Add support to readelf to display NetBSD auxv notes in core files.
[deliverable/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright (C) 1990-2019 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Sections
25
26 The raw data contained within a BFD is maintained through the
27 section abstraction. A single BFD may have any number of
28 sections. It keeps hold of them by pointing to the first;
29 each one points to the next in the list.
30
31 Sections are supported in BFD in <<section.c>>.
32
33 @menu
34 @* Section Input::
35 @* Section Output::
36 @* typedef asection::
37 @* section prototypes::
38 @end menu
39
40 INODE
41 Section Input, Section Output, Sections, Sections
42 SUBSECTION
43 Section input
44
45 When a BFD is opened for reading, the section structures are
46 created and attached to the BFD.
47
48 Each section has a name which describes the section in the
49 outside world---for example, <<a.out>> would contain at least
50 three sections, called <<.text>>, <<.data>> and <<.bss>>.
51
52 Names need not be unique; for example a COFF file may have several
53 sections named <<.data>>.
54
55 Sometimes a BFD will contain more than the ``natural'' number of
56 sections. A back end may attach other sections containing
57 constructor data, or an application may add a section (using
58 <<bfd_make_section>>) to the sections attached to an already open
59 BFD. For example, the linker creates an extra section
60 <<COMMON>> for each input file's BFD to hold information about
61 common storage.
62
63 The raw data is not necessarily read in when
64 the section descriptor is created. Some targets may leave the
65 data in place until a <<bfd_get_section_contents>> call is
66 made. Other back ends may read in all the data at once. For
67 example, an S-record file has to be read once to determine the
68 size of the data.
69
70 INODE
71 Section Output, typedef asection, Section Input, Sections
72
73 SUBSECTION
74 Section output
75
76 To write a new object style BFD, the various sections to be
77 written have to be created. They are attached to the BFD in
78 the same way as input sections; data is written to the
79 sections using <<bfd_set_section_contents>>.
80
81 Any program that creates or combines sections (e.g., the assembler
82 and linker) must use the <<asection>> fields <<output_section>> and
83 <<output_offset>> to indicate the file sections to which each
84 section must be written. (If the section is being created from
85 scratch, <<output_section>> should probably point to the section
86 itself and <<output_offset>> should probably be zero.)
87
88 The data to be written comes from input sections attached
89 (via <<output_section>> pointers) to
90 the output sections. The output section structure can be
91 considered a filter for the input section: the output section
92 determines the vma of the output data and the name, but the
93 input section determines the offset into the output section of
94 the data to be written.
95
96 E.g., to create a section "O", starting at 0x100, 0x123 long,
97 containing two subsections, "A" at offset 0x0 (i.e., at vma
98 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
99 structures would look like:
100
101 | section name "A"
102 | output_offset 0x00
103 | size 0x20
104 | output_section -----------> section name "O"
105 | | vma 0x100
106 | section name "B" | size 0x123
107 | output_offset 0x20 |
108 | size 0x103 |
109 | output_section --------|
110
111 SUBSECTION
112 Link orders
113
114 The data within a section is stored in a @dfn{link_order}.
115 These are much like the fixups in <<gas>>. The link_order
116 abstraction allows a section to grow and shrink within itself.
117
118 A link_order knows how big it is, and which is the next
119 link_order and where the raw data for it is; it also points to
120 a list of relocations which apply to it.
121
122 The link_order is used by the linker to perform relaxing on
123 final code. The compiler creates code which is as big as
124 necessary to make it work without relaxing, and the user can
125 select whether to relax. Sometimes relaxing takes a lot of
126 time. The linker runs around the relocations to see if any
127 are attached to data which can be shrunk, if so it does it on
128 a link_order by link_order basis.
129
130 */
131
132 #include "sysdep.h"
133 #include "bfd.h"
134 #include "libbfd.h"
135 #include "bfdlink.h"
136
137 /*
138 DOCDD
139 INODE
140 typedef asection, section prototypes, Section Output, Sections
141 SUBSECTION
142 typedef asection
143
144 Here is the section structure:
145
146 CODE_FRAGMENT
147 .
148 .typedef struct bfd_section
149 .{
150 . {* The name of the section; the name isn't a copy, the pointer is
151 . the same as that passed to bfd_make_section. *}
152 . const char *name;
153 .
154 . {* A unique sequence number. *}
155 . unsigned int id;
156 .
157 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
158 . unsigned int index;
159 .
160 . {* The next section in the list belonging to the BFD, or NULL. *}
161 . struct bfd_section *next;
162 .
163 . {* The previous section in the list belonging to the BFD, or NULL. *}
164 . struct bfd_section *prev;
165 .
166 . {* The field flags contains attributes of the section. Some
167 . flags are read in from the object file, and some are
168 . synthesized from other information. *}
169 . flagword flags;
170 .
171 .#define SEC_NO_FLAGS 0x0
172 .
173 . {* Tells the OS to allocate space for this section when loading.
174 . This is clear for a section containing debug information only. *}
175 .#define SEC_ALLOC 0x1
176 .
177 . {* Tells the OS to load the section from the file when loading.
178 . This is clear for a .bss section. *}
179 .#define SEC_LOAD 0x2
180 .
181 . {* The section contains data still to be relocated, so there is
182 . some relocation information too. *}
183 .#define SEC_RELOC 0x4
184 .
185 . {* A signal to the OS that the section contains read only data. *}
186 .#define SEC_READONLY 0x8
187 .
188 . {* The section contains code only. *}
189 .#define SEC_CODE 0x10
190 .
191 . {* The section contains data only. *}
192 .#define SEC_DATA 0x20
193 .
194 . {* The section will reside in ROM. *}
195 .#define SEC_ROM 0x40
196 .
197 . {* The section contains constructor information. This section
198 . type is used by the linker to create lists of constructors and
199 . destructors used by <<g++>>. When a back end sees a symbol
200 . which should be used in a constructor list, it creates a new
201 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
202 . the symbol to it, and builds a relocation. To build the lists
203 . of constructors, all the linker has to do is catenate all the
204 . sections called <<__CTOR_LIST__>> and relocate the data
205 . contained within - exactly the operations it would peform on
206 . standard data. *}
207 .#define SEC_CONSTRUCTOR 0x80
208 .
209 . {* The section has contents - a data section could be
210 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
211 . <<SEC_HAS_CONTENTS>> *}
212 .#define SEC_HAS_CONTENTS 0x100
213 .
214 . {* An instruction to the linker to not output the section
215 . even if it has information which would normally be written. *}
216 .#define SEC_NEVER_LOAD 0x200
217 .
218 . {* The section contains thread local data. *}
219 .#define SEC_THREAD_LOCAL 0x400
220 .
221 . {* The section's size is fixed. Generic linker code will not
222 . recalculate it and it is up to whoever has set this flag to
223 . get the size right. *}
224 .#define SEC_FIXED_SIZE 0x800
225 .
226 . {* The section contains common symbols (symbols may be defined
227 . multiple times, the value of a symbol is the amount of
228 . space it requires, and the largest symbol value is the one
229 . used). Most targets have exactly one of these (which we
230 . translate to bfd_com_section_ptr), but ECOFF has two. *}
231 .#define SEC_IS_COMMON 0x1000
232 .
233 . {* The section contains only debugging information. For
234 . example, this is set for ELF .debug and .stab sections.
235 . strip tests this flag to see if a section can be
236 . discarded. *}
237 .#define SEC_DEBUGGING 0x2000
238 .
239 . {* The contents of this section are held in memory pointed to
240 . by the contents field. This is checked by bfd_get_section_contents,
241 . and the data is retrieved from memory if appropriate. *}
242 .#define SEC_IN_MEMORY 0x4000
243 .
244 . {* The contents of this section are to be excluded by the
245 . linker for executable and shared objects unless those
246 . objects are to be further relocated. *}
247 .#define SEC_EXCLUDE 0x8000
248 .
249 . {* The contents of this section are to be sorted based on the sum of
250 . the symbol and addend values specified by the associated relocation
251 . entries. Entries without associated relocation entries will be
252 . appended to the end of the section in an unspecified order. *}
253 .#define SEC_SORT_ENTRIES 0x10000
254 .
255 . {* When linking, duplicate sections of the same name should be
256 . discarded, rather than being combined into a single section as
257 . is usually done. This is similar to how common symbols are
258 . handled. See SEC_LINK_DUPLICATES below. *}
259 .#define SEC_LINK_ONCE 0x20000
260 .
261 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
262 . should handle duplicate sections. *}
263 .#define SEC_LINK_DUPLICATES 0xc0000
264 .
265 . {* This value for SEC_LINK_DUPLICATES means that duplicate
266 . sections with the same name should simply be discarded. *}
267 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
268 .
269 . {* This value for SEC_LINK_DUPLICATES means that the linker
270 . should warn if there are any duplicate sections, although
271 . it should still only link one copy. *}
272 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
273 .
274 . {* This value for SEC_LINK_DUPLICATES means that the linker
275 . should warn if any duplicate sections are a different size. *}
276 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
277 .
278 . {* This value for SEC_LINK_DUPLICATES means that the linker
279 . should warn if any duplicate sections contain different
280 . contents. *}
281 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
282 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
283 .
284 . {* This section was created by the linker as part of dynamic
285 . relocation or other arcane processing. It is skipped when
286 . going through the first-pass output, trusting that someone
287 . else up the line will take care of it later. *}
288 .#define SEC_LINKER_CREATED 0x100000
289 .
290 . {* This section should not be subject to garbage collection.
291 . Also set to inform the linker that this section should not be
292 . listed in the link map as discarded. *}
293 .#define SEC_KEEP 0x200000
294 .
295 . {* This section contains "short" data, and should be placed
296 . "near" the GP. *}
297 .#define SEC_SMALL_DATA 0x400000
298 .
299 . {* Attempt to merge identical entities in the section.
300 . Entity size is given in the entsize field. *}
301 .#define SEC_MERGE 0x800000
302 .
303 . {* If given with SEC_MERGE, entities to merge are zero terminated
304 . strings where entsize specifies character size instead of fixed
305 . size entries. *}
306 .#define SEC_STRINGS 0x1000000
307 .
308 . {* This section contains data about section groups. *}
309 .#define SEC_GROUP 0x2000000
310 .
311 . {* The section is a COFF shared library section. This flag is
312 . only for the linker. If this type of section appears in
313 . the input file, the linker must copy it to the output file
314 . without changing the vma or size. FIXME: Although this
315 . was originally intended to be general, it really is COFF
316 . specific (and the flag was renamed to indicate this). It
317 . might be cleaner to have some more general mechanism to
318 . allow the back end to control what the linker does with
319 . sections. *}
320 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
321 .
322 . {* This input section should be copied to output in reverse order
323 . as an array of pointers. This is for ELF linker internal use
324 . only. *}
325 .#define SEC_ELF_REVERSE_COPY 0x4000000
326 .
327 . {* This section contains data which may be shared with other
328 . executables or shared objects. This is for COFF only. *}
329 .#define SEC_COFF_SHARED 0x8000000
330 .
331 . {* This section should be compressed. This is for ELF linker
332 . internal use only. *}
333 .#define SEC_ELF_COMPRESS 0x8000000
334 .
335 . {* When a section with this flag is being linked, then if the size of
336 . the input section is less than a page, it should not cross a page
337 . boundary. If the size of the input section is one page or more,
338 . it should be aligned on a page boundary. This is for TI
339 . TMS320C54X only. *}
340 .#define SEC_TIC54X_BLOCK 0x10000000
341 .
342 . {* This section should be renamed. This is for ELF linker
343 . internal use only. *}
344 .#define SEC_ELF_RENAME 0x10000000
345 .
346 . {* Conditionally link this section; do not link if there are no
347 . references found to any symbol in the section. This is for TI
348 . TMS320C54X only. *}
349 .#define SEC_TIC54X_CLINK 0x20000000
350 .
351 . {* This section contains vliw code. This is for Toshiba MeP only. *}
352 .#define SEC_MEP_VLIW 0x20000000
353 .
354 . {* Indicate that section has the no read flag set. This happens
355 . when memory read flag isn't set. *}
356 .#define SEC_COFF_NOREAD 0x40000000
357 .
358 . {* Indicate that section has the purecode flag set. *}
359 .#define SEC_ELF_PURECODE 0x80000000
360 .
361 . {* End of section flags. *}
362 .
363 . {* Some internal packed boolean fields. *}
364 .
365 . {* See the vma field. *}
366 . unsigned int user_set_vma : 1;
367 .
368 . {* A mark flag used by some of the linker backends. *}
369 . unsigned int linker_mark : 1;
370 .
371 . {* Another mark flag used by some of the linker backends. Set for
372 . output sections that have an input section. *}
373 . unsigned int linker_has_input : 1;
374 .
375 . {* Mark flag used by some linker backends for garbage collection. *}
376 . unsigned int gc_mark : 1;
377 .
378 . {* Section compression status. *}
379 . unsigned int compress_status : 2;
380 .#define COMPRESS_SECTION_NONE 0
381 .#define COMPRESS_SECTION_DONE 1
382 .#define DECOMPRESS_SECTION_SIZED 2
383 .
384 . {* The following flags are used by the ELF linker. *}
385 .
386 . {* Mark sections which have been allocated to segments. *}
387 . unsigned int segment_mark : 1;
388 .
389 . {* Type of sec_info information. *}
390 . unsigned int sec_info_type:3;
391 .#define SEC_INFO_TYPE_NONE 0
392 .#define SEC_INFO_TYPE_STABS 1
393 .#define SEC_INFO_TYPE_MERGE 2
394 .#define SEC_INFO_TYPE_EH_FRAME 3
395 .#define SEC_INFO_TYPE_JUST_SYMS 4
396 .#define SEC_INFO_TYPE_TARGET 5
397 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6
398 .
399 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
400 . unsigned int use_rela_p:1;
401 .
402 . {* Bits used by various backends. The generic code doesn't touch
403 . these fields. *}
404 .
405 . unsigned int sec_flg0:1;
406 . unsigned int sec_flg1:1;
407 . unsigned int sec_flg2:1;
408 . unsigned int sec_flg3:1;
409 . unsigned int sec_flg4:1;
410 . unsigned int sec_flg5:1;
411 .
412 . {* End of internal packed boolean fields. *}
413 .
414 . {* The virtual memory address of the section - where it will be
415 . at run time. The symbols are relocated against this. The
416 . user_set_vma flag is maintained by bfd; if it's not set, the
417 . backend can assign addresses (for example, in <<a.out>>, where
418 . the default address for <<.data>> is dependent on the specific
419 . target and various flags). *}
420 . bfd_vma vma;
421 .
422 . {* The load address of the section - where it would be in a
423 . rom image; really only used for writing section header
424 . information. *}
425 . bfd_vma lma;
426 .
427 . {* The size of the section in *octets*, as it will be output.
428 . Contains a value even if the section has no contents (e.g., the
429 . size of <<.bss>>). *}
430 . bfd_size_type size;
431 .
432 . {* For input sections, the original size on disk of the section, in
433 . octets. This field should be set for any section whose size is
434 . changed by linker relaxation. It is required for sections where
435 . the linker relaxation scheme doesn't cache altered section and
436 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
437 . targets), and thus the original size needs to be kept to read the
438 . section multiple times. For output sections, rawsize holds the
439 . section size calculated on a previous linker relaxation pass. *}
440 . bfd_size_type rawsize;
441 .
442 . {* The compressed size of the section in octets. *}
443 . bfd_size_type compressed_size;
444 .
445 . {* Relaxation table. *}
446 . struct relax_table *relax;
447 .
448 . {* Count of used relaxation table entries. *}
449 . int relax_count;
450 .
451 .
452 . {* If this section is going to be output, then this value is the
453 . offset in *bytes* into the output section of the first byte in the
454 . input section (byte ==> smallest addressable unit on the
455 . target). In most cases, if this was going to start at the
456 . 100th octet (8-bit quantity) in the output section, this value
457 . would be 100. However, if the target byte size is 16 bits
458 . (bfd_octets_per_byte is "2"), this value would be 50. *}
459 . bfd_vma output_offset;
460 .
461 . {* The output section through which to map on output. *}
462 . struct bfd_section *output_section;
463 .
464 . {* The alignment requirement of the section, as an exponent of 2 -
465 . e.g., 3 aligns to 2^3 (or 8). *}
466 . unsigned int alignment_power;
467 .
468 . {* If an input section, a pointer to a vector of relocation
469 . records for the data in this section. *}
470 . struct reloc_cache_entry *relocation;
471 .
472 . {* If an output section, a pointer to a vector of pointers to
473 . relocation records for the data in this section. *}
474 . struct reloc_cache_entry **orelocation;
475 .
476 . {* The number of relocation records in one of the above. *}
477 . unsigned reloc_count;
478 .
479 . {* Information below is back end specific - and not always used
480 . or updated. *}
481 .
482 . {* File position of section data. *}
483 . file_ptr filepos;
484 .
485 . {* File position of relocation info. *}
486 . file_ptr rel_filepos;
487 .
488 . {* File position of line data. *}
489 . file_ptr line_filepos;
490 .
491 . {* Pointer to data for applications. *}
492 . void *userdata;
493 .
494 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
495 . contents. *}
496 . unsigned char *contents;
497 .
498 . {* Attached line number information. *}
499 . alent *lineno;
500 .
501 . {* Number of line number records. *}
502 . unsigned int lineno_count;
503 .
504 . {* Entity size for merging purposes. *}
505 . unsigned int entsize;
506 .
507 . {* Points to the kept section if this section is a link-once section,
508 . and is discarded. *}
509 . struct bfd_section *kept_section;
510 .
511 . {* When a section is being output, this value changes as more
512 . linenumbers are written out. *}
513 . file_ptr moving_line_filepos;
514 .
515 . {* What the section number is in the target world. *}
516 . int target_index;
517 .
518 . void *used_by_bfd;
519 .
520 . {* If this is a constructor section then here is a list of the
521 . relocations created to relocate items within it. *}
522 . struct relent_chain *constructor_chain;
523 .
524 . {* The BFD which owns the section. *}
525 . bfd *owner;
526 .
527 . {* A symbol which points at this section only. *}
528 . struct bfd_symbol *symbol;
529 . struct bfd_symbol **symbol_ptr_ptr;
530 .
531 . {* Early in the link process, map_head and map_tail are used to build
532 . a list of input sections attached to an output section. Later,
533 . output sections use these fields for a list of bfd_link_order
534 . structs. *}
535 . union {
536 . struct bfd_link_order *link_order;
537 . struct bfd_section *s;
538 . } map_head, map_tail;
539 .} asection;
540 .
541 .{* Relax table contains information about instructions which can
542 . be removed by relaxation -- replacing a long address with a
543 . short address. *}
544 .struct relax_table {
545 . {* Address where bytes may be deleted. *}
546 . bfd_vma addr;
547 .
548 . {* Number of bytes to be deleted. *}
549 . int size;
550 .};
551 .
552 .{* Note: the following are provided as inline functions rather than macros
553 . because not all callers use the return value. A macro implementation
554 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
555 . compilers will complain about comma expressions that have no effect. *}
556 .static inline bfd_boolean
557 .bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr,
558 . void * val)
559 .{
560 . ptr->userdata = val;
561 . return TRUE;
562 .}
563 .
564 .static inline bfd_boolean
565 .bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val)
566 .{
567 . ptr->vma = ptr->lma = val;
568 . ptr->user_set_vma = TRUE;
569 . return TRUE;
570 .}
571 .
572 .static inline bfd_boolean
573 .bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr,
574 . unsigned int val)
575 .{
576 . ptr->alignment_power = val;
577 . return TRUE;
578 .}
579 .
580 .{* These sections are global, and are managed by BFD. The application
581 . and target back end are not permitted to change the values in
582 . these sections. *}
583 .extern asection _bfd_std_section[4];
584 .
585 .#define BFD_ABS_SECTION_NAME "*ABS*"
586 .#define BFD_UND_SECTION_NAME "*UND*"
587 .#define BFD_COM_SECTION_NAME "*COM*"
588 .#define BFD_IND_SECTION_NAME "*IND*"
589 .
590 .{* Pointer to the common section. *}
591 .#define bfd_com_section_ptr (&_bfd_std_section[0])
592 .{* Pointer to the undefined section. *}
593 .#define bfd_und_section_ptr (&_bfd_std_section[1])
594 .{* Pointer to the absolute section. *}
595 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
596 .{* Pointer to the indirect section. *}
597 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
598 .
599 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
600 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
601 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
602 .
603 .#define bfd_is_const_section(SEC) \
604 . ( ((SEC) == bfd_abs_section_ptr) \
605 . || ((SEC) == bfd_und_section_ptr) \
606 . || ((SEC) == bfd_com_section_ptr) \
607 . || ((SEC) == bfd_ind_section_ptr))
608 .
609 .{* Macros to handle insertion and deletion of a bfd's sections. These
610 . only handle the list pointers, ie. do not adjust section_count,
611 . target_index etc. *}
612 .#define bfd_section_list_remove(ABFD, S) \
613 . do \
614 . { \
615 . asection *_s = S; \
616 . asection *_next = _s->next; \
617 . asection *_prev = _s->prev; \
618 . if (_prev) \
619 . _prev->next = _next; \
620 . else \
621 . (ABFD)->sections = _next; \
622 . if (_next) \
623 . _next->prev = _prev; \
624 . else \
625 . (ABFD)->section_last = _prev; \
626 . } \
627 . while (0)
628 .#define bfd_section_list_append(ABFD, S) \
629 . do \
630 . { \
631 . asection *_s = S; \
632 . bfd *_abfd = ABFD; \
633 . _s->next = NULL; \
634 . if (_abfd->section_last) \
635 . { \
636 . _s->prev = _abfd->section_last; \
637 . _abfd->section_last->next = _s; \
638 . } \
639 . else \
640 . { \
641 . _s->prev = NULL; \
642 . _abfd->sections = _s; \
643 . } \
644 . _abfd->section_last = _s; \
645 . } \
646 . while (0)
647 .#define bfd_section_list_prepend(ABFD, S) \
648 . do \
649 . { \
650 . asection *_s = S; \
651 . bfd *_abfd = ABFD; \
652 . _s->prev = NULL; \
653 . if (_abfd->sections) \
654 . { \
655 . _s->next = _abfd->sections; \
656 . _abfd->sections->prev = _s; \
657 . } \
658 . else \
659 . { \
660 . _s->next = NULL; \
661 . _abfd->section_last = _s; \
662 . } \
663 . _abfd->sections = _s; \
664 . } \
665 . while (0)
666 .#define bfd_section_list_insert_after(ABFD, A, S) \
667 . do \
668 . { \
669 . asection *_a = A; \
670 . asection *_s = S; \
671 . asection *_next = _a->next; \
672 . _s->next = _next; \
673 . _s->prev = _a; \
674 . _a->next = _s; \
675 . if (_next) \
676 . _next->prev = _s; \
677 . else \
678 . (ABFD)->section_last = _s; \
679 . } \
680 . while (0)
681 .#define bfd_section_list_insert_before(ABFD, B, S) \
682 . do \
683 . { \
684 . asection *_b = B; \
685 . asection *_s = S; \
686 . asection *_prev = _b->prev; \
687 . _s->prev = _prev; \
688 . _s->next = _b; \
689 . _b->prev = _s; \
690 . if (_prev) \
691 . _prev->next = _s; \
692 . else \
693 . (ABFD)->sections = _s; \
694 . } \
695 . while (0)
696 .#define bfd_section_removed_from_list(ABFD, S) \
697 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
698 .
699 .#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS) \
700 . {* name, id, index, next, prev, flags, user_set_vma, *} \
701 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
702 . \
703 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
704 . 0, 0, 1, 0, \
705 . \
706 . {* segment_mark, sec_info_type, use_rela_p, *} \
707 . 0, 0, 0, \
708 . \
709 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
710 . 0, 0, 0, 0, 0, 0, \
711 . \
712 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
713 . 0, 0, 0, 0, 0, 0, 0, \
714 . \
715 . {* output_offset, output_section, alignment_power, *} \
716 . 0, &SEC, 0, \
717 . \
718 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
719 . NULL, NULL, 0, 0, 0, \
720 . \
721 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
722 . 0, NULL, NULL, NULL, 0, \
723 . \
724 . {* entsize, kept_section, moving_line_filepos, *} \
725 . 0, NULL, 0, \
726 . \
727 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
728 . 0, NULL, NULL, NULL, \
729 . \
730 . {* symbol, symbol_ptr_ptr, *} \
731 . (struct bfd_symbol *) SYM, &SEC.symbol, \
732 . \
733 . {* map_head, map_tail *} \
734 . { NULL }, { NULL } \
735 . }
736 .
737 .{* We use a macro to initialize the static asymbol structures because
738 . traditional C does not permit us to initialize a union member while
739 . gcc warns if we don't initialize it.
740 . the_bfd, name, value, attr, section [, udata] *}
741 .#ifdef __STDC__
742 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
743 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
744 .#else
745 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
746 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
747 .#endif
748 .
749 */
750
751 /* These symbols are global, not specific to any BFD. Therefore, anything
752 that tries to change them is broken, and should be repaired. */
753
754 static const asymbol global_syms[] =
755 {
756 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
757 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
758 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
759 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
760 };
761
762 #define STD_SECTION(NAME, IDX, FLAGS) \
763 BFD_FAKE_SECTION(_bfd_std_section[IDX], &global_syms[IDX], NAME, IDX, FLAGS)
764
765 asection _bfd_std_section[] = {
766 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
767 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
768 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
769 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
770 };
771 #undef STD_SECTION
772
773 /* Initialize an entry in the section hash table. */
774
775 struct bfd_hash_entry *
776 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
777 struct bfd_hash_table *table,
778 const char *string)
779 {
780 /* Allocate the structure if it has not already been allocated by a
781 subclass. */
782 if (entry == NULL)
783 {
784 entry = (struct bfd_hash_entry *)
785 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
786 if (entry == NULL)
787 return entry;
788 }
789
790 /* Call the allocation method of the superclass. */
791 entry = bfd_hash_newfunc (entry, table, string);
792 if (entry != NULL)
793 memset (&((struct section_hash_entry *) entry)->section, 0,
794 sizeof (asection));
795
796 return entry;
797 }
798
799 #define section_hash_lookup(table, string, create, copy) \
800 ((struct section_hash_entry *) \
801 bfd_hash_lookup ((table), (string), (create), (copy)))
802
803 /* Create a symbol whose only job is to point to this section. This
804 is useful for things like relocs which are relative to the base
805 of a section. */
806
807 bfd_boolean
808 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
809 {
810 newsect->symbol = bfd_make_empty_symbol (abfd);
811 if (newsect->symbol == NULL)
812 return FALSE;
813
814 newsect->symbol->name = newsect->name;
815 newsect->symbol->value = 0;
816 newsect->symbol->section = newsect;
817 newsect->symbol->flags = BSF_SECTION_SYM;
818
819 newsect->symbol_ptr_ptr = &newsect->symbol;
820 return TRUE;
821 }
822
823 unsigned int _bfd_section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
824
825 /* Initializes a new section. NEWSECT->NAME is already set. */
826
827 static asection *
828 bfd_section_init (bfd *abfd, asection *newsect)
829 {
830 newsect->id = _bfd_section_id;
831 newsect->index = abfd->section_count;
832 newsect->owner = abfd;
833
834 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
835 return NULL;
836
837 _bfd_section_id++;
838 abfd->section_count++;
839 bfd_section_list_append (abfd, newsect);
840 return newsect;
841 }
842
843 /*
844 DOCDD
845 INODE
846 section prototypes, , typedef asection, Sections
847 SUBSECTION
848 Section prototypes
849
850 These are the functions exported by the section handling part of BFD.
851 */
852
853 /*
854 FUNCTION
855 bfd_section_list_clear
856
857 SYNOPSIS
858 void bfd_section_list_clear (bfd *);
859
860 DESCRIPTION
861 Clears the section list, and also resets the section count and
862 hash table entries.
863 */
864
865 void
866 bfd_section_list_clear (bfd *abfd)
867 {
868 abfd->sections = NULL;
869 abfd->section_last = NULL;
870 abfd->section_count = 0;
871 memset (abfd->section_htab.table, 0,
872 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
873 abfd->section_htab.count = 0;
874 }
875
876 /*
877 FUNCTION
878 bfd_get_section_by_name
879
880 SYNOPSIS
881 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
882
883 DESCRIPTION
884 Return the most recently created section attached to @var{abfd}
885 named @var{name}. Return NULL if no such section exists.
886 */
887
888 asection *
889 bfd_get_section_by_name (bfd *abfd, const char *name)
890 {
891 struct section_hash_entry *sh;
892
893 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
894 if (sh != NULL)
895 return &sh->section;
896
897 return NULL;
898 }
899
900 /*
901 FUNCTION
902 bfd_get_next_section_by_name
903
904 SYNOPSIS
905 asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec);
906
907 DESCRIPTION
908 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
909 return the next most recently created section attached to the same
910 BFD with the same name, or if no such section exists in the same BFD and
911 IBFD is non-NULL, the next section with the same name in any input
912 BFD following IBFD. Return NULL on finding no section.
913 */
914
915 asection *
916 bfd_get_next_section_by_name (bfd *ibfd, asection *sec)
917 {
918 struct section_hash_entry *sh;
919 const char *name;
920 unsigned long hash;
921
922 sh = ((struct section_hash_entry *)
923 ((char *) sec - offsetof (struct section_hash_entry, section)));
924
925 hash = sh->root.hash;
926 name = sec->name;
927 for (sh = (struct section_hash_entry *) sh->root.next;
928 sh != NULL;
929 sh = (struct section_hash_entry *) sh->root.next)
930 if (sh->root.hash == hash
931 && strcmp (sh->root.string, name) == 0)
932 return &sh->section;
933
934 if (ibfd != NULL)
935 {
936 while ((ibfd = ibfd->link.next) != NULL)
937 {
938 asection *s = bfd_get_section_by_name (ibfd, name);
939 if (s != NULL)
940 return s;
941 }
942 }
943
944 return NULL;
945 }
946
947 /*
948 FUNCTION
949 bfd_get_linker_section
950
951 SYNOPSIS
952 asection *bfd_get_linker_section (bfd *abfd, const char *name);
953
954 DESCRIPTION
955 Return the linker created section attached to @var{abfd}
956 named @var{name}. Return NULL if no such section exists.
957 */
958
959 asection *
960 bfd_get_linker_section (bfd *abfd, const char *name)
961 {
962 asection *sec = bfd_get_section_by_name (abfd, name);
963
964 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
965 sec = bfd_get_next_section_by_name (NULL, sec);
966 return sec;
967 }
968
969 /*
970 FUNCTION
971 bfd_get_section_by_name_if
972
973 SYNOPSIS
974 asection *bfd_get_section_by_name_if
975 (bfd *abfd,
976 const char *name,
977 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
978 void *obj);
979
980 DESCRIPTION
981 Call the provided function @var{func} for each section
982 attached to the BFD @var{abfd} whose name matches @var{name},
983 passing @var{obj} as an argument. The function will be called
984 as if by
985
986 | func (abfd, the_section, obj);
987
988 It returns the first section for which @var{func} returns true,
989 otherwise <<NULL>>.
990
991 */
992
993 asection *
994 bfd_get_section_by_name_if (bfd *abfd, const char *name,
995 bfd_boolean (*operation) (bfd *,
996 asection *,
997 void *),
998 void *user_storage)
999 {
1000 struct section_hash_entry *sh;
1001 unsigned long hash;
1002
1003 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
1004 if (sh == NULL)
1005 return NULL;
1006
1007 hash = sh->root.hash;
1008 for (; sh != NULL; sh = (struct section_hash_entry *) sh->root.next)
1009 if (sh->root.hash == hash
1010 && strcmp (sh->root.string, name) == 0
1011 && (*operation) (abfd, &sh->section, user_storage))
1012 return &sh->section;
1013
1014 return NULL;
1015 }
1016
1017 /*
1018 FUNCTION
1019 bfd_get_unique_section_name
1020
1021 SYNOPSIS
1022 char *bfd_get_unique_section_name
1023 (bfd *abfd, const char *templat, int *count);
1024
1025 DESCRIPTION
1026 Invent a section name that is unique in @var{abfd} by tacking
1027 a dot and a digit suffix onto the original @var{templat}. If
1028 @var{count} is non-NULL, then it specifies the first number
1029 tried as a suffix to generate a unique name. The value
1030 pointed to by @var{count} will be incremented in this case.
1031 */
1032
1033 char *
1034 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1035 {
1036 int num;
1037 unsigned int len;
1038 char *sname;
1039
1040 len = strlen (templat);
1041 sname = (char *) bfd_malloc (len + 8);
1042 if (sname == NULL)
1043 return NULL;
1044 memcpy (sname, templat, len);
1045 num = 1;
1046 if (count != NULL)
1047 num = *count;
1048
1049 do
1050 {
1051 /* If we have a million sections, something is badly wrong. */
1052 if (num > 999999)
1053 abort ();
1054 sprintf (sname + len, ".%d", num++);
1055 }
1056 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1057
1058 if (count != NULL)
1059 *count = num;
1060 return sname;
1061 }
1062
1063 /*
1064 FUNCTION
1065 bfd_make_section_old_way
1066
1067 SYNOPSIS
1068 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1069
1070 DESCRIPTION
1071 Create a new empty section called @var{name}
1072 and attach it to the end of the chain of sections for the
1073 BFD @var{abfd}. An attempt to create a section with a name which
1074 is already in use returns its pointer without changing the
1075 section chain.
1076
1077 It has the funny name since this is the way it used to be
1078 before it was rewritten....
1079
1080 Possible errors are:
1081 o <<bfd_error_invalid_operation>> -
1082 If output has already started for this BFD.
1083 o <<bfd_error_no_memory>> -
1084 If memory allocation fails.
1085
1086 */
1087
1088 asection *
1089 bfd_make_section_old_way (bfd *abfd, const char *name)
1090 {
1091 asection *newsect;
1092
1093 if (abfd->output_has_begun)
1094 {
1095 bfd_set_error (bfd_error_invalid_operation);
1096 return NULL;
1097 }
1098
1099 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1100 newsect = bfd_abs_section_ptr;
1101 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1102 newsect = bfd_com_section_ptr;
1103 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1104 newsect = bfd_und_section_ptr;
1105 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1106 newsect = bfd_ind_section_ptr;
1107 else
1108 {
1109 struct section_hash_entry *sh;
1110
1111 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1112 if (sh == NULL)
1113 return NULL;
1114
1115 newsect = &sh->section;
1116 if (newsect->name != NULL)
1117 {
1118 /* Section already exists. */
1119 return newsect;
1120 }
1121
1122 newsect->name = name;
1123 return bfd_section_init (abfd, newsect);
1124 }
1125
1126 /* Call new_section_hook when "creating" the standard abs, com, und
1127 and ind sections to tack on format specific section data.
1128 Also, create a proper section symbol. */
1129 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1130 return NULL;
1131 return newsect;
1132 }
1133
1134 /*
1135 FUNCTION
1136 bfd_make_section_anyway_with_flags
1137
1138 SYNOPSIS
1139 asection *bfd_make_section_anyway_with_flags
1140 (bfd *abfd, const char *name, flagword flags);
1141
1142 DESCRIPTION
1143 Create a new empty section called @var{name} and attach it to the end of
1144 the chain of sections for @var{abfd}. Create a new section even if there
1145 is already a section with that name. Also set the attributes of the
1146 new section to the value @var{flags}.
1147
1148 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1149 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1150 o <<bfd_error_no_memory>> - If memory allocation fails.
1151 */
1152
1153 sec_ptr
1154 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1155 flagword flags)
1156 {
1157 struct section_hash_entry *sh;
1158 asection *newsect;
1159
1160 if (abfd->output_has_begun)
1161 {
1162 bfd_set_error (bfd_error_invalid_operation);
1163 return NULL;
1164 }
1165
1166 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1167 if (sh == NULL)
1168 return NULL;
1169
1170 newsect = &sh->section;
1171 if (newsect->name != NULL)
1172 {
1173 /* We are making a section of the same name. Put it in the
1174 section hash table. Even though we can't find it directly by a
1175 hash lookup, we'll be able to find the section by traversing
1176 sh->root.next quicker than looking at all the bfd sections. */
1177 struct section_hash_entry *new_sh;
1178 new_sh = (struct section_hash_entry *)
1179 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1180 if (new_sh == NULL)
1181 return NULL;
1182
1183 new_sh->root = sh->root;
1184 sh->root.next = &new_sh->root;
1185 newsect = &new_sh->section;
1186 }
1187
1188 newsect->flags = flags;
1189 newsect->name = name;
1190 return bfd_section_init (abfd, newsect);
1191 }
1192
1193 /*
1194 FUNCTION
1195 bfd_make_section_anyway
1196
1197 SYNOPSIS
1198 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1199
1200 DESCRIPTION
1201 Create a new empty section called @var{name} and attach it to the end of
1202 the chain of sections for @var{abfd}. Create a new section even if there
1203 is already a section with that name.
1204
1205 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1206 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1207 o <<bfd_error_no_memory>> - If memory allocation fails.
1208 */
1209
1210 sec_ptr
1211 bfd_make_section_anyway (bfd *abfd, const char *name)
1212 {
1213 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1214 }
1215
1216 /*
1217 FUNCTION
1218 bfd_make_section_with_flags
1219
1220 SYNOPSIS
1221 asection *bfd_make_section_with_flags
1222 (bfd *, const char *name, flagword flags);
1223
1224 DESCRIPTION
1225 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1226 bfd_set_error ()) without changing the section chain if there is already a
1227 section named @var{name}. Also set the attributes of the new section to
1228 the value @var{flags}. If there is an error, return <<NULL>> and set
1229 <<bfd_error>>.
1230 */
1231
1232 asection *
1233 bfd_make_section_with_flags (bfd *abfd, const char *name,
1234 flagword flags)
1235 {
1236 struct section_hash_entry *sh;
1237 asection *newsect;
1238
1239 if (abfd == NULL || name == NULL || abfd->output_has_begun)
1240 {
1241 bfd_set_error (bfd_error_invalid_operation);
1242 return NULL;
1243 }
1244
1245 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1246 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1247 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1248 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1249 return NULL;
1250
1251 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1252 if (sh == NULL)
1253 return NULL;
1254
1255 newsect = &sh->section;
1256 if (newsect->name != NULL)
1257 {
1258 /* Section already exists. */
1259 return NULL;
1260 }
1261
1262 newsect->name = name;
1263 newsect->flags = flags;
1264 return bfd_section_init (abfd, newsect);
1265 }
1266
1267 /*
1268 FUNCTION
1269 bfd_make_section
1270
1271 SYNOPSIS
1272 asection *bfd_make_section (bfd *, const char *name);
1273
1274 DESCRIPTION
1275 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1276 bfd_set_error ()) without changing the section chain if there is already a
1277 section named @var{name}. If there is an error, return <<NULL>> and set
1278 <<bfd_error>>.
1279 */
1280
1281 asection *
1282 bfd_make_section (bfd *abfd, const char *name)
1283 {
1284 return bfd_make_section_with_flags (abfd, name, 0);
1285 }
1286
1287 /*
1288 FUNCTION
1289 bfd_set_section_flags
1290
1291 SYNOPSIS
1292 bfd_boolean bfd_set_section_flags
1293 (bfd *abfd, asection *sec, flagword flags);
1294
1295 DESCRIPTION
1296 Set the attributes of the section @var{sec} in the BFD
1297 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1298 <<FALSE>> on error. Possible error returns are:
1299
1300 o <<bfd_error_invalid_operation>> -
1301 The section cannot have one or more of the attributes
1302 requested. For example, a .bss section in <<a.out>> may not
1303 have the <<SEC_HAS_CONTENTS>> field set.
1304
1305 */
1306
1307 bfd_boolean
1308 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1309 sec_ptr section,
1310 flagword flags)
1311 {
1312 section->flags = flags;
1313 return TRUE;
1314 }
1315
1316 /*
1317 FUNCTION
1318 bfd_rename_section
1319
1320 SYNOPSIS
1321 void bfd_rename_section
1322 (bfd *abfd, asection *sec, const char *newname);
1323
1324 DESCRIPTION
1325 Rename section @var{sec} in @var{abfd} to @var{newname}.
1326 */
1327
1328 void
1329 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1330 {
1331 struct section_hash_entry *sh;
1332
1333 sh = (struct section_hash_entry *)
1334 ((char *) sec - offsetof (struct section_hash_entry, section));
1335 sh->section.name = newname;
1336 bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1337 }
1338
1339 /*
1340 FUNCTION
1341 bfd_map_over_sections
1342
1343 SYNOPSIS
1344 void bfd_map_over_sections
1345 (bfd *abfd,
1346 void (*func) (bfd *abfd, asection *sect, void *obj),
1347 void *obj);
1348
1349 DESCRIPTION
1350 Call the provided function @var{func} for each section
1351 attached to the BFD @var{abfd}, passing @var{obj} as an
1352 argument. The function will be called as if by
1353
1354 | func (abfd, the_section, obj);
1355
1356 This is the preferred method for iterating over sections; an
1357 alternative would be to use a loop:
1358
1359 | asection *p;
1360 | for (p = abfd->sections; p != NULL; p = p->next)
1361 | func (abfd, p, ...)
1362
1363 */
1364
1365 void
1366 bfd_map_over_sections (bfd *abfd,
1367 void (*operation) (bfd *, asection *, void *),
1368 void *user_storage)
1369 {
1370 asection *sect;
1371 unsigned int i = 0;
1372
1373 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1374 (*operation) (abfd, sect, user_storage);
1375
1376 if (i != abfd->section_count) /* Debugging */
1377 abort ();
1378 }
1379
1380 /*
1381 FUNCTION
1382 bfd_sections_find_if
1383
1384 SYNOPSIS
1385 asection *bfd_sections_find_if
1386 (bfd *abfd,
1387 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1388 void *obj);
1389
1390 DESCRIPTION
1391 Call the provided function @var{operation} for each section
1392 attached to the BFD @var{abfd}, passing @var{obj} as an
1393 argument. The function will be called as if by
1394
1395 | operation (abfd, the_section, obj);
1396
1397 It returns the first section for which @var{operation} returns true.
1398
1399 */
1400
1401 asection *
1402 bfd_sections_find_if (bfd *abfd,
1403 bfd_boolean (*operation) (bfd *, asection *, void *),
1404 void *user_storage)
1405 {
1406 asection *sect;
1407
1408 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1409 if ((*operation) (abfd, sect, user_storage))
1410 break;
1411
1412 return sect;
1413 }
1414
1415 /*
1416 FUNCTION
1417 bfd_set_section_size
1418
1419 SYNOPSIS
1420 bfd_boolean bfd_set_section_size
1421 (bfd *abfd, asection *sec, bfd_size_type val);
1422
1423 DESCRIPTION
1424 Set @var{sec} to the size @var{val}. If the operation is
1425 ok, then <<TRUE>> is returned, else <<FALSE>>.
1426
1427 Possible error returns:
1428 o <<bfd_error_invalid_operation>> -
1429 Writing has started to the BFD, so setting the size is invalid.
1430
1431 */
1432
1433 bfd_boolean
1434 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1435 {
1436 /* Once you've started writing to any section you cannot create or change
1437 the size of any others. */
1438
1439 if (abfd->output_has_begun)
1440 {
1441 bfd_set_error (bfd_error_invalid_operation);
1442 return FALSE;
1443 }
1444
1445 ptr->size = val;
1446 return TRUE;
1447 }
1448
1449 /*
1450 FUNCTION
1451 bfd_set_section_contents
1452
1453 SYNOPSIS
1454 bfd_boolean bfd_set_section_contents
1455 (bfd *abfd, asection *section, const void *data,
1456 file_ptr offset, bfd_size_type count);
1457
1458 DESCRIPTION
1459 Sets the contents of the section @var{section} in BFD
1460 @var{abfd} to the data starting in memory at @var{location}.
1461 The data is written to the output section starting at offset
1462 @var{offset} for @var{count} octets.
1463
1464 Normally <<TRUE>> is returned, but <<FALSE>> is returned if
1465 there was an error. Possible error returns are:
1466 o <<bfd_error_no_contents>> -
1467 The output section does not have the <<SEC_HAS_CONTENTS>>
1468 attribute, so nothing can be written to it.
1469 o <<bfd_error_bad_value>> -
1470 The section is unable to contain all of the data.
1471 o <<bfd_error_invalid_operation>> -
1472 The BFD is not writeable.
1473 o and some more too.
1474
1475 This routine is front end to the back end function
1476 <<_bfd_set_section_contents>>.
1477
1478 */
1479
1480 bfd_boolean
1481 bfd_set_section_contents (bfd *abfd,
1482 sec_ptr section,
1483 const void *location,
1484 file_ptr offset,
1485 bfd_size_type count)
1486 {
1487 bfd_size_type sz;
1488
1489 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1490 {
1491 bfd_set_error (bfd_error_no_contents);
1492 return FALSE;
1493 }
1494
1495 sz = section->size;
1496 if ((bfd_size_type) offset > sz
1497 || count > sz
1498 || offset + count > sz
1499 || count != (size_t) count)
1500 {
1501 bfd_set_error (bfd_error_bad_value);
1502 return FALSE;
1503 }
1504
1505 if (!bfd_write_p (abfd))
1506 {
1507 bfd_set_error (bfd_error_invalid_operation);
1508 return FALSE;
1509 }
1510
1511 /* Record a copy of the data in memory if desired. */
1512 if (section->contents
1513 && location != section->contents + offset)
1514 memcpy (section->contents + offset, location, (size_t) count);
1515
1516 if (BFD_SEND (abfd, _bfd_set_section_contents,
1517 (abfd, section, location, offset, count)))
1518 {
1519 abfd->output_has_begun = TRUE;
1520 return TRUE;
1521 }
1522
1523 return FALSE;
1524 }
1525
1526 /*
1527 FUNCTION
1528 bfd_get_section_contents
1529
1530 SYNOPSIS
1531 bfd_boolean bfd_get_section_contents
1532 (bfd *abfd, asection *section, void *location, file_ptr offset,
1533 bfd_size_type count);
1534
1535 DESCRIPTION
1536 Read data from @var{section} in BFD @var{abfd}
1537 into memory starting at @var{location}. The data is read at an
1538 offset of @var{offset} from the start of the input section,
1539 and is read for @var{count} bytes.
1540
1541 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1542 flag set are requested or if the section does not have the
1543 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1544 with zeroes. If no errors occur, <<TRUE>> is returned, else
1545 <<FALSE>>.
1546
1547 */
1548 bfd_boolean
1549 bfd_get_section_contents (bfd *abfd,
1550 sec_ptr section,
1551 void *location,
1552 file_ptr offset,
1553 bfd_size_type count)
1554 {
1555 bfd_size_type sz;
1556
1557 if (section->flags & SEC_CONSTRUCTOR)
1558 {
1559 memset (location, 0, (size_t) count);
1560 return TRUE;
1561 }
1562
1563 if (abfd->direction != write_direction && section->rawsize != 0)
1564 sz = section->rawsize;
1565 else
1566 sz = section->size;
1567 if ((bfd_size_type) offset > sz
1568 || count > sz
1569 || offset + count > sz
1570 || count != (size_t) count)
1571 {
1572 bfd_set_error (bfd_error_bad_value);
1573 return FALSE;
1574 }
1575
1576 if (count == 0)
1577 /* Don't bother. */
1578 return TRUE;
1579
1580 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1581 {
1582 memset (location, 0, (size_t) count);
1583 return TRUE;
1584 }
1585
1586 if ((section->flags & SEC_IN_MEMORY) != 0)
1587 {
1588 if (section->contents == NULL)
1589 {
1590 /* This can happen because of errors earlier on in the linking process.
1591 We do not want to seg-fault here, so clear the flag and return an
1592 error code. */
1593 section->flags &= ~ SEC_IN_MEMORY;
1594 bfd_set_error (bfd_error_invalid_operation);
1595 return FALSE;
1596 }
1597
1598 memmove (location, section->contents + offset, (size_t) count);
1599 return TRUE;
1600 }
1601
1602 return BFD_SEND (abfd, _bfd_get_section_contents,
1603 (abfd, section, location, offset, count));
1604 }
1605
1606 /*
1607 FUNCTION
1608 bfd_malloc_and_get_section
1609
1610 SYNOPSIS
1611 bfd_boolean bfd_malloc_and_get_section
1612 (bfd *abfd, asection *section, bfd_byte **buf);
1613
1614 DESCRIPTION
1615 Read all data from @var{section} in BFD @var{abfd}
1616 into a buffer, *@var{buf}, malloc'd by this function.
1617 */
1618
1619 bfd_boolean
1620 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1621 {
1622 *buf = NULL;
1623 return bfd_get_full_section_contents (abfd, sec, buf);
1624 }
1625 /*
1626 FUNCTION
1627 bfd_copy_private_section_data
1628
1629 SYNOPSIS
1630 bfd_boolean bfd_copy_private_section_data
1631 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1632
1633 DESCRIPTION
1634 Copy private section information from @var{isec} in the BFD
1635 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1636 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1637 returns are:
1638
1639 o <<bfd_error_no_memory>> -
1640 Not enough memory exists to create private data for @var{osec}.
1641
1642 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1643 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1644 . (ibfd, isection, obfd, osection))
1645 */
1646
1647 /*
1648 FUNCTION
1649 bfd_generic_is_group_section
1650
1651 SYNOPSIS
1652 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1653
1654 DESCRIPTION
1655 Returns TRUE if @var{sec} is a member of a group.
1656 */
1657
1658 bfd_boolean
1659 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1660 const asection *sec ATTRIBUTE_UNUSED)
1661 {
1662 return FALSE;
1663 }
1664
1665 /*
1666 FUNCTION
1667 bfd_generic_discard_group
1668
1669 SYNOPSIS
1670 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1671
1672 DESCRIPTION
1673 Remove all members of @var{group} from the output.
1674 */
1675
1676 bfd_boolean
1677 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1678 asection *group ATTRIBUTE_UNUSED)
1679 {
1680 return TRUE;
1681 }
1682
1683 bfd_boolean
1684 _bfd_nowrite_set_section_contents (bfd *abfd,
1685 sec_ptr section ATTRIBUTE_UNUSED,
1686 const void *location ATTRIBUTE_UNUSED,
1687 file_ptr offset ATTRIBUTE_UNUSED,
1688 bfd_size_type count ATTRIBUTE_UNUSED)
1689 {
1690 return _bfd_bool_bfd_false_error (abfd);
1691 }
This page took 0.093487 seconds and 4 git commands to generate.