULL
3064 && dir->entry->parent->entry != NULL)
3065 {
3066 strcpy (buffer, "type: ");
3067 if (dir->entry->parent->entry->is_name)
3068 rsrc_print_name (buffer + strlen (buffer),
3069 dir->entry->parent->entry->name_id.name);
3070 else
3071 {
3072 unsigned int id = dir->entry->parent->entry->name_id.id;
3073
3074 sprintf (buffer + strlen (buffer), "%x", id);
3075 switch (id)
3076 {
3077 case 1: strcat (buffer, " (CURSOR)"); break;
3078 case 2: strcat (buffer, " (BITMAP)"); break;
3079 case 3: strcat (buffer, " (ICON)"); break;
3080 case 4: strcat (buffer, " (MENU)"); break;
3081 case 5: strcat (buffer, " (DIALOG)"); break;
3082 case 6: strcat (buffer, " (STRING)"); is_string = TRUE; break;
3083 case 7: strcat (buffer, " (FONTDIR)"); break;
3084 case 8: strcat (buffer, " (FONT)"); break;
3085 case 9: strcat (buffer, " (ACCELERATOR)"); break;
3086 case 10: strcat (buffer, " (RCDATA)"); break;
3087 case 11: strcat (buffer, " (MESSAGETABLE)"); break;
3088 case 12: strcat (buffer, " (GROUP_CURSOR)"); break;
3089 case 14: strcat (buffer, " (GROUP_ICON)"); break;
3090 case 16: strcat (buffer, " (VERSION)"); break;
3091 case 17: strcat (buffer, " (DLGINCLUDE)"); break;
3092 case 19: strcat (buffer, " (PLUGPLAY)"); break;
3093 case 20: strcat (buffer, " (VXD)"); break;
3094 case 21: strcat (buffer, " (ANICURSOR)"); break;
3095 case 22: strcat (buffer, " (ANIICON)"); break;
3096 case 23: strcat (buffer, " (HTML)"); break;
3097 case 24: strcat (buffer, " (MANIFEST)"); break;
3098 case 240: strcat (buffer, " (DLGINIT)"); break;
3099 case 241: strcat (buffer, " (TOOLBAR)"); break;
3100 }
3101 }
3102 }
3103
3104 if (dir != NULL && dir->entry != NULL)
3105 {
3106 strcat (buffer, " name: ");
3107 if (dir->entry->is_name)
3108 rsrc_print_name (buffer + strlen (buffer), dir->entry->name_id.name);
3109 else
3110 {
3111 unsigned int id = dir->entry->name_id.id;
3112
3113 sprintf (buffer + strlen (buffer), "%x", id);
3114
3115 if (is_string)
3116 sprintf (buffer + strlen (buffer), " (resource id range: %d - %d)",
3117 (id - 1) << 4, (id << 4) - 1);
3118 }
3119 }
3120
3121 if (entry != NULL)
3122 {
3123 strcat (buffer, " lang: ");
3124
3125 if (entry->is_name)
3126 rsrc_print_name (buffer + strlen (buffer), entry->name_id.name);
3127 else
3128 sprintf (buffer + strlen (buffer), "%x", entry->name_id.id);
3129 }
3130
3131 return buffer;
3132 }
3133
3134 /* *sigh* Windows resource strings are special. Only the top 28-bits of
3135 their ID is stored in the NAME entry. The bottom four bits are used as
3136 an index into unicode string table that makes up the data of the leaf.
3137 So identical type-name-lang string resources may not actually be
3138 identical at all.
3139
3140 This function is called when we have detected two string resources with
3141 match top-28-bit IDs. We have to scan the string tables inside the leaves
3142 and discover if there are any real collisions. If there are then we report
3143 them and return FALSE. Otherwise we copy any strings from B into A and
3144 then return TRUE. */
3145
3146 static bfd_boolean
3147 rsrc_merge_string_entries (rsrc_entry * a ATTRIBUTE_UNUSED,
3148 rsrc_entry * b ATTRIBUTE_UNUSED)
3149 {
3150 unsigned int copy_needed = 0;
3151 unsigned int i;
3152 bfd_byte * astring;
3153 bfd_byte * bstring;
3154 bfd_byte * new_data;
3155 bfd_byte * nstring;
3156
3157 /* Step one: Find out what we have to do. */
3158 BFD_ASSERT (! a->is_dir);
3159 astring = a->value.leaf->data;
3160
3161 BFD_ASSERT (! b->is_dir);
3162 bstring = b->value.leaf->data;
3163
3164 for (i = 0; i < 16; i++)
3165 {
3166 unsigned int alen = astring[0] + (astring[1] << 8);
3167 unsigned int blen = bstring[0] + (bstring[1] << 8);
3168
3169 if (alen == 0)
3170 {
3171 copy_needed += blen * 2;
3172 }
3173 else if (blen == 0)
3174 ;
3175 else if (alen != blen)
3176 /* FIXME: Should we continue the loop in order to report other duplicates ? */
3177 break;
3178 /* alen == blen != 0. We might have two identical strings. If so we
3179 can ignore the second one. There is no need for wchar_t vs UTF-16
3180 theatrics here - we are only interested in (case sensitive) equality. */
3181 else if (memcmp (astring + 2, bstring + 2, alen * 2) != 0)
3182 break;
3183
3184 astring += (alen + 1) * 2;
3185 bstring += (blen + 1) * 2;
3186 }
3187
3188 if (i != 16)
3189 {
3190 if (a->parent != NULL
3191 && a->parent->entry != NULL
3192 && a->parent->entry->is_name == FALSE)
3193 _bfd_error_handler (_(".rsrc merge failure: duplicate string resource: %d"),
3194 ((a->parent->entry->name_id.id - 1) << 4) + i);
3195 return FALSE;
3196 }
3197
3198 if (copy_needed == 0)
3199 return TRUE;
3200
3201 /* If we reach here then A and B must both have non-colliding strings.
3202 (We never get string resources with fully empty string tables).
3203 We need to allocate an extra COPY_NEEDED bytes in A and then bring
3204 in B's strings. */
3205 new_data = bfd_malloc (a->value.leaf->size + copy_needed);
3206 if (new_data == NULL)
3207 return FALSE;
3208
3209 nstring = new_data;
3210 astring = a->value.leaf->data;
3211 bstring = b->value.leaf->data;
3212
3213 for (i = 0; i < 16; i++)
3214 {
3215 unsigned int alen = astring[0] + (astring[1] << 8);
3216 unsigned int blen = bstring[0] + (bstring[1] << 8);
3217
3218 if (alen != 0)
3219 {
3220 memcpy (nstring, astring, (alen + 1) * 2);
3221 nstring += (alen + 1) * 2;
3222 }
3223 else if (blen != 0)
3224 {
3225 memcpy (nstring, bstring, (blen + 1) * 2);
3226 nstring += (blen + 1) * 2;
3227 }
3228 else
3229 {
3230 * nstring++ = 0;
3231 * nstring++ = 0;
3232 }
3233
3234 astring += (alen + 1) * 2;
3235 bstring += (blen + 1) * 2;
3236 }
3237
3238 BFD_ASSERT (nstring - new_data == (signed) (a->value.leaf->size + copy_needed));
3239
3240 free (a->value.leaf->data);
3241 a->value.leaf->data = new_data;
3242 a->value.leaf->size += copy_needed;
3243
3244 return TRUE;
3245 }
3246
3247 static void rsrc_merge (rsrc_entry *, rsrc_entry *);
3248
3249 /* Sort the entries in given part of the directory.
3250 We use an old fashioned bubble sort because we are dealing
3251 with lists and we want to handle matches specially. */
3252
3253 static void
3254 rsrc_sort_entries (rsrc_dir_chain * chain,
3255 bfd_boolean is_name,
3256 rsrc_directory * dir)
3257 {
3258 rsrc_entry * entry;
3259 rsrc_entry * next;
3260 rsrc_entry ** points_to_entry;
3261 bfd_boolean swapped;
3262
3263 if (chain->num_entries < 2)
3264 return;
3265
3266 do
3267 {
3268 swapped = FALSE;
3269 points_to_entry = & chain->first_entry;
3270 entry = * points_to_entry;
3271 next = entry->next_entry;
3272
3273 do
3274 {
3275 signed int cmp = rsrc_cmp (is_name, entry, next);
3276
3277 if (cmp > 0)
3278 {
3279 entry->next_entry = next->next_entry;
3280 next->next_entry = entry;
3281 * points_to_entry = next;
3282 points_to_entry = & next->next_entry;
3283 next = entry->next_entry;
3284 swapped = TRUE;
3285 }
3286 else if (cmp == 0)
3287 {
3288 if (entry->is_dir && next->is_dir)
3289 {
3290 /* When we encounter identical directory entries we have to
3291 merge them together. The exception to this rule is for
3292 resource manifests - there can only be one of these,
3293 even if they differ in language. Zero-language manifests
3294 are assumed to be default manifests (provided by the
3295 cygwin build system) and these can be silently dropped,
3296 unless that would reduce the number of manifests to zero.
3297 There should only ever be one non-zero lang manifest -
3298 if there are more it is an error. A non-zero lang
3299 manifest takes precedence over a default manifest. */
3300 if (entry->is_name == FALSE
3301 && entry->name_id.id == 1
3302 && dir != NULL
3303 && dir->entry != NULL
3304 && dir->entry->is_name == FALSE
3305 && dir->entry->name_id.id == 0x18)
3306 {
3307 if (next->value.directory->names.num_entries == 0
3308 && next->value.directory->ids.num_entries == 1
3309 && next->value.directory->ids.first_entry->is_name == FALSE
3310 && next->value.directory->ids.first_entry->name_id.id == 0)
3311 /* Fall through so that NEXT is dropped. */
3312 ;
3313 else if (entry->value.directory->names.num_entries == 0
3314 && entry->value.directory->ids.num_entries == 1
3315 && entry->value.directory->ids.first_entry->is_name == FALSE
3316 && entry->value.directory->ids.first_entry->name_id.id == 0)
3317 {
3318 /* Swap ENTRY and NEXT. Then fall through so that the old ENTRY is dropped. */
3319 entry->next_entry = next->next_entry;
3320 next->next_entry = entry;
3321 * points_to_entry = next;
3322 points_to_entry = & next->next_entry;
3323 next = entry->next_entry;
3324 swapped = TRUE;
3325 }
3326 else
3327 {
3328 _bfd_error_handler (_(".rsrc merge failure: multiple non-default manifests"));
3329 bfd_set_error (bfd_error_file_truncated);
3330 return;
3331 }
3332
3333 /* Unhook NEXT from the chain. */
3334 /* FIXME: memory loss here. */
3335 entry->next_entry = next->next_entry;
3336 chain->num_entries --;
3337 if (chain->num_entries < 2)
3338 return;
3339 next = next->next_entry;
3340 }
3341 else
3342 rsrc_merge (entry, next);
3343 }
3344 else if (entry->is_dir != next->is_dir)
3345 {
3346 _bfd_error_handler (_(".rsrc merge failure: a directory matches a leaf"));
3347 bfd_set_error (bfd_error_file_truncated);
3348 return;
3349 }
3350 else
3351 {
3352 /* Otherwise with identical leaves we issue an error
3353 message - because there should never be duplicates.
3354 The exception is Type 18/Name 1/Lang 0 which is the
3355 defaul manifest - this can just be dropped. */
3356 if (entry->is_name == FALSE
3357 && entry->name_id.id == 0
3358 && dir != NULL
3359 && dir->entry != NULL
3360 && dir->entry->is_name == FALSE
3361 && dir->entry->name_id.id == 1
3362 && dir->entry->parent != NULL
3363 && dir->entry->parent->entry != NULL
3364 && dir->entry->parent->entry->is_name == FALSE
3365 && dir->entry->parent->entry->name_id.id == 0x18 /* RT_MANIFEST */)
3366 ;
3367 else if (dir != NULL
3368 && dir->entry != NULL
3369 && dir->entry->parent != NULL
3370 && dir->entry->parent->entry != NULL
3371 && dir->entry->parent->entry->is_name == FALSE
3372 && dir->entry->parent->entry->name_id.id == 0x6 /* RT_STRING */)
3373 {
3374 /* Strings need special handling. */
3375 if (! rsrc_merge_string_entries (entry, next))
3376 {
3377 /* _bfd_error_handler should have been called inside merge_strings. */
3378 bfd_set_error (bfd_error_file_truncated);
3379 return;
3380 }
3381 }
3382 else
3383 {
3384 if (dir == NULL
3385 || dir->entry == NULL
3386 || dir->entry->parent == NULL
3387 || dir->entry->parent->entry == NULL)
3388 _bfd_error_handler (_(".rsrc merge failure: duplicate leaf"));
3389 else
3390 _bfd_error_handler (_(".rsrc merge failure: duplicate leaf: %s"),
3391 rsrc_resource_name (entry, dir));
3392 bfd_set_error (bfd_error_file_truncated);
3393 return;
3394 }
3395 }
3396
3397 /* Unhook NEXT from the chain. */
3398 entry->next_entry = next->next_entry;
3399 chain->num_entries --;
3400 if (chain->num_entries < 2)
3401 return;
3402 next = next->next_entry;
3403 }
3404 else
3405 {
3406 points_to_entry = & entry->next_entry;
3407 entry = next;
3408 next = next->next_entry;
3409 }
3410 }
3411 while (next);
3412
3413 chain->last_entry = entry;
3414 }
3415 while (swapped);
3416 }
3417
3418 /* Attach B's chain onto A. */
3419 static void
3420 rsrc_attach_chain (rsrc_dir_chain * achain, rsrc_dir_chain * bchain)
3421 {
3422 if (bchain->num_entries == 0)
3423 return;
3424
3425 achain->num_entries += bchain->num_entries;
3426
3427 if (achain->first_entry == NULL)
3428 {
3429 achain->first_entry = bchain->first_entry;
3430 achain->last_entry = bchain->last_entry;
3431 }
3432 else
3433 {
3434 achain->last_entry->next_entry = bchain->first_entry;
3435 achain->last_entry = bchain->last_entry;
3436 }
3437
3438 bchain->num_entries = 0;
3439 bchain->first_entry = bchain->last_entry = NULL;
3440 }
3441
3442 static void
3443 rsrc_merge (struct rsrc_entry * a, struct rsrc_entry * b)
3444 {
3445 rsrc_directory * adir;
3446 rsrc_directory * bdir;
3447
3448 BFD_ASSERT (a->is_dir);
3449 BFD_ASSERT (b->is_dir);
3450
3451 adir = a->value.directory;
3452 bdir = b->value.directory;
3453
3454 if (adir->characteristics != bdir->characteristics)
3455 {
3456 _bfd_error_handler (_(".rsrc merge failure: dirs with differing characteristics\n"));
3457 bfd_set_error (bfd_error_file_truncated);
3458 return;
3459 }
3460
3461 if (adir->major != bdir->major || adir->minor != bdir->minor)
3462 {
3463 _bfd_error_handler (_(".rsrc merge failure: differing directory versions\n"));
3464 bfd_set_error (bfd_error_file_truncated);
3465 return;
3466 }
3467
3468 /* Attach B's name chain to A. */
3469 rsrc_attach_chain (& adir->names, & bdir->names);
3470
3471 /* Attach B's ID chain to A. */
3472 rsrc_attach_chain (& adir->ids, & bdir->ids);
3473
3474 /* Now sort A's entries. */
3475 rsrc_sort_entries (& adir->names, TRUE, adir);
3476 rsrc_sort_entries (& adir->ids, FALSE, adir);
3477 }
3478
3479 /* Check the .rsrc section. If it contains multiple concatenated
3480 resources then we must merge them properly. Otherwise Windows
3481 will ignore all but the first set. */
3482
3483 static void
3484 rsrc_process_section (bfd * abfd,
3485 struct coff_final_link_info * pfinfo)
3486 {
3487 rsrc_directory new_table;
3488 bfd_size_type size;
3489 asection * sec;
3490 pe_data_type * pe;
3491 bfd_vma rva_bias;
3492 bfd_byte * data;
3493 bfd_byte * datastart;
3494 bfd_byte * dataend;
3495 bfd_byte * new_data;
3496 unsigned int num_resource_sets;
3497 rsrc_directory * type_tables;
3498 rsrc_write_data write_data;
3499 unsigned int indx;
3500
3501 new_table.names.num_entries = 0;
3502 new_table.ids.num_entries = 0;
3503
3504 sec = bfd_get_section_by_name (abfd, ".rsrc");
3505 if (sec == NULL || (size = sec->rawsize) == 0)
3506 return;
3507
3508 pe = pe_data (abfd);
3509 if (pe == NULL)
3510 return;
3511
3512 rva_bias = sec->vma - pe->pe_opthdr.ImageBase;
3513
3514 data = bfd_malloc (size);
3515 if (data == NULL)
3516 return;
3517 datastart = data;
3518
3519 if (! bfd_get_section_contents (abfd, sec, data, 0, size))
3520 goto end;
3521
3522 /* Step one: Walk the section, computing the size of the tables,
3523 leaves and data and decide if we need to do anything. */
3524 dataend = data + size;
3525 num_resource_sets = 0;
3526 sizeof_leaves = sizeof_strings = sizeof_tables_and_entries = 0;
3527
3528 while (data < dataend)
3529 {
3530 bfd_byte * p = data;
3531
3532 data = rsrc_count_directory (abfd, data, data, dataend, rva_bias);
3533 if (data > dataend)
3534 {
3535 /* Corrupted .rsrc section - cannot merge. */
3536 _bfd_error_handler (_("%s: .rsrc merge failure: corrupt .rsrc section"),
3537 bfd_get_filename (abfd));
3538 bfd_set_error (bfd_error_file_truncated);
3539 goto end;
3540 }
3541
3542 /* Align the data pointer - we assume 1^2 alignment. */
3543 data = (bfd_byte *) (((long) (data + 3)) & ~ 3);
3544 rva_bias += data - p;
3545
3546 if (data == (dataend - 4))
3547 data = dataend;
3548
3549 ++ num_resource_sets;
3550 }
3551
3552 if (num_resource_sets < 2)
3553 /* No merging necessary. */
3554 goto end;
3555
3556 /* Step two: Walk the data again, building trees of the resources. */
3557 data = datastart;
3558 rva_bias = sec->vma - pe->pe_opthdr.ImageBase;
3559
3560 type_tables = bfd_malloc (num_resource_sets * sizeof * type_tables);
3561 if (type_tables == NULL)
3562 goto end;
3563
3564 indx = 0;
3565 while (data < dataend)
3566 {
3567 bfd_byte * p = data;
3568
3569 data = rsrc_parse_directory (abfd, type_tables + indx, data, data,
3570 dataend, rva_bias, NULL);
3571 data = (bfd_byte *) (((long) (data + 3)) & ~ 3);
3572 rva_bias += data - p;
3573 if (data == (dataend - 4))
3574 data = dataend;
3575 indx ++;
3576 }
3577 BFD_ASSERT (indx == num_resource_sets);
3578
3579 /* Step three: Merge the top level tables (there can be only one).
3580
3581 We must ensure that the merged entries are in ascending order.
3582
3583 We also thread the top level table entries from the old tree onto
3584 the new table, so that they can be pulled off later. */
3585
3586 /* FIXME: Should we verify that all type tables are the same ? */
3587 new_table.characteristics = type_tables[0].characteristics;
3588 new_table.time = type_tables[0].time;
3589 new_table.major = type_tables[0].major;
3590 new_table.minor = type_tables[0].minor;
3591
3592 /* Chain the NAME entries onto the table. */
3593 new_table.names.first_entry = NULL;
3594 new_table.names.last_entry = NULL;
3595
3596 for (indx = 0; indx < num_resource_sets; indx++)
3597 rsrc_attach_chain (& new_table.names, & type_tables[indx].names);
3598
3599 rsrc_sort_entries (& new_table.names, TRUE, & new_table);
3600
3601 /* Chain the ID entries onto the table. */
3602 new_table.ids.first_entry = NULL;
3603 new_table.ids.last_entry = NULL;
3604
3605 for (indx = 0; indx < num_resource_sets; indx++)
3606 rsrc_attach_chain (& new_table.ids, & type_tables[indx].ids);
3607
3608 rsrc_sort_entries (& new_table.ids, FALSE, & new_table);
3609
3610 /* Step four: Create new contents for the .rsrc section. */
3611 new_data = bfd_malloc (size);
3612 if (new_data == NULL)
3613 goto end;
3614
3615 write_data.abfd = abfd;
3616 write_data.datastart = new_data;
3617 write_data.next_table = new_data;
3618 write_data.next_leaf = new_data + sizeof_tables_and_entries;
3619 write_data.next_string = write_data.next_leaf + sizeof_leaves;
3620 write_data.next_data = write_data.next_string + sizeof_strings;
3621 write_data.rva_bias = sec->vma - pe->pe_opthdr.ImageBase;
3622
3623 rsrc_write_directory (& write_data, & new_table);
3624
3625 /* Step five: Replace the old contents with the new.
3626 We recompute the size as we may have lost entries due to mergeing. */
3627 size = ((write_data.next_data - new_data) + 3) & ~ 3;
3628 bfd_set_section_contents (pfinfo->output_bfd, sec, new_data, 0, size);
3629 sec->size = sec->rawsize = size;
3630
3631 end:
3632 /* FIXME: Free the resource tree, if we have one. */
3633 free (datastart);
3634 }
3635
3636 /* Handle the .idata section and other things that need symbol table
3637 access. */
3638
3639 bfd_boolean
3640 _bfd_XXi_final_link_postscript (bfd * abfd, struct coff_final_link_info *pfinfo)
3641 {
3642 struct coff_link_hash_entry *h1;
3643 struct bfd_link_info *info = pfinfo->info;
3644 bfd_boolean result = TRUE;
3645
3646 /* There are a few fields that need to be filled in now while we
3647 have symbol table access.
3648
3649 The .idata subsections aren't directly available as sections, but
3650 they are in the symbol table, so get them from there. */
3651
3652 /* The import directory. This is the address of .idata$2, with size
3653 of .idata$2 + .idata$3. */
3654 h1 = coff_link_hash_lookup (coff_hash_table (info),
3655 ".idata$2", FALSE, FALSE, TRUE);
3656 if (h1 != NULL)
3657 {
3658 /* PR ld/2729: We cannot rely upon all the output sections having been
3659 created properly, so check before referencing them. Issue a warning
3660 message for any sections tht could not be found. */
3661 if ((h1->root.type == bfd_link_hash_defined
3662 || h1->root.type == bfd_link_hash_defweak)
3663 && h1->root.u.def.section != NULL
3664 && h1->root.u.def.section->output_section != NULL)
3665 pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_TABLE].VirtualAddress =
3666 (h1->root.u.def.value
3667 + h1->root.u.def.section->output_section->vma
3668 + h1->root.u.def.section->output_offset);
3669 else
3670 {
3671 _bfd_error_handler
3672 (_("%B: unable to fill in DataDictionary[1] because .idata$2 is missing"),
3673 abfd);
3674 result = FALSE;
3675 }
3676
3677 h1 = coff_link_hash_lookup (coff_hash_table (info),
3678 ".idata$4", FALSE, FALSE, TRUE);
3679 if (h1 != NULL
3680 && (h1->root.type == bfd_link_hash_defined
3681 || h1->root.type == bfd_link_hash_defweak)
3682 && h1->root.u.def.section != NULL
3683 && h1->root.u.def.section->output_section != NULL)
3684 pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_TABLE].Size =
3685 ((h1->root.u.def.value
3686 + h1->root.u.def.section->output_section->vma
3687 + h1->root.u.def.section->output_offset)
3688 - pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_TABLE].VirtualAddress);
3689 else
3690 {
3691 _bfd_error_handler
3692 (_("%B: unable to fill in DataDictionary[1] because .idata$4 is missing"),
3693 abfd);
3694 result = FALSE;
3695 }
3696
3697 /* The import address table. This is the size/address of
3698 .idata$5. */
3699 h1 = coff_link_hash_lookup (coff_hash_table (info),
3700 ".idata$5", FALSE, FALSE, TRUE);
3701 if (h1 != NULL
3702 && (h1->root.type == bfd_link_hash_defined
3703 || h1->root.type == bfd_link_hash_defweak)
3704 && h1->root.u.def.section != NULL
3705 && h1->root.u.def.section->output_section != NULL)
3706 pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].VirtualAddress =
3707 (h1->root.u.def.value
3708 + h1->root.u.def.section->output_section->vma
3709 + h1->root.u.def.section->output_offset);
3710 else
3711 {
3712 _bfd_error_handler
3713 (_("%B: unable to fill in DataDictionary[12] because .idata$5 is missing"),
3714 abfd);
3715 result = FALSE;
3716 }
3717
3718 h1 = coff_link_hash_lookup (coff_hash_table (info),
3719 ".idata$6", FALSE, FALSE, TRUE);
3720 if (h1 != NULL
3721 && (h1->root.type == bfd_link_hash_defined
3722 || h1->root.type == bfd_link_hash_defweak)
3723 && h1->root.u.def.section != NULL
3724 && h1->root.u.def.section->output_section != NULL)
3725 pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].Size =
3726 ((h1->root.u.def.value
3727 + h1->root.u.def.section->output_section->vma
3728 + h1->root.u.def.section->output_offset)
3729 - pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].VirtualAddress);
3730 else
3731 {
3732 _bfd_error_handler
3733 (_("%B: unable to fill in DataDictionary[PE_IMPORT_ADDRESS_TABLE (12)] because .idata$6 is missing"),
3734 abfd);
3735 result = FALSE;
3736 }
3737 }
3738 else
3739 {
3740 h1 = coff_link_hash_lookup (coff_hash_table (info),
3741 "__IAT_start__", FALSE, FALSE, TRUE);
3742 if (h1 != NULL
3743 && (h1->root.type == bfd_link_hash_defined
3744 || h1->root.type == bfd_link_hash_defweak)
3745 && h1->root.u.def.section != NULL
3746 && h1->root.u.def.section->output_section != NULL)
3747 {
3748 bfd_vma iat_va;
3749
3750 iat_va =
3751 (h1->root.u.def.value
3752 + h1->root.u.def.section->output_section->vma
3753 + h1->root.u.def.section->output_offset);
3754
3755 h1 = coff_link_hash_lookup (coff_hash_table (info),
3756 "__IAT_end__", FALSE, FALSE, TRUE);
3757 if (h1 != NULL
3758 && (h1->root.type == bfd_link_hash_defined
3759 || h1->root.type == bfd_link_hash_defweak)
3760 && h1->root.u.def.section != NULL
3761 && h1->root.u.def.section->output_section != NULL)
3762 {
3763 pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].Size =
3764 ((h1->root.u.def.value
3765 + h1->root.u.def.section->output_section->vma
3766 + h1->root.u.def.section->output_offset)
3767 - iat_va);
3768 if (pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].Size != 0)
3769 pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].VirtualAddress =
3770 iat_va - pe_data (abfd)->pe_opthdr.ImageBase;
3771 }
3772 else
3773 {
3774 _bfd_error_handler
3775 (_("%B: unable to fill in DataDictionary[PE_IMPORT_ADDRESS_TABLE(12)]"
3776 " because .idata$6 is missing"), abfd);
3777 result = FALSE;
3778 }
3779 }
3780 }
3781
3782 h1 = coff_link_hash_lookup (coff_hash_table (info),
3783 (bfd_get_symbol_leading_char(abfd) != 0
3784 ? "__tls_used" : "_tls_used"),
3785 FALSE, FALSE, TRUE);
3786 if (h1 != NULL)
3787 {
3788 if ((h1->root.type == bfd_link_hash_defined
3789 || h1->root.type == bfd_link_hash_defweak)
3790 && h1->root.u.def.section != NULL
3791 && h1->root.u.def.section->output_section != NULL)
3792 pe_data (abfd)->pe_opthdr.DataDirectory[PE_TLS_TABLE].VirtualAddress =
3793 (h1->root.u.def.value
3794 + h1->root.u.def.section->output_section->vma
3795 + h1->root.u.def.section->output_offset
3796 - pe_data (abfd)->pe_opthdr.ImageBase);
3797 else
3798 {
3799 _bfd_error_handler
3800 (_("%B: unable to fill in DataDictionary[9] because __tls_used is missing"),
3801 abfd);
3802 result = FALSE;
3803 }
3804 /* According to PECOFF sepcifications by Microsoft version 8.2
3805 the TLS data directory consists of 4 pointers, followed
3806 by two 4-byte integer. This implies that the total size
3807 is different for 32-bit and 64-bit executables. */
3808 #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64)
3809 pe_data (abfd)->pe_opthdr.DataDirectory[PE_TLS_TABLE].Size = 0x18;
3810 #else
3811 pe_data (abfd)->pe_opthdr.DataDirectory[PE_TLS_TABLE].Size = 0x28;
3812 #endif
3813 }
3814
3815 /* If there is a .pdata section and we have linked pdata finally, we
3816 need to sort the entries ascending. */
3817 #if !defined(COFF_WITH_pep) && defined(COFF_WITH_pex64)
3818 {
3819 asection *sec = bfd_get_section_by_name (abfd, ".pdata");
3820
3821 if (sec)
3822 {
3823 bfd_size_type x = sec->rawsize;
3824 bfd_byte *tmp_data = NULL;
3825
3826 if (x)
3827 tmp_data = bfd_malloc (x);
3828
3829 if (tmp_data != NULL)
3830 {
3831 if (bfd_get_section_contents (abfd, sec, tmp_data, 0, x))
3832 {
3833 qsort (tmp_data,
3834 (size_t) (x / 12),
3835 12, sort_x64_pdata);
3836 bfd_set_section_contents (pfinfo->output_bfd, sec,
3837 tmp_data, 0, x);
3838 }
3839 free (tmp_data);
3840 }
3841 }
3842 }
3843 #endif
3844
3845 rsrc_process_section (abfd, pfinfo);
3846
3847 /* If we couldn't find idata$2, we either have an excessively
3848 trivial program or are in DEEP trouble; we have to assume trivial
3849 program.... */
3850 return result;
3851 }
This page took 0.143055 seconds and 4 git commands to generate.