Update ARC instruction data-base.
[deliverable/binutils-gdb.git] / bfd / peicode.h
1 /* Support for the generic parts of PE/PEI, for BFD.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3 Written by Cygnus Solutions.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /* Most of this hacked by Steve Chamberlain,
24 sac@cygnus.com
25
26 PE/PEI rearrangement (and code added): Donn Terry
27 Softway Systems, Inc. */
28
29 /* Hey look, some documentation [and in a place you expect to find it]!
30
31 The main reference for the pei format is "Microsoft Portable Executable
32 and Common Object File Format Specification 4.1". Get it if you need to
33 do some serious hacking on this code.
34
35 Another reference:
36 "Peering Inside the PE: A Tour of the Win32 Portable Executable
37 File Format", MSJ 1994, Volume 9.
38
39 The *sole* difference between the pe format and the pei format is that the
40 latter has an MSDOS 2.0 .exe header on the front that prints the message
41 "This app must be run under Windows." (or some such).
42 (FIXME: Whether that statement is *really* true or not is unknown.
43 Are there more subtle differences between pe and pei formats?
44 For now assume there aren't. If you find one, then for God sakes
45 document it here!)
46
47 The Microsoft docs use the word "image" instead of "executable" because
48 the former can also refer to a DLL (shared library). Confusion can arise
49 because the `i' in `pei' also refers to "image". The `pe' format can
50 also create images (i.e. executables), it's just that to run on a win32
51 system you need to use the pei format.
52
53 FIXME: Please add more docs here so the next poor fool that has to hack
54 on this code has a chance of getting something accomplished without
55 wasting too much time. */
56
57 #include "libpei.h"
58
59 static bfd_boolean (*pe_saved_coff_bfd_print_private_bfd_data) (bfd *, void *) =
60 #ifndef coff_bfd_print_private_bfd_data
61 NULL;
62 #else
63 coff_bfd_print_private_bfd_data;
64 #undef coff_bfd_print_private_bfd_data
65 #endif
66
67 static bfd_boolean pe_print_private_bfd_data (bfd *, void *);
68 #define coff_bfd_print_private_bfd_data pe_print_private_bfd_data
69
70 static bfd_boolean (*pe_saved_coff_bfd_copy_private_bfd_data) (bfd *, bfd *) =
71 #ifndef coff_bfd_copy_private_bfd_data
72 NULL;
73 #else
74 coff_bfd_copy_private_bfd_data;
75 #undef coff_bfd_copy_private_bfd_data
76 #endif
77
78 static bfd_boolean pe_bfd_copy_private_bfd_data (bfd *, bfd *);
79 #define coff_bfd_copy_private_bfd_data pe_bfd_copy_private_bfd_data
80
81 #define coff_mkobject pe_mkobject
82 #define coff_mkobject_hook pe_mkobject_hook
83
84 #ifdef COFF_IMAGE_WITH_PE
85 /* This structure contains static variables used by the ILF code. */
86 typedef asection * asection_ptr;
87
88 typedef struct
89 {
90 bfd * abfd;
91 bfd_byte * data;
92 struct bfd_in_memory * bim;
93 unsigned short magic;
94
95 arelent * reltab;
96 unsigned int relcount;
97
98 coff_symbol_type * sym_cache;
99 coff_symbol_type * sym_ptr;
100 unsigned int sym_index;
101
102 unsigned int * sym_table;
103 unsigned int * table_ptr;
104
105 combined_entry_type * native_syms;
106 combined_entry_type * native_ptr;
107
108 coff_symbol_type ** sym_ptr_table;
109 coff_symbol_type ** sym_ptr_ptr;
110
111 unsigned int sec_index;
112
113 char * string_table;
114 char * string_ptr;
115 char * end_string_ptr;
116
117 SYMENT * esym_table;
118 SYMENT * esym_ptr;
119
120 struct internal_reloc * int_reltab;
121 }
122 pe_ILF_vars;
123 #endif /* COFF_IMAGE_WITH_PE */
124
125 const bfd_target *coff_real_object_p
126 (bfd *, unsigned, struct internal_filehdr *, struct internal_aouthdr *);
127 \f
128 #ifndef NO_COFF_RELOCS
129 static void
130 coff_swap_reloc_in (bfd * abfd, void * src, void * dst)
131 {
132 RELOC *reloc_src = (RELOC *) src;
133 struct internal_reloc *reloc_dst = (struct internal_reloc *) dst;
134
135 reloc_dst->r_vaddr = H_GET_32 (abfd, reloc_src->r_vaddr);
136 reloc_dst->r_symndx = H_GET_S32 (abfd, reloc_src->r_symndx);
137 reloc_dst->r_type = H_GET_16 (abfd, reloc_src->r_type);
138 #ifdef SWAP_IN_RELOC_OFFSET
139 reloc_dst->r_offset = SWAP_IN_RELOC_OFFSET (abfd, reloc_src->r_offset);
140 #endif
141 }
142
143 static unsigned int
144 coff_swap_reloc_out (bfd * abfd, void * src, void * dst)
145 {
146 struct internal_reloc *reloc_src = (struct internal_reloc *) src;
147 struct external_reloc *reloc_dst = (struct external_reloc *) dst;
148
149 H_PUT_32 (abfd, reloc_src->r_vaddr, reloc_dst->r_vaddr);
150 H_PUT_32 (abfd, reloc_src->r_symndx, reloc_dst->r_symndx);
151 H_PUT_16 (abfd, reloc_src->r_type, reloc_dst->r_type);
152
153 #ifdef SWAP_OUT_RELOC_OFFSET
154 SWAP_OUT_RELOC_OFFSET (abfd, reloc_src->r_offset, reloc_dst->r_offset);
155 #endif
156 #ifdef SWAP_OUT_RELOC_EXTRA
157 SWAP_OUT_RELOC_EXTRA (abfd, reloc_src, reloc_dst);
158 #endif
159 return RELSZ;
160 }
161 #endif /* not NO_COFF_RELOCS */
162
163 #ifdef COFF_IMAGE_WITH_PE
164 #undef FILHDR
165 #define FILHDR struct external_PEI_IMAGE_hdr
166 #endif
167
168 static void
169 coff_swap_filehdr_in (bfd * abfd, void * src, void * dst)
170 {
171 FILHDR *filehdr_src = (FILHDR *) src;
172 struct internal_filehdr *filehdr_dst = (struct internal_filehdr *) dst;
173
174 filehdr_dst->f_magic = H_GET_16 (abfd, filehdr_src->f_magic);
175 filehdr_dst->f_nscns = H_GET_16 (abfd, filehdr_src->f_nscns);
176 filehdr_dst->f_timdat = H_GET_32 (abfd, filehdr_src->f_timdat);
177 filehdr_dst->f_nsyms = H_GET_32 (abfd, filehdr_src->f_nsyms);
178 filehdr_dst->f_flags = H_GET_16 (abfd, filehdr_src->f_flags);
179 filehdr_dst->f_symptr = H_GET_32 (abfd, filehdr_src->f_symptr);
180
181 /* Other people's tools sometimes generate headers with an nsyms but
182 a zero symptr. */
183 if (filehdr_dst->f_nsyms != 0 && filehdr_dst->f_symptr == 0)
184 {
185 filehdr_dst->f_nsyms = 0;
186 filehdr_dst->f_flags |= F_LSYMS;
187 }
188
189 filehdr_dst->f_opthdr = H_GET_16 (abfd, filehdr_src-> f_opthdr);
190 }
191
192 #ifdef COFF_IMAGE_WITH_PE
193 # define coff_swap_filehdr_out _bfd_XXi_only_swap_filehdr_out
194 #elif defined COFF_WITH_pex64
195 # define coff_swap_filehdr_out _bfd_pex64_only_swap_filehdr_out
196 #elif defined COFF_WITH_pep
197 # define coff_swap_filehdr_out _bfd_pep_only_swap_filehdr_out
198 #else
199 # define coff_swap_filehdr_out _bfd_pe_only_swap_filehdr_out
200 #endif
201
202 static void
203 coff_swap_scnhdr_in (bfd * abfd, void * ext, void * in)
204 {
205 SCNHDR *scnhdr_ext = (SCNHDR *) ext;
206 struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in;
207
208 memcpy (scnhdr_int->s_name, scnhdr_ext->s_name, sizeof (scnhdr_int->s_name));
209
210 scnhdr_int->s_vaddr = GET_SCNHDR_VADDR (abfd, scnhdr_ext->s_vaddr);
211 scnhdr_int->s_paddr = GET_SCNHDR_PADDR (abfd, scnhdr_ext->s_paddr);
212 scnhdr_int->s_size = GET_SCNHDR_SIZE (abfd, scnhdr_ext->s_size);
213 scnhdr_int->s_scnptr = GET_SCNHDR_SCNPTR (abfd, scnhdr_ext->s_scnptr);
214 scnhdr_int->s_relptr = GET_SCNHDR_RELPTR (abfd, scnhdr_ext->s_relptr);
215 scnhdr_int->s_lnnoptr = GET_SCNHDR_LNNOPTR (abfd, scnhdr_ext->s_lnnoptr);
216 scnhdr_int->s_flags = H_GET_32 (abfd, scnhdr_ext->s_flags);
217
218 /* MS handles overflow of line numbers by carrying into the reloc
219 field (it appears). Since it's supposed to be zero for PE
220 *IMAGE* format, that's safe. This is still a bit iffy. */
221 #ifdef COFF_IMAGE_WITH_PE
222 scnhdr_int->s_nlnno = (H_GET_16 (abfd, scnhdr_ext->s_nlnno)
223 + (H_GET_16 (abfd, scnhdr_ext->s_nreloc) << 16));
224 scnhdr_int->s_nreloc = 0;
225 #else
226 scnhdr_int->s_nreloc = H_GET_16 (abfd, scnhdr_ext->s_nreloc);
227 scnhdr_int->s_nlnno = H_GET_16 (abfd, scnhdr_ext->s_nlnno);
228 #endif
229
230 if (scnhdr_int->s_vaddr != 0)
231 {
232 scnhdr_int->s_vaddr += pe_data (abfd)->pe_opthdr.ImageBase;
233 /* Do not cut upper 32-bits for 64-bit vma. */
234 #ifndef COFF_WITH_pex64
235 scnhdr_int->s_vaddr &= 0xffffffff;
236 #endif
237 }
238
239 #ifndef COFF_NO_HACK_SCNHDR_SIZE
240 /* If this section holds uninitialized data and is from an object file
241 or from an executable image that has not initialized the field,
242 or if the image is an executable file and the physical size is padded,
243 use the virtual size (stored in s_paddr) instead. */
244 if (scnhdr_int->s_paddr > 0
245 && (((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0
246 && (! bfd_pei_p (abfd) || scnhdr_int->s_size == 0))
247 || (bfd_pei_p (abfd) && (scnhdr_int->s_size > scnhdr_int->s_paddr))))
248 /* This code used to set scnhdr_int->s_paddr to 0. However,
249 coff_set_alignment_hook stores s_paddr in virt_size, which
250 only works if it correctly holds the virtual size of the
251 section. */
252 scnhdr_int->s_size = scnhdr_int->s_paddr;
253 #endif
254 }
255
256 static bfd_boolean
257 pe_mkobject (bfd * abfd)
258 {
259 pe_data_type *pe;
260 bfd_size_type amt = sizeof (pe_data_type);
261
262 abfd->tdata.pe_obj_data = (struct pe_tdata *) bfd_zalloc (abfd, amt);
263
264 if (abfd->tdata.pe_obj_data == 0)
265 return FALSE;
266
267 pe = pe_data (abfd);
268
269 pe->coff.pe = 1;
270
271 /* in_reloc_p is architecture dependent. */
272 pe->in_reloc_p = in_reloc_p;
273
274 memset (& pe->pe_opthdr, 0, sizeof pe->pe_opthdr);
275 return TRUE;
276 }
277
278 /* Create the COFF backend specific information. */
279
280 static void *
281 pe_mkobject_hook (bfd * abfd,
282 void * filehdr,
283 void * aouthdr ATTRIBUTE_UNUSED)
284 {
285 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
286 pe_data_type *pe;
287
288 if (! pe_mkobject (abfd))
289 return NULL;
290
291 pe = pe_data (abfd);
292 pe->coff.sym_filepos = internal_f->f_symptr;
293 /* These members communicate important constants about the symbol
294 table to GDB's symbol-reading code. These `constants'
295 unfortunately vary among coff implementations... */
296 pe->coff.local_n_btmask = N_BTMASK;
297 pe->coff.local_n_btshft = N_BTSHFT;
298 pe->coff.local_n_tmask = N_TMASK;
299 pe->coff.local_n_tshift = N_TSHIFT;
300 pe->coff.local_symesz = SYMESZ;
301 pe->coff.local_auxesz = AUXESZ;
302 pe->coff.local_linesz = LINESZ;
303
304 pe->coff.timestamp = internal_f->f_timdat;
305
306 obj_raw_syment_count (abfd) =
307 obj_conv_table_size (abfd) =
308 internal_f->f_nsyms;
309
310 pe->real_flags = internal_f->f_flags;
311
312 if ((internal_f->f_flags & F_DLL) != 0)
313 pe->dll = 1;
314
315 if ((internal_f->f_flags & IMAGE_FILE_DEBUG_STRIPPED) == 0)
316 abfd->flags |= HAS_DEBUG;
317
318 #ifdef COFF_IMAGE_WITH_PE
319 if (aouthdr)
320 pe->pe_opthdr = ((struct internal_aouthdr *) aouthdr)->pe;
321 #endif
322
323 #ifdef ARM
324 if (! _bfd_coff_arm_set_private_flags (abfd, internal_f->f_flags))
325 coff_data (abfd) ->flags = 0;
326 #endif
327
328 return (void *) pe;
329 }
330
331 static bfd_boolean
332 pe_print_private_bfd_data (bfd *abfd, void * vfile)
333 {
334 FILE *file = (FILE *) vfile;
335
336 if (!_bfd_XX_print_private_bfd_data_common (abfd, vfile))
337 return FALSE;
338
339 if (pe_saved_coff_bfd_print_private_bfd_data == NULL)
340 return TRUE;
341
342 fputc ('\n', file);
343
344 return pe_saved_coff_bfd_print_private_bfd_data (abfd, vfile);
345 }
346
347 /* Copy any private info we understand from the input bfd
348 to the output bfd. */
349
350 static bfd_boolean
351 pe_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
352 {
353 /* PR binutils/716: Copy the large address aware flag.
354 XXX: Should we be copying other flags or other fields in the pe_data()
355 structure ? */
356 if (pe_data (obfd) != NULL
357 && pe_data (ibfd) != NULL
358 && pe_data (ibfd)->real_flags & IMAGE_FILE_LARGE_ADDRESS_AWARE)
359 pe_data (obfd)->real_flags |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
360
361 if (!_bfd_XX_bfd_copy_private_bfd_data_common (ibfd, obfd))
362 return FALSE;
363
364 if (pe_saved_coff_bfd_copy_private_bfd_data)
365 return pe_saved_coff_bfd_copy_private_bfd_data (ibfd, obfd);
366
367 return TRUE;
368 }
369
370 #define coff_bfd_copy_private_section_data \
371 _bfd_XX_bfd_copy_private_section_data
372
373 #define coff_get_symbol_info _bfd_XX_get_symbol_info
374
375 #ifdef COFF_IMAGE_WITH_PE
376 \f
377 /* Code to handle Microsoft's Image Library Format.
378 Also known as LINK6 format.
379 Documentation about this format can be found at:
380
381 http://msdn.microsoft.com/library/specs/pecoff_section8.htm */
382
383 /* The following constants specify the sizes of the various data
384 structures that we have to create in order to build a bfd describing
385 an ILF object file. The final "+ 1" in the definitions of SIZEOF_IDATA6
386 and SIZEOF_IDATA7 below is to allow for the possibility that we might
387 need a padding byte in order to ensure 16 bit alignment for the section's
388 contents.
389
390 The value for SIZEOF_ILF_STRINGS is computed as follows:
391
392 There will be NUM_ILF_SECTIONS section symbols. Allow 9 characters
393 per symbol for their names (longest section name is .idata$x).
394
395 There will be two symbols for the imported value, one the symbol name
396 and one with _imp__ prefixed. Allowing for the terminating nul's this
397 is strlen (symbol_name) * 2 + 8 + 21 + strlen (source_dll).
398
399 The strings in the string table must start STRING__SIZE_SIZE bytes into
400 the table in order to for the string lookup code in coffgen/coffcode to
401 work. */
402 #define NUM_ILF_RELOCS 8
403 #define NUM_ILF_SECTIONS 6
404 #define NUM_ILF_SYMS (2 + NUM_ILF_SECTIONS)
405
406 #define SIZEOF_ILF_SYMS (NUM_ILF_SYMS * sizeof (* vars.sym_cache))
407 #define SIZEOF_ILF_SYM_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_table))
408 #define SIZEOF_ILF_NATIVE_SYMS (NUM_ILF_SYMS * sizeof (* vars.native_syms))
409 #define SIZEOF_ILF_SYM_PTR_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_ptr_table))
410 #define SIZEOF_ILF_EXT_SYMS (NUM_ILF_SYMS * sizeof (* vars.esym_table))
411 #define SIZEOF_ILF_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.reltab))
412 #define SIZEOF_ILF_INT_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.int_reltab))
413 #define SIZEOF_ILF_STRINGS (strlen (symbol_name) * 2 + 8 \
414 + 21 + strlen (source_dll) \
415 + NUM_ILF_SECTIONS * 9 \
416 + STRING_SIZE_SIZE)
417 #define SIZEOF_IDATA2 (5 * 4)
418
419 /* For PEx64 idata4 & 5 have thumb size of 8 bytes. */
420 #ifdef COFF_WITH_pex64
421 #define SIZEOF_IDATA4 (2 * 4)
422 #define SIZEOF_IDATA5 (2 * 4)
423 #else
424 #define SIZEOF_IDATA4 (1 * 4)
425 #define SIZEOF_IDATA5 (1 * 4)
426 #endif
427
428 #define SIZEOF_IDATA6 (2 + strlen (symbol_name) + 1 + 1)
429 #define SIZEOF_IDATA7 (strlen (source_dll) + 1 + 1)
430 #define SIZEOF_ILF_SECTIONS (NUM_ILF_SECTIONS * sizeof (struct coff_section_tdata))
431
432 #define ILF_DATA_SIZE \
433 + SIZEOF_ILF_SYMS \
434 + SIZEOF_ILF_SYM_TABLE \
435 + SIZEOF_ILF_NATIVE_SYMS \
436 + SIZEOF_ILF_SYM_PTR_TABLE \
437 + SIZEOF_ILF_EXT_SYMS \
438 + SIZEOF_ILF_RELOCS \
439 + SIZEOF_ILF_INT_RELOCS \
440 + SIZEOF_ILF_STRINGS \
441 + SIZEOF_IDATA2 \
442 + SIZEOF_IDATA4 \
443 + SIZEOF_IDATA5 \
444 + SIZEOF_IDATA6 \
445 + SIZEOF_IDATA7 \
446 + SIZEOF_ILF_SECTIONS \
447 + MAX_TEXT_SECTION_SIZE
448
449 /* Create an empty relocation against the given symbol. */
450
451 static void
452 pe_ILF_make_a_symbol_reloc (pe_ILF_vars * vars,
453 bfd_vma address,
454 bfd_reloc_code_real_type reloc,
455 struct bfd_symbol ** sym,
456 unsigned int sym_index)
457 {
458 arelent * entry;
459 struct internal_reloc * internal;
460
461 entry = vars->reltab + vars->relcount;
462 internal = vars->int_reltab + vars->relcount;
463
464 entry->address = address;
465 entry->addend = 0;
466 entry->howto = bfd_reloc_type_lookup (vars->abfd, reloc);
467 entry->sym_ptr_ptr = sym;
468
469 internal->r_vaddr = address;
470 internal->r_symndx = sym_index;
471 internal->r_type = entry->howto->type;
472
473 vars->relcount ++;
474
475 BFD_ASSERT (vars->relcount <= NUM_ILF_RELOCS);
476 }
477
478 /* Create an empty relocation against the given section. */
479
480 static void
481 pe_ILF_make_a_reloc (pe_ILF_vars * vars,
482 bfd_vma address,
483 bfd_reloc_code_real_type reloc,
484 asection_ptr sec)
485 {
486 pe_ILF_make_a_symbol_reloc (vars, address, reloc, sec->symbol_ptr_ptr,
487 coff_section_data (vars->abfd, sec)->i);
488 }
489
490 /* Move the queued relocs into the given section. */
491
492 static void
493 pe_ILF_save_relocs (pe_ILF_vars * vars,
494 asection_ptr sec)
495 {
496 /* Make sure that there is somewhere to store the internal relocs. */
497 if (coff_section_data (vars->abfd, sec) == NULL)
498 /* We should probably return an error indication here. */
499 abort ();
500
501 coff_section_data (vars->abfd, sec)->relocs = vars->int_reltab;
502 coff_section_data (vars->abfd, sec)->keep_relocs = TRUE;
503
504 sec->relocation = vars->reltab;
505 sec->reloc_count = vars->relcount;
506 sec->flags |= SEC_RELOC;
507
508 vars->reltab += vars->relcount;
509 vars->int_reltab += vars->relcount;
510 vars->relcount = 0;
511
512 BFD_ASSERT ((bfd_byte *) vars->int_reltab < (bfd_byte *) vars->string_table);
513 }
514
515 /* Create a global symbol and add it to the relevant tables. */
516
517 static void
518 pe_ILF_make_a_symbol (pe_ILF_vars * vars,
519 const char * prefix,
520 const char * symbol_name,
521 asection_ptr section,
522 flagword extra_flags)
523 {
524 coff_symbol_type * sym;
525 combined_entry_type * ent;
526 SYMENT * esym;
527 unsigned short sclass;
528
529 if (extra_flags & BSF_LOCAL)
530 sclass = C_STAT;
531 else
532 sclass = C_EXT;
533
534 #ifdef THUMBPEMAGIC
535 if (vars->magic == THUMBPEMAGIC)
536 {
537 if (extra_flags & BSF_FUNCTION)
538 sclass = C_THUMBEXTFUNC;
539 else if (extra_flags & BSF_LOCAL)
540 sclass = C_THUMBSTAT;
541 else
542 sclass = C_THUMBEXT;
543 }
544 #endif
545
546 BFD_ASSERT (vars->sym_index < NUM_ILF_SYMS);
547
548 sym = vars->sym_ptr;
549 ent = vars->native_ptr;
550 esym = vars->esym_ptr;
551
552 /* Copy the symbol's name into the string table. */
553 sprintf (vars->string_ptr, "%s%s", prefix, symbol_name);
554
555 if (section == NULL)
556 section = bfd_und_section_ptr;
557
558 /* Initialise the external symbol. */
559 H_PUT_32 (vars->abfd, vars->string_ptr - vars->string_table,
560 esym->e.e.e_offset);
561 H_PUT_16 (vars->abfd, section->target_index, esym->e_scnum);
562 esym->e_sclass[0] = sclass;
563
564 /* The following initialisations are unnecessary - the memory is
565 zero initialised. They are just kept here as reminders. */
566
567 /* Initialise the internal symbol structure. */
568 ent->u.syment.n_sclass = sclass;
569 ent->u.syment.n_scnum = section->target_index;
570 ent->u.syment._n._n_n._n_offset = (bfd_hostptr_t) sym;
571 ent->is_sym = TRUE;
572
573 sym->symbol.the_bfd = vars->abfd;
574 sym->symbol.name = vars->string_ptr;
575 sym->symbol.flags = BSF_EXPORT | BSF_GLOBAL | extra_flags;
576 sym->symbol.section = section;
577 sym->native = ent;
578
579 * vars->table_ptr = vars->sym_index;
580 * vars->sym_ptr_ptr = sym;
581
582 /* Adjust pointers for the next symbol. */
583 vars->sym_index ++;
584 vars->sym_ptr ++;
585 vars->sym_ptr_ptr ++;
586 vars->table_ptr ++;
587 vars->native_ptr ++;
588 vars->esym_ptr ++;
589 vars->string_ptr += strlen (symbol_name) + strlen (prefix) + 1;
590
591 BFD_ASSERT (vars->string_ptr < vars->end_string_ptr);
592 }
593
594 /* Create a section. */
595
596 static asection_ptr
597 pe_ILF_make_a_section (pe_ILF_vars * vars,
598 const char * name,
599 unsigned int size,
600 flagword extra_flags)
601 {
602 asection_ptr sec;
603 flagword flags;
604
605 sec = bfd_make_section_old_way (vars->abfd, name);
606 if (sec == NULL)
607 return NULL;
608
609 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_KEEP | SEC_IN_MEMORY;
610
611 bfd_set_section_flags (vars->abfd, sec, flags | extra_flags);
612
613 (void) bfd_set_section_alignment (vars->abfd, sec, 2);
614
615 /* Check that we will not run out of space. */
616 BFD_ASSERT (vars->data + size < vars->bim->buffer + vars->bim->size);
617
618 /* Set the section size and contents. The actual
619 contents are filled in by our parent. */
620 bfd_set_section_size (vars->abfd, sec, (bfd_size_type) size);
621 sec->contents = vars->data;
622 sec->target_index = vars->sec_index ++;
623
624 /* Advance data pointer in the vars structure. */
625 vars->data += size;
626
627 /* Skip the padding byte if it was not needed.
628 The logic here is that if the string length is odd,
629 then the entire string length, including the null byte,
630 is even and so the extra, padding byte, is not needed. */
631 if (size & 1)
632 vars->data --;
633
634 # if (GCC_VERSION >= 3000)
635 /* PR 18758: See note in pe_ILF_buid_a_bfd. We must make sure that we
636 preserve host alignment requirements. We test 'size' rather than
637 vars.data as we cannot perform binary arithmetic on pointers. We assume
638 that vars.data was sufficiently aligned upon entry to this function.
639 The BFD_ASSERTs in this functions will warn us if we run out of room,
640 but we should already have enough padding built in to ILF_DATA_SIZE. */
641 {
642 unsigned int alignment = __alignof__ (struct coff_section_tdata);
643
644 if (size & (alignment - 1))
645 vars->data += alignment - (size & (alignment - 1));
646 }
647 #endif
648 /* Create a coff_section_tdata structure for our use. */
649 sec->used_by_bfd = (struct coff_section_tdata *) vars->data;
650 vars->data += sizeof (struct coff_section_tdata);
651
652 BFD_ASSERT (vars->data <= vars->bim->buffer + vars->bim->size);
653
654 /* Create a symbol to refer to this section. */
655 pe_ILF_make_a_symbol (vars, "", name, sec, BSF_LOCAL);
656
657 /* Cache the index to the symbol in the coff_section_data structure. */
658 coff_section_data (vars->abfd, sec)->i = vars->sym_index - 1;
659
660 return sec;
661 }
662
663 /* This structure contains the code that goes into the .text section
664 in order to perform a jump into the DLL lookup table. The entries
665 in the table are index by the magic number used to represent the
666 machine type in the PE file. The contents of the data[] arrays in
667 these entries are stolen from the jtab[] arrays in ld/pe-dll.c.
668 The SIZE field says how many bytes in the DATA array are actually
669 used. The OFFSET field says where in the data array the address
670 of the .idata$5 section should be placed. */
671 #define MAX_TEXT_SECTION_SIZE 32
672
673 typedef struct
674 {
675 unsigned short magic;
676 unsigned char data[MAX_TEXT_SECTION_SIZE];
677 unsigned int size;
678 unsigned int offset;
679 }
680 jump_table;
681
682 static jump_table jtab[] =
683 {
684 #ifdef I386MAGIC
685 { I386MAGIC,
686 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
687 8, 2
688 },
689 #endif
690
691 #ifdef AMD64MAGIC
692 { AMD64MAGIC,
693 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
694 8, 2
695 },
696 #endif
697
698 #ifdef MC68MAGIC
699 { MC68MAGIC,
700 { /* XXX fill me in */ },
701 0, 0
702 },
703 #endif
704
705 #ifdef MIPS_ARCH_MAGIC_WINCE
706 { MIPS_ARCH_MAGIC_WINCE,
707 { 0x00, 0x00, 0x08, 0x3c, 0x00, 0x00, 0x08, 0x8d,
708 0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00 },
709 16, 0
710 },
711 #endif
712
713 #ifdef SH_ARCH_MAGIC_WINCE
714 { SH_ARCH_MAGIC_WINCE,
715 { 0x01, 0xd0, 0x02, 0x60, 0x2b, 0x40,
716 0x09, 0x00, 0x00, 0x00, 0x00, 0x00 },
717 12, 8
718 },
719 #endif
720
721 #ifdef ARMPEMAGIC
722 { ARMPEMAGIC,
723 { 0x00, 0xc0, 0x9f, 0xe5, 0x00, 0xf0,
724 0x9c, 0xe5, 0x00, 0x00, 0x00, 0x00},
725 12, 8
726 },
727 #endif
728
729 #ifdef THUMBPEMAGIC
730 { THUMBPEMAGIC,
731 { 0x40, 0xb4, 0x02, 0x4e, 0x36, 0x68, 0xb4, 0x46,
732 0x40, 0xbc, 0x60, 0x47, 0x00, 0x00, 0x00, 0x00 },
733 16, 12
734 },
735 #endif
736 { 0, { 0 }, 0, 0 }
737 };
738
739 #ifndef NUM_ENTRIES
740 #define NUM_ENTRIES(a) (sizeof (a) / sizeof (a)[0])
741 #endif
742
743 /* Build a full BFD from the information supplied in a ILF object. */
744
745 static bfd_boolean
746 pe_ILF_build_a_bfd (bfd * abfd,
747 unsigned int magic,
748 char * symbol_name,
749 char * source_dll,
750 unsigned int ordinal,
751 unsigned int types)
752 {
753 bfd_byte * ptr;
754 pe_ILF_vars vars;
755 struct internal_filehdr internal_f;
756 unsigned int import_type;
757 unsigned int import_name_type;
758 asection_ptr id4, id5, id6 = NULL, text = NULL;
759 coff_symbol_type ** imp_sym;
760 unsigned int imp_index;
761
762 /* Decode and verify the types field of the ILF structure. */
763 import_type = types & 0x3;
764 import_name_type = (types & 0x1c) >> 2;
765
766 switch (import_type)
767 {
768 case IMPORT_CODE:
769 case IMPORT_DATA:
770 break;
771
772 case IMPORT_CONST:
773 /* XXX code yet to be written. */
774 _bfd_error_handler (_("%B: Unhandled import type; %x"),
775 abfd, import_type);
776 return FALSE;
777
778 default:
779 _bfd_error_handler (_("%B: Unrecognised import type; %x"),
780 abfd, import_type);
781 return FALSE;
782 }
783
784 switch (import_name_type)
785 {
786 case IMPORT_ORDINAL:
787 case IMPORT_NAME:
788 case IMPORT_NAME_NOPREFIX:
789 case IMPORT_NAME_UNDECORATE:
790 break;
791
792 default:
793 _bfd_error_handler (_("%B: Unrecognised import name type; %x"),
794 abfd, import_name_type);
795 return FALSE;
796 }
797
798 /* Initialise local variables.
799
800 Note these are kept in a structure rather than being
801 declared as statics since bfd frowns on global variables.
802
803 We are going to construct the contents of the BFD in memory,
804 so allocate all the space that we will need right now. */
805 vars.bim
806 = (struct bfd_in_memory *) bfd_malloc ((bfd_size_type) sizeof (*vars.bim));
807 if (vars.bim == NULL)
808 return FALSE;
809
810 ptr = (bfd_byte *) bfd_zmalloc ((bfd_size_type) ILF_DATA_SIZE);
811 vars.bim->buffer = ptr;
812 vars.bim->size = ILF_DATA_SIZE;
813 if (ptr == NULL)
814 goto error_return;
815
816 /* Initialise the pointers to regions of the memory and the
817 other contents of the pe_ILF_vars structure as well. */
818 vars.sym_cache = (coff_symbol_type *) ptr;
819 vars.sym_ptr = (coff_symbol_type *) ptr;
820 vars.sym_index = 0;
821 ptr += SIZEOF_ILF_SYMS;
822
823 vars.sym_table = (unsigned int *) ptr;
824 vars.table_ptr = (unsigned int *) ptr;
825 ptr += SIZEOF_ILF_SYM_TABLE;
826
827 vars.native_syms = (combined_entry_type *) ptr;
828 vars.native_ptr = (combined_entry_type *) ptr;
829 ptr += SIZEOF_ILF_NATIVE_SYMS;
830
831 vars.sym_ptr_table = (coff_symbol_type **) ptr;
832 vars.sym_ptr_ptr = (coff_symbol_type **) ptr;
833 ptr += SIZEOF_ILF_SYM_PTR_TABLE;
834
835 vars.esym_table = (SYMENT *) ptr;
836 vars.esym_ptr = (SYMENT *) ptr;
837 ptr += SIZEOF_ILF_EXT_SYMS;
838
839 vars.reltab = (arelent *) ptr;
840 vars.relcount = 0;
841 ptr += SIZEOF_ILF_RELOCS;
842
843 vars.int_reltab = (struct internal_reloc *) ptr;
844 ptr += SIZEOF_ILF_INT_RELOCS;
845
846 vars.string_table = (char *) ptr;
847 vars.string_ptr = (char *) ptr + STRING_SIZE_SIZE;
848 ptr += SIZEOF_ILF_STRINGS;
849 vars.end_string_ptr = (char *) ptr;
850
851 /* The remaining space in bim->buffer is used
852 by the pe_ILF_make_a_section() function. */
853 # if (GCC_VERSION >= 3000)
854 /* PR 18758: Make sure that the data area is sufficiently aligned for
855 pointers on the host. __alignof__ is a gcc extension, hence the test
856 above. For other compilers we will have to assume that the alignment is
857 unimportant, or else extra code can be added here and in
858 pe_ILF_make_a_section.
859
860 Note - we cannot test 'ptr' directly as it is illegal to perform binary
861 arithmetic on pointers, but we know that the strings section is the only
862 one that might end on an unaligned boundary. */
863 {
864 unsigned int alignment = __alignof__ (char *);
865
866 if (SIZEOF_ILF_STRINGS & (alignment - 1))
867 ptr += alignment - (SIZEOF_ILF_STRINGS & (alignment - 1));
868 }
869 #endif
870
871 vars.data = ptr;
872 vars.abfd = abfd;
873 vars.sec_index = 0;
874 vars.magic = magic;
875
876 /* Create the initial .idata$<n> sections:
877 [.idata$2: Import Directory Table -- not needed]
878 .idata$4: Import Lookup Table
879 .idata$5: Import Address Table
880
881 Note we do not create a .idata$3 section as this is
882 created for us by the linker script. */
883 id4 = pe_ILF_make_a_section (& vars, ".idata$4", SIZEOF_IDATA4, 0);
884 id5 = pe_ILF_make_a_section (& vars, ".idata$5", SIZEOF_IDATA5, 0);
885 if (id4 == NULL || id5 == NULL)
886 goto error_return;
887
888 /* Fill in the contents of these sections. */
889 if (import_name_type == IMPORT_ORDINAL)
890 {
891 if (ordinal == 0)
892 /* XXX - treat as IMPORT_NAME ??? */
893 abort ();
894
895 #ifdef COFF_WITH_pex64
896 ((unsigned int *) id4->contents)[0] = ordinal;
897 ((unsigned int *) id4->contents)[1] = 0x80000000;
898 ((unsigned int *) id5->contents)[0] = ordinal;
899 ((unsigned int *) id5->contents)[1] = 0x80000000;
900 #else
901 * (unsigned int *) id4->contents = ordinal | 0x80000000;
902 * (unsigned int *) id5->contents = ordinal | 0x80000000;
903 #endif
904 }
905 else
906 {
907 char * symbol;
908 unsigned int len;
909
910 /* Create .idata$6 - the Hint Name Table. */
911 id6 = pe_ILF_make_a_section (& vars, ".idata$6", SIZEOF_IDATA6, 0);
912 if (id6 == NULL)
913 goto error_return;
914
915 /* If necessary, trim the import symbol name. */
916 symbol = symbol_name;
917
918 /* As used by MS compiler, '_', '@', and '?' are alternative
919 forms of USER_LABEL_PREFIX, with '?' for c++ mangled names,
920 '@' used for fastcall (in C), '_' everywhere else. Only one
921 of these is used for a symbol. We strip this leading char for
922 IMPORT_NAME_NOPREFIX and IMPORT_NAME_UNDECORATE as per the
923 PE COFF 6.0 spec (section 8.3, Import Name Type). */
924
925 if (import_name_type != IMPORT_NAME)
926 {
927 char c = symbol[0];
928
929 /* Check that we don't remove for targets with empty
930 USER_LABEL_PREFIX the leading underscore. */
931 if ((c == '_' && abfd->xvec->symbol_leading_char != 0)
932 || c == '@' || c == '?')
933 symbol++;
934 }
935
936 len = strlen (symbol);
937 if (import_name_type == IMPORT_NAME_UNDECORATE)
938 {
939 /* Truncate at the first '@'. */
940 char *at = strchr (symbol, '@');
941
942 if (at != NULL)
943 len = at - symbol;
944 }
945
946 id6->contents[0] = ordinal & 0xff;
947 id6->contents[1] = ordinal >> 8;
948
949 memcpy ((char *) id6->contents + 2, symbol, len);
950 id6->contents[len + 2] = '\0';
951 }
952
953 if (import_name_type != IMPORT_ORDINAL)
954 {
955 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
956 pe_ILF_save_relocs (&vars, id4);
957
958 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
959 pe_ILF_save_relocs (&vars, id5);
960 }
961
962 /* Create an import symbol. */
963 pe_ILF_make_a_symbol (& vars, "__imp_", symbol_name, id5, 0);
964 imp_sym = vars.sym_ptr_ptr - 1;
965 imp_index = vars.sym_index - 1;
966
967 /* Create extra sections depending upon the type of import we are dealing with. */
968 switch (import_type)
969 {
970 int i;
971
972 case IMPORT_CODE:
973 /* CODE functions are special, in that they get a trampoline that
974 jumps to the main import symbol. Create a .text section to hold it.
975 First we need to look up its contents in the jump table. */
976 for (i = NUM_ENTRIES (jtab); i--;)
977 {
978 if (jtab[i].size == 0)
979 continue;
980 if (jtab[i].magic == magic)
981 break;
982 }
983 /* If we did not find a matching entry something is wrong. */
984 if (i < 0)
985 abort ();
986
987 /* Create the .text section. */
988 text = pe_ILF_make_a_section (& vars, ".text", jtab[i].size, SEC_CODE);
989 if (text == NULL)
990 goto error_return;
991
992 /* Copy in the jump code. */
993 memcpy (text->contents, jtab[i].data, jtab[i].size);
994
995 /* Create a reloc for the data in the text section. */
996 #ifdef MIPS_ARCH_MAGIC_WINCE
997 if (magic == MIPS_ARCH_MAGIC_WINCE)
998 {
999 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 0, BFD_RELOC_HI16_S,
1000 (struct bfd_symbol **) imp_sym,
1001 imp_index);
1002 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_LO16, text);
1003 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 4, BFD_RELOC_LO16,
1004 (struct bfd_symbol **) imp_sym,
1005 imp_index);
1006 }
1007 else
1008 #endif
1009 #ifdef AMD64MAGIC
1010 if (magic == AMD64MAGIC)
1011 {
1012 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
1013 BFD_RELOC_32_PCREL, (asymbol **) imp_sym,
1014 imp_index);
1015 }
1016 else
1017 #endif
1018 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
1019 BFD_RELOC_32, (asymbol **) imp_sym,
1020 imp_index);
1021
1022 pe_ILF_save_relocs (& vars, text);
1023 break;
1024
1025 case IMPORT_DATA:
1026 break;
1027
1028 default:
1029 /* XXX code not yet written. */
1030 abort ();
1031 }
1032
1033 /* Initialise the bfd. */
1034 memset (& internal_f, 0, sizeof (internal_f));
1035
1036 internal_f.f_magic = magic;
1037 internal_f.f_symptr = 0;
1038 internal_f.f_nsyms = 0;
1039 internal_f.f_flags = F_AR32WR | F_LNNO; /* XXX is this correct ? */
1040
1041 if ( ! bfd_set_start_address (abfd, (bfd_vma) 0)
1042 || ! bfd_coff_set_arch_mach_hook (abfd, & internal_f))
1043 goto error_return;
1044
1045 if (bfd_coff_mkobject_hook (abfd, (void *) & internal_f, NULL) == NULL)
1046 goto error_return;
1047
1048 coff_data (abfd)->pe = 1;
1049 #ifdef THUMBPEMAGIC
1050 if (vars.magic == THUMBPEMAGIC)
1051 /* Stop some linker warnings about thumb code not supporting interworking. */
1052 coff_data (abfd)->flags |= F_INTERWORK | F_INTERWORK_SET;
1053 #endif
1054
1055 /* Switch from file contents to memory contents. */
1056 bfd_cache_close (abfd);
1057
1058 abfd->iostream = (void *) vars.bim;
1059 abfd->flags |= BFD_IN_MEMORY /* | HAS_LOCALS */;
1060 abfd->iovec = &_bfd_memory_iovec;
1061 abfd->where = 0;
1062 abfd->origin = 0;
1063 obj_sym_filepos (abfd) = 0;
1064
1065 /* Now create a symbol describing the imported value. */
1066 switch (import_type)
1067 {
1068 case IMPORT_CODE:
1069 pe_ILF_make_a_symbol (& vars, "", symbol_name, text,
1070 BSF_NOT_AT_END | BSF_FUNCTION);
1071
1072 break;
1073
1074 case IMPORT_DATA:
1075 /* Nothing to do here. */
1076 break;
1077
1078 default:
1079 /* XXX code not yet written. */
1080 abort ();
1081 }
1082
1083 /* Create an import symbol for the DLL, without the .dll suffix. */
1084 ptr = (bfd_byte *) strrchr (source_dll, '.');
1085 if (ptr)
1086 * ptr = 0;
1087 pe_ILF_make_a_symbol (& vars, "__IMPORT_DESCRIPTOR_", source_dll, NULL, 0);
1088 if (ptr)
1089 * ptr = '.';
1090
1091 /* Point the bfd at the symbol table. */
1092 obj_symbols (abfd) = vars.sym_cache;
1093 bfd_get_symcount (abfd) = vars.sym_index;
1094
1095 obj_raw_syments (abfd) = vars.native_syms;
1096 obj_raw_syment_count (abfd) = vars.sym_index;
1097
1098 obj_coff_external_syms (abfd) = (void *) vars.esym_table;
1099 obj_coff_keep_syms (abfd) = TRUE;
1100
1101 obj_convert (abfd) = vars.sym_table;
1102 obj_conv_table_size (abfd) = vars.sym_index;
1103
1104 obj_coff_strings (abfd) = vars.string_table;
1105 obj_coff_keep_strings (abfd) = TRUE;
1106
1107 abfd->flags |= HAS_SYMS;
1108
1109 return TRUE;
1110
1111 error_return:
1112 if (vars.bim->buffer != NULL)
1113 free (vars.bim->buffer);
1114 free (vars.bim);
1115 return FALSE;
1116 }
1117
1118 /* We have detected a Image Library Format archive element.
1119 Decode the element and return the appropriate target. */
1120
1121 static const bfd_target *
1122 pe_ILF_object_p (bfd * abfd)
1123 {
1124 bfd_byte buffer[14];
1125 bfd_byte * ptr;
1126 char * symbol_name;
1127 char * source_dll;
1128 unsigned int machine;
1129 bfd_size_type size;
1130 unsigned int ordinal;
1131 unsigned int types;
1132 unsigned int magic;
1133
1134 /* Upon entry the first six bytes of the ILF header have
1135 already been read. Now read the rest of the header. */
1136 if (bfd_bread (buffer, (bfd_size_type) 14, abfd) != 14)
1137 return NULL;
1138
1139 ptr = buffer;
1140
1141 machine = H_GET_16 (abfd, ptr);
1142 ptr += 2;
1143
1144 /* Check that the machine type is recognised. */
1145 magic = 0;
1146
1147 switch (machine)
1148 {
1149 case IMAGE_FILE_MACHINE_UNKNOWN:
1150 case IMAGE_FILE_MACHINE_ALPHA:
1151 case IMAGE_FILE_MACHINE_ALPHA64:
1152 case IMAGE_FILE_MACHINE_IA64:
1153 break;
1154
1155 case IMAGE_FILE_MACHINE_I386:
1156 #ifdef I386MAGIC
1157 magic = I386MAGIC;
1158 #endif
1159 break;
1160
1161 case IMAGE_FILE_MACHINE_AMD64:
1162 #ifdef AMD64MAGIC
1163 magic = AMD64MAGIC;
1164 #endif
1165 break;
1166
1167 case IMAGE_FILE_MACHINE_M68K:
1168 #ifdef MC68AGIC
1169 magic = MC68MAGIC;
1170 #endif
1171 break;
1172
1173 case IMAGE_FILE_MACHINE_R3000:
1174 case IMAGE_FILE_MACHINE_R4000:
1175 case IMAGE_FILE_MACHINE_R10000:
1176
1177 case IMAGE_FILE_MACHINE_MIPS16:
1178 case IMAGE_FILE_MACHINE_MIPSFPU:
1179 case IMAGE_FILE_MACHINE_MIPSFPU16:
1180 #ifdef MIPS_ARCH_MAGIC_WINCE
1181 magic = MIPS_ARCH_MAGIC_WINCE;
1182 #endif
1183 break;
1184
1185 case IMAGE_FILE_MACHINE_SH3:
1186 case IMAGE_FILE_MACHINE_SH4:
1187 #ifdef SH_ARCH_MAGIC_WINCE
1188 magic = SH_ARCH_MAGIC_WINCE;
1189 #endif
1190 break;
1191
1192 case IMAGE_FILE_MACHINE_ARM:
1193 #ifdef ARMPEMAGIC
1194 magic = ARMPEMAGIC;
1195 #endif
1196 break;
1197
1198 case IMAGE_FILE_MACHINE_THUMB:
1199 #ifdef THUMBPEMAGIC
1200 {
1201 extern const bfd_target TARGET_LITTLE_SYM;
1202
1203 if (abfd->xvec == & TARGET_LITTLE_SYM)
1204 magic = THUMBPEMAGIC;
1205 }
1206 #endif
1207 break;
1208
1209 case IMAGE_FILE_MACHINE_POWERPC:
1210 /* We no longer support PowerPC. */
1211 default:
1212 _bfd_error_handler
1213 (_("%B: Unrecognised machine type (0x%x)"
1214 " in Import Library Format archive"),
1215 abfd, machine);
1216 bfd_set_error (bfd_error_malformed_archive);
1217
1218 return NULL;
1219 break;
1220 }
1221
1222 if (magic == 0)
1223 {
1224 _bfd_error_handler
1225 (_("%B: Recognised but unhandled machine type (0x%x)"
1226 " in Import Library Format archive"),
1227 abfd, machine);
1228 bfd_set_error (bfd_error_wrong_format);
1229
1230 return NULL;
1231 }
1232
1233 /* We do not bother to check the date.
1234 date = H_GET_32 (abfd, ptr); */
1235 ptr += 4;
1236
1237 size = H_GET_32 (abfd, ptr);
1238 ptr += 4;
1239
1240 if (size == 0)
1241 {
1242 _bfd_error_handler
1243 (_("%B: size field is zero in Import Library Format header"), abfd);
1244 bfd_set_error (bfd_error_malformed_archive);
1245
1246 return NULL;
1247 }
1248
1249 ordinal = H_GET_16 (abfd, ptr);
1250 ptr += 2;
1251
1252 types = H_GET_16 (abfd, ptr);
1253 /* ptr += 2; */
1254
1255 /* Now read in the two strings that follow. */
1256 ptr = (bfd_byte *) bfd_alloc (abfd, size);
1257 if (ptr == NULL)
1258 return NULL;
1259
1260 if (bfd_bread (ptr, size, abfd) != size)
1261 {
1262 bfd_release (abfd, ptr);
1263 return NULL;
1264 }
1265
1266 symbol_name = (char *) ptr;
1267 source_dll = symbol_name + strlen (symbol_name) + 1;
1268
1269 /* Verify that the strings are null terminated. */
1270 if (ptr[size - 1] != 0
1271 || (bfd_size_type) ((bfd_byte *) source_dll - ptr) >= size)
1272 {
1273 _bfd_error_handler
1274 (_("%B: string not null terminated in ILF object file."), abfd);
1275 bfd_set_error (bfd_error_malformed_archive);
1276 bfd_release (abfd, ptr);
1277 return NULL;
1278 }
1279
1280 /* Now construct the bfd. */
1281 if (! pe_ILF_build_a_bfd (abfd, magic, symbol_name,
1282 source_dll, ordinal, types))
1283 {
1284 bfd_release (abfd, ptr);
1285 return NULL;
1286 }
1287
1288 return abfd->xvec;
1289 }
1290
1291 static void
1292 pe_bfd_read_buildid(bfd *abfd)
1293 {
1294 pe_data_type *pe = pe_data (abfd);
1295 struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr;
1296 asection *section;
1297 bfd_byte *data = 0;
1298 bfd_size_type dataoff;
1299 unsigned int i;
1300
1301 bfd_vma addr = extra->DataDirectory[PE_DEBUG_DATA].VirtualAddress;
1302 bfd_size_type size = extra->DataDirectory[PE_DEBUG_DATA].Size;
1303
1304 if (size == 0)
1305 return;
1306
1307 addr += extra->ImageBase;
1308
1309 /* Search for the section containing the DebugDirectory */
1310 for (section = abfd->sections; section != NULL; section = section->next)
1311 {
1312 if ((addr >= section->vma) && (addr < (section->vma + section->size)))
1313 break;
1314 }
1315
1316 if (section == NULL)
1317 {
1318 return;
1319 }
1320 else if (!(section->flags & SEC_HAS_CONTENTS))
1321 {
1322 return;
1323 }
1324
1325 dataoff = addr - section->vma;
1326
1327 /* Read the whole section. */
1328 if (!bfd_malloc_and_get_section (abfd, section, &data))
1329 {
1330 if (data != NULL)
1331 free (data);
1332 return;
1333 }
1334
1335 /* Search for a CodeView entry in the DebugDirectory */
1336 for (i = 0; i < size / sizeof (struct external_IMAGE_DEBUG_DIRECTORY); i++)
1337 {
1338 struct external_IMAGE_DEBUG_DIRECTORY *ext
1339 = &((struct external_IMAGE_DEBUG_DIRECTORY *)(data + dataoff))[i];
1340 struct internal_IMAGE_DEBUG_DIRECTORY idd;
1341
1342 _bfd_XXi_swap_debugdir_in (abfd, ext, &idd);
1343
1344 if (idd.Type == PE_IMAGE_DEBUG_TYPE_CODEVIEW)
1345 {
1346 char buffer[256 + 1];
1347 CODEVIEW_INFO *cvinfo = (CODEVIEW_INFO *) buffer;
1348
1349 /*
1350 The debug entry doesn't have to have to be in a section, in which
1351 case AddressOfRawData is 0, so always use PointerToRawData.
1352 */
1353 if (_bfd_XXi_slurp_codeview_record (abfd,
1354 (file_ptr) idd.PointerToRawData,
1355 idd.SizeOfData, cvinfo))
1356 {
1357 struct bfd_build_id* build_id = bfd_alloc(abfd,
1358 sizeof(struct bfd_build_id) + cvinfo->SignatureLength);
1359 if (build_id)
1360 {
1361 build_id->size = cvinfo->SignatureLength;
1362 memcpy(build_id->data, cvinfo->Signature,
1363 cvinfo->SignatureLength);
1364 abfd->build_id = build_id;
1365 }
1366 }
1367 break;
1368 }
1369 }
1370 }
1371
1372 static const bfd_target *
1373 pe_bfd_object_p (bfd * abfd)
1374 {
1375 bfd_byte buffer[6];
1376 struct external_PEI_DOS_hdr dos_hdr;
1377 struct external_PEI_IMAGE_hdr image_hdr;
1378 struct internal_filehdr internal_f;
1379 struct internal_aouthdr internal_a;
1380 file_ptr opt_hdr_size;
1381 file_ptr offset;
1382 const bfd_target *result;
1383
1384 /* Detect if this a Microsoft Import Library Format element. */
1385 /* First read the beginning of the header. */
1386 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1387 || bfd_bread (buffer, (bfd_size_type) 6, abfd) != 6)
1388 {
1389 if (bfd_get_error () != bfd_error_system_call)
1390 bfd_set_error (bfd_error_wrong_format);
1391 return NULL;
1392 }
1393
1394 /* Then check the magic and the version (only 0 is supported). */
1395 if (H_GET_32 (abfd, buffer) == 0xffff0000
1396 && H_GET_16 (abfd, buffer + 4) == 0)
1397 return pe_ILF_object_p (abfd);
1398
1399 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1400 || bfd_bread (&dos_hdr, (bfd_size_type) sizeof (dos_hdr), abfd)
1401 != sizeof (dos_hdr))
1402 {
1403 if (bfd_get_error () != bfd_error_system_call)
1404 bfd_set_error (bfd_error_wrong_format);
1405 return NULL;
1406 }
1407
1408 /* There are really two magic numbers involved; the magic number
1409 that says this is a NT executable (PEI) and the magic number that
1410 determines the architecture. The former is DOSMAGIC, stored in
1411 the e_magic field. The latter is stored in the f_magic field.
1412 If the NT magic number isn't valid, the architecture magic number
1413 could be mimicked by some other field (specifically, the number
1414 of relocs in section 3). Since this routine can only be called
1415 correctly for a PEI file, check the e_magic number here, and, if
1416 it doesn't match, clobber the f_magic number so that we don't get
1417 a false match. */
1418 if (H_GET_16 (abfd, dos_hdr.e_magic) != DOSMAGIC)
1419 {
1420 bfd_set_error (bfd_error_wrong_format);
1421 return NULL;
1422 }
1423
1424 offset = H_GET_32 (abfd, dos_hdr.e_lfanew);
1425 if (bfd_seek (abfd, offset, SEEK_SET) != 0
1426 || (bfd_bread (&image_hdr, (bfd_size_type) sizeof (image_hdr), abfd)
1427 != sizeof (image_hdr)))
1428 {
1429 if (bfd_get_error () != bfd_error_system_call)
1430 bfd_set_error (bfd_error_wrong_format);
1431 return NULL;
1432 }
1433
1434 if (H_GET_32 (abfd, image_hdr.nt_signature) != 0x4550)
1435 {
1436 bfd_set_error (bfd_error_wrong_format);
1437 return NULL;
1438 }
1439
1440 /* Swap file header, so that we get the location for calling
1441 real_object_p. */
1442 bfd_coff_swap_filehdr_in (abfd, &image_hdr, &internal_f);
1443
1444 if (! bfd_coff_bad_format_hook (abfd, &internal_f)
1445 || internal_f.f_opthdr > bfd_coff_aoutsz (abfd))
1446 {
1447 bfd_set_error (bfd_error_wrong_format);
1448 return NULL;
1449 }
1450
1451 /* Read the optional header, which has variable size. */
1452 opt_hdr_size = internal_f.f_opthdr;
1453
1454 if (opt_hdr_size != 0)
1455 {
1456 bfd_size_type amt = opt_hdr_size;
1457 void * opthdr;
1458
1459 /* PR 17521 file: 230-131433-0.004. */
1460 if (amt < sizeof (PEAOUTHDR))
1461 amt = sizeof (PEAOUTHDR);
1462
1463 opthdr = bfd_zalloc (abfd, amt);
1464 if (opthdr == NULL)
1465 return NULL;
1466 if (bfd_bread (opthdr, opt_hdr_size, abfd)
1467 != (bfd_size_type) opt_hdr_size)
1468 return NULL;
1469
1470 bfd_set_error (bfd_error_no_error);
1471 bfd_coff_swap_aouthdr_in (abfd, opthdr, & internal_a);
1472 if (bfd_get_error () != bfd_error_no_error)
1473 return NULL;
1474 }
1475
1476
1477 result = coff_real_object_p (abfd, internal_f.f_nscns, &internal_f,
1478 (opt_hdr_size != 0
1479 ? &internal_a
1480 : (struct internal_aouthdr *) NULL));
1481
1482
1483 if (result)
1484 {
1485 /* Now the whole header has been processed, see if there is a build-id */
1486 pe_bfd_read_buildid(abfd);
1487 }
1488
1489 return result;
1490 }
1491
1492 #define coff_object_p pe_bfd_object_p
1493 #endif /* COFF_IMAGE_WITH_PE */
This page took 0.062111 seconds and 4 git commands to generate.