1282bb9b1c86d71e36d644ff01b6534fc6ccb58e
[deliverable/binutils-gdb.git] / bfd / peicode.h
1 /* Support for the generic parts of PE/PEI, for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005 Free Software Foundation, Inc.
4 Written by Cygnus Solutions.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* Most of this hacked by Steve Chamberlain,
23 sac@cygnus.com
24
25 PE/PEI rearrangement (and code added): Donn Terry
26 Softway Systems, Inc. */
27
28 /* Hey look, some documentation [and in a place you expect to find it]!
29
30 The main reference for the pei format is "Microsoft Portable Executable
31 and Common Object File Format Specification 4.1". Get it if you need to
32 do some serious hacking on this code.
33
34 Another reference:
35 "Peering Inside the PE: A Tour of the Win32 Portable Executable
36 File Format", MSJ 1994, Volume 9.
37
38 The *sole* difference between the pe format and the pei format is that the
39 latter has an MSDOS 2.0 .exe header on the front that prints the message
40 "This app must be run under Windows." (or some such).
41 (FIXME: Whether that statement is *really* true or not is unknown.
42 Are there more subtle differences between pe and pei formats?
43 For now assume there aren't. If you find one, then for God sakes
44 document it here!)
45
46 The Microsoft docs use the word "image" instead of "executable" because
47 the former can also refer to a DLL (shared library). Confusion can arise
48 because the `i' in `pei' also refers to "image". The `pe' format can
49 also create images (i.e. executables), it's just that to run on a win32
50 system you need to use the pei format.
51
52 FIXME: Please add more docs here so the next poor fool that has to hack
53 on this code has a chance of getting something accomplished without
54 wasting too much time. */
55
56 #include "libpei.h"
57
58 static bfd_boolean (*pe_saved_coff_bfd_print_private_bfd_data)
59 PARAMS ((bfd *, PTR)) =
60 #ifndef coff_bfd_print_private_bfd_data
61 NULL;
62 #else
63 coff_bfd_print_private_bfd_data;
64 #undef coff_bfd_print_private_bfd_data
65 #endif
66
67 static bfd_boolean pe_print_private_bfd_data PARAMS ((bfd *, PTR));
68 #define coff_bfd_print_private_bfd_data pe_print_private_bfd_data
69
70 static bfd_boolean (*pe_saved_coff_bfd_copy_private_bfd_data)
71 PARAMS ((bfd *, bfd *)) =
72 #ifndef coff_bfd_copy_private_bfd_data
73 NULL;
74 #else
75 coff_bfd_copy_private_bfd_data;
76 #undef coff_bfd_copy_private_bfd_data
77 #endif
78
79 static bfd_boolean pe_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
80 #define coff_bfd_copy_private_bfd_data pe_bfd_copy_private_bfd_data
81
82 #define coff_mkobject pe_mkobject
83 #define coff_mkobject_hook pe_mkobject_hook
84
85 #ifndef NO_COFF_RELOCS
86 static void coff_swap_reloc_in PARAMS ((bfd *, PTR, PTR));
87 static unsigned int coff_swap_reloc_out PARAMS ((bfd *, PTR, PTR));
88 #endif
89 static void coff_swap_filehdr_in PARAMS ((bfd *, PTR, PTR));
90 static void coff_swap_scnhdr_in PARAMS ((bfd *, PTR, PTR));
91 static bfd_boolean pe_mkobject PARAMS ((bfd *));
92 static PTR pe_mkobject_hook PARAMS ((bfd *, PTR, PTR));
93
94 #ifdef COFF_IMAGE_WITH_PE
95 /* This structure contains static variables used by the ILF code. */
96 typedef asection * asection_ptr;
97
98 typedef struct
99 {
100 bfd * abfd;
101 bfd_byte * data;
102 struct bfd_in_memory * bim;
103 unsigned short magic;
104
105 arelent * reltab;
106 unsigned int relcount;
107
108 coff_symbol_type * sym_cache;
109 coff_symbol_type * sym_ptr;
110 unsigned int sym_index;
111
112 unsigned int * sym_table;
113 unsigned int * table_ptr;
114
115 combined_entry_type * native_syms;
116 combined_entry_type * native_ptr;
117
118 coff_symbol_type ** sym_ptr_table;
119 coff_symbol_type ** sym_ptr_ptr;
120
121 unsigned int sec_index;
122
123 char * string_table;
124 char * string_ptr;
125 char * end_string_ptr;
126
127 SYMENT * esym_table;
128 SYMENT * esym_ptr;
129
130 struct internal_reloc * int_reltab;
131 }
132 pe_ILF_vars;
133 #endif /* COFF_IMAGE_WITH_PE */
134
135 /**********************************************************************/
136
137 #ifndef NO_COFF_RELOCS
138 static void
139 coff_swap_reloc_in (abfd, src, dst)
140 bfd *abfd;
141 PTR src;
142 PTR dst;
143 {
144 RELOC *reloc_src = (RELOC *) src;
145 struct internal_reloc *reloc_dst = (struct internal_reloc *) dst;
146
147 reloc_dst->r_vaddr = H_GET_32 (abfd, reloc_src->r_vaddr);
148 reloc_dst->r_symndx = H_GET_S32 (abfd, reloc_src->r_symndx);
149
150 reloc_dst->r_type = H_GET_16 (abfd, reloc_src->r_type);
151
152 #ifdef SWAP_IN_RELOC_OFFSET
153 reloc_dst->r_offset = SWAP_IN_RELOC_OFFSET (abfd, reloc_src->r_offset);
154 #endif
155 }
156
157 static unsigned int
158 coff_swap_reloc_out (abfd, src, dst)
159 bfd *abfd;
160 PTR src;
161 PTR dst;
162 {
163 struct internal_reloc *reloc_src = (struct internal_reloc *)src;
164 struct external_reloc *reloc_dst = (struct external_reloc *)dst;
165 H_PUT_32 (abfd, reloc_src->r_vaddr, reloc_dst->r_vaddr);
166 H_PUT_32 (abfd, reloc_src->r_symndx, reloc_dst->r_symndx);
167
168 H_PUT_16 (abfd, reloc_src->r_type, reloc_dst->r_type);
169
170 #ifdef SWAP_OUT_RELOC_OFFSET
171 SWAP_OUT_RELOC_OFFSET (abfd, reloc_src->r_offset, reloc_dst->r_offset);
172 #endif
173 #ifdef SWAP_OUT_RELOC_EXTRA
174 SWAP_OUT_RELOC_EXTRA(abfd, reloc_src, reloc_dst);
175 #endif
176 return RELSZ;
177 }
178 #endif /* not NO_COFF_RELOCS */
179
180 static void
181 coff_swap_filehdr_in (abfd, src, dst)
182 bfd *abfd;
183 PTR src;
184 PTR dst;
185 {
186 FILHDR *filehdr_src = (FILHDR *) src;
187 struct internal_filehdr *filehdr_dst = (struct internal_filehdr *) dst;
188 filehdr_dst->f_magic = H_GET_16 (abfd, filehdr_src->f_magic);
189 filehdr_dst->f_nscns = H_GET_16 (abfd, filehdr_src-> f_nscns);
190 filehdr_dst->f_timdat = H_GET_32 (abfd, filehdr_src-> f_timdat);
191
192 filehdr_dst->f_nsyms = H_GET_32 (abfd, filehdr_src-> f_nsyms);
193 filehdr_dst->f_flags = H_GET_16 (abfd, filehdr_src-> f_flags);
194 filehdr_dst->f_symptr = H_GET_32 (abfd, filehdr_src->f_symptr);
195
196 /* Other people's tools sometimes generate headers with an nsyms but
197 a zero symptr. */
198 if (filehdr_dst->f_nsyms != 0 && filehdr_dst->f_symptr == 0)
199 {
200 filehdr_dst->f_nsyms = 0;
201 filehdr_dst->f_flags |= F_LSYMS;
202 }
203
204 filehdr_dst->f_opthdr = H_GET_16 (abfd, filehdr_src-> f_opthdr);
205 }
206
207 #ifdef COFF_IMAGE_WITH_PE
208 # define coff_swap_filehdr_out _bfd_XXi_only_swap_filehdr_out
209 #else
210 # define coff_swap_filehdr_out _bfd_pe_only_swap_filehdr_out
211 #endif
212
213 static void
214 coff_swap_scnhdr_in (abfd, ext, in)
215 bfd *abfd;
216 PTR ext;
217 PTR in;
218 {
219 SCNHDR *scnhdr_ext = (SCNHDR *) ext;
220 struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in;
221
222 memcpy(scnhdr_int->s_name, scnhdr_ext->s_name, sizeof (scnhdr_int->s_name));
223 scnhdr_int->s_vaddr = GET_SCNHDR_VADDR (abfd, scnhdr_ext->s_vaddr);
224 scnhdr_int->s_paddr = GET_SCNHDR_PADDR (abfd, scnhdr_ext->s_paddr);
225 scnhdr_int->s_size = GET_SCNHDR_SIZE (abfd, scnhdr_ext->s_size);
226 scnhdr_int->s_scnptr = GET_SCNHDR_SCNPTR (abfd, scnhdr_ext->s_scnptr);
227 scnhdr_int->s_relptr = GET_SCNHDR_RELPTR (abfd, scnhdr_ext->s_relptr);
228 scnhdr_int->s_lnnoptr = GET_SCNHDR_LNNOPTR (abfd, scnhdr_ext->s_lnnoptr);
229 scnhdr_int->s_flags = H_GET_32 (abfd, scnhdr_ext->s_flags);
230
231 /* MS handles overflow of line numbers by carrying into the reloc
232 field (it appears). Since it's supposed to be zero for PE
233 *IMAGE* format, that's safe. This is still a bit iffy. */
234 #ifdef COFF_IMAGE_WITH_PE
235 scnhdr_int->s_nlnno = (H_GET_16 (abfd, scnhdr_ext->s_nlnno)
236 + (H_GET_16 (abfd, scnhdr_ext->s_nreloc) << 16));
237 scnhdr_int->s_nreloc = 0;
238 #else
239 scnhdr_int->s_nreloc = H_GET_16 (abfd, scnhdr_ext->s_nreloc);
240 scnhdr_int->s_nlnno = H_GET_16 (abfd, scnhdr_ext->s_nlnno);
241 #endif
242
243 if (scnhdr_int->s_vaddr != 0)
244 {
245 scnhdr_int->s_vaddr += pe_data (abfd)->pe_opthdr.ImageBase;
246 scnhdr_int->s_vaddr &= 0xffffffff;
247 }
248
249 #ifndef COFF_NO_HACK_SCNHDR_SIZE
250 /* If this section holds uninitialized data and is from an object file
251 or from an executable image that has not initialized the field,
252 or if the image is an executable file and the physical size is padded,
253 use the virtual size (stored in s_paddr) instead. */
254 if (scnhdr_int->s_paddr > 0
255 && (((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0
256 && (! bfd_pe_executable_p (abfd) || scnhdr_int->s_size == 0))
257 || (bfd_pe_executable_p (abfd) && scnhdr_int->s_size > scnhdr_int->s_paddr)))
258 {
259 scnhdr_int->s_size = scnhdr_int->s_paddr;
260
261 /* This code used to set scnhdr_int->s_paddr to 0. However,
262 coff_set_alignment_hook stores s_paddr in virt_size, which
263 only works if it correctly holds the virtual size of the
264 section. */
265 }
266 #endif
267 }
268
269 static bfd_boolean
270 pe_mkobject (abfd)
271 bfd * abfd;
272 {
273 pe_data_type *pe;
274 bfd_size_type amt = sizeof (pe_data_type);
275
276 abfd->tdata.pe_obj_data = (struct pe_tdata *) bfd_zalloc (abfd, amt);
277
278 if (abfd->tdata.pe_obj_data == 0)
279 return FALSE;
280
281 pe = pe_data (abfd);
282
283 pe->coff.pe = 1;
284
285 /* in_reloc_p is architecture dependent. */
286 pe->in_reloc_p = in_reloc_p;
287
288 #ifdef PEI_FORCE_MINIMUM_ALIGNMENT
289 pe->force_minimum_alignment = 1;
290 #endif
291 #ifdef PEI_TARGET_SUBSYSTEM
292 pe->target_subsystem = PEI_TARGET_SUBSYSTEM;
293 #endif
294
295 return TRUE;
296 }
297
298 /* Create the COFF backend specific information. */
299 static PTR
300 pe_mkobject_hook (abfd, filehdr, aouthdr)
301 bfd * abfd;
302 PTR filehdr;
303 PTR aouthdr ATTRIBUTE_UNUSED;
304 {
305 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
306 pe_data_type *pe;
307
308 if (! pe_mkobject (abfd))
309 return NULL;
310
311 pe = pe_data (abfd);
312 pe->coff.sym_filepos = internal_f->f_symptr;
313 /* These members communicate important constants about the symbol
314 table to GDB's symbol-reading code. These `constants'
315 unfortunately vary among coff implementations... */
316 pe->coff.local_n_btmask = N_BTMASK;
317 pe->coff.local_n_btshft = N_BTSHFT;
318 pe->coff.local_n_tmask = N_TMASK;
319 pe->coff.local_n_tshift = N_TSHIFT;
320 pe->coff.local_symesz = SYMESZ;
321 pe->coff.local_auxesz = AUXESZ;
322 pe->coff.local_linesz = LINESZ;
323
324 pe->coff.timestamp = internal_f->f_timdat;
325
326 obj_raw_syment_count (abfd) =
327 obj_conv_table_size (abfd) =
328 internal_f->f_nsyms;
329
330 pe->real_flags = internal_f->f_flags;
331
332 if ((internal_f->f_flags & F_DLL) != 0)
333 pe->dll = 1;
334
335 if ((internal_f->f_flags & IMAGE_FILE_DEBUG_STRIPPED) == 0)
336 abfd->flags |= HAS_DEBUG;
337
338 #ifdef COFF_IMAGE_WITH_PE
339 if (aouthdr)
340 pe->pe_opthdr = ((struct internal_aouthdr *)aouthdr)->pe;
341 #endif
342
343 #ifdef ARM
344 if (! _bfd_coff_arm_set_private_flags (abfd, internal_f->f_flags))
345 coff_data (abfd) ->flags = 0;
346 #endif
347
348 return (PTR) pe;
349 }
350
351 static bfd_boolean
352 pe_print_private_bfd_data (abfd, vfile)
353 bfd *abfd;
354 PTR vfile;
355 {
356 FILE *file = (FILE *) vfile;
357
358 if (!_bfd_XX_print_private_bfd_data_common (abfd, vfile))
359 return FALSE;
360
361 if (pe_saved_coff_bfd_print_private_bfd_data != NULL)
362 {
363 fputc ('\n', file);
364
365 return pe_saved_coff_bfd_print_private_bfd_data (abfd, vfile);
366 }
367
368 return TRUE;
369 }
370
371 /* Copy any private info we understand from the input bfd
372 to the output bfd. */
373
374 static bfd_boolean
375 pe_bfd_copy_private_bfd_data (ibfd, obfd)
376 bfd *ibfd, *obfd;
377 {
378 /* PR binutils/716: Copy the large address aware flag.
379 XXX: Should we be copying other flags or other fields in the pe_data()
380 structure ? */
381 if (pe_data (obfd) != NULL
382 && pe_data (ibfd) != NULL
383 && pe_data (ibfd)->real_flags & IMAGE_FILE_LARGE_ADDRESS_AWARE)
384 pe_data (obfd)->real_flags |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
385
386 if (!_bfd_XX_bfd_copy_private_bfd_data_common (ibfd, obfd))
387 return FALSE;
388
389 if (pe_saved_coff_bfd_copy_private_bfd_data)
390 return pe_saved_coff_bfd_copy_private_bfd_data (ibfd, obfd);
391
392 return TRUE;
393 }
394
395 #define coff_bfd_copy_private_section_data \
396 _bfd_XX_bfd_copy_private_section_data
397
398 #define coff_get_symbol_info _bfd_XX_get_symbol_info
399
400 #ifdef COFF_IMAGE_WITH_PE
401 \f
402 /* Code to handle Microsoft's Image Library Format.
403 Also known as LINK6 format.
404 Documentation about this format can be found at:
405
406 http://msdn.microsoft.com/library/specs/pecoff_section8.htm */
407
408 /* The following constants specify the sizes of the various data
409 structures that we have to create in order to build a bfd describing
410 an ILF object file. The final "+ 1" in the definitions of SIZEOF_IDATA6
411 and SIZEOF_IDATA7 below is to allow for the possibility that we might
412 need a padding byte in order to ensure 16 bit alignment for the section's
413 contents.
414
415 The value for SIZEOF_ILF_STRINGS is computed as follows:
416
417 There will be NUM_ILF_SECTIONS section symbols. Allow 9 characters
418 per symbol for their names (longest section name is .idata$x).
419
420 There will be two symbols for the imported value, one the symbol name
421 and one with _imp__ prefixed. Allowing for the terminating nul's this
422 is strlen (symbol_name) * 2 + 8 + 21 + strlen (source_dll).
423
424 The strings in the string table must start STRING__SIZE_SIZE bytes into
425 the table in order to for the string lookup code in coffgen/coffcode to
426 work. */
427 #define NUM_ILF_RELOCS 8
428 #define NUM_ILF_SECTIONS 6
429 #define NUM_ILF_SYMS (2 + NUM_ILF_SECTIONS)
430
431 #define SIZEOF_ILF_SYMS (NUM_ILF_SYMS * sizeof (* vars.sym_cache))
432 #define SIZEOF_ILF_SYM_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_table))
433 #define SIZEOF_ILF_NATIVE_SYMS (NUM_ILF_SYMS * sizeof (* vars.native_syms))
434 #define SIZEOF_ILF_SYM_PTR_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_ptr_table))
435 #define SIZEOF_ILF_EXT_SYMS (NUM_ILF_SYMS * sizeof (* vars.esym_table))
436 #define SIZEOF_ILF_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.reltab))
437 #define SIZEOF_ILF_INT_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.int_reltab))
438 #define SIZEOF_ILF_STRINGS (strlen (symbol_name) * 2 + 8 \
439 + 21 + strlen (source_dll) \
440 + NUM_ILF_SECTIONS * 9 \
441 + STRING_SIZE_SIZE)
442 #define SIZEOF_IDATA2 (5 * 4)
443 #define SIZEOF_IDATA4 (1 * 4)
444 #define SIZEOF_IDATA5 (1 * 4)
445 #define SIZEOF_IDATA6 (2 + strlen (symbol_name) + 1 + 1)
446 #define SIZEOF_IDATA7 (strlen (source_dll) + 1 + 1)
447 #define SIZEOF_ILF_SECTIONS (NUM_ILF_SECTIONS * sizeof (struct coff_section_tdata))
448
449 #define ILF_DATA_SIZE \
450 sizeof (* vars.bim) \
451 + SIZEOF_ILF_SYMS \
452 + SIZEOF_ILF_SYM_TABLE \
453 + SIZEOF_ILF_NATIVE_SYMS \
454 + SIZEOF_ILF_SYM_PTR_TABLE \
455 + SIZEOF_ILF_EXT_SYMS \
456 + SIZEOF_ILF_RELOCS \
457 + SIZEOF_ILF_INT_RELOCS \
458 + SIZEOF_ILF_STRINGS \
459 + SIZEOF_IDATA2 \
460 + SIZEOF_IDATA4 \
461 + SIZEOF_IDATA5 \
462 + SIZEOF_IDATA6 \
463 + SIZEOF_IDATA7 \
464 + SIZEOF_ILF_SECTIONS \
465 + MAX_TEXT_SECTION_SIZE
466
467 /* Create an empty relocation against the given symbol. */
468 static void
469 pe_ILF_make_a_symbol_reloc (pe_ILF_vars * vars,
470 bfd_vma address,
471 bfd_reloc_code_real_type reloc,
472 struct bfd_symbol ** sym,
473 unsigned int sym_index)
474 {
475 arelent * entry;
476 struct internal_reloc * internal;
477
478 entry = vars->reltab + vars->relcount;
479 internal = vars->int_reltab + vars->relcount;
480
481 entry->address = address;
482 entry->addend = 0;
483 entry->howto = bfd_reloc_type_lookup (vars->abfd, reloc);
484 entry->sym_ptr_ptr = sym;
485
486 internal->r_vaddr = address;
487 internal->r_symndx = sym_index;
488 internal->r_type = entry->howto->type;
489
490 vars->relcount ++;
491
492 BFD_ASSERT (vars->relcount <= NUM_ILF_RELOCS);
493 }
494
495 /* Create an empty relocation against the given section. */
496 static void
497 pe_ILF_make_a_reloc (pe_ILF_vars * vars,
498 bfd_vma address,
499 bfd_reloc_code_real_type reloc,
500 asection_ptr sec)
501 {
502 pe_ILF_make_a_symbol_reloc (vars, address, reloc, sec->symbol_ptr_ptr,
503 coff_section_data (vars->abfd, sec)->i);
504 }
505
506 /* Move the queued relocs into the given section. */
507 static void
508 pe_ILF_save_relocs (pe_ILF_vars * vars,
509 asection_ptr sec)
510 {
511 /* Make sure that there is somewhere to store the internal relocs. */
512 if (coff_section_data (vars->abfd, sec) == NULL)
513 /* We should probably return an error indication here. */
514 abort ();
515
516 coff_section_data (vars->abfd, sec)->relocs = vars->int_reltab;
517 coff_section_data (vars->abfd, sec)->keep_relocs = TRUE;
518
519 sec->relocation = vars->reltab;
520 sec->reloc_count = vars->relcount;
521 sec->flags |= SEC_RELOC;
522
523 vars->reltab += vars->relcount;
524 vars->int_reltab += vars->relcount;
525 vars->relcount = 0;
526
527 BFD_ASSERT ((bfd_byte *) vars->int_reltab < (bfd_byte *) vars->string_table);
528 }
529
530 /* Create a global symbol and add it to the relevant tables. */
531 static void
532 pe_ILF_make_a_symbol (pe_ILF_vars * vars,
533 const char * prefix,
534 const char * symbol_name,
535 asection_ptr section,
536 flagword extra_flags)
537 {
538 coff_symbol_type * sym;
539 combined_entry_type * ent;
540 SYMENT * esym;
541 unsigned short sclass;
542
543 if (extra_flags & BSF_LOCAL)
544 sclass = C_STAT;
545 else
546 sclass = C_EXT;
547
548 #ifdef THUMBPEMAGIC
549 if (vars->magic == THUMBPEMAGIC)
550 {
551 if (extra_flags & BSF_FUNCTION)
552 sclass = C_THUMBEXTFUNC;
553 else if (extra_flags & BSF_LOCAL)
554 sclass = C_THUMBSTAT;
555 else
556 sclass = C_THUMBEXT;
557 }
558 #endif
559
560 BFD_ASSERT (vars->sym_index < NUM_ILF_SYMS);
561
562 sym = vars->sym_ptr;
563 ent = vars->native_ptr;
564 esym = vars->esym_ptr;
565
566 /* Copy the symbol's name into the string table. */
567 sprintf (vars->string_ptr, "%s%s", prefix, symbol_name);
568
569 if (section == NULL)
570 section = (asection_ptr) & bfd_und_section;
571
572 /* Initialise the external symbol. */
573 H_PUT_32 (vars->abfd, vars->string_ptr - vars->string_table,
574 esym->e.e.e_offset);
575 H_PUT_16 (vars->abfd, section->target_index, esym->e_scnum);
576 esym->e_sclass[0] = sclass;
577
578 /* The following initialisations are unnecessary - the memory is
579 zero initialised. They are just kept here as reminders. */
580
581 /* Initialise the internal symbol structure. */
582 ent->u.syment.n_sclass = sclass;
583 ent->u.syment.n_scnum = section->target_index;
584 ent->u.syment._n._n_n._n_offset = (long) sym;
585
586 sym->symbol.the_bfd = vars->abfd;
587 sym->symbol.name = vars->string_ptr;
588 sym->symbol.flags = BSF_EXPORT | BSF_GLOBAL | extra_flags;
589 sym->symbol.section = section;
590 sym->native = ent;
591
592 * vars->table_ptr = vars->sym_index;
593 * vars->sym_ptr_ptr = sym;
594
595 /* Adjust pointers for the next symbol. */
596 vars->sym_index ++;
597 vars->sym_ptr ++;
598 vars->sym_ptr_ptr ++;
599 vars->table_ptr ++;
600 vars->native_ptr ++;
601 vars->esym_ptr ++;
602 vars->string_ptr += strlen (symbol_name) + strlen (prefix) + 1;
603
604 BFD_ASSERT (vars->string_ptr < vars->end_string_ptr);
605 }
606
607 /* Create a section. */
608 static asection_ptr
609 pe_ILF_make_a_section (pe_ILF_vars * vars,
610 const char * name,
611 unsigned int size,
612 flagword extra_flags)
613 {
614 asection_ptr sec;
615 flagword flags;
616
617 sec = bfd_make_section_old_way (vars->abfd, name);
618 if (sec == NULL)
619 return NULL;
620
621 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_KEEP | SEC_IN_MEMORY;
622
623 bfd_set_section_flags (vars->abfd, sec, flags | extra_flags);
624
625 bfd_set_section_alignment (vars->abfd, sec, 2);
626
627 /* Check that we will not run out of space. */
628 BFD_ASSERT (vars->data + size < vars->bim->buffer + vars->bim->size);
629
630 /* Set the section size and contents. The actual
631 contents are filled in by our parent. */
632 bfd_set_section_size (vars->abfd, sec, (bfd_size_type) size);
633 sec->contents = vars->data;
634 sec->target_index = vars->sec_index ++;
635
636 /* Advance data pointer in the vars structure. */
637 vars->data += size;
638
639 /* Skip the padding byte if it was not needed.
640 The logic here is that if the string length is odd,
641 then the entire string length, including the null byte,
642 is even and so the extra, padding byte, is not needed. */
643 if (size & 1)
644 vars->data --;
645
646 /* Create a coff_section_tdata structure for our use. */
647 sec->used_by_bfd = (struct coff_section_tdata *) vars->data;
648 vars->data += sizeof (struct coff_section_tdata);
649
650 BFD_ASSERT (vars->data <= vars->bim->buffer + vars->bim->size);
651
652 /* Create a symbol to refer to this section. */
653 pe_ILF_make_a_symbol (vars, "", name, sec, BSF_LOCAL);
654
655 /* Cache the index to the symbol in the coff_section_data structure. */
656 coff_section_data (vars->abfd, sec)->i = vars->sym_index - 1;
657
658 return sec;
659 }
660
661 /* This structure contains the code that goes into the .text section
662 in order to perform a jump into the DLL lookup table. The entries
663 in the table are index by the magic number used to represent the
664 machine type in the PE file. The contents of the data[] arrays in
665 these entries are stolen from the jtab[] arrays in ld/pe-dll.c.
666 The SIZE field says how many bytes in the DATA array are actually
667 used. The OFFSET field says where in the data array the address
668 of the .idata$5 section should be placed. */
669 #define MAX_TEXT_SECTION_SIZE 32
670
671 typedef struct
672 {
673 unsigned short magic;
674 unsigned char data[MAX_TEXT_SECTION_SIZE];
675 unsigned int size;
676 unsigned int offset;
677 }
678 jump_table;
679
680 static jump_table jtab[] =
681 {
682 #ifdef I386MAGIC
683 { I386MAGIC,
684 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
685 8, 2
686 },
687 #endif
688
689 #ifdef MC68MAGIC
690 { MC68MAGIC, { /* XXX fill me in */ }, 0, 0 },
691 #endif
692 #ifdef MIPS_ARCH_MAGIC_WINCE
693 { MIPS_ARCH_MAGIC_WINCE,
694 { 0x00, 0x00, 0x08, 0x3c, 0x00, 0x00, 0x08, 0x8d,
695 0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00 },
696 16, 0
697 },
698 #endif
699
700 #ifdef SH_ARCH_MAGIC_WINCE
701 { SH_ARCH_MAGIC_WINCE,
702 { 0x01, 0xd0, 0x02, 0x60, 0x2b, 0x40,
703 0x09, 0x00, 0x00, 0x00, 0x00, 0x00 },
704 12, 8
705 },
706 #endif
707
708 #ifdef ARMPEMAGIC
709 { ARMPEMAGIC,
710 { 0x00, 0xc0, 0x9f, 0xe5, 0x00, 0xf0,
711 0x9c, 0xe5, 0x00, 0x00, 0x00, 0x00},
712 12, 8
713 },
714 #endif
715
716 #ifdef THUMBPEMAGIC
717 { THUMBPEMAGIC,
718 { 0x40, 0xb4, 0x02, 0x4e, 0x36, 0x68, 0xb4, 0x46,
719 0x40, 0xbc, 0x60, 0x47, 0x00, 0x00, 0x00, 0x00 },
720 16, 12
721 },
722 #endif
723 { 0, { 0 }, 0, 0 }
724 };
725
726 #ifndef NUM_ENTRIES
727 #define NUM_ENTRIES(a) (sizeof (a) / sizeof (a)[0])
728 #endif
729
730 /* Build a full BFD from the information supplied in a ILF object. */
731 static bfd_boolean
732 pe_ILF_build_a_bfd (bfd * abfd,
733 unsigned int magic,
734 char * symbol_name,
735 char * source_dll,
736 unsigned int ordinal,
737 unsigned int types)
738 {
739 bfd_byte * ptr;
740 pe_ILF_vars vars;
741 struct internal_filehdr internal_f;
742 unsigned int import_type;
743 unsigned int import_name_type;
744 asection_ptr id4, id5, id6 = NULL, text = NULL;
745 coff_symbol_type ** imp_sym;
746 unsigned int imp_index;
747
748 /* Decode and verify the types field of the ILF structure. */
749 import_type = types & 0x3;
750 import_name_type = (types & 0x1c) >> 2;
751
752 switch (import_type)
753 {
754 case IMPORT_CODE:
755 case IMPORT_DATA:
756 break;
757
758 case IMPORT_CONST:
759 /* XXX code yet to be written. */
760 _bfd_error_handler (_("%B: Unhandled import type; %x"),
761 abfd, import_type);
762 return FALSE;
763
764 default:
765 _bfd_error_handler (_("%B: Unrecognised import type; %x"),
766 abfd, import_type);
767 return FALSE;
768 }
769
770 switch (import_name_type)
771 {
772 case IMPORT_ORDINAL:
773 case IMPORT_NAME:
774 case IMPORT_NAME_NOPREFIX:
775 case IMPORT_NAME_UNDECORATE:
776 break;
777
778 default:
779 _bfd_error_handler (_("%B: Unrecognised import name type; %x"),
780 abfd, import_name_type);
781 return FALSE;
782 }
783
784 /* Initialise local variables.
785
786 Note these are kept in a structure rather than being
787 declared as statics since bfd frowns on global variables.
788
789 We are going to construct the contents of the BFD in memory,
790 so allocate all the space that we will need right now. */
791 ptr = bfd_zalloc (abfd, (bfd_size_type) ILF_DATA_SIZE);
792 if (ptr == NULL)
793 return FALSE;
794
795 /* Create a bfd_in_memory structure. */
796 vars.bim = (struct bfd_in_memory *) ptr;
797 vars.bim->buffer = ptr;
798 vars.bim->size = ILF_DATA_SIZE;
799 ptr += sizeof (* vars.bim);
800
801 /* Initialise the pointers to regions of the memory and the
802 other contents of the pe_ILF_vars structure as well. */
803 vars.sym_cache = (coff_symbol_type *) ptr;
804 vars.sym_ptr = (coff_symbol_type *) ptr;
805 vars.sym_index = 0;
806 ptr += SIZEOF_ILF_SYMS;
807
808 vars.sym_table = (unsigned int *) ptr;
809 vars.table_ptr = (unsigned int *) ptr;
810 ptr += SIZEOF_ILF_SYM_TABLE;
811
812 vars.native_syms = (combined_entry_type *) ptr;
813 vars.native_ptr = (combined_entry_type *) ptr;
814 ptr += SIZEOF_ILF_NATIVE_SYMS;
815
816 vars.sym_ptr_table = (coff_symbol_type **) ptr;
817 vars.sym_ptr_ptr = (coff_symbol_type **) ptr;
818 ptr += SIZEOF_ILF_SYM_PTR_TABLE;
819
820 vars.esym_table = (SYMENT *) ptr;
821 vars.esym_ptr = (SYMENT *) ptr;
822 ptr += SIZEOF_ILF_EXT_SYMS;
823
824 vars.reltab = (arelent *) ptr;
825 vars.relcount = 0;
826 ptr += SIZEOF_ILF_RELOCS;
827
828 vars.int_reltab = (struct internal_reloc *) ptr;
829 ptr += SIZEOF_ILF_INT_RELOCS;
830
831 vars.string_table = (char *) ptr;
832 vars.string_ptr = (char *) ptr + STRING_SIZE_SIZE;
833 ptr += SIZEOF_ILF_STRINGS;
834 vars.end_string_ptr = (char *) ptr;
835
836 /* The remaining space in bim->buffer is used
837 by the pe_ILF_make_a_section() function. */
838 vars.data = ptr;
839 vars.abfd = abfd;
840 vars.sec_index = 0;
841 vars.magic = magic;
842
843 /* Create the initial .idata$<n> sections:
844 [.idata$2: Import Directory Table -- not needed]
845 .idata$4: Import Lookup Table
846 .idata$5: Import Address Table
847
848 Note we do not create a .idata$3 section as this is
849 created for us by the linker script. */
850 id4 = pe_ILF_make_a_section (& vars, ".idata$4", SIZEOF_IDATA4, 0);
851 id5 = pe_ILF_make_a_section (& vars, ".idata$5", SIZEOF_IDATA5, 0);
852 if (id4 == NULL || id5 == NULL)
853 return FALSE;
854
855 /* Fill in the contents of these sections. */
856 if (import_name_type == IMPORT_ORDINAL)
857 {
858 if (ordinal == 0)
859 /* XXX - treat as IMPORT_NAME ??? */
860 abort ();
861
862 * (unsigned int *) id4->contents = ordinal | 0x80000000;
863 * (unsigned int *) id5->contents = ordinal | 0x80000000;
864 }
865 else
866 {
867 char * symbol;
868
869 /* Create .idata$6 - the Hint Name Table. */
870 id6 = pe_ILF_make_a_section (& vars, ".idata$6", SIZEOF_IDATA6, 0);
871 if (id6 == NULL)
872 return FALSE;
873
874 /* If necessary, trim the import symbol name. */
875 symbol = symbol_name;
876
877 if (import_name_type != IMPORT_NAME)
878 {
879 bfd_boolean skipped_leading_underscore = FALSE;
880 bfd_boolean skipped_leading_at = FALSE;
881 bfd_boolean skipped_leading_question_mark = FALSE;
882 bfd_boolean check_again;
883
884 /* Skip any prefix in symbol_name. */
885 -- symbol;
886 do
887 {
888 check_again = FALSE;
889 ++ symbol;
890
891 switch (*symbol)
892 {
893 case '@':
894 if (! skipped_leading_at)
895 check_again = skipped_leading_at = TRUE;
896 break;
897 case '?':
898 if (! skipped_leading_question_mark)
899 check_again = skipped_leading_question_mark = TRUE;
900 break;
901 case '_':
902 if (! skipped_leading_underscore)
903 check_again = skipped_leading_underscore = TRUE;
904 break;
905 default:
906 break;
907 }
908 }
909 while (check_again);
910 }
911
912 if (import_name_type == IMPORT_NAME_UNDECORATE)
913 {
914 /* Truncate at the first '@' */
915 while (* symbol != 0 && * symbol != '@')
916 symbol ++;
917
918 * symbol = 0;
919 }
920
921 id6->contents[0] = ordinal & 0xff;
922 id6->contents[1] = ordinal >> 8;
923
924 strcpy ((char *) id6->contents + 2, symbol);
925 }
926
927 if (import_name_type != IMPORT_ORDINAL)
928 {
929 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
930 pe_ILF_save_relocs (&vars, id4);
931
932 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
933 pe_ILF_save_relocs (&vars, id5);
934 }
935
936 /* Create extra sections depending upon the type of import we are dealing with. */
937 switch (import_type)
938 {
939 int i;
940
941 case IMPORT_CODE:
942 /* Create a .text section.
943 First we need to look up its contents in the jump table. */
944 for (i = NUM_ENTRIES (jtab); i--;)
945 {
946 if (jtab[i].size == 0)
947 continue;
948 if (jtab[i].magic == magic)
949 break;
950 }
951 /* If we did not find a matching entry something is wrong. */
952 if (i < 0)
953 abort ();
954
955 /* Create the .text section. */
956 text = pe_ILF_make_a_section (& vars, ".text", jtab[i].size, SEC_CODE);
957 if (text == NULL)
958 return FALSE;
959
960 /* Copy in the jump code. */
961 memcpy (text->contents, jtab[i].data, jtab[i].size);
962
963 /* Create an import symbol. */
964 pe_ILF_make_a_symbol (& vars, "__imp_", symbol_name, id5, 0);
965 imp_sym = vars.sym_ptr_ptr - 1;
966 imp_index = vars.sym_index - 1;
967
968 /* Create a reloc for the data in the text section. */
969 #ifdef MIPS_ARCH_MAGIC_WINCE
970 if (magic == MIPS_ARCH_MAGIC_WINCE)
971 {
972 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 0, BFD_RELOC_HI16_S,
973 (struct bfd_symbol **) imp_sym,
974 imp_index);
975 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_LO16, text);
976 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 4, BFD_RELOC_LO16,
977 (struct bfd_symbol **) imp_sym,
978 imp_index);
979 }
980 else
981 #endif
982 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
983 BFD_RELOC_32, (asymbol **) imp_sym,
984 imp_index);
985
986 pe_ILF_save_relocs (& vars, text);
987 break;
988
989 case IMPORT_DATA:
990 break;
991
992 default:
993 /* XXX code not yet written. */
994 abort ();
995 }
996
997 /* Initialise the bfd. */
998 memset (& internal_f, 0, sizeof (internal_f));
999
1000 internal_f.f_magic = magic;
1001 internal_f.f_symptr = 0;
1002 internal_f.f_nsyms = 0;
1003 internal_f.f_flags = F_AR32WR | F_LNNO; /* XXX is this correct ? */
1004
1005 if ( ! bfd_set_start_address (abfd, (bfd_vma) 0)
1006 || ! bfd_coff_set_arch_mach_hook (abfd, & internal_f))
1007 return FALSE;
1008
1009 if (bfd_coff_mkobject_hook (abfd, (PTR) & internal_f, NULL) == NULL)
1010 return FALSE;
1011
1012 coff_data (abfd)->pe = 1;
1013 #ifdef THUMBPEMAGIC
1014 if (vars.magic == THUMBPEMAGIC)
1015 /* Stop some linker warnings about thumb code not supporting interworking. */
1016 coff_data (abfd)->flags |= F_INTERWORK | F_INTERWORK_SET;
1017 #endif
1018
1019 /* Switch from file contents to memory contents. */
1020 bfd_cache_close (abfd);
1021
1022 abfd->iostream = (PTR) vars.bim;
1023 abfd->flags |= BFD_IN_MEMORY /* | HAS_LOCALS */;
1024 abfd->where = 0;
1025 obj_sym_filepos (abfd) = 0;
1026
1027 /* Now create a symbol describing the imported value. */
1028 switch (import_type)
1029 {
1030 case IMPORT_CODE:
1031 pe_ILF_make_a_symbol (& vars, "", symbol_name, text,
1032 BSF_NOT_AT_END | BSF_FUNCTION);
1033
1034 /* Create an import symbol for the DLL, without the
1035 .dll suffix. */
1036 ptr = (bfd_byte *) strrchr (source_dll, '.');
1037 if (ptr)
1038 * ptr = 0;
1039 pe_ILF_make_a_symbol (& vars, "__IMPORT_DESCRIPTOR_", source_dll, NULL, 0);
1040 if (ptr)
1041 * ptr = '.';
1042 break;
1043
1044 case IMPORT_DATA:
1045 /* Nothing to do here. */
1046 break;
1047
1048 default:
1049 /* XXX code not yet written. */
1050 abort ();
1051 }
1052
1053 /* Point the bfd at the symbol table. */
1054 obj_symbols (abfd) = vars.sym_cache;
1055 bfd_get_symcount (abfd) = vars.sym_index;
1056
1057 obj_raw_syments (abfd) = vars.native_syms;
1058 obj_raw_syment_count (abfd) = vars.sym_index;
1059
1060 obj_coff_external_syms (abfd) = (PTR) vars.esym_table;
1061 obj_coff_keep_syms (abfd) = TRUE;
1062
1063 obj_convert (abfd) = vars.sym_table;
1064 obj_conv_table_size (abfd) = vars.sym_index;
1065
1066 obj_coff_strings (abfd) = vars.string_table;
1067 obj_coff_keep_strings (abfd) = TRUE;
1068
1069 abfd->flags |= HAS_SYMS;
1070
1071 return TRUE;
1072 }
1073
1074 /* We have detected a Image Library Format archive element.
1075 Decode the element and return the appropriate target. */
1076 static const bfd_target *
1077 pe_ILF_object_p (bfd * abfd)
1078 {
1079 bfd_byte buffer[16];
1080 bfd_byte * ptr;
1081 char * symbol_name;
1082 char * source_dll;
1083 unsigned int machine;
1084 bfd_size_type size;
1085 unsigned int ordinal;
1086 unsigned int types;
1087 unsigned int magic;
1088
1089 /* Upon entry the first four buyes of the ILF header have
1090 already been read. Now read the rest of the header. */
1091 if (bfd_bread (buffer, (bfd_size_type) 16, abfd) != 16)
1092 return NULL;
1093
1094 ptr = buffer;
1095
1096 /* We do not bother to check the version number.
1097 version = H_GET_16 (abfd, ptr); */
1098 ptr += 2;
1099
1100 machine = H_GET_16 (abfd, ptr);
1101 ptr += 2;
1102
1103 /* Check that the machine type is recognised. */
1104 magic = 0;
1105
1106 switch (machine)
1107 {
1108 case IMAGE_FILE_MACHINE_UNKNOWN:
1109 case IMAGE_FILE_MACHINE_ALPHA:
1110 case IMAGE_FILE_MACHINE_ALPHA64:
1111 case IMAGE_FILE_MACHINE_IA64:
1112 break;
1113
1114 case IMAGE_FILE_MACHINE_I386:
1115 #ifdef I386MAGIC
1116 magic = I386MAGIC;
1117 #endif
1118 break;
1119
1120 case IMAGE_FILE_MACHINE_M68K:
1121 #ifdef MC68AGIC
1122 magic = MC68MAGIC;
1123 #endif
1124 break;
1125
1126 case IMAGE_FILE_MACHINE_R3000:
1127 case IMAGE_FILE_MACHINE_R4000:
1128 case IMAGE_FILE_MACHINE_R10000:
1129
1130 case IMAGE_FILE_MACHINE_MIPS16:
1131 case IMAGE_FILE_MACHINE_MIPSFPU:
1132 case IMAGE_FILE_MACHINE_MIPSFPU16:
1133 #ifdef MIPS_ARCH_MAGIC_WINCE
1134 magic = MIPS_ARCH_MAGIC_WINCE;
1135 #endif
1136 break;
1137
1138 case IMAGE_FILE_MACHINE_SH3:
1139 case IMAGE_FILE_MACHINE_SH4:
1140 #ifdef SH_ARCH_MAGIC_WINCE
1141 magic = SH_ARCH_MAGIC_WINCE;
1142 #endif
1143 break;
1144
1145 case IMAGE_FILE_MACHINE_ARM:
1146 #ifdef ARMPEMAGIC
1147 magic = ARMPEMAGIC;
1148 #endif
1149 break;
1150
1151 case IMAGE_FILE_MACHINE_THUMB:
1152 #ifdef THUMBPEMAGIC
1153 {
1154 extern const bfd_target TARGET_LITTLE_SYM;
1155
1156 if (abfd->xvec == & TARGET_LITTLE_SYM)
1157 magic = THUMBPEMAGIC;
1158 }
1159 #endif
1160 break;
1161
1162 case IMAGE_FILE_MACHINE_POWERPC:
1163 /* We no longer support PowerPC. */
1164 default:
1165 _bfd_error_handler
1166 (_("%B: Unrecognised machine type (0x%x)"
1167 " in Import Library Format archive"),
1168 abfd, machine);
1169 bfd_set_error (bfd_error_malformed_archive);
1170
1171 return NULL;
1172 break;
1173 }
1174
1175 if (magic == 0)
1176 {
1177 _bfd_error_handler
1178 (_("%B: Recognised but unhandled machine type (0x%x)"
1179 " in Import Library Format archive"),
1180 abfd, machine);
1181 bfd_set_error (bfd_error_wrong_format);
1182
1183 return NULL;
1184 }
1185
1186 /* We do not bother to check the date.
1187 date = H_GET_32 (abfd, ptr); */
1188 ptr += 4;
1189
1190 size = H_GET_32 (abfd, ptr);
1191 ptr += 4;
1192
1193 if (size == 0)
1194 {
1195 _bfd_error_handler
1196 (_("%B: size field is zero in Import Library Format header"), abfd);
1197 bfd_set_error (bfd_error_malformed_archive);
1198
1199 return NULL;
1200 }
1201
1202 ordinal = H_GET_16 (abfd, ptr);
1203 ptr += 2;
1204
1205 types = H_GET_16 (abfd, ptr);
1206 /* ptr += 2; */
1207
1208 /* Now read in the two strings that follow. */
1209 ptr = bfd_alloc (abfd, size);
1210 if (ptr == NULL)
1211 return NULL;
1212
1213 if (bfd_bread (ptr, size, abfd) != size)
1214 {
1215 bfd_release (abfd, ptr);
1216 return NULL;
1217 }
1218
1219 symbol_name = (char *) ptr;
1220 source_dll = symbol_name + strlen (symbol_name) + 1;
1221
1222 /* Verify that the strings are null terminated. */
1223 if (ptr[size - 1] != 0
1224 || (bfd_size_type) ((bfd_byte *) source_dll - ptr) >= size)
1225 {
1226 _bfd_error_handler
1227 (_("%B: string not null terminated in ILF object file."), abfd);
1228 bfd_set_error (bfd_error_malformed_archive);
1229 bfd_release (abfd, ptr);
1230 return NULL;
1231 }
1232
1233 /* Now construct the bfd. */
1234 if (! pe_ILF_build_a_bfd (abfd, magic, symbol_name,
1235 source_dll, ordinal, types))
1236 {
1237 bfd_release (abfd, ptr);
1238 return NULL;
1239 }
1240
1241 return abfd->xvec;
1242 }
1243
1244 static const bfd_target *
1245 pe_bfd_object_p (bfd * abfd)
1246 {
1247 bfd_byte buffer[4];
1248 struct external_PEI_DOS_hdr dos_hdr;
1249 struct external_PEI_IMAGE_hdr image_hdr;
1250 file_ptr offset;
1251
1252 /* Detect if this a Microsoft Import Library Format element. */
1253 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1254 || bfd_bread (buffer, (bfd_size_type) 4, abfd) != 4)
1255 {
1256 if (bfd_get_error () != bfd_error_system_call)
1257 bfd_set_error (bfd_error_wrong_format);
1258 return NULL;
1259 }
1260
1261 if (H_GET_32 (abfd, buffer) == 0xffff0000)
1262 return pe_ILF_object_p (abfd);
1263
1264 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1265 || bfd_bread (&dos_hdr, (bfd_size_type) sizeof (dos_hdr), abfd)
1266 != sizeof (dos_hdr))
1267 {
1268 if (bfd_get_error () != bfd_error_system_call)
1269 bfd_set_error (bfd_error_wrong_format);
1270 return NULL;
1271 }
1272
1273 /* There are really two magic numbers involved; the magic number
1274 that says this is a NT executable (PEI) and the magic number that
1275 determines the architecture. The former is DOSMAGIC, stored in
1276 the e_magic field. The latter is stored in the f_magic field.
1277 If the NT magic number isn't valid, the architecture magic number
1278 could be mimicked by some other field (specifically, the number
1279 of relocs in section 3). Since this routine can only be called
1280 correctly for a PEI file, check the e_magic number here, and, if
1281 it doesn't match, clobber the f_magic number so that we don't get
1282 a false match. */
1283 if (H_GET_16 (abfd, dos_hdr.e_magic) != DOSMAGIC)
1284 {
1285 bfd_set_error (bfd_error_wrong_format);
1286 return NULL;
1287 }
1288
1289 offset = H_GET_32 (abfd, dos_hdr.e_lfanew);
1290 if (bfd_seek (abfd, offset, SEEK_SET) != 0
1291 || (bfd_bread (&image_hdr, (bfd_size_type) sizeof (image_hdr), abfd)
1292 != sizeof (image_hdr)))
1293 {
1294 if (bfd_get_error () != bfd_error_system_call)
1295 bfd_set_error (bfd_error_wrong_format);
1296 return NULL;
1297 }
1298
1299 if (H_GET_32 (abfd, image_hdr.nt_signature) != 0x4550)
1300 {
1301 bfd_set_error (bfd_error_wrong_format);
1302 return NULL;
1303 }
1304
1305 /* Here is the hack. coff_object_p wants to read filhsz bytes to
1306 pick up the COFF header for PE, see "struct external_PEI_filehdr"
1307 in include/coff/pe.h. We adjust so that that will work. */
1308 if (bfd_seek (abfd, (file_ptr) (offset - sizeof (dos_hdr)), SEEK_SET) != 0)
1309 {
1310 if (bfd_get_error () != bfd_error_system_call)
1311 bfd_set_error (bfd_error_wrong_format);
1312 return NULL;
1313 }
1314
1315 return coff_object_p (abfd);
1316 }
1317
1318 #define coff_object_p pe_bfd_object_p
1319 #endif /* COFF_IMAGE_WITH_PE */
This page took 0.061381 seconds and 3 git commands to generate.