* elf32-sparc.c (_bfd_sparc_elf_howto_table): Fix dst_mask for
[deliverable/binutils-gdb.git] / bfd / reloc.c
1 /* BFD support for handling relocation entries.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24 SECTION
25 Relocations
26
27 BFD maintains relocations in much the same way it maintains
28 symbols: they are left alone until required, then read in
29 en-masse and translated into an internal form. A common
30 routine <<bfd_perform_relocation>> acts upon the
31 canonical form to do the fixup.
32
33 Relocations are maintained on a per section basis,
34 while symbols are maintained on a per BFD basis.
35
36 All that a back end has to do to fit the BFD interface is to create
37 a <<struct reloc_cache_entry>> for each relocation
38 in a particular section, and fill in the right bits of the structures.
39
40 @menu
41 @* typedef arelent::
42 @* howto manager::
43 @end menu
44
45 */
46
47 /* DO compile in the reloc_code name table from libbfd.h. */
48 #define _BFD_MAKE_TABLE_bfd_reloc_code_real
49
50 #include "bfd.h"
51 #include "sysdep.h"
52 #include "bfdlink.h"
53 #include "libbfd.h"
54 /*
55 DOCDD
56 INODE
57 typedef arelent, howto manager, Relocations, Relocations
58
59 SUBSECTION
60 typedef arelent
61
62 This is the structure of a relocation entry:
63
64 CODE_FRAGMENT
65 .
66 .typedef enum bfd_reloc_status
67 .{
68 . {* No errors detected *}
69 . bfd_reloc_ok,
70 .
71 . {* The relocation was performed, but there was an overflow. *}
72 . bfd_reloc_overflow,
73 .
74 . {* The address to relocate was not within the section supplied. *}
75 . bfd_reloc_outofrange,
76 .
77 . {* Used by special functions *}
78 . bfd_reloc_continue,
79 .
80 . {* Unsupported relocation size requested. *}
81 . bfd_reloc_notsupported,
82 .
83 . {* Unused *}
84 . bfd_reloc_other,
85 .
86 . {* The symbol to relocate against was undefined. *}
87 . bfd_reloc_undefined,
88 .
89 . {* The relocation was performed, but may not be ok - presently
90 . generated only when linking i960 coff files with i960 b.out
91 . symbols. If this type is returned, the error_message argument
92 . to bfd_perform_relocation will be set. *}
93 . bfd_reloc_dangerous
94 . }
95 . bfd_reloc_status_type;
96 .
97 .
98 .typedef struct reloc_cache_entry
99 .{
100 . {* A pointer into the canonical table of pointers *}
101 . struct symbol_cache_entry **sym_ptr_ptr;
102 .
103 . {* offset in section *}
104 . bfd_size_type address;
105 .
106 . {* addend for relocation value *}
107 . bfd_vma addend;
108 .
109 . {* Pointer to how to perform the required relocation *}
110 . reloc_howto_type *howto;
111 .
112 .} arelent;
113
114 */
115
116 /*
117 DESCRIPTION
118
119 Here is a description of each of the fields within an <<arelent>>:
120
121 o <<sym_ptr_ptr>>
122
123 The symbol table pointer points to a pointer to the symbol
124 associated with the relocation request. It is
125 the pointer into the table returned by the back end's
126 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
127 through a pointer to a pointer so that tools like the linker
128 can fix up all the symbols of the same name by modifying only
129 one pointer. The relocation routine looks in the symbol and
130 uses the base of the section the symbol is attached to and the
131 value of the symbol as the initial relocation offset. If the
132 symbol pointer is zero, then the section provided is looked up.
133
134 o <<address>>
135
136 The <<address>> field gives the offset in bytes from the base of
137 the section data which owns the relocation record to the first
138 byte of relocatable information. The actual data relocated
139 will be relative to this point; for example, a relocation
140 type which modifies the bottom two bytes of a four byte word
141 would not touch the first byte pointed to in a big endian
142 world.
143
144 o <<addend>>
145
146 The <<addend>> is a value provided by the back end to be added (!)
147 to the relocation offset. Its interpretation is dependent upon
148 the howto. For example, on the 68k the code:
149
150 | char foo[];
151 | main()
152 | {
153 | return foo[0x12345678];
154 | }
155
156 Could be compiled into:
157
158 | linkw fp,#-4
159 | moveb @@#12345678,d0
160 | extbl d0
161 | unlk fp
162 | rts
163
164 This could create a reloc pointing to <<foo>>, but leave the
165 offset in the data, something like:
166
167 |RELOCATION RECORDS FOR [.text]:
168 |offset type value
169 |00000006 32 _foo
170 |
171 |00000000 4e56 fffc ; linkw fp,#-4
172 |00000004 1039 1234 5678 ; moveb @@#12345678,d0
173 |0000000a 49c0 ; extbl d0
174 |0000000c 4e5e ; unlk fp
175 |0000000e 4e75 ; rts
176
177 Using coff and an 88k, some instructions don't have enough
178 space in them to represent the full address range, and
179 pointers have to be loaded in two parts. So you'd get something like:
180
181 | or.u r13,r0,hi16(_foo+0x12345678)
182 | ld.b r2,r13,lo16(_foo+0x12345678)
183 | jmp r1
184
185 This should create two relocs, both pointing to <<_foo>>, and with
186 0x12340000 in their addend field. The data would consist of:
187
188 |RELOCATION RECORDS FOR [.text]:
189 |offset type value
190 |00000002 HVRT16 _foo+0x12340000
191 |00000006 LVRT16 _foo+0x12340000
192 |
193 |00000000 5da05678 ; or.u r13,r0,0x5678
194 |00000004 1c4d5678 ; ld.b r2,r13,0x5678
195 |00000008 f400c001 ; jmp r1
196
197 The relocation routine digs out the value from the data, adds
198 it to the addend to get the original offset, and then adds the
199 value of <<_foo>>. Note that all 32 bits have to be kept around
200 somewhere, to cope with carry from bit 15 to bit 16.
201
202 One further example is the sparc and the a.out format. The
203 sparc has a similar problem to the 88k, in that some
204 instructions don't have room for an entire offset, but on the
205 sparc the parts are created in odd sized lumps. The designers of
206 the a.out format chose to not use the data within the section
207 for storing part of the offset; all the offset is kept within
208 the reloc. Anything in the data should be ignored.
209
210 | save %sp,-112,%sp
211 | sethi %hi(_foo+0x12345678),%g2
212 | ldsb [%g2+%lo(_foo+0x12345678)],%i0
213 | ret
214 | restore
215
216 Both relocs contain a pointer to <<foo>>, and the offsets
217 contain junk.
218
219 |RELOCATION RECORDS FOR [.text]:
220 |offset type value
221 |00000004 HI22 _foo+0x12345678
222 |00000008 LO10 _foo+0x12345678
223 |
224 |00000000 9de3bf90 ; save %sp,-112,%sp
225 |00000004 05000000 ; sethi %hi(_foo+0),%g2
226 |00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
227 |0000000c 81c7e008 ; ret
228 |00000010 81e80000 ; restore
229
230 o <<howto>>
231
232 The <<howto>> field can be imagined as a
233 relocation instruction. It is a pointer to a structure which
234 contains information on what to do with all of the other
235 information in the reloc record and data section. A back end
236 would normally have a relocation instruction set and turn
237 relocations into pointers to the correct structure on input -
238 but it would be possible to create each howto field on demand.
239
240 */
241
242 /*
243 SUBSUBSECTION
244 <<enum complain_overflow>>
245
246 Indicates what sort of overflow checking should be done when
247 performing a relocation.
248
249 CODE_FRAGMENT
250 .
251 .enum complain_overflow
252 .{
253 . {* Do not complain on overflow. *}
254 . complain_overflow_dont,
255 .
256 . {* Complain if the bitfield overflows, whether it is considered
257 . as signed or unsigned. *}
258 . complain_overflow_bitfield,
259 .
260 . {* Complain if the value overflows when considered as signed
261 . number. *}
262 . complain_overflow_signed,
263 .
264 . {* Complain if the value overflows when considered as an
265 . unsigned number. *}
266 . complain_overflow_unsigned
267 .};
268
269 */
270
271 /*
272 SUBSUBSECTION
273 <<reloc_howto_type>>
274
275 The <<reloc_howto_type>> is a structure which contains all the
276 information that libbfd needs to know to tie up a back end's data.
277
278 CODE_FRAGMENT
279 .struct symbol_cache_entry; {* Forward declaration *}
280 .
281 .struct reloc_howto_struct
282 .{
283 . {* The type field has mainly a documentary use - the back end can
284 . do what it wants with it, though normally the back end's
285 . external idea of what a reloc number is stored
286 . in this field. For example, a PC relative word relocation
287 . in a coff environment has the type 023 - because that's
288 . what the outside world calls a R_PCRWORD reloc. *}
289 . unsigned int type;
290 .
291 . {* The value the final relocation is shifted right by. This drops
292 . unwanted data from the relocation. *}
293 . unsigned int rightshift;
294 .
295 . {* The size of the item to be relocated. This is *not* a
296 . power-of-two measure. To get the number of bytes operated
297 . on by a type of relocation, use bfd_get_reloc_size. *}
298 . int size;
299 .
300 . {* The number of bits in the item to be relocated. This is used
301 . when doing overflow checking. *}
302 . unsigned int bitsize;
303 .
304 . {* Notes that the relocation is relative to the location in the
305 . data section of the addend. The relocation function will
306 . subtract from the relocation value the address of the location
307 . being relocated. *}
308 . boolean pc_relative;
309 .
310 . {* The bit position of the reloc value in the destination.
311 . The relocated value is left shifted by this amount. *}
312 . unsigned int bitpos;
313 .
314 . {* What type of overflow error should be checked for when
315 . relocating. *}
316 . enum complain_overflow complain_on_overflow;
317 .
318 . {* If this field is non null, then the supplied function is
319 . called rather than the normal function. This allows really
320 . strange relocation methods to be accomodated (e.g., i960 callj
321 . instructions). *}
322 . bfd_reloc_status_type (*special_function)
323 . PARAMS ((bfd *, arelent *, struct symbol_cache_entry *, PTR, asection *,
324 . bfd *, char **));
325 .
326 . {* The textual name of the relocation type. *}
327 . char *name;
328 .
329 . {* Some formats record a relocation addend in the section contents
330 . rather than with the relocation. For ELF formats this is the
331 . distinction between USE_REL and USE_RELA (though the code checks
332 . for USE_REL == 1/0). The value of this field is TRUE if the
333 . addend is recorded with the section contents; when performing a
334 . partial link (ld -r) the section contents (the data) will be
335 . modified. The value of this field is FALSE if addends are
336 . recorded with the relocation (in arelent.addend); when performing
337 . a partial link the relocation will be modified.
338 . All relocations for all ELF USE_RELA targets should set this field
339 . to FALSE (values of TRUE should be looked on with suspicion).
340 . However, the converse is not true: not all relocations of all ELF
341 . USE_REL targets set this field to TRUE. Why this is so is peculiar
342 . to each particular target. For relocs that aren't used in partial
343 . links (e.g. GOT stuff) it doesn't matter what this is set to. *}
344 . boolean partial_inplace;
345 .
346 . {* The src_mask selects which parts of the read in data
347 . are to be used in the relocation sum. E.g., if this was an 8 bit
348 . byte of data which we read and relocated, this would be
349 . 0x000000ff. When we have relocs which have an addend, such as
350 . sun4 extended relocs, the value in the offset part of a
351 . relocating field is garbage so we never use it. In this case
352 . the mask would be 0x00000000. *}
353 . bfd_vma src_mask;
354 .
355 . {* The dst_mask selects which parts of the instruction are replaced
356 . into the instruction. In most cases src_mask == dst_mask,
357 . except in the above special case, where dst_mask would be
358 . 0x000000ff, and src_mask would be 0x00000000. *}
359 . bfd_vma dst_mask;
360 .
361 . {* When some formats create PC relative instructions, they leave
362 . the value of the pc of the place being relocated in the offset
363 . slot of the instruction, so that a PC relative relocation can
364 . be made just by adding in an ordinary offset (e.g., sun3 a.out).
365 . Some formats leave the displacement part of an instruction
366 . empty (e.g., m88k bcs); this flag signals the fact. *}
367 . boolean pcrel_offset;
368 .};
369
370 */
371
372 /*
373 FUNCTION
374 The HOWTO Macro
375
376 DESCRIPTION
377 The HOWTO define is horrible and will go away.
378
379 .#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
380 . { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
381
382 DESCRIPTION
383 And will be replaced with the totally magic way. But for the
384 moment, we are compatible, so do it this way.
385
386 .#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
387 . HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
388 . NAME, false, 0, 0, IN)
389 .
390
391 DESCRIPTION
392 This is used to fill in an empty howto entry in an array.
393
394 .#define EMPTY_HOWTO(C) \
395 . HOWTO ((C), 0, 0, 0, false, 0, complain_overflow_dont, NULL, \
396 . NULL, false, 0, 0, false)
397 .
398
399 DESCRIPTION
400 Helper routine to turn a symbol into a relocation value.
401
402 .#define HOWTO_PREPARE(relocation, symbol) \
403 . { \
404 . if (symbol != (asymbol *) NULL) \
405 . { \
406 . if (bfd_is_com_section (symbol->section)) \
407 . { \
408 . relocation = 0; \
409 . } \
410 . else \
411 . { \
412 . relocation = symbol->value; \
413 . } \
414 . } \
415 . }
416
417 */
418
419 /*
420 FUNCTION
421 bfd_get_reloc_size
422
423 SYNOPSIS
424 unsigned int bfd_get_reloc_size (reloc_howto_type *);
425
426 DESCRIPTION
427 For a reloc_howto_type that operates on a fixed number of bytes,
428 this returns the number of bytes operated on.
429 */
430
431 unsigned int
432 bfd_get_reloc_size (howto)
433 reloc_howto_type *howto;
434 {
435 switch (howto->size)
436 {
437 case 0: return 1;
438 case 1: return 2;
439 case 2: return 4;
440 case 3: return 0;
441 case 4: return 8;
442 case 8: return 16;
443 case -2: return 4;
444 default: abort ();
445 }
446 }
447
448 /*
449 TYPEDEF
450 arelent_chain
451
452 DESCRIPTION
453
454 How relocs are tied together in an <<asection>>:
455
456 .typedef struct relent_chain
457 .{
458 . arelent relent;
459 . struct relent_chain *next;
460 .} arelent_chain;
461
462 */
463
464 /* N_ONES produces N one bits, without overflowing machine arithmetic. */
465 #define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
466
467 /*
468 FUNCTION
469 bfd_check_overflow
470
471 SYNOPSIS
472 bfd_reloc_status_type
473 bfd_check_overflow
474 (enum complain_overflow how,
475 unsigned int bitsize,
476 unsigned int rightshift,
477 unsigned int addrsize,
478 bfd_vma relocation);
479
480 DESCRIPTION
481 Perform overflow checking on @var{relocation} which has
482 @var{bitsize} significant bits and will be shifted right by
483 @var{rightshift} bits, on a machine with addresses containing
484 @var{addrsize} significant bits. The result is either of
485 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
486
487 */
488
489 bfd_reloc_status_type
490 bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
491 enum complain_overflow how;
492 unsigned int bitsize;
493 unsigned int rightshift;
494 unsigned int addrsize;
495 bfd_vma relocation;
496 {
497 bfd_vma fieldmask, addrmask, signmask, ss, a;
498 bfd_reloc_status_type flag = bfd_reloc_ok;
499
500 a = relocation;
501
502 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
503 we'll be permissive: extra bits in the field mask will
504 automatically extend the address mask for purposes of the
505 overflow check. */
506 fieldmask = N_ONES (bitsize);
507 addrmask = N_ONES (addrsize) | fieldmask;
508
509 switch (how)
510 {
511 case complain_overflow_dont:
512 break;
513
514 case complain_overflow_signed:
515 /* If any sign bits are set, all sign bits must be set. That
516 is, A must be a valid negative address after shifting. */
517 a = (a & addrmask) >> rightshift;
518 signmask = ~ (fieldmask >> 1);
519 ss = a & signmask;
520 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
521 flag = bfd_reloc_overflow;
522 break;
523
524 case complain_overflow_unsigned:
525 /* We have an overflow if the address does not fit in the field. */
526 a = (a & addrmask) >> rightshift;
527 if ((a & ~ fieldmask) != 0)
528 flag = bfd_reloc_overflow;
529 break;
530
531 case complain_overflow_bitfield:
532 /* Bitfields are sometimes signed, sometimes unsigned. We
533 explicitly allow an address wrap too, which means a bitfield
534 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
535 if the value has some, but not all, bits set outside the
536 field. */
537 a >>= rightshift;
538 ss = a & ~ fieldmask;
539 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
540 flag = bfd_reloc_overflow;
541 break;
542
543 default:
544 abort ();
545 }
546
547 return flag;
548 }
549
550 /*
551 FUNCTION
552 bfd_perform_relocation
553
554 SYNOPSIS
555 bfd_reloc_status_type
556 bfd_perform_relocation
557 (bfd *abfd,
558 arelent *reloc_entry,
559 PTR data,
560 asection *input_section,
561 bfd *output_bfd,
562 char **error_message);
563
564 DESCRIPTION
565 If @var{output_bfd} is supplied to this function, the
566 generated image will be relocatable; the relocations are
567 copied to the output file after they have been changed to
568 reflect the new state of the world. There are two ways of
569 reflecting the results of partial linkage in an output file:
570 by modifying the output data in place, and by modifying the
571 relocation record. Some native formats (e.g., basic a.out and
572 basic coff) have no way of specifying an addend in the
573 relocation type, so the addend has to go in the output data.
574 This is no big deal since in these formats the output data
575 slot will always be big enough for the addend. Complex reloc
576 types with addends were invented to solve just this problem.
577 The @var{error_message} argument is set to an error message if
578 this return @code{bfd_reloc_dangerous}.
579
580 */
581
582 bfd_reloc_status_type
583 bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
584 error_message)
585 bfd *abfd;
586 arelent *reloc_entry;
587 PTR data;
588 asection *input_section;
589 bfd *output_bfd;
590 char **error_message;
591 {
592 bfd_vma relocation;
593 bfd_reloc_status_type flag = bfd_reloc_ok;
594 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
595 bfd_vma output_base = 0;
596 reloc_howto_type *howto = reloc_entry->howto;
597 asection *reloc_target_output_section;
598 asymbol *symbol;
599
600 symbol = *(reloc_entry->sym_ptr_ptr);
601 if (bfd_is_abs_section (symbol->section)
602 && output_bfd != (bfd *) NULL)
603 {
604 reloc_entry->address += input_section->output_offset;
605 return bfd_reloc_ok;
606 }
607
608 /* If we are not producing relocateable output, return an error if
609 the symbol is not defined. An undefined weak symbol is
610 considered to have a value of zero (SVR4 ABI, p. 4-27). */
611 if (bfd_is_und_section (symbol->section)
612 && (symbol->flags & BSF_WEAK) == 0
613 && output_bfd == (bfd *) NULL)
614 flag = bfd_reloc_undefined;
615
616 /* If there is a function supplied to handle this relocation type,
617 call it. It'll return `bfd_reloc_continue' if further processing
618 can be done. */
619 if (howto->special_function)
620 {
621 bfd_reloc_status_type cont;
622 cont = howto->special_function (abfd, reloc_entry, symbol, data,
623 input_section, output_bfd,
624 error_message);
625 if (cont != bfd_reloc_continue)
626 return cont;
627 }
628
629 /* Is the address of the relocation really within the section? */
630 if (reloc_entry->address > (input_section->_cooked_size
631 / bfd_octets_per_byte (abfd)))
632 return bfd_reloc_outofrange;
633
634 /* Work out which section the relocation is targetted at and the
635 initial relocation command value. */
636
637 /* Get symbol value. (Common symbols are special.) */
638 if (bfd_is_com_section (symbol->section))
639 relocation = 0;
640 else
641 relocation = symbol->value;
642
643 reloc_target_output_section = symbol->section->output_section;
644
645 /* Convert input-section-relative symbol value to absolute. */
646 if (output_bfd && howto->partial_inplace == false)
647 output_base = 0;
648 else
649 output_base = reloc_target_output_section->vma;
650
651 relocation += output_base + symbol->section->output_offset;
652
653 /* Add in supplied addend. */
654 relocation += reloc_entry->addend;
655
656 /* Here the variable relocation holds the final address of the
657 symbol we are relocating against, plus any addend. */
658
659 if (howto->pc_relative == true)
660 {
661 /* This is a PC relative relocation. We want to set RELOCATION
662 to the distance between the address of the symbol and the
663 location. RELOCATION is already the address of the symbol.
664
665 We start by subtracting the address of the section containing
666 the location.
667
668 If pcrel_offset is set, we must further subtract the position
669 of the location within the section. Some targets arrange for
670 the addend to be the negative of the position of the location
671 within the section; for example, i386-aout does this. For
672 i386-aout, pcrel_offset is false. Some other targets do not
673 include the position of the location; for example, m88kbcs,
674 or ELF. For those targets, pcrel_offset is true.
675
676 If we are producing relocateable output, then we must ensure
677 that this reloc will be correctly computed when the final
678 relocation is done. If pcrel_offset is false we want to wind
679 up with the negative of the location within the section,
680 which means we must adjust the existing addend by the change
681 in the location within the section. If pcrel_offset is true
682 we do not want to adjust the existing addend at all.
683
684 FIXME: This seems logical to me, but for the case of
685 producing relocateable output it is not what the code
686 actually does. I don't want to change it, because it seems
687 far too likely that something will break. */
688
689 relocation -=
690 input_section->output_section->vma + input_section->output_offset;
691
692 if (howto->pcrel_offset == true)
693 relocation -= reloc_entry->address;
694 }
695
696 if (output_bfd != (bfd *) NULL)
697 {
698 if (howto->partial_inplace == false)
699 {
700 /* This is a partial relocation, and we want to apply the relocation
701 to the reloc entry rather than the raw data. Modify the reloc
702 inplace to reflect what we now know. */
703 reloc_entry->addend = relocation;
704 reloc_entry->address += input_section->output_offset;
705 return flag;
706 }
707 else
708 {
709 /* This is a partial relocation, but inplace, so modify the
710 reloc record a bit.
711
712 If we've relocated with a symbol with a section, change
713 into a ref to the section belonging to the symbol. */
714
715 reloc_entry->address += input_section->output_offset;
716
717 /* WTF?? */
718 if (abfd->xvec->flavour == bfd_target_coff_flavour
719 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
720 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
721 {
722 #if 1
723 /* For m68k-coff, the addend was being subtracted twice during
724 relocation with -r. Removing the line below this comment
725 fixes that problem; see PR 2953.
726
727 However, Ian wrote the following, regarding removing the line below,
728 which explains why it is still enabled: --djm
729
730 If you put a patch like that into BFD you need to check all the COFF
731 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
732 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
733 problem in a different way. There may very well be a reason that the
734 code works as it does.
735
736 Hmmm. The first obvious point is that bfd_perform_relocation should
737 not have any tests that depend upon the flavour. It's seem like
738 entirely the wrong place for such a thing. The second obvious point
739 is that the current code ignores the reloc addend when producing
740 relocateable output for COFF. That's peculiar. In fact, I really
741 have no idea what the point of the line you want to remove is.
742
743 A typical COFF reloc subtracts the old value of the symbol and adds in
744 the new value to the location in the object file (if it's a pc
745 relative reloc it adds the difference between the symbol value and the
746 location). When relocating we need to preserve that property.
747
748 BFD handles this by setting the addend to the negative of the old
749 value of the symbol. Unfortunately it handles common symbols in a
750 non-standard way (it doesn't subtract the old value) but that's a
751 different story (we can't change it without losing backward
752 compatibility with old object files) (coff-i386 does subtract the old
753 value, to be compatible with existing coff-i386 targets, like SCO).
754
755 So everything works fine when not producing relocateable output. When
756 we are producing relocateable output, logically we should do exactly
757 what we do when not producing relocateable output. Therefore, your
758 patch is correct. In fact, it should probably always just set
759 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
760 add the value into the object file. This won't hurt the COFF code,
761 which doesn't use the addend; I'm not sure what it will do to other
762 formats (the thing to check for would be whether any formats both use
763 the addend and set partial_inplace).
764
765 When I wanted to make coff-i386 produce relocateable output, I ran
766 into the problem that you are running into: I wanted to remove that
767 line. Rather than risk it, I made the coff-i386 relocs use a special
768 function; it's coff_i386_reloc in coff-i386.c. The function
769 specifically adds the addend field into the object file, knowing that
770 bfd_perform_relocation is not going to. If you remove that line, then
771 coff-i386.c will wind up adding the addend field in twice. It's
772 trivial to fix; it just needs to be done.
773
774 The problem with removing the line is just that it may break some
775 working code. With BFD it's hard to be sure of anything. The right
776 way to deal with this is simply to build and test at least all the
777 supported COFF targets. It should be straightforward if time and disk
778 space consuming. For each target:
779 1) build the linker
780 2) generate some executable, and link it using -r (I would
781 probably use paranoia.o and link against newlib/libc.a, which
782 for all the supported targets would be available in
783 /usr/cygnus/progressive/H-host/target/lib/libc.a).
784 3) make the change to reloc.c
785 4) rebuild the linker
786 5) repeat step 2
787 6) if the resulting object files are the same, you have at least
788 made it no worse
789 7) if they are different you have to figure out which version is
790 right
791 */
792 relocation -= reloc_entry->addend;
793 #endif
794 reloc_entry->addend = 0;
795 }
796 else
797 {
798 reloc_entry->addend = relocation;
799 }
800 }
801 }
802 else
803 {
804 reloc_entry->addend = 0;
805 }
806
807 /* FIXME: This overflow checking is incomplete, because the value
808 might have overflowed before we get here. For a correct check we
809 need to compute the value in a size larger than bitsize, but we
810 can't reasonably do that for a reloc the same size as a host
811 machine word.
812 FIXME: We should also do overflow checking on the result after
813 adding in the value contained in the object file. */
814 if (howto->complain_on_overflow != complain_overflow_dont
815 && flag == bfd_reloc_ok)
816 flag = bfd_check_overflow (howto->complain_on_overflow,
817 howto->bitsize,
818 howto->rightshift,
819 bfd_arch_bits_per_address (abfd),
820 relocation);
821
822 /*
823 Either we are relocating all the way, or we don't want to apply
824 the relocation to the reloc entry (probably because there isn't
825 any room in the output format to describe addends to relocs)
826 */
827
828 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
829 (OSF version 1.3, compiler version 3.11). It miscompiles the
830 following program:
831
832 struct str
833 {
834 unsigned int i0;
835 } s = { 0 };
836
837 int
838 main ()
839 {
840 unsigned long x;
841
842 x = 0x100000000;
843 x <<= (unsigned long) s.i0;
844 if (x == 0)
845 printf ("failed\n");
846 else
847 printf ("succeeded (%lx)\n", x);
848 }
849 */
850
851 relocation >>= (bfd_vma) howto->rightshift;
852
853 /* Shift everything up to where it's going to be used */
854
855 relocation <<= (bfd_vma) howto->bitpos;
856
857 /* Wait for the day when all have the mask in them */
858
859 /* What we do:
860 i instruction to be left alone
861 o offset within instruction
862 r relocation offset to apply
863 S src mask
864 D dst mask
865 N ~dst mask
866 A part 1
867 B part 2
868 R result
869
870 Do this:
871 (( i i i i i o o o o o from bfd_get<size>
872 and S S S S S) to get the size offset we want
873 + r r r r r r r r r r) to get the final value to place
874 and D D D D D to chop to right size
875 -----------------------
876 = A A A A A
877 And this:
878 ( i i i i i o o o o o from bfd_get<size>
879 and N N N N N ) get instruction
880 -----------------------
881 = B B B B B
882
883 And then:
884 ( B B B B B
885 or A A A A A)
886 -----------------------
887 = R R R R R R R R R R put into bfd_put<size>
888 */
889
890 #define DOIT(x) \
891 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
892
893 switch (howto->size)
894 {
895 case 0:
896 {
897 char x = bfd_get_8 (abfd, (char *) data + octets);
898 DOIT (x);
899 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
900 }
901 break;
902
903 case 1:
904 {
905 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
906 DOIT (x);
907 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data + octets);
908 }
909 break;
910 case 2:
911 {
912 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
913 DOIT (x);
914 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
915 }
916 break;
917 case -2:
918 {
919 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
920 relocation = -relocation;
921 DOIT (x);
922 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
923 }
924 break;
925
926 case -1:
927 {
928 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
929 relocation = -relocation;
930 DOIT (x);
931 bfd_put_16 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
932 }
933 break;
934
935 case 3:
936 /* Do nothing */
937 break;
938
939 case 4:
940 #ifdef BFD64
941 {
942 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
943 DOIT (x);
944 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
945 }
946 #else
947 abort ();
948 #endif
949 break;
950 default:
951 return bfd_reloc_other;
952 }
953
954 return flag;
955 }
956
957 /*
958 FUNCTION
959 bfd_install_relocation
960
961 SYNOPSIS
962 bfd_reloc_status_type
963 bfd_install_relocation
964 (bfd *abfd,
965 arelent *reloc_entry,
966 PTR data, bfd_vma data_start,
967 asection *input_section,
968 char **error_message);
969
970 DESCRIPTION
971 This looks remarkably like <<bfd_perform_relocation>>, except it
972 does not expect that the section contents have been filled in.
973 I.e., it's suitable for use when creating, rather than applying
974 a relocation.
975
976 For now, this function should be considered reserved for the
977 assembler.
978
979 */
980
981 bfd_reloc_status_type
982 bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
983 input_section, error_message)
984 bfd *abfd;
985 arelent *reloc_entry;
986 PTR data_start;
987 bfd_vma data_start_offset;
988 asection *input_section;
989 char **error_message;
990 {
991 bfd_vma relocation;
992 bfd_reloc_status_type flag = bfd_reloc_ok;
993 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
994 bfd_vma output_base = 0;
995 reloc_howto_type *howto = reloc_entry->howto;
996 asection *reloc_target_output_section;
997 asymbol *symbol;
998 bfd_byte *data;
999
1000 symbol = *(reloc_entry->sym_ptr_ptr);
1001 if (bfd_is_abs_section (symbol->section))
1002 {
1003 reloc_entry->address += input_section->output_offset;
1004 return bfd_reloc_ok;
1005 }
1006
1007 /* If there is a function supplied to handle this relocation type,
1008 call it. It'll return `bfd_reloc_continue' if further processing
1009 can be done. */
1010 if (howto->special_function)
1011 {
1012 bfd_reloc_status_type cont;
1013
1014 /* XXX - The special_function calls haven't been fixed up to deal
1015 with creating new relocations and section contents. */
1016 cont = howto->special_function (abfd, reloc_entry, symbol,
1017 /* XXX - Non-portable! */
1018 ((bfd_byte *) data_start
1019 - data_start_offset),
1020 input_section, abfd, error_message);
1021 if (cont != bfd_reloc_continue)
1022 return cont;
1023 }
1024
1025 /* Is the address of the relocation really within the section? */
1026 if (reloc_entry->address > (input_section->_cooked_size
1027 / bfd_octets_per_byte (abfd)))
1028 return bfd_reloc_outofrange;
1029
1030 /* Work out which section the relocation is targetted at and the
1031 initial relocation command value. */
1032
1033 /* Get symbol value. (Common symbols are special.) */
1034 if (bfd_is_com_section (symbol->section))
1035 relocation = 0;
1036 else
1037 relocation = symbol->value;
1038
1039 reloc_target_output_section = symbol->section->output_section;
1040
1041 /* Convert input-section-relative symbol value to absolute. */
1042 if (howto->partial_inplace == false)
1043 output_base = 0;
1044 else
1045 output_base = reloc_target_output_section->vma;
1046
1047 relocation += output_base + symbol->section->output_offset;
1048
1049 /* Add in supplied addend. */
1050 relocation += reloc_entry->addend;
1051
1052 /* Here the variable relocation holds the final address of the
1053 symbol we are relocating against, plus any addend. */
1054
1055 if (howto->pc_relative == true)
1056 {
1057 /* This is a PC relative relocation. We want to set RELOCATION
1058 to the distance between the address of the symbol and the
1059 location. RELOCATION is already the address of the symbol.
1060
1061 We start by subtracting the address of the section containing
1062 the location.
1063
1064 If pcrel_offset is set, we must further subtract the position
1065 of the location within the section. Some targets arrange for
1066 the addend to be the negative of the position of the location
1067 within the section; for example, i386-aout does this. For
1068 i386-aout, pcrel_offset is false. Some other targets do not
1069 include the position of the location; for example, m88kbcs,
1070 or ELF. For those targets, pcrel_offset is true.
1071
1072 If we are producing relocateable output, then we must ensure
1073 that this reloc will be correctly computed when the final
1074 relocation is done. If pcrel_offset is false we want to wind
1075 up with the negative of the location within the section,
1076 which means we must adjust the existing addend by the change
1077 in the location within the section. If pcrel_offset is true
1078 we do not want to adjust the existing addend at all.
1079
1080 FIXME: This seems logical to me, but for the case of
1081 producing relocateable output it is not what the code
1082 actually does. I don't want to change it, because it seems
1083 far too likely that something will break. */
1084
1085 relocation -=
1086 input_section->output_section->vma + input_section->output_offset;
1087
1088 if (howto->pcrel_offset == true && howto->partial_inplace == true)
1089 relocation -= reloc_entry->address;
1090 }
1091
1092 if (howto->partial_inplace == false)
1093 {
1094 /* This is a partial relocation, and we want to apply the relocation
1095 to the reloc entry rather than the raw data. Modify the reloc
1096 inplace to reflect what we now know. */
1097 reloc_entry->addend = relocation;
1098 reloc_entry->address += input_section->output_offset;
1099 return flag;
1100 }
1101 else
1102 {
1103 /* This is a partial relocation, but inplace, so modify the
1104 reloc record a bit.
1105
1106 If we've relocated with a symbol with a section, change
1107 into a ref to the section belonging to the symbol. */
1108
1109 reloc_entry->address += input_section->output_offset;
1110
1111 /* WTF?? */
1112 if (abfd->xvec->flavour == bfd_target_coff_flavour
1113 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1114 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1115 {
1116 #if 1
1117 /* For m68k-coff, the addend was being subtracted twice during
1118 relocation with -r. Removing the line below this comment
1119 fixes that problem; see PR 2953.
1120
1121 However, Ian wrote the following, regarding removing the line below,
1122 which explains why it is still enabled: --djm
1123
1124 If you put a patch like that into BFD you need to check all the COFF
1125 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1126 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1127 problem in a different way. There may very well be a reason that the
1128 code works as it does.
1129
1130 Hmmm. The first obvious point is that bfd_install_relocation should
1131 not have any tests that depend upon the flavour. It's seem like
1132 entirely the wrong place for such a thing. The second obvious point
1133 is that the current code ignores the reloc addend when producing
1134 relocateable output for COFF. That's peculiar. In fact, I really
1135 have no idea what the point of the line you want to remove is.
1136
1137 A typical COFF reloc subtracts the old value of the symbol and adds in
1138 the new value to the location in the object file (if it's a pc
1139 relative reloc it adds the difference between the symbol value and the
1140 location). When relocating we need to preserve that property.
1141
1142 BFD handles this by setting the addend to the negative of the old
1143 value of the symbol. Unfortunately it handles common symbols in a
1144 non-standard way (it doesn't subtract the old value) but that's a
1145 different story (we can't change it without losing backward
1146 compatibility with old object files) (coff-i386 does subtract the old
1147 value, to be compatible with existing coff-i386 targets, like SCO).
1148
1149 So everything works fine when not producing relocateable output. When
1150 we are producing relocateable output, logically we should do exactly
1151 what we do when not producing relocateable output. Therefore, your
1152 patch is correct. In fact, it should probably always just set
1153 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1154 add the value into the object file. This won't hurt the COFF code,
1155 which doesn't use the addend; I'm not sure what it will do to other
1156 formats (the thing to check for would be whether any formats both use
1157 the addend and set partial_inplace).
1158
1159 When I wanted to make coff-i386 produce relocateable output, I ran
1160 into the problem that you are running into: I wanted to remove that
1161 line. Rather than risk it, I made the coff-i386 relocs use a special
1162 function; it's coff_i386_reloc in coff-i386.c. The function
1163 specifically adds the addend field into the object file, knowing that
1164 bfd_install_relocation is not going to. If you remove that line, then
1165 coff-i386.c will wind up adding the addend field in twice. It's
1166 trivial to fix; it just needs to be done.
1167
1168 The problem with removing the line is just that it may break some
1169 working code. With BFD it's hard to be sure of anything. The right
1170 way to deal with this is simply to build and test at least all the
1171 supported COFF targets. It should be straightforward if time and disk
1172 space consuming. For each target:
1173 1) build the linker
1174 2) generate some executable, and link it using -r (I would
1175 probably use paranoia.o and link against newlib/libc.a, which
1176 for all the supported targets would be available in
1177 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1178 3) make the change to reloc.c
1179 4) rebuild the linker
1180 5) repeat step 2
1181 6) if the resulting object files are the same, you have at least
1182 made it no worse
1183 7) if they are different you have to figure out which version is
1184 right
1185 */
1186 relocation -= reloc_entry->addend;
1187 #endif
1188 reloc_entry->addend = 0;
1189 }
1190 else
1191 {
1192 reloc_entry->addend = relocation;
1193 }
1194 }
1195
1196 /* FIXME: This overflow checking is incomplete, because the value
1197 might have overflowed before we get here. For a correct check we
1198 need to compute the value in a size larger than bitsize, but we
1199 can't reasonably do that for a reloc the same size as a host
1200 machine word.
1201 FIXME: We should also do overflow checking on the result after
1202 adding in the value contained in the object file. */
1203 if (howto->complain_on_overflow != complain_overflow_dont)
1204 flag = bfd_check_overflow (howto->complain_on_overflow,
1205 howto->bitsize,
1206 howto->rightshift,
1207 bfd_arch_bits_per_address (abfd),
1208 relocation);
1209
1210 /*
1211 Either we are relocating all the way, or we don't want to apply
1212 the relocation to the reloc entry (probably because there isn't
1213 any room in the output format to describe addends to relocs)
1214 */
1215
1216 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1217 (OSF version 1.3, compiler version 3.11). It miscompiles the
1218 following program:
1219
1220 struct str
1221 {
1222 unsigned int i0;
1223 } s = { 0 };
1224
1225 int
1226 main ()
1227 {
1228 unsigned long x;
1229
1230 x = 0x100000000;
1231 x <<= (unsigned long) s.i0;
1232 if (x == 0)
1233 printf ("failed\n");
1234 else
1235 printf ("succeeded (%lx)\n", x);
1236 }
1237 */
1238
1239 relocation >>= (bfd_vma) howto->rightshift;
1240
1241 /* Shift everything up to where it's going to be used */
1242
1243 relocation <<= (bfd_vma) howto->bitpos;
1244
1245 /* Wait for the day when all have the mask in them */
1246
1247 /* What we do:
1248 i instruction to be left alone
1249 o offset within instruction
1250 r relocation offset to apply
1251 S src mask
1252 D dst mask
1253 N ~dst mask
1254 A part 1
1255 B part 2
1256 R result
1257
1258 Do this:
1259 (( i i i i i o o o o o from bfd_get<size>
1260 and S S S S S) to get the size offset we want
1261 + r r r r r r r r r r) to get the final value to place
1262 and D D D D D to chop to right size
1263 -----------------------
1264 = A A A A A
1265 And this:
1266 ( i i i i i o o o o o from bfd_get<size>
1267 and N N N N N ) get instruction
1268 -----------------------
1269 = B B B B B
1270
1271 And then:
1272 ( B B B B B
1273 or A A A A A)
1274 -----------------------
1275 = R R R R R R R R R R put into bfd_put<size>
1276 */
1277
1278 #define DOIT(x) \
1279 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1280
1281 data = (bfd_byte *) data_start + (octets - data_start_offset);
1282
1283 switch (howto->size)
1284 {
1285 case 0:
1286 {
1287 char x = bfd_get_8 (abfd, (char *) data);
1288 DOIT (x);
1289 bfd_put_8 (abfd, x, (unsigned char *) data);
1290 }
1291 break;
1292
1293 case 1:
1294 {
1295 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1296 DOIT (x);
1297 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data);
1298 }
1299 break;
1300 case 2:
1301 {
1302 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1303 DOIT (x);
1304 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
1305 }
1306 break;
1307 case -2:
1308 {
1309 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1310 relocation = -relocation;
1311 DOIT (x);
1312 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
1313 }
1314 break;
1315
1316 case 3:
1317 /* Do nothing */
1318 break;
1319
1320 case 4:
1321 {
1322 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1323 DOIT (x);
1324 bfd_put_64 (abfd, x, (bfd_byte *) data);
1325 }
1326 break;
1327 default:
1328 return bfd_reloc_other;
1329 }
1330
1331 return flag;
1332 }
1333
1334 /* This relocation routine is used by some of the backend linkers.
1335 They do not construct asymbol or arelent structures, so there is no
1336 reason for them to use bfd_perform_relocation. Also,
1337 bfd_perform_relocation is so hacked up it is easier to write a new
1338 function than to try to deal with it.
1339
1340 This routine does a final relocation. Whether it is useful for a
1341 relocateable link depends upon how the object format defines
1342 relocations.
1343
1344 FIXME: This routine ignores any special_function in the HOWTO,
1345 since the existing special_function values have been written for
1346 bfd_perform_relocation.
1347
1348 HOWTO is the reloc howto information.
1349 INPUT_BFD is the BFD which the reloc applies to.
1350 INPUT_SECTION is the section which the reloc applies to.
1351 CONTENTS is the contents of the section.
1352 ADDRESS is the address of the reloc within INPUT_SECTION.
1353 VALUE is the value of the symbol the reloc refers to.
1354 ADDEND is the addend of the reloc. */
1355
1356 bfd_reloc_status_type
1357 _bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1358 value, addend)
1359 reloc_howto_type *howto;
1360 bfd *input_bfd;
1361 asection *input_section;
1362 bfd_byte *contents;
1363 bfd_vma address;
1364 bfd_vma value;
1365 bfd_vma addend;
1366 {
1367 bfd_vma relocation;
1368
1369 /* Sanity check the address. */
1370 if (address > input_section->_raw_size)
1371 return bfd_reloc_outofrange;
1372
1373 /* This function assumes that we are dealing with a basic relocation
1374 against a symbol. We want to compute the value of the symbol to
1375 relocate to. This is just VALUE, the value of the symbol, plus
1376 ADDEND, any addend associated with the reloc. */
1377 relocation = value + addend;
1378
1379 /* If the relocation is PC relative, we want to set RELOCATION to
1380 the distance between the symbol (currently in RELOCATION) and the
1381 location we are relocating. Some targets (e.g., i386-aout)
1382 arrange for the contents of the section to be the negative of the
1383 offset of the location within the section; for such targets
1384 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1385 simply leave the contents of the section as zero; for such
1386 targets pcrel_offset is true. If pcrel_offset is false we do not
1387 need to subtract out the offset of the location within the
1388 section (which is just ADDRESS). */
1389 if (howto->pc_relative)
1390 {
1391 relocation -= (input_section->output_section->vma
1392 + input_section->output_offset);
1393 if (howto->pcrel_offset)
1394 relocation -= address;
1395 }
1396
1397 return _bfd_relocate_contents (howto, input_bfd, relocation,
1398 contents + address);
1399 }
1400
1401 /* Relocate a given location using a given value and howto. */
1402
1403 bfd_reloc_status_type
1404 _bfd_relocate_contents (howto, input_bfd, relocation, location)
1405 reloc_howto_type *howto;
1406 bfd *input_bfd;
1407 bfd_vma relocation;
1408 bfd_byte *location;
1409 {
1410 int size;
1411 bfd_vma x = 0;
1412 bfd_reloc_status_type flag;
1413 unsigned int rightshift = howto->rightshift;
1414 unsigned int bitpos = howto->bitpos;
1415
1416 /* If the size is negative, negate RELOCATION. This isn't very
1417 general. */
1418 if (howto->size < 0)
1419 relocation = -relocation;
1420
1421 /* Get the value we are going to relocate. */
1422 size = bfd_get_reloc_size (howto);
1423 switch (size)
1424 {
1425 default:
1426 case 0:
1427 abort ();
1428 case 1:
1429 x = bfd_get_8 (input_bfd, location);
1430 break;
1431 case 2:
1432 x = bfd_get_16 (input_bfd, location);
1433 break;
1434 case 4:
1435 x = bfd_get_32 (input_bfd, location);
1436 break;
1437 case 8:
1438 #ifdef BFD64
1439 x = bfd_get_64 (input_bfd, location);
1440 #else
1441 abort ();
1442 #endif
1443 break;
1444 }
1445
1446 /* Check for overflow. FIXME: We may drop bits during the addition
1447 which we don't check for. We must either check at every single
1448 operation, which would be tedious, or we must do the computations
1449 in a type larger than bfd_vma, which would be inefficient. */
1450 flag = bfd_reloc_ok;
1451 if (howto->complain_on_overflow != complain_overflow_dont)
1452 {
1453 bfd_vma addrmask, fieldmask, signmask, ss;
1454 bfd_vma a, b, sum;
1455
1456 /* Get the values to be added together. For signed and unsigned
1457 relocations, we assume that all values should be truncated to
1458 the size of an address. For bitfields, all the bits matter.
1459 See also bfd_check_overflow. */
1460 fieldmask = N_ONES (howto->bitsize);
1461 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1462 a = relocation;
1463 b = x & howto->src_mask;
1464
1465 switch (howto->complain_on_overflow)
1466 {
1467 case complain_overflow_signed:
1468 a = (a & addrmask) >> rightshift;
1469
1470 /* If any sign bits are set, all sign bits must be set.
1471 That is, A must be a valid negative address after
1472 shifting. */
1473 signmask = ~ (fieldmask >> 1);
1474 ss = a & signmask;
1475 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
1476 flag = bfd_reloc_overflow;
1477
1478 /* We only need this next bit of code if the sign bit of B
1479 is below the sign bit of A. This would only happen if
1480 SRC_MASK had fewer bits than BITSIZE. Note that if
1481 SRC_MASK has more bits than BITSIZE, we can get into
1482 trouble; we would need to verify that B is in range, as
1483 we do for A above. */
1484 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1485
1486 /* Set all the bits above the sign bit. */
1487 b = (b ^ signmask) - signmask;
1488
1489 b = (b & addrmask) >> bitpos;
1490
1491 /* Now we can do the addition. */
1492 sum = a + b;
1493
1494 /* See if the result has the correct sign. Bits above the
1495 sign bit are junk now; ignore them. If the sum is
1496 positive, make sure we did not have all negative inputs;
1497 if the sum is negative, make sure we did not have all
1498 positive inputs. The test below looks only at the sign
1499 bits, and it really just
1500 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1501 */
1502 signmask = (fieldmask >> 1) + 1;
1503 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
1504 flag = bfd_reloc_overflow;
1505
1506 break;
1507
1508 case complain_overflow_unsigned:
1509 /* Checking for an unsigned overflow is relatively easy:
1510 trim the addresses and add, and trim the result as well.
1511 Overflow is normally indicated when the result does not
1512 fit in the field. However, we also need to consider the
1513 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1514 input is 0x80000000, and bfd_vma is only 32 bits; then we
1515 will get sum == 0, but there is an overflow, since the
1516 inputs did not fit in the field. Instead of doing a
1517 separate test, we can check for this by or-ing in the
1518 operands when testing for the sum overflowing its final
1519 field. */
1520 a = (a & addrmask) >> rightshift;
1521 b = (b & addrmask) >> bitpos;
1522 sum = (a + b) & addrmask;
1523 if ((a | b | sum) & ~ fieldmask)
1524 flag = bfd_reloc_overflow;
1525
1526 break;
1527
1528 case complain_overflow_bitfield:
1529 /* Much like the signed check, but for a field one bit
1530 wider, and no trimming inputs with addrmask. We allow a
1531 bitfield to represent numbers in the range -2**n to
1532 2**n-1, where n is the number of bits in the field.
1533 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1534 overflow, which is exactly what we want. */
1535 a >>= rightshift;
1536
1537 signmask = ~ fieldmask;
1538 ss = a & signmask;
1539 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1540 flag = bfd_reloc_overflow;
1541
1542 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1543 b = (b ^ signmask) - signmask;
1544
1545 b >>= bitpos;
1546
1547 sum = a + b;
1548
1549 /* We mask with addrmask here to explicitly allow an address
1550 wrap-around. The Linux kernel relies on it, and it is
1551 the only way to write assembler code which can run when
1552 loaded at a location 0x80000000 away from the location at
1553 which it is linked. */
1554 signmask = fieldmask + 1;
1555 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
1556 flag = bfd_reloc_overflow;
1557
1558 break;
1559
1560 default:
1561 abort ();
1562 }
1563 }
1564
1565 /* Put RELOCATION in the right bits. */
1566 relocation >>= (bfd_vma) rightshift;
1567 relocation <<= (bfd_vma) bitpos;
1568
1569 /* Add RELOCATION to the right bits of X. */
1570 x = ((x & ~howto->dst_mask)
1571 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1572
1573 /* Put the relocated value back in the object file. */
1574 switch (size)
1575 {
1576 default:
1577 case 0:
1578 abort ();
1579 case 1:
1580 bfd_put_8 (input_bfd, x, location);
1581 break;
1582 case 2:
1583 bfd_put_16 (input_bfd, x, location);
1584 break;
1585 case 4:
1586 bfd_put_32 (input_bfd, x, location);
1587 break;
1588 case 8:
1589 #ifdef BFD64
1590 bfd_put_64 (input_bfd, x, location);
1591 #else
1592 abort ();
1593 #endif
1594 break;
1595 }
1596
1597 return flag;
1598 }
1599
1600 /*
1601 DOCDD
1602 INODE
1603 howto manager, , typedef arelent, Relocations
1604
1605 SECTION
1606 The howto manager
1607
1608 When an application wants to create a relocation, but doesn't
1609 know what the target machine might call it, it can find out by
1610 using this bit of code.
1611
1612 */
1613
1614 /*
1615 TYPEDEF
1616 bfd_reloc_code_type
1617
1618 DESCRIPTION
1619 The insides of a reloc code. The idea is that, eventually, there
1620 will be one enumerator for every type of relocation we ever do.
1621 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1622 return a howto pointer.
1623
1624 This does mean that the application must determine the correct
1625 enumerator value; you can't get a howto pointer from a random set
1626 of attributes.
1627
1628 SENUM
1629 bfd_reloc_code_real
1630
1631 ENUM
1632 BFD_RELOC_64
1633 ENUMX
1634 BFD_RELOC_32
1635 ENUMX
1636 BFD_RELOC_26
1637 ENUMX
1638 BFD_RELOC_24
1639 ENUMX
1640 BFD_RELOC_16
1641 ENUMX
1642 BFD_RELOC_14
1643 ENUMX
1644 BFD_RELOC_8
1645 ENUMDOC
1646 Basic absolute relocations of N bits.
1647
1648 ENUM
1649 BFD_RELOC_64_PCREL
1650 ENUMX
1651 BFD_RELOC_32_PCREL
1652 ENUMX
1653 BFD_RELOC_24_PCREL
1654 ENUMX
1655 BFD_RELOC_16_PCREL
1656 ENUMX
1657 BFD_RELOC_12_PCREL
1658 ENUMX
1659 BFD_RELOC_8_PCREL
1660 ENUMDOC
1661 PC-relative relocations. Sometimes these are relative to the address
1662 of the relocation itself; sometimes they are relative to the start of
1663 the section containing the relocation. It depends on the specific target.
1664
1665 The 24-bit relocation is used in some Intel 960 configurations.
1666
1667 ENUM
1668 BFD_RELOC_32_GOT_PCREL
1669 ENUMX
1670 BFD_RELOC_16_GOT_PCREL
1671 ENUMX
1672 BFD_RELOC_8_GOT_PCREL
1673 ENUMX
1674 BFD_RELOC_32_GOTOFF
1675 ENUMX
1676 BFD_RELOC_16_GOTOFF
1677 ENUMX
1678 BFD_RELOC_LO16_GOTOFF
1679 ENUMX
1680 BFD_RELOC_HI16_GOTOFF
1681 ENUMX
1682 BFD_RELOC_HI16_S_GOTOFF
1683 ENUMX
1684 BFD_RELOC_8_GOTOFF
1685 ENUMX
1686 BFD_RELOC_64_PLT_PCREL
1687 ENUMX
1688 BFD_RELOC_32_PLT_PCREL
1689 ENUMX
1690 BFD_RELOC_24_PLT_PCREL
1691 ENUMX
1692 BFD_RELOC_16_PLT_PCREL
1693 ENUMX
1694 BFD_RELOC_8_PLT_PCREL
1695 ENUMX
1696 BFD_RELOC_64_PLTOFF
1697 ENUMX
1698 BFD_RELOC_32_PLTOFF
1699 ENUMX
1700 BFD_RELOC_16_PLTOFF
1701 ENUMX
1702 BFD_RELOC_LO16_PLTOFF
1703 ENUMX
1704 BFD_RELOC_HI16_PLTOFF
1705 ENUMX
1706 BFD_RELOC_HI16_S_PLTOFF
1707 ENUMX
1708 BFD_RELOC_8_PLTOFF
1709 ENUMDOC
1710 For ELF.
1711
1712 ENUM
1713 BFD_RELOC_68K_GLOB_DAT
1714 ENUMX
1715 BFD_RELOC_68K_JMP_SLOT
1716 ENUMX
1717 BFD_RELOC_68K_RELATIVE
1718 ENUMDOC
1719 Relocations used by 68K ELF.
1720
1721 ENUM
1722 BFD_RELOC_32_BASEREL
1723 ENUMX
1724 BFD_RELOC_16_BASEREL
1725 ENUMX
1726 BFD_RELOC_LO16_BASEREL
1727 ENUMX
1728 BFD_RELOC_HI16_BASEREL
1729 ENUMX
1730 BFD_RELOC_HI16_S_BASEREL
1731 ENUMX
1732 BFD_RELOC_8_BASEREL
1733 ENUMX
1734 BFD_RELOC_RVA
1735 ENUMDOC
1736 Linkage-table relative.
1737
1738 ENUM
1739 BFD_RELOC_8_FFnn
1740 ENUMDOC
1741 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1742
1743 ENUM
1744 BFD_RELOC_32_PCREL_S2
1745 ENUMX
1746 BFD_RELOC_16_PCREL_S2
1747 ENUMX
1748 BFD_RELOC_23_PCREL_S2
1749 ENUMDOC
1750 These PC-relative relocations are stored as word displacements --
1751 i.e., byte displacements shifted right two bits. The 30-bit word
1752 displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1753 SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1754 signed 16-bit displacement is used on the MIPS, and the 23-bit
1755 displacement is used on the Alpha.
1756
1757 ENUM
1758 BFD_RELOC_HI22
1759 ENUMX
1760 BFD_RELOC_LO10
1761 ENUMDOC
1762 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1763 the target word. These are used on the SPARC.
1764
1765 ENUM
1766 BFD_RELOC_GPREL16
1767 ENUMX
1768 BFD_RELOC_GPREL32
1769 ENUMDOC
1770 For systems that allocate a Global Pointer register, these are
1771 displacements off that register. These relocation types are
1772 handled specially, because the value the register will have is
1773 decided relatively late.
1774
1775 ENUM
1776 BFD_RELOC_I960_CALLJ
1777 ENUMDOC
1778 Reloc types used for i960/b.out.
1779
1780 ENUM
1781 BFD_RELOC_NONE
1782 ENUMX
1783 BFD_RELOC_SPARC_WDISP22
1784 ENUMX
1785 BFD_RELOC_SPARC22
1786 ENUMX
1787 BFD_RELOC_SPARC13
1788 ENUMX
1789 BFD_RELOC_SPARC_GOT10
1790 ENUMX
1791 BFD_RELOC_SPARC_GOT13
1792 ENUMX
1793 BFD_RELOC_SPARC_GOT22
1794 ENUMX
1795 BFD_RELOC_SPARC_PC10
1796 ENUMX
1797 BFD_RELOC_SPARC_PC22
1798 ENUMX
1799 BFD_RELOC_SPARC_WPLT30
1800 ENUMX
1801 BFD_RELOC_SPARC_COPY
1802 ENUMX
1803 BFD_RELOC_SPARC_GLOB_DAT
1804 ENUMX
1805 BFD_RELOC_SPARC_JMP_SLOT
1806 ENUMX
1807 BFD_RELOC_SPARC_RELATIVE
1808 ENUMX
1809 BFD_RELOC_SPARC_UA16
1810 ENUMX
1811 BFD_RELOC_SPARC_UA32
1812 ENUMX
1813 BFD_RELOC_SPARC_UA64
1814 ENUMDOC
1815 SPARC ELF relocations. There is probably some overlap with other
1816 relocation types already defined.
1817
1818 ENUM
1819 BFD_RELOC_SPARC_BASE13
1820 ENUMX
1821 BFD_RELOC_SPARC_BASE22
1822 ENUMDOC
1823 I think these are specific to SPARC a.out (e.g., Sun 4).
1824
1825 ENUMEQ
1826 BFD_RELOC_SPARC_64
1827 BFD_RELOC_64
1828 ENUMX
1829 BFD_RELOC_SPARC_10
1830 ENUMX
1831 BFD_RELOC_SPARC_11
1832 ENUMX
1833 BFD_RELOC_SPARC_OLO10
1834 ENUMX
1835 BFD_RELOC_SPARC_HH22
1836 ENUMX
1837 BFD_RELOC_SPARC_HM10
1838 ENUMX
1839 BFD_RELOC_SPARC_LM22
1840 ENUMX
1841 BFD_RELOC_SPARC_PC_HH22
1842 ENUMX
1843 BFD_RELOC_SPARC_PC_HM10
1844 ENUMX
1845 BFD_RELOC_SPARC_PC_LM22
1846 ENUMX
1847 BFD_RELOC_SPARC_WDISP16
1848 ENUMX
1849 BFD_RELOC_SPARC_WDISP19
1850 ENUMX
1851 BFD_RELOC_SPARC_7
1852 ENUMX
1853 BFD_RELOC_SPARC_6
1854 ENUMX
1855 BFD_RELOC_SPARC_5
1856 ENUMEQX
1857 BFD_RELOC_SPARC_DISP64
1858 BFD_RELOC_64_PCREL
1859 ENUMX
1860 BFD_RELOC_SPARC_PLT32
1861 ENUMX
1862 BFD_RELOC_SPARC_PLT64
1863 ENUMX
1864 BFD_RELOC_SPARC_HIX22
1865 ENUMX
1866 BFD_RELOC_SPARC_LOX10
1867 ENUMX
1868 BFD_RELOC_SPARC_H44
1869 ENUMX
1870 BFD_RELOC_SPARC_M44
1871 ENUMX
1872 BFD_RELOC_SPARC_L44
1873 ENUMX
1874 BFD_RELOC_SPARC_REGISTER
1875 ENUMDOC
1876 SPARC64 relocations
1877
1878 ENUM
1879 BFD_RELOC_SPARC_REV32
1880 ENUMDOC
1881 SPARC little endian relocation
1882
1883 ENUM
1884 BFD_RELOC_ALPHA_GPDISP_HI16
1885 ENUMDOC
1886 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1887 "addend" in some special way.
1888 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1889 writing; when reading, it will be the absolute section symbol. The
1890 addend is the displacement in bytes of the "lda" instruction from
1891 the "ldah" instruction (which is at the address of this reloc).
1892 ENUM
1893 BFD_RELOC_ALPHA_GPDISP_LO16
1894 ENUMDOC
1895 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1896 with GPDISP_HI16 relocs. The addend is ignored when writing the
1897 relocations out, and is filled in with the file's GP value on
1898 reading, for convenience.
1899
1900 ENUM
1901 BFD_RELOC_ALPHA_GPDISP
1902 ENUMDOC
1903 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1904 relocation except that there is no accompanying GPDISP_LO16
1905 relocation.
1906
1907 ENUM
1908 BFD_RELOC_ALPHA_LITERAL
1909 ENUMX
1910 BFD_RELOC_ALPHA_ELF_LITERAL
1911 ENUMX
1912 BFD_RELOC_ALPHA_LITUSE
1913 ENUMDOC
1914 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1915 the assembler turns it into a LDQ instruction to load the address of
1916 the symbol, and then fills in a register in the real instruction.
1917
1918 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1919 section symbol. The addend is ignored when writing, but is filled
1920 in with the file's GP value on reading, for convenience, as with the
1921 GPDISP_LO16 reloc.
1922
1923 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1924 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1925 but it generates output not based on the position within the .got
1926 section, but relative to the GP value chosen for the file during the
1927 final link stage.
1928
1929 The LITUSE reloc, on the instruction using the loaded address, gives
1930 information to the linker that it might be able to use to optimize
1931 away some literal section references. The symbol is ignored (read
1932 as the absolute section symbol), and the "addend" indicates the type
1933 of instruction using the register:
1934 1 - "memory" fmt insn
1935 2 - byte-manipulation (byte offset reg)
1936 3 - jsr (target of branch)
1937
1938 ENUM
1939 BFD_RELOC_ALPHA_HINT
1940 ENUMDOC
1941 The HINT relocation indicates a value that should be filled into the
1942 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1943 prediction logic which may be provided on some processors.
1944
1945 ENUM
1946 BFD_RELOC_ALPHA_LINKAGE
1947 ENUMDOC
1948 The LINKAGE relocation outputs a linkage pair in the object file,
1949 which is filled by the linker.
1950
1951 ENUM
1952 BFD_RELOC_ALPHA_CODEADDR
1953 ENUMDOC
1954 The CODEADDR relocation outputs a STO_CA in the object file,
1955 which is filled by the linker.
1956
1957 ENUM
1958 BFD_RELOC_ALPHA_GPREL_HI16
1959 ENUMX
1960 BFD_RELOC_ALPHA_GPREL_LO16
1961 ENUMDOC
1962 The GPREL_HI/LO relocations together form a 32-bit offset from the
1963 GP register.
1964
1965 ENUM
1966 BFD_RELOC_MIPS_JMP
1967 ENUMDOC
1968 Bits 27..2 of the relocation address shifted right 2 bits;
1969 simple reloc otherwise.
1970
1971 ENUM
1972 BFD_RELOC_MIPS16_JMP
1973 ENUMDOC
1974 The MIPS16 jump instruction.
1975
1976 ENUM
1977 BFD_RELOC_MIPS16_GPREL
1978 ENUMDOC
1979 MIPS16 GP relative reloc.
1980
1981 ENUM
1982 BFD_RELOC_HI16
1983 ENUMDOC
1984 High 16 bits of 32-bit value; simple reloc.
1985 ENUM
1986 BFD_RELOC_HI16_S
1987 ENUMDOC
1988 High 16 bits of 32-bit value but the low 16 bits will be sign
1989 extended and added to form the final result. If the low 16
1990 bits form a negative number, we need to add one to the high value
1991 to compensate for the borrow when the low bits are added.
1992 ENUM
1993 BFD_RELOC_LO16
1994 ENUMDOC
1995 Low 16 bits.
1996 ENUM
1997 BFD_RELOC_PCREL_HI16_S
1998 ENUMDOC
1999 Like BFD_RELOC_HI16_S, but PC relative.
2000 ENUM
2001 BFD_RELOC_PCREL_LO16
2002 ENUMDOC
2003 Like BFD_RELOC_LO16, but PC relative.
2004
2005 ENUM
2006 BFD_RELOC_MIPS_LITERAL
2007 ENUMDOC
2008 Relocation against a MIPS literal section.
2009
2010 ENUM
2011 BFD_RELOC_MIPS_GOT16
2012 ENUMX
2013 BFD_RELOC_MIPS_CALL16
2014 ENUMX
2015 BFD_RELOC_MIPS_GOT_HI16
2016 ENUMX
2017 BFD_RELOC_MIPS_GOT_LO16
2018 ENUMX
2019 BFD_RELOC_MIPS_CALL_HI16
2020 ENUMX
2021 BFD_RELOC_MIPS_CALL_LO16
2022 ENUMX
2023 BFD_RELOC_MIPS_SUB
2024 ENUMX
2025 BFD_RELOC_MIPS_GOT_PAGE
2026 ENUMX
2027 BFD_RELOC_MIPS_GOT_OFST
2028 ENUMX
2029 BFD_RELOC_MIPS_GOT_DISP
2030 ENUMX
2031 BFD_RELOC_MIPS_SHIFT5
2032 ENUMX
2033 BFD_RELOC_MIPS_SHIFT6
2034 ENUMX
2035 BFD_RELOC_MIPS_INSERT_A
2036 ENUMX
2037 BFD_RELOC_MIPS_INSERT_B
2038 ENUMX
2039 BFD_RELOC_MIPS_DELETE
2040 ENUMX
2041 BFD_RELOC_MIPS_HIGHEST
2042 ENUMX
2043 BFD_RELOC_MIPS_HIGHER
2044 ENUMX
2045 BFD_RELOC_MIPS_SCN_DISP
2046 ENUMX
2047 BFD_RELOC_MIPS_REL16
2048 ENUMX
2049 BFD_RELOC_MIPS_RELGOT
2050 ENUMX
2051 BFD_RELOC_MIPS_JALR
2052 COMMENT
2053 ENUMDOC
2054 MIPS ELF relocations.
2055
2056 COMMENT
2057
2058 ENUM
2059 BFD_RELOC_386_GOT32
2060 ENUMX
2061 BFD_RELOC_386_PLT32
2062 ENUMX
2063 BFD_RELOC_386_COPY
2064 ENUMX
2065 BFD_RELOC_386_GLOB_DAT
2066 ENUMX
2067 BFD_RELOC_386_JUMP_SLOT
2068 ENUMX
2069 BFD_RELOC_386_RELATIVE
2070 ENUMX
2071 BFD_RELOC_386_GOTOFF
2072 ENUMX
2073 BFD_RELOC_386_GOTPC
2074 ENUMDOC
2075 i386/elf relocations
2076
2077 ENUM
2078 BFD_RELOC_X86_64_GOT32
2079 ENUMX
2080 BFD_RELOC_X86_64_PLT32
2081 ENUMX
2082 BFD_RELOC_X86_64_COPY
2083 ENUMX
2084 BFD_RELOC_X86_64_GLOB_DAT
2085 ENUMX
2086 BFD_RELOC_X86_64_JUMP_SLOT
2087 ENUMX
2088 BFD_RELOC_X86_64_RELATIVE
2089 ENUMX
2090 BFD_RELOC_X86_64_GOTPCREL
2091 ENUMX
2092 BFD_RELOC_X86_64_32S
2093 ENUMDOC
2094 x86-64/elf relocations
2095
2096 ENUM
2097 BFD_RELOC_NS32K_IMM_8
2098 ENUMX
2099 BFD_RELOC_NS32K_IMM_16
2100 ENUMX
2101 BFD_RELOC_NS32K_IMM_32
2102 ENUMX
2103 BFD_RELOC_NS32K_IMM_8_PCREL
2104 ENUMX
2105 BFD_RELOC_NS32K_IMM_16_PCREL
2106 ENUMX
2107 BFD_RELOC_NS32K_IMM_32_PCREL
2108 ENUMX
2109 BFD_RELOC_NS32K_DISP_8
2110 ENUMX
2111 BFD_RELOC_NS32K_DISP_16
2112 ENUMX
2113 BFD_RELOC_NS32K_DISP_32
2114 ENUMX
2115 BFD_RELOC_NS32K_DISP_8_PCREL
2116 ENUMX
2117 BFD_RELOC_NS32K_DISP_16_PCREL
2118 ENUMX
2119 BFD_RELOC_NS32K_DISP_32_PCREL
2120 ENUMDOC
2121 ns32k relocations
2122
2123 ENUM
2124 BFD_RELOC_PDP11_DISP_8_PCREL
2125 ENUMX
2126 BFD_RELOC_PDP11_DISP_6_PCREL
2127 ENUMDOC
2128 PDP11 relocations
2129
2130 ENUM
2131 BFD_RELOC_PJ_CODE_HI16
2132 ENUMX
2133 BFD_RELOC_PJ_CODE_LO16
2134 ENUMX
2135 BFD_RELOC_PJ_CODE_DIR16
2136 ENUMX
2137 BFD_RELOC_PJ_CODE_DIR32
2138 ENUMX
2139 BFD_RELOC_PJ_CODE_REL16
2140 ENUMX
2141 BFD_RELOC_PJ_CODE_REL32
2142 ENUMDOC
2143 Picojava relocs. Not all of these appear in object files.
2144
2145 ENUM
2146 BFD_RELOC_PPC_B26
2147 ENUMX
2148 BFD_RELOC_PPC_BA26
2149 ENUMX
2150 BFD_RELOC_PPC_TOC16
2151 ENUMX
2152 BFD_RELOC_PPC_B16
2153 ENUMX
2154 BFD_RELOC_PPC_B16_BRTAKEN
2155 ENUMX
2156 BFD_RELOC_PPC_B16_BRNTAKEN
2157 ENUMX
2158 BFD_RELOC_PPC_BA16
2159 ENUMX
2160 BFD_RELOC_PPC_BA16_BRTAKEN
2161 ENUMX
2162 BFD_RELOC_PPC_BA16_BRNTAKEN
2163 ENUMX
2164 BFD_RELOC_PPC_COPY
2165 ENUMX
2166 BFD_RELOC_PPC_GLOB_DAT
2167 ENUMX
2168 BFD_RELOC_PPC_JMP_SLOT
2169 ENUMX
2170 BFD_RELOC_PPC_RELATIVE
2171 ENUMX
2172 BFD_RELOC_PPC_LOCAL24PC
2173 ENUMX
2174 BFD_RELOC_PPC_EMB_NADDR32
2175 ENUMX
2176 BFD_RELOC_PPC_EMB_NADDR16
2177 ENUMX
2178 BFD_RELOC_PPC_EMB_NADDR16_LO
2179 ENUMX
2180 BFD_RELOC_PPC_EMB_NADDR16_HI
2181 ENUMX
2182 BFD_RELOC_PPC_EMB_NADDR16_HA
2183 ENUMX
2184 BFD_RELOC_PPC_EMB_SDAI16
2185 ENUMX
2186 BFD_RELOC_PPC_EMB_SDA2I16
2187 ENUMX
2188 BFD_RELOC_PPC_EMB_SDA2REL
2189 ENUMX
2190 BFD_RELOC_PPC_EMB_SDA21
2191 ENUMX
2192 BFD_RELOC_PPC_EMB_MRKREF
2193 ENUMX
2194 BFD_RELOC_PPC_EMB_RELSEC16
2195 ENUMX
2196 BFD_RELOC_PPC_EMB_RELST_LO
2197 ENUMX
2198 BFD_RELOC_PPC_EMB_RELST_HI
2199 ENUMX
2200 BFD_RELOC_PPC_EMB_RELST_HA
2201 ENUMX
2202 BFD_RELOC_PPC_EMB_BIT_FLD
2203 ENUMX
2204 BFD_RELOC_PPC_EMB_RELSDA
2205 ENUMX
2206 BFD_RELOC_PPC64_HIGHER
2207 ENUMX
2208 BFD_RELOC_PPC64_HIGHER_S
2209 ENUMX
2210 BFD_RELOC_PPC64_HIGHEST
2211 ENUMX
2212 BFD_RELOC_PPC64_HIGHEST_S
2213 ENUMX
2214 BFD_RELOC_PPC64_TOC16_LO
2215 ENUMX
2216 BFD_RELOC_PPC64_TOC16_HI
2217 ENUMX
2218 BFD_RELOC_PPC64_TOC16_HA
2219 ENUMX
2220 BFD_RELOC_PPC64_TOC
2221 ENUMX
2222 BFD_RELOC_PPC64_PLTGOT16
2223 ENUMX
2224 BFD_RELOC_PPC64_PLTGOT16_LO
2225 ENUMX
2226 BFD_RELOC_PPC64_PLTGOT16_HI
2227 ENUMX
2228 BFD_RELOC_PPC64_PLTGOT16_HA
2229 ENUMX
2230 BFD_RELOC_PPC64_ADDR16_DS
2231 ENUMX
2232 BFD_RELOC_PPC64_ADDR16_LO_DS
2233 ENUMX
2234 BFD_RELOC_PPC64_GOT16_DS
2235 ENUMX
2236 BFD_RELOC_PPC64_GOT16_LO_DS
2237 ENUMX
2238 BFD_RELOC_PPC64_PLT16_LO_DS
2239 ENUMX
2240 BFD_RELOC_PPC64_SECTOFF_DS
2241 ENUMX
2242 BFD_RELOC_PPC64_SECTOFF_LO_DS
2243 ENUMX
2244 BFD_RELOC_PPC64_TOC16_DS
2245 ENUMX
2246 BFD_RELOC_PPC64_TOC16_LO_DS
2247 ENUMX
2248 BFD_RELOC_PPC64_PLTGOT16_DS
2249 ENUMX
2250 BFD_RELOC_PPC64_PLTGOT16_LO_DS
2251 ENUMDOC
2252 Power(rs6000) and PowerPC relocations.
2253
2254 ENUM
2255 BFD_RELOC_I370_D12
2256 ENUMDOC
2257 IBM 370/390 relocations
2258
2259 ENUM
2260 BFD_RELOC_CTOR
2261 ENUMDOC
2262 The type of reloc used to build a contructor table - at the moment
2263 probably a 32 bit wide absolute relocation, but the target can choose.
2264 It generally does map to one of the other relocation types.
2265
2266 ENUM
2267 BFD_RELOC_ARM_PCREL_BRANCH
2268 ENUMDOC
2269 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2270 not stored in the instruction.
2271 ENUM
2272 BFD_RELOC_ARM_PCREL_BLX
2273 ENUMDOC
2274 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2275 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2276 field in the instruction.
2277 ENUM
2278 BFD_RELOC_THUMB_PCREL_BLX
2279 ENUMDOC
2280 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2281 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2282 field in the instruction.
2283 ENUM
2284 BFD_RELOC_ARM_IMMEDIATE
2285 ENUMX
2286 BFD_RELOC_ARM_ADRL_IMMEDIATE
2287 ENUMX
2288 BFD_RELOC_ARM_OFFSET_IMM
2289 ENUMX
2290 BFD_RELOC_ARM_SHIFT_IMM
2291 ENUMX
2292 BFD_RELOC_ARM_SWI
2293 ENUMX
2294 BFD_RELOC_ARM_MULTI
2295 ENUMX
2296 BFD_RELOC_ARM_CP_OFF_IMM
2297 ENUMX
2298 BFD_RELOC_ARM_ADR_IMM
2299 ENUMX
2300 BFD_RELOC_ARM_LDR_IMM
2301 ENUMX
2302 BFD_RELOC_ARM_LITERAL
2303 ENUMX
2304 BFD_RELOC_ARM_IN_POOL
2305 ENUMX
2306 BFD_RELOC_ARM_OFFSET_IMM8
2307 ENUMX
2308 BFD_RELOC_ARM_HWLITERAL
2309 ENUMX
2310 BFD_RELOC_ARM_THUMB_ADD
2311 ENUMX
2312 BFD_RELOC_ARM_THUMB_IMM
2313 ENUMX
2314 BFD_RELOC_ARM_THUMB_SHIFT
2315 ENUMX
2316 BFD_RELOC_ARM_THUMB_OFFSET
2317 ENUMX
2318 BFD_RELOC_ARM_GOT12
2319 ENUMX
2320 BFD_RELOC_ARM_GOT32
2321 ENUMX
2322 BFD_RELOC_ARM_JUMP_SLOT
2323 ENUMX
2324 BFD_RELOC_ARM_COPY
2325 ENUMX
2326 BFD_RELOC_ARM_GLOB_DAT
2327 ENUMX
2328 BFD_RELOC_ARM_PLT32
2329 ENUMX
2330 BFD_RELOC_ARM_RELATIVE
2331 ENUMX
2332 BFD_RELOC_ARM_GOTOFF
2333 ENUMX
2334 BFD_RELOC_ARM_GOTPC
2335 ENUMDOC
2336 These relocs are only used within the ARM assembler. They are not
2337 (at present) written to any object files.
2338
2339 ENUM
2340 BFD_RELOC_SH_PCDISP8BY2
2341 ENUMX
2342 BFD_RELOC_SH_PCDISP12BY2
2343 ENUMX
2344 BFD_RELOC_SH_IMM4
2345 ENUMX
2346 BFD_RELOC_SH_IMM4BY2
2347 ENUMX
2348 BFD_RELOC_SH_IMM4BY4
2349 ENUMX
2350 BFD_RELOC_SH_IMM8
2351 ENUMX
2352 BFD_RELOC_SH_IMM8BY2
2353 ENUMX
2354 BFD_RELOC_SH_IMM8BY4
2355 ENUMX
2356 BFD_RELOC_SH_PCRELIMM8BY2
2357 ENUMX
2358 BFD_RELOC_SH_PCRELIMM8BY4
2359 ENUMX
2360 BFD_RELOC_SH_SWITCH16
2361 ENUMX
2362 BFD_RELOC_SH_SWITCH32
2363 ENUMX
2364 BFD_RELOC_SH_USES
2365 ENUMX
2366 BFD_RELOC_SH_COUNT
2367 ENUMX
2368 BFD_RELOC_SH_ALIGN
2369 ENUMX
2370 BFD_RELOC_SH_CODE
2371 ENUMX
2372 BFD_RELOC_SH_DATA
2373 ENUMX
2374 BFD_RELOC_SH_LABEL
2375 ENUMX
2376 BFD_RELOC_SH_LOOP_START
2377 ENUMX
2378 BFD_RELOC_SH_LOOP_END
2379 ENUMX
2380 BFD_RELOC_SH_COPY
2381 ENUMX
2382 BFD_RELOC_SH_GLOB_DAT
2383 ENUMX
2384 BFD_RELOC_SH_JMP_SLOT
2385 ENUMX
2386 BFD_RELOC_SH_RELATIVE
2387 ENUMX
2388 BFD_RELOC_SH_GOTPC
2389 ENUMDOC
2390 Hitachi SH relocs. Not all of these appear in object files.
2391
2392 ENUM
2393 BFD_RELOC_THUMB_PCREL_BRANCH9
2394 ENUMX
2395 BFD_RELOC_THUMB_PCREL_BRANCH12
2396 ENUMX
2397 BFD_RELOC_THUMB_PCREL_BRANCH23
2398 ENUMDOC
2399 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2400 be zero and is not stored in the instruction.
2401
2402 ENUM
2403 BFD_RELOC_ARC_B22_PCREL
2404 ENUMDOC
2405 ARC Cores relocs.
2406 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2407 not stored in the instruction. The high 20 bits are installed in bits 26
2408 through 7 of the instruction.
2409 ENUM
2410 BFD_RELOC_ARC_B26
2411 ENUMDOC
2412 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2413 stored in the instruction. The high 24 bits are installed in bits 23
2414 through 0.
2415
2416 ENUM
2417 BFD_RELOC_D10V_10_PCREL_R
2418 ENUMDOC
2419 Mitsubishi D10V relocs.
2420 This is a 10-bit reloc with the right 2 bits
2421 assumed to be 0.
2422 ENUM
2423 BFD_RELOC_D10V_10_PCREL_L
2424 ENUMDOC
2425 Mitsubishi D10V relocs.
2426 This is a 10-bit reloc with the right 2 bits
2427 assumed to be 0. This is the same as the previous reloc
2428 except it is in the left container, i.e.,
2429 shifted left 15 bits.
2430 ENUM
2431 BFD_RELOC_D10V_18
2432 ENUMDOC
2433 This is an 18-bit reloc with the right 2 bits
2434 assumed to be 0.
2435 ENUM
2436 BFD_RELOC_D10V_18_PCREL
2437 ENUMDOC
2438 This is an 18-bit reloc with the right 2 bits
2439 assumed to be 0.
2440
2441 ENUM
2442 BFD_RELOC_D30V_6
2443 ENUMDOC
2444 Mitsubishi D30V relocs.
2445 This is a 6-bit absolute reloc.
2446 ENUM
2447 BFD_RELOC_D30V_9_PCREL
2448 ENUMDOC
2449 This is a 6-bit pc-relative reloc with
2450 the right 3 bits assumed to be 0.
2451 ENUM
2452 BFD_RELOC_D30V_9_PCREL_R
2453 ENUMDOC
2454 This is a 6-bit pc-relative reloc with
2455 the right 3 bits assumed to be 0. Same
2456 as the previous reloc but on the right side
2457 of the container.
2458 ENUM
2459 BFD_RELOC_D30V_15
2460 ENUMDOC
2461 This is a 12-bit absolute reloc with the
2462 right 3 bitsassumed to be 0.
2463 ENUM
2464 BFD_RELOC_D30V_15_PCREL
2465 ENUMDOC
2466 This is a 12-bit pc-relative reloc with
2467 the right 3 bits assumed to be 0.
2468 ENUM
2469 BFD_RELOC_D30V_15_PCREL_R
2470 ENUMDOC
2471 This is a 12-bit pc-relative reloc with
2472 the right 3 bits assumed to be 0. Same
2473 as the previous reloc but on the right side
2474 of the container.
2475 ENUM
2476 BFD_RELOC_D30V_21
2477 ENUMDOC
2478 This is an 18-bit absolute reloc with
2479 the right 3 bits assumed to be 0.
2480 ENUM
2481 BFD_RELOC_D30V_21_PCREL
2482 ENUMDOC
2483 This is an 18-bit pc-relative reloc with
2484 the right 3 bits assumed to be 0.
2485 ENUM
2486 BFD_RELOC_D30V_21_PCREL_R
2487 ENUMDOC
2488 This is an 18-bit pc-relative reloc with
2489 the right 3 bits assumed to be 0. Same
2490 as the previous reloc but on the right side
2491 of the container.
2492 ENUM
2493 BFD_RELOC_D30V_32
2494 ENUMDOC
2495 This is a 32-bit absolute reloc.
2496 ENUM
2497 BFD_RELOC_D30V_32_PCREL
2498 ENUMDOC
2499 This is a 32-bit pc-relative reloc.
2500
2501 ENUM
2502 BFD_RELOC_M32R_24
2503 ENUMDOC
2504 Mitsubishi M32R relocs.
2505 This is a 24 bit absolute address.
2506 ENUM
2507 BFD_RELOC_M32R_10_PCREL
2508 ENUMDOC
2509 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2510 ENUM
2511 BFD_RELOC_M32R_18_PCREL
2512 ENUMDOC
2513 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2514 ENUM
2515 BFD_RELOC_M32R_26_PCREL
2516 ENUMDOC
2517 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2518 ENUM
2519 BFD_RELOC_M32R_HI16_ULO
2520 ENUMDOC
2521 This is a 16-bit reloc containing the high 16 bits of an address
2522 used when the lower 16 bits are treated as unsigned.
2523 ENUM
2524 BFD_RELOC_M32R_HI16_SLO
2525 ENUMDOC
2526 This is a 16-bit reloc containing the high 16 bits of an address
2527 used when the lower 16 bits are treated as signed.
2528 ENUM
2529 BFD_RELOC_M32R_LO16
2530 ENUMDOC
2531 This is a 16-bit reloc containing the lower 16 bits of an address.
2532 ENUM
2533 BFD_RELOC_M32R_SDA16
2534 ENUMDOC
2535 This is a 16-bit reloc containing the small data area offset for use in
2536 add3, load, and store instructions.
2537
2538 ENUM
2539 BFD_RELOC_V850_9_PCREL
2540 ENUMDOC
2541 This is a 9-bit reloc
2542 ENUM
2543 BFD_RELOC_V850_22_PCREL
2544 ENUMDOC
2545 This is a 22-bit reloc
2546
2547 ENUM
2548 BFD_RELOC_V850_SDA_16_16_OFFSET
2549 ENUMDOC
2550 This is a 16 bit offset from the short data area pointer.
2551 ENUM
2552 BFD_RELOC_V850_SDA_15_16_OFFSET
2553 ENUMDOC
2554 This is a 16 bit offset (of which only 15 bits are used) from the
2555 short data area pointer.
2556 ENUM
2557 BFD_RELOC_V850_ZDA_16_16_OFFSET
2558 ENUMDOC
2559 This is a 16 bit offset from the zero data area pointer.
2560 ENUM
2561 BFD_RELOC_V850_ZDA_15_16_OFFSET
2562 ENUMDOC
2563 This is a 16 bit offset (of which only 15 bits are used) from the
2564 zero data area pointer.
2565 ENUM
2566 BFD_RELOC_V850_TDA_6_8_OFFSET
2567 ENUMDOC
2568 This is an 8 bit offset (of which only 6 bits are used) from the
2569 tiny data area pointer.
2570 ENUM
2571 BFD_RELOC_V850_TDA_7_8_OFFSET
2572 ENUMDOC
2573 This is an 8bit offset (of which only 7 bits are used) from the tiny
2574 data area pointer.
2575 ENUM
2576 BFD_RELOC_V850_TDA_7_7_OFFSET
2577 ENUMDOC
2578 This is a 7 bit offset from the tiny data area pointer.
2579 ENUM
2580 BFD_RELOC_V850_TDA_16_16_OFFSET
2581 ENUMDOC
2582 This is a 16 bit offset from the tiny data area pointer.
2583 COMMENT
2584 ENUM
2585 BFD_RELOC_V850_TDA_4_5_OFFSET
2586 ENUMDOC
2587 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2588 data area pointer.
2589 ENUM
2590 BFD_RELOC_V850_TDA_4_4_OFFSET
2591 ENUMDOC
2592 This is a 4 bit offset from the tiny data area pointer.
2593 ENUM
2594 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2595 ENUMDOC
2596 This is a 16 bit offset from the short data area pointer, with the
2597 bits placed non-contigously in the instruction.
2598 ENUM
2599 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2600 ENUMDOC
2601 This is a 16 bit offset from the zero data area pointer, with the
2602 bits placed non-contigously in the instruction.
2603 ENUM
2604 BFD_RELOC_V850_CALLT_6_7_OFFSET
2605 ENUMDOC
2606 This is a 6 bit offset from the call table base pointer.
2607 ENUM
2608 BFD_RELOC_V850_CALLT_16_16_OFFSET
2609 ENUMDOC
2610 This is a 16 bit offset from the call table base pointer.
2611 COMMENT
2612
2613 ENUM
2614 BFD_RELOC_MN10300_32_PCREL
2615 ENUMDOC
2616 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2617 instruction.
2618 ENUM
2619 BFD_RELOC_MN10300_16_PCREL
2620 ENUMDOC
2621 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2622 instruction.
2623
2624 ENUM
2625 BFD_RELOC_TIC30_LDP
2626 ENUMDOC
2627 This is a 8bit DP reloc for the tms320c30, where the most
2628 significant 8 bits of a 24 bit word are placed into the least
2629 significant 8 bits of the opcode.
2630
2631 ENUM
2632 BFD_RELOC_TIC54X_PARTLS7
2633 ENUMDOC
2634 This is a 7bit reloc for the tms320c54x, where the least
2635 significant 7 bits of a 16 bit word are placed into the least
2636 significant 7 bits of the opcode.
2637
2638 ENUM
2639 BFD_RELOC_TIC54X_PARTMS9
2640 ENUMDOC
2641 This is a 9bit DP reloc for the tms320c54x, where the most
2642 significant 9 bits of a 16 bit word are placed into the least
2643 significant 9 bits of the opcode.
2644
2645 ENUM
2646 BFD_RELOC_TIC54X_23
2647 ENUMDOC
2648 This is an extended address 23-bit reloc for the tms320c54x.
2649
2650 ENUM
2651 BFD_RELOC_TIC54X_16_OF_23
2652 ENUMDOC
2653 This is a 16-bit reloc for the tms320c54x, where the least
2654 significant 16 bits of a 23-bit extended address are placed into
2655 the opcode.
2656
2657 ENUM
2658 BFD_RELOC_TIC54X_MS7_OF_23
2659 ENUMDOC
2660 This is a reloc for the tms320c54x, where the most
2661 significant 7 bits of a 23-bit extended address are placed into
2662 the opcode.
2663
2664 ENUM
2665 BFD_RELOC_FR30_48
2666 ENUMDOC
2667 This is a 48 bit reloc for the FR30 that stores 32 bits.
2668 ENUM
2669 BFD_RELOC_FR30_20
2670 ENUMDOC
2671 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2672 two sections.
2673 ENUM
2674 BFD_RELOC_FR30_6_IN_4
2675 ENUMDOC
2676 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2677 4 bits.
2678 ENUM
2679 BFD_RELOC_FR30_8_IN_8
2680 ENUMDOC
2681 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2682 into 8 bits.
2683 ENUM
2684 BFD_RELOC_FR30_9_IN_8
2685 ENUMDOC
2686 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2687 into 8 bits.
2688 ENUM
2689 BFD_RELOC_FR30_10_IN_8
2690 ENUMDOC
2691 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2692 into 8 bits.
2693 ENUM
2694 BFD_RELOC_FR30_9_PCREL
2695 ENUMDOC
2696 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2697 short offset into 8 bits.
2698 ENUM
2699 BFD_RELOC_FR30_12_PCREL
2700 ENUMDOC
2701 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2702 short offset into 11 bits.
2703
2704 ENUM
2705 BFD_RELOC_MCORE_PCREL_IMM8BY4
2706 ENUMX
2707 BFD_RELOC_MCORE_PCREL_IMM11BY2
2708 ENUMX
2709 BFD_RELOC_MCORE_PCREL_IMM4BY2
2710 ENUMX
2711 BFD_RELOC_MCORE_PCREL_32
2712 ENUMX
2713 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
2714 ENUMX
2715 BFD_RELOC_MCORE_RVA
2716 ENUMDOC
2717 Motorola Mcore relocations.
2718
2719 ENUM
2720 BFD_RELOC_MMIX_GETA
2721 ENUMX
2722 BFD_RELOC_MMIX_GETA_1
2723 ENUMX
2724 BFD_RELOC_MMIX_GETA_2
2725 ENUMX
2726 BFD_RELOC_MMIX_GETA_3
2727 ENUMDOC
2728 These are relocations for the GETA instruction.
2729 ENUM
2730 BFD_RELOC_MMIX_CBRANCH
2731 ENUMX
2732 BFD_RELOC_MMIX_CBRANCH_J
2733 ENUMX
2734 BFD_RELOC_MMIX_CBRANCH_1
2735 ENUMX
2736 BFD_RELOC_MMIX_CBRANCH_2
2737 ENUMX
2738 BFD_RELOC_MMIX_CBRANCH_3
2739 ENUMDOC
2740 These are relocations for a conditional branch instruction.
2741 ENUM
2742 BFD_RELOC_MMIX_PUSHJ
2743 ENUMX
2744 BFD_RELOC_MMIX_PUSHJ_1
2745 ENUMX
2746 BFD_RELOC_MMIX_PUSHJ_2
2747 ENUMX
2748 BFD_RELOC_MMIX_PUSHJ_3
2749 ENUMDOC
2750 These are relocations for the PUSHJ instruction.
2751 ENUM
2752 BFD_RELOC_MMIX_JMP
2753 ENUMX
2754 BFD_RELOC_MMIX_JMP_1
2755 ENUMX
2756 BFD_RELOC_MMIX_JMP_2
2757 ENUMX
2758 BFD_RELOC_MMIX_JMP_3
2759 ENUMDOC
2760 These are relocations for the JMP instruction.
2761 ENUM
2762 BFD_RELOC_MMIX_ADDR19
2763 ENUMDOC
2764 This is a relocation for a relative address as in a GETA instruction or
2765 a branch.
2766 ENUM
2767 BFD_RELOC_MMIX_ADDR27
2768 ENUMDOC
2769 This is a relocation for a relative address as in a JMP instruction.
2770 ENUM
2771 BFD_RELOC_MMIX_REG_OR_BYTE
2772 ENUMDOC
2773 This is a relocation for an instruction field that may be a general
2774 register or a value 0..255.
2775 ENUM
2776 BFD_RELOC_MMIX_REG
2777 ENUMDOC
2778 This is a relocation for an instruction field that may be a general
2779 register.
2780 ENUM
2781 BFD_RELOC_MMIX_BASE_PLUS_OFFSET
2782 ENUMDOC
2783 This is a relocation for two instruction fields holding a register and
2784 an offset, the equivalent of the relocation.
2785 ENUM
2786 BFD_RELOC_MMIX_LOCAL
2787 ENUMDOC
2788 This relocation is an assertion that the expression is not allocated as
2789 a global register. It does not modify contents.
2790
2791 ENUM
2792 BFD_RELOC_AVR_7_PCREL
2793 ENUMDOC
2794 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2795 short offset into 7 bits.
2796 ENUM
2797 BFD_RELOC_AVR_13_PCREL
2798 ENUMDOC
2799 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2800 short offset into 12 bits.
2801 ENUM
2802 BFD_RELOC_AVR_16_PM
2803 ENUMDOC
2804 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
2805 program memory address) into 16 bits.
2806 ENUM
2807 BFD_RELOC_AVR_LO8_LDI
2808 ENUMDOC
2809 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2810 data memory address) into 8 bit immediate value of LDI insn.
2811 ENUM
2812 BFD_RELOC_AVR_HI8_LDI
2813 ENUMDOC
2814 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2815 of data memory address) into 8 bit immediate value of LDI insn.
2816 ENUM
2817 BFD_RELOC_AVR_HH8_LDI
2818 ENUMDOC
2819 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2820 of program memory address) into 8 bit immediate value of LDI insn.
2821 ENUM
2822 BFD_RELOC_AVR_LO8_LDI_NEG
2823 ENUMDOC
2824 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2825 (usually data memory address) into 8 bit immediate value of SUBI insn.
2826 ENUM
2827 BFD_RELOC_AVR_HI8_LDI_NEG
2828 ENUMDOC
2829 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2830 (high 8 bit of data memory address) into 8 bit immediate value of
2831 SUBI insn.
2832 ENUM
2833 BFD_RELOC_AVR_HH8_LDI_NEG
2834 ENUMDOC
2835 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2836 (most high 8 bit of program memory address) into 8 bit immediate value
2837 of LDI or SUBI insn.
2838 ENUM
2839 BFD_RELOC_AVR_LO8_LDI_PM
2840 ENUMDOC
2841 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2842 command address) into 8 bit immediate value of LDI insn.
2843 ENUM
2844 BFD_RELOC_AVR_HI8_LDI_PM
2845 ENUMDOC
2846 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2847 of command address) into 8 bit immediate value of LDI insn.
2848 ENUM
2849 BFD_RELOC_AVR_HH8_LDI_PM
2850 ENUMDOC
2851 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2852 of command address) into 8 bit immediate value of LDI insn.
2853 ENUM
2854 BFD_RELOC_AVR_LO8_LDI_PM_NEG
2855 ENUMDOC
2856 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2857 (usually command address) into 8 bit immediate value of SUBI insn.
2858 ENUM
2859 BFD_RELOC_AVR_HI8_LDI_PM_NEG
2860 ENUMDOC
2861 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2862 (high 8 bit of 16 bit command address) into 8 bit immediate value
2863 of SUBI insn.
2864 ENUM
2865 BFD_RELOC_AVR_HH8_LDI_PM_NEG
2866 ENUMDOC
2867 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2868 (high 6 bit of 22 bit command address) into 8 bit immediate
2869 value of SUBI insn.
2870 ENUM
2871 BFD_RELOC_AVR_CALL
2872 ENUMDOC
2873 This is a 32 bit reloc for the AVR that stores 23 bit value
2874 into 22 bits.
2875
2876 ENUM
2877 BFD_RELOC_390_12
2878 ENUMDOC
2879 Direct 12 bit.
2880 ENUM
2881 BFD_RELOC_390_GOT12
2882 ENUMDOC
2883 12 bit GOT offset.
2884 ENUM
2885 BFD_RELOC_390_PLT32
2886 ENUMDOC
2887 32 bit PC relative PLT address.
2888 ENUM
2889 BFD_RELOC_390_COPY
2890 ENUMDOC
2891 Copy symbol at runtime.
2892 ENUM
2893 BFD_RELOC_390_GLOB_DAT
2894 ENUMDOC
2895 Create GOT entry.
2896 ENUM
2897 BFD_RELOC_390_JMP_SLOT
2898 ENUMDOC
2899 Create PLT entry.
2900 ENUM
2901 BFD_RELOC_390_RELATIVE
2902 ENUMDOC
2903 Adjust by program base.
2904 ENUM
2905 BFD_RELOC_390_GOTPC
2906 ENUMDOC
2907 32 bit PC relative offset to GOT.
2908 ENUM
2909 BFD_RELOC_390_GOT16
2910 ENUMDOC
2911 16 bit GOT offset.
2912 ENUM
2913 BFD_RELOC_390_PC16DBL
2914 ENUMDOC
2915 PC relative 16 bit shifted by 1.
2916 ENUM
2917 BFD_RELOC_390_PLT16DBL
2918 ENUMDOC
2919 16 bit PC rel. PLT shifted by 1.
2920 ENUM
2921 BFD_RELOC_390_PC32DBL
2922 ENUMDOC
2923 PC relative 32 bit shifted by 1.
2924 ENUM
2925 BFD_RELOC_390_PLT32DBL
2926 ENUMDOC
2927 32 bit PC rel. PLT shifted by 1.
2928 ENUM
2929 BFD_RELOC_390_GOTPCDBL
2930 ENUMDOC
2931 32 bit PC rel. GOT shifted by 1.
2932 ENUM
2933 BFD_RELOC_390_GOT64
2934 ENUMDOC
2935 64 bit GOT offset.
2936 ENUM
2937 BFD_RELOC_390_PLT64
2938 ENUMDOC
2939 64 bit PC relative PLT address.
2940 ENUM
2941 BFD_RELOC_390_GOTENT
2942 ENUMDOC
2943 32 bit rel. offset to GOT entry.
2944
2945 ENUM
2946 BFD_RELOC_VTABLE_INHERIT
2947 ENUMX
2948 BFD_RELOC_VTABLE_ENTRY
2949 ENUMDOC
2950 These two relocations are used by the linker to determine which of
2951 the entries in a C++ virtual function table are actually used. When
2952 the --gc-sections option is given, the linker will zero out the entries
2953 that are not used, so that the code for those functions need not be
2954 included in the output.
2955
2956 VTABLE_INHERIT is a zero-space relocation used to describe to the
2957 linker the inheritence tree of a C++ virtual function table. The
2958 relocation's symbol should be the parent class' vtable, and the
2959 relocation should be located at the child vtable.
2960
2961 VTABLE_ENTRY is a zero-space relocation that describes the use of a
2962 virtual function table entry. The reloc's symbol should refer to the
2963 table of the class mentioned in the code. Off of that base, an offset
2964 describes the entry that is being used. For Rela hosts, this offset
2965 is stored in the reloc's addend. For Rel hosts, we are forced to put
2966 this offset in the reloc's section offset.
2967
2968 ENUM
2969 BFD_RELOC_IA64_IMM14
2970 ENUMX
2971 BFD_RELOC_IA64_IMM22
2972 ENUMX
2973 BFD_RELOC_IA64_IMM64
2974 ENUMX
2975 BFD_RELOC_IA64_DIR32MSB
2976 ENUMX
2977 BFD_RELOC_IA64_DIR32LSB
2978 ENUMX
2979 BFD_RELOC_IA64_DIR64MSB
2980 ENUMX
2981 BFD_RELOC_IA64_DIR64LSB
2982 ENUMX
2983 BFD_RELOC_IA64_GPREL22
2984 ENUMX
2985 BFD_RELOC_IA64_GPREL64I
2986 ENUMX
2987 BFD_RELOC_IA64_GPREL32MSB
2988 ENUMX
2989 BFD_RELOC_IA64_GPREL32LSB
2990 ENUMX
2991 BFD_RELOC_IA64_GPREL64MSB
2992 ENUMX
2993 BFD_RELOC_IA64_GPREL64LSB
2994 ENUMX
2995 BFD_RELOC_IA64_LTOFF22
2996 ENUMX
2997 BFD_RELOC_IA64_LTOFF64I
2998 ENUMX
2999 BFD_RELOC_IA64_PLTOFF22
3000 ENUMX
3001 BFD_RELOC_IA64_PLTOFF64I
3002 ENUMX
3003 BFD_RELOC_IA64_PLTOFF64MSB
3004 ENUMX
3005 BFD_RELOC_IA64_PLTOFF64LSB
3006 ENUMX
3007 BFD_RELOC_IA64_FPTR64I
3008 ENUMX
3009 BFD_RELOC_IA64_FPTR32MSB
3010 ENUMX
3011 BFD_RELOC_IA64_FPTR32LSB
3012 ENUMX
3013 BFD_RELOC_IA64_FPTR64MSB
3014 ENUMX
3015 BFD_RELOC_IA64_FPTR64LSB
3016 ENUMX
3017 BFD_RELOC_IA64_PCREL21B
3018 ENUMX
3019 BFD_RELOC_IA64_PCREL21BI
3020 ENUMX
3021 BFD_RELOC_IA64_PCREL21M
3022 ENUMX
3023 BFD_RELOC_IA64_PCREL21F
3024 ENUMX
3025 BFD_RELOC_IA64_PCREL22
3026 ENUMX
3027 BFD_RELOC_IA64_PCREL60B
3028 ENUMX
3029 BFD_RELOC_IA64_PCREL64I
3030 ENUMX
3031 BFD_RELOC_IA64_PCREL32MSB
3032 ENUMX
3033 BFD_RELOC_IA64_PCREL32LSB
3034 ENUMX
3035 BFD_RELOC_IA64_PCREL64MSB
3036 ENUMX
3037 BFD_RELOC_IA64_PCREL64LSB
3038 ENUMX
3039 BFD_RELOC_IA64_LTOFF_FPTR22
3040 ENUMX
3041 BFD_RELOC_IA64_LTOFF_FPTR64I
3042 ENUMX
3043 BFD_RELOC_IA64_LTOFF_FPTR32MSB
3044 ENUMX
3045 BFD_RELOC_IA64_LTOFF_FPTR32LSB
3046 ENUMX
3047 BFD_RELOC_IA64_LTOFF_FPTR64MSB
3048 ENUMX
3049 BFD_RELOC_IA64_LTOFF_FPTR64LSB
3050 ENUMX
3051 BFD_RELOC_IA64_SEGREL32MSB
3052 ENUMX
3053 BFD_RELOC_IA64_SEGREL32LSB
3054 ENUMX
3055 BFD_RELOC_IA64_SEGREL64MSB
3056 ENUMX
3057 BFD_RELOC_IA64_SEGREL64LSB
3058 ENUMX
3059 BFD_RELOC_IA64_SECREL32MSB
3060 ENUMX
3061 BFD_RELOC_IA64_SECREL32LSB
3062 ENUMX
3063 BFD_RELOC_IA64_SECREL64MSB
3064 ENUMX
3065 BFD_RELOC_IA64_SECREL64LSB
3066 ENUMX
3067 BFD_RELOC_IA64_REL32MSB
3068 ENUMX
3069 BFD_RELOC_IA64_REL32LSB
3070 ENUMX
3071 BFD_RELOC_IA64_REL64MSB
3072 ENUMX
3073 BFD_RELOC_IA64_REL64LSB
3074 ENUMX
3075 BFD_RELOC_IA64_LTV32MSB
3076 ENUMX
3077 BFD_RELOC_IA64_LTV32LSB
3078 ENUMX
3079 BFD_RELOC_IA64_LTV64MSB
3080 ENUMX
3081 BFD_RELOC_IA64_LTV64LSB
3082 ENUMX
3083 BFD_RELOC_IA64_IPLTMSB
3084 ENUMX
3085 BFD_RELOC_IA64_IPLTLSB
3086 ENUMX
3087 BFD_RELOC_IA64_COPY
3088 ENUMX
3089 BFD_RELOC_IA64_TPREL22
3090 ENUMX
3091 BFD_RELOC_IA64_TPREL64MSB
3092 ENUMX
3093 BFD_RELOC_IA64_TPREL64LSB
3094 ENUMX
3095 BFD_RELOC_IA64_LTOFF_TP22
3096 ENUMX
3097 BFD_RELOC_IA64_LTOFF22X
3098 ENUMX
3099 BFD_RELOC_IA64_LDXMOV
3100 ENUMDOC
3101 Intel IA64 Relocations.
3102
3103 ENUM
3104 BFD_RELOC_M68HC11_HI8
3105 ENUMDOC
3106 Motorola 68HC11 reloc.
3107 This is the 8 bits high part of an absolute address.
3108 ENUM
3109 BFD_RELOC_M68HC11_LO8
3110 ENUMDOC
3111 Motorola 68HC11 reloc.
3112 This is the 8 bits low part of an absolute address.
3113 ENUM
3114 BFD_RELOC_M68HC11_3B
3115 ENUMDOC
3116 Motorola 68HC11 reloc.
3117 This is the 3 bits of a value.
3118
3119 ENUM
3120 BFD_RELOC_CRIS_BDISP8
3121 ENUMX
3122 BFD_RELOC_CRIS_UNSIGNED_5
3123 ENUMX
3124 BFD_RELOC_CRIS_SIGNED_6
3125 ENUMX
3126 BFD_RELOC_CRIS_UNSIGNED_6
3127 ENUMX
3128 BFD_RELOC_CRIS_UNSIGNED_4
3129 ENUMDOC
3130 These relocs are only used within the CRIS assembler. They are not
3131 (at present) written to any object files.
3132 ENUM
3133 BFD_RELOC_CRIS_COPY
3134 ENUMX
3135 BFD_RELOC_CRIS_GLOB_DAT
3136 ENUMX
3137 BFD_RELOC_CRIS_JUMP_SLOT
3138 ENUMX
3139 BFD_RELOC_CRIS_RELATIVE
3140 ENUMDOC
3141 Relocs used in ELF shared libraries for CRIS.
3142 ENUM
3143 BFD_RELOC_CRIS_32_GOT
3144 ENUMDOC
3145 32-bit offset to symbol-entry within GOT.
3146 ENUM
3147 BFD_RELOC_CRIS_16_GOT
3148 ENUMDOC
3149 16-bit offset to symbol-entry within GOT.
3150 ENUM
3151 BFD_RELOC_CRIS_32_GOTPLT
3152 ENUMDOC
3153 32-bit offset to symbol-entry within GOT, with PLT handling.
3154 ENUM
3155 BFD_RELOC_CRIS_16_GOTPLT
3156 ENUMDOC
3157 16-bit offset to symbol-entry within GOT, with PLT handling.
3158 ENUM
3159 BFD_RELOC_CRIS_32_GOTREL
3160 ENUMDOC
3161 32-bit offset to symbol, relative to GOT.
3162 ENUM
3163 BFD_RELOC_CRIS_32_PLT_GOTREL
3164 ENUMDOC
3165 32-bit offset to symbol with PLT entry, relative to GOT.
3166 ENUM
3167 BFD_RELOC_CRIS_32_PLT_PCREL
3168 ENUMDOC
3169 32-bit offset to symbol with PLT entry, relative to this relocation.
3170
3171 ENUM
3172 BFD_RELOC_860_COPY
3173 ENUMX
3174 BFD_RELOC_860_GLOB_DAT
3175 ENUMX
3176 BFD_RELOC_860_JUMP_SLOT
3177 ENUMX
3178 BFD_RELOC_860_RELATIVE
3179 ENUMX
3180 BFD_RELOC_860_PC26
3181 ENUMX
3182 BFD_RELOC_860_PLT26
3183 ENUMX
3184 BFD_RELOC_860_PC16
3185 ENUMX
3186 BFD_RELOC_860_LOW0
3187 ENUMX
3188 BFD_RELOC_860_SPLIT0
3189 ENUMX
3190 BFD_RELOC_860_LOW1
3191 ENUMX
3192 BFD_RELOC_860_SPLIT1
3193 ENUMX
3194 BFD_RELOC_860_LOW2
3195 ENUMX
3196 BFD_RELOC_860_SPLIT2
3197 ENUMX
3198 BFD_RELOC_860_LOW3
3199 ENUMX
3200 BFD_RELOC_860_LOGOT0
3201 ENUMX
3202 BFD_RELOC_860_SPGOT0
3203 ENUMX
3204 BFD_RELOC_860_LOGOT1
3205 ENUMX
3206 BFD_RELOC_860_SPGOT1
3207 ENUMX
3208 BFD_RELOC_860_LOGOTOFF0
3209 ENUMX
3210 BFD_RELOC_860_SPGOTOFF0
3211 ENUMX
3212 BFD_RELOC_860_LOGOTOFF1
3213 ENUMX
3214 BFD_RELOC_860_SPGOTOFF1
3215 ENUMX
3216 BFD_RELOC_860_LOGOTOFF2
3217 ENUMX
3218 BFD_RELOC_860_LOGOTOFF3
3219 ENUMX
3220 BFD_RELOC_860_LOPC
3221 ENUMX
3222 BFD_RELOC_860_HIGHADJ
3223 ENUMX
3224 BFD_RELOC_860_HAGOT
3225 ENUMX
3226 BFD_RELOC_860_HAGOTOFF
3227 ENUMX
3228 BFD_RELOC_860_HAPC
3229 ENUMX
3230 BFD_RELOC_860_HIGH
3231 ENUMX
3232 BFD_RELOC_860_HIGOT
3233 ENUMX
3234 BFD_RELOC_860_HIGOTOFF
3235 ENUMDOC
3236 Intel i860 Relocations.
3237
3238 ENUM
3239 BFD_RELOC_OPENRISC_ABS_26
3240 ENUMX
3241 BFD_RELOC_OPENRISC_REL_26
3242 ENUMDOC
3243 OpenRISC Relocations.
3244
3245 ENUM
3246 BFD_RELOC_H8_DIR16A8
3247 ENUMX
3248 BFD_RELOC_H8_DIR16R8
3249 ENUMX
3250 BFD_RELOC_H8_DIR24A8
3251 ENUMX
3252 BFD_RELOC_H8_DIR24R8
3253 ENUMX
3254 BFD_RELOC_H8_DIR32A16
3255 ENUMDOC
3256 H8 elf Relocations.
3257
3258 ENUM
3259 BFD_RELOC_XSTORMY16_REL_12
3260 ENUMX
3261 BFD_RELOC_XSTORMY16_24
3262 ENUMX
3263 BFD_RELOC_XSTORMY16_FPTR16
3264 ENUMDOC
3265 Sony Xstormy16 Relocations.
3266
3267 ENDSENUM
3268 BFD_RELOC_UNUSED
3269 CODE_FRAGMENT
3270 .
3271 .typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3272 */
3273
3274 /*
3275 FUNCTION
3276 bfd_reloc_type_lookup
3277
3278 SYNOPSIS
3279 reloc_howto_type *
3280 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3281
3282 DESCRIPTION
3283 Return a pointer to a howto structure which, when
3284 invoked, will perform the relocation @var{code} on data from the
3285 architecture noted.
3286
3287 */
3288
3289 reloc_howto_type *
3290 bfd_reloc_type_lookup (abfd, code)
3291 bfd *abfd;
3292 bfd_reloc_code_real_type code;
3293 {
3294 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3295 }
3296
3297 static reloc_howto_type bfd_howto_32 =
3298 HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
3299
3300 /*
3301 INTERNAL_FUNCTION
3302 bfd_default_reloc_type_lookup
3303
3304 SYNOPSIS
3305 reloc_howto_type *bfd_default_reloc_type_lookup
3306 (bfd *abfd, bfd_reloc_code_real_type code);
3307
3308 DESCRIPTION
3309 Provides a default relocation lookup routine for any architecture.
3310
3311 */
3312
3313 reloc_howto_type *
3314 bfd_default_reloc_type_lookup (abfd, code)
3315 bfd *abfd;
3316 bfd_reloc_code_real_type code;
3317 {
3318 switch (code)
3319 {
3320 case BFD_RELOC_CTOR:
3321 /* The type of reloc used in a ctor, which will be as wide as the
3322 address - so either a 64, 32, or 16 bitter. */
3323 switch (bfd_get_arch_info (abfd)->bits_per_address)
3324 {
3325 case 64:
3326 BFD_FAIL ();
3327 case 32:
3328 return &bfd_howto_32;
3329 case 16:
3330 BFD_FAIL ();
3331 default:
3332 BFD_FAIL ();
3333 }
3334 default:
3335 BFD_FAIL ();
3336 }
3337 return (reloc_howto_type *) NULL;
3338 }
3339
3340 /*
3341 FUNCTION
3342 bfd_get_reloc_code_name
3343
3344 SYNOPSIS
3345 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3346
3347 DESCRIPTION
3348 Provides a printable name for the supplied relocation code.
3349 Useful mainly for printing error messages.
3350 */
3351
3352 const char *
3353 bfd_get_reloc_code_name (code)
3354 bfd_reloc_code_real_type code;
3355 {
3356 if (code > BFD_RELOC_UNUSED)
3357 return 0;
3358 return bfd_reloc_code_real_names[(int)code];
3359 }
3360
3361 /*
3362 INTERNAL_FUNCTION
3363 bfd_generic_relax_section
3364
3365 SYNOPSIS
3366 boolean bfd_generic_relax_section
3367 (bfd *abfd,
3368 asection *section,
3369 struct bfd_link_info *,
3370 boolean *);
3371
3372 DESCRIPTION
3373 Provides default handling for relaxing for back ends which
3374 don't do relaxing -- i.e., does nothing.
3375 */
3376
3377 /*ARGSUSED*/
3378 boolean
3379 bfd_generic_relax_section (abfd, section, link_info, again)
3380 bfd *abfd ATTRIBUTE_UNUSED;
3381 asection *section ATTRIBUTE_UNUSED;
3382 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3383 boolean *again;
3384 {
3385 *again = false;
3386 return true;
3387 }
3388
3389 /*
3390 INTERNAL_FUNCTION
3391 bfd_generic_gc_sections
3392
3393 SYNOPSIS
3394 boolean bfd_generic_gc_sections
3395 (bfd *, struct bfd_link_info *);
3396
3397 DESCRIPTION
3398 Provides default handling for relaxing for back ends which
3399 don't do section gc -- i.e., does nothing.
3400 */
3401
3402 /*ARGSUSED*/
3403 boolean
3404 bfd_generic_gc_sections (abfd, link_info)
3405 bfd *abfd ATTRIBUTE_UNUSED;
3406 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3407 {
3408 return true;
3409 }
3410
3411 /*
3412 INTERNAL_FUNCTION
3413 bfd_generic_merge_sections
3414
3415 SYNOPSIS
3416 boolean bfd_generic_merge_sections
3417 (bfd *, struct bfd_link_info *);
3418
3419 DESCRIPTION
3420 Provides default handling for SEC_MERGE section merging for back ends
3421 which don't have SEC_MERGE support -- i.e., does nothing.
3422 */
3423
3424 /*ARGSUSED*/
3425 boolean
3426 bfd_generic_merge_sections (abfd, link_info)
3427 bfd *abfd ATTRIBUTE_UNUSED;
3428 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3429 {
3430 return true;
3431 }
3432
3433 /*
3434 INTERNAL_FUNCTION
3435 bfd_generic_get_relocated_section_contents
3436
3437 SYNOPSIS
3438 bfd_byte *
3439 bfd_generic_get_relocated_section_contents (bfd *abfd,
3440 struct bfd_link_info *link_info,
3441 struct bfd_link_order *link_order,
3442 bfd_byte *data,
3443 boolean relocateable,
3444 asymbol **symbols);
3445
3446 DESCRIPTION
3447 Provides default handling of relocation effort for back ends
3448 which can't be bothered to do it efficiently.
3449
3450 */
3451
3452 bfd_byte *
3453 bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3454 relocateable, symbols)
3455 bfd *abfd;
3456 struct bfd_link_info *link_info;
3457 struct bfd_link_order *link_order;
3458 bfd_byte *data;
3459 boolean relocateable;
3460 asymbol **symbols;
3461 {
3462 /* Get enough memory to hold the stuff */
3463 bfd *input_bfd = link_order->u.indirect.section->owner;
3464 asection *input_section = link_order->u.indirect.section;
3465
3466 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3467 arelent **reloc_vector = NULL;
3468 long reloc_count;
3469
3470 if (reloc_size < 0)
3471 goto error_return;
3472
3473 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
3474 if (reloc_vector == NULL && reloc_size != 0)
3475 goto error_return;
3476
3477 /* read in the section */
3478 if (!bfd_get_section_contents (input_bfd,
3479 input_section,
3480 (PTR) data,
3481 (bfd_vma) 0,
3482 input_section->_raw_size))
3483 goto error_return;
3484
3485 /* We're not relaxing the section, so just copy the size info */
3486 input_section->_cooked_size = input_section->_raw_size;
3487 input_section->reloc_done = true;
3488
3489 reloc_count = bfd_canonicalize_reloc (input_bfd,
3490 input_section,
3491 reloc_vector,
3492 symbols);
3493 if (reloc_count < 0)
3494 goto error_return;
3495
3496 if (reloc_count > 0)
3497 {
3498 arelent **parent;
3499 for (parent = reloc_vector; *parent != (arelent *) NULL;
3500 parent++)
3501 {
3502 char *error_message = (char *) NULL;
3503 bfd_reloc_status_type r =
3504 bfd_perform_relocation (input_bfd,
3505 *parent,
3506 (PTR) data,
3507 input_section,
3508 relocateable ? abfd : (bfd *) NULL,
3509 &error_message);
3510
3511 if (relocateable)
3512 {
3513 asection *os = input_section->output_section;
3514
3515 /* A partial link, so keep the relocs */
3516 os->orelocation[os->reloc_count] = *parent;
3517 os->reloc_count++;
3518 }
3519
3520 if (r != bfd_reloc_ok)
3521 {
3522 switch (r)
3523 {
3524 case bfd_reloc_undefined:
3525 if (!((*link_info->callbacks->undefined_symbol)
3526 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3527 input_bfd, input_section, (*parent)->address,
3528 true)))
3529 goto error_return;
3530 break;
3531 case bfd_reloc_dangerous:
3532 BFD_ASSERT (error_message != (char *) NULL);
3533 if (!((*link_info->callbacks->reloc_dangerous)
3534 (link_info, error_message, input_bfd, input_section,
3535 (*parent)->address)))
3536 goto error_return;
3537 break;
3538 case bfd_reloc_overflow:
3539 if (!((*link_info->callbacks->reloc_overflow)
3540 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3541 (*parent)->howto->name, (*parent)->addend,
3542 input_bfd, input_section, (*parent)->address)))
3543 goto error_return;
3544 break;
3545 case bfd_reloc_outofrange:
3546 default:
3547 abort ();
3548 break;
3549 }
3550
3551 }
3552 }
3553 }
3554 if (reloc_vector != NULL)
3555 free (reloc_vector);
3556 return data;
3557
3558 error_return:
3559 if (reloc_vector != NULL)
3560 free (reloc_vector);
3561 return NULL;
3562 }
This page took 0.101446 seconds and 5 git commands to generate.