Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / peicode.h
1 /* Support for the generic parts of PE/PEI, for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3 Written by Cygnus Solutions.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /* Most of this hacked by Steve Chamberlain,
24 sac@cygnus.com
25
26 PE/PEI rearrangement (and code added): Donn Terry
27 Softway Systems, Inc. */
28
29 /* Hey look, some documentation [and in a place you expect to find it]!
30
31 The main reference for the pei format is "Microsoft Portable Executable
32 and Common Object File Format Specification 4.1". Get it if you need to
33 do some serious hacking on this code.
34
35 Another reference:
36 "Peering Inside the PE: A Tour of the Win32 Portable Executable
37 File Format", MSJ 1994, Volume 9.
38
39 The *sole* difference between the pe format and the pei format is that the
40 latter has an MSDOS 2.0 .exe header on the front that prints the message
41 "This app must be run under Windows." (or some such).
42 (FIXME: Whether that statement is *really* true or not is unknown.
43 Are there more subtle differences between pe and pei formats?
44 For now assume there aren't. If you find one, then for God sakes
45 document it here!)
46
47 The Microsoft docs use the word "image" instead of "executable" because
48 the former can also refer to a DLL (shared library). Confusion can arise
49 because the `i' in `pei' also refers to "image". The `pe' format can
50 also create images (i.e. executables), it's just that to run on a win32
51 system you need to use the pei format.
52
53 FIXME: Please add more docs here so the next poor fool that has to hack
54 on this code has a chance of getting something accomplished without
55 wasting too much time. */
56
57 #include "libpei.h"
58
59 static bfd_boolean (*pe_saved_coff_bfd_print_private_bfd_data) (bfd *, void *) =
60 #ifndef coff_bfd_print_private_bfd_data
61 NULL;
62 #else
63 coff_bfd_print_private_bfd_data;
64 #undef coff_bfd_print_private_bfd_data
65 #endif
66
67 static bfd_boolean pe_print_private_bfd_data (bfd *, void *);
68 #define coff_bfd_print_private_bfd_data pe_print_private_bfd_data
69
70 static bfd_boolean (*pe_saved_coff_bfd_copy_private_bfd_data) (bfd *, bfd *) =
71 #ifndef coff_bfd_copy_private_bfd_data
72 NULL;
73 #else
74 coff_bfd_copy_private_bfd_data;
75 #undef coff_bfd_copy_private_bfd_data
76 #endif
77
78 static bfd_boolean pe_bfd_copy_private_bfd_data (bfd *, bfd *);
79 #define coff_bfd_copy_private_bfd_data pe_bfd_copy_private_bfd_data
80
81 #define coff_mkobject pe_mkobject
82 #define coff_mkobject_hook pe_mkobject_hook
83
84 #ifdef COFF_IMAGE_WITH_PE
85 /* This structure contains static variables used by the ILF code. */
86 typedef asection * asection_ptr;
87
88 typedef struct
89 {
90 bfd * abfd;
91 bfd_byte * data;
92 struct bfd_in_memory * bim;
93 unsigned short magic;
94
95 arelent * reltab;
96 unsigned int relcount;
97
98 coff_symbol_type * sym_cache;
99 coff_symbol_type * sym_ptr;
100 unsigned int sym_index;
101
102 unsigned int * sym_table;
103 unsigned int * table_ptr;
104
105 combined_entry_type * native_syms;
106 combined_entry_type * native_ptr;
107
108 coff_symbol_type ** sym_ptr_table;
109 coff_symbol_type ** sym_ptr_ptr;
110
111 unsigned int sec_index;
112
113 char * string_table;
114 char * string_ptr;
115 char * end_string_ptr;
116
117 SYMENT * esym_table;
118 SYMENT * esym_ptr;
119
120 struct internal_reloc * int_reltab;
121 }
122 pe_ILF_vars;
123 #endif /* COFF_IMAGE_WITH_PE */
124
125 const bfd_target *coff_real_object_p
126 (bfd *, unsigned, struct internal_filehdr *, struct internal_aouthdr *);
127 \f
128 #ifndef NO_COFF_RELOCS
129 static void
130 coff_swap_reloc_in (bfd * abfd, void * src, void * dst)
131 {
132 RELOC *reloc_src = (RELOC *) src;
133 struct internal_reloc *reloc_dst = (struct internal_reloc *) dst;
134
135 reloc_dst->r_vaddr = H_GET_32 (abfd, reloc_src->r_vaddr);
136 reloc_dst->r_symndx = H_GET_S32 (abfd, reloc_src->r_symndx);
137 reloc_dst->r_type = H_GET_16 (abfd, reloc_src->r_type);
138 #ifdef SWAP_IN_RELOC_OFFSET
139 reloc_dst->r_offset = SWAP_IN_RELOC_OFFSET (abfd, reloc_src->r_offset);
140 #endif
141 }
142
143 static unsigned int
144 coff_swap_reloc_out (bfd * abfd, void * src, void * dst)
145 {
146 struct internal_reloc *reloc_src = (struct internal_reloc *) src;
147 struct external_reloc *reloc_dst = (struct external_reloc *) dst;
148
149 H_PUT_32 (abfd, reloc_src->r_vaddr, reloc_dst->r_vaddr);
150 H_PUT_32 (abfd, reloc_src->r_symndx, reloc_dst->r_symndx);
151 H_PUT_16 (abfd, reloc_src->r_type, reloc_dst->r_type);
152
153 #ifdef SWAP_OUT_RELOC_OFFSET
154 SWAP_OUT_RELOC_OFFSET (abfd, reloc_src->r_offset, reloc_dst->r_offset);
155 #endif
156 #ifdef SWAP_OUT_RELOC_EXTRA
157 SWAP_OUT_RELOC_EXTRA (abfd, reloc_src, reloc_dst);
158 #endif
159 return RELSZ;
160 }
161 #endif /* not NO_COFF_RELOCS */
162
163 #ifdef COFF_IMAGE_WITH_PE
164 #undef FILHDR
165 #define FILHDR struct external_PEI_IMAGE_hdr
166 #endif
167
168 static void
169 coff_swap_filehdr_in (bfd * abfd, void * src, void * dst)
170 {
171 FILHDR *filehdr_src = (FILHDR *) src;
172 struct internal_filehdr *filehdr_dst = (struct internal_filehdr *) dst;
173
174 filehdr_dst->f_magic = H_GET_16 (abfd, filehdr_src->f_magic);
175 filehdr_dst->f_nscns = H_GET_16 (abfd, filehdr_src->f_nscns);
176 filehdr_dst->f_timdat = H_GET_32 (abfd, filehdr_src->f_timdat);
177 filehdr_dst->f_nsyms = H_GET_32 (abfd, filehdr_src->f_nsyms);
178 filehdr_dst->f_flags = H_GET_16 (abfd, filehdr_src->f_flags);
179 filehdr_dst->f_symptr = H_GET_32 (abfd, filehdr_src->f_symptr);
180
181 /* Other people's tools sometimes generate headers with an nsyms but
182 a zero symptr. */
183 if (filehdr_dst->f_nsyms != 0 && filehdr_dst->f_symptr == 0)
184 {
185 filehdr_dst->f_nsyms = 0;
186 filehdr_dst->f_flags |= F_LSYMS;
187 }
188
189 filehdr_dst->f_opthdr = H_GET_16 (abfd, filehdr_src-> f_opthdr);
190 }
191
192 #ifdef COFF_IMAGE_WITH_PE
193 # define coff_swap_filehdr_out _bfd_XXi_only_swap_filehdr_out
194 #elif defined COFF_WITH_pex64
195 # define coff_swap_filehdr_out _bfd_pex64_only_swap_filehdr_out
196 #elif defined COFF_WITH_pep
197 # define coff_swap_filehdr_out _bfd_pep_only_swap_filehdr_out
198 #else
199 # define coff_swap_filehdr_out _bfd_pe_only_swap_filehdr_out
200 #endif
201
202 static void
203 coff_swap_scnhdr_in (bfd * abfd, void * ext, void * in)
204 {
205 SCNHDR *scnhdr_ext = (SCNHDR *) ext;
206 struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in;
207
208 memcpy (scnhdr_int->s_name, scnhdr_ext->s_name, sizeof (scnhdr_int->s_name));
209
210 scnhdr_int->s_vaddr = GET_SCNHDR_VADDR (abfd, scnhdr_ext->s_vaddr);
211 scnhdr_int->s_paddr = GET_SCNHDR_PADDR (abfd, scnhdr_ext->s_paddr);
212 scnhdr_int->s_size = GET_SCNHDR_SIZE (abfd, scnhdr_ext->s_size);
213 scnhdr_int->s_scnptr = GET_SCNHDR_SCNPTR (abfd, scnhdr_ext->s_scnptr);
214 scnhdr_int->s_relptr = GET_SCNHDR_RELPTR (abfd, scnhdr_ext->s_relptr);
215 scnhdr_int->s_lnnoptr = GET_SCNHDR_LNNOPTR (abfd, scnhdr_ext->s_lnnoptr);
216 scnhdr_int->s_flags = H_GET_32 (abfd, scnhdr_ext->s_flags);
217
218 /* MS handles overflow of line numbers by carrying into the reloc
219 field (it appears). Since it's supposed to be zero for PE
220 *IMAGE* format, that's safe. This is still a bit iffy. */
221 #ifdef COFF_IMAGE_WITH_PE
222 scnhdr_int->s_nlnno = (H_GET_16 (abfd, scnhdr_ext->s_nlnno)
223 + (H_GET_16 (abfd, scnhdr_ext->s_nreloc) << 16));
224 scnhdr_int->s_nreloc = 0;
225 #else
226 scnhdr_int->s_nreloc = H_GET_16 (abfd, scnhdr_ext->s_nreloc);
227 scnhdr_int->s_nlnno = H_GET_16 (abfd, scnhdr_ext->s_nlnno);
228 #endif
229
230 if (scnhdr_int->s_vaddr != 0)
231 {
232 scnhdr_int->s_vaddr += pe_data (abfd)->pe_opthdr.ImageBase;
233 /* Do not cut upper 32-bits for 64-bit vma. */
234 #ifndef COFF_WITH_pex64
235 scnhdr_int->s_vaddr &= 0xffffffff;
236 #endif
237 }
238
239 #ifndef COFF_NO_HACK_SCNHDR_SIZE
240 /* If this section holds uninitialized data and is from an object file
241 or from an executable image that has not initialized the field,
242 or if the image is an executable file and the physical size is padded,
243 use the virtual size (stored in s_paddr) instead. */
244 if (scnhdr_int->s_paddr > 0
245 && (((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0
246 && (! bfd_pei_p (abfd) || scnhdr_int->s_size == 0))
247 || (bfd_pei_p (abfd) && (scnhdr_int->s_size > scnhdr_int->s_paddr))))
248 /* This code used to set scnhdr_int->s_paddr to 0. However,
249 coff_set_alignment_hook stores s_paddr in virt_size, which
250 only works if it correctly holds the virtual size of the
251 section. */
252 scnhdr_int->s_size = scnhdr_int->s_paddr;
253 #endif
254 }
255
256 static bfd_boolean
257 pe_mkobject (bfd * abfd)
258 {
259 pe_data_type *pe;
260 bfd_size_type amt = sizeof (pe_data_type);
261
262 abfd->tdata.pe_obj_data = (struct pe_tdata *) bfd_zalloc (abfd, amt);
263
264 if (abfd->tdata.pe_obj_data == 0)
265 return FALSE;
266
267 pe = pe_data (abfd);
268
269 pe->coff.pe = 1;
270
271 /* in_reloc_p is architecture dependent. */
272 pe->in_reloc_p = in_reloc_p;
273
274 memset (& pe->pe_opthdr, 0, sizeof pe->pe_opthdr);
275 return TRUE;
276 }
277
278 /* Create the COFF backend specific information. */
279
280 static void *
281 pe_mkobject_hook (bfd * abfd,
282 void * filehdr,
283 void * aouthdr ATTRIBUTE_UNUSED)
284 {
285 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
286 pe_data_type *pe;
287
288 if (! pe_mkobject (abfd))
289 return NULL;
290
291 pe = pe_data (abfd);
292 pe->coff.sym_filepos = internal_f->f_symptr;
293 /* These members communicate important constants about the symbol
294 table to GDB's symbol-reading code. These `constants'
295 unfortunately vary among coff implementations... */
296 pe->coff.local_n_btmask = N_BTMASK;
297 pe->coff.local_n_btshft = N_BTSHFT;
298 pe->coff.local_n_tmask = N_TMASK;
299 pe->coff.local_n_tshift = N_TSHIFT;
300 pe->coff.local_symesz = SYMESZ;
301 pe->coff.local_auxesz = AUXESZ;
302 pe->coff.local_linesz = LINESZ;
303
304 pe->coff.timestamp = internal_f->f_timdat;
305
306 obj_raw_syment_count (abfd) =
307 obj_conv_table_size (abfd) =
308 internal_f->f_nsyms;
309
310 pe->real_flags = internal_f->f_flags;
311
312 if ((internal_f->f_flags & F_DLL) != 0)
313 pe->dll = 1;
314
315 if ((internal_f->f_flags & IMAGE_FILE_DEBUG_STRIPPED) == 0)
316 abfd->flags |= HAS_DEBUG;
317
318 #ifdef COFF_IMAGE_WITH_PE
319 if (aouthdr)
320 pe->pe_opthdr = ((struct internal_aouthdr *) aouthdr)->pe;
321 #endif
322
323 #ifdef ARM
324 if (! _bfd_coff_arm_set_private_flags (abfd, internal_f->f_flags))
325 coff_data (abfd) ->flags = 0;
326 #endif
327
328 return (void *) pe;
329 }
330
331 static bfd_boolean
332 pe_print_private_bfd_data (bfd *abfd, void * vfile)
333 {
334 FILE *file = (FILE *) vfile;
335
336 if (!_bfd_XX_print_private_bfd_data_common (abfd, vfile))
337 return FALSE;
338
339 if (pe_saved_coff_bfd_print_private_bfd_data == NULL)
340 return TRUE;
341
342 fputc ('\n', file);
343
344 return pe_saved_coff_bfd_print_private_bfd_data (abfd, vfile);
345 }
346
347 /* Copy any private info we understand from the input bfd
348 to the output bfd. */
349
350 static bfd_boolean
351 pe_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
352 {
353 /* PR binutils/716: Copy the large address aware flag.
354 XXX: Should we be copying other flags or other fields in the pe_data()
355 structure ? */
356 if (pe_data (obfd) != NULL
357 && pe_data (ibfd) != NULL
358 && pe_data (ibfd)->real_flags & IMAGE_FILE_LARGE_ADDRESS_AWARE)
359 pe_data (obfd)->real_flags |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
360
361 if (!_bfd_XX_bfd_copy_private_bfd_data_common (ibfd, obfd))
362 return FALSE;
363
364 if (pe_saved_coff_bfd_copy_private_bfd_data)
365 return pe_saved_coff_bfd_copy_private_bfd_data (ibfd, obfd);
366
367 return TRUE;
368 }
369
370 #define coff_bfd_copy_private_section_data \
371 _bfd_XX_bfd_copy_private_section_data
372
373 #define coff_get_symbol_info _bfd_XX_get_symbol_info
374
375 #ifdef COFF_IMAGE_WITH_PE
376 \f
377 /* Code to handle Microsoft's Image Library Format.
378 Also known as LINK6 format.
379 Documentation about this format can be found at:
380
381 http://msdn.microsoft.com/library/specs/pecoff_section8.htm */
382
383 /* The following constants specify the sizes of the various data
384 structures that we have to create in order to build a bfd describing
385 an ILF object file. The final "+ 1" in the definitions of SIZEOF_IDATA6
386 and SIZEOF_IDATA7 below is to allow for the possibility that we might
387 need a padding byte in order to ensure 16 bit alignment for the section's
388 contents.
389
390 The value for SIZEOF_ILF_STRINGS is computed as follows:
391
392 There will be NUM_ILF_SECTIONS section symbols. Allow 9 characters
393 per symbol for their names (longest section name is .idata$x).
394
395 There will be two symbols for the imported value, one the symbol name
396 and one with _imp__ prefixed. Allowing for the terminating nul's this
397 is strlen (symbol_name) * 2 + 8 + 21 + strlen (source_dll).
398
399 The strings in the string table must start STRING__SIZE_SIZE bytes into
400 the table in order to for the string lookup code in coffgen/coffcode to
401 work. */
402 #define NUM_ILF_RELOCS 8
403 #define NUM_ILF_SECTIONS 6
404 #define NUM_ILF_SYMS (2 + NUM_ILF_SECTIONS)
405
406 #define SIZEOF_ILF_SYMS (NUM_ILF_SYMS * sizeof (* vars.sym_cache))
407 #define SIZEOF_ILF_SYM_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_table))
408 #define SIZEOF_ILF_NATIVE_SYMS (NUM_ILF_SYMS * sizeof (* vars.native_syms))
409 #define SIZEOF_ILF_SYM_PTR_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_ptr_table))
410 #define SIZEOF_ILF_EXT_SYMS (NUM_ILF_SYMS * sizeof (* vars.esym_table))
411 #define SIZEOF_ILF_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.reltab))
412 #define SIZEOF_ILF_INT_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.int_reltab))
413 #define SIZEOF_ILF_STRINGS (strlen (symbol_name) * 2 + 8 \
414 + 21 + strlen (source_dll) \
415 + NUM_ILF_SECTIONS * 9 \
416 + STRING_SIZE_SIZE)
417 #define SIZEOF_IDATA2 (5 * 4)
418
419 /* For PEx64 idata4 & 5 have thumb size of 8 bytes. */
420 #ifdef COFF_WITH_pex64
421 #define SIZEOF_IDATA4 (2 * 4)
422 #define SIZEOF_IDATA5 (2 * 4)
423 #else
424 #define SIZEOF_IDATA4 (1 * 4)
425 #define SIZEOF_IDATA5 (1 * 4)
426 #endif
427
428 #define SIZEOF_IDATA6 (2 + strlen (symbol_name) + 1 + 1)
429 #define SIZEOF_IDATA7 (strlen (source_dll) + 1 + 1)
430 #define SIZEOF_ILF_SECTIONS (NUM_ILF_SECTIONS * sizeof (struct coff_section_tdata))
431
432 #define ILF_DATA_SIZE \
433 + SIZEOF_ILF_SYMS \
434 + SIZEOF_ILF_SYM_TABLE \
435 + SIZEOF_ILF_NATIVE_SYMS \
436 + SIZEOF_ILF_SYM_PTR_TABLE \
437 + SIZEOF_ILF_EXT_SYMS \
438 + SIZEOF_ILF_RELOCS \
439 + SIZEOF_ILF_INT_RELOCS \
440 + SIZEOF_ILF_STRINGS \
441 + SIZEOF_IDATA2 \
442 + SIZEOF_IDATA4 \
443 + SIZEOF_IDATA5 \
444 + SIZEOF_IDATA6 \
445 + SIZEOF_IDATA7 \
446 + SIZEOF_ILF_SECTIONS \
447 + MAX_TEXT_SECTION_SIZE
448
449 /* Create an empty relocation against the given symbol. */
450
451 static void
452 pe_ILF_make_a_symbol_reloc (pe_ILF_vars * vars,
453 bfd_vma address,
454 bfd_reloc_code_real_type reloc,
455 struct bfd_symbol ** sym,
456 unsigned int sym_index)
457 {
458 arelent * entry;
459 struct internal_reloc * internal;
460
461 entry = vars->reltab + vars->relcount;
462 internal = vars->int_reltab + vars->relcount;
463
464 entry->address = address;
465 entry->addend = 0;
466 entry->howto = bfd_reloc_type_lookup (vars->abfd, reloc);
467 entry->sym_ptr_ptr = sym;
468
469 internal->r_vaddr = address;
470 internal->r_symndx = sym_index;
471 internal->r_type = entry->howto->type;
472
473 vars->relcount ++;
474
475 BFD_ASSERT (vars->relcount <= NUM_ILF_RELOCS);
476 }
477
478 /* Create an empty relocation against the given section. */
479
480 static void
481 pe_ILF_make_a_reloc (pe_ILF_vars * vars,
482 bfd_vma address,
483 bfd_reloc_code_real_type reloc,
484 asection_ptr sec)
485 {
486 pe_ILF_make_a_symbol_reloc (vars, address, reloc, sec->symbol_ptr_ptr,
487 coff_section_data (vars->abfd, sec)->i);
488 }
489
490 /* Move the queued relocs into the given section. */
491
492 static void
493 pe_ILF_save_relocs (pe_ILF_vars * vars,
494 asection_ptr sec)
495 {
496 /* Make sure that there is somewhere to store the internal relocs. */
497 if (coff_section_data (vars->abfd, sec) == NULL)
498 /* We should probably return an error indication here. */
499 abort ();
500
501 coff_section_data (vars->abfd, sec)->relocs = vars->int_reltab;
502 coff_section_data (vars->abfd, sec)->keep_relocs = TRUE;
503
504 sec->relocation = vars->reltab;
505 sec->reloc_count = vars->relcount;
506 sec->flags |= SEC_RELOC;
507
508 vars->reltab += vars->relcount;
509 vars->int_reltab += vars->relcount;
510 vars->relcount = 0;
511
512 BFD_ASSERT ((bfd_byte *) vars->int_reltab < (bfd_byte *) vars->string_table);
513 }
514
515 /* Create a global symbol and add it to the relevant tables. */
516
517 static void
518 pe_ILF_make_a_symbol (pe_ILF_vars * vars,
519 const char * prefix,
520 const char * symbol_name,
521 asection_ptr section,
522 flagword extra_flags)
523 {
524 coff_symbol_type * sym;
525 combined_entry_type * ent;
526 SYMENT * esym;
527 unsigned short sclass;
528
529 if (extra_flags & BSF_LOCAL)
530 sclass = C_STAT;
531 else
532 sclass = C_EXT;
533
534 #ifdef THUMBPEMAGIC
535 if (vars->magic == THUMBPEMAGIC)
536 {
537 if (extra_flags & BSF_FUNCTION)
538 sclass = C_THUMBEXTFUNC;
539 else if (extra_flags & BSF_LOCAL)
540 sclass = C_THUMBSTAT;
541 else
542 sclass = C_THUMBEXT;
543 }
544 #endif
545
546 BFD_ASSERT (vars->sym_index < NUM_ILF_SYMS);
547
548 sym = vars->sym_ptr;
549 ent = vars->native_ptr;
550 esym = vars->esym_ptr;
551
552 /* Copy the symbol's name into the string table. */
553 sprintf (vars->string_ptr, "%s%s", prefix, symbol_name);
554
555 if (section == NULL)
556 section = bfd_und_section_ptr;
557
558 /* Initialise the external symbol. */
559 H_PUT_32 (vars->abfd, vars->string_ptr - vars->string_table,
560 esym->e.e.e_offset);
561 H_PUT_16 (vars->abfd, section->target_index, esym->e_scnum);
562 esym->e_sclass[0] = sclass;
563
564 /* The following initialisations are unnecessary - the memory is
565 zero initialised. They are just kept here as reminders. */
566
567 /* Initialise the internal symbol structure. */
568 ent->u.syment.n_sclass = sclass;
569 ent->u.syment.n_scnum = section->target_index;
570 ent->u.syment._n._n_n._n_offset = (bfd_hostptr_t) sym;
571 ent->is_sym = TRUE;
572
573 sym->symbol.the_bfd = vars->abfd;
574 sym->symbol.name = vars->string_ptr;
575 sym->symbol.flags = BSF_EXPORT | BSF_GLOBAL | extra_flags;
576 sym->symbol.section = section;
577 sym->native = ent;
578
579 * vars->table_ptr = vars->sym_index;
580 * vars->sym_ptr_ptr = sym;
581
582 /* Adjust pointers for the next symbol. */
583 vars->sym_index ++;
584 vars->sym_ptr ++;
585 vars->sym_ptr_ptr ++;
586 vars->table_ptr ++;
587 vars->native_ptr ++;
588 vars->esym_ptr ++;
589 vars->string_ptr += strlen (symbol_name) + strlen (prefix) + 1;
590
591 BFD_ASSERT (vars->string_ptr < vars->end_string_ptr);
592 }
593
594 /* Create a section. */
595
596 static asection_ptr
597 pe_ILF_make_a_section (pe_ILF_vars * vars,
598 const char * name,
599 unsigned int size,
600 flagword extra_flags)
601 {
602 asection_ptr sec;
603 flagword flags;
604
605 sec = bfd_make_section_old_way (vars->abfd, name);
606 if (sec == NULL)
607 return NULL;
608
609 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_KEEP | SEC_IN_MEMORY;
610
611 bfd_set_section_flags (vars->abfd, sec, flags | extra_flags);
612
613 (void) bfd_set_section_alignment (vars->abfd, sec, 2);
614
615 /* Check that we will not run out of space. */
616 BFD_ASSERT (vars->data + size < vars->bim->buffer + vars->bim->size);
617
618 /* Set the section size and contents. The actual
619 contents are filled in by our parent. */
620 bfd_set_section_size (vars->abfd, sec, (bfd_size_type) size);
621 sec->contents = vars->data;
622 sec->target_index = vars->sec_index ++;
623
624 /* Advance data pointer in the vars structure. */
625 vars->data += size;
626
627 /* Skip the padding byte if it was not needed.
628 The logic here is that if the string length is odd,
629 then the entire string length, including the null byte,
630 is even and so the extra, padding byte, is not needed. */
631 if (size & 1)
632 vars->data --;
633
634 # if (GCC_VERSION >= 3000)
635 /* PR 18758: See note in pe_ILF_buid_a_bfd. We must make sure that we
636 preserve host alignment requirements. We test 'size' rather than
637 vars.data as we cannot perform binary arithmetic on pointers. We assume
638 that vars.data was sufficiently aligned upon entry to this function.
639 The BFD_ASSERTs in this functions will warn us if we run out of room,
640 but we should already have enough padding built in to ILF_DATA_SIZE. */
641 {
642 unsigned int alignment = __alignof__ (struct coff_section_tdata);
643
644 if (size & (alignment - 1))
645 vars->data += alignment - (size & (alignment - 1));
646 }
647 #endif
648 /* Create a coff_section_tdata structure for our use. */
649 sec->used_by_bfd = (struct coff_section_tdata *) vars->data;
650 vars->data += sizeof (struct coff_section_tdata);
651
652 BFD_ASSERT (vars->data <= vars->bim->buffer + vars->bim->size);
653
654 /* Create a symbol to refer to this section. */
655 pe_ILF_make_a_symbol (vars, "", name, sec, BSF_LOCAL);
656
657 /* Cache the index to the symbol in the coff_section_data structure. */
658 coff_section_data (vars->abfd, sec)->i = vars->sym_index - 1;
659
660 return sec;
661 }
662
663 /* This structure contains the code that goes into the .text section
664 in order to perform a jump into the DLL lookup table. The entries
665 in the table are index by the magic number used to represent the
666 machine type in the PE file. The contents of the data[] arrays in
667 these entries are stolen from the jtab[] arrays in ld/pe-dll.c.
668 The SIZE field says how many bytes in the DATA array are actually
669 used. The OFFSET field says where in the data array the address
670 of the .idata$5 section should be placed. */
671 #define MAX_TEXT_SECTION_SIZE 32
672
673 typedef struct
674 {
675 unsigned short magic;
676 unsigned char data[MAX_TEXT_SECTION_SIZE];
677 unsigned int size;
678 unsigned int offset;
679 }
680 jump_table;
681
682 static jump_table jtab[] =
683 {
684 #ifdef I386MAGIC
685 { I386MAGIC,
686 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
687 8, 2
688 },
689 #endif
690
691 #ifdef AMD64MAGIC
692 { AMD64MAGIC,
693 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
694 8, 2
695 },
696 #endif
697
698 #ifdef MC68MAGIC
699 { MC68MAGIC,
700 { /* XXX fill me in */ },
701 0, 0
702 },
703 #endif
704
705 #ifdef MIPS_ARCH_MAGIC_WINCE
706 { MIPS_ARCH_MAGIC_WINCE,
707 { 0x00, 0x00, 0x08, 0x3c, 0x00, 0x00, 0x08, 0x8d,
708 0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00 },
709 16, 0
710 },
711 #endif
712
713 #ifdef SH_ARCH_MAGIC_WINCE
714 { SH_ARCH_MAGIC_WINCE,
715 { 0x01, 0xd0, 0x02, 0x60, 0x2b, 0x40,
716 0x09, 0x00, 0x00, 0x00, 0x00, 0x00 },
717 12, 8
718 },
719 #endif
720
721 #ifdef ARMPEMAGIC
722 { ARMPEMAGIC,
723 { 0x00, 0xc0, 0x9f, 0xe5, 0x00, 0xf0,
724 0x9c, 0xe5, 0x00, 0x00, 0x00, 0x00},
725 12, 8
726 },
727 #endif
728
729 #ifdef THUMBPEMAGIC
730 { THUMBPEMAGIC,
731 { 0x40, 0xb4, 0x02, 0x4e, 0x36, 0x68, 0xb4, 0x46,
732 0x40, 0xbc, 0x60, 0x47, 0x00, 0x00, 0x00, 0x00 },
733 16, 12
734 },
735 #endif
736 { 0, { 0 }, 0, 0 }
737 };
738
739 #ifndef NUM_ENTRIES
740 #define NUM_ENTRIES(a) (sizeof (a) / sizeof (a)[0])
741 #endif
742
743 /* Build a full BFD from the information supplied in a ILF object. */
744
745 static bfd_boolean
746 pe_ILF_build_a_bfd (bfd * abfd,
747 unsigned int magic,
748 char * symbol_name,
749 char * source_dll,
750 unsigned int ordinal,
751 unsigned int types)
752 {
753 bfd_byte * ptr;
754 pe_ILF_vars vars;
755 struct internal_filehdr internal_f;
756 unsigned int import_type;
757 unsigned int import_name_type;
758 asection_ptr id4, id5, id6 = NULL, text = NULL;
759 coff_symbol_type ** imp_sym;
760 unsigned int imp_index;
761
762 /* Decode and verify the types field of the ILF structure. */
763 import_type = types & 0x3;
764 import_name_type = (types & 0x1c) >> 2;
765
766 switch (import_type)
767 {
768 case IMPORT_CODE:
769 case IMPORT_DATA:
770 break;
771
772 case IMPORT_CONST:
773 /* XXX code yet to be written. */
774 /* xgettext:c-format */
775 _bfd_error_handler (_("%B: Unhandled import type; %x"),
776 abfd, import_type);
777 return FALSE;
778
779 default:
780 /* xgettext:c-format */
781 _bfd_error_handler (_("%B: Unrecognised import type; %x"),
782 abfd, import_type);
783 return FALSE;
784 }
785
786 switch (import_name_type)
787 {
788 case IMPORT_ORDINAL:
789 case IMPORT_NAME:
790 case IMPORT_NAME_NOPREFIX:
791 case IMPORT_NAME_UNDECORATE:
792 break;
793
794 default:
795 /* xgettext:c-format */
796 _bfd_error_handler (_("%B: Unrecognised import name type; %x"),
797 abfd, import_name_type);
798 return FALSE;
799 }
800
801 /* Initialise local variables.
802
803 Note these are kept in a structure rather than being
804 declared as statics since bfd frowns on global variables.
805
806 We are going to construct the contents of the BFD in memory,
807 so allocate all the space that we will need right now. */
808 vars.bim
809 = (struct bfd_in_memory *) bfd_malloc ((bfd_size_type) sizeof (*vars.bim));
810 if (vars.bim == NULL)
811 return FALSE;
812
813 ptr = (bfd_byte *) bfd_zmalloc ((bfd_size_type) ILF_DATA_SIZE);
814 vars.bim->buffer = ptr;
815 vars.bim->size = ILF_DATA_SIZE;
816 if (ptr == NULL)
817 goto error_return;
818
819 /* Initialise the pointers to regions of the memory and the
820 other contents of the pe_ILF_vars structure as well. */
821 vars.sym_cache = (coff_symbol_type *) ptr;
822 vars.sym_ptr = (coff_symbol_type *) ptr;
823 vars.sym_index = 0;
824 ptr += SIZEOF_ILF_SYMS;
825
826 vars.sym_table = (unsigned int *) ptr;
827 vars.table_ptr = (unsigned int *) ptr;
828 ptr += SIZEOF_ILF_SYM_TABLE;
829
830 vars.native_syms = (combined_entry_type *) ptr;
831 vars.native_ptr = (combined_entry_type *) ptr;
832 ptr += SIZEOF_ILF_NATIVE_SYMS;
833
834 vars.sym_ptr_table = (coff_symbol_type **) ptr;
835 vars.sym_ptr_ptr = (coff_symbol_type **) ptr;
836 ptr += SIZEOF_ILF_SYM_PTR_TABLE;
837
838 vars.esym_table = (SYMENT *) ptr;
839 vars.esym_ptr = (SYMENT *) ptr;
840 ptr += SIZEOF_ILF_EXT_SYMS;
841
842 vars.reltab = (arelent *) ptr;
843 vars.relcount = 0;
844 ptr += SIZEOF_ILF_RELOCS;
845
846 vars.int_reltab = (struct internal_reloc *) ptr;
847 ptr += SIZEOF_ILF_INT_RELOCS;
848
849 vars.string_table = (char *) ptr;
850 vars.string_ptr = (char *) ptr + STRING_SIZE_SIZE;
851 ptr += SIZEOF_ILF_STRINGS;
852 vars.end_string_ptr = (char *) ptr;
853
854 /* The remaining space in bim->buffer is used
855 by the pe_ILF_make_a_section() function. */
856 # if (GCC_VERSION >= 3000)
857 /* PR 18758: Make sure that the data area is sufficiently aligned for
858 pointers on the host. __alignof__ is a gcc extension, hence the test
859 above. For other compilers we will have to assume that the alignment is
860 unimportant, or else extra code can be added here and in
861 pe_ILF_make_a_section.
862
863 Note - we cannot test 'ptr' directly as it is illegal to perform binary
864 arithmetic on pointers, but we know that the strings section is the only
865 one that might end on an unaligned boundary. */
866 {
867 unsigned int alignment = __alignof__ (char *);
868
869 if (SIZEOF_ILF_STRINGS & (alignment - 1))
870 ptr += alignment - (SIZEOF_ILF_STRINGS & (alignment - 1));
871 }
872 #endif
873
874 vars.data = ptr;
875 vars.abfd = abfd;
876 vars.sec_index = 0;
877 vars.magic = magic;
878
879 /* Create the initial .idata$<n> sections:
880 [.idata$2: Import Directory Table -- not needed]
881 .idata$4: Import Lookup Table
882 .idata$5: Import Address Table
883
884 Note we do not create a .idata$3 section as this is
885 created for us by the linker script. */
886 id4 = pe_ILF_make_a_section (& vars, ".idata$4", SIZEOF_IDATA4, 0);
887 id5 = pe_ILF_make_a_section (& vars, ".idata$5", SIZEOF_IDATA5, 0);
888 if (id4 == NULL || id5 == NULL)
889 goto error_return;
890
891 /* Fill in the contents of these sections. */
892 if (import_name_type == IMPORT_ORDINAL)
893 {
894 if (ordinal == 0)
895 /* See PR 20907 for a reproducer. */
896 goto error_return;
897
898 #ifdef COFF_WITH_pex64
899 ((unsigned int *) id4->contents)[0] = ordinal;
900 ((unsigned int *) id4->contents)[1] = 0x80000000;
901 ((unsigned int *) id5->contents)[0] = ordinal;
902 ((unsigned int *) id5->contents)[1] = 0x80000000;
903 #else
904 * (unsigned int *) id4->contents = ordinal | 0x80000000;
905 * (unsigned int *) id5->contents = ordinal | 0x80000000;
906 #endif
907 }
908 else
909 {
910 char * symbol;
911 unsigned int len;
912
913 /* Create .idata$6 - the Hint Name Table. */
914 id6 = pe_ILF_make_a_section (& vars, ".idata$6", SIZEOF_IDATA6, 0);
915 if (id6 == NULL)
916 goto error_return;
917
918 /* If necessary, trim the import symbol name. */
919 symbol = symbol_name;
920
921 /* As used by MS compiler, '_', '@', and '?' are alternative
922 forms of USER_LABEL_PREFIX, with '?' for c++ mangled names,
923 '@' used for fastcall (in C), '_' everywhere else. Only one
924 of these is used for a symbol. We strip this leading char for
925 IMPORT_NAME_NOPREFIX and IMPORT_NAME_UNDECORATE as per the
926 PE COFF 6.0 spec (section 8.3, Import Name Type). */
927
928 if (import_name_type != IMPORT_NAME)
929 {
930 char c = symbol[0];
931
932 /* Check that we don't remove for targets with empty
933 USER_LABEL_PREFIX the leading underscore. */
934 if ((c == '_' && abfd->xvec->symbol_leading_char != 0)
935 || c == '@' || c == '?')
936 symbol++;
937 }
938
939 len = strlen (symbol);
940 if (import_name_type == IMPORT_NAME_UNDECORATE)
941 {
942 /* Truncate at the first '@'. */
943 char *at = strchr (symbol, '@');
944
945 if (at != NULL)
946 len = at - symbol;
947 }
948
949 id6->contents[0] = ordinal & 0xff;
950 id6->contents[1] = ordinal >> 8;
951
952 memcpy ((char *) id6->contents + 2, symbol, len);
953 id6->contents[len + 2] = '\0';
954 }
955
956 if (import_name_type != IMPORT_ORDINAL)
957 {
958 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
959 pe_ILF_save_relocs (&vars, id4);
960
961 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
962 pe_ILF_save_relocs (&vars, id5);
963 }
964
965 /* Create an import symbol. */
966 pe_ILF_make_a_symbol (& vars, "__imp_", symbol_name, id5, 0);
967 imp_sym = vars.sym_ptr_ptr - 1;
968 imp_index = vars.sym_index - 1;
969
970 /* Create extra sections depending upon the type of import we are dealing with. */
971 switch (import_type)
972 {
973 int i;
974
975 case IMPORT_CODE:
976 /* CODE functions are special, in that they get a trampoline that
977 jumps to the main import symbol. Create a .text section to hold it.
978 First we need to look up its contents in the jump table. */
979 for (i = NUM_ENTRIES (jtab); i--;)
980 {
981 if (jtab[i].size == 0)
982 continue;
983 if (jtab[i].magic == magic)
984 break;
985 }
986 /* If we did not find a matching entry something is wrong. */
987 if (i < 0)
988 abort ();
989
990 /* Create the .text section. */
991 text = pe_ILF_make_a_section (& vars, ".text", jtab[i].size, SEC_CODE);
992 if (text == NULL)
993 goto error_return;
994
995 /* Copy in the jump code. */
996 memcpy (text->contents, jtab[i].data, jtab[i].size);
997
998 /* Create a reloc for the data in the text section. */
999 #ifdef MIPS_ARCH_MAGIC_WINCE
1000 if (magic == MIPS_ARCH_MAGIC_WINCE)
1001 {
1002 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 0, BFD_RELOC_HI16_S,
1003 (struct bfd_symbol **) imp_sym,
1004 imp_index);
1005 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_LO16, text);
1006 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 4, BFD_RELOC_LO16,
1007 (struct bfd_symbol **) imp_sym,
1008 imp_index);
1009 }
1010 else
1011 #endif
1012 #ifdef AMD64MAGIC
1013 if (magic == AMD64MAGIC)
1014 {
1015 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
1016 BFD_RELOC_32_PCREL, (asymbol **) imp_sym,
1017 imp_index);
1018 }
1019 else
1020 #endif
1021 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
1022 BFD_RELOC_32, (asymbol **) imp_sym,
1023 imp_index);
1024
1025 pe_ILF_save_relocs (& vars, text);
1026 break;
1027
1028 case IMPORT_DATA:
1029 break;
1030
1031 default:
1032 /* XXX code not yet written. */
1033 abort ();
1034 }
1035
1036 /* Initialise the bfd. */
1037 memset (& internal_f, 0, sizeof (internal_f));
1038
1039 internal_f.f_magic = magic;
1040 internal_f.f_symptr = 0;
1041 internal_f.f_nsyms = 0;
1042 internal_f.f_flags = F_AR32WR | F_LNNO; /* XXX is this correct ? */
1043
1044 if ( ! bfd_set_start_address (abfd, (bfd_vma) 0)
1045 || ! bfd_coff_set_arch_mach_hook (abfd, & internal_f))
1046 goto error_return;
1047
1048 if (bfd_coff_mkobject_hook (abfd, (void *) & internal_f, NULL) == NULL)
1049 goto error_return;
1050
1051 coff_data (abfd)->pe = 1;
1052 #ifdef THUMBPEMAGIC
1053 if (vars.magic == THUMBPEMAGIC)
1054 /* Stop some linker warnings about thumb code not supporting interworking. */
1055 coff_data (abfd)->flags |= F_INTERWORK | F_INTERWORK_SET;
1056 #endif
1057
1058 /* Switch from file contents to memory contents. */
1059 bfd_cache_close (abfd);
1060
1061 abfd->iostream = (void *) vars.bim;
1062 abfd->flags |= BFD_IN_MEMORY /* | HAS_LOCALS */;
1063 abfd->iovec = &_bfd_memory_iovec;
1064 abfd->where = 0;
1065 abfd->origin = 0;
1066 obj_sym_filepos (abfd) = 0;
1067
1068 /* Now create a symbol describing the imported value. */
1069 switch (import_type)
1070 {
1071 case IMPORT_CODE:
1072 pe_ILF_make_a_symbol (& vars, "", symbol_name, text,
1073 BSF_NOT_AT_END | BSF_FUNCTION);
1074
1075 break;
1076
1077 case IMPORT_DATA:
1078 /* Nothing to do here. */
1079 break;
1080
1081 default:
1082 /* XXX code not yet written. */
1083 abort ();
1084 }
1085
1086 /* Create an import symbol for the DLL, without the .dll suffix. */
1087 ptr = (bfd_byte *) strrchr (source_dll, '.');
1088 if (ptr)
1089 * ptr = 0;
1090 pe_ILF_make_a_symbol (& vars, "__IMPORT_DESCRIPTOR_", source_dll, NULL, 0);
1091 if (ptr)
1092 * ptr = '.';
1093
1094 /* Point the bfd at the symbol table. */
1095 obj_symbols (abfd) = vars.sym_cache;
1096 bfd_get_symcount (abfd) = vars.sym_index;
1097
1098 obj_raw_syments (abfd) = vars.native_syms;
1099 obj_raw_syment_count (abfd) = vars.sym_index;
1100
1101 obj_coff_external_syms (abfd) = (void *) vars.esym_table;
1102 obj_coff_keep_syms (abfd) = TRUE;
1103
1104 obj_convert (abfd) = vars.sym_table;
1105 obj_conv_table_size (abfd) = vars.sym_index;
1106
1107 obj_coff_strings (abfd) = vars.string_table;
1108 obj_coff_keep_strings (abfd) = TRUE;
1109
1110 abfd->flags |= HAS_SYMS;
1111
1112 return TRUE;
1113
1114 error_return:
1115 if (vars.bim->buffer != NULL)
1116 free (vars.bim->buffer);
1117 free (vars.bim);
1118 return FALSE;
1119 }
1120
1121 /* We have detected a Image Library Format archive element.
1122 Decode the element and return the appropriate target. */
1123
1124 static const bfd_target *
1125 pe_ILF_object_p (bfd * abfd)
1126 {
1127 bfd_byte buffer[14];
1128 bfd_byte * ptr;
1129 char * symbol_name;
1130 char * source_dll;
1131 unsigned int machine;
1132 bfd_size_type size;
1133 unsigned int ordinal;
1134 unsigned int types;
1135 unsigned int magic;
1136
1137 /* Upon entry the first six bytes of the ILF header have
1138 already been read. Now read the rest of the header. */
1139 if (bfd_bread (buffer, (bfd_size_type) 14, abfd) != 14)
1140 return NULL;
1141
1142 ptr = buffer;
1143
1144 machine = H_GET_16 (abfd, ptr);
1145 ptr += 2;
1146
1147 /* Check that the machine type is recognised. */
1148 magic = 0;
1149
1150 switch (machine)
1151 {
1152 case IMAGE_FILE_MACHINE_UNKNOWN:
1153 case IMAGE_FILE_MACHINE_ALPHA:
1154 case IMAGE_FILE_MACHINE_ALPHA64:
1155 case IMAGE_FILE_MACHINE_IA64:
1156 break;
1157
1158 case IMAGE_FILE_MACHINE_I386:
1159 #ifdef I386MAGIC
1160 magic = I386MAGIC;
1161 #endif
1162 break;
1163
1164 case IMAGE_FILE_MACHINE_AMD64:
1165 #ifdef AMD64MAGIC
1166 magic = AMD64MAGIC;
1167 #endif
1168 break;
1169
1170 case IMAGE_FILE_MACHINE_M68K:
1171 #ifdef MC68AGIC
1172 magic = MC68MAGIC;
1173 #endif
1174 break;
1175
1176 case IMAGE_FILE_MACHINE_R3000:
1177 case IMAGE_FILE_MACHINE_R4000:
1178 case IMAGE_FILE_MACHINE_R10000:
1179
1180 case IMAGE_FILE_MACHINE_MIPS16:
1181 case IMAGE_FILE_MACHINE_MIPSFPU:
1182 case IMAGE_FILE_MACHINE_MIPSFPU16:
1183 #ifdef MIPS_ARCH_MAGIC_WINCE
1184 magic = MIPS_ARCH_MAGIC_WINCE;
1185 #endif
1186 break;
1187
1188 case IMAGE_FILE_MACHINE_SH3:
1189 case IMAGE_FILE_MACHINE_SH4:
1190 #ifdef SH_ARCH_MAGIC_WINCE
1191 magic = SH_ARCH_MAGIC_WINCE;
1192 #endif
1193 break;
1194
1195 case IMAGE_FILE_MACHINE_ARM:
1196 #ifdef ARMPEMAGIC
1197 magic = ARMPEMAGIC;
1198 #endif
1199 break;
1200
1201 case IMAGE_FILE_MACHINE_THUMB:
1202 #ifdef THUMBPEMAGIC
1203 {
1204 extern const bfd_target TARGET_LITTLE_SYM;
1205
1206 if (abfd->xvec == & TARGET_LITTLE_SYM)
1207 magic = THUMBPEMAGIC;
1208 }
1209 #endif
1210 break;
1211
1212 case IMAGE_FILE_MACHINE_POWERPC:
1213 /* We no longer support PowerPC. */
1214 default:
1215 _bfd_error_handler
1216 /* xgettext:c-format */
1217 (_("%B: Unrecognised machine type (0x%x)"
1218 " in Import Library Format archive"),
1219 abfd, machine);
1220 bfd_set_error (bfd_error_malformed_archive);
1221
1222 return NULL;
1223 break;
1224 }
1225
1226 if (magic == 0)
1227 {
1228 _bfd_error_handler
1229 /* xgettext:c-format */
1230 (_("%B: Recognised but unhandled machine type (0x%x)"
1231 " in Import Library Format archive"),
1232 abfd, machine);
1233 bfd_set_error (bfd_error_wrong_format);
1234
1235 return NULL;
1236 }
1237
1238 /* We do not bother to check the date.
1239 date = H_GET_32 (abfd, ptr); */
1240 ptr += 4;
1241
1242 size = H_GET_32 (abfd, ptr);
1243 ptr += 4;
1244
1245 if (size == 0)
1246 {
1247 _bfd_error_handler
1248 (_("%B: size field is zero in Import Library Format header"), abfd);
1249 bfd_set_error (bfd_error_malformed_archive);
1250
1251 return NULL;
1252 }
1253
1254 ordinal = H_GET_16 (abfd, ptr);
1255 ptr += 2;
1256
1257 types = H_GET_16 (abfd, ptr);
1258 /* ptr += 2; */
1259
1260 /* Now read in the two strings that follow. */
1261 ptr = (bfd_byte *) bfd_alloc (abfd, size);
1262 if (ptr == NULL)
1263 return NULL;
1264
1265 if (bfd_bread (ptr, size, abfd) != size)
1266 {
1267 bfd_release (abfd, ptr);
1268 return NULL;
1269 }
1270
1271 symbol_name = (char *) ptr;
1272 /* See PR 20905 for an example of where the strnlen is necessary. */
1273 source_dll = symbol_name + strnlen (symbol_name, size - 1) + 1;
1274
1275 /* Verify that the strings are null terminated. */
1276 if (ptr[size - 1] != 0
1277 || (bfd_size_type) ((bfd_byte *) source_dll - ptr) >= size)
1278 {
1279 _bfd_error_handler
1280 (_("%B: string not null terminated in ILF object file."), abfd);
1281 bfd_set_error (bfd_error_malformed_archive);
1282 bfd_release (abfd, ptr);
1283 return NULL;
1284 }
1285
1286 /* Now construct the bfd. */
1287 if (! pe_ILF_build_a_bfd (abfd, magic, symbol_name,
1288 source_dll, ordinal, types))
1289 {
1290 bfd_release (abfd, ptr);
1291 return NULL;
1292 }
1293
1294 return abfd->xvec;
1295 }
1296
1297 static void
1298 pe_bfd_read_buildid (bfd *abfd)
1299 {
1300 pe_data_type *pe = pe_data (abfd);
1301 struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr;
1302 asection *section;
1303 bfd_byte *data = 0;
1304 bfd_size_type dataoff;
1305 unsigned int i;
1306
1307 bfd_vma addr = extra->DataDirectory[PE_DEBUG_DATA].VirtualAddress;
1308 bfd_size_type size = extra->DataDirectory[PE_DEBUG_DATA].Size;
1309
1310 if (size == 0)
1311 return;
1312
1313 addr += extra->ImageBase;
1314
1315 /* Search for the section containing the DebugDirectory. */
1316 for (section = abfd->sections; section != NULL; section = section->next)
1317 {
1318 if ((addr >= section->vma) && (addr < (section->vma + section->size)))
1319 break;
1320 }
1321
1322 if (section == NULL)
1323 return;
1324
1325 if (!(section->flags & SEC_HAS_CONTENTS))
1326 return;
1327
1328 dataoff = addr - section->vma;
1329
1330 /* PR 20605: Make sure that the data is really there. */
1331 if (dataoff + size > section->size)
1332 {
1333 _bfd_error_handler (_("%B: Error: Debug Data ends beyond end of debug directory."),
1334 abfd);
1335 return;
1336 }
1337
1338 /* Read the whole section. */
1339 if (!bfd_malloc_and_get_section (abfd, section, &data))
1340 {
1341 if (data != NULL)
1342 free (data);
1343 return;
1344 }
1345
1346 /* Search for a CodeView entry in the DebugDirectory */
1347 for (i = 0; i < size / sizeof (struct external_IMAGE_DEBUG_DIRECTORY); i++)
1348 {
1349 struct external_IMAGE_DEBUG_DIRECTORY *ext
1350 = &((struct external_IMAGE_DEBUG_DIRECTORY *)(data + dataoff))[i];
1351 struct internal_IMAGE_DEBUG_DIRECTORY idd;
1352
1353 _bfd_XXi_swap_debugdir_in (abfd, ext, &idd);
1354
1355 if (idd.Type == PE_IMAGE_DEBUG_TYPE_CODEVIEW)
1356 {
1357 char buffer[256 + 1];
1358 CODEVIEW_INFO *cvinfo = (CODEVIEW_INFO *) buffer;
1359
1360 /*
1361 The debug entry doesn't have to have to be in a section, in which
1362 case AddressOfRawData is 0, so always use PointerToRawData.
1363 */
1364 if (_bfd_XXi_slurp_codeview_record (abfd,
1365 (file_ptr) idd.PointerToRawData,
1366 idd.SizeOfData, cvinfo))
1367 {
1368 struct bfd_build_id* build_id = bfd_alloc (abfd,
1369 sizeof (struct bfd_build_id) + cvinfo->SignatureLength);
1370 if (build_id)
1371 {
1372 build_id->size = cvinfo->SignatureLength;
1373 memcpy(build_id->data, cvinfo->Signature,
1374 cvinfo->SignatureLength);
1375 abfd->build_id = build_id;
1376 }
1377 }
1378 break;
1379 }
1380 }
1381 }
1382
1383 static const bfd_target *
1384 pe_bfd_object_p (bfd * abfd)
1385 {
1386 bfd_byte buffer[6];
1387 struct external_PEI_DOS_hdr dos_hdr;
1388 struct external_PEI_IMAGE_hdr image_hdr;
1389 struct internal_filehdr internal_f;
1390 struct internal_aouthdr internal_a;
1391 file_ptr opt_hdr_size;
1392 file_ptr offset;
1393 const bfd_target *result;
1394
1395 /* Detect if this a Microsoft Import Library Format element. */
1396 /* First read the beginning of the header. */
1397 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1398 || bfd_bread (buffer, (bfd_size_type) 6, abfd) != 6)
1399 {
1400 if (bfd_get_error () != bfd_error_system_call)
1401 bfd_set_error (bfd_error_wrong_format);
1402 return NULL;
1403 }
1404
1405 /* Then check the magic and the version (only 0 is supported). */
1406 if (H_GET_32 (abfd, buffer) == 0xffff0000
1407 && H_GET_16 (abfd, buffer + 4) == 0)
1408 return pe_ILF_object_p (abfd);
1409
1410 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1411 || bfd_bread (&dos_hdr, (bfd_size_type) sizeof (dos_hdr), abfd)
1412 != sizeof (dos_hdr))
1413 {
1414 if (bfd_get_error () != bfd_error_system_call)
1415 bfd_set_error (bfd_error_wrong_format);
1416 return NULL;
1417 }
1418
1419 /* There are really two magic numbers involved; the magic number
1420 that says this is a NT executable (PEI) and the magic number that
1421 determines the architecture. The former is DOSMAGIC, stored in
1422 the e_magic field. The latter is stored in the f_magic field.
1423 If the NT magic number isn't valid, the architecture magic number
1424 could be mimicked by some other field (specifically, the number
1425 of relocs in section 3). Since this routine can only be called
1426 correctly for a PEI file, check the e_magic number here, and, if
1427 it doesn't match, clobber the f_magic number so that we don't get
1428 a false match. */
1429 if (H_GET_16 (abfd, dos_hdr.e_magic) != DOSMAGIC)
1430 {
1431 bfd_set_error (bfd_error_wrong_format);
1432 return NULL;
1433 }
1434
1435 offset = H_GET_32 (abfd, dos_hdr.e_lfanew);
1436 if (bfd_seek (abfd, offset, SEEK_SET) != 0
1437 || (bfd_bread (&image_hdr, (bfd_size_type) sizeof (image_hdr), abfd)
1438 != sizeof (image_hdr)))
1439 {
1440 if (bfd_get_error () != bfd_error_system_call)
1441 bfd_set_error (bfd_error_wrong_format);
1442 return NULL;
1443 }
1444
1445 if (H_GET_32 (abfd, image_hdr.nt_signature) != 0x4550)
1446 {
1447 bfd_set_error (bfd_error_wrong_format);
1448 return NULL;
1449 }
1450
1451 /* Swap file header, so that we get the location for calling
1452 real_object_p. */
1453 bfd_coff_swap_filehdr_in (abfd, &image_hdr, &internal_f);
1454
1455 if (! bfd_coff_bad_format_hook (abfd, &internal_f)
1456 || internal_f.f_opthdr > bfd_coff_aoutsz (abfd))
1457 {
1458 bfd_set_error (bfd_error_wrong_format);
1459 return NULL;
1460 }
1461
1462 /* Read the optional header, which has variable size. */
1463 opt_hdr_size = internal_f.f_opthdr;
1464
1465 if (opt_hdr_size != 0)
1466 {
1467 bfd_size_type amt = opt_hdr_size;
1468 void * opthdr;
1469
1470 /* PR 17521 file: 230-131433-0.004. */
1471 if (amt < sizeof (PEAOUTHDR))
1472 amt = sizeof (PEAOUTHDR);
1473
1474 opthdr = bfd_zalloc (abfd, amt);
1475 if (opthdr == NULL)
1476 return NULL;
1477 if (bfd_bread (opthdr, opt_hdr_size, abfd)
1478 != (bfd_size_type) opt_hdr_size)
1479 return NULL;
1480
1481 bfd_set_error (bfd_error_no_error);
1482 bfd_coff_swap_aouthdr_in (abfd, opthdr, & internal_a);
1483 if (bfd_get_error () != bfd_error_no_error)
1484 return NULL;
1485 }
1486
1487
1488 result = coff_real_object_p (abfd, internal_f.f_nscns, &internal_f,
1489 (opt_hdr_size != 0
1490 ? &internal_a
1491 : (struct internal_aouthdr *) NULL));
1492
1493
1494 if (result)
1495 {
1496 /* Now the whole header has been processed, see if there is a build-id */
1497 pe_bfd_read_buildid(abfd);
1498 }
1499
1500 return result;
1501 }
1502
1503 #define coff_object_p pe_bfd_object_p
1504 #endif /* COFF_IMAGE_WITH_PE */
This page took 0.061561 seconds and 4 git commands to generate.