1 /* 8 and 16 bit COFF relocation functions, for BFD.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 2000, 2001,
3 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2012
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
25 /* Most of this hacked by Steve Chamberlain <sac@cygnus.com>. */
27 /* These routines are used by coff-h8300 and coff-z8k to do
30 FIXME: This code should be rewritten to support the new COFF
31 linker. Basically, they need to deal with COFF relocs rather than
32 BFD generic relocs. They should store the relocs in some location
33 where coff_link_input_bfd can find them (and coff_link_input_bfd
34 should be changed to use this location rather than rereading the
35 file) (unless info->keep_memory is FALSE, in which case they should
36 free up the relocs after dealing with them). */
43 #include "coff/internal.h"
47 bfd_coff_reloc16_get_value (arelent
*reloc
,
48 struct bfd_link_info
*link_info
,
49 asection
*input_section
)
52 asymbol
*symbol
= *(reloc
->sym_ptr_ptr
);
53 /* A symbol holds a pointer to a section, and an offset from the
54 base of the section. To relocate, we find where the section will
55 live in the output and add that in. */
57 if (bfd_is_und_section (symbol
->section
)
58 || bfd_is_com_section (symbol
->section
))
60 struct bfd_link_hash_entry
*h
;
62 /* The symbol is undefined in this BFD. Look it up in the
63 global linker hash table. FIXME: This should be changed when
64 we convert this stuff to use a specific final_link function
65 and change the interface to bfd_relax_section to not require
66 the generic symbols. */
67 h
= bfd_wrapped_link_hash_lookup (input_section
->owner
, link_info
,
68 bfd_asymbol_name (symbol
),
70 if (h
!= (struct bfd_link_hash_entry
*) NULL
71 && (h
->type
== bfd_link_hash_defined
72 || h
->type
== bfd_link_hash_defweak
))
73 value
= (h
->u
.def
.value
74 + h
->u
.def
.section
->output_section
->vma
75 + h
->u
.def
.section
->output_offset
);
76 else if (h
!= (struct bfd_link_hash_entry
*) NULL
77 && h
->type
== bfd_link_hash_common
)
79 else if (h
!= (struct bfd_link_hash_entry
*) NULL
80 && h
->type
== bfd_link_hash_undefweak
)
81 /* This is a GNU extension. */
85 if (!((*link_info
->callbacks
->undefined_symbol
)
86 (link_info
, bfd_asymbol_name (symbol
),
87 input_section
->owner
, input_section
, reloc
->address
,
96 + symbol
->section
->output_offset
97 + symbol
->section
->output_section
->vma
;
100 /* Add the value contained in the relocation. */
101 value
+= reloc
->addend
;
107 bfd_perform_slip (bfd
*abfd
,
109 asection
*input_section
,
114 s
= _bfd_generic_link_get_symbols (abfd
);
115 BFD_ASSERT (s
!= (asymbol
**) NULL
);
117 /* Find all symbols past this point, and make them know
122 if (p
->section
== input_section
)
124 /* This was pointing into this section, so mangle it. */
125 if (p
->value
> value
)
128 if (p
->udata
.p
!= NULL
)
130 struct generic_link_hash_entry
*h
;
132 h
= (struct generic_link_hash_entry
*) p
->udata
.p
;
133 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
134 || h
->root
.type
== bfd_link_hash_defweak
);
135 h
->root
.u
.def
.value
-= slip
;
136 BFD_ASSERT (h
->root
.u
.def
.value
== p
->value
);
145 bfd_coff_reloc16_relax_section (bfd
*abfd
,
146 asection
*input_section
,
147 struct bfd_link_info
*link_info
,
150 /* Get enough memory to hold the stuff. */
151 bfd
*input_bfd
= input_section
->owner
;
154 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
155 arelent
**reloc_vector
= NULL
;
158 if (link_info
->relocatable
)
159 (*link_info
->callbacks
->einfo
)
160 (_("%P%F: --relax and -r may not be used together\n"));
162 /* We only do global relaxation once. It is not safe to do it multiple
163 times (see discussion of the "shrinks" array below). */
169 reloc_vector
= (arelent
**) bfd_malloc ((bfd_size_type
) reloc_size
);
170 if (!reloc_vector
&& reloc_size
> 0)
173 /* Get the relocs and think about them. */
175 bfd_canonicalize_reloc (input_bfd
, input_section
, reloc_vector
,
176 _bfd_generic_link_get_symbols (input_bfd
));
183 /* The reloc16.c and related relaxing code is very simple, the price
184 for that simplicity is we can only call this function once for
187 So, to get the best results within that limitation, we do multiple
188 relaxing passes over each section here. That involves keeping track
189 of the "shrink" at each reloc in the section. This allows us to
190 accurately determine the relative location of two relocs within
193 In theory, if we kept the "shrinks" array for each section for the
194 entire link, we could use the generic relaxing code in the linker
195 and get better results, particularly for jsr->bsr and 24->16 bit
196 memory reference relaxations. */
200 int another_pass
= 0;
203 /* Allocate and initialize the shrinks array for this section.
204 The last element is used as an accumulator of shrinks. */
205 amt
= reloc_count
+ 1;
206 amt
*= sizeof (unsigned);
207 shrinks
= (unsigned *) bfd_zmalloc (amt
);
209 /* Loop until nothing changes in this section. */
218 for (i
= 0, parent
= reloc_vector
; *parent
; parent
++, i
++)
220 /* Let the target/machine dependent code examine each reloc
221 in this section and attempt to shrink it. */
222 shrink
= bfd_coff_reloc16_estimate (abfd
, input_section
, *parent
,
223 shrinks
[i
], link_info
);
225 /* If it shrunk, note it in the shrinks array and set up for
227 if (shrink
!= shrinks
[i
])
230 for (j
= i
+ 1; j
<= reloc_count
; j
++)
231 shrinks
[j
] += shrink
- shrinks
[i
];
235 while (another_pass
);
237 shrink
= shrinks
[reloc_count
];
238 free ((char *) shrinks
);
241 input_section
->rawsize
= input_section
->size
;
242 input_section
->size
-= shrink
;
243 free ((char *) reloc_vector
);
248 bfd_coff_reloc16_get_relocated_section_contents
250 struct bfd_link_info
*link_info
,
251 struct bfd_link_order
*link_order
,
253 bfd_boolean relocatable
,
256 /* Get enough memory to hold the stuff. */
257 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
258 asection
*input_section
= link_order
->u
.indirect
.section
;
259 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
260 arelent
**reloc_vector
;
267 /* If producing relocatable output, don't bother to relax. */
269 return bfd_generic_get_relocated_section_contents (in_abfd
, link_info
,
274 /* Read in the section. */
275 sz
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
276 if (!bfd_get_section_contents (input_bfd
, input_section
, data
, 0, sz
))
279 reloc_vector
= (arelent
**) bfd_malloc ((bfd_size_type
) reloc_size
);
280 if (!reloc_vector
&& reloc_size
!= 0)
283 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
295 arelent
**parent
= reloc_vector
;
297 unsigned int dst_address
= 0;
298 unsigned int src_address
= 0;
302 /* Find how long a run we can do. */
303 while (dst_address
< link_order
->size
)
308 /* Note that the relaxing didn't tie up the addresses in the
309 relocation, so we use the original address to work out the
310 run of non-relocated data. */
311 run
= reloc
->address
- src_address
;
316 run
= link_order
->size
- dst_address
;
319 /* Copy the bytes. */
320 for (idx
= 0; idx
< run
; idx
++)
321 data
[dst_address
++] = data
[src_address
++];
323 /* Now do the relocation. */
326 bfd_coff_reloc16_extra_cases (input_bfd
, link_info
, link_order
,
327 reloc
, data
, &src_address
,
332 free ((char *) reloc_vector
);