Reverse copy .ctors/.dtors sections if needed.
[deliverable/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 /*
25 SECTION
26 Sections
27
28 The raw data contained within a BFD is maintained through the
29 section abstraction. A single BFD may have any number of
30 sections. It keeps hold of them by pointing to the first;
31 each one points to the next in the list.
32
33 Sections are supported in BFD in <<section.c>>.
34
35 @menu
36 @* Section Input::
37 @* Section Output::
38 @* typedef asection::
39 @* section prototypes::
40 @end menu
41
42 INODE
43 Section Input, Section Output, Sections, Sections
44 SUBSECTION
45 Section input
46
47 When a BFD is opened for reading, the section structures are
48 created and attached to the BFD.
49
50 Each section has a name which describes the section in the
51 outside world---for example, <<a.out>> would contain at least
52 three sections, called <<.text>>, <<.data>> and <<.bss>>.
53
54 Names need not be unique; for example a COFF file may have several
55 sections named <<.data>>.
56
57 Sometimes a BFD will contain more than the ``natural'' number of
58 sections. A back end may attach other sections containing
59 constructor data, or an application may add a section (using
60 <<bfd_make_section>>) to the sections attached to an already open
61 BFD. For example, the linker creates an extra section
62 <<COMMON>> for each input file's BFD to hold information about
63 common storage.
64
65 The raw data is not necessarily read in when
66 the section descriptor is created. Some targets may leave the
67 data in place until a <<bfd_get_section_contents>> call is
68 made. Other back ends may read in all the data at once. For
69 example, an S-record file has to be read once to determine the
70 size of the data. An IEEE-695 file doesn't contain raw data in
71 sections, but data and relocation expressions intermixed, so
72 the data area has to be parsed to get out the data and
73 relocations.
74
75 INODE
76 Section Output, typedef asection, Section Input, Sections
77
78 SUBSECTION
79 Section output
80
81 To write a new object style BFD, the various sections to be
82 written have to be created. They are attached to the BFD in
83 the same way as input sections; data is written to the
84 sections using <<bfd_set_section_contents>>.
85
86 Any program that creates or combines sections (e.g., the assembler
87 and linker) must use the <<asection>> fields <<output_section>> and
88 <<output_offset>> to indicate the file sections to which each
89 section must be written. (If the section is being created from
90 scratch, <<output_section>> should probably point to the section
91 itself and <<output_offset>> should probably be zero.)
92
93 The data to be written comes from input sections attached
94 (via <<output_section>> pointers) to
95 the output sections. The output section structure can be
96 considered a filter for the input section: the output section
97 determines the vma of the output data and the name, but the
98 input section determines the offset into the output section of
99 the data to be written.
100
101 E.g., to create a section "O", starting at 0x100, 0x123 long,
102 containing two subsections, "A" at offset 0x0 (i.e., at vma
103 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
104 structures would look like:
105
106 | section name "A"
107 | output_offset 0x00
108 | size 0x20
109 | output_section -----------> section name "O"
110 | | vma 0x100
111 | section name "B" | size 0x123
112 | output_offset 0x20 |
113 | size 0x103 |
114 | output_section --------|
115
116 SUBSECTION
117 Link orders
118
119 The data within a section is stored in a @dfn{link_order}.
120 These are much like the fixups in <<gas>>. The link_order
121 abstraction allows a section to grow and shrink within itself.
122
123 A link_order knows how big it is, and which is the next
124 link_order and where the raw data for it is; it also points to
125 a list of relocations which apply to it.
126
127 The link_order is used by the linker to perform relaxing on
128 final code. The compiler creates code which is as big as
129 necessary to make it work without relaxing, and the user can
130 select whether to relax. Sometimes relaxing takes a lot of
131 time. The linker runs around the relocations to see if any
132 are attached to data which can be shrunk, if so it does it on
133 a link_order by link_order basis.
134
135 */
136
137 #include "sysdep.h"
138 #include "bfd.h"
139 #include "libbfd.h"
140 #include "bfdlink.h"
141
142 /*
143 DOCDD
144 INODE
145 typedef asection, section prototypes, Section Output, Sections
146 SUBSECTION
147 typedef asection
148
149 Here is the section structure:
150
151 CODE_FRAGMENT
152 .
153 .typedef struct bfd_section
154 .{
155 . {* The name of the section; the name isn't a copy, the pointer is
156 . the same as that passed to bfd_make_section. *}
157 . const char *name;
158 .
159 . {* A unique sequence number. *}
160 . int id;
161 .
162 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
163 . int index;
164 .
165 . {* The next section in the list belonging to the BFD, or NULL. *}
166 . struct bfd_section *next;
167 .
168 . {* The previous section in the list belonging to the BFD, or NULL. *}
169 . struct bfd_section *prev;
170 .
171 . {* The field flags contains attributes of the section. Some
172 . flags are read in from the object file, and some are
173 . synthesized from other information. *}
174 . flagword flags;
175 .
176 .#define SEC_NO_FLAGS 0x000
177 .
178 . {* Tells the OS to allocate space for this section when loading.
179 . This is clear for a section containing debug information only. *}
180 .#define SEC_ALLOC 0x001
181 .
182 . {* Tells the OS to load the section from the file when loading.
183 . This is clear for a .bss section. *}
184 .#define SEC_LOAD 0x002
185 .
186 . {* The section contains data still to be relocated, so there is
187 . some relocation information too. *}
188 .#define SEC_RELOC 0x004
189 .
190 . {* A signal to the OS that the section contains read only data. *}
191 .#define SEC_READONLY 0x008
192 .
193 . {* The section contains code only. *}
194 .#define SEC_CODE 0x010
195 .
196 . {* The section contains data only. *}
197 .#define SEC_DATA 0x020
198 .
199 . {* The section will reside in ROM. *}
200 .#define SEC_ROM 0x040
201 .
202 . {* The section contains constructor information. This section
203 . type is used by the linker to create lists of constructors and
204 . destructors used by <<g++>>. When a back end sees a symbol
205 . which should be used in a constructor list, it creates a new
206 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
207 . the symbol to it, and builds a relocation. To build the lists
208 . of constructors, all the linker has to do is catenate all the
209 . sections called <<__CTOR_LIST__>> and relocate the data
210 . contained within - exactly the operations it would peform on
211 . standard data. *}
212 .#define SEC_CONSTRUCTOR 0x080
213 .
214 . {* The section has contents - a data section could be
215 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
216 . <<SEC_HAS_CONTENTS>> *}
217 .#define SEC_HAS_CONTENTS 0x100
218 .
219 . {* An instruction to the linker to not output the section
220 . even if it has information which would normally be written. *}
221 .#define SEC_NEVER_LOAD 0x200
222 .
223 . {* The section contains thread local data. *}
224 .#define SEC_THREAD_LOCAL 0x400
225 .
226 . {* The section has GOT references. This flag is only for the
227 . linker, and is currently only used by the elf32-hppa back end.
228 . It will be set if global offset table references were detected
229 . in this section, which indicate to the linker that the section
230 . contains PIC code, and must be handled specially when doing a
231 . static link. *}
232 .#define SEC_HAS_GOT_REF 0x800
233 .
234 . {* The section contains common symbols (symbols may be defined
235 . multiple times, the value of a symbol is the amount of
236 . space it requires, and the largest symbol value is the one
237 . used). Most targets have exactly one of these (which we
238 . translate to bfd_com_section_ptr), but ECOFF has two. *}
239 .#define SEC_IS_COMMON 0x1000
240 .
241 . {* The section contains only debugging information. For
242 . example, this is set for ELF .debug and .stab sections.
243 . strip tests this flag to see if a section can be
244 . discarded. *}
245 .#define SEC_DEBUGGING 0x2000
246 .
247 . {* The contents of this section are held in memory pointed to
248 . by the contents field. This is checked by bfd_get_section_contents,
249 . and the data is retrieved from memory if appropriate. *}
250 .#define SEC_IN_MEMORY 0x4000
251 .
252 . {* The contents of this section are to be excluded by the
253 . linker for executable and shared objects unless those
254 . objects are to be further relocated. *}
255 .#define SEC_EXCLUDE 0x8000
256 .
257 . {* The contents of this section are to be sorted based on the sum of
258 . the symbol and addend values specified by the associated relocation
259 . entries. Entries without associated relocation entries will be
260 . appended to the end of the section in an unspecified order. *}
261 .#define SEC_SORT_ENTRIES 0x10000
262 .
263 . {* When linking, duplicate sections of the same name should be
264 . discarded, rather than being combined into a single section as
265 . is usually done. This is similar to how common symbols are
266 . handled. See SEC_LINK_DUPLICATES below. *}
267 .#define SEC_LINK_ONCE 0x20000
268 .
269 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
270 . should handle duplicate sections. *}
271 .#define SEC_LINK_DUPLICATES 0xc0000
272 .
273 . {* This value for SEC_LINK_DUPLICATES means that duplicate
274 . sections with the same name should simply be discarded. *}
275 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
276 .
277 . {* This value for SEC_LINK_DUPLICATES means that the linker
278 . should warn if there are any duplicate sections, although
279 . it should still only link one copy. *}
280 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
281 .
282 . {* This value for SEC_LINK_DUPLICATES means that the linker
283 . should warn if any duplicate sections are a different size. *}
284 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
285 .
286 . {* This value for SEC_LINK_DUPLICATES means that the linker
287 . should warn if any duplicate sections contain different
288 . contents. *}
289 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
290 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
291 .
292 . {* This section was created by the linker as part of dynamic
293 . relocation or other arcane processing. It is skipped when
294 . going through the first-pass output, trusting that someone
295 . else up the line will take care of it later. *}
296 .#define SEC_LINKER_CREATED 0x100000
297 .
298 . {* This section should not be subject to garbage collection.
299 . Also set to inform the linker that this section should not be
300 . listed in the link map as discarded. *}
301 .#define SEC_KEEP 0x200000
302 .
303 . {* This section contains "short" data, and should be placed
304 . "near" the GP. *}
305 .#define SEC_SMALL_DATA 0x400000
306 .
307 . {* Attempt to merge identical entities in the section.
308 . Entity size is given in the entsize field. *}
309 .#define SEC_MERGE 0x800000
310 .
311 . {* If given with SEC_MERGE, entities to merge are zero terminated
312 . strings where entsize specifies character size instead of fixed
313 . size entries. *}
314 .#define SEC_STRINGS 0x1000000
315 .
316 . {* This section contains data about section groups. *}
317 .#define SEC_GROUP 0x2000000
318 .
319 . {* The section is a COFF shared library section. This flag is
320 . only for the linker. If this type of section appears in
321 . the input file, the linker must copy it to the output file
322 . without changing the vma or size. FIXME: Although this
323 . was originally intended to be general, it really is COFF
324 . specific (and the flag was renamed to indicate this). It
325 . might be cleaner to have some more general mechanism to
326 . allow the back end to control what the linker does with
327 . sections. *}
328 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
329 .
330 . {* This input section should be copied to output in reverse order
331 . as an array of pointers. This is for ELF linker internal use
332 . only. *}
333 .#define SEC_ELF_REVERSE_COPY 0x4000000
334 .
335 . {* This section contains data which may be shared with other
336 . executables or shared objects. This is for COFF only. *}
337 .#define SEC_COFF_SHARED 0x8000000
338 .
339 . {* When a section with this flag is being linked, then if the size of
340 . the input section is less than a page, it should not cross a page
341 . boundary. If the size of the input section is one page or more,
342 . it should be aligned on a page boundary. This is for TI
343 . TMS320C54X only. *}
344 .#define SEC_TIC54X_BLOCK 0x10000000
345 .
346 . {* Conditionally link this section; do not link if there are no
347 . references found to any symbol in the section. This is for TI
348 . TMS320C54X only. *}
349 .#define SEC_TIC54X_CLINK 0x20000000
350 .
351 . {* Indicate that section has the no read flag set. This happens
352 . when memory read flag isn't set. *}
353 .#define SEC_COFF_NOREAD 0x40000000
354 .
355 . {* End of section flags. *}
356 .
357 . {* Some internal packed boolean fields. *}
358 .
359 . {* See the vma field. *}
360 . unsigned int user_set_vma : 1;
361 .
362 . {* A mark flag used by some of the linker backends. *}
363 . unsigned int linker_mark : 1;
364 .
365 . {* Another mark flag used by some of the linker backends. Set for
366 . output sections that have an input section. *}
367 . unsigned int linker_has_input : 1;
368 .
369 . {* Mark flag used by some linker backends for garbage collection. *}
370 . unsigned int gc_mark : 1;
371 .
372 . {* Section compression status. *}
373 . unsigned int compress_status : 2;
374 .#define COMPRESS_SECTION_NONE 0
375 .#define COMPRESS_SECTION_DONE 1
376 .#define DECOMPRESS_SECTION_SIZED 2
377 .
378 . {* The following flags are used by the ELF linker. *}
379 .
380 . {* Mark sections which have been allocated to segments. *}
381 . unsigned int segment_mark : 1;
382 .
383 . {* Type of sec_info information. *}
384 . unsigned int sec_info_type:3;
385 .#define ELF_INFO_TYPE_NONE 0
386 .#define ELF_INFO_TYPE_STABS 1
387 .#define ELF_INFO_TYPE_MERGE 2
388 .#define ELF_INFO_TYPE_EH_FRAME 3
389 .#define ELF_INFO_TYPE_JUST_SYMS 4
390 .
391 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
392 . unsigned int use_rela_p:1;
393 .
394 . {* Bits used by various backends. The generic code doesn't touch
395 . these fields. *}
396 .
397 . unsigned int sec_flg0:1;
398 . unsigned int sec_flg1:1;
399 . unsigned int sec_flg2:1;
400 . unsigned int sec_flg3:1;
401 . unsigned int sec_flg4:1;
402 . unsigned int sec_flg5:1;
403 .
404 . {* End of internal packed boolean fields. *}
405 .
406 . {* The virtual memory address of the section - where it will be
407 . at run time. The symbols are relocated against this. The
408 . user_set_vma flag is maintained by bfd; if it's not set, the
409 . backend can assign addresses (for example, in <<a.out>>, where
410 . the default address for <<.data>> is dependent on the specific
411 . target and various flags). *}
412 . bfd_vma vma;
413 .
414 . {* The load address of the section - where it would be in a
415 . rom image; really only used for writing section header
416 . information. *}
417 . bfd_vma lma;
418 .
419 . {* The size of the section in octets, as it will be output.
420 . Contains a value even if the section has no contents (e.g., the
421 . size of <<.bss>>). *}
422 . bfd_size_type size;
423 .
424 . {* For input sections, the original size on disk of the section, in
425 . octets. This field should be set for any section whose size is
426 . changed by linker relaxation. It is required for sections where
427 . the linker relaxation scheme doesn't cache altered section and
428 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
429 . targets), and thus the original size needs to be kept to read the
430 . section multiple times. For output sections, rawsize holds the
431 . section size calculated on a previous linker relaxation pass. *}
432 . bfd_size_type rawsize;
433 .
434 . {* The compressed size of the section in octets. *}
435 . bfd_size_type compressed_size;
436 .
437 . {* Relaxation table. *}
438 . struct relax_table *relax;
439 .
440 . {* Count of used relaxation table entries. *}
441 . int relax_count;
442 .
443 .
444 . {* If this section is going to be output, then this value is the
445 . offset in *bytes* into the output section of the first byte in the
446 . input section (byte ==> smallest addressable unit on the
447 . target). In most cases, if this was going to start at the
448 . 100th octet (8-bit quantity) in the output section, this value
449 . would be 100. However, if the target byte size is 16 bits
450 . (bfd_octets_per_byte is "2"), this value would be 50. *}
451 . bfd_vma output_offset;
452 .
453 . {* The output section through which to map on output. *}
454 . struct bfd_section *output_section;
455 .
456 . {* The alignment requirement of the section, as an exponent of 2 -
457 . e.g., 3 aligns to 2^3 (or 8). *}
458 . unsigned int alignment_power;
459 .
460 . {* If an input section, a pointer to a vector of relocation
461 . records for the data in this section. *}
462 . struct reloc_cache_entry *relocation;
463 .
464 . {* If an output section, a pointer to a vector of pointers to
465 . relocation records for the data in this section. *}
466 . struct reloc_cache_entry **orelocation;
467 .
468 . {* The number of relocation records in one of the above. *}
469 . unsigned reloc_count;
470 .
471 . {* Information below is back end specific - and not always used
472 . or updated. *}
473 .
474 . {* File position of section data. *}
475 . file_ptr filepos;
476 .
477 . {* File position of relocation info. *}
478 . file_ptr rel_filepos;
479 .
480 . {* File position of line data. *}
481 . file_ptr line_filepos;
482 .
483 . {* Pointer to data for applications. *}
484 . void *userdata;
485 .
486 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
487 . contents. *}
488 . unsigned char *contents;
489 .
490 . {* Attached line number information. *}
491 . alent *lineno;
492 .
493 . {* Number of line number records. *}
494 . unsigned int lineno_count;
495 .
496 . {* Entity size for merging purposes. *}
497 . unsigned int entsize;
498 .
499 . {* Points to the kept section if this section is a link-once section,
500 . and is discarded. *}
501 . struct bfd_section *kept_section;
502 .
503 . {* When a section is being output, this value changes as more
504 . linenumbers are written out. *}
505 . file_ptr moving_line_filepos;
506 .
507 . {* What the section number is in the target world. *}
508 . int target_index;
509 .
510 . void *used_by_bfd;
511 .
512 . {* If this is a constructor section then here is a list of the
513 . relocations created to relocate items within it. *}
514 . struct relent_chain *constructor_chain;
515 .
516 . {* The BFD which owns the section. *}
517 . bfd *owner;
518 .
519 . {* A symbol which points at this section only. *}
520 . struct bfd_symbol *symbol;
521 . struct bfd_symbol **symbol_ptr_ptr;
522 .
523 . {* Early in the link process, map_head and map_tail are used to build
524 . a list of input sections attached to an output section. Later,
525 . output sections use these fields for a list of bfd_link_order
526 . structs. *}
527 . union {
528 . struct bfd_link_order *link_order;
529 . struct bfd_section *s;
530 . } map_head, map_tail;
531 .} asection;
532 .
533 .{* Relax table contains information about instructions which can
534 . be removed by relaxation -- replacing a long address with a
535 . short address. *}
536 .struct relax_table {
537 . {* Address where bytes may be deleted. *}
538 . bfd_vma addr;
539 .
540 . {* Number of bytes to be deleted. *}
541 . int size;
542 .};
543 .
544 .{* These sections are global, and are managed by BFD. The application
545 . and target back end are not permitted to change the values in
546 . these sections. New code should use the section_ptr macros rather
547 . than referring directly to the const sections. The const sections
548 . may eventually vanish. *}
549 .#define BFD_ABS_SECTION_NAME "*ABS*"
550 .#define BFD_UND_SECTION_NAME "*UND*"
551 .#define BFD_COM_SECTION_NAME "*COM*"
552 .#define BFD_IND_SECTION_NAME "*IND*"
553 .
554 .{* The absolute section. *}
555 .extern asection bfd_abs_section;
556 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
557 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
558 .{* Pointer to the undefined section. *}
559 .extern asection bfd_und_section;
560 .#define bfd_und_section_ptr ((asection *) &bfd_und_section)
561 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
562 .{* Pointer to the common section. *}
563 .extern asection bfd_com_section;
564 .#define bfd_com_section_ptr ((asection *) &bfd_com_section)
565 .{* Pointer to the indirect section. *}
566 .extern asection bfd_ind_section;
567 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
568 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
569 .
570 .#define bfd_is_const_section(SEC) \
571 . ( ((SEC) == bfd_abs_section_ptr) \
572 . || ((SEC) == bfd_und_section_ptr) \
573 . || ((SEC) == bfd_com_section_ptr) \
574 . || ((SEC) == bfd_ind_section_ptr))
575 .
576 .{* Macros to handle insertion and deletion of a bfd's sections. These
577 . only handle the list pointers, ie. do not adjust section_count,
578 . target_index etc. *}
579 .#define bfd_section_list_remove(ABFD, S) \
580 . do \
581 . { \
582 . asection *_s = S; \
583 . asection *_next = _s->next; \
584 . asection *_prev = _s->prev; \
585 . if (_prev) \
586 . _prev->next = _next; \
587 . else \
588 . (ABFD)->sections = _next; \
589 . if (_next) \
590 . _next->prev = _prev; \
591 . else \
592 . (ABFD)->section_last = _prev; \
593 . } \
594 . while (0)
595 .#define bfd_section_list_append(ABFD, S) \
596 . do \
597 . { \
598 . asection *_s = S; \
599 . bfd *_abfd = ABFD; \
600 . _s->next = NULL; \
601 . if (_abfd->section_last) \
602 . { \
603 . _s->prev = _abfd->section_last; \
604 . _abfd->section_last->next = _s; \
605 . } \
606 . else \
607 . { \
608 . _s->prev = NULL; \
609 . _abfd->sections = _s; \
610 . } \
611 . _abfd->section_last = _s; \
612 . } \
613 . while (0)
614 .#define bfd_section_list_prepend(ABFD, S) \
615 . do \
616 . { \
617 . asection *_s = S; \
618 . bfd *_abfd = ABFD; \
619 . _s->prev = NULL; \
620 . if (_abfd->sections) \
621 . { \
622 . _s->next = _abfd->sections; \
623 . _abfd->sections->prev = _s; \
624 . } \
625 . else \
626 . { \
627 . _s->next = NULL; \
628 . _abfd->section_last = _s; \
629 . } \
630 . _abfd->sections = _s; \
631 . } \
632 . while (0)
633 .#define bfd_section_list_insert_after(ABFD, A, S) \
634 . do \
635 . { \
636 . asection *_a = A; \
637 . asection *_s = S; \
638 . asection *_next = _a->next; \
639 . _s->next = _next; \
640 . _s->prev = _a; \
641 . _a->next = _s; \
642 . if (_next) \
643 . _next->prev = _s; \
644 . else \
645 . (ABFD)->section_last = _s; \
646 . } \
647 . while (0)
648 .#define bfd_section_list_insert_before(ABFD, B, S) \
649 . do \
650 . { \
651 . asection *_b = B; \
652 . asection *_s = S; \
653 . asection *_prev = _b->prev; \
654 . _s->prev = _prev; \
655 . _s->next = _b; \
656 . _b->prev = _s; \
657 . if (_prev) \
658 . _prev->next = _s; \
659 . else \
660 . (ABFD)->sections = _s; \
661 . } \
662 . while (0)
663 .#define bfd_section_removed_from_list(ABFD, S) \
664 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
665 .
666 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
667 . {* name, id, index, next, prev, flags, user_set_vma, *} \
668 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
669 . \
670 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
671 . 0, 0, 1, 0, \
672 . \
673 . {* segment_mark, sec_info_type, use_rela_p, *} \
674 . 0, 0, 0, \
675 . \
676 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
677 . 0, 0, 0, 0, 0, 0, \
678 . \
679 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
680 . 0, 0, 0, 0, 0, 0, 0, \
681 . \
682 . {* output_offset, output_section, alignment_power, *} \
683 . 0, (struct bfd_section *) &SEC, 0, \
684 . \
685 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
686 . NULL, NULL, 0, 0, 0, \
687 . \
688 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
689 . 0, NULL, NULL, NULL, 0, \
690 . \
691 . {* entsize, kept_section, moving_line_filepos, *} \
692 . 0, NULL, 0, \
693 . \
694 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
695 . 0, NULL, NULL, NULL, \
696 . \
697 . {* symbol, symbol_ptr_ptr, *} \
698 . (struct bfd_symbol *) SYM, &SEC.symbol, \
699 . \
700 . {* map_head, map_tail *} \
701 . { NULL }, { NULL } \
702 . }
703 .
704 */
705
706 /* We use a macro to initialize the static asymbol structures because
707 traditional C does not permit us to initialize a union member while
708 gcc warns if we don't initialize it. */
709 /* the_bfd, name, value, attr, section [, udata] */
710 #ifdef __STDC__
711 #define GLOBAL_SYM_INIT(NAME, SECTION) \
712 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
713 #else
714 #define GLOBAL_SYM_INIT(NAME, SECTION) \
715 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
716 #endif
717
718 /* These symbols are global, not specific to any BFD. Therefore, anything
719 that tries to change them is broken, and should be repaired. */
720
721 static const asymbol global_syms[] =
722 {
723 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
724 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
725 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
726 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
727 };
728
729 #define STD_SECTION(SEC, FLAGS, NAME, IDX) \
730 asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX], \
731 NAME, IDX)
732
733 STD_SECTION (bfd_com_section, SEC_IS_COMMON, BFD_COM_SECTION_NAME, 0);
734 STD_SECTION (bfd_und_section, 0, BFD_UND_SECTION_NAME, 1);
735 STD_SECTION (bfd_abs_section, 0, BFD_ABS_SECTION_NAME, 2);
736 STD_SECTION (bfd_ind_section, 0, BFD_IND_SECTION_NAME, 3);
737 #undef STD_SECTION
738
739 /* Initialize an entry in the section hash table. */
740
741 struct bfd_hash_entry *
742 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
743 struct bfd_hash_table *table,
744 const char *string)
745 {
746 /* Allocate the structure if it has not already been allocated by a
747 subclass. */
748 if (entry == NULL)
749 {
750 entry = (struct bfd_hash_entry *)
751 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
752 if (entry == NULL)
753 return entry;
754 }
755
756 /* Call the allocation method of the superclass. */
757 entry = bfd_hash_newfunc (entry, table, string);
758 if (entry != NULL)
759 memset (&((struct section_hash_entry *) entry)->section, 0,
760 sizeof (asection));
761
762 return entry;
763 }
764
765 #define section_hash_lookup(table, string, create, copy) \
766 ((struct section_hash_entry *) \
767 bfd_hash_lookup ((table), (string), (create), (copy)))
768
769 /* Create a symbol whose only job is to point to this section. This
770 is useful for things like relocs which are relative to the base
771 of a section. */
772
773 bfd_boolean
774 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
775 {
776 newsect->symbol = bfd_make_empty_symbol (abfd);
777 if (newsect->symbol == NULL)
778 return FALSE;
779
780 newsect->symbol->name = newsect->name;
781 newsect->symbol->value = 0;
782 newsect->symbol->section = newsect;
783 newsect->symbol->flags = BSF_SECTION_SYM;
784
785 newsect->symbol_ptr_ptr = &newsect->symbol;
786 return TRUE;
787 }
788
789 /* Initializes a new section. NEWSECT->NAME is already set. */
790
791 static asection *
792 bfd_section_init (bfd *abfd, asection *newsect)
793 {
794 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
795
796 newsect->id = section_id;
797 newsect->index = abfd->section_count;
798 newsect->owner = abfd;
799
800 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
801 return NULL;
802
803 section_id++;
804 abfd->section_count++;
805 bfd_section_list_append (abfd, newsect);
806 return newsect;
807 }
808
809 /*
810 DOCDD
811 INODE
812 section prototypes, , typedef asection, Sections
813 SUBSECTION
814 Section prototypes
815
816 These are the functions exported by the section handling part of BFD.
817 */
818
819 /*
820 FUNCTION
821 bfd_section_list_clear
822
823 SYNOPSIS
824 void bfd_section_list_clear (bfd *);
825
826 DESCRIPTION
827 Clears the section list, and also resets the section count and
828 hash table entries.
829 */
830
831 void
832 bfd_section_list_clear (bfd *abfd)
833 {
834 abfd->sections = NULL;
835 abfd->section_last = NULL;
836 abfd->section_count = 0;
837 memset (abfd->section_htab.table, 0,
838 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
839 }
840
841 /*
842 FUNCTION
843 bfd_get_section_by_name
844
845 SYNOPSIS
846 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
847
848 DESCRIPTION
849 Run through @var{abfd} and return the one of the
850 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
851 @xref{Sections}, for more information.
852
853 This should only be used in special cases; the normal way to process
854 all sections of a given name is to use <<bfd_map_over_sections>> and
855 <<strcmp>> on the name (or better yet, base it on the section flags
856 or something else) for each section.
857 */
858
859 asection *
860 bfd_get_section_by_name (bfd *abfd, const char *name)
861 {
862 struct section_hash_entry *sh;
863
864 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
865 if (sh != NULL)
866 return &sh->section;
867
868 return NULL;
869 }
870
871 /*
872 FUNCTION
873 bfd_get_section_by_name_if
874
875 SYNOPSIS
876 asection *bfd_get_section_by_name_if
877 (bfd *abfd,
878 const char *name,
879 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
880 void *obj);
881
882 DESCRIPTION
883 Call the provided function @var{func} for each section
884 attached to the BFD @var{abfd} whose name matches @var{name},
885 passing @var{obj} as an argument. The function will be called
886 as if by
887
888 | func (abfd, the_section, obj);
889
890 It returns the first section for which @var{func} returns true,
891 otherwise <<NULL>>.
892
893 */
894
895 asection *
896 bfd_get_section_by_name_if (bfd *abfd, const char *name,
897 bfd_boolean (*operation) (bfd *,
898 asection *,
899 void *),
900 void *user_storage)
901 {
902 struct section_hash_entry *sh;
903 unsigned long hash;
904
905 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
906 if (sh == NULL)
907 return NULL;
908
909 hash = sh->root.hash;
910 do
911 {
912 if ((*operation) (abfd, &sh->section, user_storage))
913 return &sh->section;
914 sh = (struct section_hash_entry *) sh->root.next;
915 }
916 while (sh != NULL && sh->root.hash == hash
917 && strcmp (sh->root.string, name) == 0);
918
919 return NULL;
920 }
921
922 /*
923 FUNCTION
924 bfd_get_unique_section_name
925
926 SYNOPSIS
927 char *bfd_get_unique_section_name
928 (bfd *abfd, const char *templat, int *count);
929
930 DESCRIPTION
931 Invent a section name that is unique in @var{abfd} by tacking
932 a dot and a digit suffix onto the original @var{templat}. If
933 @var{count} is non-NULL, then it specifies the first number
934 tried as a suffix to generate a unique name. The value
935 pointed to by @var{count} will be incremented in this case.
936 */
937
938 char *
939 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
940 {
941 int num;
942 unsigned int len;
943 char *sname;
944
945 len = strlen (templat);
946 sname = (char *) bfd_malloc (len + 8);
947 if (sname == NULL)
948 return NULL;
949 memcpy (sname, templat, len);
950 num = 1;
951 if (count != NULL)
952 num = *count;
953
954 do
955 {
956 /* If we have a million sections, something is badly wrong. */
957 if (num > 999999)
958 abort ();
959 sprintf (sname + len, ".%d", num++);
960 }
961 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
962
963 if (count != NULL)
964 *count = num;
965 return sname;
966 }
967
968 /*
969 FUNCTION
970 bfd_make_section_old_way
971
972 SYNOPSIS
973 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
974
975 DESCRIPTION
976 Create a new empty section called @var{name}
977 and attach it to the end of the chain of sections for the
978 BFD @var{abfd}. An attempt to create a section with a name which
979 is already in use returns its pointer without changing the
980 section chain.
981
982 It has the funny name since this is the way it used to be
983 before it was rewritten....
984
985 Possible errors are:
986 o <<bfd_error_invalid_operation>> -
987 If output has already started for this BFD.
988 o <<bfd_error_no_memory>> -
989 If memory allocation fails.
990
991 */
992
993 asection *
994 bfd_make_section_old_way (bfd *abfd, const char *name)
995 {
996 asection *newsect;
997
998 if (abfd->output_has_begun)
999 {
1000 bfd_set_error (bfd_error_invalid_operation);
1001 return NULL;
1002 }
1003
1004 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1005 newsect = bfd_abs_section_ptr;
1006 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1007 newsect = bfd_com_section_ptr;
1008 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1009 newsect = bfd_und_section_ptr;
1010 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1011 newsect = bfd_ind_section_ptr;
1012 else
1013 {
1014 struct section_hash_entry *sh;
1015
1016 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1017 if (sh == NULL)
1018 return NULL;
1019
1020 newsect = &sh->section;
1021 if (newsect->name != NULL)
1022 {
1023 /* Section already exists. */
1024 return newsect;
1025 }
1026
1027 newsect->name = name;
1028 return bfd_section_init (abfd, newsect);
1029 }
1030
1031 /* Call new_section_hook when "creating" the standard abs, com, und
1032 and ind sections to tack on format specific section data.
1033 Also, create a proper section symbol. */
1034 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1035 return NULL;
1036 return newsect;
1037 }
1038
1039 /*
1040 FUNCTION
1041 bfd_make_section_anyway_with_flags
1042
1043 SYNOPSIS
1044 asection *bfd_make_section_anyway_with_flags
1045 (bfd *abfd, const char *name, flagword flags);
1046
1047 DESCRIPTION
1048 Create a new empty section called @var{name} and attach it to the end of
1049 the chain of sections for @var{abfd}. Create a new section even if there
1050 is already a section with that name. Also set the attributes of the
1051 new section to the value @var{flags}.
1052
1053 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1054 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1055 o <<bfd_error_no_memory>> - If memory allocation fails.
1056 */
1057
1058 sec_ptr
1059 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1060 flagword flags)
1061 {
1062 struct section_hash_entry *sh;
1063 asection *newsect;
1064
1065 if (abfd->output_has_begun)
1066 {
1067 bfd_set_error (bfd_error_invalid_operation);
1068 return NULL;
1069 }
1070
1071 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1072 if (sh == NULL)
1073 return NULL;
1074
1075 newsect = &sh->section;
1076 if (newsect->name != NULL)
1077 {
1078 /* We are making a section of the same name. Put it in the
1079 section hash table. Even though we can't find it directly by a
1080 hash lookup, we'll be able to find the section by traversing
1081 sh->root.next quicker than looking at all the bfd sections. */
1082 struct section_hash_entry *new_sh;
1083 new_sh = (struct section_hash_entry *)
1084 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1085 if (new_sh == NULL)
1086 return NULL;
1087
1088 new_sh->root = sh->root;
1089 sh->root.next = &new_sh->root;
1090 newsect = &new_sh->section;
1091 }
1092
1093 newsect->flags = flags;
1094 newsect->name = name;
1095 return bfd_section_init (abfd, newsect);
1096 }
1097
1098 /*
1099 FUNCTION
1100 bfd_make_section_anyway
1101
1102 SYNOPSIS
1103 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1104
1105 DESCRIPTION
1106 Create a new empty section called @var{name} and attach it to the end of
1107 the chain of sections for @var{abfd}. Create a new section even if there
1108 is already a section with that name.
1109
1110 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1111 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1112 o <<bfd_error_no_memory>> - If memory allocation fails.
1113 */
1114
1115 sec_ptr
1116 bfd_make_section_anyway (bfd *abfd, const char *name)
1117 {
1118 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1119 }
1120
1121 /*
1122 FUNCTION
1123 bfd_make_section_with_flags
1124
1125 SYNOPSIS
1126 asection *bfd_make_section_with_flags
1127 (bfd *, const char *name, flagword flags);
1128
1129 DESCRIPTION
1130 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1131 bfd_set_error ()) without changing the section chain if there is already a
1132 section named @var{name}. Also set the attributes of the new section to
1133 the value @var{flags}. If there is an error, return <<NULL>> and set
1134 <<bfd_error>>.
1135 */
1136
1137 asection *
1138 bfd_make_section_with_flags (bfd *abfd, const char *name,
1139 flagword flags)
1140 {
1141 struct section_hash_entry *sh;
1142 asection *newsect;
1143
1144 if (abfd->output_has_begun)
1145 {
1146 bfd_set_error (bfd_error_invalid_operation);
1147 return NULL;
1148 }
1149
1150 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1151 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1152 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1153 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1154 return NULL;
1155
1156 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1157 if (sh == NULL)
1158 return NULL;
1159
1160 newsect = &sh->section;
1161 if (newsect->name != NULL)
1162 {
1163 /* Section already exists. */
1164 return NULL;
1165 }
1166
1167 newsect->name = name;
1168 newsect->flags = flags;
1169 return bfd_section_init (abfd, newsect);
1170 }
1171
1172 /*
1173 FUNCTION
1174 bfd_make_section
1175
1176 SYNOPSIS
1177 asection *bfd_make_section (bfd *, const char *name);
1178
1179 DESCRIPTION
1180 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1181 bfd_set_error ()) without changing the section chain if there is already a
1182 section named @var{name}. If there is an error, return <<NULL>> and set
1183 <<bfd_error>>.
1184 */
1185
1186 asection *
1187 bfd_make_section (bfd *abfd, const char *name)
1188 {
1189 return bfd_make_section_with_flags (abfd, name, 0);
1190 }
1191
1192 /*
1193 FUNCTION
1194 bfd_set_section_flags
1195
1196 SYNOPSIS
1197 bfd_boolean bfd_set_section_flags
1198 (bfd *abfd, asection *sec, flagword flags);
1199
1200 DESCRIPTION
1201 Set the attributes of the section @var{sec} in the BFD
1202 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1203 <<FALSE>> on error. Possible error returns are:
1204
1205 o <<bfd_error_invalid_operation>> -
1206 The section cannot have one or more of the attributes
1207 requested. For example, a .bss section in <<a.out>> may not
1208 have the <<SEC_HAS_CONTENTS>> field set.
1209
1210 */
1211
1212 bfd_boolean
1213 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1214 sec_ptr section,
1215 flagword flags)
1216 {
1217 section->flags = flags;
1218 return TRUE;
1219 }
1220
1221 /*
1222 FUNCTION
1223 bfd_rename_section
1224
1225 SYNOPSIS
1226 void bfd_rename_section
1227 (bfd *abfd, asection *sec, const char *newname);
1228
1229 DESCRIPTION
1230 Rename section @var{sec} in @var{abfd} to @var{newname}.
1231 */
1232
1233 void
1234 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1235 {
1236 struct section_hash_entry *sh;
1237
1238 sh = (struct section_hash_entry *)
1239 ((char *) sec - offsetof (struct section_hash_entry, section));
1240 sh->section.name = newname;
1241 bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1242 }
1243
1244 /*
1245 FUNCTION
1246 bfd_map_over_sections
1247
1248 SYNOPSIS
1249 void bfd_map_over_sections
1250 (bfd *abfd,
1251 void (*func) (bfd *abfd, asection *sect, void *obj),
1252 void *obj);
1253
1254 DESCRIPTION
1255 Call the provided function @var{func} for each section
1256 attached to the BFD @var{abfd}, passing @var{obj} as an
1257 argument. The function will be called as if by
1258
1259 | func (abfd, the_section, obj);
1260
1261 This is the preferred method for iterating over sections; an
1262 alternative would be to use a loop:
1263
1264 | section *p;
1265 | for (p = abfd->sections; p != NULL; p = p->next)
1266 | func (abfd, p, ...)
1267
1268 */
1269
1270 void
1271 bfd_map_over_sections (bfd *abfd,
1272 void (*operation) (bfd *, asection *, void *),
1273 void *user_storage)
1274 {
1275 asection *sect;
1276 unsigned int i = 0;
1277
1278 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1279 (*operation) (abfd, sect, user_storage);
1280
1281 if (i != abfd->section_count) /* Debugging */
1282 abort ();
1283 }
1284
1285 /*
1286 FUNCTION
1287 bfd_sections_find_if
1288
1289 SYNOPSIS
1290 asection *bfd_sections_find_if
1291 (bfd *abfd,
1292 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1293 void *obj);
1294
1295 DESCRIPTION
1296 Call the provided function @var{operation} for each section
1297 attached to the BFD @var{abfd}, passing @var{obj} as an
1298 argument. The function will be called as if by
1299
1300 | operation (abfd, the_section, obj);
1301
1302 It returns the first section for which @var{operation} returns true.
1303
1304 */
1305
1306 asection *
1307 bfd_sections_find_if (bfd *abfd,
1308 bfd_boolean (*operation) (bfd *, asection *, void *),
1309 void *user_storage)
1310 {
1311 asection *sect;
1312
1313 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1314 if ((*operation) (abfd, sect, user_storage))
1315 break;
1316
1317 return sect;
1318 }
1319
1320 /*
1321 FUNCTION
1322 bfd_set_section_size
1323
1324 SYNOPSIS
1325 bfd_boolean bfd_set_section_size
1326 (bfd *abfd, asection *sec, bfd_size_type val);
1327
1328 DESCRIPTION
1329 Set @var{sec} to the size @var{val}. If the operation is
1330 ok, then <<TRUE>> is returned, else <<FALSE>>.
1331
1332 Possible error returns:
1333 o <<bfd_error_invalid_operation>> -
1334 Writing has started to the BFD, so setting the size is invalid.
1335
1336 */
1337
1338 bfd_boolean
1339 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1340 {
1341 /* Once you've started writing to any section you cannot create or change
1342 the size of any others. */
1343
1344 if (abfd->output_has_begun)
1345 {
1346 bfd_set_error (bfd_error_invalid_operation);
1347 return FALSE;
1348 }
1349
1350 ptr->size = val;
1351 return TRUE;
1352 }
1353
1354 /*
1355 FUNCTION
1356 bfd_set_section_contents
1357
1358 SYNOPSIS
1359 bfd_boolean bfd_set_section_contents
1360 (bfd *abfd, asection *section, const void *data,
1361 file_ptr offset, bfd_size_type count);
1362
1363 DESCRIPTION
1364 Sets the contents of the section @var{section} in BFD
1365 @var{abfd} to the data starting in memory at @var{data}. The
1366 data is written to the output section starting at offset
1367 @var{offset} for @var{count} octets.
1368
1369 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1370 returns are:
1371 o <<bfd_error_no_contents>> -
1372 The output section does not have the <<SEC_HAS_CONTENTS>>
1373 attribute, so nothing can be written to it.
1374 o and some more too
1375
1376 This routine is front end to the back end function
1377 <<_bfd_set_section_contents>>.
1378
1379 */
1380
1381 bfd_boolean
1382 bfd_set_section_contents (bfd *abfd,
1383 sec_ptr section,
1384 const void *location,
1385 file_ptr offset,
1386 bfd_size_type count)
1387 {
1388 bfd_size_type sz;
1389
1390 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1391 {
1392 bfd_set_error (bfd_error_no_contents);
1393 return FALSE;
1394 }
1395
1396 sz = section->size;
1397 if ((bfd_size_type) offset > sz
1398 || count > sz
1399 || offset + count > sz
1400 || count != (size_t) count)
1401 {
1402 bfd_set_error (bfd_error_bad_value);
1403 return FALSE;
1404 }
1405
1406 if (!bfd_write_p (abfd))
1407 {
1408 bfd_set_error (bfd_error_invalid_operation);
1409 return FALSE;
1410 }
1411
1412 /* Record a copy of the data in memory if desired. */
1413 if (section->contents
1414 && location != section->contents + offset)
1415 memcpy (section->contents + offset, location, (size_t) count);
1416
1417 if (BFD_SEND (abfd, _bfd_set_section_contents,
1418 (abfd, section, location, offset, count)))
1419 {
1420 abfd->output_has_begun = TRUE;
1421 return TRUE;
1422 }
1423
1424 return FALSE;
1425 }
1426
1427 /*
1428 FUNCTION
1429 bfd_get_section_contents
1430
1431 SYNOPSIS
1432 bfd_boolean bfd_get_section_contents
1433 (bfd *abfd, asection *section, void *location, file_ptr offset,
1434 bfd_size_type count);
1435
1436 DESCRIPTION
1437 Read data from @var{section} in BFD @var{abfd}
1438 into memory starting at @var{location}. The data is read at an
1439 offset of @var{offset} from the start of the input section,
1440 and is read for @var{count} bytes.
1441
1442 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1443 flag set are requested or if the section does not have the
1444 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1445 with zeroes. If no errors occur, <<TRUE>> is returned, else
1446 <<FALSE>>.
1447
1448 */
1449 bfd_boolean
1450 bfd_get_section_contents (bfd *abfd,
1451 sec_ptr section,
1452 void *location,
1453 file_ptr offset,
1454 bfd_size_type count)
1455 {
1456 bfd_size_type sz;
1457
1458 if (section->flags & SEC_CONSTRUCTOR)
1459 {
1460 memset (location, 0, (size_t) count);
1461 return TRUE;
1462 }
1463
1464 if (abfd->direction != write_direction && section->rawsize != 0)
1465 sz = section->rawsize;
1466 else
1467 sz = section->size;
1468 if ((bfd_size_type) offset > sz
1469 || count > sz
1470 || offset + count > sz
1471 || count != (size_t) count)
1472 {
1473 bfd_set_error (bfd_error_bad_value);
1474 return FALSE;
1475 }
1476
1477 if (count == 0)
1478 /* Don't bother. */
1479 return TRUE;
1480
1481 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1482 {
1483 memset (location, 0, (size_t) count);
1484 return TRUE;
1485 }
1486
1487 if ((section->flags & SEC_IN_MEMORY) != 0)
1488 {
1489 if (section->contents == NULL)
1490 {
1491 /* This can happen because of errors earlier on in the linking process.
1492 We do not want to seg-fault here, so clear the flag and return an
1493 error code. */
1494 section->flags &= ~ SEC_IN_MEMORY;
1495 bfd_set_error (bfd_error_invalid_operation);
1496 return FALSE;
1497 }
1498
1499 memcpy (location, section->contents + offset, (size_t) count);
1500 return TRUE;
1501 }
1502
1503 return BFD_SEND (abfd, _bfd_get_section_contents,
1504 (abfd, section, location, offset, count));
1505 }
1506
1507 /*
1508 FUNCTION
1509 bfd_malloc_and_get_section
1510
1511 SYNOPSIS
1512 bfd_boolean bfd_malloc_and_get_section
1513 (bfd *abfd, asection *section, bfd_byte **buf);
1514
1515 DESCRIPTION
1516 Read all data from @var{section} in BFD @var{abfd}
1517 into a buffer, *@var{buf}, malloc'd by this function.
1518 */
1519
1520 bfd_boolean
1521 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1522 {
1523 *buf = NULL;
1524 return bfd_get_full_section_contents (abfd, sec, buf);
1525 }
1526 /*
1527 FUNCTION
1528 bfd_copy_private_section_data
1529
1530 SYNOPSIS
1531 bfd_boolean bfd_copy_private_section_data
1532 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1533
1534 DESCRIPTION
1535 Copy private section information from @var{isec} in the BFD
1536 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1537 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1538 returns are:
1539
1540 o <<bfd_error_no_memory>> -
1541 Not enough memory exists to create private data for @var{osec}.
1542
1543 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1544 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1545 . (ibfd, isection, obfd, osection))
1546 */
1547
1548 /*
1549 FUNCTION
1550 bfd_generic_is_group_section
1551
1552 SYNOPSIS
1553 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1554
1555 DESCRIPTION
1556 Returns TRUE if @var{sec} is a member of a group.
1557 */
1558
1559 bfd_boolean
1560 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1561 const asection *sec ATTRIBUTE_UNUSED)
1562 {
1563 return FALSE;
1564 }
1565
1566 /*
1567 FUNCTION
1568 bfd_generic_discard_group
1569
1570 SYNOPSIS
1571 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1572
1573 DESCRIPTION
1574 Remove all members of @var{group} from the output.
1575 */
1576
1577 bfd_boolean
1578 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1579 asection *group ATTRIBUTE_UNUSED)
1580 {
1581 return TRUE;
1582 }
This page took 0.1816 seconds and 4 git commands to generate.