* bfd-in.h (CONST_STRNCPY) : Delete.
[deliverable/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23 /*
24 SECTION
25 Sections
26
27 The raw data contained within a BFD is maintained through the
28 section abstraction. A single BFD may have any number of
29 sections. It keeps hold of them by pointing to the first;
30 each one points to the next in the list.
31
32 Sections are supported in BFD in <<section.c>>.
33
34 @menu
35 @* Section Input::
36 @* Section Output::
37 @* typedef asection::
38 @* section prototypes::
39 @end menu
40
41 INODE
42 Section Input, Section Output, Sections, Sections
43 SUBSECTION
44 Section input
45
46 When a BFD is opened for reading, the section structures are
47 created and attached to the BFD.
48
49 Each section has a name which describes the section in the
50 outside world---for example, <<a.out>> would contain at least
51 three sections, called <<.text>>, <<.data>> and <<.bss>>.
52
53 Names need not be unique; for example a COFF file may have several
54 sections named <<.data>>.
55
56 Sometimes a BFD will contain more than the ``natural'' number of
57 sections. A back end may attach other sections containing
58 constructor data, or an application may add a section (using
59 <<bfd_make_section>>) to the sections attached to an already open
60 BFD. For example, the linker creates an extra section
61 <<COMMON>> for each input file's BFD to hold information about
62 common storage.
63
64 The raw data is not necessarily read in when
65 the section descriptor is created. Some targets may leave the
66 data in place until a <<bfd_get_section_contents>> call is
67 made. Other back ends may read in all the data at once. For
68 example, an S-record file has to be read once to determine the
69 size of the data. An IEEE-695 file doesn't contain raw data in
70 sections, but data and relocation expressions intermixed, so
71 the data area has to be parsed to get out the data and
72 relocations.
73
74 INODE
75 Section Output, typedef asection, Section Input, Sections
76
77 SUBSECTION
78 Section output
79
80 To write a new object style BFD, the various sections to be
81 written have to be created. They are attached to the BFD in
82 the same way as input sections; data is written to the
83 sections using <<bfd_set_section_contents>>.
84
85 Any program that creates or combines sections (e.g., the assembler
86 and linker) must use the <<asection>> fields <<output_section>> and
87 <<output_offset>> to indicate the file sections to which each
88 section must be written. (If the section is being created from
89 scratch, <<output_section>> should probably point to the section
90 itself and <<output_offset>> should probably be zero.)
91
92 The data to be written comes from input sections attached
93 (via <<output_section>> pointers) to
94 the output sections. The output section structure can be
95 considered a filter for the input section: the output section
96 determines the vma of the output data and the name, but the
97 input section determines the offset into the output section of
98 the data to be written.
99
100 E.g., to create a section "O", starting at 0x100, 0x123 long,
101 containing two subsections, "A" at offset 0x0 (i.e., at vma
102 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
103 structures would look like:
104
105 | section name "A"
106 | output_offset 0x00
107 | size 0x20
108 | output_section -----------> section name "O"
109 | | vma 0x100
110 | section name "B" | size 0x123
111 | output_offset 0x20 |
112 | size 0x103 |
113 | output_section --------|
114
115 SUBSECTION
116 Link orders
117
118 The data within a section is stored in a @dfn{link_order}.
119 These are much like the fixups in <<gas>>. The link_order
120 abstraction allows a section to grow and shrink within itself.
121
122 A link_order knows how big it is, and which is the next
123 link_order and where the raw data for it is; it also points to
124 a list of relocations which apply to it.
125
126 The link_order is used by the linker to perform relaxing on
127 final code. The compiler creates code which is as big as
128 necessary to make it work without relaxing, and the user can
129 select whether to relax. Sometimes relaxing takes a lot of
130 time. The linker runs around the relocations to see if any
131 are attached to data which can be shrunk, if so it does it on
132 a link_order by link_order basis.
133
134 */
135
136 #include "bfd.h"
137 #include "sysdep.h"
138 #include "libbfd.h"
139 #include "bfdlink.h"
140
141 /*
142 DOCDD
143 INODE
144 typedef asection, section prototypes, Section Output, Sections
145 SUBSECTION
146 typedef asection
147
148 Here is the section structure:
149
150 CODE_FRAGMENT
151 .
152 .typedef struct bfd_section
153 .{
154 . {* The name of the section; the name isn't a copy, the pointer is
155 . the same as that passed to bfd_make_section. *}
156 . const char *name;
157 .
158 . {* A unique sequence number. *}
159 . int id;
160 .
161 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
162 . int index;
163 .
164 . {* The next section in the list belonging to the BFD, or NULL. *}
165 . struct bfd_section *next;
166 .
167 . {* The previous section in the list belonging to the BFD, or NULL. *}
168 . struct bfd_section *prev;
169 .
170 . {* The field flags contains attributes of the section. Some
171 . flags are read in from the object file, and some are
172 . synthesized from other information. *}
173 . flagword flags;
174 .
175 .#define SEC_NO_FLAGS 0x000
176 .
177 . {* Tells the OS to allocate space for this section when loading.
178 . This is clear for a section containing debug information only. *}
179 .#define SEC_ALLOC 0x001
180 .
181 . {* Tells the OS to load the section from the file when loading.
182 . This is clear for a .bss section. *}
183 .#define SEC_LOAD 0x002
184 .
185 . {* The section contains data still to be relocated, so there is
186 . some relocation information too. *}
187 .#define SEC_RELOC 0x004
188 .
189 . {* A signal to the OS that the section contains read only data. *}
190 .#define SEC_READONLY 0x008
191 .
192 . {* The section contains code only. *}
193 .#define SEC_CODE 0x010
194 .
195 . {* The section contains data only. *}
196 .#define SEC_DATA 0x020
197 .
198 . {* The section will reside in ROM. *}
199 .#define SEC_ROM 0x040
200 .
201 . {* The section contains constructor information. This section
202 . type is used by the linker to create lists of constructors and
203 . destructors used by <<g++>>. When a back end sees a symbol
204 . which should be used in a constructor list, it creates a new
205 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
206 . the symbol to it, and builds a relocation. To build the lists
207 . of constructors, all the linker has to do is catenate all the
208 . sections called <<__CTOR_LIST__>> and relocate the data
209 . contained within - exactly the operations it would peform on
210 . standard data. *}
211 .#define SEC_CONSTRUCTOR 0x080
212 .
213 . {* The section has contents - a data section could be
214 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
215 . <<SEC_HAS_CONTENTS>> *}
216 .#define SEC_HAS_CONTENTS 0x100
217 .
218 . {* An instruction to the linker to not output the section
219 . even if it has information which would normally be written. *}
220 .#define SEC_NEVER_LOAD 0x200
221 .
222 . {* The section contains thread local data. *}
223 .#define SEC_THREAD_LOCAL 0x400
224 .
225 . {* The section has GOT references. This flag is only for the
226 . linker, and is currently only used by the elf32-hppa back end.
227 . It will be set if global offset table references were detected
228 . in this section, which indicate to the linker that the section
229 . contains PIC code, and must be handled specially when doing a
230 . static link. *}
231 .#define SEC_HAS_GOT_REF 0x800
232 .
233 . {* The section contains common symbols (symbols may be defined
234 . multiple times, the value of a symbol is the amount of
235 . space it requires, and the largest symbol value is the one
236 . used). Most targets have exactly one of these (which we
237 . translate to bfd_com_section_ptr), but ECOFF has two. *}
238 .#define SEC_IS_COMMON 0x1000
239 .
240 . {* The section contains only debugging information. For
241 . example, this is set for ELF .debug and .stab sections.
242 . strip tests this flag to see if a section can be
243 . discarded. *}
244 .#define SEC_DEBUGGING 0x2000
245 .
246 . {* The contents of this section are held in memory pointed to
247 . by the contents field. This is checked by bfd_get_section_contents,
248 . and the data is retrieved from memory if appropriate. *}
249 .#define SEC_IN_MEMORY 0x4000
250 .
251 . {* The contents of this section are to be excluded by the
252 . linker for executable and shared objects unless those
253 . objects are to be further relocated. *}
254 .#define SEC_EXCLUDE 0x8000
255 .
256 . {* The contents of this section are to be sorted based on the sum of
257 . the symbol and addend values specified by the associated relocation
258 . entries. Entries without associated relocation entries will be
259 . appended to the end of the section in an unspecified order. *}
260 .#define SEC_SORT_ENTRIES 0x10000
261 .
262 . {* When linking, duplicate sections of the same name should be
263 . discarded, rather than being combined into a single section as
264 . is usually done. This is similar to how common symbols are
265 . handled. See SEC_LINK_DUPLICATES below. *}
266 .#define SEC_LINK_ONCE 0x20000
267 .
268 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
269 . should handle duplicate sections. *}
270 .#define SEC_LINK_DUPLICATES 0x40000
271 .
272 . {* This value for SEC_LINK_DUPLICATES means that duplicate
273 . sections with the same name should simply be discarded. *}
274 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
275 .
276 . {* This value for SEC_LINK_DUPLICATES means that the linker
277 . should warn if there are any duplicate sections, although
278 . it should still only link one copy. *}
279 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x80000
280 .
281 . {* This value for SEC_LINK_DUPLICATES means that the linker
282 . should warn if any duplicate sections are a different size. *}
283 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x100000
284 .
285 . {* This value for SEC_LINK_DUPLICATES means that the linker
286 . should warn if any duplicate sections contain different
287 . contents. *}
288 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
289 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
290 .
291 . {* This section was created by the linker as part of dynamic
292 . relocation or other arcane processing. It is skipped when
293 . going through the first-pass output, trusting that someone
294 . else up the line will take care of it later. *}
295 .#define SEC_LINKER_CREATED 0x200000
296 .
297 . {* This section should not be subject to garbage collection. *}
298 .#define SEC_KEEP 0x400000
299 .
300 . {* This section contains "short" data, and should be placed
301 . "near" the GP. *}
302 .#define SEC_SMALL_DATA 0x800000
303 .
304 . {* Attempt to merge identical entities in the section.
305 . Entity size is given in the entsize field. *}
306 .#define SEC_MERGE 0x1000000
307 .
308 . {* If given with SEC_MERGE, entities to merge are zero terminated
309 . strings where entsize specifies character size instead of fixed
310 . size entries. *}
311 .#define SEC_STRINGS 0x2000000
312 .
313 . {* This section contains data about section groups. *}
314 .#define SEC_GROUP 0x4000000
315 .
316 . {* The section is a COFF shared library section. This flag is
317 . only for the linker. If this type of section appears in
318 . the input file, the linker must copy it to the output file
319 . without changing the vma or size. FIXME: Although this
320 . was originally intended to be general, it really is COFF
321 . specific (and the flag was renamed to indicate this). It
322 . might be cleaner to have some more general mechanism to
323 . allow the back end to control what the linker does with
324 . sections. *}
325 .#define SEC_COFF_SHARED_LIBRARY 0x10000000
326 .
327 . {* This section contains data which may be shared with other
328 . executables or shared objects. This is for COFF only. *}
329 .#define SEC_COFF_SHARED 0x20000000
330 .
331 . {* When a section with this flag is being linked, then if the size of
332 . the input section is less than a page, it should not cross a page
333 . boundary. If the size of the input section is one page or more,
334 . it should be aligned on a page boundary. This is for TI
335 . TMS320C54X only. *}
336 .#define SEC_TIC54X_BLOCK 0x40000000
337 .
338 . {* Conditionally link this section; do not link if there are no
339 . references found to any symbol in the section. This is for TI
340 . TMS320C54X only. *}
341 .#define SEC_TIC54X_CLINK 0x80000000
342 .
343 . {* End of section flags. *}
344 .
345 . {* Some internal packed boolean fields. *}
346 .
347 . {* See the vma field. *}
348 . unsigned int user_set_vma : 1;
349 .
350 . {* A mark flag used by some of the linker backends. *}
351 . unsigned int linker_mark : 1;
352 .
353 . {* Another mark flag used by some of the linker backends. Set for
354 . output sections that have an input section. *}
355 . unsigned int linker_has_input : 1;
356 .
357 . {* Mark flags used by some linker backends for garbage collection. *}
358 . unsigned int gc_mark : 1;
359 . unsigned int gc_mark_from_eh : 1;
360 .
361 . {* The following flags are used by the ELF linker. *}
362 .
363 . {* Mark sections which have been allocated to segments. *}
364 . unsigned int segment_mark : 1;
365 .
366 . {* Type of sec_info information. *}
367 . unsigned int sec_info_type:3;
368 .#define ELF_INFO_TYPE_NONE 0
369 .#define ELF_INFO_TYPE_STABS 1
370 .#define ELF_INFO_TYPE_MERGE 2
371 .#define ELF_INFO_TYPE_EH_FRAME 3
372 .#define ELF_INFO_TYPE_JUST_SYMS 4
373 .
374 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
375 . unsigned int use_rela_p:1;
376 .
377 . {* Bits used by various backends. The generic code doesn't touch
378 . these fields. *}
379 .
380 . {* Nonzero if this section has TLS related relocations. *}
381 . unsigned int has_tls_reloc:1;
382 .
383 . {* Nonzero if this section has a gp reloc. *}
384 . unsigned int has_gp_reloc:1;
385 .
386 . {* Nonzero if this section needs the relax finalize pass. *}
387 . unsigned int need_finalize_relax:1;
388 .
389 . {* Whether relocations have been processed. *}
390 . unsigned int reloc_done : 1;
391 .
392 . {* End of internal packed boolean fields. *}
393 .
394 . {* The virtual memory address of the section - where it will be
395 . at run time. The symbols are relocated against this. The
396 . user_set_vma flag is maintained by bfd; if it's not set, the
397 . backend can assign addresses (for example, in <<a.out>>, where
398 . the default address for <<.data>> is dependent on the specific
399 . target and various flags). *}
400 . bfd_vma vma;
401 .
402 . {* The load address of the section - where it would be in a
403 . rom image; really only used for writing section header
404 . information. *}
405 . bfd_vma lma;
406 .
407 . {* The size of the section in octets, as it will be output.
408 . Contains a value even if the section has no contents (e.g., the
409 . size of <<.bss>>). *}
410 . bfd_size_type size;
411 .
412 . {* For input sections, the original size on disk of the section, in
413 . octets. This field is used by the linker relaxation code. It is
414 . currently only set for sections where the linker relaxation scheme
415 . doesn't cache altered section and reloc contents (stabs, eh_frame,
416 . SEC_MERGE, some coff relaxing targets), and thus the original size
417 . needs to be kept to read the section multiple times.
418 . For output sections, rawsize holds the section size calculated on
419 . a previous linker relaxation pass. *}
420 . bfd_size_type rawsize;
421 .
422 . {* If this section is going to be output, then this value is the
423 . offset in *bytes* into the output section of the first byte in the
424 . input section (byte ==> smallest addressable unit on the
425 . target). In most cases, if this was going to start at the
426 . 100th octet (8-bit quantity) in the output section, this value
427 . would be 100. However, if the target byte size is 16 bits
428 . (bfd_octets_per_byte is "2"), this value would be 50. *}
429 . bfd_vma output_offset;
430 .
431 . {* The output section through which to map on output. *}
432 . struct bfd_section *output_section;
433 .
434 . {* The alignment requirement of the section, as an exponent of 2 -
435 . e.g., 3 aligns to 2^3 (or 8). *}
436 . unsigned int alignment_power;
437 .
438 . {* If an input section, a pointer to a vector of relocation
439 . records for the data in this section. *}
440 . struct reloc_cache_entry *relocation;
441 .
442 . {* If an output section, a pointer to a vector of pointers to
443 . relocation records for the data in this section. *}
444 . struct reloc_cache_entry **orelocation;
445 .
446 . {* The number of relocation records in one of the above. *}
447 . unsigned reloc_count;
448 .
449 . {* Information below is back end specific - and not always used
450 . or updated. *}
451 .
452 . {* File position of section data. *}
453 . file_ptr filepos;
454 .
455 . {* File position of relocation info. *}
456 . file_ptr rel_filepos;
457 .
458 . {* File position of line data. *}
459 . file_ptr line_filepos;
460 .
461 . {* Pointer to data for applications. *}
462 . void *userdata;
463 .
464 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
465 . contents. *}
466 . unsigned char *contents;
467 .
468 . {* Attached line number information. *}
469 . alent *lineno;
470 .
471 . {* Number of line number records. *}
472 . unsigned int lineno_count;
473 .
474 . {* Entity size for merging purposes. *}
475 . unsigned int entsize;
476 .
477 . {* Points to the kept section if this section is a link-once section,
478 . and is discarded. *}
479 . struct bfd_section *kept_section;
480 .
481 . {* When a section is being output, this value changes as more
482 . linenumbers are written out. *}
483 . file_ptr moving_line_filepos;
484 .
485 . {* What the section number is in the target world. *}
486 . int target_index;
487 .
488 . void *used_by_bfd;
489 .
490 . {* If this is a constructor section then here is a list of the
491 . relocations created to relocate items within it. *}
492 . struct relent_chain *constructor_chain;
493 .
494 . {* The BFD which owns the section. *}
495 . bfd *owner;
496 .
497 . {* A symbol which points at this section only. *}
498 . struct bfd_symbol *symbol;
499 . struct bfd_symbol **symbol_ptr_ptr;
500 .
501 . {* Early in the link process, map_head and map_tail are used to build
502 . a list of input sections attached to an output section. Later,
503 . output sections use these fields for a list of bfd_link_order
504 . structs. *}
505 . union {
506 . struct bfd_link_order *link_order;
507 . struct bfd_section *s;
508 . } map_head, map_tail;
509 .} asection;
510 .
511 .{* These sections are global, and are managed by BFD. The application
512 . and target back end are not permitted to change the values in
513 . these sections. New code should use the section_ptr macros rather
514 . than referring directly to the const sections. The const sections
515 . may eventually vanish. *}
516 .#define BFD_ABS_SECTION_NAME "*ABS*"
517 .#define BFD_UND_SECTION_NAME "*UND*"
518 .#define BFD_COM_SECTION_NAME "*COM*"
519 .#define BFD_IND_SECTION_NAME "*IND*"
520 .
521 .{* The absolute section. *}
522 .extern asection bfd_abs_section;
523 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
524 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
525 .{* Pointer to the undefined section. *}
526 .extern asection bfd_und_section;
527 .#define bfd_und_section_ptr ((asection *) &bfd_und_section)
528 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
529 .{* Pointer to the common section. *}
530 .extern asection bfd_com_section;
531 .#define bfd_com_section_ptr ((asection *) &bfd_com_section)
532 .{* Pointer to the indirect section. *}
533 .extern asection bfd_ind_section;
534 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
535 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
536 .
537 .#define bfd_is_const_section(SEC) \
538 . ( ((SEC) == bfd_abs_section_ptr) \
539 . || ((SEC) == bfd_und_section_ptr) \
540 . || ((SEC) == bfd_com_section_ptr) \
541 . || ((SEC) == bfd_ind_section_ptr))
542 .
543 .{* Macros to handle insertion and deletion of a bfd's sections. These
544 . only handle the list pointers, ie. do not adjust section_count,
545 . target_index etc. *}
546 .#define bfd_section_list_remove(ABFD, S) \
547 . do \
548 . { \
549 . asection *_s = S; \
550 . asection *_next = _s->next; \
551 . asection *_prev = _s->prev; \
552 . if (_prev) \
553 . _prev->next = _next; \
554 . else \
555 . (ABFD)->sections = _next; \
556 . if (_next) \
557 . _next->prev = _prev; \
558 . else \
559 . (ABFD)->section_last = _prev; \
560 . } \
561 . while (0)
562 .#define bfd_section_list_append(ABFD, S) \
563 . do \
564 . { \
565 . asection *_s = S; \
566 . bfd *_abfd = ABFD; \
567 . _s->next = NULL; \
568 . if (_abfd->section_last) \
569 . { \
570 . _s->prev = _abfd->section_last; \
571 . _abfd->section_last->next = _s; \
572 . } \
573 . else \
574 . { \
575 . _s->prev = NULL; \
576 . _abfd->sections = _s; \
577 . } \
578 . _abfd->section_last = _s; \
579 . } \
580 . while (0)
581 .#define bfd_section_list_prepend(ABFD, S) \
582 . do \
583 . { \
584 . asection *_s = S; \
585 . bfd *_abfd = ABFD; \
586 . _s->prev = NULL; \
587 . if (_abfd->sections) \
588 . { \
589 . _s->next = _abfd->sections; \
590 . _abfd->sections->prev = _s; \
591 . } \
592 . else \
593 . { \
594 . _s->next = NULL; \
595 . _abfd->section_last = _s; \
596 . } \
597 . _abfd->sections = _s; \
598 . } \
599 . while (0)
600 .#define bfd_section_list_insert_after(ABFD, A, S) \
601 . do \
602 . { \
603 . asection *_a = A; \
604 . asection *_s = S; \
605 . asection *_next = _a->next; \
606 . _s->next = _next; \
607 . _s->prev = _a; \
608 . _a->next = _s; \
609 . if (_next) \
610 . _next->prev = _s; \
611 . else \
612 . (ABFD)->section_last = _s; \
613 . } \
614 . while (0)
615 .#define bfd_section_list_insert_before(ABFD, B, S) \
616 . do \
617 . { \
618 . asection *_b = B; \
619 . asection *_s = S; \
620 . asection *_prev = _b->prev; \
621 . _s->prev = _prev; \
622 . _s->next = _b; \
623 . _b->prev = _s; \
624 . if (_prev) \
625 . _prev->next = _s; \
626 . else \
627 . (ABFD)->sections = _s; \
628 . } \
629 . while (0)
630 .#define bfd_section_removed_from_list(ABFD, S) \
631 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
632 .
633 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
634 . {* name, id, index, next, prev, flags, user_set_vma, *} \
635 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
636 . \
637 . {* linker_mark, linker_has_input, gc_mark, gc_mark_from_eh, *} \
638 . 0, 0, 1, 0, \
639 . \
640 . {* segment_mark, sec_info_type, use_rela_p, has_tls_reloc, *} \
641 . 0, 0, 0, 0, \
642 . \
643 . {* has_gp_reloc, need_finalize_relax, reloc_done, *} \
644 . 0, 0, 0, \
645 . \
646 . {* vma, lma, size, rawsize *} \
647 . 0, 0, 0, 0, \
648 . \
649 . {* output_offset, output_section, alignment_power, *} \
650 . 0, (struct bfd_section *) &SEC, 0, \
651 . \
652 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
653 . NULL, NULL, 0, 0, 0, \
654 . \
655 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
656 . 0, NULL, NULL, NULL, 0, \
657 . \
658 . {* entsize, kept_section, moving_line_filepos, *} \
659 . 0, NULL, 0, \
660 . \
661 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
662 . 0, NULL, NULL, NULL, \
663 . \
664 . {* symbol, symbol_ptr_ptr, *} \
665 . (struct bfd_symbol *) SYM, &SEC.symbol, \
666 . \
667 . {* map_head, map_tail *} \
668 . { NULL }, { NULL } \
669 . }
670 .
671 */
672
673 /* We use a macro to initialize the static asymbol structures because
674 traditional C does not permit us to initialize a union member while
675 gcc warns if we don't initialize it. */
676 /* the_bfd, name, value, attr, section [, udata] */
677 #ifdef __STDC__
678 #define GLOBAL_SYM_INIT(NAME, SECTION) \
679 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
680 #else
681 #define GLOBAL_SYM_INIT(NAME, SECTION) \
682 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
683 #endif
684
685 /* These symbols are global, not specific to any BFD. Therefore, anything
686 that tries to change them is broken, and should be repaired. */
687
688 static const asymbol global_syms[] =
689 {
690 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
691 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
692 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
693 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
694 };
695
696 #define STD_SECTION(SEC, FLAGS, NAME, IDX) \
697 asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX], \
698 NAME, IDX)
699
700 STD_SECTION (bfd_com_section, SEC_IS_COMMON, BFD_COM_SECTION_NAME, 0);
701 STD_SECTION (bfd_und_section, 0, BFD_UND_SECTION_NAME, 1);
702 STD_SECTION (bfd_abs_section, 0, BFD_ABS_SECTION_NAME, 2);
703 STD_SECTION (bfd_ind_section, 0, BFD_IND_SECTION_NAME, 3);
704 #undef STD_SECTION
705
706 /* Initialize an entry in the section hash table. */
707
708 struct bfd_hash_entry *
709 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
710 struct bfd_hash_table *table,
711 const char *string)
712 {
713 /* Allocate the structure if it has not already been allocated by a
714 subclass. */
715 if (entry == NULL)
716 {
717 entry = (struct bfd_hash_entry *)
718 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
719 if (entry == NULL)
720 return entry;
721 }
722
723 /* Call the allocation method of the superclass. */
724 entry = bfd_hash_newfunc (entry, table, string);
725 if (entry != NULL)
726 memset (&((struct section_hash_entry *) entry)->section, 0,
727 sizeof (asection));
728
729 return entry;
730 }
731
732 #define section_hash_lookup(table, string, create, copy) \
733 ((struct section_hash_entry *) \
734 bfd_hash_lookup ((table), (string), (create), (copy)))
735
736 /* Create a symbol whose only job is to point to this section. This
737 is useful for things like relocs which are relative to the base
738 of a section. */
739
740 bfd_boolean
741 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
742 {
743 newsect->symbol = bfd_make_empty_symbol (abfd);
744 if (newsect->symbol == NULL)
745 return FALSE;
746
747 newsect->symbol->name = newsect->name;
748 newsect->symbol->value = 0;
749 newsect->symbol->section = newsect;
750 newsect->symbol->flags = BSF_SECTION_SYM;
751
752 newsect->symbol_ptr_ptr = &newsect->symbol;
753 return TRUE;
754 }
755
756 /* Initializes a new section. NEWSECT->NAME is already set. */
757
758 static asection *
759 bfd_section_init (bfd *abfd, asection *newsect)
760 {
761 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
762
763 newsect->id = section_id;
764 newsect->index = abfd->section_count;
765 newsect->owner = abfd;
766
767 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
768 return NULL;
769
770 section_id++;
771 abfd->section_count++;
772 bfd_section_list_append (abfd, newsect);
773 return newsect;
774 }
775
776 /*
777 DOCDD
778 INODE
779 section prototypes, , typedef asection, Sections
780 SUBSECTION
781 Section prototypes
782
783 These are the functions exported by the section handling part of BFD.
784 */
785
786 /*
787 FUNCTION
788 bfd_section_list_clear
789
790 SYNOPSIS
791 void bfd_section_list_clear (bfd *);
792
793 DESCRIPTION
794 Clears the section list, and also resets the section count and
795 hash table entries.
796 */
797
798 void
799 bfd_section_list_clear (bfd *abfd)
800 {
801 abfd->sections = NULL;
802 abfd->section_last = NULL;
803 abfd->section_count = 0;
804 memset (abfd->section_htab.table, 0,
805 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
806 }
807
808 /*
809 FUNCTION
810 bfd_get_section_by_name
811
812 SYNOPSIS
813 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
814
815 DESCRIPTION
816 Run through @var{abfd} and return the one of the
817 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
818 @xref{Sections}, for more information.
819
820 This should only be used in special cases; the normal way to process
821 all sections of a given name is to use <<bfd_map_over_sections>> and
822 <<strcmp>> on the name (or better yet, base it on the section flags
823 or something else) for each section.
824 */
825
826 asection *
827 bfd_get_section_by_name (bfd *abfd, const char *name)
828 {
829 struct section_hash_entry *sh;
830
831 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
832 if (sh != NULL)
833 return &sh->section;
834
835 return NULL;
836 }
837
838 /*
839 FUNCTION
840 bfd_get_section_by_name_if
841
842 SYNOPSIS
843 asection *bfd_get_section_by_name_if
844 (bfd *abfd,
845 const char *name,
846 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
847 void *obj);
848
849 DESCRIPTION
850 Call the provided function @var{func} for each section
851 attached to the BFD @var{abfd} whose name matches @var{name},
852 passing @var{obj} as an argument. The function will be called
853 as if by
854
855 | func (abfd, the_section, obj);
856
857 It returns the first section for which @var{func} returns true,
858 otherwise <<NULL>>.
859
860 */
861
862 asection *
863 bfd_get_section_by_name_if (bfd *abfd, const char *name,
864 bfd_boolean (*operation) (bfd *,
865 asection *,
866 void *),
867 void *user_storage)
868 {
869 struct section_hash_entry *sh;
870 unsigned long hash;
871
872 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
873 if (sh == NULL)
874 return NULL;
875
876 hash = sh->root.hash;
877 do
878 {
879 if ((*operation) (abfd, &sh->section, user_storage))
880 return &sh->section;
881 sh = (struct section_hash_entry *) sh->root.next;
882 }
883 while (sh != NULL && sh->root.hash == hash
884 && strcmp (sh->root.string, name) == 0);
885
886 return NULL;
887 }
888
889 /*
890 FUNCTION
891 bfd_get_unique_section_name
892
893 SYNOPSIS
894 char *bfd_get_unique_section_name
895 (bfd *abfd, const char *templat, int *count);
896
897 DESCRIPTION
898 Invent a section name that is unique in @var{abfd} by tacking
899 a dot and a digit suffix onto the original @var{templat}. If
900 @var{count} is non-NULL, then it specifies the first number
901 tried as a suffix to generate a unique name. The value
902 pointed to by @var{count} will be incremented in this case.
903 */
904
905 char *
906 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
907 {
908 int num;
909 unsigned int len;
910 char *sname;
911
912 len = strlen (templat);
913 sname = bfd_malloc (len + 8);
914 if (sname == NULL)
915 return NULL;
916 memcpy (sname, templat, len);
917 num = 1;
918 if (count != NULL)
919 num = *count;
920
921 do
922 {
923 /* If we have a million sections, something is badly wrong. */
924 if (num > 999999)
925 abort ();
926 sprintf (sname + len, ".%d", num++);
927 }
928 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
929
930 if (count != NULL)
931 *count = num;
932 return sname;
933 }
934
935 /*
936 FUNCTION
937 bfd_make_section_old_way
938
939 SYNOPSIS
940 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
941
942 DESCRIPTION
943 Create a new empty section called @var{name}
944 and attach it to the end of the chain of sections for the
945 BFD @var{abfd}. An attempt to create a section with a name which
946 is already in use returns its pointer without changing the
947 section chain.
948
949 It has the funny name since this is the way it used to be
950 before it was rewritten....
951
952 Possible errors are:
953 o <<bfd_error_invalid_operation>> -
954 If output has already started for this BFD.
955 o <<bfd_error_no_memory>> -
956 If memory allocation fails.
957
958 */
959
960 asection *
961 bfd_make_section_old_way (bfd *abfd, const char *name)
962 {
963 asection *newsect;
964
965 if (abfd->output_has_begun)
966 {
967 bfd_set_error (bfd_error_invalid_operation);
968 return NULL;
969 }
970
971 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
972 newsect = bfd_abs_section_ptr;
973 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
974 newsect = bfd_com_section_ptr;
975 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
976 newsect = bfd_und_section_ptr;
977 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
978 newsect = bfd_ind_section_ptr;
979 else
980 {
981 struct section_hash_entry *sh;
982
983 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
984 if (sh == NULL)
985 return NULL;
986
987 newsect = &sh->section;
988 if (newsect->name != NULL)
989 {
990 /* Section already exists. */
991 return newsect;
992 }
993
994 newsect->name = name;
995 return bfd_section_init (abfd, newsect);
996 }
997
998 /* Call new_section_hook when "creating" the standard abs, com, und
999 and ind sections to tack on format specific section data.
1000 Also, create a proper section symbol. */
1001 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1002 return NULL;
1003 return newsect;
1004 }
1005
1006 /*
1007 FUNCTION
1008 bfd_make_section_anyway_with_flags
1009
1010 SYNOPSIS
1011 asection *bfd_make_section_anyway_with_flags
1012 (bfd *abfd, const char *name, flagword flags);
1013
1014 DESCRIPTION
1015 Create a new empty section called @var{name} and attach it to the end of
1016 the chain of sections for @var{abfd}. Create a new section even if there
1017 is already a section with that name. Also set the attributes of the
1018 new section to the value @var{flags}.
1019
1020 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1021 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1022 o <<bfd_error_no_memory>> - If memory allocation fails.
1023 */
1024
1025 sec_ptr
1026 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1027 flagword flags)
1028 {
1029 struct section_hash_entry *sh;
1030 asection *newsect;
1031
1032 if (abfd->output_has_begun)
1033 {
1034 bfd_set_error (bfd_error_invalid_operation);
1035 return NULL;
1036 }
1037
1038 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1039 if (sh == NULL)
1040 return NULL;
1041
1042 newsect = &sh->section;
1043 if (newsect->name != NULL)
1044 {
1045 /* We are making a section of the same name. Put it in the
1046 section hash table. Even though we can't find it directly by a
1047 hash lookup, we'll be able to find the section by traversing
1048 sh->root.next quicker than looking at all the bfd sections. */
1049 struct section_hash_entry *new_sh;
1050 new_sh = (struct section_hash_entry *)
1051 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1052 if (new_sh == NULL)
1053 return NULL;
1054
1055 new_sh->root = sh->root;
1056 sh->root.next = &new_sh->root;
1057 newsect = &new_sh->section;
1058 }
1059
1060 newsect->flags = flags;
1061 newsect->name = name;
1062 return bfd_section_init (abfd, newsect);
1063 }
1064
1065 /*
1066 FUNCTION
1067 bfd_make_section_anyway
1068
1069 SYNOPSIS
1070 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1071
1072 DESCRIPTION
1073 Create a new empty section called @var{name} and attach it to the end of
1074 the chain of sections for @var{abfd}. Create a new section even if there
1075 is already a section with that name.
1076
1077 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1078 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1079 o <<bfd_error_no_memory>> - If memory allocation fails.
1080 */
1081
1082 sec_ptr
1083 bfd_make_section_anyway (bfd *abfd, const char *name)
1084 {
1085 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1086 }
1087
1088 /*
1089 FUNCTION
1090 bfd_make_section_with_flags
1091
1092 SYNOPSIS
1093 asection *bfd_make_section_with_flags
1094 (bfd *, const char *name, flagword flags);
1095
1096 DESCRIPTION
1097 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1098 bfd_set_error ()) without changing the section chain if there is already a
1099 section named @var{name}. Also set the attributes of the new section to
1100 the value @var{flags}. If there is an error, return <<NULL>> and set
1101 <<bfd_error>>.
1102 */
1103
1104 asection *
1105 bfd_make_section_with_flags (bfd *abfd, const char *name,
1106 flagword flags)
1107 {
1108 struct section_hash_entry *sh;
1109 asection *newsect;
1110
1111 if (abfd->output_has_begun)
1112 {
1113 bfd_set_error (bfd_error_invalid_operation);
1114 return NULL;
1115 }
1116
1117 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1118 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1119 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1120 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1121 return NULL;
1122
1123 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1124 if (sh == NULL)
1125 return NULL;
1126
1127 newsect = &sh->section;
1128 if (newsect->name != NULL)
1129 {
1130 /* Section already exists. */
1131 return NULL;
1132 }
1133
1134 newsect->name = name;
1135 newsect->flags = flags;
1136 return bfd_section_init (abfd, newsect);
1137 }
1138
1139 /*
1140 FUNCTION
1141 bfd_make_section
1142
1143 SYNOPSIS
1144 asection *bfd_make_section (bfd *, const char *name);
1145
1146 DESCRIPTION
1147 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1148 bfd_set_error ()) without changing the section chain if there is already a
1149 section named @var{name}. If there is an error, return <<NULL>> and set
1150 <<bfd_error>>.
1151 */
1152
1153 asection *
1154 bfd_make_section (bfd *abfd, const char *name)
1155 {
1156 return bfd_make_section_with_flags (abfd, name, 0);
1157 }
1158
1159 /*
1160 FUNCTION
1161 bfd_set_section_flags
1162
1163 SYNOPSIS
1164 bfd_boolean bfd_set_section_flags
1165 (bfd *abfd, asection *sec, flagword flags);
1166
1167 DESCRIPTION
1168 Set the attributes of the section @var{sec} in the BFD
1169 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1170 <<FALSE>> on error. Possible error returns are:
1171
1172 o <<bfd_error_invalid_operation>> -
1173 The section cannot have one or more of the attributes
1174 requested. For example, a .bss section in <<a.out>> may not
1175 have the <<SEC_HAS_CONTENTS>> field set.
1176
1177 */
1178
1179 bfd_boolean
1180 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1181 sec_ptr section,
1182 flagword flags)
1183 {
1184 section->flags = flags;
1185 return TRUE;
1186 }
1187
1188 /*
1189 FUNCTION
1190 bfd_map_over_sections
1191
1192 SYNOPSIS
1193 void bfd_map_over_sections
1194 (bfd *abfd,
1195 void (*func) (bfd *abfd, asection *sect, void *obj),
1196 void *obj);
1197
1198 DESCRIPTION
1199 Call the provided function @var{func} for each section
1200 attached to the BFD @var{abfd}, passing @var{obj} as an
1201 argument. The function will be called as if by
1202
1203 | func (abfd, the_section, obj);
1204
1205 This is the preferred method for iterating over sections; an
1206 alternative would be to use a loop:
1207
1208 | section *p;
1209 | for (p = abfd->sections; p != NULL; p = p->next)
1210 | func (abfd, p, ...)
1211
1212 */
1213
1214 void
1215 bfd_map_over_sections (bfd *abfd,
1216 void (*operation) (bfd *, asection *, void *),
1217 void *user_storage)
1218 {
1219 asection *sect;
1220 unsigned int i = 0;
1221
1222 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1223 (*operation) (abfd, sect, user_storage);
1224
1225 if (i != abfd->section_count) /* Debugging */
1226 abort ();
1227 }
1228
1229 /*
1230 FUNCTION
1231 bfd_sections_find_if
1232
1233 SYNOPSIS
1234 asection *bfd_sections_find_if
1235 (bfd *abfd,
1236 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1237 void *obj);
1238
1239 DESCRIPTION
1240 Call the provided function @var{operation} for each section
1241 attached to the BFD @var{abfd}, passing @var{obj} as an
1242 argument. The function will be called as if by
1243
1244 | operation (abfd, the_section, obj);
1245
1246 It returns the first section for which @var{operation} returns true.
1247
1248 */
1249
1250 asection *
1251 bfd_sections_find_if (bfd *abfd,
1252 bfd_boolean (*operation) (bfd *, asection *, void *),
1253 void *user_storage)
1254 {
1255 asection *sect;
1256
1257 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1258 if ((*operation) (abfd, sect, user_storage))
1259 break;
1260
1261 return sect;
1262 }
1263
1264 /*
1265 FUNCTION
1266 bfd_set_section_size
1267
1268 SYNOPSIS
1269 bfd_boolean bfd_set_section_size
1270 (bfd *abfd, asection *sec, bfd_size_type val);
1271
1272 DESCRIPTION
1273 Set @var{sec} to the size @var{val}. If the operation is
1274 ok, then <<TRUE>> is returned, else <<FALSE>>.
1275
1276 Possible error returns:
1277 o <<bfd_error_invalid_operation>> -
1278 Writing has started to the BFD, so setting the size is invalid.
1279
1280 */
1281
1282 bfd_boolean
1283 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1284 {
1285 /* Once you've started writing to any section you cannot create or change
1286 the size of any others. */
1287
1288 if (abfd->output_has_begun)
1289 {
1290 bfd_set_error (bfd_error_invalid_operation);
1291 return FALSE;
1292 }
1293
1294 ptr->size = val;
1295 return TRUE;
1296 }
1297
1298 /*
1299 FUNCTION
1300 bfd_set_section_contents
1301
1302 SYNOPSIS
1303 bfd_boolean bfd_set_section_contents
1304 (bfd *abfd, asection *section, const void *data,
1305 file_ptr offset, bfd_size_type count);
1306
1307 DESCRIPTION
1308 Sets the contents of the section @var{section} in BFD
1309 @var{abfd} to the data starting in memory at @var{data}. The
1310 data is written to the output section starting at offset
1311 @var{offset} for @var{count} octets.
1312
1313 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1314 returns are:
1315 o <<bfd_error_no_contents>> -
1316 The output section does not have the <<SEC_HAS_CONTENTS>>
1317 attribute, so nothing can be written to it.
1318 o and some more too
1319
1320 This routine is front end to the back end function
1321 <<_bfd_set_section_contents>>.
1322
1323 */
1324
1325 bfd_boolean
1326 bfd_set_section_contents (bfd *abfd,
1327 sec_ptr section,
1328 const void *location,
1329 file_ptr offset,
1330 bfd_size_type count)
1331 {
1332 bfd_size_type sz;
1333
1334 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1335 {
1336 bfd_set_error (bfd_error_no_contents);
1337 return FALSE;
1338 }
1339
1340 sz = section->size;
1341 if ((bfd_size_type) offset > sz
1342 || count > sz
1343 || offset + count > sz
1344 || count != (size_t) count)
1345 {
1346 bfd_set_error (bfd_error_bad_value);
1347 return FALSE;
1348 }
1349
1350 if (!bfd_write_p (abfd))
1351 {
1352 bfd_set_error (bfd_error_invalid_operation);
1353 return FALSE;
1354 }
1355
1356 /* Record a copy of the data in memory if desired. */
1357 if (section->contents
1358 && location != section->contents + offset)
1359 memcpy (section->contents + offset, location, (size_t) count);
1360
1361 if (BFD_SEND (abfd, _bfd_set_section_contents,
1362 (abfd, section, location, offset, count)))
1363 {
1364 abfd->output_has_begun = TRUE;
1365 return TRUE;
1366 }
1367
1368 return FALSE;
1369 }
1370
1371 /*
1372 FUNCTION
1373 bfd_get_section_contents
1374
1375 SYNOPSIS
1376 bfd_boolean bfd_get_section_contents
1377 (bfd *abfd, asection *section, void *location, file_ptr offset,
1378 bfd_size_type count);
1379
1380 DESCRIPTION
1381 Read data from @var{section} in BFD @var{abfd}
1382 into memory starting at @var{location}. The data is read at an
1383 offset of @var{offset} from the start of the input section,
1384 and is read for @var{count} bytes.
1385
1386 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1387 flag set are requested or if the section does not have the
1388 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1389 with zeroes. If no errors occur, <<TRUE>> is returned, else
1390 <<FALSE>>.
1391
1392 */
1393 bfd_boolean
1394 bfd_get_section_contents (bfd *abfd,
1395 sec_ptr section,
1396 void *location,
1397 file_ptr offset,
1398 bfd_size_type count)
1399 {
1400 bfd_size_type sz;
1401
1402 if (section->flags & SEC_CONSTRUCTOR)
1403 {
1404 memset (location, 0, (size_t) count);
1405 return TRUE;
1406 }
1407
1408 sz = section->rawsize ? section->rawsize : section->size;
1409 if ((bfd_size_type) offset > sz
1410 || count > sz
1411 || offset + count > sz
1412 || count != (size_t) count)
1413 {
1414 bfd_set_error (bfd_error_bad_value);
1415 return FALSE;
1416 }
1417
1418 if (count == 0)
1419 /* Don't bother. */
1420 return TRUE;
1421
1422 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1423 {
1424 memset (location, 0, (size_t) count);
1425 return TRUE;
1426 }
1427
1428 if ((section->flags & SEC_IN_MEMORY) != 0)
1429 {
1430 memcpy (location, section->contents + offset, (size_t) count);
1431 return TRUE;
1432 }
1433
1434 return BFD_SEND (abfd, _bfd_get_section_contents,
1435 (abfd, section, location, offset, count));
1436 }
1437
1438 /*
1439 FUNCTION
1440 bfd_malloc_and_get_section
1441
1442 SYNOPSIS
1443 bfd_boolean bfd_malloc_and_get_section
1444 (bfd *abfd, asection *section, bfd_byte **buf);
1445
1446 DESCRIPTION
1447 Read all data from @var{section} in BFD @var{abfd}
1448 into a buffer, *@var{buf}, malloc'd by this function.
1449 */
1450
1451 bfd_boolean
1452 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1453 {
1454 bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1455 bfd_byte *p = NULL;
1456
1457 *buf = p;
1458 if (sz == 0)
1459 return TRUE;
1460
1461 p = bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1462 if (p == NULL)
1463 return FALSE;
1464 *buf = p;
1465
1466 return bfd_get_section_contents (abfd, sec, p, 0, sz);
1467 }
1468 /*
1469 FUNCTION
1470 bfd_copy_private_section_data
1471
1472 SYNOPSIS
1473 bfd_boolean bfd_copy_private_section_data
1474 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1475
1476 DESCRIPTION
1477 Copy private section information from @var{isec} in the BFD
1478 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1479 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1480 returns are:
1481
1482 o <<bfd_error_no_memory>> -
1483 Not enough memory exists to create private data for @var{osec}.
1484
1485 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1486 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1487 . (ibfd, isection, obfd, osection))
1488 */
1489
1490 /*
1491 FUNCTION
1492 bfd_generic_is_group_section
1493
1494 SYNOPSIS
1495 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1496
1497 DESCRIPTION
1498 Returns TRUE if @var{sec} is a member of a group.
1499 */
1500
1501 bfd_boolean
1502 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1503 const asection *sec ATTRIBUTE_UNUSED)
1504 {
1505 return FALSE;
1506 }
1507
1508 /*
1509 FUNCTION
1510 bfd_generic_discard_group
1511
1512 SYNOPSIS
1513 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1514
1515 DESCRIPTION
1516 Remove all members of @var{group} from the output.
1517 */
1518
1519 bfd_boolean
1520 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1521 asection *group ATTRIBUTE_UNUSED)
1522 {
1523 return TRUE;
1524 }
This page took 0.06286 seconds and 4 git commands to generate.