dc8225f39d3329997b32dba497ef54c086078ef9
[deliverable/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 /*
25 SECTION
26 Sections
27
28 The raw data contained within a BFD is maintained through the
29 section abstraction. A single BFD may have any number of
30 sections. It keeps hold of them by pointing to the first;
31 each one points to the next in the list.
32
33 Sections are supported in BFD in <<section.c>>.
34
35 @menu
36 @* Section Input::
37 @* Section Output::
38 @* typedef asection::
39 @* section prototypes::
40 @end menu
41
42 INODE
43 Section Input, Section Output, Sections, Sections
44 SUBSECTION
45 Section input
46
47 When a BFD is opened for reading, the section structures are
48 created and attached to the BFD.
49
50 Each section has a name which describes the section in the
51 outside world---for example, <<a.out>> would contain at least
52 three sections, called <<.text>>, <<.data>> and <<.bss>>.
53
54 Names need not be unique; for example a COFF file may have several
55 sections named <<.data>>.
56
57 Sometimes a BFD will contain more than the ``natural'' number of
58 sections. A back end may attach other sections containing
59 constructor data, or an application may add a section (using
60 <<bfd_make_section>>) to the sections attached to an already open
61 BFD. For example, the linker creates an extra section
62 <<COMMON>> for each input file's BFD to hold information about
63 common storage.
64
65 The raw data is not necessarily read in when
66 the section descriptor is created. Some targets may leave the
67 data in place until a <<bfd_get_section_contents>> call is
68 made. Other back ends may read in all the data at once. For
69 example, an S-record file has to be read once to determine the
70 size of the data. An IEEE-695 file doesn't contain raw data in
71 sections, but data and relocation expressions intermixed, so
72 the data area has to be parsed to get out the data and
73 relocations.
74
75 INODE
76 Section Output, typedef asection, Section Input, Sections
77
78 SUBSECTION
79 Section output
80
81 To write a new object style BFD, the various sections to be
82 written have to be created. They are attached to the BFD in
83 the same way as input sections; data is written to the
84 sections using <<bfd_set_section_contents>>.
85
86 Any program that creates or combines sections (e.g., the assembler
87 and linker) must use the <<asection>> fields <<output_section>> and
88 <<output_offset>> to indicate the file sections to which each
89 section must be written. (If the section is being created from
90 scratch, <<output_section>> should probably point to the section
91 itself and <<output_offset>> should probably be zero.)
92
93 The data to be written comes from input sections attached
94 (via <<output_section>> pointers) to
95 the output sections. The output section structure can be
96 considered a filter for the input section: the output section
97 determines the vma of the output data and the name, but the
98 input section determines the offset into the output section of
99 the data to be written.
100
101 E.g., to create a section "O", starting at 0x100, 0x123 long,
102 containing two subsections, "A" at offset 0x0 (i.e., at vma
103 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
104 structures would look like:
105
106 | section name "A"
107 | output_offset 0x00
108 | size 0x20
109 | output_section -----------> section name "O"
110 | | vma 0x100
111 | section name "B" | size 0x123
112 | output_offset 0x20 |
113 | size 0x103 |
114 | output_section --------|
115
116 SUBSECTION
117 Link orders
118
119 The data within a section is stored in a @dfn{link_order}.
120 These are much like the fixups in <<gas>>. The link_order
121 abstraction allows a section to grow and shrink within itself.
122
123 A link_order knows how big it is, and which is the next
124 link_order and where the raw data for it is; it also points to
125 a list of relocations which apply to it.
126
127 The link_order is used by the linker to perform relaxing on
128 final code. The compiler creates code which is as big as
129 necessary to make it work without relaxing, and the user can
130 select whether to relax. Sometimes relaxing takes a lot of
131 time. The linker runs around the relocations to see if any
132 are attached to data which can be shrunk, if so it does it on
133 a link_order by link_order basis.
134
135 */
136
137 #include "sysdep.h"
138 #include "bfd.h"
139 #include "libbfd.h"
140 #include "bfdlink.h"
141
142 /*
143 DOCDD
144 INODE
145 typedef asection, section prototypes, Section Output, Sections
146 SUBSECTION
147 typedef asection
148
149 Here is the section structure:
150
151 CODE_FRAGMENT
152 .
153 .typedef struct bfd_section
154 .{
155 . {* The name of the section; the name isn't a copy, the pointer is
156 . the same as that passed to bfd_make_section. *}
157 . const char *name;
158 .
159 . {* A unique sequence number. *}
160 . int id;
161 .
162 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
163 . int index;
164 .
165 . {* The next section in the list belonging to the BFD, or NULL. *}
166 . struct bfd_section *next;
167 .
168 . {* The previous section in the list belonging to the BFD, or NULL. *}
169 . struct bfd_section *prev;
170 .
171 . {* The field flags contains attributes of the section. Some
172 . flags are read in from the object file, and some are
173 . synthesized from other information. *}
174 . flagword flags;
175 .
176 .#define SEC_NO_FLAGS 0x000
177 .
178 . {* Tells the OS to allocate space for this section when loading.
179 . This is clear for a section containing debug information only. *}
180 .#define SEC_ALLOC 0x001
181 .
182 . {* Tells the OS to load the section from the file when loading.
183 . This is clear for a .bss section. *}
184 .#define SEC_LOAD 0x002
185 .
186 . {* The section contains data still to be relocated, so there is
187 . some relocation information too. *}
188 .#define SEC_RELOC 0x004
189 .
190 . {* A signal to the OS that the section contains read only data. *}
191 .#define SEC_READONLY 0x008
192 .
193 . {* The section contains code only. *}
194 .#define SEC_CODE 0x010
195 .
196 . {* The section contains data only. *}
197 .#define SEC_DATA 0x020
198 .
199 . {* The section will reside in ROM. *}
200 .#define SEC_ROM 0x040
201 .
202 . {* The section contains constructor information. This section
203 . type is used by the linker to create lists of constructors and
204 . destructors used by <<g++>>. When a back end sees a symbol
205 . which should be used in a constructor list, it creates a new
206 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
207 . the symbol to it, and builds a relocation. To build the lists
208 . of constructors, all the linker has to do is catenate all the
209 . sections called <<__CTOR_LIST__>> and relocate the data
210 . contained within - exactly the operations it would peform on
211 . standard data. *}
212 .#define SEC_CONSTRUCTOR 0x080
213 .
214 . {* The section has contents - a data section could be
215 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
216 . <<SEC_HAS_CONTENTS>> *}
217 .#define SEC_HAS_CONTENTS 0x100
218 .
219 . {* An instruction to the linker to not output the section
220 . even if it has information which would normally be written. *}
221 .#define SEC_NEVER_LOAD 0x200
222 .
223 . {* The section contains thread local data. *}
224 .#define SEC_THREAD_LOCAL 0x400
225 .
226 . {* The section has GOT references. This flag is only for the
227 . linker, and is currently only used by the elf32-hppa back end.
228 . It will be set if global offset table references were detected
229 . in this section, which indicate to the linker that the section
230 . contains PIC code, and must be handled specially when doing a
231 . static link. *}
232 .#define SEC_HAS_GOT_REF 0x800
233 .
234 . {* The section contains common symbols (symbols may be defined
235 . multiple times, the value of a symbol is the amount of
236 . space it requires, and the largest symbol value is the one
237 . used). Most targets have exactly one of these (which we
238 . translate to bfd_com_section_ptr), but ECOFF has two. *}
239 .#define SEC_IS_COMMON 0x1000
240 .
241 . {* The section contains only debugging information. For
242 . example, this is set for ELF .debug and .stab sections.
243 . strip tests this flag to see if a section can be
244 . discarded. *}
245 .#define SEC_DEBUGGING 0x2000
246 .
247 . {* The contents of this section are held in memory pointed to
248 . by the contents field. This is checked by bfd_get_section_contents,
249 . and the data is retrieved from memory if appropriate. *}
250 .#define SEC_IN_MEMORY 0x4000
251 .
252 . {* The contents of this section are to be excluded by the
253 . linker for executable and shared objects unless those
254 . objects are to be further relocated. *}
255 .#define SEC_EXCLUDE 0x8000
256 .
257 . {* The contents of this section are to be sorted based on the sum of
258 . the symbol and addend values specified by the associated relocation
259 . entries. Entries without associated relocation entries will be
260 . appended to the end of the section in an unspecified order. *}
261 .#define SEC_SORT_ENTRIES 0x10000
262 .
263 . {* When linking, duplicate sections of the same name should be
264 . discarded, rather than being combined into a single section as
265 . is usually done. This is similar to how common symbols are
266 . handled. See SEC_LINK_DUPLICATES below. *}
267 .#define SEC_LINK_ONCE 0x20000
268 .
269 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
270 . should handle duplicate sections. *}
271 .#define SEC_LINK_DUPLICATES 0xc0000
272 .
273 . {* This value for SEC_LINK_DUPLICATES means that duplicate
274 . sections with the same name should simply be discarded. *}
275 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
276 .
277 . {* This value for SEC_LINK_DUPLICATES means that the linker
278 . should warn if there are any duplicate sections, although
279 . it should still only link one copy. *}
280 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
281 .
282 . {* This value for SEC_LINK_DUPLICATES means that the linker
283 . should warn if any duplicate sections are a different size. *}
284 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
285 .
286 . {* This value for SEC_LINK_DUPLICATES means that the linker
287 . should warn if any duplicate sections contain different
288 . contents. *}
289 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
290 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
291 .
292 . {* This section was created by the linker as part of dynamic
293 . relocation or other arcane processing. It is skipped when
294 . going through the first-pass output, trusting that someone
295 . else up the line will take care of it later. *}
296 .#define SEC_LINKER_CREATED 0x100000
297 .
298 . {* This section should not be subject to garbage collection.
299 . Also set to inform the linker that this section should not be
300 . listed in the link map as discarded. *}
301 .#define SEC_KEEP 0x200000
302 .
303 . {* This section contains "short" data, and should be placed
304 . "near" the GP. *}
305 .#define SEC_SMALL_DATA 0x400000
306 .
307 . {* Attempt to merge identical entities in the section.
308 . Entity size is given in the entsize field. *}
309 .#define SEC_MERGE 0x800000
310 .
311 . {* If given with SEC_MERGE, entities to merge are zero terminated
312 . strings where entsize specifies character size instead of fixed
313 . size entries. *}
314 .#define SEC_STRINGS 0x1000000
315 .
316 . {* This section contains data about section groups. *}
317 .#define SEC_GROUP 0x2000000
318 .
319 . {* The section is a COFF shared library section. This flag is
320 . only for the linker. If this type of section appears in
321 . the input file, the linker must copy it to the output file
322 . without changing the vma or size. FIXME: Although this
323 . was originally intended to be general, it really is COFF
324 . specific (and the flag was renamed to indicate this). It
325 . might be cleaner to have some more general mechanism to
326 . allow the back end to control what the linker does with
327 . sections. *}
328 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
329 .
330 . {* This section contains data which may be shared with other
331 . executables or shared objects. This is for COFF only. *}
332 .#define SEC_COFF_SHARED 0x8000000
333 .
334 . {* When a section with this flag is being linked, then if the size of
335 . the input section is less than a page, it should not cross a page
336 . boundary. If the size of the input section is one page or more,
337 . it should be aligned on a page boundary. This is for TI
338 . TMS320C54X only. *}
339 .#define SEC_TIC54X_BLOCK 0x10000000
340 .
341 . {* Conditionally link this section; do not link if there are no
342 . references found to any symbol in the section. This is for TI
343 . TMS320C54X only. *}
344 .#define SEC_TIC54X_CLINK 0x20000000
345 .
346 . {* Indicate that section has the no read flag set. This happens
347 . when memory read flag isn't set. *}
348 .#define SEC_COFF_NOREAD 0x40000000
349 .
350 . {* End of section flags. *}
351 .
352 . {* Some internal packed boolean fields. *}
353 .
354 . {* See the vma field. *}
355 . unsigned int user_set_vma : 1;
356 .
357 . {* A mark flag used by some of the linker backends. *}
358 . unsigned int linker_mark : 1;
359 .
360 . {* Another mark flag used by some of the linker backends. Set for
361 . output sections that have an input section. *}
362 . unsigned int linker_has_input : 1;
363 .
364 . {* Mark flag used by some linker backends for garbage collection. *}
365 . unsigned int gc_mark : 1;
366 .
367 . {* The following flags are used by the ELF linker. *}
368 .
369 . {* Mark sections which have been allocated to segments. *}
370 . unsigned int segment_mark : 1;
371 .
372 . {* Type of sec_info information. *}
373 . unsigned int sec_info_type:3;
374 .#define ELF_INFO_TYPE_NONE 0
375 .#define ELF_INFO_TYPE_STABS 1
376 .#define ELF_INFO_TYPE_MERGE 2
377 .#define ELF_INFO_TYPE_EH_FRAME 3
378 .#define ELF_INFO_TYPE_JUST_SYMS 4
379 .
380 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
381 . unsigned int use_rela_p:1;
382 .
383 . {* Bits used by various backends. The generic code doesn't touch
384 . these fields. *}
385 .
386 . {* Nonzero if this section has TLS related relocations. *}
387 . unsigned int has_tls_reloc:1;
388 .
389 . {* Nonzero if this section has a call to __tls_get_addr. *}
390 . unsigned int has_tls_get_addr_call:1;
391 .
392 . {* Nonzero if this section has a gp reloc. *}
393 . unsigned int has_gp_reloc:1;
394 .
395 . {* Nonzero if this section needs the relax finalize pass. *}
396 . unsigned int need_finalize_relax:1;
397 .
398 . {* Whether relocations have been processed. *}
399 . unsigned int reloc_done : 1;
400 .
401 . {* End of internal packed boolean fields. *}
402 .
403 . {* The virtual memory address of the section - where it will be
404 . at run time. The symbols are relocated against this. The
405 . user_set_vma flag is maintained by bfd; if it's not set, the
406 . backend can assign addresses (for example, in <<a.out>>, where
407 . the default address for <<.data>> is dependent on the specific
408 . target and various flags). *}
409 . bfd_vma vma;
410 .
411 . {* The load address of the section - where it would be in a
412 . rom image; really only used for writing section header
413 . information. *}
414 . bfd_vma lma;
415 .
416 . {* The size of the section in octets, as it will be output.
417 . Contains a value even if the section has no contents (e.g., the
418 . size of <<.bss>>). *}
419 . bfd_size_type size;
420 .
421 . {* For input sections, the original size on disk of the section, in
422 . octets. This field should be set for any section whose size is
423 . changed by linker relaxation. It is required for sections where
424 . the linker relaxation scheme doesn't cache altered section and
425 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
426 . targets), and thus the original size needs to be kept to read the
427 . section multiple times. For output sections, rawsize holds the
428 . section size calculated on a previous linker relaxation pass. *}
429 . bfd_size_type rawsize;
430 .
431 . {* If this section is going to be output, then this value is the
432 . offset in *bytes* into the output section of the first byte in the
433 . input section (byte ==> smallest addressable unit on the
434 . target). In most cases, if this was going to start at the
435 . 100th octet (8-bit quantity) in the output section, this value
436 . would be 100. However, if the target byte size is 16 bits
437 . (bfd_octets_per_byte is "2"), this value would be 50. *}
438 . bfd_vma output_offset;
439 .
440 . {* The output section through which to map on output. *}
441 . struct bfd_section *output_section;
442 .
443 . {* The alignment requirement of the section, as an exponent of 2 -
444 . e.g., 3 aligns to 2^3 (or 8). *}
445 . unsigned int alignment_power;
446 .
447 . {* If an input section, a pointer to a vector of relocation
448 . records for the data in this section. *}
449 . struct reloc_cache_entry *relocation;
450 .
451 . {* If an output section, a pointer to a vector of pointers to
452 . relocation records for the data in this section. *}
453 . struct reloc_cache_entry **orelocation;
454 .
455 . {* The number of relocation records in one of the above. *}
456 . unsigned reloc_count;
457 .
458 . {* Information below is back end specific - and not always used
459 . or updated. *}
460 .
461 . {* File position of section data. *}
462 . file_ptr filepos;
463 .
464 . {* File position of relocation info. *}
465 . file_ptr rel_filepos;
466 .
467 . {* File position of line data. *}
468 . file_ptr line_filepos;
469 .
470 . {* Pointer to data for applications. *}
471 . void *userdata;
472 .
473 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
474 . contents. *}
475 . unsigned char *contents;
476 .
477 . {* Attached line number information. *}
478 . alent *lineno;
479 .
480 . {* Number of line number records. *}
481 . unsigned int lineno_count;
482 .
483 . {* Entity size for merging purposes. *}
484 . unsigned int entsize;
485 .
486 . {* Points to the kept section if this section is a link-once section,
487 . and is discarded. *}
488 . struct bfd_section *kept_section;
489 .
490 . {* When a section is being output, this value changes as more
491 . linenumbers are written out. *}
492 . file_ptr moving_line_filepos;
493 .
494 . {* What the section number is in the target world. *}
495 . int target_index;
496 .
497 . void *used_by_bfd;
498 .
499 . {* If this is a constructor section then here is a list of the
500 . relocations created to relocate items within it. *}
501 . struct relent_chain *constructor_chain;
502 .
503 . {* The BFD which owns the section. *}
504 . bfd *owner;
505 .
506 . {* A symbol which points at this section only. *}
507 . struct bfd_symbol *symbol;
508 . struct bfd_symbol **symbol_ptr_ptr;
509 .
510 . {* Early in the link process, map_head and map_tail are used to build
511 . a list of input sections attached to an output section. Later,
512 . output sections use these fields for a list of bfd_link_order
513 . structs. *}
514 . union {
515 . struct bfd_link_order *link_order;
516 . struct bfd_section *s;
517 . } map_head, map_tail;
518 .} asection;
519 .
520 .{* These sections are global, and are managed by BFD. The application
521 . and target back end are not permitted to change the values in
522 . these sections. New code should use the section_ptr macros rather
523 . than referring directly to the const sections. The const sections
524 . may eventually vanish. *}
525 .#define BFD_ABS_SECTION_NAME "*ABS*"
526 .#define BFD_UND_SECTION_NAME "*UND*"
527 .#define BFD_COM_SECTION_NAME "*COM*"
528 .#define BFD_IND_SECTION_NAME "*IND*"
529 .
530 .{* The absolute section. *}
531 .extern asection bfd_abs_section;
532 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
533 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
534 .{* Pointer to the undefined section. *}
535 .extern asection bfd_und_section;
536 .#define bfd_und_section_ptr ((asection *) &bfd_und_section)
537 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
538 .{* Pointer to the common section. *}
539 .extern asection bfd_com_section;
540 .#define bfd_com_section_ptr ((asection *) &bfd_com_section)
541 .{* Pointer to the indirect section. *}
542 .extern asection bfd_ind_section;
543 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
544 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
545 .
546 .#define bfd_is_const_section(SEC) \
547 . ( ((SEC) == bfd_abs_section_ptr) \
548 . || ((SEC) == bfd_und_section_ptr) \
549 . || ((SEC) == bfd_com_section_ptr) \
550 . || ((SEC) == bfd_ind_section_ptr))
551 .
552 .{* Macros to handle insertion and deletion of a bfd's sections. These
553 . only handle the list pointers, ie. do not adjust section_count,
554 . target_index etc. *}
555 .#define bfd_section_list_remove(ABFD, S) \
556 . do \
557 . { \
558 . asection *_s = S; \
559 . asection *_next = _s->next; \
560 . asection *_prev = _s->prev; \
561 . if (_prev) \
562 . _prev->next = _next; \
563 . else \
564 . (ABFD)->sections = _next; \
565 . if (_next) \
566 . _next->prev = _prev; \
567 . else \
568 . (ABFD)->section_last = _prev; \
569 . } \
570 . while (0)
571 .#define bfd_section_list_append(ABFD, S) \
572 . do \
573 . { \
574 . asection *_s = S; \
575 . bfd *_abfd = ABFD; \
576 . _s->next = NULL; \
577 . if (_abfd->section_last) \
578 . { \
579 . _s->prev = _abfd->section_last; \
580 . _abfd->section_last->next = _s; \
581 . } \
582 . else \
583 . { \
584 . _s->prev = NULL; \
585 . _abfd->sections = _s; \
586 . } \
587 . _abfd->section_last = _s; \
588 . } \
589 . while (0)
590 .#define bfd_section_list_prepend(ABFD, S) \
591 . do \
592 . { \
593 . asection *_s = S; \
594 . bfd *_abfd = ABFD; \
595 . _s->prev = NULL; \
596 . if (_abfd->sections) \
597 . { \
598 . _s->next = _abfd->sections; \
599 . _abfd->sections->prev = _s; \
600 . } \
601 . else \
602 . { \
603 . _s->next = NULL; \
604 . _abfd->section_last = _s; \
605 . } \
606 . _abfd->sections = _s; \
607 . } \
608 . while (0)
609 .#define bfd_section_list_insert_after(ABFD, A, S) \
610 . do \
611 . { \
612 . asection *_a = A; \
613 . asection *_s = S; \
614 . asection *_next = _a->next; \
615 . _s->next = _next; \
616 . _s->prev = _a; \
617 . _a->next = _s; \
618 . if (_next) \
619 . _next->prev = _s; \
620 . else \
621 . (ABFD)->section_last = _s; \
622 . } \
623 . while (0)
624 .#define bfd_section_list_insert_before(ABFD, B, S) \
625 . do \
626 . { \
627 . asection *_b = B; \
628 . asection *_s = S; \
629 . asection *_prev = _b->prev; \
630 . _s->prev = _prev; \
631 . _s->next = _b; \
632 . _b->prev = _s; \
633 . if (_prev) \
634 . _prev->next = _s; \
635 . else \
636 . (ABFD)->sections = _s; \
637 . } \
638 . while (0)
639 .#define bfd_section_removed_from_list(ABFD, S) \
640 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
641 .
642 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
643 . {* name, id, index, next, prev, flags, user_set_vma, *} \
644 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
645 . \
646 . {* linker_mark, linker_has_input, gc_mark, *} \
647 . 0, 0, 1, \
648 . \
649 . {* segment_mark, sec_info_type, use_rela_p, has_tls_reloc, *} \
650 . 0, 0, 0, 0, \
651 . \
652 . {* has_tls_get_addr_call, has_gp_reloc, need_finalize_relax, *} \
653 . 0, 0, 0, \
654 . \
655 . {* reloc_done, vma, lma, size, rawsize *} \
656 . 0, 0, 0, 0, 0, \
657 . \
658 . {* output_offset, output_section, alignment_power, *} \
659 . 0, (struct bfd_section *) &SEC, 0, \
660 . \
661 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
662 . NULL, NULL, 0, 0, 0, \
663 . \
664 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
665 . 0, NULL, NULL, NULL, 0, \
666 . \
667 . {* entsize, kept_section, moving_line_filepos, *} \
668 . 0, NULL, 0, \
669 . \
670 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
671 . 0, NULL, NULL, NULL, \
672 . \
673 . {* symbol, symbol_ptr_ptr, *} \
674 . (struct bfd_symbol *) SYM, &SEC.symbol, \
675 . \
676 . {* map_head, map_tail *} \
677 . { NULL }, { NULL } \
678 . }
679 .
680 */
681
682 /* We use a macro to initialize the static asymbol structures because
683 traditional C does not permit us to initialize a union member while
684 gcc warns if we don't initialize it. */
685 /* the_bfd, name, value, attr, section [, udata] */
686 #ifdef __STDC__
687 #define GLOBAL_SYM_INIT(NAME, SECTION) \
688 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
689 #else
690 #define GLOBAL_SYM_INIT(NAME, SECTION) \
691 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
692 #endif
693
694 /* These symbols are global, not specific to any BFD. Therefore, anything
695 that tries to change them is broken, and should be repaired. */
696
697 static const asymbol global_syms[] =
698 {
699 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
700 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
701 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
702 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
703 };
704
705 #define STD_SECTION(SEC, FLAGS, NAME, IDX) \
706 asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX], \
707 NAME, IDX)
708
709 STD_SECTION (bfd_com_section, SEC_IS_COMMON, BFD_COM_SECTION_NAME, 0);
710 STD_SECTION (bfd_und_section, 0, BFD_UND_SECTION_NAME, 1);
711 STD_SECTION (bfd_abs_section, 0, BFD_ABS_SECTION_NAME, 2);
712 STD_SECTION (bfd_ind_section, 0, BFD_IND_SECTION_NAME, 3);
713 #undef STD_SECTION
714
715 /* Initialize an entry in the section hash table. */
716
717 struct bfd_hash_entry *
718 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
719 struct bfd_hash_table *table,
720 const char *string)
721 {
722 /* Allocate the structure if it has not already been allocated by a
723 subclass. */
724 if (entry == NULL)
725 {
726 entry = (struct bfd_hash_entry *)
727 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
728 if (entry == NULL)
729 return entry;
730 }
731
732 /* Call the allocation method of the superclass. */
733 entry = bfd_hash_newfunc (entry, table, string);
734 if (entry != NULL)
735 memset (&((struct section_hash_entry *) entry)->section, 0,
736 sizeof (asection));
737
738 return entry;
739 }
740
741 #define section_hash_lookup(table, string, create, copy) \
742 ((struct section_hash_entry *) \
743 bfd_hash_lookup ((table), (string), (create), (copy)))
744
745 /* Create a symbol whose only job is to point to this section. This
746 is useful for things like relocs which are relative to the base
747 of a section. */
748
749 bfd_boolean
750 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
751 {
752 newsect->symbol = bfd_make_empty_symbol (abfd);
753 if (newsect->symbol == NULL)
754 return FALSE;
755
756 newsect->symbol->name = newsect->name;
757 newsect->symbol->value = 0;
758 newsect->symbol->section = newsect;
759 newsect->symbol->flags = BSF_SECTION_SYM;
760
761 newsect->symbol_ptr_ptr = &newsect->symbol;
762 return TRUE;
763 }
764
765 /* Initializes a new section. NEWSECT->NAME is already set. */
766
767 static asection *
768 bfd_section_init (bfd *abfd, asection *newsect)
769 {
770 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
771
772 newsect->id = section_id;
773 newsect->index = abfd->section_count;
774 newsect->owner = abfd;
775
776 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
777 return NULL;
778
779 section_id++;
780 abfd->section_count++;
781 bfd_section_list_append (abfd, newsect);
782 return newsect;
783 }
784
785 /*
786 DOCDD
787 INODE
788 section prototypes, , typedef asection, Sections
789 SUBSECTION
790 Section prototypes
791
792 These are the functions exported by the section handling part of BFD.
793 */
794
795 /*
796 FUNCTION
797 bfd_section_list_clear
798
799 SYNOPSIS
800 void bfd_section_list_clear (bfd *);
801
802 DESCRIPTION
803 Clears the section list, and also resets the section count and
804 hash table entries.
805 */
806
807 void
808 bfd_section_list_clear (bfd *abfd)
809 {
810 abfd->sections = NULL;
811 abfd->section_last = NULL;
812 abfd->section_count = 0;
813 memset (abfd->section_htab.table, 0,
814 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
815 }
816
817 /*
818 FUNCTION
819 bfd_get_section_by_name
820
821 SYNOPSIS
822 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
823
824 DESCRIPTION
825 Run through @var{abfd} and return the one of the
826 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
827 @xref{Sections}, for more information.
828
829 This should only be used in special cases; the normal way to process
830 all sections of a given name is to use <<bfd_map_over_sections>> and
831 <<strcmp>> on the name (or better yet, base it on the section flags
832 or something else) for each section.
833 */
834
835 asection *
836 bfd_get_section_by_name (bfd *abfd, const char *name)
837 {
838 struct section_hash_entry *sh;
839
840 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
841 if (sh != NULL)
842 return &sh->section;
843
844 return NULL;
845 }
846
847 /*
848 FUNCTION
849 bfd_get_section_by_name_if
850
851 SYNOPSIS
852 asection *bfd_get_section_by_name_if
853 (bfd *abfd,
854 const char *name,
855 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
856 void *obj);
857
858 DESCRIPTION
859 Call the provided function @var{func} for each section
860 attached to the BFD @var{abfd} whose name matches @var{name},
861 passing @var{obj} as an argument. The function will be called
862 as if by
863
864 | func (abfd, the_section, obj);
865
866 It returns the first section for which @var{func} returns true,
867 otherwise <<NULL>>.
868
869 */
870
871 asection *
872 bfd_get_section_by_name_if (bfd *abfd, const char *name,
873 bfd_boolean (*operation) (bfd *,
874 asection *,
875 void *),
876 void *user_storage)
877 {
878 struct section_hash_entry *sh;
879 unsigned long hash;
880
881 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
882 if (sh == NULL)
883 return NULL;
884
885 hash = sh->root.hash;
886 do
887 {
888 if ((*operation) (abfd, &sh->section, user_storage))
889 return &sh->section;
890 sh = (struct section_hash_entry *) sh->root.next;
891 }
892 while (sh != NULL && sh->root.hash == hash
893 && strcmp (sh->root.string, name) == 0);
894
895 return NULL;
896 }
897
898 /*
899 FUNCTION
900 bfd_get_unique_section_name
901
902 SYNOPSIS
903 char *bfd_get_unique_section_name
904 (bfd *abfd, const char *templat, int *count);
905
906 DESCRIPTION
907 Invent a section name that is unique in @var{abfd} by tacking
908 a dot and a digit suffix onto the original @var{templat}. If
909 @var{count} is non-NULL, then it specifies the first number
910 tried as a suffix to generate a unique name. The value
911 pointed to by @var{count} will be incremented in this case.
912 */
913
914 char *
915 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
916 {
917 int num;
918 unsigned int len;
919 char *sname;
920
921 len = strlen (templat);
922 sname = bfd_malloc (len + 8);
923 if (sname == NULL)
924 return NULL;
925 memcpy (sname, templat, len);
926 num = 1;
927 if (count != NULL)
928 num = *count;
929
930 do
931 {
932 /* If we have a million sections, something is badly wrong. */
933 if (num > 999999)
934 abort ();
935 sprintf (sname + len, ".%d", num++);
936 }
937 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
938
939 if (count != NULL)
940 *count = num;
941 return sname;
942 }
943
944 /*
945 FUNCTION
946 bfd_make_section_old_way
947
948 SYNOPSIS
949 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
950
951 DESCRIPTION
952 Create a new empty section called @var{name}
953 and attach it to the end of the chain of sections for the
954 BFD @var{abfd}. An attempt to create a section with a name which
955 is already in use returns its pointer without changing the
956 section chain.
957
958 It has the funny name since this is the way it used to be
959 before it was rewritten....
960
961 Possible errors are:
962 o <<bfd_error_invalid_operation>> -
963 If output has already started for this BFD.
964 o <<bfd_error_no_memory>> -
965 If memory allocation fails.
966
967 */
968
969 asection *
970 bfd_make_section_old_way (bfd *abfd, const char *name)
971 {
972 asection *newsect;
973
974 if (abfd->output_has_begun)
975 {
976 bfd_set_error (bfd_error_invalid_operation);
977 return NULL;
978 }
979
980 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
981 newsect = bfd_abs_section_ptr;
982 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
983 newsect = bfd_com_section_ptr;
984 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
985 newsect = bfd_und_section_ptr;
986 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
987 newsect = bfd_ind_section_ptr;
988 else
989 {
990 struct section_hash_entry *sh;
991
992 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
993 if (sh == NULL)
994 return NULL;
995
996 newsect = &sh->section;
997 if (newsect->name != NULL)
998 {
999 /* Section already exists. */
1000 return newsect;
1001 }
1002
1003 newsect->name = name;
1004 return bfd_section_init (abfd, newsect);
1005 }
1006
1007 /* Call new_section_hook when "creating" the standard abs, com, und
1008 and ind sections to tack on format specific section data.
1009 Also, create a proper section symbol. */
1010 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1011 return NULL;
1012 return newsect;
1013 }
1014
1015 /*
1016 FUNCTION
1017 bfd_make_section_anyway_with_flags
1018
1019 SYNOPSIS
1020 asection *bfd_make_section_anyway_with_flags
1021 (bfd *abfd, const char *name, flagword flags);
1022
1023 DESCRIPTION
1024 Create a new empty section called @var{name} and attach it to the end of
1025 the chain of sections for @var{abfd}. Create a new section even if there
1026 is already a section with that name. Also set the attributes of the
1027 new section to the value @var{flags}.
1028
1029 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1030 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1031 o <<bfd_error_no_memory>> - If memory allocation fails.
1032 */
1033
1034 sec_ptr
1035 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1036 flagword flags)
1037 {
1038 struct section_hash_entry *sh;
1039 asection *newsect;
1040
1041 if (abfd->output_has_begun)
1042 {
1043 bfd_set_error (bfd_error_invalid_operation);
1044 return NULL;
1045 }
1046
1047 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1048 if (sh == NULL)
1049 return NULL;
1050
1051 newsect = &sh->section;
1052 if (newsect->name != NULL)
1053 {
1054 /* We are making a section of the same name. Put it in the
1055 section hash table. Even though we can't find it directly by a
1056 hash lookup, we'll be able to find the section by traversing
1057 sh->root.next quicker than looking at all the bfd sections. */
1058 struct section_hash_entry *new_sh;
1059 new_sh = (struct section_hash_entry *)
1060 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1061 if (new_sh == NULL)
1062 return NULL;
1063
1064 new_sh->root = sh->root;
1065 sh->root.next = &new_sh->root;
1066 newsect = &new_sh->section;
1067 }
1068
1069 newsect->flags = flags;
1070 newsect->name = name;
1071 return bfd_section_init (abfd, newsect);
1072 }
1073
1074 /*
1075 FUNCTION
1076 bfd_make_section_anyway
1077
1078 SYNOPSIS
1079 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1080
1081 DESCRIPTION
1082 Create a new empty section called @var{name} and attach it to the end of
1083 the chain of sections for @var{abfd}. Create a new section even if there
1084 is already a section with that name.
1085
1086 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1087 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1088 o <<bfd_error_no_memory>> - If memory allocation fails.
1089 */
1090
1091 sec_ptr
1092 bfd_make_section_anyway (bfd *abfd, const char *name)
1093 {
1094 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1095 }
1096
1097 /*
1098 FUNCTION
1099 bfd_make_section_with_flags
1100
1101 SYNOPSIS
1102 asection *bfd_make_section_with_flags
1103 (bfd *, const char *name, flagword flags);
1104
1105 DESCRIPTION
1106 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1107 bfd_set_error ()) without changing the section chain if there is already a
1108 section named @var{name}. Also set the attributes of the new section to
1109 the value @var{flags}. If there is an error, return <<NULL>> and set
1110 <<bfd_error>>.
1111 */
1112
1113 asection *
1114 bfd_make_section_with_flags (bfd *abfd, const char *name,
1115 flagword flags)
1116 {
1117 struct section_hash_entry *sh;
1118 asection *newsect;
1119
1120 if (abfd->output_has_begun)
1121 {
1122 bfd_set_error (bfd_error_invalid_operation);
1123 return NULL;
1124 }
1125
1126 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1127 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1128 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1129 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1130 return NULL;
1131
1132 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1133 if (sh == NULL)
1134 return NULL;
1135
1136 newsect = &sh->section;
1137 if (newsect->name != NULL)
1138 {
1139 /* Section already exists. */
1140 return NULL;
1141 }
1142
1143 newsect->name = name;
1144 newsect->flags = flags;
1145 return bfd_section_init (abfd, newsect);
1146 }
1147
1148 /*
1149 FUNCTION
1150 bfd_make_section
1151
1152 SYNOPSIS
1153 asection *bfd_make_section (bfd *, const char *name);
1154
1155 DESCRIPTION
1156 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1157 bfd_set_error ()) without changing the section chain if there is already a
1158 section named @var{name}. If there is an error, return <<NULL>> and set
1159 <<bfd_error>>.
1160 */
1161
1162 asection *
1163 bfd_make_section (bfd *abfd, const char *name)
1164 {
1165 return bfd_make_section_with_flags (abfd, name, 0);
1166 }
1167
1168 /*
1169 FUNCTION
1170 bfd_set_section_flags
1171
1172 SYNOPSIS
1173 bfd_boolean bfd_set_section_flags
1174 (bfd *abfd, asection *sec, flagword flags);
1175
1176 DESCRIPTION
1177 Set the attributes of the section @var{sec} in the BFD
1178 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1179 <<FALSE>> on error. Possible error returns are:
1180
1181 o <<bfd_error_invalid_operation>> -
1182 The section cannot have one or more of the attributes
1183 requested. For example, a .bss section in <<a.out>> may not
1184 have the <<SEC_HAS_CONTENTS>> field set.
1185
1186 */
1187
1188 bfd_boolean
1189 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1190 sec_ptr section,
1191 flagword flags)
1192 {
1193 section->flags = flags;
1194 return TRUE;
1195 }
1196
1197 /*
1198 FUNCTION
1199 bfd_map_over_sections
1200
1201 SYNOPSIS
1202 void bfd_map_over_sections
1203 (bfd *abfd,
1204 void (*func) (bfd *abfd, asection *sect, void *obj),
1205 void *obj);
1206
1207 DESCRIPTION
1208 Call the provided function @var{func} for each section
1209 attached to the BFD @var{abfd}, passing @var{obj} as an
1210 argument. The function will be called as if by
1211
1212 | func (abfd, the_section, obj);
1213
1214 This is the preferred method for iterating over sections; an
1215 alternative would be to use a loop:
1216
1217 | section *p;
1218 | for (p = abfd->sections; p != NULL; p = p->next)
1219 | func (abfd, p, ...)
1220
1221 */
1222
1223 void
1224 bfd_map_over_sections (bfd *abfd,
1225 void (*operation) (bfd *, asection *, void *),
1226 void *user_storage)
1227 {
1228 asection *sect;
1229 unsigned int i = 0;
1230
1231 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1232 (*operation) (abfd, sect, user_storage);
1233
1234 if (i != abfd->section_count) /* Debugging */
1235 abort ();
1236 }
1237
1238 /*
1239 FUNCTION
1240 bfd_sections_find_if
1241
1242 SYNOPSIS
1243 asection *bfd_sections_find_if
1244 (bfd *abfd,
1245 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1246 void *obj);
1247
1248 DESCRIPTION
1249 Call the provided function @var{operation} for each section
1250 attached to the BFD @var{abfd}, passing @var{obj} as an
1251 argument. The function will be called as if by
1252
1253 | operation (abfd, the_section, obj);
1254
1255 It returns the first section for which @var{operation} returns true.
1256
1257 */
1258
1259 asection *
1260 bfd_sections_find_if (bfd *abfd,
1261 bfd_boolean (*operation) (bfd *, asection *, void *),
1262 void *user_storage)
1263 {
1264 asection *sect;
1265
1266 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1267 if ((*operation) (abfd, sect, user_storage))
1268 break;
1269
1270 return sect;
1271 }
1272
1273 /*
1274 FUNCTION
1275 bfd_set_section_size
1276
1277 SYNOPSIS
1278 bfd_boolean bfd_set_section_size
1279 (bfd *abfd, asection *sec, bfd_size_type val);
1280
1281 DESCRIPTION
1282 Set @var{sec} to the size @var{val}. If the operation is
1283 ok, then <<TRUE>> is returned, else <<FALSE>>.
1284
1285 Possible error returns:
1286 o <<bfd_error_invalid_operation>> -
1287 Writing has started to the BFD, so setting the size is invalid.
1288
1289 */
1290
1291 bfd_boolean
1292 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1293 {
1294 /* Once you've started writing to any section you cannot create or change
1295 the size of any others. */
1296
1297 if (abfd->output_has_begun)
1298 {
1299 bfd_set_error (bfd_error_invalid_operation);
1300 return FALSE;
1301 }
1302
1303 ptr->size = val;
1304 return TRUE;
1305 }
1306
1307 /*
1308 FUNCTION
1309 bfd_set_section_contents
1310
1311 SYNOPSIS
1312 bfd_boolean bfd_set_section_contents
1313 (bfd *abfd, asection *section, const void *data,
1314 file_ptr offset, bfd_size_type count);
1315
1316 DESCRIPTION
1317 Sets the contents of the section @var{section} in BFD
1318 @var{abfd} to the data starting in memory at @var{data}. The
1319 data is written to the output section starting at offset
1320 @var{offset} for @var{count} octets.
1321
1322 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1323 returns are:
1324 o <<bfd_error_no_contents>> -
1325 The output section does not have the <<SEC_HAS_CONTENTS>>
1326 attribute, so nothing can be written to it.
1327 o and some more too
1328
1329 This routine is front end to the back end function
1330 <<_bfd_set_section_contents>>.
1331
1332 */
1333
1334 bfd_boolean
1335 bfd_set_section_contents (bfd *abfd,
1336 sec_ptr section,
1337 const void *location,
1338 file_ptr offset,
1339 bfd_size_type count)
1340 {
1341 bfd_size_type sz;
1342
1343 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1344 {
1345 bfd_set_error (bfd_error_no_contents);
1346 return FALSE;
1347 }
1348
1349 sz = section->size;
1350 if ((bfd_size_type) offset > sz
1351 || count > sz
1352 || offset + count > sz
1353 || count != (size_t) count)
1354 {
1355 bfd_set_error (bfd_error_bad_value);
1356 return FALSE;
1357 }
1358
1359 if (!bfd_write_p (abfd))
1360 {
1361 bfd_set_error (bfd_error_invalid_operation);
1362 return FALSE;
1363 }
1364
1365 /* Record a copy of the data in memory if desired. */
1366 if (section->contents
1367 && location != section->contents + offset)
1368 memcpy (section->contents + offset, location, (size_t) count);
1369
1370 if (BFD_SEND (abfd, _bfd_set_section_contents,
1371 (abfd, section, location, offset, count)))
1372 {
1373 abfd->output_has_begun = TRUE;
1374 return TRUE;
1375 }
1376
1377 return FALSE;
1378 }
1379
1380 /*
1381 FUNCTION
1382 bfd_get_section_contents
1383
1384 SYNOPSIS
1385 bfd_boolean bfd_get_section_contents
1386 (bfd *abfd, asection *section, void *location, file_ptr offset,
1387 bfd_size_type count);
1388
1389 DESCRIPTION
1390 Read data from @var{section} in BFD @var{abfd}
1391 into memory starting at @var{location}. The data is read at an
1392 offset of @var{offset} from the start of the input section,
1393 and is read for @var{count} bytes.
1394
1395 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1396 flag set are requested or if the section does not have the
1397 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1398 with zeroes. If no errors occur, <<TRUE>> is returned, else
1399 <<FALSE>>.
1400
1401 */
1402 bfd_boolean
1403 bfd_get_section_contents (bfd *abfd,
1404 sec_ptr section,
1405 void *location,
1406 file_ptr offset,
1407 bfd_size_type count)
1408 {
1409 bfd_size_type sz;
1410
1411 if (section->flags & SEC_CONSTRUCTOR)
1412 {
1413 memset (location, 0, (size_t) count);
1414 return TRUE;
1415 }
1416
1417 sz = section->rawsize ? section->rawsize : section->size;
1418 if ((bfd_size_type) offset > sz
1419 || count > sz
1420 || offset + count > sz
1421 || count != (size_t) count)
1422 {
1423 bfd_set_error (bfd_error_bad_value);
1424 return FALSE;
1425 }
1426
1427 if (count == 0)
1428 /* Don't bother. */
1429 return TRUE;
1430
1431 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1432 {
1433 memset (location, 0, (size_t) count);
1434 return TRUE;
1435 }
1436
1437 if ((section->flags & SEC_IN_MEMORY) != 0)
1438 {
1439 if (section->contents == NULL)
1440 {
1441 /* This can happen because of errors earlier on in the linking process.
1442 We do not want to seg-fault here, so clear the flag and return an
1443 error code. */
1444 section->flags &= ~ SEC_IN_MEMORY;
1445 bfd_set_error (bfd_error_invalid_operation);
1446 return FALSE;
1447 }
1448
1449 memcpy (location, section->contents + offset, (size_t) count);
1450 return TRUE;
1451 }
1452
1453 return BFD_SEND (abfd, _bfd_get_section_contents,
1454 (abfd, section, location, offset, count));
1455 }
1456
1457 /*
1458 FUNCTION
1459 bfd_malloc_and_get_section
1460
1461 SYNOPSIS
1462 bfd_boolean bfd_malloc_and_get_section
1463 (bfd *abfd, asection *section, bfd_byte **buf);
1464
1465 DESCRIPTION
1466 Read all data from @var{section} in BFD @var{abfd}
1467 into a buffer, *@var{buf}, malloc'd by this function.
1468 */
1469
1470 bfd_boolean
1471 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1472 {
1473 bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1474 bfd_byte *p = NULL;
1475
1476 *buf = p;
1477 if (sz == 0)
1478 return TRUE;
1479
1480 p = bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1481 if (p == NULL)
1482 return FALSE;
1483 *buf = p;
1484
1485 return bfd_get_section_contents (abfd, sec, p, 0, sz);
1486 }
1487 /*
1488 FUNCTION
1489 bfd_copy_private_section_data
1490
1491 SYNOPSIS
1492 bfd_boolean bfd_copy_private_section_data
1493 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1494
1495 DESCRIPTION
1496 Copy private section information from @var{isec} in the BFD
1497 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1498 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1499 returns are:
1500
1501 o <<bfd_error_no_memory>> -
1502 Not enough memory exists to create private data for @var{osec}.
1503
1504 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1505 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1506 . (ibfd, isection, obfd, osection))
1507 */
1508
1509 /*
1510 FUNCTION
1511 bfd_generic_is_group_section
1512
1513 SYNOPSIS
1514 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1515
1516 DESCRIPTION
1517 Returns TRUE if @var{sec} is a member of a group.
1518 */
1519
1520 bfd_boolean
1521 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1522 const asection *sec ATTRIBUTE_UNUSED)
1523 {
1524 return FALSE;
1525 }
1526
1527 /*
1528 FUNCTION
1529 bfd_generic_discard_group
1530
1531 SYNOPSIS
1532 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1533
1534 DESCRIPTION
1535 Remove all members of @var{group} from the output.
1536 */
1537
1538 bfd_boolean
1539 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1540 asection *group ATTRIBUTE_UNUSED)
1541 {
1542 return TRUE;
1543 }
This page took 0.061747 seconds and 4 git commands to generate.