[1/2][GAS][AARCH64]Add BFD_RELOC_AARCH64_TLSLE_LDST8/16/32/64_TPREL_LO12 support...
[deliverable/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright (C) 1990-2018 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Sections
25
26 The raw data contained within a BFD is maintained through the
27 section abstraction. A single BFD may have any number of
28 sections. It keeps hold of them by pointing to the first;
29 each one points to the next in the list.
30
31 Sections are supported in BFD in <<section.c>>.
32
33 @menu
34 @* Section Input::
35 @* Section Output::
36 @* typedef asection::
37 @* section prototypes::
38 @end menu
39
40 INODE
41 Section Input, Section Output, Sections, Sections
42 SUBSECTION
43 Section input
44
45 When a BFD is opened for reading, the section structures are
46 created and attached to the BFD.
47
48 Each section has a name which describes the section in the
49 outside world---for example, <<a.out>> would contain at least
50 three sections, called <<.text>>, <<.data>> and <<.bss>>.
51
52 Names need not be unique; for example a COFF file may have several
53 sections named <<.data>>.
54
55 Sometimes a BFD will contain more than the ``natural'' number of
56 sections. A back end may attach other sections containing
57 constructor data, or an application may add a section (using
58 <<bfd_make_section>>) to the sections attached to an already open
59 BFD. For example, the linker creates an extra section
60 <<COMMON>> for each input file's BFD to hold information about
61 common storage.
62
63 The raw data is not necessarily read in when
64 the section descriptor is created. Some targets may leave the
65 data in place until a <<bfd_get_section_contents>> call is
66 made. Other back ends may read in all the data at once. For
67 example, an S-record file has to be read once to determine the
68 size of the data. An IEEE-695 file doesn't contain raw data in
69 sections, but data and relocation expressions intermixed, so
70 the data area has to be parsed to get out the data and
71 relocations.
72
73 INODE
74 Section Output, typedef asection, Section Input, Sections
75
76 SUBSECTION
77 Section output
78
79 To write a new object style BFD, the various sections to be
80 written have to be created. They are attached to the BFD in
81 the same way as input sections; data is written to the
82 sections using <<bfd_set_section_contents>>.
83
84 Any program that creates or combines sections (e.g., the assembler
85 and linker) must use the <<asection>> fields <<output_section>> and
86 <<output_offset>> to indicate the file sections to which each
87 section must be written. (If the section is being created from
88 scratch, <<output_section>> should probably point to the section
89 itself and <<output_offset>> should probably be zero.)
90
91 The data to be written comes from input sections attached
92 (via <<output_section>> pointers) to
93 the output sections. The output section structure can be
94 considered a filter for the input section: the output section
95 determines the vma of the output data and the name, but the
96 input section determines the offset into the output section of
97 the data to be written.
98
99 E.g., to create a section "O", starting at 0x100, 0x123 long,
100 containing two subsections, "A" at offset 0x0 (i.e., at vma
101 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
102 structures would look like:
103
104 | section name "A"
105 | output_offset 0x00
106 | size 0x20
107 | output_section -----------> section name "O"
108 | | vma 0x100
109 | section name "B" | size 0x123
110 | output_offset 0x20 |
111 | size 0x103 |
112 | output_section --------|
113
114 SUBSECTION
115 Link orders
116
117 The data within a section is stored in a @dfn{link_order}.
118 These are much like the fixups in <<gas>>. The link_order
119 abstraction allows a section to grow and shrink within itself.
120
121 A link_order knows how big it is, and which is the next
122 link_order and where the raw data for it is; it also points to
123 a list of relocations which apply to it.
124
125 The link_order is used by the linker to perform relaxing on
126 final code. The compiler creates code which is as big as
127 necessary to make it work without relaxing, and the user can
128 select whether to relax. Sometimes relaxing takes a lot of
129 time. The linker runs around the relocations to see if any
130 are attached to data which can be shrunk, if so it does it on
131 a link_order by link_order basis.
132
133 */
134
135 #include "sysdep.h"
136 #include "bfd.h"
137 #include "libbfd.h"
138 #include "bfdlink.h"
139
140 /*
141 DOCDD
142 INODE
143 typedef asection, section prototypes, Section Output, Sections
144 SUBSECTION
145 typedef asection
146
147 Here is the section structure:
148
149 CODE_FRAGMENT
150 .
151 .typedef struct bfd_section
152 .{
153 . {* The name of the section; the name isn't a copy, the pointer is
154 . the same as that passed to bfd_make_section. *}
155 . const char *name;
156 .
157 . {* A unique sequence number. *}
158 . unsigned int id;
159 .
160 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
161 . unsigned int index;
162 .
163 . {* The next section in the list belonging to the BFD, or NULL. *}
164 . struct bfd_section *next;
165 .
166 . {* The previous section in the list belonging to the BFD, or NULL. *}
167 . struct bfd_section *prev;
168 .
169 . {* The field flags contains attributes of the section. Some
170 . flags are read in from the object file, and some are
171 . synthesized from other information. *}
172 . flagword flags;
173 .
174 .#define SEC_NO_FLAGS 0x0
175 .
176 . {* Tells the OS to allocate space for this section when loading.
177 . This is clear for a section containing debug information only. *}
178 .#define SEC_ALLOC 0x1
179 .
180 . {* Tells the OS to load the section from the file when loading.
181 . This is clear for a .bss section. *}
182 .#define SEC_LOAD 0x2
183 .
184 . {* The section contains data still to be relocated, so there is
185 . some relocation information too. *}
186 .#define SEC_RELOC 0x4
187 .
188 . {* A signal to the OS that the section contains read only data. *}
189 .#define SEC_READONLY 0x8
190 .
191 . {* The section contains code only. *}
192 .#define SEC_CODE 0x10
193 .
194 . {* The section contains data only. *}
195 .#define SEC_DATA 0x20
196 .
197 . {* The section will reside in ROM. *}
198 .#define SEC_ROM 0x40
199 .
200 . {* The section contains constructor information. This section
201 . type is used by the linker to create lists of constructors and
202 . destructors used by <<g++>>. When a back end sees a symbol
203 . which should be used in a constructor list, it creates a new
204 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
205 . the symbol to it, and builds a relocation. To build the lists
206 . of constructors, all the linker has to do is catenate all the
207 . sections called <<__CTOR_LIST__>> and relocate the data
208 . contained within - exactly the operations it would peform on
209 . standard data. *}
210 .#define SEC_CONSTRUCTOR 0x80
211 .
212 . {* The section has contents - a data section could be
213 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
214 . <<SEC_HAS_CONTENTS>> *}
215 .#define SEC_HAS_CONTENTS 0x100
216 .
217 . {* An instruction to the linker to not output the section
218 . even if it has information which would normally be written. *}
219 .#define SEC_NEVER_LOAD 0x200
220 .
221 . {* The section contains thread local data. *}
222 .#define SEC_THREAD_LOCAL 0x400
223 .
224 . {* The section's size is fixed. Generic linker code will not
225 . recalculate it and it is up to whoever has set this flag to
226 . get the size right. *}
227 .#define SEC_FIXED_SIZE 0x800
228 .
229 . {* The section contains common symbols (symbols may be defined
230 . multiple times, the value of a symbol is the amount of
231 . space it requires, and the largest symbol value is the one
232 . used). Most targets have exactly one of these (which we
233 . translate to bfd_com_section_ptr), but ECOFF has two. *}
234 .#define SEC_IS_COMMON 0x1000
235 .
236 . {* The section contains only debugging information. For
237 . example, this is set for ELF .debug and .stab sections.
238 . strip tests this flag to see if a section can be
239 . discarded. *}
240 .#define SEC_DEBUGGING 0x2000
241 .
242 . {* The contents of this section are held in memory pointed to
243 . by the contents field. This is checked by bfd_get_section_contents,
244 . and the data is retrieved from memory if appropriate. *}
245 .#define SEC_IN_MEMORY 0x4000
246 .
247 . {* The contents of this section are to be excluded by the
248 . linker for executable and shared objects unless those
249 . objects are to be further relocated. *}
250 .#define SEC_EXCLUDE 0x8000
251 .
252 . {* The contents of this section are to be sorted based on the sum of
253 . the symbol and addend values specified by the associated relocation
254 . entries. Entries without associated relocation entries will be
255 . appended to the end of the section in an unspecified order. *}
256 .#define SEC_SORT_ENTRIES 0x10000
257 .
258 . {* When linking, duplicate sections of the same name should be
259 . discarded, rather than being combined into a single section as
260 . is usually done. This is similar to how common symbols are
261 . handled. See SEC_LINK_DUPLICATES below. *}
262 .#define SEC_LINK_ONCE 0x20000
263 .
264 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
265 . should handle duplicate sections. *}
266 .#define SEC_LINK_DUPLICATES 0xc0000
267 .
268 . {* This value for SEC_LINK_DUPLICATES means that duplicate
269 . sections with the same name should simply be discarded. *}
270 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
271 .
272 . {* This value for SEC_LINK_DUPLICATES means that the linker
273 . should warn if there are any duplicate sections, although
274 . it should still only link one copy. *}
275 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
276 .
277 . {* This value for SEC_LINK_DUPLICATES means that the linker
278 . should warn if any duplicate sections are a different size. *}
279 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
280 .
281 . {* This value for SEC_LINK_DUPLICATES means that the linker
282 . should warn if any duplicate sections contain different
283 . contents. *}
284 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
285 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
286 .
287 . {* This section was created by the linker as part of dynamic
288 . relocation or other arcane processing. It is skipped when
289 . going through the first-pass output, trusting that someone
290 . else up the line will take care of it later. *}
291 .#define SEC_LINKER_CREATED 0x100000
292 .
293 . {* This section should not be subject to garbage collection.
294 . Also set to inform the linker that this section should not be
295 . listed in the link map as discarded. *}
296 .#define SEC_KEEP 0x200000
297 .
298 . {* This section contains "short" data, and should be placed
299 . "near" the GP. *}
300 .#define SEC_SMALL_DATA 0x400000
301 .
302 . {* Attempt to merge identical entities in the section.
303 . Entity size is given in the entsize field. *}
304 .#define SEC_MERGE 0x800000
305 .
306 . {* If given with SEC_MERGE, entities to merge are zero terminated
307 . strings where entsize specifies character size instead of fixed
308 . size entries. *}
309 .#define SEC_STRINGS 0x1000000
310 .
311 . {* This section contains data about section groups. *}
312 .#define SEC_GROUP 0x2000000
313 .
314 . {* The section is a COFF shared library section. This flag is
315 . only for the linker. If this type of section appears in
316 . the input file, the linker must copy it to the output file
317 . without changing the vma or size. FIXME: Although this
318 . was originally intended to be general, it really is COFF
319 . specific (and the flag was renamed to indicate this). It
320 . might be cleaner to have some more general mechanism to
321 . allow the back end to control what the linker does with
322 . sections. *}
323 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
324 .
325 . {* This input section should be copied to output in reverse order
326 . as an array of pointers. This is for ELF linker internal use
327 . only. *}
328 .#define SEC_ELF_REVERSE_COPY 0x4000000
329 .
330 . {* This section contains data which may be shared with other
331 . executables or shared objects. This is for COFF only. *}
332 .#define SEC_COFF_SHARED 0x8000000
333 .
334 . {* This section should be compressed. This is for ELF linker
335 . internal use only. *}
336 .#define SEC_ELF_COMPRESS 0x8000000
337 .
338 . {* When a section with this flag is being linked, then if the size of
339 . the input section is less than a page, it should not cross a page
340 . boundary. If the size of the input section is one page or more,
341 . it should be aligned on a page boundary. This is for TI
342 . TMS320C54X only. *}
343 .#define SEC_TIC54X_BLOCK 0x10000000
344 .
345 . {* This section should be renamed. This is for ELF linker
346 . internal use only. *}
347 .#define SEC_ELF_RENAME 0x10000000
348 .
349 . {* Conditionally link this section; do not link if there are no
350 . references found to any symbol in the section. This is for TI
351 . TMS320C54X only. *}
352 .#define SEC_TIC54X_CLINK 0x20000000
353 .
354 . {* This section contains vliw code. This is for Toshiba MeP only. *}
355 .#define SEC_MEP_VLIW 0x20000000
356 .
357 . {* Indicate that section has the no read flag set. This happens
358 . when memory read flag isn't set. *}
359 .#define SEC_COFF_NOREAD 0x40000000
360 .
361 . {* Indicate that section has the purecode flag set. *}
362 .#define SEC_ELF_PURECODE 0x80000000
363 .
364 . {* End of section flags. *}
365 .
366 . {* Some internal packed boolean fields. *}
367 .
368 . {* See the vma field. *}
369 . unsigned int user_set_vma : 1;
370 .
371 . {* A mark flag used by some of the linker backends. *}
372 . unsigned int linker_mark : 1;
373 .
374 . {* Another mark flag used by some of the linker backends. Set for
375 . output sections that have an input section. *}
376 . unsigned int linker_has_input : 1;
377 .
378 . {* Mark flag used by some linker backends for garbage collection. *}
379 . unsigned int gc_mark : 1;
380 .
381 . {* Section compression status. *}
382 . unsigned int compress_status : 2;
383 .#define COMPRESS_SECTION_NONE 0
384 .#define COMPRESS_SECTION_DONE 1
385 .#define DECOMPRESS_SECTION_SIZED 2
386 .
387 . {* The following flags are used by the ELF linker. *}
388 .
389 . {* Mark sections which have been allocated to segments. *}
390 . unsigned int segment_mark : 1;
391 .
392 . {* Type of sec_info information. *}
393 . unsigned int sec_info_type:3;
394 .#define SEC_INFO_TYPE_NONE 0
395 .#define SEC_INFO_TYPE_STABS 1
396 .#define SEC_INFO_TYPE_MERGE 2
397 .#define SEC_INFO_TYPE_EH_FRAME 3
398 .#define SEC_INFO_TYPE_JUST_SYMS 4
399 .#define SEC_INFO_TYPE_TARGET 5
400 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6
401 .
402 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
403 . unsigned int use_rela_p:1;
404 .
405 . {* Bits used by various backends. The generic code doesn't touch
406 . these fields. *}
407 .
408 . unsigned int sec_flg0:1;
409 . unsigned int sec_flg1:1;
410 . unsigned int sec_flg2:1;
411 . unsigned int sec_flg3:1;
412 . unsigned int sec_flg4:1;
413 . unsigned int sec_flg5:1;
414 .
415 . {* End of internal packed boolean fields. *}
416 .
417 . {* The virtual memory address of the section - where it will be
418 . at run time. The symbols are relocated against this. The
419 . user_set_vma flag is maintained by bfd; if it's not set, the
420 . backend can assign addresses (for example, in <<a.out>>, where
421 . the default address for <<.data>> is dependent on the specific
422 . target and various flags). *}
423 . bfd_vma vma;
424 .
425 . {* The load address of the section - where it would be in a
426 . rom image; really only used for writing section header
427 . information. *}
428 . bfd_vma lma;
429 .
430 . {* The size of the section in *octets*, as it will be output.
431 . Contains a value even if the section has no contents (e.g., the
432 . size of <<.bss>>). *}
433 . bfd_size_type size;
434 .
435 . {* For input sections, the original size on disk of the section, in
436 . octets. This field should be set for any section whose size is
437 . changed by linker relaxation. It is required for sections where
438 . the linker relaxation scheme doesn't cache altered section and
439 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
440 . targets), and thus the original size needs to be kept to read the
441 . section multiple times. For output sections, rawsize holds the
442 . section size calculated on a previous linker relaxation pass. *}
443 . bfd_size_type rawsize;
444 .
445 . {* The compressed size of the section in octets. *}
446 . bfd_size_type compressed_size;
447 .
448 . {* Relaxation table. *}
449 . struct relax_table *relax;
450 .
451 . {* Count of used relaxation table entries. *}
452 . int relax_count;
453 .
454 .
455 . {* If this section is going to be output, then this value is the
456 . offset in *bytes* into the output section of the first byte in the
457 . input section (byte ==> smallest addressable unit on the
458 . target). In most cases, if this was going to start at the
459 . 100th octet (8-bit quantity) in the output section, this value
460 . would be 100. However, if the target byte size is 16 bits
461 . (bfd_octets_per_byte is "2"), this value would be 50. *}
462 . bfd_vma output_offset;
463 .
464 . {* The output section through which to map on output. *}
465 . struct bfd_section *output_section;
466 .
467 . {* The alignment requirement of the section, as an exponent of 2 -
468 . e.g., 3 aligns to 2^3 (or 8). *}
469 . unsigned int alignment_power;
470 .
471 . {* If an input section, a pointer to a vector of relocation
472 . records for the data in this section. *}
473 . struct reloc_cache_entry *relocation;
474 .
475 . {* If an output section, a pointer to a vector of pointers to
476 . relocation records for the data in this section. *}
477 . struct reloc_cache_entry **orelocation;
478 .
479 . {* The number of relocation records in one of the above. *}
480 . unsigned reloc_count;
481 .
482 . {* Information below is back end specific - and not always used
483 . or updated. *}
484 .
485 . {* File position of section data. *}
486 . file_ptr filepos;
487 .
488 . {* File position of relocation info. *}
489 . file_ptr rel_filepos;
490 .
491 . {* File position of line data. *}
492 . file_ptr line_filepos;
493 .
494 . {* Pointer to data for applications. *}
495 . void *userdata;
496 .
497 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
498 . contents. *}
499 . unsigned char *contents;
500 .
501 . {* Attached line number information. *}
502 . alent *lineno;
503 .
504 . {* Number of line number records. *}
505 . unsigned int lineno_count;
506 .
507 . {* Entity size for merging purposes. *}
508 . unsigned int entsize;
509 .
510 . {* Points to the kept section if this section is a link-once section,
511 . and is discarded. *}
512 . struct bfd_section *kept_section;
513 .
514 . {* When a section is being output, this value changes as more
515 . linenumbers are written out. *}
516 . file_ptr moving_line_filepos;
517 .
518 . {* What the section number is in the target world. *}
519 . int target_index;
520 .
521 . void *used_by_bfd;
522 .
523 . {* If this is a constructor section then here is a list of the
524 . relocations created to relocate items within it. *}
525 . struct relent_chain *constructor_chain;
526 .
527 . {* The BFD which owns the section. *}
528 . bfd *owner;
529 .
530 . {* A symbol which points at this section only. *}
531 . struct bfd_symbol *symbol;
532 . struct bfd_symbol **symbol_ptr_ptr;
533 .
534 . {* Early in the link process, map_head and map_tail are used to build
535 . a list of input sections attached to an output section. Later,
536 . output sections use these fields for a list of bfd_link_order
537 . structs. *}
538 . union {
539 . struct bfd_link_order *link_order;
540 . struct bfd_section *s;
541 . } map_head, map_tail;
542 .} asection;
543 .
544 .{* Relax table contains information about instructions which can
545 . be removed by relaxation -- replacing a long address with a
546 . short address. *}
547 .struct relax_table {
548 . {* Address where bytes may be deleted. *}
549 . bfd_vma addr;
550 .
551 . {* Number of bytes to be deleted. *}
552 . int size;
553 .};
554 .
555 .{* Note: the following are provided as inline functions rather than macros
556 . because not all callers use the return value. A macro implementation
557 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
558 . compilers will complain about comma expressions that have no effect. *}
559 .static inline bfd_boolean
560 .bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr,
561 . void * val)
562 .{
563 . ptr->userdata = val;
564 . return TRUE;
565 .}
566 .
567 .static inline bfd_boolean
568 .bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val)
569 .{
570 . ptr->vma = ptr->lma = val;
571 . ptr->user_set_vma = TRUE;
572 . return TRUE;
573 .}
574 .
575 .static inline bfd_boolean
576 .bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr,
577 . unsigned int val)
578 .{
579 . ptr->alignment_power = val;
580 . return TRUE;
581 .}
582 .
583 .{* These sections are global, and are managed by BFD. The application
584 . and target back end are not permitted to change the values in
585 . these sections. *}
586 .extern asection _bfd_std_section[4];
587 .
588 .#define BFD_ABS_SECTION_NAME "*ABS*"
589 .#define BFD_UND_SECTION_NAME "*UND*"
590 .#define BFD_COM_SECTION_NAME "*COM*"
591 .#define BFD_IND_SECTION_NAME "*IND*"
592 .
593 .{* Pointer to the common section. *}
594 .#define bfd_com_section_ptr (&_bfd_std_section[0])
595 .{* Pointer to the undefined section. *}
596 .#define bfd_und_section_ptr (&_bfd_std_section[1])
597 .{* Pointer to the absolute section. *}
598 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
599 .{* Pointer to the indirect section. *}
600 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
601 .
602 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
603 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
604 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
605 .
606 .#define bfd_is_const_section(SEC) \
607 . ( ((SEC) == bfd_abs_section_ptr) \
608 . || ((SEC) == bfd_und_section_ptr) \
609 . || ((SEC) == bfd_com_section_ptr) \
610 . || ((SEC) == bfd_ind_section_ptr))
611 .
612 .{* Macros to handle insertion and deletion of a bfd's sections. These
613 . only handle the list pointers, ie. do not adjust section_count,
614 . target_index etc. *}
615 .#define bfd_section_list_remove(ABFD, S) \
616 . do \
617 . { \
618 . asection *_s = S; \
619 . asection *_next = _s->next; \
620 . asection *_prev = _s->prev; \
621 . if (_prev) \
622 . _prev->next = _next; \
623 . else \
624 . (ABFD)->sections = _next; \
625 . if (_next) \
626 . _next->prev = _prev; \
627 . else \
628 . (ABFD)->section_last = _prev; \
629 . } \
630 . while (0)
631 .#define bfd_section_list_append(ABFD, S) \
632 . do \
633 . { \
634 . asection *_s = S; \
635 . bfd *_abfd = ABFD; \
636 . _s->next = NULL; \
637 . if (_abfd->section_last) \
638 . { \
639 . _s->prev = _abfd->section_last; \
640 . _abfd->section_last->next = _s; \
641 . } \
642 . else \
643 . { \
644 . _s->prev = NULL; \
645 . _abfd->sections = _s; \
646 . } \
647 . _abfd->section_last = _s; \
648 . } \
649 . while (0)
650 .#define bfd_section_list_prepend(ABFD, S) \
651 . do \
652 . { \
653 . asection *_s = S; \
654 . bfd *_abfd = ABFD; \
655 . _s->prev = NULL; \
656 . if (_abfd->sections) \
657 . { \
658 . _s->next = _abfd->sections; \
659 . _abfd->sections->prev = _s; \
660 . } \
661 . else \
662 . { \
663 . _s->next = NULL; \
664 . _abfd->section_last = _s; \
665 . } \
666 . _abfd->sections = _s; \
667 . } \
668 . while (0)
669 .#define bfd_section_list_insert_after(ABFD, A, S) \
670 . do \
671 . { \
672 . asection *_a = A; \
673 . asection *_s = S; \
674 . asection *_next = _a->next; \
675 . _s->next = _next; \
676 . _s->prev = _a; \
677 . _a->next = _s; \
678 . if (_next) \
679 . _next->prev = _s; \
680 . else \
681 . (ABFD)->section_last = _s; \
682 . } \
683 . while (0)
684 .#define bfd_section_list_insert_before(ABFD, B, S) \
685 . do \
686 . { \
687 . asection *_b = B; \
688 . asection *_s = S; \
689 . asection *_prev = _b->prev; \
690 . _s->prev = _prev; \
691 . _s->next = _b; \
692 . _b->prev = _s; \
693 . if (_prev) \
694 . _prev->next = _s; \
695 . else \
696 . (ABFD)->sections = _s; \
697 . } \
698 . while (0)
699 .#define bfd_section_removed_from_list(ABFD, S) \
700 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
701 .
702 .#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS) \
703 . {* name, id, index, next, prev, flags, user_set_vma, *} \
704 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
705 . \
706 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
707 . 0, 0, 1, 0, \
708 . \
709 . {* segment_mark, sec_info_type, use_rela_p, *} \
710 . 0, 0, 0, \
711 . \
712 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
713 . 0, 0, 0, 0, 0, 0, \
714 . \
715 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
716 . 0, 0, 0, 0, 0, 0, 0, \
717 . \
718 . {* output_offset, output_section, alignment_power, *} \
719 . 0, &SEC, 0, \
720 . \
721 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
722 . NULL, NULL, 0, 0, 0, \
723 . \
724 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
725 . 0, NULL, NULL, NULL, 0, \
726 . \
727 . {* entsize, kept_section, moving_line_filepos, *} \
728 . 0, NULL, 0, \
729 . \
730 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
731 . 0, NULL, NULL, NULL, \
732 . \
733 . {* symbol, symbol_ptr_ptr, *} \
734 . (struct bfd_symbol *) SYM, &SEC.symbol, \
735 . \
736 . {* map_head, map_tail *} \
737 . { NULL }, { NULL } \
738 . }
739 .
740 .{* We use a macro to initialize the static asymbol structures because
741 . traditional C does not permit us to initialize a union member while
742 . gcc warns if we don't initialize it.
743 . the_bfd, name, value, attr, section [, udata] *}
744 .#ifdef __STDC__
745 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
746 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
747 .#else
748 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
749 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
750 .#endif
751 .
752 */
753
754 /* These symbols are global, not specific to any BFD. Therefore, anything
755 that tries to change them is broken, and should be repaired. */
756
757 static const asymbol global_syms[] =
758 {
759 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
760 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
761 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
762 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
763 };
764
765 #define STD_SECTION(NAME, IDX, FLAGS) \
766 BFD_FAKE_SECTION(_bfd_std_section[IDX], &global_syms[IDX], NAME, IDX, FLAGS)
767
768 asection _bfd_std_section[] = {
769 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
770 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
771 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
772 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
773 };
774 #undef STD_SECTION
775
776 /* Initialize an entry in the section hash table. */
777
778 struct bfd_hash_entry *
779 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
780 struct bfd_hash_table *table,
781 const char *string)
782 {
783 /* Allocate the structure if it has not already been allocated by a
784 subclass. */
785 if (entry == NULL)
786 {
787 entry = (struct bfd_hash_entry *)
788 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
789 if (entry == NULL)
790 return entry;
791 }
792
793 /* Call the allocation method of the superclass. */
794 entry = bfd_hash_newfunc (entry, table, string);
795 if (entry != NULL)
796 memset (&((struct section_hash_entry *) entry)->section, 0,
797 sizeof (asection));
798
799 return entry;
800 }
801
802 #define section_hash_lookup(table, string, create, copy) \
803 ((struct section_hash_entry *) \
804 bfd_hash_lookup ((table), (string), (create), (copy)))
805
806 /* Create a symbol whose only job is to point to this section. This
807 is useful for things like relocs which are relative to the base
808 of a section. */
809
810 bfd_boolean
811 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
812 {
813 newsect->symbol = bfd_make_empty_symbol (abfd);
814 if (newsect->symbol == NULL)
815 return FALSE;
816
817 newsect->symbol->name = newsect->name;
818 newsect->symbol->value = 0;
819 newsect->symbol->section = newsect;
820 newsect->symbol->flags = BSF_SECTION_SYM;
821
822 newsect->symbol_ptr_ptr = &newsect->symbol;
823 return TRUE;
824 }
825
826 static unsigned int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
827
828 /* Initializes a new section. NEWSECT->NAME is already set. */
829
830 static asection *
831 bfd_section_init (bfd *abfd, asection *newsect)
832 {
833 newsect->id = section_id;
834 newsect->index = abfd->section_count;
835 newsect->owner = abfd;
836
837 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
838 return NULL;
839
840 section_id++;
841 abfd->section_count++;
842 bfd_section_list_append (abfd, newsect);
843 return newsect;
844 }
845
846 /*
847 DOCDD
848 INODE
849 section prototypes, , typedef asection, Sections
850 SUBSECTION
851 Section prototypes
852
853 These are the functions exported by the section handling part of BFD.
854 */
855
856 /*
857 FUNCTION
858 bfd_section_list_clear
859
860 SYNOPSIS
861 void bfd_section_list_clear (bfd *);
862
863 DESCRIPTION
864 Clears the section list, and also resets the section count and
865 hash table entries.
866 */
867
868 void
869 bfd_section_list_clear (bfd *abfd)
870 {
871 abfd->sections = NULL;
872 abfd->section_last = NULL;
873 abfd->section_count = 0;
874 memset (abfd->section_htab.table, 0,
875 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
876 abfd->section_htab.count = 0;
877 }
878
879 /*
880 FUNCTION
881 bfd_get_section_by_name
882
883 SYNOPSIS
884 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
885
886 DESCRIPTION
887 Return the most recently created section attached to @var{abfd}
888 named @var{name}. Return NULL if no such section exists.
889 */
890
891 asection *
892 bfd_get_section_by_name (bfd *abfd, const char *name)
893 {
894 struct section_hash_entry *sh;
895
896 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
897 if (sh != NULL)
898 return &sh->section;
899
900 return NULL;
901 }
902
903 /*
904 FUNCTION
905 bfd_get_next_section_by_name
906
907 SYNOPSIS
908 asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec);
909
910 DESCRIPTION
911 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
912 return the next most recently created section attached to the same
913 BFD with the same name, or if no such section exists in the same BFD and
914 IBFD is non-NULL, the next section with the same name in any input
915 BFD following IBFD. Return NULL on finding no section.
916 */
917
918 asection *
919 bfd_get_next_section_by_name (bfd *ibfd, asection *sec)
920 {
921 struct section_hash_entry *sh;
922 const char *name;
923 unsigned long hash;
924
925 sh = ((struct section_hash_entry *)
926 ((char *) sec - offsetof (struct section_hash_entry, section)));
927
928 hash = sh->root.hash;
929 name = sec->name;
930 for (sh = (struct section_hash_entry *) sh->root.next;
931 sh != NULL;
932 sh = (struct section_hash_entry *) sh->root.next)
933 if (sh->root.hash == hash
934 && strcmp (sh->root.string, name) == 0)
935 return &sh->section;
936
937 if (ibfd != NULL)
938 {
939 while ((ibfd = ibfd->link.next) != NULL)
940 {
941 asection *s = bfd_get_section_by_name (ibfd, name);
942 if (s != NULL)
943 return s;
944 }
945 }
946
947 return NULL;
948 }
949
950 /*
951 FUNCTION
952 bfd_get_linker_section
953
954 SYNOPSIS
955 asection *bfd_get_linker_section (bfd *abfd, const char *name);
956
957 DESCRIPTION
958 Return the linker created section attached to @var{abfd}
959 named @var{name}. Return NULL if no such section exists.
960 */
961
962 asection *
963 bfd_get_linker_section (bfd *abfd, const char *name)
964 {
965 asection *sec = bfd_get_section_by_name (abfd, name);
966
967 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
968 sec = bfd_get_next_section_by_name (NULL, sec);
969 return sec;
970 }
971
972 /*
973 FUNCTION
974 bfd_get_section_by_name_if
975
976 SYNOPSIS
977 asection *bfd_get_section_by_name_if
978 (bfd *abfd,
979 const char *name,
980 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
981 void *obj);
982
983 DESCRIPTION
984 Call the provided function @var{func} for each section
985 attached to the BFD @var{abfd} whose name matches @var{name},
986 passing @var{obj} as an argument. The function will be called
987 as if by
988
989 | func (abfd, the_section, obj);
990
991 It returns the first section for which @var{func} returns true,
992 otherwise <<NULL>>.
993
994 */
995
996 asection *
997 bfd_get_section_by_name_if (bfd *abfd, const char *name,
998 bfd_boolean (*operation) (bfd *,
999 asection *,
1000 void *),
1001 void *user_storage)
1002 {
1003 struct section_hash_entry *sh;
1004 unsigned long hash;
1005
1006 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
1007 if (sh == NULL)
1008 return NULL;
1009
1010 hash = sh->root.hash;
1011 for (; sh != NULL; sh = (struct section_hash_entry *) sh->root.next)
1012 if (sh->root.hash == hash
1013 && strcmp (sh->root.string, name) == 0
1014 && (*operation) (abfd, &sh->section, user_storage))
1015 return &sh->section;
1016
1017 return NULL;
1018 }
1019
1020 /*
1021 FUNCTION
1022 bfd_get_unique_section_name
1023
1024 SYNOPSIS
1025 char *bfd_get_unique_section_name
1026 (bfd *abfd, const char *templat, int *count);
1027
1028 DESCRIPTION
1029 Invent a section name that is unique in @var{abfd} by tacking
1030 a dot and a digit suffix onto the original @var{templat}. If
1031 @var{count} is non-NULL, then it specifies the first number
1032 tried as a suffix to generate a unique name. The value
1033 pointed to by @var{count} will be incremented in this case.
1034 */
1035
1036 char *
1037 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1038 {
1039 int num;
1040 unsigned int len;
1041 char *sname;
1042
1043 len = strlen (templat);
1044 sname = (char *) bfd_malloc (len + 8);
1045 if (sname == NULL)
1046 return NULL;
1047 memcpy (sname, templat, len);
1048 num = 1;
1049 if (count != NULL)
1050 num = *count;
1051
1052 do
1053 {
1054 /* If we have a million sections, something is badly wrong. */
1055 if (num > 999999)
1056 abort ();
1057 sprintf (sname + len, ".%d", num++);
1058 }
1059 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1060
1061 if (count != NULL)
1062 *count = num;
1063 return sname;
1064 }
1065
1066 /*
1067 FUNCTION
1068 bfd_make_section_old_way
1069
1070 SYNOPSIS
1071 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1072
1073 DESCRIPTION
1074 Create a new empty section called @var{name}
1075 and attach it to the end of the chain of sections for the
1076 BFD @var{abfd}. An attempt to create a section with a name which
1077 is already in use returns its pointer without changing the
1078 section chain.
1079
1080 It has the funny name since this is the way it used to be
1081 before it was rewritten....
1082
1083 Possible errors are:
1084 o <<bfd_error_invalid_operation>> -
1085 If output has already started for this BFD.
1086 o <<bfd_error_no_memory>> -
1087 If memory allocation fails.
1088
1089 */
1090
1091 asection *
1092 bfd_make_section_old_way (bfd *abfd, const char *name)
1093 {
1094 asection *newsect;
1095
1096 if (abfd->output_has_begun)
1097 {
1098 bfd_set_error (bfd_error_invalid_operation);
1099 return NULL;
1100 }
1101
1102 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1103 newsect = bfd_abs_section_ptr;
1104 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1105 newsect = bfd_com_section_ptr;
1106 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1107 newsect = bfd_und_section_ptr;
1108 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1109 newsect = bfd_ind_section_ptr;
1110 else
1111 {
1112 struct section_hash_entry *sh;
1113
1114 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1115 if (sh == NULL)
1116 return NULL;
1117
1118 newsect = &sh->section;
1119 if (newsect->name != NULL)
1120 {
1121 /* Section already exists. */
1122 return newsect;
1123 }
1124
1125 newsect->name = name;
1126 return bfd_section_init (abfd, newsect);
1127 }
1128
1129 /* Call new_section_hook when "creating" the standard abs, com, und
1130 and ind sections to tack on format specific section data.
1131 Also, create a proper section symbol. */
1132 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1133 return NULL;
1134 return newsect;
1135 }
1136
1137 /*
1138 FUNCTION
1139 bfd_make_section_anyway_with_flags
1140
1141 SYNOPSIS
1142 asection *bfd_make_section_anyway_with_flags
1143 (bfd *abfd, const char *name, flagword flags);
1144
1145 DESCRIPTION
1146 Create a new empty section called @var{name} and attach it to the end of
1147 the chain of sections for @var{abfd}. Create a new section even if there
1148 is already a section with that name. Also set the attributes of the
1149 new section to the value @var{flags}.
1150
1151 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1152 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1153 o <<bfd_error_no_memory>> - If memory allocation fails.
1154 */
1155
1156 sec_ptr
1157 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1158 flagword flags)
1159 {
1160 struct section_hash_entry *sh;
1161 asection *newsect;
1162
1163 if (abfd->output_has_begun)
1164 {
1165 bfd_set_error (bfd_error_invalid_operation);
1166 return NULL;
1167 }
1168
1169 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1170 if (sh == NULL)
1171 return NULL;
1172
1173 newsect = &sh->section;
1174 if (newsect->name != NULL)
1175 {
1176 /* We are making a section of the same name. Put it in the
1177 section hash table. Even though we can't find it directly by a
1178 hash lookup, we'll be able to find the section by traversing
1179 sh->root.next quicker than looking at all the bfd sections. */
1180 struct section_hash_entry *new_sh;
1181 new_sh = (struct section_hash_entry *)
1182 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1183 if (new_sh == NULL)
1184 return NULL;
1185
1186 new_sh->root = sh->root;
1187 sh->root.next = &new_sh->root;
1188 newsect = &new_sh->section;
1189 }
1190
1191 newsect->flags = flags;
1192 newsect->name = name;
1193 return bfd_section_init (abfd, newsect);
1194 }
1195
1196 /*
1197 FUNCTION
1198 bfd_make_section_anyway
1199
1200 SYNOPSIS
1201 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1202
1203 DESCRIPTION
1204 Create a new empty section called @var{name} and attach it to the end of
1205 the chain of sections for @var{abfd}. Create a new section even if there
1206 is already a section with that name.
1207
1208 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1209 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1210 o <<bfd_error_no_memory>> - If memory allocation fails.
1211 */
1212
1213 sec_ptr
1214 bfd_make_section_anyway (bfd *abfd, const char *name)
1215 {
1216 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1217 }
1218
1219 /*
1220 FUNCTION
1221 bfd_make_section_with_flags
1222
1223 SYNOPSIS
1224 asection *bfd_make_section_with_flags
1225 (bfd *, const char *name, flagword flags);
1226
1227 DESCRIPTION
1228 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1229 bfd_set_error ()) without changing the section chain if there is already a
1230 section named @var{name}. Also set the attributes of the new section to
1231 the value @var{flags}. If there is an error, return <<NULL>> and set
1232 <<bfd_error>>.
1233 */
1234
1235 asection *
1236 bfd_make_section_with_flags (bfd *abfd, const char *name,
1237 flagword flags)
1238 {
1239 struct section_hash_entry *sh;
1240 asection *newsect;
1241
1242 if (abfd == NULL || name == NULL || abfd->output_has_begun)
1243 {
1244 bfd_set_error (bfd_error_invalid_operation);
1245 return NULL;
1246 }
1247
1248 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1249 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1250 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1251 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1252 return NULL;
1253
1254 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1255 if (sh == NULL)
1256 return NULL;
1257
1258 newsect = &sh->section;
1259 if (newsect->name != NULL)
1260 {
1261 /* Section already exists. */
1262 return NULL;
1263 }
1264
1265 newsect->name = name;
1266 newsect->flags = flags;
1267 return bfd_section_init (abfd, newsect);
1268 }
1269
1270 /*
1271 FUNCTION
1272 bfd_make_section
1273
1274 SYNOPSIS
1275 asection *bfd_make_section (bfd *, const char *name);
1276
1277 DESCRIPTION
1278 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1279 bfd_set_error ()) without changing the section chain if there is already a
1280 section named @var{name}. If there is an error, return <<NULL>> and set
1281 <<bfd_error>>.
1282 */
1283
1284 asection *
1285 bfd_make_section (bfd *abfd, const char *name)
1286 {
1287 return bfd_make_section_with_flags (abfd, name, 0);
1288 }
1289
1290 /*
1291 FUNCTION
1292 bfd_get_next_section_id
1293
1294 SYNOPSIS
1295 int bfd_get_next_section_id (void);
1296
1297 DESCRIPTION
1298 Returns the id that the next section created will have.
1299 */
1300
1301 int
1302 bfd_get_next_section_id (void)
1303 {
1304 return section_id;
1305 }
1306
1307 /*
1308 FUNCTION
1309 bfd_set_section_flags
1310
1311 SYNOPSIS
1312 bfd_boolean bfd_set_section_flags
1313 (bfd *abfd, asection *sec, flagword flags);
1314
1315 DESCRIPTION
1316 Set the attributes of the section @var{sec} in the BFD
1317 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1318 <<FALSE>> on error. Possible error returns are:
1319
1320 o <<bfd_error_invalid_operation>> -
1321 The section cannot have one or more of the attributes
1322 requested. For example, a .bss section in <<a.out>> may not
1323 have the <<SEC_HAS_CONTENTS>> field set.
1324
1325 */
1326
1327 bfd_boolean
1328 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1329 sec_ptr section,
1330 flagword flags)
1331 {
1332 section->flags = flags;
1333 return TRUE;
1334 }
1335
1336 /*
1337 FUNCTION
1338 bfd_rename_section
1339
1340 SYNOPSIS
1341 void bfd_rename_section
1342 (bfd *abfd, asection *sec, const char *newname);
1343
1344 DESCRIPTION
1345 Rename section @var{sec} in @var{abfd} to @var{newname}.
1346 */
1347
1348 void
1349 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1350 {
1351 struct section_hash_entry *sh;
1352
1353 sh = (struct section_hash_entry *)
1354 ((char *) sec - offsetof (struct section_hash_entry, section));
1355 sh->section.name = newname;
1356 bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1357 }
1358
1359 /*
1360 FUNCTION
1361 bfd_map_over_sections
1362
1363 SYNOPSIS
1364 void bfd_map_over_sections
1365 (bfd *abfd,
1366 void (*func) (bfd *abfd, asection *sect, void *obj),
1367 void *obj);
1368
1369 DESCRIPTION
1370 Call the provided function @var{func} for each section
1371 attached to the BFD @var{abfd}, passing @var{obj} as an
1372 argument. The function will be called as if by
1373
1374 | func (abfd, the_section, obj);
1375
1376 This is the preferred method for iterating over sections; an
1377 alternative would be to use a loop:
1378
1379 | asection *p;
1380 | for (p = abfd->sections; p != NULL; p = p->next)
1381 | func (abfd, p, ...)
1382
1383 */
1384
1385 void
1386 bfd_map_over_sections (bfd *abfd,
1387 void (*operation) (bfd *, asection *, void *),
1388 void *user_storage)
1389 {
1390 asection *sect;
1391 unsigned int i = 0;
1392
1393 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1394 (*operation) (abfd, sect, user_storage);
1395
1396 if (i != abfd->section_count) /* Debugging */
1397 abort ();
1398 }
1399
1400 /*
1401 FUNCTION
1402 bfd_sections_find_if
1403
1404 SYNOPSIS
1405 asection *bfd_sections_find_if
1406 (bfd *abfd,
1407 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1408 void *obj);
1409
1410 DESCRIPTION
1411 Call the provided function @var{operation} for each section
1412 attached to the BFD @var{abfd}, passing @var{obj} as an
1413 argument. The function will be called as if by
1414
1415 | operation (abfd, the_section, obj);
1416
1417 It returns the first section for which @var{operation} returns true.
1418
1419 */
1420
1421 asection *
1422 bfd_sections_find_if (bfd *abfd,
1423 bfd_boolean (*operation) (bfd *, asection *, void *),
1424 void *user_storage)
1425 {
1426 asection *sect;
1427
1428 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1429 if ((*operation) (abfd, sect, user_storage))
1430 break;
1431
1432 return sect;
1433 }
1434
1435 /*
1436 FUNCTION
1437 bfd_set_section_size
1438
1439 SYNOPSIS
1440 bfd_boolean bfd_set_section_size
1441 (bfd *abfd, asection *sec, bfd_size_type val);
1442
1443 DESCRIPTION
1444 Set @var{sec} to the size @var{val}. If the operation is
1445 ok, then <<TRUE>> is returned, else <<FALSE>>.
1446
1447 Possible error returns:
1448 o <<bfd_error_invalid_operation>> -
1449 Writing has started to the BFD, so setting the size is invalid.
1450
1451 */
1452
1453 bfd_boolean
1454 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1455 {
1456 /* Once you've started writing to any section you cannot create or change
1457 the size of any others. */
1458
1459 if (abfd->output_has_begun)
1460 {
1461 bfd_set_error (bfd_error_invalid_operation);
1462 return FALSE;
1463 }
1464
1465 ptr->size = val;
1466 return TRUE;
1467 }
1468
1469 /*
1470 FUNCTION
1471 bfd_set_section_contents
1472
1473 SYNOPSIS
1474 bfd_boolean bfd_set_section_contents
1475 (bfd *abfd, asection *section, const void *data,
1476 file_ptr offset, bfd_size_type count);
1477
1478 DESCRIPTION
1479 Sets the contents of the section @var{section} in BFD
1480 @var{abfd} to the data starting in memory at @var{data}. The
1481 data is written to the output section starting at offset
1482 @var{offset} for @var{count} octets.
1483
1484 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1485 returns are:
1486 o <<bfd_error_no_contents>> -
1487 The output section does not have the <<SEC_HAS_CONTENTS>>
1488 attribute, so nothing can be written to it.
1489 o and some more too
1490
1491 This routine is front end to the back end function
1492 <<_bfd_set_section_contents>>.
1493
1494 */
1495
1496 bfd_boolean
1497 bfd_set_section_contents (bfd *abfd,
1498 sec_ptr section,
1499 const void *location,
1500 file_ptr offset,
1501 bfd_size_type count)
1502 {
1503 bfd_size_type sz;
1504
1505 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1506 {
1507 bfd_set_error (bfd_error_no_contents);
1508 return FALSE;
1509 }
1510
1511 sz = section->size;
1512 if ((bfd_size_type) offset > sz
1513 || count > sz
1514 || offset + count > sz
1515 || count != (size_t) count)
1516 {
1517 bfd_set_error (bfd_error_bad_value);
1518 return FALSE;
1519 }
1520
1521 if (!bfd_write_p (abfd))
1522 {
1523 bfd_set_error (bfd_error_invalid_operation);
1524 return FALSE;
1525 }
1526
1527 /* Record a copy of the data in memory if desired. */
1528 if (section->contents
1529 && location != section->contents + offset)
1530 memcpy (section->contents + offset, location, (size_t) count);
1531
1532 if (BFD_SEND (abfd, _bfd_set_section_contents,
1533 (abfd, section, location, offset, count)))
1534 {
1535 abfd->output_has_begun = TRUE;
1536 return TRUE;
1537 }
1538
1539 return FALSE;
1540 }
1541
1542 /*
1543 FUNCTION
1544 bfd_get_section_contents
1545
1546 SYNOPSIS
1547 bfd_boolean bfd_get_section_contents
1548 (bfd *abfd, asection *section, void *location, file_ptr offset,
1549 bfd_size_type count);
1550
1551 DESCRIPTION
1552 Read data from @var{section} in BFD @var{abfd}
1553 into memory starting at @var{location}. The data is read at an
1554 offset of @var{offset} from the start of the input section,
1555 and is read for @var{count} bytes.
1556
1557 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1558 flag set are requested or if the section does not have the
1559 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1560 with zeroes. If no errors occur, <<TRUE>> is returned, else
1561 <<FALSE>>.
1562
1563 */
1564 bfd_boolean
1565 bfd_get_section_contents (bfd *abfd,
1566 sec_ptr section,
1567 void *location,
1568 file_ptr offset,
1569 bfd_size_type count)
1570 {
1571 bfd_size_type sz;
1572
1573 if (section->flags & SEC_CONSTRUCTOR)
1574 {
1575 memset (location, 0, (size_t) count);
1576 return TRUE;
1577 }
1578
1579 if (abfd->direction != write_direction && section->rawsize != 0)
1580 sz = section->rawsize;
1581 else
1582 sz = section->size;
1583 if ((bfd_size_type) offset > sz
1584 || count > sz
1585 || offset + count > sz
1586 || count != (size_t) count)
1587 {
1588 bfd_set_error (bfd_error_bad_value);
1589 return FALSE;
1590 }
1591
1592 if (count == 0)
1593 /* Don't bother. */
1594 return TRUE;
1595
1596 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1597 {
1598 memset (location, 0, (size_t) count);
1599 return TRUE;
1600 }
1601
1602 if ((section->flags & SEC_IN_MEMORY) != 0)
1603 {
1604 if (section->contents == NULL)
1605 {
1606 /* This can happen because of errors earlier on in the linking process.
1607 We do not want to seg-fault here, so clear the flag and return an
1608 error code. */
1609 section->flags &= ~ SEC_IN_MEMORY;
1610 bfd_set_error (bfd_error_invalid_operation);
1611 return FALSE;
1612 }
1613
1614 memmove (location, section->contents + offset, (size_t) count);
1615 return TRUE;
1616 }
1617
1618 return BFD_SEND (abfd, _bfd_get_section_contents,
1619 (abfd, section, location, offset, count));
1620 }
1621
1622 /*
1623 FUNCTION
1624 bfd_malloc_and_get_section
1625
1626 SYNOPSIS
1627 bfd_boolean bfd_malloc_and_get_section
1628 (bfd *abfd, asection *section, bfd_byte **buf);
1629
1630 DESCRIPTION
1631 Read all data from @var{section} in BFD @var{abfd}
1632 into a buffer, *@var{buf}, malloc'd by this function.
1633 */
1634
1635 bfd_boolean
1636 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1637 {
1638 *buf = NULL;
1639 return bfd_get_full_section_contents (abfd, sec, buf);
1640 }
1641 /*
1642 FUNCTION
1643 bfd_copy_private_section_data
1644
1645 SYNOPSIS
1646 bfd_boolean bfd_copy_private_section_data
1647 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1648
1649 DESCRIPTION
1650 Copy private section information from @var{isec} in the BFD
1651 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1652 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1653 returns are:
1654
1655 o <<bfd_error_no_memory>> -
1656 Not enough memory exists to create private data for @var{osec}.
1657
1658 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1659 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1660 . (ibfd, isection, obfd, osection))
1661 */
1662
1663 /*
1664 FUNCTION
1665 bfd_generic_is_group_section
1666
1667 SYNOPSIS
1668 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1669
1670 DESCRIPTION
1671 Returns TRUE if @var{sec} is a member of a group.
1672 */
1673
1674 bfd_boolean
1675 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1676 const asection *sec ATTRIBUTE_UNUSED)
1677 {
1678 return FALSE;
1679 }
1680
1681 /*
1682 FUNCTION
1683 bfd_generic_discard_group
1684
1685 SYNOPSIS
1686 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1687
1688 DESCRIPTION
1689 Remove all members of @var{group} from the output.
1690 */
1691
1692 bfd_boolean
1693 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1694 asection *group ATTRIBUTE_UNUSED)
1695 {
1696 return TRUE;
1697 }
1698
1699 bfd_boolean
1700 _bfd_nowrite_set_section_contents (bfd *abfd,
1701 sec_ptr section ATTRIBUTE_UNUSED,
1702 const void *location ATTRIBUTE_UNUSED,
1703 file_ptr offset ATTRIBUTE_UNUSED,
1704 bfd_size_type count ATTRIBUTE_UNUSED)
1705 {
1706 return _bfd_bool_bfd_false_error (abfd);
1707 }
This page took 0.063564 seconds and 4 git commands to generate.