daily update
[deliverable/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 /*
25 SECTION
26 Sections
27
28 The raw data contained within a BFD is maintained through the
29 section abstraction. A single BFD may have any number of
30 sections. It keeps hold of them by pointing to the first;
31 each one points to the next in the list.
32
33 Sections are supported in BFD in <<section.c>>.
34
35 @menu
36 @* Section Input::
37 @* Section Output::
38 @* typedef asection::
39 @* section prototypes::
40 @end menu
41
42 INODE
43 Section Input, Section Output, Sections, Sections
44 SUBSECTION
45 Section input
46
47 When a BFD is opened for reading, the section structures are
48 created and attached to the BFD.
49
50 Each section has a name which describes the section in the
51 outside world---for example, <<a.out>> would contain at least
52 three sections, called <<.text>>, <<.data>> and <<.bss>>.
53
54 Names need not be unique; for example a COFF file may have several
55 sections named <<.data>>.
56
57 Sometimes a BFD will contain more than the ``natural'' number of
58 sections. A back end may attach other sections containing
59 constructor data, or an application may add a section (using
60 <<bfd_make_section>>) to the sections attached to an already open
61 BFD. For example, the linker creates an extra section
62 <<COMMON>> for each input file's BFD to hold information about
63 common storage.
64
65 The raw data is not necessarily read in when
66 the section descriptor is created. Some targets may leave the
67 data in place until a <<bfd_get_section_contents>> call is
68 made. Other back ends may read in all the data at once. For
69 example, an S-record file has to be read once to determine the
70 size of the data. An IEEE-695 file doesn't contain raw data in
71 sections, but data and relocation expressions intermixed, so
72 the data area has to be parsed to get out the data and
73 relocations.
74
75 INODE
76 Section Output, typedef asection, Section Input, Sections
77
78 SUBSECTION
79 Section output
80
81 To write a new object style BFD, the various sections to be
82 written have to be created. They are attached to the BFD in
83 the same way as input sections; data is written to the
84 sections using <<bfd_set_section_contents>>.
85
86 Any program that creates or combines sections (e.g., the assembler
87 and linker) must use the <<asection>> fields <<output_section>> and
88 <<output_offset>> to indicate the file sections to which each
89 section must be written. (If the section is being created from
90 scratch, <<output_section>> should probably point to the section
91 itself and <<output_offset>> should probably be zero.)
92
93 The data to be written comes from input sections attached
94 (via <<output_section>> pointers) to
95 the output sections. The output section structure can be
96 considered a filter for the input section: the output section
97 determines the vma of the output data and the name, but the
98 input section determines the offset into the output section of
99 the data to be written.
100
101 E.g., to create a section "O", starting at 0x100, 0x123 long,
102 containing two subsections, "A" at offset 0x0 (i.e., at vma
103 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
104 structures would look like:
105
106 | section name "A"
107 | output_offset 0x00
108 | size 0x20
109 | output_section -----------> section name "O"
110 | | vma 0x100
111 | section name "B" | size 0x123
112 | output_offset 0x20 |
113 | size 0x103 |
114 | output_section --------|
115
116 SUBSECTION
117 Link orders
118
119 The data within a section is stored in a @dfn{link_order}.
120 These are much like the fixups in <<gas>>. The link_order
121 abstraction allows a section to grow and shrink within itself.
122
123 A link_order knows how big it is, and which is the next
124 link_order and where the raw data for it is; it also points to
125 a list of relocations which apply to it.
126
127 The link_order is used by the linker to perform relaxing on
128 final code. The compiler creates code which is as big as
129 necessary to make it work without relaxing, and the user can
130 select whether to relax. Sometimes relaxing takes a lot of
131 time. The linker runs around the relocations to see if any
132 are attached to data which can be shrunk, if so it does it on
133 a link_order by link_order basis.
134
135 */
136
137 #include "sysdep.h"
138 #include "bfd.h"
139 #include "libbfd.h"
140 #include "bfdlink.h"
141
142 /*
143 DOCDD
144 INODE
145 typedef asection, section prototypes, Section Output, Sections
146 SUBSECTION
147 typedef asection
148
149 Here is the section structure:
150
151 CODE_FRAGMENT
152 .
153 .typedef struct bfd_section
154 .{
155 . {* The name of the section; the name isn't a copy, the pointer is
156 . the same as that passed to bfd_make_section. *}
157 . const char *name;
158 .
159 . {* A unique sequence number. *}
160 . int id;
161 .
162 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
163 . int index;
164 .
165 . {* The next section in the list belonging to the BFD, or NULL. *}
166 . struct bfd_section *next;
167 .
168 . {* The previous section in the list belonging to the BFD, or NULL. *}
169 . struct bfd_section *prev;
170 .
171 . {* The field flags contains attributes of the section. Some
172 . flags are read in from the object file, and some are
173 . synthesized from other information. *}
174 . flagword flags;
175 .
176 .#define SEC_NO_FLAGS 0x000
177 .
178 . {* Tells the OS to allocate space for this section when loading.
179 . This is clear for a section containing debug information only. *}
180 .#define SEC_ALLOC 0x001
181 .
182 . {* Tells the OS to load the section from the file when loading.
183 . This is clear for a .bss section. *}
184 .#define SEC_LOAD 0x002
185 .
186 . {* The section contains data still to be relocated, so there is
187 . some relocation information too. *}
188 .#define SEC_RELOC 0x004
189 .
190 . {* A signal to the OS that the section contains read only data. *}
191 .#define SEC_READONLY 0x008
192 .
193 . {* The section contains code only. *}
194 .#define SEC_CODE 0x010
195 .
196 . {* The section contains data only. *}
197 .#define SEC_DATA 0x020
198 .
199 . {* The section will reside in ROM. *}
200 .#define SEC_ROM 0x040
201 .
202 . {* The section contains constructor information. This section
203 . type is used by the linker to create lists of constructors and
204 . destructors used by <<g++>>. When a back end sees a symbol
205 . which should be used in a constructor list, it creates a new
206 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
207 . the symbol to it, and builds a relocation. To build the lists
208 . of constructors, all the linker has to do is catenate all the
209 . sections called <<__CTOR_LIST__>> and relocate the data
210 . contained within - exactly the operations it would peform on
211 . standard data. *}
212 .#define SEC_CONSTRUCTOR 0x080
213 .
214 . {* The section has contents - a data section could be
215 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
216 . <<SEC_HAS_CONTENTS>> *}
217 .#define SEC_HAS_CONTENTS 0x100
218 .
219 . {* An instruction to the linker to not output the section
220 . even if it has information which would normally be written. *}
221 .#define SEC_NEVER_LOAD 0x200
222 .
223 . {* The section contains thread local data. *}
224 .#define SEC_THREAD_LOCAL 0x400
225 .
226 . {* The section has GOT references. This flag is only for the
227 . linker, and is currently only used by the elf32-hppa back end.
228 . It will be set if global offset table references were detected
229 . in this section, which indicate to the linker that the section
230 . contains PIC code, and must be handled specially when doing a
231 . static link. *}
232 .#define SEC_HAS_GOT_REF 0x800
233 .
234 . {* The section contains common symbols (symbols may be defined
235 . multiple times, the value of a symbol is the amount of
236 . space it requires, and the largest symbol value is the one
237 . used). Most targets have exactly one of these (which we
238 . translate to bfd_com_section_ptr), but ECOFF has two. *}
239 .#define SEC_IS_COMMON 0x1000
240 .
241 . {* The section contains only debugging information. For
242 . example, this is set for ELF .debug and .stab sections.
243 . strip tests this flag to see if a section can be
244 . discarded. *}
245 .#define SEC_DEBUGGING 0x2000
246 .
247 . {* The contents of this section are held in memory pointed to
248 . by the contents field. This is checked by bfd_get_section_contents,
249 . and the data is retrieved from memory if appropriate. *}
250 .#define SEC_IN_MEMORY 0x4000
251 .
252 . {* The contents of this section are to be excluded by the
253 . linker for executable and shared objects unless those
254 . objects are to be further relocated. *}
255 .#define SEC_EXCLUDE 0x8000
256 .
257 . {* The contents of this section are to be sorted based on the sum of
258 . the symbol and addend values specified by the associated relocation
259 . entries. Entries without associated relocation entries will be
260 . appended to the end of the section in an unspecified order. *}
261 .#define SEC_SORT_ENTRIES 0x10000
262 .
263 . {* When linking, duplicate sections of the same name should be
264 . discarded, rather than being combined into a single section as
265 . is usually done. This is similar to how common symbols are
266 . handled. See SEC_LINK_DUPLICATES below. *}
267 .#define SEC_LINK_ONCE 0x20000
268 .
269 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
270 . should handle duplicate sections. *}
271 .#define SEC_LINK_DUPLICATES 0xc0000
272 .
273 . {* This value for SEC_LINK_DUPLICATES means that duplicate
274 . sections with the same name should simply be discarded. *}
275 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
276 .
277 . {* This value for SEC_LINK_DUPLICATES means that the linker
278 . should warn if there are any duplicate sections, although
279 . it should still only link one copy. *}
280 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
281 .
282 . {* This value for SEC_LINK_DUPLICATES means that the linker
283 . should warn if any duplicate sections are a different size. *}
284 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
285 .
286 . {* This value for SEC_LINK_DUPLICATES means that the linker
287 . should warn if any duplicate sections contain different
288 . contents. *}
289 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
290 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
291 .
292 . {* This section was created by the linker as part of dynamic
293 . relocation or other arcane processing. It is skipped when
294 . going through the first-pass output, trusting that someone
295 . else up the line will take care of it later. *}
296 .#define SEC_LINKER_CREATED 0x100000
297 .
298 . {* This section should not be subject to garbage collection.
299 . Also set to inform the linker that this section should not be
300 . listed in the link map as discarded. *}
301 .#define SEC_KEEP 0x200000
302 .
303 . {* This section contains "short" data, and should be placed
304 . "near" the GP. *}
305 .#define SEC_SMALL_DATA 0x400000
306 .
307 . {* Attempt to merge identical entities in the section.
308 . Entity size is given in the entsize field. *}
309 .#define SEC_MERGE 0x800000
310 .
311 . {* If given with SEC_MERGE, entities to merge are zero terminated
312 . strings where entsize specifies character size instead of fixed
313 . size entries. *}
314 .#define SEC_STRINGS 0x1000000
315 .
316 . {* This section contains data about section groups. *}
317 .#define SEC_GROUP 0x2000000
318 .
319 . {* The section is a COFF shared library section. This flag is
320 . only for the linker. If this type of section appears in
321 . the input file, the linker must copy it to the output file
322 . without changing the vma or size. FIXME: Although this
323 . was originally intended to be general, it really is COFF
324 . specific (and the flag was renamed to indicate this). It
325 . might be cleaner to have some more general mechanism to
326 . allow the back end to control what the linker does with
327 . sections. *}
328 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
329 .
330 . {* This input section should be copied to output in reverse order
331 . as an array of pointers. This is for ELF linker internal use
332 . only. *}
333 .#define SEC_ELF_REVERSE_COPY 0x4000000
334 .
335 . {* This section contains data which may be shared with other
336 . executables or shared objects. This is for COFF only. *}
337 .#define SEC_COFF_SHARED 0x8000000
338 .
339 . {* When a section with this flag is being linked, then if the size of
340 . the input section is less than a page, it should not cross a page
341 . boundary. If the size of the input section is one page or more,
342 . it should be aligned on a page boundary. This is for TI
343 . TMS320C54X only. *}
344 .#define SEC_TIC54X_BLOCK 0x10000000
345 .
346 . {* Conditionally link this section; do not link if there are no
347 . references found to any symbol in the section. This is for TI
348 . TMS320C54X only. *}
349 .#define SEC_TIC54X_CLINK 0x20000000
350 .
351 . {* Indicate that section has the no read flag set. This happens
352 . when memory read flag isn't set. *}
353 .#define SEC_COFF_NOREAD 0x40000000
354 .
355 . {* End of section flags. *}
356 .
357 . {* Some internal packed boolean fields. *}
358 .
359 . {* See the vma field. *}
360 . unsigned int user_set_vma : 1;
361 .
362 . {* A mark flag used by some of the linker backends. *}
363 . unsigned int linker_mark : 1;
364 .
365 . {* Another mark flag used by some of the linker backends. Set for
366 . output sections that have an input section. *}
367 . unsigned int linker_has_input : 1;
368 .
369 . {* Mark flag used by some linker backends for garbage collection. *}
370 . unsigned int gc_mark : 1;
371 .
372 . {* Section compression status. *}
373 . unsigned int compress_status : 2;
374 .#define COMPRESS_SECTION_NONE 0
375 .#define COMPRESS_SECTION_DONE 1
376 .#define DECOMPRESS_SECTION_SIZED 2
377 .
378 . {* The following flags are used by the ELF linker. *}
379 .
380 . {* Mark sections which have been allocated to segments. *}
381 . unsigned int segment_mark : 1;
382 .
383 . {* Type of sec_info information. *}
384 . unsigned int sec_info_type:3;
385 .#define ELF_INFO_TYPE_NONE 0
386 .#define ELF_INFO_TYPE_STABS 1
387 .#define ELF_INFO_TYPE_MERGE 2
388 .#define ELF_INFO_TYPE_EH_FRAME 3
389 .#define ELF_INFO_TYPE_JUST_SYMS 4
390 .
391 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
392 . unsigned int use_rela_p:1;
393 .
394 . {* Bits used by various backends. The generic code doesn't touch
395 . these fields. *}
396 .
397 . unsigned int sec_flg0:1;
398 . unsigned int sec_flg1:1;
399 . unsigned int sec_flg2:1;
400 . unsigned int sec_flg3:1;
401 . unsigned int sec_flg4:1;
402 . unsigned int sec_flg5:1;
403 .
404 . {* End of internal packed boolean fields. *}
405 .
406 . {* The virtual memory address of the section - where it will be
407 . at run time. The symbols are relocated against this. The
408 . user_set_vma flag is maintained by bfd; if it's not set, the
409 . backend can assign addresses (for example, in <<a.out>>, where
410 . the default address for <<.data>> is dependent on the specific
411 . target and various flags). *}
412 . bfd_vma vma;
413 .
414 . {* The load address of the section - where it would be in a
415 . rom image; really only used for writing section header
416 . information. *}
417 . bfd_vma lma;
418 .
419 . {* The size of the section in octets, as it will be output.
420 . Contains a value even if the section has no contents (e.g., the
421 . size of <<.bss>>). *}
422 . bfd_size_type size;
423 .
424 . {* For input sections, the original size on disk of the section, in
425 . octets. This field should be set for any section whose size is
426 . changed by linker relaxation. It is required for sections where
427 . the linker relaxation scheme doesn't cache altered section and
428 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
429 . targets), and thus the original size needs to be kept to read the
430 . section multiple times. For output sections, rawsize holds the
431 . section size calculated on a previous linker relaxation pass. *}
432 . bfd_size_type rawsize;
433 .
434 . {* The compressed size of the section in octets. *}
435 . bfd_size_type compressed_size;
436 .
437 . {* Relaxation table. *}
438 . struct relax_table *relax;
439 .
440 . {* Count of used relaxation table entries. *}
441 . int relax_count;
442 .
443 .
444 . {* If this section is going to be output, then this value is the
445 . offset in *bytes* into the output section of the first byte in the
446 . input section (byte ==> smallest addressable unit on the
447 . target). In most cases, if this was going to start at the
448 . 100th octet (8-bit quantity) in the output section, this value
449 . would be 100. However, if the target byte size is 16 bits
450 . (bfd_octets_per_byte is "2"), this value would be 50. *}
451 . bfd_vma output_offset;
452 .
453 . {* The output section through which to map on output. *}
454 . struct bfd_section *output_section;
455 .
456 . {* The alignment requirement of the section, as an exponent of 2 -
457 . e.g., 3 aligns to 2^3 (or 8). *}
458 . unsigned int alignment_power;
459 .
460 . {* If an input section, a pointer to a vector of relocation
461 . records for the data in this section. *}
462 . struct reloc_cache_entry *relocation;
463 .
464 . {* If an output section, a pointer to a vector of pointers to
465 . relocation records for the data in this section. *}
466 . struct reloc_cache_entry **orelocation;
467 .
468 . {* The number of relocation records in one of the above. *}
469 . unsigned reloc_count;
470 .
471 . {* Information below is back end specific - and not always used
472 . or updated. *}
473 .
474 . {* File position of section data. *}
475 . file_ptr filepos;
476 .
477 . {* File position of relocation info. *}
478 . file_ptr rel_filepos;
479 .
480 . {* File position of line data. *}
481 . file_ptr line_filepos;
482 .
483 . {* Pointer to data for applications. *}
484 . void *userdata;
485 .
486 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
487 . contents. *}
488 . unsigned char *contents;
489 .
490 . {* Attached line number information. *}
491 . alent *lineno;
492 .
493 . {* Number of line number records. *}
494 . unsigned int lineno_count;
495 .
496 . {* Entity size for merging purposes. *}
497 . unsigned int entsize;
498 .
499 . {* Points to the kept section if this section is a link-once section,
500 . and is discarded. *}
501 . struct bfd_section *kept_section;
502 .
503 . {* When a section is being output, this value changes as more
504 . linenumbers are written out. *}
505 . file_ptr moving_line_filepos;
506 .
507 . {* What the section number is in the target world. *}
508 . int target_index;
509 .
510 . void *used_by_bfd;
511 .
512 . {* If this is a constructor section then here is a list of the
513 . relocations created to relocate items within it. *}
514 . struct relent_chain *constructor_chain;
515 .
516 . {* The BFD which owns the section. *}
517 . bfd *owner;
518 .
519 . {* INPUT_SECTION_FLAGS if specified in the linker script. *}
520 . struct flag_info *section_flag_info;
521 .
522 . {* A symbol which points at this section only. *}
523 . struct bfd_symbol *symbol;
524 . struct bfd_symbol **symbol_ptr_ptr;
525 .
526 . {* Early in the link process, map_head and map_tail are used to build
527 . a list of input sections attached to an output section. Later,
528 . output sections use these fields for a list of bfd_link_order
529 . structs. *}
530 . union {
531 . struct bfd_link_order *link_order;
532 . struct bfd_section *s;
533 . } map_head, map_tail;
534 .} asection;
535 .
536 .{* Relax table contains information about instructions which can
537 . be removed by relaxation -- replacing a long address with a
538 . short address. *}
539 .struct relax_table {
540 . {* Address where bytes may be deleted. *}
541 . bfd_vma addr;
542 .
543 . {* Number of bytes to be deleted. *}
544 . int size;
545 .};
546 .
547 .{* These sections are global, and are managed by BFD. The application
548 . and target back end are not permitted to change the values in
549 . these sections. New code should use the section_ptr macros rather
550 . than referring directly to the const sections. The const sections
551 . may eventually vanish. *}
552 .#define BFD_ABS_SECTION_NAME "*ABS*"
553 .#define BFD_UND_SECTION_NAME "*UND*"
554 .#define BFD_COM_SECTION_NAME "*COM*"
555 .#define BFD_IND_SECTION_NAME "*IND*"
556 .
557 .{* The absolute section. *}
558 .extern asection bfd_abs_section;
559 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
560 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
561 .{* Pointer to the undefined section. *}
562 .extern asection bfd_und_section;
563 .#define bfd_und_section_ptr ((asection *) &bfd_und_section)
564 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
565 .{* Pointer to the common section. *}
566 .extern asection bfd_com_section;
567 .#define bfd_com_section_ptr ((asection *) &bfd_com_section)
568 .{* Pointer to the indirect section. *}
569 .extern asection bfd_ind_section;
570 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
571 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
572 .
573 .#define bfd_is_const_section(SEC) \
574 . ( ((SEC) == bfd_abs_section_ptr) \
575 . || ((SEC) == bfd_und_section_ptr) \
576 . || ((SEC) == bfd_com_section_ptr) \
577 . || ((SEC) == bfd_ind_section_ptr))
578 .
579 .{* Macros to handle insertion and deletion of a bfd's sections. These
580 . only handle the list pointers, ie. do not adjust section_count,
581 . target_index etc. *}
582 .#define bfd_section_list_remove(ABFD, S) \
583 . do \
584 . { \
585 . asection *_s = S; \
586 . asection *_next = _s->next; \
587 . asection *_prev = _s->prev; \
588 . if (_prev) \
589 . _prev->next = _next; \
590 . else \
591 . (ABFD)->sections = _next; \
592 . if (_next) \
593 . _next->prev = _prev; \
594 . else \
595 . (ABFD)->section_last = _prev; \
596 . } \
597 . while (0)
598 .#define bfd_section_list_append(ABFD, S) \
599 . do \
600 . { \
601 . asection *_s = S; \
602 . bfd *_abfd = ABFD; \
603 . _s->next = NULL; \
604 . if (_abfd->section_last) \
605 . { \
606 . _s->prev = _abfd->section_last; \
607 . _abfd->section_last->next = _s; \
608 . } \
609 . else \
610 . { \
611 . _s->prev = NULL; \
612 . _abfd->sections = _s; \
613 . } \
614 . _abfd->section_last = _s; \
615 . } \
616 . while (0)
617 .#define bfd_section_list_prepend(ABFD, S) \
618 . do \
619 . { \
620 . asection *_s = S; \
621 . bfd *_abfd = ABFD; \
622 . _s->prev = NULL; \
623 . if (_abfd->sections) \
624 . { \
625 . _s->next = _abfd->sections; \
626 . _abfd->sections->prev = _s; \
627 . } \
628 . else \
629 . { \
630 . _s->next = NULL; \
631 . _abfd->section_last = _s; \
632 . } \
633 . _abfd->sections = _s; \
634 . } \
635 . while (0)
636 .#define bfd_section_list_insert_after(ABFD, A, S) \
637 . do \
638 . { \
639 . asection *_a = A; \
640 . asection *_s = S; \
641 . asection *_next = _a->next; \
642 . _s->next = _next; \
643 . _s->prev = _a; \
644 . _a->next = _s; \
645 . if (_next) \
646 . _next->prev = _s; \
647 . else \
648 . (ABFD)->section_last = _s; \
649 . } \
650 . while (0)
651 .#define bfd_section_list_insert_before(ABFD, B, S) \
652 . do \
653 . { \
654 . asection *_b = B; \
655 . asection *_s = S; \
656 . asection *_prev = _b->prev; \
657 . _s->prev = _prev; \
658 . _s->next = _b; \
659 . _b->prev = _s; \
660 . if (_prev) \
661 . _prev->next = _s; \
662 . else \
663 . (ABFD)->sections = _s; \
664 . } \
665 . while (0)
666 .#define bfd_section_removed_from_list(ABFD, S) \
667 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
668 .
669 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
670 . {* name, id, index, next, prev, flags, user_set_vma, *} \
671 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
672 . \
673 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
674 . 0, 0, 1, 0, \
675 . \
676 . {* segment_mark, sec_info_type, use_rela_p, *} \
677 . 0, 0, 0, \
678 . \
679 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
680 . 0, 0, 0, 0, 0, 0, \
681 . \
682 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
683 . 0, 0, 0, 0, 0, 0, 0, \
684 . \
685 . {* output_offset, output_section, alignment_power, *} \
686 . 0, (struct bfd_section *) &SEC, 0, \
687 . \
688 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
689 . NULL, NULL, 0, 0, 0, \
690 . \
691 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
692 . 0, NULL, NULL, NULL, 0, \
693 . \
694 . {* entsize, kept_section, moving_line_filepos, *} \
695 . 0, NULL, 0, \
696 . \
697 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
698 . 0, NULL, NULL, NULL, \
699 . \
700 . {* flag_info, *} \
701 . NULL, \
702 . \
703 . {* symbol, symbol_ptr_ptr, *} \
704 . (struct bfd_symbol *) SYM, &SEC.symbol, \
705 . \
706 . {* map_head, map_tail *} \
707 . { NULL }, { NULL } \
708 . }
709 .
710 */
711
712 /* We use a macro to initialize the static asymbol structures because
713 traditional C does not permit us to initialize a union member while
714 gcc warns if we don't initialize it. */
715 /* the_bfd, name, value, attr, section [, udata] */
716 #ifdef __STDC__
717 #define GLOBAL_SYM_INIT(NAME, SECTION) \
718 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
719 #else
720 #define GLOBAL_SYM_INIT(NAME, SECTION) \
721 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
722 #endif
723
724 /* These symbols are global, not specific to any BFD. Therefore, anything
725 that tries to change them is broken, and should be repaired. */
726
727 static const asymbol global_syms[] =
728 {
729 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
730 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
731 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
732 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
733 };
734
735 #define STD_SECTION(SEC, FLAGS, NAME, IDX) \
736 asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX], \
737 NAME, IDX)
738
739 STD_SECTION (bfd_com_section, SEC_IS_COMMON, BFD_COM_SECTION_NAME, 0);
740 STD_SECTION (bfd_und_section, 0, BFD_UND_SECTION_NAME, 1);
741 STD_SECTION (bfd_abs_section, 0, BFD_ABS_SECTION_NAME, 2);
742 STD_SECTION (bfd_ind_section, 0, BFD_IND_SECTION_NAME, 3);
743 #undef STD_SECTION
744
745 /* Initialize an entry in the section hash table. */
746
747 struct bfd_hash_entry *
748 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
749 struct bfd_hash_table *table,
750 const char *string)
751 {
752 /* Allocate the structure if it has not already been allocated by a
753 subclass. */
754 if (entry == NULL)
755 {
756 entry = (struct bfd_hash_entry *)
757 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
758 if (entry == NULL)
759 return entry;
760 }
761
762 /* Call the allocation method of the superclass. */
763 entry = bfd_hash_newfunc (entry, table, string);
764 if (entry != NULL)
765 memset (&((struct section_hash_entry *) entry)->section, 0,
766 sizeof (asection));
767
768 return entry;
769 }
770
771 #define section_hash_lookup(table, string, create, copy) \
772 ((struct section_hash_entry *) \
773 bfd_hash_lookup ((table), (string), (create), (copy)))
774
775 /* Create a symbol whose only job is to point to this section. This
776 is useful for things like relocs which are relative to the base
777 of a section. */
778
779 bfd_boolean
780 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
781 {
782 newsect->symbol = bfd_make_empty_symbol (abfd);
783 if (newsect->symbol == NULL)
784 return FALSE;
785
786 newsect->symbol->name = newsect->name;
787 newsect->symbol->value = 0;
788 newsect->symbol->section = newsect;
789 newsect->symbol->flags = BSF_SECTION_SYM;
790
791 newsect->symbol_ptr_ptr = &newsect->symbol;
792 return TRUE;
793 }
794
795 /* Initializes a new section. NEWSECT->NAME is already set. */
796
797 static asection *
798 bfd_section_init (bfd *abfd, asection *newsect)
799 {
800 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
801
802 newsect->id = section_id;
803 newsect->index = abfd->section_count;
804 newsect->owner = abfd;
805
806 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
807 return NULL;
808
809 section_id++;
810 abfd->section_count++;
811 bfd_section_list_append (abfd, newsect);
812 return newsect;
813 }
814
815 /*
816 DOCDD
817 INODE
818 section prototypes, , typedef asection, Sections
819 SUBSECTION
820 Section prototypes
821
822 These are the functions exported by the section handling part of BFD.
823 */
824
825 /*
826 FUNCTION
827 bfd_section_list_clear
828
829 SYNOPSIS
830 void bfd_section_list_clear (bfd *);
831
832 DESCRIPTION
833 Clears the section list, and also resets the section count and
834 hash table entries.
835 */
836
837 void
838 bfd_section_list_clear (bfd *abfd)
839 {
840 abfd->sections = NULL;
841 abfd->section_last = NULL;
842 abfd->section_count = 0;
843 memset (abfd->section_htab.table, 0,
844 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
845 }
846
847 /*
848 FUNCTION
849 bfd_get_section_by_name
850
851 SYNOPSIS
852 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
853
854 DESCRIPTION
855 Run through @var{abfd} and return the one of the
856 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
857 @xref{Sections}, for more information.
858
859 This should only be used in special cases; the normal way to process
860 all sections of a given name is to use <<bfd_map_over_sections>> and
861 <<strcmp>> on the name (or better yet, base it on the section flags
862 or something else) for each section.
863 */
864
865 asection *
866 bfd_get_section_by_name (bfd *abfd, const char *name)
867 {
868 struct section_hash_entry *sh;
869
870 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
871 if (sh != NULL)
872 return &sh->section;
873
874 return NULL;
875 }
876
877 /*
878 FUNCTION
879 bfd_get_section_by_name_if
880
881 SYNOPSIS
882 asection *bfd_get_section_by_name_if
883 (bfd *abfd,
884 const char *name,
885 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
886 void *obj);
887
888 DESCRIPTION
889 Call the provided function @var{func} for each section
890 attached to the BFD @var{abfd} whose name matches @var{name},
891 passing @var{obj} as an argument. The function will be called
892 as if by
893
894 | func (abfd, the_section, obj);
895
896 It returns the first section for which @var{func} returns true,
897 otherwise <<NULL>>.
898
899 */
900
901 asection *
902 bfd_get_section_by_name_if (bfd *abfd, const char *name,
903 bfd_boolean (*operation) (bfd *,
904 asection *,
905 void *),
906 void *user_storage)
907 {
908 struct section_hash_entry *sh;
909 unsigned long hash;
910
911 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
912 if (sh == NULL)
913 return NULL;
914
915 hash = sh->root.hash;
916 do
917 {
918 if ((*operation) (abfd, &sh->section, user_storage))
919 return &sh->section;
920 sh = (struct section_hash_entry *) sh->root.next;
921 }
922 while (sh != NULL && sh->root.hash == hash
923 && strcmp (sh->root.string, name) == 0);
924
925 return NULL;
926 }
927
928 /*
929 FUNCTION
930 bfd_get_unique_section_name
931
932 SYNOPSIS
933 char *bfd_get_unique_section_name
934 (bfd *abfd, const char *templat, int *count);
935
936 DESCRIPTION
937 Invent a section name that is unique in @var{abfd} by tacking
938 a dot and a digit suffix onto the original @var{templat}. If
939 @var{count} is non-NULL, then it specifies the first number
940 tried as a suffix to generate a unique name. The value
941 pointed to by @var{count} will be incremented in this case.
942 */
943
944 char *
945 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
946 {
947 int num;
948 unsigned int len;
949 char *sname;
950
951 len = strlen (templat);
952 sname = (char *) bfd_malloc (len + 8);
953 if (sname == NULL)
954 return NULL;
955 memcpy (sname, templat, len);
956 num = 1;
957 if (count != NULL)
958 num = *count;
959
960 do
961 {
962 /* If we have a million sections, something is badly wrong. */
963 if (num > 999999)
964 abort ();
965 sprintf (sname + len, ".%d", num++);
966 }
967 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
968
969 if (count != NULL)
970 *count = num;
971 return sname;
972 }
973
974 /*
975 FUNCTION
976 bfd_make_section_old_way
977
978 SYNOPSIS
979 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
980
981 DESCRIPTION
982 Create a new empty section called @var{name}
983 and attach it to the end of the chain of sections for the
984 BFD @var{abfd}. An attempt to create a section with a name which
985 is already in use returns its pointer without changing the
986 section chain.
987
988 It has the funny name since this is the way it used to be
989 before it was rewritten....
990
991 Possible errors are:
992 o <<bfd_error_invalid_operation>> -
993 If output has already started for this BFD.
994 o <<bfd_error_no_memory>> -
995 If memory allocation fails.
996
997 */
998
999 asection *
1000 bfd_make_section_old_way (bfd *abfd, const char *name)
1001 {
1002 asection *newsect;
1003
1004 if (abfd->output_has_begun)
1005 {
1006 bfd_set_error (bfd_error_invalid_operation);
1007 return NULL;
1008 }
1009
1010 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1011 newsect = bfd_abs_section_ptr;
1012 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1013 newsect = bfd_com_section_ptr;
1014 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1015 newsect = bfd_und_section_ptr;
1016 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1017 newsect = bfd_ind_section_ptr;
1018 else
1019 {
1020 struct section_hash_entry *sh;
1021
1022 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1023 if (sh == NULL)
1024 return NULL;
1025
1026 newsect = &sh->section;
1027 if (newsect->name != NULL)
1028 {
1029 /* Section already exists. */
1030 return newsect;
1031 }
1032
1033 newsect->name = name;
1034 return bfd_section_init (abfd, newsect);
1035 }
1036
1037 /* Call new_section_hook when "creating" the standard abs, com, und
1038 and ind sections to tack on format specific section data.
1039 Also, create a proper section symbol. */
1040 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1041 return NULL;
1042 return newsect;
1043 }
1044
1045 /*
1046 FUNCTION
1047 bfd_make_section_anyway_with_flags
1048
1049 SYNOPSIS
1050 asection *bfd_make_section_anyway_with_flags
1051 (bfd *abfd, const char *name, flagword flags);
1052
1053 DESCRIPTION
1054 Create a new empty section called @var{name} and attach it to the end of
1055 the chain of sections for @var{abfd}. Create a new section even if there
1056 is already a section with that name. Also set the attributes of the
1057 new section to the value @var{flags}.
1058
1059 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1060 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1061 o <<bfd_error_no_memory>> - If memory allocation fails.
1062 */
1063
1064 sec_ptr
1065 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1066 flagword flags)
1067 {
1068 struct section_hash_entry *sh;
1069 asection *newsect;
1070
1071 if (abfd->output_has_begun)
1072 {
1073 bfd_set_error (bfd_error_invalid_operation);
1074 return NULL;
1075 }
1076
1077 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1078 if (sh == NULL)
1079 return NULL;
1080
1081 newsect = &sh->section;
1082 if (newsect->name != NULL)
1083 {
1084 /* We are making a section of the same name. Put it in the
1085 section hash table. Even though we can't find it directly by a
1086 hash lookup, we'll be able to find the section by traversing
1087 sh->root.next quicker than looking at all the bfd sections. */
1088 struct section_hash_entry *new_sh;
1089 new_sh = (struct section_hash_entry *)
1090 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1091 if (new_sh == NULL)
1092 return NULL;
1093
1094 new_sh->root = sh->root;
1095 sh->root.next = &new_sh->root;
1096 newsect = &new_sh->section;
1097 }
1098
1099 newsect->flags = flags;
1100 newsect->name = name;
1101 return bfd_section_init (abfd, newsect);
1102 }
1103
1104 /*
1105 FUNCTION
1106 bfd_make_section_anyway
1107
1108 SYNOPSIS
1109 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1110
1111 DESCRIPTION
1112 Create a new empty section called @var{name} and attach it to the end of
1113 the chain of sections for @var{abfd}. Create a new section even if there
1114 is already a section with that name.
1115
1116 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1117 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1118 o <<bfd_error_no_memory>> - If memory allocation fails.
1119 */
1120
1121 sec_ptr
1122 bfd_make_section_anyway (bfd *abfd, const char *name)
1123 {
1124 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1125 }
1126
1127 /*
1128 FUNCTION
1129 bfd_make_section_with_flags
1130
1131 SYNOPSIS
1132 asection *bfd_make_section_with_flags
1133 (bfd *, const char *name, flagword flags);
1134
1135 DESCRIPTION
1136 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1137 bfd_set_error ()) without changing the section chain if there is already a
1138 section named @var{name}. Also set the attributes of the new section to
1139 the value @var{flags}. If there is an error, return <<NULL>> and set
1140 <<bfd_error>>.
1141 */
1142
1143 asection *
1144 bfd_make_section_with_flags (bfd *abfd, const char *name,
1145 flagword flags)
1146 {
1147 struct section_hash_entry *sh;
1148 asection *newsect;
1149
1150 if (abfd->output_has_begun)
1151 {
1152 bfd_set_error (bfd_error_invalid_operation);
1153 return NULL;
1154 }
1155
1156 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1157 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1158 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1159 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1160 return NULL;
1161
1162 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1163 if (sh == NULL)
1164 return NULL;
1165
1166 newsect = &sh->section;
1167 if (newsect->name != NULL)
1168 {
1169 /* Section already exists. */
1170 return NULL;
1171 }
1172
1173 newsect->name = name;
1174 newsect->flags = flags;
1175 return bfd_section_init (abfd, newsect);
1176 }
1177
1178 /*
1179 FUNCTION
1180 bfd_make_section
1181
1182 SYNOPSIS
1183 asection *bfd_make_section (bfd *, const char *name);
1184
1185 DESCRIPTION
1186 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1187 bfd_set_error ()) without changing the section chain if there is already a
1188 section named @var{name}. If there is an error, return <<NULL>> and set
1189 <<bfd_error>>.
1190 */
1191
1192 asection *
1193 bfd_make_section (bfd *abfd, const char *name)
1194 {
1195 return bfd_make_section_with_flags (abfd, name, 0);
1196 }
1197
1198 /*
1199 FUNCTION
1200 bfd_set_section_flags
1201
1202 SYNOPSIS
1203 bfd_boolean bfd_set_section_flags
1204 (bfd *abfd, asection *sec, flagword flags);
1205
1206 DESCRIPTION
1207 Set the attributes of the section @var{sec} in the BFD
1208 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1209 <<FALSE>> on error. Possible error returns are:
1210
1211 o <<bfd_error_invalid_operation>> -
1212 The section cannot have one or more of the attributes
1213 requested. For example, a .bss section in <<a.out>> may not
1214 have the <<SEC_HAS_CONTENTS>> field set.
1215
1216 */
1217
1218 bfd_boolean
1219 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1220 sec_ptr section,
1221 flagword flags)
1222 {
1223 section->flags = flags;
1224 return TRUE;
1225 }
1226
1227 /*
1228 FUNCTION
1229 bfd_rename_section
1230
1231 SYNOPSIS
1232 void bfd_rename_section
1233 (bfd *abfd, asection *sec, const char *newname);
1234
1235 DESCRIPTION
1236 Rename section @var{sec} in @var{abfd} to @var{newname}.
1237 */
1238
1239 void
1240 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1241 {
1242 struct section_hash_entry *sh;
1243
1244 sh = (struct section_hash_entry *)
1245 ((char *) sec - offsetof (struct section_hash_entry, section));
1246 sh->section.name = newname;
1247 bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1248 }
1249
1250 /*
1251 FUNCTION
1252 bfd_map_over_sections
1253
1254 SYNOPSIS
1255 void bfd_map_over_sections
1256 (bfd *abfd,
1257 void (*func) (bfd *abfd, asection *sect, void *obj),
1258 void *obj);
1259
1260 DESCRIPTION
1261 Call the provided function @var{func} for each section
1262 attached to the BFD @var{abfd}, passing @var{obj} as an
1263 argument. The function will be called as if by
1264
1265 | func (abfd, the_section, obj);
1266
1267 This is the preferred method for iterating over sections; an
1268 alternative would be to use a loop:
1269
1270 | section *p;
1271 | for (p = abfd->sections; p != NULL; p = p->next)
1272 | func (abfd, p, ...)
1273
1274 */
1275
1276 void
1277 bfd_map_over_sections (bfd *abfd,
1278 void (*operation) (bfd *, asection *, void *),
1279 void *user_storage)
1280 {
1281 asection *sect;
1282 unsigned int i = 0;
1283
1284 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1285 (*operation) (abfd, sect, user_storage);
1286
1287 if (i != abfd->section_count) /* Debugging */
1288 abort ();
1289 }
1290
1291 /*
1292 FUNCTION
1293 bfd_sections_find_if
1294
1295 SYNOPSIS
1296 asection *bfd_sections_find_if
1297 (bfd *abfd,
1298 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1299 void *obj);
1300
1301 DESCRIPTION
1302 Call the provided function @var{operation} for each section
1303 attached to the BFD @var{abfd}, passing @var{obj} as an
1304 argument. The function will be called as if by
1305
1306 | operation (abfd, the_section, obj);
1307
1308 It returns the first section for which @var{operation} returns true.
1309
1310 */
1311
1312 asection *
1313 bfd_sections_find_if (bfd *abfd,
1314 bfd_boolean (*operation) (bfd *, asection *, void *),
1315 void *user_storage)
1316 {
1317 asection *sect;
1318
1319 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1320 if ((*operation) (abfd, sect, user_storage))
1321 break;
1322
1323 return sect;
1324 }
1325
1326 /*
1327 FUNCTION
1328 bfd_set_section_size
1329
1330 SYNOPSIS
1331 bfd_boolean bfd_set_section_size
1332 (bfd *abfd, asection *sec, bfd_size_type val);
1333
1334 DESCRIPTION
1335 Set @var{sec} to the size @var{val}. If the operation is
1336 ok, then <<TRUE>> is returned, else <<FALSE>>.
1337
1338 Possible error returns:
1339 o <<bfd_error_invalid_operation>> -
1340 Writing has started to the BFD, so setting the size is invalid.
1341
1342 */
1343
1344 bfd_boolean
1345 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1346 {
1347 /* Once you've started writing to any section you cannot create or change
1348 the size of any others. */
1349
1350 if (abfd->output_has_begun)
1351 {
1352 bfd_set_error (bfd_error_invalid_operation);
1353 return FALSE;
1354 }
1355
1356 ptr->size = val;
1357 return TRUE;
1358 }
1359
1360 /*
1361 FUNCTION
1362 bfd_set_section_contents
1363
1364 SYNOPSIS
1365 bfd_boolean bfd_set_section_contents
1366 (bfd *abfd, asection *section, const void *data,
1367 file_ptr offset, bfd_size_type count);
1368
1369 DESCRIPTION
1370 Sets the contents of the section @var{section} in BFD
1371 @var{abfd} to the data starting in memory at @var{data}. The
1372 data is written to the output section starting at offset
1373 @var{offset} for @var{count} octets.
1374
1375 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1376 returns are:
1377 o <<bfd_error_no_contents>> -
1378 The output section does not have the <<SEC_HAS_CONTENTS>>
1379 attribute, so nothing can be written to it.
1380 o and some more too
1381
1382 This routine is front end to the back end function
1383 <<_bfd_set_section_contents>>.
1384
1385 */
1386
1387 bfd_boolean
1388 bfd_set_section_contents (bfd *abfd,
1389 sec_ptr section,
1390 const void *location,
1391 file_ptr offset,
1392 bfd_size_type count)
1393 {
1394 bfd_size_type sz;
1395
1396 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1397 {
1398 bfd_set_error (bfd_error_no_contents);
1399 return FALSE;
1400 }
1401
1402 sz = section->size;
1403 if ((bfd_size_type) offset > sz
1404 || count > sz
1405 || offset + count > sz
1406 || count != (size_t) count)
1407 {
1408 bfd_set_error (bfd_error_bad_value);
1409 return FALSE;
1410 }
1411
1412 if (!bfd_write_p (abfd))
1413 {
1414 bfd_set_error (bfd_error_invalid_operation);
1415 return FALSE;
1416 }
1417
1418 /* Record a copy of the data in memory if desired. */
1419 if (section->contents
1420 && location != section->contents + offset)
1421 memcpy (section->contents + offset, location, (size_t) count);
1422
1423 if (BFD_SEND (abfd, _bfd_set_section_contents,
1424 (abfd, section, location, offset, count)))
1425 {
1426 abfd->output_has_begun = TRUE;
1427 return TRUE;
1428 }
1429
1430 return FALSE;
1431 }
1432
1433 /*
1434 FUNCTION
1435 bfd_get_section_contents
1436
1437 SYNOPSIS
1438 bfd_boolean bfd_get_section_contents
1439 (bfd *abfd, asection *section, void *location, file_ptr offset,
1440 bfd_size_type count);
1441
1442 DESCRIPTION
1443 Read data from @var{section} in BFD @var{abfd}
1444 into memory starting at @var{location}. The data is read at an
1445 offset of @var{offset} from the start of the input section,
1446 and is read for @var{count} bytes.
1447
1448 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1449 flag set are requested or if the section does not have the
1450 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1451 with zeroes. If no errors occur, <<TRUE>> is returned, else
1452 <<FALSE>>.
1453
1454 */
1455 bfd_boolean
1456 bfd_get_section_contents (bfd *abfd,
1457 sec_ptr section,
1458 void *location,
1459 file_ptr offset,
1460 bfd_size_type count)
1461 {
1462 bfd_size_type sz;
1463
1464 if (section->flags & SEC_CONSTRUCTOR)
1465 {
1466 memset (location, 0, (size_t) count);
1467 return TRUE;
1468 }
1469
1470 if (abfd->direction != write_direction && section->rawsize != 0)
1471 sz = section->rawsize;
1472 else
1473 sz = section->size;
1474 if ((bfd_size_type) offset > sz
1475 || count > sz
1476 || offset + count > sz
1477 || count != (size_t) count)
1478 {
1479 bfd_set_error (bfd_error_bad_value);
1480 return FALSE;
1481 }
1482
1483 if (count == 0)
1484 /* Don't bother. */
1485 return TRUE;
1486
1487 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1488 {
1489 memset (location, 0, (size_t) count);
1490 return TRUE;
1491 }
1492
1493 if ((section->flags & SEC_IN_MEMORY) != 0)
1494 {
1495 if (section->contents == NULL)
1496 {
1497 /* This can happen because of errors earlier on in the linking process.
1498 We do not want to seg-fault here, so clear the flag and return an
1499 error code. */
1500 section->flags &= ~ SEC_IN_MEMORY;
1501 bfd_set_error (bfd_error_invalid_operation);
1502 return FALSE;
1503 }
1504
1505 memcpy (location, section->contents + offset, (size_t) count);
1506 return TRUE;
1507 }
1508
1509 return BFD_SEND (abfd, _bfd_get_section_contents,
1510 (abfd, section, location, offset, count));
1511 }
1512
1513 /*
1514 FUNCTION
1515 bfd_malloc_and_get_section
1516
1517 SYNOPSIS
1518 bfd_boolean bfd_malloc_and_get_section
1519 (bfd *abfd, asection *section, bfd_byte **buf);
1520
1521 DESCRIPTION
1522 Read all data from @var{section} in BFD @var{abfd}
1523 into a buffer, *@var{buf}, malloc'd by this function.
1524 */
1525
1526 bfd_boolean
1527 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1528 {
1529 *buf = NULL;
1530 return bfd_get_full_section_contents (abfd, sec, buf);
1531 }
1532 /*
1533 FUNCTION
1534 bfd_copy_private_section_data
1535
1536 SYNOPSIS
1537 bfd_boolean bfd_copy_private_section_data
1538 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1539
1540 DESCRIPTION
1541 Copy private section information from @var{isec} in the BFD
1542 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1543 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1544 returns are:
1545
1546 o <<bfd_error_no_memory>> -
1547 Not enough memory exists to create private data for @var{osec}.
1548
1549 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1550 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1551 . (ibfd, isection, obfd, osection))
1552 */
1553
1554 /*
1555 FUNCTION
1556 bfd_generic_is_group_section
1557
1558 SYNOPSIS
1559 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1560
1561 DESCRIPTION
1562 Returns TRUE if @var{sec} is a member of a group.
1563 */
1564
1565 bfd_boolean
1566 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1567 const asection *sec ATTRIBUTE_UNUSED)
1568 {
1569 return FALSE;
1570 }
1571
1572 /*
1573 FUNCTION
1574 bfd_generic_discard_group
1575
1576 SYNOPSIS
1577 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1578
1579 DESCRIPTION
1580 Remove all members of @var{group} from the output.
1581 */
1582
1583 bfd_boolean
1584 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1585 asection *group ATTRIBUTE_UNUSED)
1586 {
1587 return TRUE;
1588 }
This page took 0.069632 seconds and 4 git commands to generate.