* elf.c (bfd_section_from_shdr): Treat invalid reloc sections as
[deliverable/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23 /*
24 SECTION
25 Sections
26
27 The raw data contained within a BFD is maintained through the
28 section abstraction. A single BFD may have any number of
29 sections. It keeps hold of them by pointing to the first;
30 each one points to the next in the list.
31
32 Sections are supported in BFD in <<section.c>>.
33
34 @menu
35 @* Section Input::
36 @* Section Output::
37 @* typedef asection::
38 @* section prototypes::
39 @end menu
40
41 INODE
42 Section Input, Section Output, Sections, Sections
43 SUBSECTION
44 Section input
45
46 When a BFD is opened for reading, the section structures are
47 created and attached to the BFD.
48
49 Each section has a name which describes the section in the
50 outside world---for example, <<a.out>> would contain at least
51 three sections, called <<.text>>, <<.data>> and <<.bss>>.
52
53 Names need not be unique; for example a COFF file may have several
54 sections named <<.data>>.
55
56 Sometimes a BFD will contain more than the ``natural'' number of
57 sections. A back end may attach other sections containing
58 constructor data, or an application may add a section (using
59 <<bfd_make_section>>) to the sections attached to an already open
60 BFD. For example, the linker creates an extra section
61 <<COMMON>> for each input file's BFD to hold information about
62 common storage.
63
64 The raw data is not necessarily read in when
65 the section descriptor is created. Some targets may leave the
66 data in place until a <<bfd_get_section_contents>> call is
67 made. Other back ends may read in all the data at once. For
68 example, an S-record file has to be read once to determine the
69 size of the data. An IEEE-695 file doesn't contain raw data in
70 sections, but data and relocation expressions intermixed, so
71 the data area has to be parsed to get out the data and
72 relocations.
73
74 INODE
75 Section Output, typedef asection, Section Input, Sections
76
77 SUBSECTION
78 Section output
79
80 To write a new object style BFD, the various sections to be
81 written have to be created. They are attached to the BFD in
82 the same way as input sections; data is written to the
83 sections using <<bfd_set_section_contents>>.
84
85 Any program that creates or combines sections (e.g., the assembler
86 and linker) must use the <<asection>> fields <<output_section>> and
87 <<output_offset>> to indicate the file sections to which each
88 section must be written. (If the section is being created from
89 scratch, <<output_section>> should probably point to the section
90 itself and <<output_offset>> should probably be zero.)
91
92 The data to be written comes from input sections attached
93 (via <<output_section>> pointers) to
94 the output sections. The output section structure can be
95 considered a filter for the input section: the output section
96 determines the vma of the output data and the name, but the
97 input section determines the offset into the output section of
98 the data to be written.
99
100 E.g., to create a section "O", starting at 0x100, 0x123 long,
101 containing two subsections, "A" at offset 0x0 (i.e., at vma
102 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
103 structures would look like:
104
105 | section name "A"
106 | output_offset 0x00
107 | size 0x20
108 | output_section -----------> section name "O"
109 | | vma 0x100
110 | section name "B" | size 0x123
111 | output_offset 0x20 |
112 | size 0x103 |
113 | output_section --------|
114
115 SUBSECTION
116 Link orders
117
118 The data within a section is stored in a @dfn{link_order}.
119 These are much like the fixups in <<gas>>. The link_order
120 abstraction allows a section to grow and shrink within itself.
121
122 A link_order knows how big it is, and which is the next
123 link_order and where the raw data for it is; it also points to
124 a list of relocations which apply to it.
125
126 The link_order is used by the linker to perform relaxing on
127 final code. The compiler creates code which is as big as
128 necessary to make it work without relaxing, and the user can
129 select whether to relax. Sometimes relaxing takes a lot of
130 time. The linker runs around the relocations to see if any
131 are attached to data which can be shrunk, if so it does it on
132 a link_order by link_order basis.
133
134 */
135
136 #include "bfd.h"
137 #include "sysdep.h"
138 #include "libbfd.h"
139 #include "bfdlink.h"
140
141 /*
142 DOCDD
143 INODE
144 typedef asection, section prototypes, Section Output, Sections
145 SUBSECTION
146 typedef asection
147
148 Here is the section structure:
149
150 CODE_FRAGMENT
151 .
152 .typedef struct bfd_section
153 .{
154 . {* The name of the section; the name isn't a copy, the pointer is
155 . the same as that passed to bfd_make_section. *}
156 . const char *name;
157 .
158 . {* A unique sequence number. *}
159 . int id;
160 .
161 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
162 . int index;
163 .
164 . {* The next section in the list belonging to the BFD, or NULL. *}
165 . struct bfd_section *next;
166 .
167 . {* The previous section in the list belonging to the BFD, or NULL. *}
168 . struct bfd_section *prev;
169 .
170 . {* The field flags contains attributes of the section. Some
171 . flags are read in from the object file, and some are
172 . synthesized from other information. *}
173 . flagword flags;
174 .
175 .#define SEC_NO_FLAGS 0x000
176 .
177 . {* Tells the OS to allocate space for this section when loading.
178 . This is clear for a section containing debug information only. *}
179 .#define SEC_ALLOC 0x001
180 .
181 . {* Tells the OS to load the section from the file when loading.
182 . This is clear for a .bss section. *}
183 .#define SEC_LOAD 0x002
184 .
185 . {* The section contains data still to be relocated, so there is
186 . some relocation information too. *}
187 .#define SEC_RELOC 0x004
188 .
189 . {* A signal to the OS that the section contains read only data. *}
190 .#define SEC_READONLY 0x008
191 .
192 . {* The section contains code only. *}
193 .#define SEC_CODE 0x010
194 .
195 . {* The section contains data only. *}
196 .#define SEC_DATA 0x020
197 .
198 . {* The section will reside in ROM. *}
199 .#define SEC_ROM 0x040
200 .
201 . {* The section contains constructor information. This section
202 . type is used by the linker to create lists of constructors and
203 . destructors used by <<g++>>. When a back end sees a symbol
204 . which should be used in a constructor list, it creates a new
205 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
206 . the symbol to it, and builds a relocation. To build the lists
207 . of constructors, all the linker has to do is catenate all the
208 . sections called <<__CTOR_LIST__>> and relocate the data
209 . contained within - exactly the operations it would peform on
210 . standard data. *}
211 .#define SEC_CONSTRUCTOR 0x080
212 .
213 . {* The section has contents - a data section could be
214 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
215 . <<SEC_HAS_CONTENTS>> *}
216 .#define SEC_HAS_CONTENTS 0x100
217 .
218 . {* An instruction to the linker to not output the section
219 . even if it has information which would normally be written. *}
220 .#define SEC_NEVER_LOAD 0x200
221 .
222 . {* The section contains thread local data. *}
223 .#define SEC_THREAD_LOCAL 0x400
224 .
225 . {* The section has GOT references. This flag is only for the
226 . linker, and is currently only used by the elf32-hppa back end.
227 . It will be set if global offset table references were detected
228 . in this section, which indicate to the linker that the section
229 . contains PIC code, and must be handled specially when doing a
230 . static link. *}
231 .#define SEC_HAS_GOT_REF 0x800
232 .
233 . {* The section contains common symbols (symbols may be defined
234 . multiple times, the value of a symbol is the amount of
235 . space it requires, and the largest symbol value is the one
236 . used). Most targets have exactly one of these (which we
237 . translate to bfd_com_section_ptr), but ECOFF has two. *}
238 .#define SEC_IS_COMMON 0x1000
239 .
240 . {* The section contains only debugging information. For
241 . example, this is set for ELF .debug and .stab sections.
242 . strip tests this flag to see if a section can be
243 . discarded. *}
244 .#define SEC_DEBUGGING 0x2000
245 .
246 . {* The contents of this section are held in memory pointed to
247 . by the contents field. This is checked by bfd_get_section_contents,
248 . and the data is retrieved from memory if appropriate. *}
249 .#define SEC_IN_MEMORY 0x4000
250 .
251 . {* The contents of this section are to be excluded by the
252 . linker for executable and shared objects unless those
253 . objects are to be further relocated. *}
254 .#define SEC_EXCLUDE 0x8000
255 .
256 . {* The contents of this section are to be sorted based on the sum of
257 . the symbol and addend values specified by the associated relocation
258 . entries. Entries without associated relocation entries will be
259 . appended to the end of the section in an unspecified order. *}
260 .#define SEC_SORT_ENTRIES 0x10000
261 .
262 . {* When linking, duplicate sections of the same name should be
263 . discarded, rather than being combined into a single section as
264 . is usually done. This is similar to how common symbols are
265 . handled. See SEC_LINK_DUPLICATES below. *}
266 .#define SEC_LINK_ONCE 0x20000
267 .
268 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
269 . should handle duplicate sections. *}
270 .#define SEC_LINK_DUPLICATES 0x40000
271 .
272 . {* This value for SEC_LINK_DUPLICATES means that duplicate
273 . sections with the same name should simply be discarded. *}
274 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
275 .
276 . {* This value for SEC_LINK_DUPLICATES means that the linker
277 . should warn if there are any duplicate sections, although
278 . it should still only link one copy. *}
279 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x80000
280 .
281 . {* This value for SEC_LINK_DUPLICATES means that the linker
282 . should warn if any duplicate sections are a different size. *}
283 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x100000
284 .
285 . {* This value for SEC_LINK_DUPLICATES means that the linker
286 . should warn if any duplicate sections contain different
287 . contents. *}
288 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
289 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
290 .
291 . {* This section was created by the linker as part of dynamic
292 . relocation or other arcane processing. It is skipped when
293 . going through the first-pass output, trusting that someone
294 . else up the line will take care of it later. *}
295 .#define SEC_LINKER_CREATED 0x200000
296 .
297 . {* This section should not be subject to garbage collection. *}
298 .#define SEC_KEEP 0x400000
299 .
300 . {* This section contains "short" data, and should be placed
301 . "near" the GP. *}
302 .#define SEC_SMALL_DATA 0x800000
303 .
304 . {* Attempt to merge identical entities in the section.
305 . Entity size is given in the entsize field. *}
306 .#define SEC_MERGE 0x1000000
307 .
308 . {* If given with SEC_MERGE, entities to merge are zero terminated
309 . strings where entsize specifies character size instead of fixed
310 . size entries. *}
311 .#define SEC_STRINGS 0x2000000
312 .
313 . {* This section contains data about section groups. *}
314 .#define SEC_GROUP 0x4000000
315 .
316 . {* The section is a COFF shared library section. This flag is
317 . only for the linker. If this type of section appears in
318 . the input file, the linker must copy it to the output file
319 . without changing the vma or size. FIXME: Although this
320 . was originally intended to be general, it really is COFF
321 . specific (and the flag was renamed to indicate this). It
322 . might be cleaner to have some more general mechanism to
323 . allow the back end to control what the linker does with
324 . sections. *}
325 .#define SEC_COFF_SHARED_LIBRARY 0x10000000
326 .
327 . {* This section contains data which may be shared with other
328 . executables or shared objects. This is for COFF only. *}
329 .#define SEC_COFF_SHARED 0x20000000
330 .
331 . {* When a section with this flag is being linked, then if the size of
332 . the input section is less than a page, it should not cross a page
333 . boundary. If the size of the input section is one page or more,
334 . it should be aligned on a page boundary. This is for TI
335 . TMS320C54X only. *}
336 .#define SEC_TIC54X_BLOCK 0x40000000
337 .
338 . {* Conditionally link this section; do not link if there are no
339 . references found to any symbol in the section. This is for TI
340 . TMS320C54X only. *}
341 .#define SEC_TIC54X_CLINK 0x80000000
342 .
343 . {* End of section flags. *}
344 .
345 . {* Some internal packed boolean fields. *}
346 .
347 . {* See the vma field. *}
348 . unsigned int user_set_vma : 1;
349 .
350 . {* A mark flag used by some of the linker backends. *}
351 . unsigned int linker_mark : 1;
352 .
353 . {* Another mark flag used by some of the linker backends. Set for
354 . output sections that have an input section. *}
355 . unsigned int linker_has_input : 1;
356 .
357 . {* Mark flags used by some linker backends for garbage collection. *}
358 . unsigned int gc_mark : 1;
359 . unsigned int gc_mark_from_eh : 1;
360 .
361 . {* The following flags are used by the ELF linker. *}
362 .
363 . {* Mark sections which have been allocated to segments. *}
364 . unsigned int segment_mark : 1;
365 .
366 . {* Type of sec_info information. *}
367 . unsigned int sec_info_type:3;
368 .#define ELF_INFO_TYPE_NONE 0
369 .#define ELF_INFO_TYPE_STABS 1
370 .#define ELF_INFO_TYPE_MERGE 2
371 .#define ELF_INFO_TYPE_EH_FRAME 3
372 .#define ELF_INFO_TYPE_JUST_SYMS 4
373 .
374 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
375 . unsigned int use_rela_p:1;
376 .
377 . {* Bits used by various backends. The generic code doesn't touch
378 . these fields. *}
379 .
380 . {* Nonzero if this section has TLS related relocations. *}
381 . unsigned int has_tls_reloc:1;
382 .
383 . {* Nonzero if this section has a gp reloc. *}
384 . unsigned int has_gp_reloc:1;
385 .
386 . {* Nonzero if this section needs the relax finalize pass. *}
387 . unsigned int need_finalize_relax:1;
388 .
389 . {* Whether relocations have been processed. *}
390 . unsigned int reloc_done : 1;
391 .
392 . {* End of internal packed boolean fields. *}
393 .
394 . {* The virtual memory address of the section - where it will be
395 . at run time. The symbols are relocated against this. The
396 . user_set_vma flag is maintained by bfd; if it's not set, the
397 . backend can assign addresses (for example, in <<a.out>>, where
398 . the default address for <<.data>> is dependent on the specific
399 . target and various flags). *}
400 . bfd_vma vma;
401 .
402 . {* The load address of the section - where it would be in a
403 . rom image; really only used for writing section header
404 . information. *}
405 . bfd_vma lma;
406 .
407 . {* The size of the section in octets, as it will be output.
408 . Contains a value even if the section has no contents (e.g., the
409 . size of <<.bss>>). *}
410 . bfd_size_type size;
411 .
412 . {* For input sections, the original size on disk of the section, in
413 . octets. This field is used by the linker relaxation code. It is
414 . currently only set for sections where the linker relaxation scheme
415 . doesn't cache altered section and reloc contents (stabs, eh_frame,
416 . SEC_MERGE, some coff relaxing targets), and thus the original size
417 . needs to be kept to read the section multiple times.
418 . For output sections, rawsize holds the section size calculated on
419 . a previous linker relaxation pass. *}
420 . bfd_size_type rawsize;
421 .
422 . {* If this section is going to be output, then this value is the
423 . offset in *bytes* into the output section of the first byte in the
424 . input section (byte ==> smallest addressable unit on the
425 . target). In most cases, if this was going to start at the
426 . 100th octet (8-bit quantity) in the output section, this value
427 . would be 100. However, if the target byte size is 16 bits
428 . (bfd_octets_per_byte is "2"), this value would be 50. *}
429 . bfd_vma output_offset;
430 .
431 . {* The output section through which to map on output. *}
432 . struct bfd_section *output_section;
433 .
434 . {* The alignment requirement of the section, as an exponent of 2 -
435 . e.g., 3 aligns to 2^3 (or 8). *}
436 . unsigned int alignment_power;
437 .
438 . {* If an input section, a pointer to a vector of relocation
439 . records for the data in this section. *}
440 . struct reloc_cache_entry *relocation;
441 .
442 . {* If an output section, a pointer to a vector of pointers to
443 . relocation records for the data in this section. *}
444 . struct reloc_cache_entry **orelocation;
445 .
446 . {* The number of relocation records in one of the above. *}
447 . unsigned reloc_count;
448 .
449 . {* Information below is back end specific - and not always used
450 . or updated. *}
451 .
452 . {* File position of section data. *}
453 . file_ptr filepos;
454 .
455 . {* File position of relocation info. *}
456 . file_ptr rel_filepos;
457 .
458 . {* File position of line data. *}
459 . file_ptr line_filepos;
460 .
461 . {* Pointer to data for applications. *}
462 . void *userdata;
463 .
464 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
465 . contents. *}
466 . unsigned char *contents;
467 .
468 . {* Attached line number information. *}
469 . alent *lineno;
470 .
471 . {* Number of line number records. *}
472 . unsigned int lineno_count;
473 .
474 . {* Entity size for merging purposes. *}
475 . unsigned int entsize;
476 .
477 . {* Points to the kept section if this section is a link-once section,
478 . and is discarded. *}
479 . struct bfd_section *kept_section;
480 .
481 . {* When a section is being output, this value changes as more
482 . linenumbers are written out. *}
483 . file_ptr moving_line_filepos;
484 .
485 . {* What the section number is in the target world. *}
486 . int target_index;
487 .
488 . void *used_by_bfd;
489 .
490 . {* If this is a constructor section then here is a list of the
491 . relocations created to relocate items within it. *}
492 . struct relent_chain *constructor_chain;
493 .
494 . {* The BFD which owns the section. *}
495 . bfd *owner;
496 .
497 . {* A symbol which points at this section only. *}
498 . struct bfd_symbol *symbol;
499 . struct bfd_symbol **symbol_ptr_ptr;
500 .
501 . {* Early in the link process, map_head and map_tail are used to build
502 . a list of input sections attached to an output section. Later,
503 . output sections use these fields for a list of bfd_link_order
504 . structs. *}
505 . union {
506 . struct bfd_link_order *link_order;
507 . struct bfd_section *s;
508 . } map_head, map_tail;
509 .} asection;
510 .
511 .{* These sections are global, and are managed by BFD. The application
512 . and target back end are not permitted to change the values in
513 . these sections. New code should use the section_ptr macros rather
514 . than referring directly to the const sections. The const sections
515 . may eventually vanish. *}
516 .#define BFD_ABS_SECTION_NAME "*ABS*"
517 .#define BFD_UND_SECTION_NAME "*UND*"
518 .#define BFD_COM_SECTION_NAME "*COM*"
519 .#define BFD_IND_SECTION_NAME "*IND*"
520 .
521 .{* The absolute section. *}
522 .extern asection bfd_abs_section;
523 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
524 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
525 .{* Pointer to the undefined section. *}
526 .extern asection bfd_und_section;
527 .#define bfd_und_section_ptr ((asection *) &bfd_und_section)
528 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
529 .{* Pointer to the common section. *}
530 .extern asection bfd_com_section;
531 .#define bfd_com_section_ptr ((asection *) &bfd_com_section)
532 .{* Pointer to the indirect section. *}
533 .extern asection bfd_ind_section;
534 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
535 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
536 .
537 .#define bfd_is_const_section(SEC) \
538 . ( ((SEC) == bfd_abs_section_ptr) \
539 . || ((SEC) == bfd_und_section_ptr) \
540 . || ((SEC) == bfd_com_section_ptr) \
541 . || ((SEC) == bfd_ind_section_ptr))
542 .
543 .extern const struct bfd_symbol * const bfd_abs_symbol;
544 .extern const struct bfd_symbol * const bfd_com_symbol;
545 .extern const struct bfd_symbol * const bfd_und_symbol;
546 .extern const struct bfd_symbol * const bfd_ind_symbol;
547 .
548 .{* Macros to handle insertion and deletion of a bfd's sections. These
549 . only handle the list pointers, ie. do not adjust section_count,
550 . target_index etc. *}
551 .#define bfd_section_list_remove(ABFD, S) \
552 . do \
553 . { \
554 . asection *_s = S; \
555 . asection *_next = _s->next; \
556 . asection *_prev = _s->prev; \
557 . if (_prev) \
558 . _prev->next = _next; \
559 . else \
560 . (ABFD)->sections = _next; \
561 . if (_next) \
562 . _next->prev = _prev; \
563 . else \
564 . (ABFD)->section_last = _prev; \
565 . } \
566 . while (0)
567 .#define bfd_section_list_append(ABFD, S) \
568 . do \
569 . { \
570 . asection *_s = S; \
571 . bfd *_abfd = ABFD; \
572 . _s->next = NULL; \
573 . if (_abfd->section_last) \
574 . { \
575 . _s->prev = _abfd->section_last; \
576 . _abfd->section_last->next = _s; \
577 . } \
578 . else \
579 . { \
580 . _s->prev = NULL; \
581 . _abfd->sections = _s; \
582 . } \
583 . _abfd->section_last = _s; \
584 . } \
585 . while (0)
586 .#define bfd_section_list_prepend(ABFD, S) \
587 . do \
588 . { \
589 . asection *_s = S; \
590 . bfd *_abfd = ABFD; \
591 . _s->prev = NULL; \
592 . if (_abfd->sections) \
593 . { \
594 . _s->next = _abfd->sections; \
595 . _abfd->sections->prev = _s; \
596 . } \
597 . else \
598 . { \
599 . _s->next = NULL; \
600 . _abfd->section_last = _s; \
601 . } \
602 . _abfd->sections = _s; \
603 . } \
604 . while (0)
605 .#define bfd_section_list_insert_after(ABFD, A, S) \
606 . do \
607 . { \
608 . asection *_a = A; \
609 . asection *_s = S; \
610 . asection *_next = _a->next; \
611 . _s->next = _next; \
612 . _s->prev = _a; \
613 . _a->next = _s; \
614 . if (_next) \
615 . _next->prev = _s; \
616 . else \
617 . (ABFD)->section_last = _s; \
618 . } \
619 . while (0)
620 .#define bfd_section_list_insert_before(ABFD, B, S) \
621 . do \
622 . { \
623 . asection *_b = B; \
624 . asection *_s = S; \
625 . asection *_prev = _b->prev; \
626 . _s->prev = _prev; \
627 . _s->next = _b; \
628 . _b->prev = _s; \
629 . if (_prev) \
630 . _prev->next = _s; \
631 . else \
632 . (ABFD)->sections = _s; \
633 . } \
634 . while (0)
635 .#define bfd_section_removed_from_list(ABFD, S) \
636 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
637 .
638 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, SYM_PTR, NAME, IDX) \
639 . {* name, id, index, next, prev, flags, user_set_vma, *} \
640 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
641 . \
642 . {* linker_mark, linker_has_input, gc_mark, gc_mark_from_eh, *} \
643 . 0, 0, 1, 0, \
644 . \
645 . {* segment_mark, sec_info_type, use_rela_p, has_tls_reloc, *} \
646 . 0, 0, 0, 0, \
647 . \
648 . {* has_gp_reloc, need_finalize_relax, reloc_done, *} \
649 . 0, 0, 0, \
650 . \
651 . {* vma, lma, size, rawsize *} \
652 . 0, 0, 0, 0, \
653 . \
654 . {* output_offset, output_section, alignment_power, *} \
655 . 0, (struct bfd_section *) &SEC, 0, \
656 . \
657 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
658 . NULL, NULL, 0, 0, 0, \
659 . \
660 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
661 . 0, NULL, NULL, NULL, 0, \
662 . \
663 . {* entsize, kept_section, moving_line_filepos, *} \
664 . 0, NULL, 0, \
665 . \
666 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
667 . 0, NULL, NULL, NULL, \
668 . \
669 . {* symbol, *} \
670 . (struct bfd_symbol *) SYM, \
671 . \
672 . {* symbol_ptr_ptr, *} \
673 . (struct bfd_symbol **) SYM_PTR, \
674 . \
675 . {* map_head, map_tail *} \
676 . { NULL }, { NULL } \
677 . }
678 .
679 */
680
681 /* We use a macro to initialize the static asymbol structures because
682 traditional C does not permit us to initialize a union member while
683 gcc warns if we don't initialize it. */
684 /* the_bfd, name, value, attr, section [, udata] */
685 #ifdef __STDC__
686 #define GLOBAL_SYM_INIT(NAME, SECTION) \
687 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
688 #else
689 #define GLOBAL_SYM_INIT(NAME, SECTION) \
690 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
691 #endif
692
693 /* These symbols are global, not specific to any BFD. Therefore, anything
694 that tries to change them is broken, and should be repaired. */
695
696 static const asymbol global_syms[] =
697 {
698 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
699 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
700 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
701 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
702 };
703
704 #define STD_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
705 const asymbol * const SYM = (asymbol *) &global_syms[IDX]; \
706 asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX], &SYM, \
707 NAME, IDX)
708
709 STD_SECTION (bfd_com_section, SEC_IS_COMMON, bfd_com_symbol,
710 BFD_COM_SECTION_NAME, 0);
711 STD_SECTION (bfd_und_section, 0, bfd_und_symbol, BFD_UND_SECTION_NAME, 1);
712 STD_SECTION (bfd_abs_section, 0, bfd_abs_symbol, BFD_ABS_SECTION_NAME, 2);
713 STD_SECTION (bfd_ind_section, 0, bfd_ind_symbol, BFD_IND_SECTION_NAME, 3);
714 #undef STD_SECTION
715
716 struct section_hash_entry
717 {
718 struct bfd_hash_entry root;
719 asection section;
720 };
721
722 /* Initialize an entry in the section hash table. */
723
724 struct bfd_hash_entry *
725 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
726 struct bfd_hash_table *table,
727 const char *string)
728 {
729 /* Allocate the structure if it has not already been allocated by a
730 subclass. */
731 if (entry == NULL)
732 {
733 entry = (struct bfd_hash_entry *)
734 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
735 if (entry == NULL)
736 return entry;
737 }
738
739 /* Call the allocation method of the superclass. */
740 entry = bfd_hash_newfunc (entry, table, string);
741 if (entry != NULL)
742 memset (&((struct section_hash_entry *) entry)->section, 0,
743 sizeof (asection));
744
745 return entry;
746 }
747
748 #define section_hash_lookup(table, string, create, copy) \
749 ((struct section_hash_entry *) \
750 bfd_hash_lookup ((table), (string), (create), (copy)))
751
752 /* Initializes a new section. NEWSECT->NAME is already set. */
753
754 static asection *
755 bfd_section_init (bfd *abfd, asection *newsect)
756 {
757 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
758
759 newsect->id = section_id;
760 newsect->index = abfd->section_count;
761 newsect->owner = abfd;
762
763 /* Create a symbol whose only job is to point to this section. This
764 is useful for things like relocs which are relative to the base
765 of a section. */
766 newsect->symbol = bfd_make_empty_symbol (abfd);
767 if (newsect->symbol == NULL)
768 return NULL;
769
770 newsect->symbol->name = newsect->name;
771 newsect->symbol->value = 0;
772 newsect->symbol->section = newsect;
773 newsect->symbol->flags = BSF_SECTION_SYM;
774
775 newsect->symbol_ptr_ptr = &newsect->symbol;
776
777 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
778 return NULL;
779
780 section_id++;
781 abfd->section_count++;
782 bfd_section_list_append (abfd, newsect);
783 return newsect;
784 }
785
786 /*
787 DOCDD
788 INODE
789 section prototypes, , typedef asection, Sections
790 SUBSECTION
791 Section prototypes
792
793 These are the functions exported by the section handling part of BFD.
794 */
795
796 /*
797 FUNCTION
798 bfd_section_list_clear
799
800 SYNOPSIS
801 void bfd_section_list_clear (bfd *);
802
803 DESCRIPTION
804 Clears the section list, and also resets the section count and
805 hash table entries.
806 */
807
808 void
809 bfd_section_list_clear (bfd *abfd)
810 {
811 abfd->sections = NULL;
812 abfd->section_last = NULL;
813 abfd->section_count = 0;
814 memset (abfd->section_htab.table, 0,
815 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
816 }
817
818 /*
819 FUNCTION
820 bfd_get_section_by_name
821
822 SYNOPSIS
823 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
824
825 DESCRIPTION
826 Run through @var{abfd} and return the one of the
827 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
828 @xref{Sections}, for more information.
829
830 This should only be used in special cases; the normal way to process
831 all sections of a given name is to use <<bfd_map_over_sections>> and
832 <<strcmp>> on the name (or better yet, base it on the section flags
833 or something else) for each section.
834 */
835
836 asection *
837 bfd_get_section_by_name (bfd *abfd, const char *name)
838 {
839 struct section_hash_entry *sh;
840
841 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
842 if (sh != NULL)
843 return &sh->section;
844
845 return NULL;
846 }
847
848 /*
849 FUNCTION
850 bfd_get_section_by_name_if
851
852 SYNOPSIS
853 asection *bfd_get_section_by_name_if
854 (bfd *abfd,
855 const char *name,
856 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
857 void *obj);
858
859 DESCRIPTION
860 Call the provided function @var{func} for each section
861 attached to the BFD @var{abfd} whose name matches @var{name},
862 passing @var{obj} as an argument. The function will be called
863 as if by
864
865 | func (abfd, the_section, obj);
866
867 It returns the first section for which @var{func} returns true,
868 otherwise <<NULL>>.
869
870 */
871
872 asection *
873 bfd_get_section_by_name_if (bfd *abfd, const char *name,
874 bfd_boolean (*operation) (bfd *,
875 asection *,
876 void *),
877 void *user_storage)
878 {
879 struct section_hash_entry *sh;
880 unsigned long hash;
881
882 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
883 if (sh == NULL)
884 return NULL;
885
886 hash = sh->root.hash;
887 do
888 {
889 if ((*operation) (abfd, &sh->section, user_storage))
890 return &sh->section;
891 sh = (struct section_hash_entry *) sh->root.next;
892 }
893 while (sh != NULL && sh->root.hash == hash
894 && strcmp (sh->root.string, name) == 0);
895
896 return NULL;
897 }
898
899 /*
900 FUNCTION
901 bfd_get_unique_section_name
902
903 SYNOPSIS
904 char *bfd_get_unique_section_name
905 (bfd *abfd, const char *templat, int *count);
906
907 DESCRIPTION
908 Invent a section name that is unique in @var{abfd} by tacking
909 a dot and a digit suffix onto the original @var{templat}. If
910 @var{count} is non-NULL, then it specifies the first number
911 tried as a suffix to generate a unique name. The value
912 pointed to by @var{count} will be incremented in this case.
913 */
914
915 char *
916 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
917 {
918 int num;
919 unsigned int len;
920 char *sname;
921
922 len = strlen (templat);
923 sname = bfd_malloc (len + 8);
924 if (sname == NULL)
925 return NULL;
926 memcpy (sname, templat, len);
927 num = 1;
928 if (count != NULL)
929 num = *count;
930
931 do
932 {
933 /* If we have a million sections, something is badly wrong. */
934 if (num > 999999)
935 abort ();
936 sprintf (sname + len, ".%d", num++);
937 }
938 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
939
940 if (count != NULL)
941 *count = num;
942 return sname;
943 }
944
945 /*
946 FUNCTION
947 bfd_make_section_old_way
948
949 SYNOPSIS
950 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
951
952 DESCRIPTION
953 Create a new empty section called @var{name}
954 and attach it to the end of the chain of sections for the
955 BFD @var{abfd}. An attempt to create a section with a name which
956 is already in use returns its pointer without changing the
957 section chain.
958
959 It has the funny name since this is the way it used to be
960 before it was rewritten....
961
962 Possible errors are:
963 o <<bfd_error_invalid_operation>> -
964 If output has already started for this BFD.
965 o <<bfd_error_no_memory>> -
966 If memory allocation fails.
967
968 */
969
970 asection *
971 bfd_make_section_old_way (bfd *abfd, const char *name)
972 {
973 struct section_hash_entry *sh;
974 asection *newsect;
975
976 if (abfd->output_has_begun)
977 {
978 bfd_set_error (bfd_error_invalid_operation);
979 return NULL;
980 }
981
982 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
983 return bfd_abs_section_ptr;
984
985 if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
986 return bfd_com_section_ptr;
987
988 if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
989 return bfd_und_section_ptr;
990
991 if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
992 return bfd_ind_section_ptr;
993
994 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
995 if (sh == NULL)
996 return NULL;
997
998 newsect = &sh->section;
999 if (newsect->name != NULL)
1000 {
1001 /* Section already exists. */
1002 return newsect;
1003 }
1004
1005 newsect->name = name;
1006 return bfd_section_init (abfd, newsect);
1007 }
1008
1009 /*
1010 FUNCTION
1011 bfd_make_section_anyway_with_flags
1012
1013 SYNOPSIS
1014 asection *bfd_make_section_anyway_with_flags
1015 (bfd *abfd, const char *name, flagword flags);
1016
1017 DESCRIPTION
1018 Create a new empty section called @var{name} and attach it to the end of
1019 the chain of sections for @var{abfd}. Create a new section even if there
1020 is already a section with that name. Also set the attributes of the
1021 new section to the value @var{flags}.
1022
1023 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1024 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1025 o <<bfd_error_no_memory>> - If memory allocation fails.
1026 */
1027
1028 sec_ptr
1029 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1030 flagword flags)
1031 {
1032 struct section_hash_entry *sh;
1033 asection *newsect;
1034
1035 if (abfd->output_has_begun)
1036 {
1037 bfd_set_error (bfd_error_invalid_operation);
1038 return NULL;
1039 }
1040
1041 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1042 if (sh == NULL)
1043 return NULL;
1044
1045 newsect = &sh->section;
1046 if (newsect->name != NULL)
1047 {
1048 /* We are making a section of the same name. Put it in the
1049 section hash table. Even though we can't find it directly by a
1050 hash lookup, we'll be able to find the section by traversing
1051 sh->root.next quicker than looking at all the bfd sections. */
1052 struct section_hash_entry *new_sh;
1053 new_sh = (struct section_hash_entry *)
1054 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1055 if (new_sh == NULL)
1056 return NULL;
1057
1058 new_sh->root = sh->root;
1059 sh->root.next = &new_sh->root;
1060 newsect = &new_sh->section;
1061 }
1062
1063 newsect->flags = flags;
1064 newsect->name = name;
1065 return bfd_section_init (abfd, newsect);
1066 }
1067
1068 /*
1069 FUNCTION
1070 bfd_make_section_anyway
1071
1072 SYNOPSIS
1073 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1074
1075 DESCRIPTION
1076 Create a new empty section called @var{name} and attach it to the end of
1077 the chain of sections for @var{abfd}. Create a new section even if there
1078 is already a section with that name.
1079
1080 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1081 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1082 o <<bfd_error_no_memory>> - If memory allocation fails.
1083 */
1084
1085 sec_ptr
1086 bfd_make_section_anyway (bfd *abfd, const char *name)
1087 {
1088 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1089 }
1090
1091 /*
1092 FUNCTION
1093 bfd_make_section_with_flags
1094
1095 SYNOPSIS
1096 asection *bfd_make_section_with_flags
1097 (bfd *, const char *name, flagword flags);
1098
1099 DESCRIPTION
1100 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1101 bfd_set_error ()) without changing the section chain if there is already a
1102 section named @var{name}. Also set the attributes of the new section to
1103 the value @var{flags}. If there is an error, return <<NULL>> and set
1104 <<bfd_error>>.
1105 */
1106
1107 asection *
1108 bfd_make_section_with_flags (bfd *abfd, const char *name,
1109 flagword flags)
1110 {
1111 struct section_hash_entry *sh;
1112 asection *newsect;
1113
1114 if (abfd->output_has_begun)
1115 {
1116 bfd_set_error (bfd_error_invalid_operation);
1117 return NULL;
1118 }
1119
1120 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1121 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1122 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1123 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1124 return NULL;
1125
1126 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1127 if (sh == NULL)
1128 return NULL;
1129
1130 newsect = &sh->section;
1131 if (newsect->name != NULL)
1132 {
1133 /* Section already exists. */
1134 return NULL;
1135 }
1136
1137 newsect->name = name;
1138 newsect->flags = flags;
1139 return bfd_section_init (abfd, newsect);
1140 }
1141
1142 /*
1143 FUNCTION
1144 bfd_make_section
1145
1146 SYNOPSIS
1147 asection *bfd_make_section (bfd *, const char *name);
1148
1149 DESCRIPTION
1150 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1151 bfd_set_error ()) without changing the section chain if there is already a
1152 section named @var{name}. If there is an error, return <<NULL>> and set
1153 <<bfd_error>>.
1154 */
1155
1156 asection *
1157 bfd_make_section (bfd *abfd, const char *name)
1158 {
1159 return bfd_make_section_with_flags (abfd, name, 0);
1160 }
1161
1162 /*
1163 FUNCTION
1164 bfd_set_section_flags
1165
1166 SYNOPSIS
1167 bfd_boolean bfd_set_section_flags
1168 (bfd *abfd, asection *sec, flagword flags);
1169
1170 DESCRIPTION
1171 Set the attributes of the section @var{sec} in the BFD
1172 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1173 <<FALSE>> on error. Possible error returns are:
1174
1175 o <<bfd_error_invalid_operation>> -
1176 The section cannot have one or more of the attributes
1177 requested. For example, a .bss section in <<a.out>> may not
1178 have the <<SEC_HAS_CONTENTS>> field set.
1179
1180 */
1181
1182 bfd_boolean
1183 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1184 sec_ptr section,
1185 flagword flags)
1186 {
1187 section->flags = flags;
1188 return TRUE;
1189 }
1190
1191 /*
1192 FUNCTION
1193 bfd_map_over_sections
1194
1195 SYNOPSIS
1196 void bfd_map_over_sections
1197 (bfd *abfd,
1198 void (*func) (bfd *abfd, asection *sect, void *obj),
1199 void *obj);
1200
1201 DESCRIPTION
1202 Call the provided function @var{func} for each section
1203 attached to the BFD @var{abfd}, passing @var{obj} as an
1204 argument. The function will be called as if by
1205
1206 | func (abfd, the_section, obj);
1207
1208 This is the preferred method for iterating over sections; an
1209 alternative would be to use a loop:
1210
1211 | section *p;
1212 | for (p = abfd->sections; p != NULL; p = p->next)
1213 | func (abfd, p, ...)
1214
1215 */
1216
1217 void
1218 bfd_map_over_sections (bfd *abfd,
1219 void (*operation) (bfd *, asection *, void *),
1220 void *user_storage)
1221 {
1222 asection *sect;
1223 unsigned int i = 0;
1224
1225 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1226 (*operation) (abfd, sect, user_storage);
1227
1228 if (i != abfd->section_count) /* Debugging */
1229 abort ();
1230 }
1231
1232 /*
1233 FUNCTION
1234 bfd_sections_find_if
1235
1236 SYNOPSIS
1237 asection *bfd_sections_find_if
1238 (bfd *abfd,
1239 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1240 void *obj);
1241
1242 DESCRIPTION
1243 Call the provided function @var{operation} for each section
1244 attached to the BFD @var{abfd}, passing @var{obj} as an
1245 argument. The function will be called as if by
1246
1247 | operation (abfd, the_section, obj);
1248
1249 It returns the first section for which @var{operation} returns true.
1250
1251 */
1252
1253 asection *
1254 bfd_sections_find_if (bfd *abfd,
1255 bfd_boolean (*operation) (bfd *, asection *, void *),
1256 void *user_storage)
1257 {
1258 asection *sect;
1259
1260 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1261 if ((*operation) (abfd, sect, user_storage))
1262 break;
1263
1264 return sect;
1265 }
1266
1267 /*
1268 FUNCTION
1269 bfd_set_section_size
1270
1271 SYNOPSIS
1272 bfd_boolean bfd_set_section_size
1273 (bfd *abfd, asection *sec, bfd_size_type val);
1274
1275 DESCRIPTION
1276 Set @var{sec} to the size @var{val}. If the operation is
1277 ok, then <<TRUE>> is returned, else <<FALSE>>.
1278
1279 Possible error returns:
1280 o <<bfd_error_invalid_operation>> -
1281 Writing has started to the BFD, so setting the size is invalid.
1282
1283 */
1284
1285 bfd_boolean
1286 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1287 {
1288 /* Once you've started writing to any section you cannot create or change
1289 the size of any others. */
1290
1291 if (abfd->output_has_begun)
1292 {
1293 bfd_set_error (bfd_error_invalid_operation);
1294 return FALSE;
1295 }
1296
1297 ptr->size = val;
1298 return TRUE;
1299 }
1300
1301 /*
1302 FUNCTION
1303 bfd_set_section_contents
1304
1305 SYNOPSIS
1306 bfd_boolean bfd_set_section_contents
1307 (bfd *abfd, asection *section, const void *data,
1308 file_ptr offset, bfd_size_type count);
1309
1310 DESCRIPTION
1311 Sets the contents of the section @var{section} in BFD
1312 @var{abfd} to the data starting in memory at @var{data}. The
1313 data is written to the output section starting at offset
1314 @var{offset} for @var{count} octets.
1315
1316 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1317 returns are:
1318 o <<bfd_error_no_contents>> -
1319 The output section does not have the <<SEC_HAS_CONTENTS>>
1320 attribute, so nothing can be written to it.
1321 o and some more too
1322
1323 This routine is front end to the back end function
1324 <<_bfd_set_section_contents>>.
1325
1326 */
1327
1328 bfd_boolean
1329 bfd_set_section_contents (bfd *abfd,
1330 sec_ptr section,
1331 const void *location,
1332 file_ptr offset,
1333 bfd_size_type count)
1334 {
1335 bfd_size_type sz;
1336
1337 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1338 {
1339 bfd_set_error (bfd_error_no_contents);
1340 return FALSE;
1341 }
1342
1343 sz = section->size;
1344 if ((bfd_size_type) offset > sz
1345 || count > sz
1346 || offset + count > sz
1347 || count != (size_t) count)
1348 {
1349 bfd_set_error (bfd_error_bad_value);
1350 return FALSE;
1351 }
1352
1353 if (!bfd_write_p (abfd))
1354 {
1355 bfd_set_error (bfd_error_invalid_operation);
1356 return FALSE;
1357 }
1358
1359 /* Record a copy of the data in memory if desired. */
1360 if (section->contents
1361 && location != section->contents + offset)
1362 memcpy (section->contents + offset, location, (size_t) count);
1363
1364 if (BFD_SEND (abfd, _bfd_set_section_contents,
1365 (abfd, section, location, offset, count)))
1366 {
1367 abfd->output_has_begun = TRUE;
1368 return TRUE;
1369 }
1370
1371 return FALSE;
1372 }
1373
1374 /*
1375 FUNCTION
1376 bfd_get_section_contents
1377
1378 SYNOPSIS
1379 bfd_boolean bfd_get_section_contents
1380 (bfd *abfd, asection *section, void *location, file_ptr offset,
1381 bfd_size_type count);
1382
1383 DESCRIPTION
1384 Read data from @var{section} in BFD @var{abfd}
1385 into memory starting at @var{location}. The data is read at an
1386 offset of @var{offset} from the start of the input section,
1387 and is read for @var{count} bytes.
1388
1389 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1390 flag set are requested or if the section does not have the
1391 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1392 with zeroes. If no errors occur, <<TRUE>> is returned, else
1393 <<FALSE>>.
1394
1395 */
1396 bfd_boolean
1397 bfd_get_section_contents (bfd *abfd,
1398 sec_ptr section,
1399 void *location,
1400 file_ptr offset,
1401 bfd_size_type count)
1402 {
1403 bfd_size_type sz;
1404
1405 if (section->flags & SEC_CONSTRUCTOR)
1406 {
1407 memset (location, 0, (size_t) count);
1408 return TRUE;
1409 }
1410
1411 sz = section->rawsize ? section->rawsize : section->size;
1412 if ((bfd_size_type) offset > sz
1413 || count > sz
1414 || offset + count > sz
1415 || count != (size_t) count)
1416 {
1417 bfd_set_error (bfd_error_bad_value);
1418 return FALSE;
1419 }
1420
1421 if (count == 0)
1422 /* Don't bother. */
1423 return TRUE;
1424
1425 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1426 {
1427 memset (location, 0, (size_t) count);
1428 return TRUE;
1429 }
1430
1431 if ((section->flags & SEC_IN_MEMORY) != 0)
1432 {
1433 memcpy (location, section->contents + offset, (size_t) count);
1434 return TRUE;
1435 }
1436
1437 return BFD_SEND (abfd, _bfd_get_section_contents,
1438 (abfd, section, location, offset, count));
1439 }
1440
1441 /*
1442 FUNCTION
1443 bfd_malloc_and_get_section
1444
1445 SYNOPSIS
1446 bfd_boolean bfd_malloc_and_get_section
1447 (bfd *abfd, asection *section, bfd_byte **buf);
1448
1449 DESCRIPTION
1450 Read all data from @var{section} in BFD @var{abfd}
1451 into a buffer, *@var{buf}, malloc'd by this function.
1452 */
1453
1454 bfd_boolean
1455 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1456 {
1457 bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1458 bfd_byte *p = NULL;
1459
1460 *buf = p;
1461 if (sz == 0)
1462 return TRUE;
1463
1464 p = bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1465 if (p == NULL)
1466 return FALSE;
1467 *buf = p;
1468
1469 return bfd_get_section_contents (abfd, sec, p, 0, sz);
1470 }
1471 /*
1472 FUNCTION
1473 bfd_copy_private_section_data
1474
1475 SYNOPSIS
1476 bfd_boolean bfd_copy_private_section_data
1477 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1478
1479 DESCRIPTION
1480 Copy private section information from @var{isec} in the BFD
1481 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1482 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1483 returns are:
1484
1485 o <<bfd_error_no_memory>> -
1486 Not enough memory exists to create private data for @var{osec}.
1487
1488 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1489 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1490 . (ibfd, isection, obfd, osection))
1491 */
1492
1493 /*
1494 FUNCTION
1495 bfd_generic_is_group_section
1496
1497 SYNOPSIS
1498 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1499
1500 DESCRIPTION
1501 Returns TRUE if @var{sec} is a member of a group.
1502 */
1503
1504 bfd_boolean
1505 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1506 const asection *sec ATTRIBUTE_UNUSED)
1507 {
1508 return FALSE;
1509 }
1510
1511 /*
1512 FUNCTION
1513 bfd_generic_discard_group
1514
1515 SYNOPSIS
1516 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1517
1518 DESCRIPTION
1519 Remove all members of @var{group} from the output.
1520 */
1521
1522 bfd_boolean
1523 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1524 asection *group ATTRIBUTE_UNUSED)
1525 {
1526 return TRUE;
1527 }
This page took 0.060685 seconds and 4 git commands to generate.