2005-02-14 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / peicode.h
1 /* Support for the generic parts of PE/PEI, for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Written by Cygnus Solutions.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* Most of this hacked by Steve Chamberlain,
23 sac@cygnus.com
24
25 PE/PEI rearrangement (and code added): Donn Terry
26 Softway Systems, Inc. */
27
28 /* Hey look, some documentation [and in a place you expect to find it]!
29
30 The main reference for the pei format is "Microsoft Portable Executable
31 and Common Object File Format Specification 4.1". Get it if you need to
32 do some serious hacking on this code.
33
34 Another reference:
35 "Peering Inside the PE: A Tour of the Win32 Portable Executable
36 File Format", MSJ 1994, Volume 9.
37
38 The *sole* difference between the pe format and the pei format is that the
39 latter has an MSDOS 2.0 .exe header on the front that prints the message
40 "This app must be run under Windows." (or some such).
41 (FIXME: Whether that statement is *really* true or not is unknown.
42 Are there more subtle differences between pe and pei formats?
43 For now assume there aren't. If you find one, then for God sakes
44 document it here!)
45
46 The Microsoft docs use the word "image" instead of "executable" because
47 the former can also refer to a DLL (shared library). Confusion can arise
48 because the `i' in `pei' also refers to "image". The `pe' format can
49 also create images (i.e. executables), it's just that to run on a win32
50 system you need to use the pei format.
51
52 FIXME: Please add more docs here so the next poor fool that has to hack
53 on this code has a chance of getting something accomplished without
54 wasting too much time. */
55
56 #include "libpei.h"
57
58 static bfd_boolean (*pe_saved_coff_bfd_print_private_bfd_data)
59 PARAMS ((bfd *, PTR)) =
60 #ifndef coff_bfd_print_private_bfd_data
61 NULL;
62 #else
63 coff_bfd_print_private_bfd_data;
64 #undef coff_bfd_print_private_bfd_data
65 #endif
66
67 static bfd_boolean pe_print_private_bfd_data PARAMS ((bfd *, PTR));
68 #define coff_bfd_print_private_bfd_data pe_print_private_bfd_data
69
70 static bfd_boolean (*pe_saved_coff_bfd_copy_private_bfd_data)
71 PARAMS ((bfd *, bfd *)) =
72 #ifndef coff_bfd_copy_private_bfd_data
73 NULL;
74 #else
75 coff_bfd_copy_private_bfd_data;
76 #undef coff_bfd_copy_private_bfd_data
77 #endif
78
79 static bfd_boolean pe_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
80 #define coff_bfd_copy_private_bfd_data pe_bfd_copy_private_bfd_data
81
82 #define coff_mkobject pe_mkobject
83 #define coff_mkobject_hook pe_mkobject_hook
84
85 #ifndef NO_COFF_RELOCS
86 static void coff_swap_reloc_in PARAMS ((bfd *, PTR, PTR));
87 static unsigned int coff_swap_reloc_out PARAMS ((bfd *, PTR, PTR));
88 #endif
89 static void coff_swap_filehdr_in PARAMS ((bfd *, PTR, PTR));
90 static void coff_swap_scnhdr_in PARAMS ((bfd *, PTR, PTR));
91 static bfd_boolean pe_mkobject PARAMS ((bfd *));
92 static PTR pe_mkobject_hook PARAMS ((bfd *, PTR, PTR));
93
94 #ifdef COFF_IMAGE_WITH_PE
95 /* This structure contains static variables used by the ILF code. */
96 typedef asection * asection_ptr;
97
98 typedef struct
99 {
100 bfd * abfd;
101 bfd_byte * data;
102 struct bfd_in_memory * bim;
103 unsigned short magic;
104
105 arelent * reltab;
106 unsigned int relcount;
107
108 coff_symbol_type * sym_cache;
109 coff_symbol_type * sym_ptr;
110 unsigned int sym_index;
111
112 unsigned int * sym_table;
113 unsigned int * table_ptr;
114
115 combined_entry_type * native_syms;
116 combined_entry_type * native_ptr;
117
118 coff_symbol_type ** sym_ptr_table;
119 coff_symbol_type ** sym_ptr_ptr;
120
121 unsigned int sec_index;
122
123 char * string_table;
124 char * string_ptr;
125 char * end_string_ptr;
126
127 SYMENT * esym_table;
128 SYMENT * esym_ptr;
129
130 struct internal_reloc * int_reltab;
131 }
132 pe_ILF_vars;
133
134 static asection_ptr pe_ILF_make_a_section PARAMS ((pe_ILF_vars *, const char *, unsigned int, flagword));
135 static void pe_ILF_make_a_reloc PARAMS ((pe_ILF_vars *, bfd_vma, bfd_reloc_code_real_type, asection_ptr));
136 static void pe_ILF_make_a_symbol PARAMS ((pe_ILF_vars *, const char *, const char *, asection_ptr, flagword));
137 static void pe_ILF_save_relocs PARAMS ((pe_ILF_vars *, asection_ptr));
138 static void pe_ILF_make_a_symbol_reloc PARAMS ((pe_ILF_vars *, bfd_vma, bfd_reloc_code_real_type, struct bfd_symbol **, unsigned int));
139 static bfd_boolean pe_ILF_build_a_bfd PARAMS ((bfd *, unsigned int, bfd_byte *, bfd_byte *, unsigned int, unsigned int));
140 static const bfd_target * pe_ILF_object_p PARAMS ((bfd *));
141 static const bfd_target * pe_bfd_object_p PARAMS ((bfd *));
142 #endif /* COFF_IMAGE_WITH_PE */
143
144 /**********************************************************************/
145
146 #ifndef NO_COFF_RELOCS
147 static void
148 coff_swap_reloc_in (abfd, src, dst)
149 bfd *abfd;
150 PTR src;
151 PTR dst;
152 {
153 RELOC *reloc_src = (RELOC *) src;
154 struct internal_reloc *reloc_dst = (struct internal_reloc *) dst;
155
156 reloc_dst->r_vaddr = H_GET_32 (abfd, reloc_src->r_vaddr);
157 reloc_dst->r_symndx = H_GET_S32 (abfd, reloc_src->r_symndx);
158
159 reloc_dst->r_type = H_GET_16 (abfd, reloc_src->r_type);
160
161 #ifdef SWAP_IN_RELOC_OFFSET
162 reloc_dst->r_offset = SWAP_IN_RELOC_OFFSET (abfd, reloc_src->r_offset);
163 #endif
164 }
165
166 static unsigned int
167 coff_swap_reloc_out (abfd, src, dst)
168 bfd *abfd;
169 PTR src;
170 PTR dst;
171 {
172 struct internal_reloc *reloc_src = (struct internal_reloc *)src;
173 struct external_reloc *reloc_dst = (struct external_reloc *)dst;
174 H_PUT_32 (abfd, reloc_src->r_vaddr, reloc_dst->r_vaddr);
175 H_PUT_32 (abfd, reloc_src->r_symndx, reloc_dst->r_symndx);
176
177 H_PUT_16 (abfd, reloc_src->r_type, reloc_dst->r_type);
178
179 #ifdef SWAP_OUT_RELOC_OFFSET
180 SWAP_OUT_RELOC_OFFSET (abfd, reloc_src->r_offset, reloc_dst->r_offset);
181 #endif
182 #ifdef SWAP_OUT_RELOC_EXTRA
183 SWAP_OUT_RELOC_EXTRA(abfd, reloc_src, reloc_dst);
184 #endif
185 return RELSZ;
186 }
187 #endif /* not NO_COFF_RELOCS */
188
189 static void
190 coff_swap_filehdr_in (abfd, src, dst)
191 bfd *abfd;
192 PTR src;
193 PTR dst;
194 {
195 FILHDR *filehdr_src = (FILHDR *) src;
196 struct internal_filehdr *filehdr_dst = (struct internal_filehdr *) dst;
197 filehdr_dst->f_magic = H_GET_16 (abfd, filehdr_src->f_magic);
198 filehdr_dst->f_nscns = H_GET_16 (abfd, filehdr_src-> f_nscns);
199 filehdr_dst->f_timdat = H_GET_32 (abfd, filehdr_src-> f_timdat);
200
201 filehdr_dst->f_nsyms = H_GET_32 (abfd, filehdr_src-> f_nsyms);
202 filehdr_dst->f_flags = H_GET_16 (abfd, filehdr_src-> f_flags);
203 filehdr_dst->f_symptr = H_GET_32 (abfd, filehdr_src->f_symptr);
204
205 /* Other people's tools sometimes generate headers with an nsyms but
206 a zero symptr. */
207 if (filehdr_dst->f_nsyms != 0 && filehdr_dst->f_symptr == 0)
208 {
209 filehdr_dst->f_nsyms = 0;
210 filehdr_dst->f_flags |= F_LSYMS;
211 }
212
213 filehdr_dst->f_opthdr = H_GET_16 (abfd, filehdr_src-> f_opthdr);
214 }
215
216 #ifdef COFF_IMAGE_WITH_PE
217 # define coff_swap_filehdr_out _bfd_XXi_only_swap_filehdr_out
218 #else
219 # define coff_swap_filehdr_out _bfd_pe_only_swap_filehdr_out
220 #endif
221
222 static void
223 coff_swap_scnhdr_in (abfd, ext, in)
224 bfd *abfd;
225 PTR ext;
226 PTR in;
227 {
228 SCNHDR *scnhdr_ext = (SCNHDR *) ext;
229 struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in;
230
231 memcpy(scnhdr_int->s_name, scnhdr_ext->s_name, sizeof (scnhdr_int->s_name));
232 scnhdr_int->s_vaddr = GET_SCNHDR_VADDR (abfd, scnhdr_ext->s_vaddr);
233 scnhdr_int->s_paddr = GET_SCNHDR_PADDR (abfd, scnhdr_ext->s_paddr);
234 scnhdr_int->s_size = GET_SCNHDR_SIZE (abfd, scnhdr_ext->s_size);
235 scnhdr_int->s_scnptr = GET_SCNHDR_SCNPTR (abfd, scnhdr_ext->s_scnptr);
236 scnhdr_int->s_relptr = GET_SCNHDR_RELPTR (abfd, scnhdr_ext->s_relptr);
237 scnhdr_int->s_lnnoptr = GET_SCNHDR_LNNOPTR (abfd, scnhdr_ext->s_lnnoptr);
238 scnhdr_int->s_flags = H_GET_32 (abfd, scnhdr_ext->s_flags);
239
240 /* MS handles overflow of line numbers by carrying into the reloc
241 field (it appears). Since it's supposed to be zero for PE
242 *IMAGE* format, that's safe. This is still a bit iffy. */
243 #ifdef COFF_IMAGE_WITH_PE
244 scnhdr_int->s_nlnno = (H_GET_16 (abfd, scnhdr_ext->s_nlnno)
245 + (H_GET_16 (abfd, scnhdr_ext->s_nreloc) << 16));
246 scnhdr_int->s_nreloc = 0;
247 #else
248 scnhdr_int->s_nreloc = H_GET_16 (abfd, scnhdr_ext->s_nreloc);
249 scnhdr_int->s_nlnno = H_GET_16 (abfd, scnhdr_ext->s_nlnno);
250 #endif
251
252 if (scnhdr_int->s_vaddr != 0)
253 {
254 scnhdr_int->s_vaddr += pe_data (abfd)->pe_opthdr.ImageBase;
255 scnhdr_int->s_vaddr &= 0xffffffff;
256 }
257
258 #ifndef COFF_NO_HACK_SCNHDR_SIZE
259 /* If this section holds uninitialized data and is from an object file
260 or from an executable image that has not initialized the field,
261 or if the image is an executable file and the physical size is padded,
262 use the virtual size (stored in s_paddr) instead. */
263 if (scnhdr_int->s_paddr > 0
264 && (((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0
265 && (! bfd_pe_executable_p (abfd) || scnhdr_int->s_size == 0))
266 || (bfd_pe_executable_p (abfd) && scnhdr_int->s_size > scnhdr_int->s_paddr)))
267 {
268 scnhdr_int->s_size = scnhdr_int->s_paddr;
269
270 /* This code used to set scnhdr_int->s_paddr to 0. However,
271 coff_set_alignment_hook stores s_paddr in virt_size, which
272 only works if it correctly holds the virtual size of the
273 section. */
274 }
275 #endif
276 }
277
278 static bfd_boolean
279 pe_mkobject (abfd)
280 bfd * abfd;
281 {
282 pe_data_type *pe;
283 bfd_size_type amt = sizeof (pe_data_type);
284
285 abfd->tdata.pe_obj_data = (struct pe_tdata *) bfd_zalloc (abfd, amt);
286
287 if (abfd->tdata.pe_obj_data == 0)
288 return FALSE;
289
290 pe = pe_data (abfd);
291
292 pe->coff.pe = 1;
293
294 /* in_reloc_p is architecture dependent. */
295 pe->in_reloc_p = in_reloc_p;
296
297 #ifdef PEI_FORCE_MINIMUM_ALIGNMENT
298 pe->force_minimum_alignment = 1;
299 #endif
300 #ifdef PEI_TARGET_SUBSYSTEM
301 pe->target_subsystem = PEI_TARGET_SUBSYSTEM;
302 #endif
303
304 return TRUE;
305 }
306
307 /* Create the COFF backend specific information. */
308 static PTR
309 pe_mkobject_hook (abfd, filehdr, aouthdr)
310 bfd * abfd;
311 PTR filehdr;
312 PTR aouthdr ATTRIBUTE_UNUSED;
313 {
314 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
315 pe_data_type *pe;
316
317 if (! pe_mkobject (abfd))
318 return NULL;
319
320 pe = pe_data (abfd);
321 pe->coff.sym_filepos = internal_f->f_symptr;
322 /* These members communicate important constants about the symbol
323 table to GDB's symbol-reading code. These `constants'
324 unfortunately vary among coff implementations... */
325 pe->coff.local_n_btmask = N_BTMASK;
326 pe->coff.local_n_btshft = N_BTSHFT;
327 pe->coff.local_n_tmask = N_TMASK;
328 pe->coff.local_n_tshift = N_TSHIFT;
329 pe->coff.local_symesz = SYMESZ;
330 pe->coff.local_auxesz = AUXESZ;
331 pe->coff.local_linesz = LINESZ;
332
333 pe->coff.timestamp = internal_f->f_timdat;
334
335 obj_raw_syment_count (abfd) =
336 obj_conv_table_size (abfd) =
337 internal_f->f_nsyms;
338
339 pe->real_flags = internal_f->f_flags;
340
341 if ((internal_f->f_flags & F_DLL) != 0)
342 pe->dll = 1;
343
344 if ((internal_f->f_flags & IMAGE_FILE_DEBUG_STRIPPED) == 0)
345 abfd->flags |= HAS_DEBUG;
346
347 #ifdef COFF_IMAGE_WITH_PE
348 if (aouthdr)
349 pe->pe_opthdr = ((struct internal_aouthdr *)aouthdr)->pe;
350 #endif
351
352 #ifdef ARM
353 if (! _bfd_coff_arm_set_private_flags (abfd, internal_f->f_flags))
354 coff_data (abfd) ->flags = 0;
355 #endif
356
357 return (PTR) pe;
358 }
359
360 static bfd_boolean
361 pe_print_private_bfd_data (abfd, vfile)
362 bfd *abfd;
363 PTR vfile;
364 {
365 FILE *file = (FILE *) vfile;
366
367 if (!_bfd_XX_print_private_bfd_data_common (abfd, vfile))
368 return FALSE;
369
370 if (pe_saved_coff_bfd_print_private_bfd_data != NULL)
371 {
372 fputc ('\n', file);
373
374 return pe_saved_coff_bfd_print_private_bfd_data (abfd, vfile);
375 }
376
377 return TRUE;
378 }
379
380 /* Copy any private info we understand from the input bfd
381 to the output bfd. */
382
383 static bfd_boolean
384 pe_bfd_copy_private_bfd_data (ibfd, obfd)
385 bfd *ibfd, *obfd;
386 {
387 /* PR binutils/716: Copy the large address aware flag.
388 XXX: Should we be copying other flags or other fields in the pe_data()
389 structure ? */
390 if (pe_data (obfd) != NULL
391 && pe_data (ibfd) != NULL
392 && pe_data (ibfd)->real_flags & IMAGE_FILE_LARGE_ADDRESS_AWARE)
393 pe_data (obfd)->real_flags |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
394
395 if (!_bfd_XX_bfd_copy_private_bfd_data_common (ibfd, obfd))
396 return FALSE;
397
398 if (pe_saved_coff_bfd_copy_private_bfd_data)
399 return pe_saved_coff_bfd_copy_private_bfd_data (ibfd, obfd);
400
401 return TRUE;
402 }
403
404 #define coff_bfd_copy_private_section_data \
405 _bfd_XX_bfd_copy_private_section_data
406
407 #define coff_get_symbol_info _bfd_XX_get_symbol_info
408
409 #ifdef COFF_IMAGE_WITH_PE
410 \f
411 /* Code to handle Microsoft's Image Library Format.
412 Also known as LINK6 format.
413 Documentation about this format can be found at:
414
415 http://msdn.microsoft.com/library/specs/pecoff_section8.htm */
416
417 /* The following constants specify the sizes of the various data
418 structures that we have to create in order to build a bfd describing
419 an ILF object file. The final "+ 1" in the definitions of SIZEOF_IDATA6
420 and SIZEOF_IDATA7 below is to allow for the possibility that we might
421 need a padding byte in order to ensure 16 bit alignment for the section's
422 contents.
423
424 The value for SIZEOF_ILF_STRINGS is computed as follows:
425
426 There will be NUM_ILF_SECTIONS section symbols. Allow 9 characters
427 per symbol for their names (longest section name is .idata$x).
428
429 There will be two symbols for the imported value, one the symbol name
430 and one with _imp__ prefixed. Allowing for the terminating nul's this
431 is strlen (symbol_name) * 2 + 8 + 21 + strlen (source_dll).
432
433 The strings in the string table must start STRING__SIZE_SIZE bytes into
434 the table in order to for the string lookup code in coffgen/coffcode to
435 work. */
436 #define NUM_ILF_RELOCS 8
437 #define NUM_ILF_SECTIONS 6
438 #define NUM_ILF_SYMS (2 + NUM_ILF_SECTIONS)
439
440 #define SIZEOF_ILF_SYMS (NUM_ILF_SYMS * sizeof (* vars.sym_cache))
441 #define SIZEOF_ILF_SYM_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_table))
442 #define SIZEOF_ILF_NATIVE_SYMS (NUM_ILF_SYMS * sizeof (* vars.native_syms))
443 #define SIZEOF_ILF_SYM_PTR_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_ptr_table))
444 #define SIZEOF_ILF_EXT_SYMS (NUM_ILF_SYMS * sizeof (* vars.esym_table))
445 #define SIZEOF_ILF_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.reltab))
446 #define SIZEOF_ILF_INT_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.int_reltab))
447 #define SIZEOF_ILF_STRINGS (strlen (symbol_name) * 2 + 8 \
448 + 21 + strlen (source_dll) \
449 + NUM_ILF_SECTIONS * 9 \
450 + STRING_SIZE_SIZE)
451 #define SIZEOF_IDATA2 (5 * 4)
452 #define SIZEOF_IDATA4 (1 * 4)
453 #define SIZEOF_IDATA5 (1 * 4)
454 #define SIZEOF_IDATA6 (2 + strlen (symbol_name) + 1 + 1)
455 #define SIZEOF_IDATA7 (strlen (source_dll) + 1 + 1)
456 #define SIZEOF_ILF_SECTIONS (NUM_ILF_SECTIONS * sizeof (struct coff_section_tdata))
457
458 #define ILF_DATA_SIZE \
459 sizeof (* vars.bim) \
460 + SIZEOF_ILF_SYMS \
461 + SIZEOF_ILF_SYM_TABLE \
462 + SIZEOF_ILF_NATIVE_SYMS \
463 + SIZEOF_ILF_SYM_PTR_TABLE \
464 + SIZEOF_ILF_EXT_SYMS \
465 + SIZEOF_ILF_RELOCS \
466 + SIZEOF_ILF_INT_RELOCS \
467 + SIZEOF_ILF_STRINGS \
468 + SIZEOF_IDATA2 \
469 + SIZEOF_IDATA4 \
470 + SIZEOF_IDATA5 \
471 + SIZEOF_IDATA6 \
472 + SIZEOF_IDATA7 \
473 + SIZEOF_ILF_SECTIONS \
474 + MAX_TEXT_SECTION_SIZE
475
476 /* Create an empty relocation against the given symbol. */
477 static void
478 pe_ILF_make_a_symbol_reloc (pe_ILF_vars * vars,
479 bfd_vma address,
480 bfd_reloc_code_real_type reloc,
481 struct bfd_symbol ** sym,
482 unsigned int sym_index)
483 {
484 arelent * entry;
485 struct internal_reloc * internal;
486
487 entry = vars->reltab + vars->relcount;
488 internal = vars->int_reltab + vars->relcount;
489
490 entry->address = address;
491 entry->addend = 0;
492 entry->howto = bfd_reloc_type_lookup (vars->abfd, reloc);
493 entry->sym_ptr_ptr = sym;
494
495 internal->r_vaddr = address;
496 internal->r_symndx = sym_index;
497 internal->r_type = entry->howto->type;
498
499 vars->relcount ++;
500
501 BFD_ASSERT (vars->relcount <= NUM_ILF_RELOCS);
502 }
503
504 /* Create an empty relocation against the given section. */
505 static void
506 pe_ILF_make_a_reloc (pe_ILF_vars * vars,
507 bfd_vma address,
508 bfd_reloc_code_real_type reloc,
509 asection_ptr sec)
510 {
511 pe_ILF_make_a_symbol_reloc (vars, address, reloc, sec->symbol_ptr_ptr,
512 coff_section_data (vars->abfd, sec)->i);
513 }
514
515 /* Move the queued relocs into the given section. */
516 static void
517 pe_ILF_save_relocs (pe_ILF_vars * vars,
518 asection_ptr sec)
519 {
520 /* Make sure that there is somewhere to store the internal relocs. */
521 if (coff_section_data (vars->abfd, sec) == NULL)
522 /* We should probably return an error indication here. */
523 abort ();
524
525 coff_section_data (vars->abfd, sec)->relocs = vars->int_reltab;
526 coff_section_data (vars->abfd, sec)->keep_relocs = TRUE;
527
528 sec->relocation = vars->reltab;
529 sec->reloc_count = vars->relcount;
530 sec->flags |= SEC_RELOC;
531
532 vars->reltab += vars->relcount;
533 vars->int_reltab += vars->relcount;
534 vars->relcount = 0;
535
536 BFD_ASSERT ((bfd_byte *) vars->int_reltab < (bfd_byte *) vars->string_table);
537 }
538
539 /* Create a global symbol and add it to the relevant tables. */
540 static void
541 pe_ILF_make_a_symbol (pe_ILF_vars * vars,
542 const char * prefix,
543 const char * symbol_name,
544 asection_ptr section,
545 flagword extra_flags)
546 {
547 coff_symbol_type * sym;
548 combined_entry_type * ent;
549 SYMENT * esym;
550 unsigned short sclass;
551
552 if (extra_flags & BSF_LOCAL)
553 sclass = C_STAT;
554 else
555 sclass = C_EXT;
556
557 #ifdef THUMBPEMAGIC
558 if (vars->magic == THUMBPEMAGIC)
559 {
560 if (extra_flags & BSF_FUNCTION)
561 sclass = C_THUMBEXTFUNC;
562 else if (extra_flags & BSF_LOCAL)
563 sclass = C_THUMBSTAT;
564 else
565 sclass = C_THUMBEXT;
566 }
567 #endif
568
569 BFD_ASSERT (vars->sym_index < NUM_ILF_SYMS);
570
571 sym = vars->sym_ptr;
572 ent = vars->native_ptr;
573 esym = vars->esym_ptr;
574
575 /* Copy the symbol's name into the string table. */
576 sprintf (vars->string_ptr, "%s%s", prefix, symbol_name);
577
578 if (section == NULL)
579 section = (asection_ptr) & bfd_und_section;
580
581 /* Initialise the external symbol. */
582 H_PUT_32 (vars->abfd, vars->string_ptr - vars->string_table,
583 esym->e.e.e_offset);
584 H_PUT_16 (vars->abfd, section->target_index, esym->e_scnum);
585 esym->e_sclass[0] = sclass;
586
587 /* The following initialisations are unnecessary - the memory is
588 zero initialised. They are just kept here as reminders. */
589
590 /* Initialise the internal symbol structure. */
591 ent->u.syment.n_sclass = sclass;
592 ent->u.syment.n_scnum = section->target_index;
593 ent->u.syment._n._n_n._n_offset = (long) sym;
594
595 sym->symbol.the_bfd = vars->abfd;
596 sym->symbol.name = vars->string_ptr;
597 sym->symbol.flags = BSF_EXPORT | BSF_GLOBAL | extra_flags;
598 sym->symbol.section = section;
599 sym->native = ent;
600
601 * vars->table_ptr = vars->sym_index;
602 * vars->sym_ptr_ptr = sym;
603
604 /* Adjust pointers for the next symbol. */
605 vars->sym_index ++;
606 vars->sym_ptr ++;
607 vars->sym_ptr_ptr ++;
608 vars->table_ptr ++;
609 vars->native_ptr ++;
610 vars->esym_ptr ++;
611 vars->string_ptr += strlen (symbol_name) + strlen (prefix) + 1;
612
613 BFD_ASSERT (vars->string_ptr < vars->end_string_ptr);
614 }
615
616 /* Create a section. */
617 static asection_ptr
618 pe_ILF_make_a_section (pe_ILF_vars * vars,
619 const char * name,
620 unsigned int size,
621 flagword extra_flags)
622 {
623 asection_ptr sec;
624 flagword flags;
625
626 sec = bfd_make_section_old_way (vars->abfd, name);
627 if (sec == NULL)
628 return NULL;
629
630 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_KEEP | SEC_IN_MEMORY;
631
632 bfd_set_section_flags (vars->abfd, sec, flags | extra_flags);
633
634 bfd_set_section_alignment (vars->abfd, sec, 2);
635
636 /* Check that we will not run out of space. */
637 BFD_ASSERT (vars->data + size < vars->bim->buffer + vars->bim->size);
638
639 /* Set the section size and contents. The actual
640 contents are filled in by our parent. */
641 bfd_set_section_size (vars->abfd, sec, (bfd_size_type) size);
642 sec->contents = vars->data;
643 sec->target_index = vars->sec_index ++;
644
645 /* Advance data pointer in the vars structure. */
646 vars->data += size;
647
648 /* Skip the padding byte if it was not needed.
649 The logic here is that if the string length is odd,
650 then the entire string length, including the null byte,
651 is even and so the extra, padding byte, is not needed. */
652 if (size & 1)
653 vars->data --;
654
655 /* Create a coff_section_tdata structure for our use. */
656 sec->used_by_bfd = (struct coff_section_tdata *) vars->data;
657 vars->data += sizeof (struct coff_section_tdata);
658
659 BFD_ASSERT (vars->data <= vars->bim->buffer + vars->bim->size);
660
661 /* Create a symbol to refer to this section. */
662 pe_ILF_make_a_symbol (vars, "", name, sec, BSF_LOCAL);
663
664 /* Cache the index to the symbol in the coff_section_data structure. */
665 coff_section_data (vars->abfd, sec)->i = vars->sym_index - 1;
666
667 return sec;
668 }
669
670 /* This structure contains the code that goes into the .text section
671 in order to perform a jump into the DLL lookup table. The entries
672 in the table are index by the magic number used to represent the
673 machine type in the PE file. The contents of the data[] arrays in
674 these entries are stolen from the jtab[] arrays in ld/pe-dll.c.
675 The SIZE field says how many bytes in the DATA array are actually
676 used. The OFFSET field says where in the data array the address
677 of the .idata$5 section should be placed. */
678 #define MAX_TEXT_SECTION_SIZE 32
679
680 typedef struct
681 {
682 unsigned short magic;
683 unsigned char data[MAX_TEXT_SECTION_SIZE];
684 unsigned int size;
685 unsigned int offset;
686 }
687 jump_table;
688
689 static jump_table jtab[] =
690 {
691 #ifdef I386MAGIC
692 { I386MAGIC,
693 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
694 8, 2
695 },
696 #endif
697
698 #ifdef MC68MAGIC
699 { MC68MAGIC, { /* XXX fill me in */ }, 0, 0 },
700 #endif
701 #ifdef MIPS_ARCH_MAGIC_WINCE
702 { MIPS_ARCH_MAGIC_WINCE,
703 { 0x00, 0x00, 0x08, 0x3c, 0x00, 0x00, 0x08, 0x8d,
704 0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00 },
705 16, 0
706 },
707 #endif
708
709 #ifdef SH_ARCH_MAGIC_WINCE
710 { SH_ARCH_MAGIC_WINCE,
711 { 0x01, 0xd0, 0x02, 0x60, 0x2b, 0x40,
712 0x09, 0x00, 0x00, 0x00, 0x00, 0x00 },
713 12, 8
714 },
715 #endif
716
717 #ifdef ARMPEMAGIC
718 { ARMPEMAGIC,
719 { 0x00, 0xc0, 0x9f, 0xe5, 0x00, 0xf0,
720 0x9c, 0xe5, 0x00, 0x00, 0x00, 0x00},
721 12, 8
722 },
723 #endif
724
725 #ifdef THUMBPEMAGIC
726 { THUMBPEMAGIC,
727 { 0x40, 0xb4, 0x02, 0x4e, 0x36, 0x68, 0xb4, 0x46,
728 0x40, 0xbc, 0x60, 0x47, 0x00, 0x00, 0x00, 0x00 },
729 16, 12
730 },
731 #endif
732 { 0, { 0 }, 0, 0 }
733 };
734
735 #ifndef NUM_ENTRIES
736 #define NUM_ENTRIES(a) (sizeof (a) / sizeof (a)[0])
737 #endif
738
739 /* Build a full BFD from the information supplied in a ILF object. */
740 static bfd_boolean
741 pe_ILF_build_a_bfd (bfd * abfd,
742 unsigned int magic,
743 bfd_byte * symbol_name,
744 bfd_byte * source_dll,
745 unsigned int ordinal,
746 unsigned int types)
747 {
748 bfd_byte * ptr;
749 pe_ILF_vars vars;
750 struct internal_filehdr internal_f;
751 unsigned int import_type;
752 unsigned int import_name_type;
753 asection_ptr id4, id5, id6 = NULL, text = NULL;
754 coff_symbol_type ** imp_sym;
755 unsigned int imp_index;
756
757 /* Decode and verify the types field of the ILF structure. */
758 import_type = types & 0x3;
759 import_name_type = (types & 0x1c) >> 2;
760
761 switch (import_type)
762 {
763 case IMPORT_CODE:
764 case IMPORT_DATA:
765 break;
766
767 case IMPORT_CONST:
768 /* XXX code yet to be written. */
769 _bfd_error_handler (_("%B: Unhandled import type; %x"),
770 abfd, import_type);
771 return FALSE;
772
773 default:
774 _bfd_error_handler (_("%B: Unrecognised import type; %x"),
775 abfd, import_type);
776 return FALSE;
777 }
778
779 switch (import_name_type)
780 {
781 case IMPORT_ORDINAL:
782 case IMPORT_NAME:
783 case IMPORT_NAME_NOPREFIX:
784 case IMPORT_NAME_UNDECORATE:
785 break;
786
787 default:
788 _bfd_error_handler (_("%B: Unrecognised import name type; %x"),
789 abfd, import_name_type);
790 return FALSE;
791 }
792
793 /* Initialise local variables.
794
795 Note these are kept in a structure rather than being
796 declared as statics since bfd frowns on global variables.
797
798 We are going to construct the contents of the BFD in memory,
799 so allocate all the space that we will need right now. */
800 ptr = bfd_zalloc (abfd, (bfd_size_type) ILF_DATA_SIZE);
801 if (ptr == NULL)
802 return FALSE;
803
804 /* Create a bfd_in_memory structure. */
805 vars.bim = (struct bfd_in_memory *) ptr;
806 vars.bim->buffer = ptr;
807 vars.bim->size = ILF_DATA_SIZE;
808 ptr += sizeof (* vars.bim);
809
810 /* Initialise the pointers to regions of the memory and the
811 other contents of the pe_ILF_vars structure as well. */
812 vars.sym_cache = (coff_symbol_type *) ptr;
813 vars.sym_ptr = (coff_symbol_type *) ptr;
814 vars.sym_index = 0;
815 ptr += SIZEOF_ILF_SYMS;
816
817 vars.sym_table = (unsigned int *) ptr;
818 vars.table_ptr = (unsigned int *) ptr;
819 ptr += SIZEOF_ILF_SYM_TABLE;
820
821 vars.native_syms = (combined_entry_type *) ptr;
822 vars.native_ptr = (combined_entry_type *) ptr;
823 ptr += SIZEOF_ILF_NATIVE_SYMS;
824
825 vars.sym_ptr_table = (coff_symbol_type **) ptr;
826 vars.sym_ptr_ptr = (coff_symbol_type **) ptr;
827 ptr += SIZEOF_ILF_SYM_PTR_TABLE;
828
829 vars.esym_table = (SYMENT *) ptr;
830 vars.esym_ptr = (SYMENT *) ptr;
831 ptr += SIZEOF_ILF_EXT_SYMS;
832
833 vars.reltab = (arelent *) ptr;
834 vars.relcount = 0;
835 ptr += SIZEOF_ILF_RELOCS;
836
837 vars.int_reltab = (struct internal_reloc *) ptr;
838 ptr += SIZEOF_ILF_INT_RELOCS;
839
840 vars.string_table = ptr;
841 vars.string_ptr = ptr + STRING_SIZE_SIZE;
842 ptr += SIZEOF_ILF_STRINGS;
843 vars.end_string_ptr = ptr;
844
845 /* The remaining space in bim->buffer is used
846 by the pe_ILF_make_a_section() function. */
847 vars.data = ptr;
848 vars.abfd = abfd;
849 vars.sec_index = 0;
850 vars.magic = magic;
851
852 /* Create the initial .idata$<n> sections:
853 [.idata$2: Import Directory Table -- not needed]
854 .idata$4: Import Lookup Table
855 .idata$5: Import Address Table
856
857 Note we do not create a .idata$3 section as this is
858 created for us by the linker script. */
859 id4 = pe_ILF_make_a_section (& vars, ".idata$4", SIZEOF_IDATA4, 0);
860 id5 = pe_ILF_make_a_section (& vars, ".idata$5", SIZEOF_IDATA5, 0);
861 if (id4 == NULL || id5 == NULL)
862 return FALSE;
863
864 /* Fill in the contents of these sections. */
865 if (import_name_type == IMPORT_ORDINAL)
866 {
867 if (ordinal == 0)
868 /* XXX - treat as IMPORT_NAME ??? */
869 abort ();
870
871 * (unsigned int *) id4->contents = ordinal | 0x80000000;
872 * (unsigned int *) id5->contents = ordinal | 0x80000000;
873 }
874 else
875 {
876 char * symbol;
877
878 /* Create .idata$6 - the Hint Name Table. */
879 id6 = pe_ILF_make_a_section (& vars, ".idata$6", SIZEOF_IDATA6, 0);
880 if (id6 == NULL)
881 return FALSE;
882
883 /* If necessary, trim the import symbol name. */
884 symbol = symbol_name;
885
886 if (import_name_type != IMPORT_NAME)
887 {
888 bfd_boolean skipped_leading_underscore = FALSE;
889 bfd_boolean skipped_leading_at = FALSE;
890 bfd_boolean skipped_leading_question_mark = FALSE;
891 bfd_boolean check_again;
892
893 /* Skip any prefix in symbol_name. */
894 -- symbol;
895 do
896 {
897 check_again = FALSE;
898 ++ symbol;
899
900 switch (*symbol)
901 {
902 case '@':
903 if (! skipped_leading_at)
904 check_again = skipped_leading_at = TRUE;
905 break;
906 case '?':
907 if (! skipped_leading_question_mark)
908 check_again = skipped_leading_question_mark = TRUE;
909 break;
910 case '_':
911 if (! skipped_leading_underscore)
912 check_again = skipped_leading_underscore = TRUE;
913 break;
914 default:
915 break;
916 }
917 }
918 while (check_again);
919 }
920
921 if (import_name_type == IMPORT_NAME_UNDECORATE)
922 {
923 /* Truncate at the first '@' */
924 while (* symbol != 0 && * symbol != '@')
925 symbol ++;
926
927 * symbol = 0;
928 }
929
930 id6->contents[0] = ordinal & 0xff;
931 id6->contents[1] = ordinal >> 8;
932
933 strcpy (id6->contents + 2, symbol);
934 }
935
936 if (import_name_type != IMPORT_ORDINAL)
937 {
938 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
939 pe_ILF_save_relocs (&vars, id4);
940
941 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
942 pe_ILF_save_relocs (&vars, id5);
943 }
944
945 /* Create extra sections depending upon the type of import we are dealing with. */
946 switch (import_type)
947 {
948 int i;
949
950 case IMPORT_CODE:
951 /* Create a .text section.
952 First we need to look up its contents in the jump table. */
953 for (i = NUM_ENTRIES (jtab); i--;)
954 {
955 if (jtab[i].size == 0)
956 continue;
957 if (jtab[i].magic == magic)
958 break;
959 }
960 /* If we did not find a matching entry something is wrong. */
961 if (i < 0)
962 abort ();
963
964 /* Create the .text section. */
965 text = pe_ILF_make_a_section (& vars, ".text", jtab[i].size, SEC_CODE);
966 if (text == NULL)
967 return FALSE;
968
969 /* Copy in the jump code. */
970 memcpy (text->contents, jtab[i].data, jtab[i].size);
971
972 /* Create an import symbol. */
973 pe_ILF_make_a_symbol (& vars, "__imp_", symbol_name, id5, 0);
974 imp_sym = vars.sym_ptr_ptr - 1;
975 imp_index = vars.sym_index - 1;
976
977 /* Create a reloc for the data in the text section. */
978 #ifdef MIPS_ARCH_MAGIC_WINCE
979 if (magic == MIPS_ARCH_MAGIC_WINCE)
980 {
981 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 0, BFD_RELOC_HI16_S,
982 (struct bfd_symbol **) imp_sym,
983 imp_index);
984 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_LO16, text);
985 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 4, BFD_RELOC_LO16,
986 (struct bfd_symbol **) imp_sym,
987 imp_index);
988 }
989 else
990 #endif
991 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
992 BFD_RELOC_32, (asymbol **) imp_sym,
993 imp_index);
994
995 pe_ILF_save_relocs (& vars, text);
996 break;
997
998 case IMPORT_DATA:
999 break;
1000
1001 default:
1002 /* XXX code not yet written. */
1003 abort ();
1004 }
1005
1006 /* Initialise the bfd. */
1007 memset (& internal_f, 0, sizeof (internal_f));
1008
1009 internal_f.f_magic = magic;
1010 internal_f.f_symptr = 0;
1011 internal_f.f_nsyms = 0;
1012 internal_f.f_flags = F_AR32WR | F_LNNO; /* XXX is this correct ? */
1013
1014 if ( ! bfd_set_start_address (abfd, (bfd_vma) 0)
1015 || ! bfd_coff_set_arch_mach_hook (abfd, & internal_f))
1016 return FALSE;
1017
1018 if (bfd_coff_mkobject_hook (abfd, (PTR) & internal_f, NULL) == NULL)
1019 return FALSE;
1020
1021 coff_data (abfd)->pe = 1;
1022 #ifdef THUMBPEMAGIC
1023 if (vars.magic == THUMBPEMAGIC)
1024 /* Stop some linker warnings about thumb code not supporting interworking. */
1025 coff_data (abfd)->flags |= F_INTERWORK | F_INTERWORK_SET;
1026 #endif
1027
1028 /* Switch from file contents to memory contents. */
1029 bfd_cache_close (abfd);
1030
1031 abfd->iostream = (PTR) vars.bim;
1032 abfd->flags |= BFD_IN_MEMORY /* | HAS_LOCALS */;
1033 abfd->where = 0;
1034 obj_sym_filepos (abfd) = 0;
1035
1036 /* Now create a symbol describing the imported value. */
1037 switch (import_type)
1038 {
1039 case IMPORT_CODE:
1040 pe_ILF_make_a_symbol (& vars, "", symbol_name, text,
1041 BSF_NOT_AT_END | BSF_FUNCTION);
1042
1043 /* Create an import symbol for the DLL, without the
1044 .dll suffix. */
1045 ptr = strrchr (source_dll, '.');
1046 if (ptr)
1047 * ptr = 0;
1048 pe_ILF_make_a_symbol (& vars, "__IMPORT_DESCRIPTOR_", source_dll, NULL, 0);
1049 if (ptr)
1050 * ptr = '.';
1051 break;
1052
1053 case IMPORT_DATA:
1054 /* Nothing to do here. */
1055 break;
1056
1057 default:
1058 /* XXX code not yet written. */
1059 abort ();
1060 }
1061
1062 /* Point the bfd at the symbol table. */
1063 obj_symbols (abfd) = vars.sym_cache;
1064 bfd_get_symcount (abfd) = vars.sym_index;
1065
1066 obj_raw_syments (abfd) = vars.native_syms;
1067 obj_raw_syment_count (abfd) = vars.sym_index;
1068
1069 obj_coff_external_syms (abfd) = (PTR) vars.esym_table;
1070 obj_coff_keep_syms (abfd) = TRUE;
1071
1072 obj_convert (abfd) = vars.sym_table;
1073 obj_conv_table_size (abfd) = vars.sym_index;
1074
1075 obj_coff_strings (abfd) = vars.string_table;
1076 obj_coff_keep_strings (abfd) = TRUE;
1077
1078 abfd->flags |= HAS_SYMS;
1079
1080 return TRUE;
1081 }
1082
1083 /* We have detected a Image Library Format archive element.
1084 Decode the element and return the appropriate target. */
1085 static const bfd_target *
1086 pe_ILF_object_p (bfd * abfd)
1087 {
1088 bfd_byte buffer[16];
1089 bfd_byte * ptr;
1090 bfd_byte * symbol_name;
1091 bfd_byte * source_dll;
1092 unsigned int machine;
1093 bfd_size_type size;
1094 unsigned int ordinal;
1095 unsigned int types;
1096 unsigned int magic;
1097
1098 /* Upon entry the first four buyes of the ILF header have
1099 already been read. Now read the rest of the header. */
1100 if (bfd_bread (buffer, (bfd_size_type) 16, abfd) != 16)
1101 return NULL;
1102
1103 ptr = buffer;
1104
1105 /* We do not bother to check the version number.
1106 version = H_GET_16 (abfd, ptr); */
1107 ptr += 2;
1108
1109 machine = H_GET_16 (abfd, ptr);
1110 ptr += 2;
1111
1112 /* Check that the machine type is recognised. */
1113 magic = 0;
1114
1115 switch (machine)
1116 {
1117 case IMAGE_FILE_MACHINE_UNKNOWN:
1118 case IMAGE_FILE_MACHINE_ALPHA:
1119 case IMAGE_FILE_MACHINE_ALPHA64:
1120 case IMAGE_FILE_MACHINE_IA64:
1121 break;
1122
1123 case IMAGE_FILE_MACHINE_I386:
1124 #ifdef I386MAGIC
1125 magic = I386MAGIC;
1126 #endif
1127 break;
1128
1129 case IMAGE_FILE_MACHINE_M68K:
1130 #ifdef MC68AGIC
1131 magic = MC68MAGIC;
1132 #endif
1133 break;
1134
1135 case IMAGE_FILE_MACHINE_R3000:
1136 case IMAGE_FILE_MACHINE_R4000:
1137 case IMAGE_FILE_MACHINE_R10000:
1138
1139 case IMAGE_FILE_MACHINE_MIPS16:
1140 case IMAGE_FILE_MACHINE_MIPSFPU:
1141 case IMAGE_FILE_MACHINE_MIPSFPU16:
1142 #ifdef MIPS_ARCH_MAGIC_WINCE
1143 magic = MIPS_ARCH_MAGIC_WINCE;
1144 #endif
1145 break;
1146
1147 case IMAGE_FILE_MACHINE_SH3:
1148 case IMAGE_FILE_MACHINE_SH4:
1149 #ifdef SH_ARCH_MAGIC_WINCE
1150 magic = SH_ARCH_MAGIC_WINCE;
1151 #endif
1152 break;
1153
1154 case IMAGE_FILE_MACHINE_ARM:
1155 #ifdef ARMPEMAGIC
1156 magic = ARMPEMAGIC;
1157 #endif
1158 break;
1159
1160 case IMAGE_FILE_MACHINE_THUMB:
1161 #ifdef THUMBPEMAGIC
1162 {
1163 extern const bfd_target TARGET_LITTLE_SYM;
1164
1165 if (abfd->xvec == & TARGET_LITTLE_SYM)
1166 magic = THUMBPEMAGIC;
1167 }
1168 #endif
1169 break;
1170
1171 case IMAGE_FILE_MACHINE_POWERPC:
1172 /* We no longer support PowerPC. */
1173 default:
1174 _bfd_error_handler
1175 (_("%B: Unrecognised machine type (0x%x)"
1176 " in Import Library Format archive"),
1177 abfd, machine);
1178 bfd_set_error (bfd_error_malformed_archive);
1179
1180 return NULL;
1181 break;
1182 }
1183
1184 if (magic == 0)
1185 {
1186 _bfd_error_handler
1187 (_("%B: Recognised but unhandled machine type (0x%x)"
1188 " in Import Library Format archive"),
1189 abfd, machine);
1190 bfd_set_error (bfd_error_wrong_format);
1191
1192 return NULL;
1193 }
1194
1195 /* We do not bother to check the date.
1196 date = H_GET_32 (abfd, ptr); */
1197 ptr += 4;
1198
1199 size = H_GET_32 (abfd, ptr);
1200 ptr += 4;
1201
1202 if (size == 0)
1203 {
1204 _bfd_error_handler
1205 (_("%B: size field is zero in Import Library Format header"), abfd);
1206 bfd_set_error (bfd_error_malformed_archive);
1207
1208 return NULL;
1209 }
1210
1211 ordinal = H_GET_16 (abfd, ptr);
1212 ptr += 2;
1213
1214 types = H_GET_16 (abfd, ptr);
1215 /* ptr += 2; */
1216
1217 /* Now read in the two strings that follow. */
1218 ptr = bfd_alloc (abfd, size);
1219 if (ptr == NULL)
1220 return NULL;
1221
1222 if (bfd_bread (ptr, size, abfd) != size)
1223 {
1224 bfd_release (abfd, ptr);
1225 return NULL;
1226 }
1227
1228 symbol_name = ptr;
1229 source_dll = ptr + strlen (ptr) + 1;
1230
1231 /* Verify that the strings are null terminated. */
1232 if (ptr[size - 1] != 0 || ((unsigned long) (source_dll - ptr) >= size))
1233 {
1234 _bfd_error_handler
1235 (_("%B: string not null terminated in ILF object file."), abfd);
1236 bfd_set_error (bfd_error_malformed_archive);
1237 bfd_release (abfd, ptr);
1238 return NULL;
1239 }
1240
1241 /* Now construct the bfd. */
1242 if (! pe_ILF_build_a_bfd (abfd, magic, symbol_name,
1243 source_dll, ordinal, types))
1244 {
1245 bfd_release (abfd, ptr);
1246 return NULL;
1247 }
1248
1249 return abfd->xvec;
1250 }
1251
1252 static const bfd_target *
1253 pe_bfd_object_p (bfd * abfd)
1254 {
1255 bfd_byte buffer[4];
1256 struct external_PEI_DOS_hdr dos_hdr;
1257 struct external_PEI_IMAGE_hdr image_hdr;
1258 file_ptr offset;
1259
1260 /* Detect if this a Microsoft Import Library Format element. */
1261 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1262 || bfd_bread (buffer, (bfd_size_type) 4, abfd) != 4)
1263 {
1264 if (bfd_get_error () != bfd_error_system_call)
1265 bfd_set_error (bfd_error_wrong_format);
1266 return NULL;
1267 }
1268
1269 if (H_GET_32 (abfd, buffer) == 0xffff0000)
1270 return pe_ILF_object_p (abfd);
1271
1272 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1273 || bfd_bread (&dos_hdr, (bfd_size_type) sizeof (dos_hdr), abfd)
1274 != sizeof (dos_hdr))
1275 {
1276 if (bfd_get_error () != bfd_error_system_call)
1277 bfd_set_error (bfd_error_wrong_format);
1278 return NULL;
1279 }
1280
1281 /* There are really two magic numbers involved; the magic number
1282 that says this is a NT executable (PEI) and the magic number that
1283 determines the architecture. The former is DOSMAGIC, stored in
1284 the e_magic field. The latter is stored in the f_magic field.
1285 If the NT magic number isn't valid, the architecture magic number
1286 could be mimicked by some other field (specifically, the number
1287 of relocs in section 3). Since this routine can only be called
1288 correctly for a PEI file, check the e_magic number here, and, if
1289 it doesn't match, clobber the f_magic number so that we don't get
1290 a false match. */
1291 if (H_GET_16 (abfd, dos_hdr.e_magic) != DOSMAGIC)
1292 {
1293 bfd_set_error (bfd_error_wrong_format);
1294 return NULL;
1295 }
1296
1297 offset = H_GET_32 (abfd, dos_hdr.e_lfanew);
1298 if (bfd_seek (abfd, offset, SEEK_SET) != 0
1299 || (bfd_bread (&image_hdr, (bfd_size_type) sizeof (image_hdr), abfd)
1300 != sizeof (image_hdr)))
1301 {
1302 if (bfd_get_error () != bfd_error_system_call)
1303 bfd_set_error (bfd_error_wrong_format);
1304 return NULL;
1305 }
1306
1307 if (H_GET_32 (abfd, image_hdr.nt_signature) != 0x4550)
1308 {
1309 bfd_set_error (bfd_error_wrong_format);
1310 return NULL;
1311 }
1312
1313 /* Here is the hack. coff_object_p wants to read filhsz bytes to
1314 pick up the COFF header for PE, see "struct external_PEI_filehdr"
1315 in include/coff/pe.h. We adjust so that that will work. */
1316 if (bfd_seek (abfd, (file_ptr) (offset - sizeof (dos_hdr)), SEEK_SET) != 0)
1317 {
1318 if (bfd_get_error () != bfd_error_system_call)
1319 bfd_set_error (bfd_error_wrong_format);
1320 return NULL;
1321 }
1322
1323 return coff_object_p (abfd);
1324 }
1325
1326 #define coff_object_p pe_bfd_object_p
1327 #endif /* COFF_IMAGE_WITH_PE */
This page took 0.063529 seconds and 4 git commands to generate.