* elflink.h (elf_link_input_bfd): Discard local symbols that are
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "bfd.h"
25 #include "sysdep.h"
26
27 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
28
29 #include "libbfd.h"
30 #include "som.h"
31
32 #include <stdio.h>
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/file.h>
38 #include <errno.h>
39
40 /* Magic not defined in standard HP-UX header files until 8.0 */
41
42 #ifndef CPU_PA_RISC1_0
43 #define CPU_PA_RISC1_0 0x20B
44 #endif /* CPU_PA_RISC1_0 */
45
46 #ifndef CPU_PA_RISC1_1
47 #define CPU_PA_RISC1_1 0x210
48 #endif /* CPU_PA_RISC1_1 */
49
50 #ifndef _PA_RISC1_0_ID
51 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
52 #endif /* _PA_RISC1_0_ID */
53
54 #ifndef _PA_RISC1_1_ID
55 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
56 #endif /* _PA_RISC1_1_ID */
57
58 #ifndef _PA_RISC_MAXID
59 #define _PA_RISC_MAXID 0x2FF
60 #endif /* _PA_RISC_MAXID */
61
62 #ifndef _PA_RISC_ID
63 #define _PA_RISC_ID(__m_num) \
64 (((__m_num) == _PA_RISC1_0_ID) || \
65 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
66 #endif /* _PA_RISC_ID */
67
68
69 /* HIUX in it's infinite stupidity changed the names for several "well
70 known" constants. Work around such braindamage. Try the HPUX version
71 first, then the HIUX version, and finally provide a default. */
72 #ifdef HPUX_AUX_ID
73 #define EXEC_AUX_ID HPUX_AUX_ID
74 #endif
75
76 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
77 #define EXEC_AUX_ID HIUX_AUX_ID
78 #endif
79
80 #ifndef EXEC_AUX_ID
81 #define EXEC_AUX_ID 0
82 #endif
83
84 /* Size (in chars) of the temporary buffers used during fixup and string
85 table writes. */
86
87 #define SOM_TMP_BUFSIZE 8192
88
89 /* Size of the hash table in archives. */
90 #define SOM_LST_HASH_SIZE 31
91
92 /* Max number of SOMs to be found in an archive. */
93 #define SOM_LST_MODULE_LIMIT 1024
94
95 /* Generic alignment macro. */
96 #define SOM_ALIGN(val, alignment) \
97 (((val) + (alignment) - 1) & ~((alignment) - 1))
98
99 /* SOM allows any one of the four previous relocations to be reused
100 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
101 relocations are always a single byte, using a R_PREV_FIXUP instead
102 of some multi-byte relocation makes object files smaller.
103
104 Note one side effect of using a R_PREV_FIXUP is the relocation that
105 is being repeated moves to the front of the queue. */
106 struct reloc_queue
107 {
108 unsigned char *reloc;
109 unsigned int size;
110 } reloc_queue[4];
111
112 /* This fully describes the symbol types which may be attached to
113 an EXPORT or IMPORT directive. Only SOM uses this formation
114 (ELF has no need for it). */
115 typedef enum
116 {
117 SYMBOL_TYPE_UNKNOWN,
118 SYMBOL_TYPE_ABSOLUTE,
119 SYMBOL_TYPE_CODE,
120 SYMBOL_TYPE_DATA,
121 SYMBOL_TYPE_ENTRY,
122 SYMBOL_TYPE_MILLICODE,
123 SYMBOL_TYPE_PLABEL,
124 SYMBOL_TYPE_PRI_PROG,
125 SYMBOL_TYPE_SEC_PROG,
126 } pa_symbol_type;
127
128 struct section_to_type
129 {
130 char *section;
131 char type;
132 };
133
134 /* Assorted symbol information that needs to be derived from the BFD symbol
135 and/or the BFD backend private symbol data. */
136 struct som_misc_symbol_info
137 {
138 unsigned int symbol_type;
139 unsigned int symbol_scope;
140 unsigned int arg_reloc;
141 unsigned int symbol_info;
142 unsigned int symbol_value;
143 };
144
145 /* Forward declarations */
146
147 static boolean som_mkobject PARAMS ((bfd *));
148 static const bfd_target * som_object_setup PARAMS ((bfd *,
149 struct header *,
150 struct som_exec_auxhdr *));
151 static boolean setup_sections PARAMS ((bfd *, struct header *));
152 static const bfd_target * som_object_p PARAMS ((bfd *));
153 static boolean som_write_object_contents PARAMS ((bfd *));
154 static boolean som_slurp_string_table PARAMS ((bfd *));
155 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
156 static long som_get_symtab_upper_bound PARAMS ((bfd *));
157 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
158 arelent **, asymbol **));
159 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
160 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
161 arelent *, asection *,
162 asymbol **, boolean));
163 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
164 asymbol **, boolean));
165 static long som_get_symtab PARAMS ((bfd *, asymbol **));
166 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
167 static void som_print_symbol PARAMS ((bfd *, PTR,
168 asymbol *, bfd_print_symbol_type));
169 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
170 static boolean som_bfd_copy_private_symbol_data PARAMS ((bfd *, asymbol *,
171 bfd *, asymbol *));
172 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
173 bfd *, asection *));
174 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
175 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
176 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
177 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
178 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
179 file_ptr, bfd_size_type));
180 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
181 file_ptr, bfd_size_type));
182 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
183 unsigned long));
184 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
185 asymbol **, bfd_vma,
186 CONST char **,
187 CONST char **,
188 unsigned int *));
189 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
190 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
191 struct symbol_dictionary_record *));
192 static int log2 PARAMS ((unsigned int));
193 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
194 asymbol *, PTR,
195 asection *, bfd *,
196 char **));
197 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
198 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
199 struct reloc_queue *));
200 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
201 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
202 struct reloc_queue *));
203 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
204 unsigned int,
205 struct reloc_queue *));
206
207 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
208 unsigned char *, unsigned int *,
209 struct reloc_queue *));
210 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
211 unsigned int *,
212 struct reloc_queue *));
213 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
214 unsigned int *,
215 arelent *, int,
216 struct reloc_queue *));
217 static unsigned long som_count_spaces PARAMS ((bfd *));
218 static unsigned long som_count_subspaces PARAMS ((bfd *));
219 static int compare_syms PARAMS ((const void *, const void *));
220 static int compare_subspaces PARAMS ((const void *, const void *));
221 static unsigned long som_compute_checksum PARAMS ((bfd *));
222 static boolean som_prep_headers PARAMS ((bfd *));
223 static int som_sizeof_headers PARAMS ((bfd *, boolean));
224 static boolean som_finish_writing PARAMS ((bfd *));
225 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
226 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
227 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
228 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
229 unsigned int *));
230 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
231 asymbol **, unsigned int,
232 unsigned *));
233 static boolean som_begin_writing PARAMS ((bfd *));
234 static reloc_howto_type * som_bfd_reloc_type_lookup
235 PARAMS ((bfd *, bfd_reloc_code_real_type));
236 static char som_section_type PARAMS ((const char *));
237 static int som_decode_symclass PARAMS ((asymbol *));
238 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
239 symindex *));
240
241 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
242 carsym **syms));
243 static boolean som_slurp_armap PARAMS ((bfd *));
244 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
245 unsigned int, int));
246 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
247 struct som_misc_symbol_info *));
248 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
249 unsigned int *));
250 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
251 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
252 unsigned int,
253 struct lst_header));
254 static CONST char *normalize PARAMS ((CONST char *file));
255 static boolean som_is_space PARAMS ((asection *));
256 static boolean som_is_subspace PARAMS ((asection *));
257 static boolean som_is_container PARAMS ((asection *, asection *));
258 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
259 static boolean som_bfd_link_split_section PARAMS ((bfd *, asection *));
260
261 /* Map SOM section names to POSIX/BSD single-character symbol types.
262
263 This table includes all the standard subspaces as defined in the
264 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
265 some reason was left out, and sections specific to embedded stabs. */
266
267 static const struct section_to_type stt[] = {
268 {"$TEXT$", 't'},
269 {"$SHLIB_INFO$", 't'},
270 {"$MILLICODE$", 't'},
271 {"$LIT$", 't'},
272 {"$CODE$", 't'},
273 {"$UNWIND_START$", 't'},
274 {"$UNWIND$", 't'},
275 {"$PRIVATE$", 'd'},
276 {"$PLT$", 'd'},
277 {"$SHLIB_DATA$", 'd'},
278 {"$DATA$", 'd'},
279 {"$SHORTDATA$", 'g'},
280 {"$DLT$", 'd'},
281 {"$GLOBAL$", 'g'},
282 {"$SHORTBSS$", 's'},
283 {"$BSS$", 'b'},
284 {"$GDB_STRINGS$", 'N'},
285 {"$GDB_SYMBOLS$", 'N'},
286 {0, 0}
287 };
288
289 /* About the relocation formatting table...
290
291 There are 256 entries in the table, one for each possible
292 relocation opcode available in SOM. We index the table by
293 the relocation opcode. The names and operations are those
294 defined by a.out_800 (4).
295
296 Right now this table is only used to count and perform minimal
297 processing on relocation streams so that they can be internalized
298 into BFD and symbolically printed by utilities. To make actual use
299 of them would be much more difficult, BFD's concept of relocations
300 is far too simple to handle SOM relocations. The basic assumption
301 that a relocation can be completely processed independent of other
302 relocations before an object file is written is invalid for SOM.
303
304 The SOM relocations are meant to be processed as a stream, they
305 specify copying of data from the input section to the output section
306 while possibly modifying the data in some manner. They also can
307 specify that a variable number of zeros or uninitialized data be
308 inserted on in the output segment at the current offset. Some
309 relocations specify that some previous relocation be re-applied at
310 the current location in the input/output sections. And finally a number
311 of relocations have effects on other sections (R_ENTRY, R_EXIT,
312 R_UNWIND_AUX and a variety of others). There isn't even enough room
313 in the BFD relocation data structure to store enough information to
314 perform all the relocations.
315
316 Each entry in the table has three fields.
317
318 The first entry is an index into this "class" of relocations. This
319 index can then be used as a variable within the relocation itself.
320
321 The second field is a format string which actually controls processing
322 of the relocation. It uses a simple postfix machine to do calculations
323 based on variables/constants found in the string and the relocation
324 stream.
325
326 The third field specifys whether or not this relocation may use
327 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
328 stored in the instruction.
329
330 Variables:
331
332 L = input space byte count
333 D = index into class of relocations
334 M = output space byte count
335 N = statement number (unused?)
336 O = stack operation
337 R = parameter relocation bits
338 S = symbol index
339 T = first 32 bits of stack unwind information
340 U = second 32 bits of stack unwind information
341 V = a literal constant (usually used in the next relocation)
342 P = a previous relocation
343
344 Lower case letters (starting with 'b') refer to following
345 bytes in the relocation stream. 'b' is the next 1 byte,
346 c is the next 2 bytes, d is the next 3 bytes, etc...
347 This is the variable part of the relocation entries that
348 makes our life a living hell.
349
350 numerical constants are also used in the format string. Note
351 the constants are represented in decimal.
352
353 '+', "*" and "=" represents the obvious postfix operators.
354 '<' represents a left shift.
355
356 Stack Operations:
357
358 Parameter Relocation Bits:
359
360 Unwind Entries:
361
362 Previous Relocations: The index field represents which in the queue
363 of 4 previous fixups should be re-applied.
364
365 Literal Constants: These are generally used to represent addend
366 parts of relocations when these constants are not stored in the
367 fields of the instructions themselves. For example the instruction
368 addil foo-$global$-0x1234 would use an override for "0x1234" rather
369 than storing it into the addil itself. */
370
371 struct fixup_format
372 {
373 int D;
374 char *format;
375 };
376
377 static const struct fixup_format som_fixup_formats[256] =
378 {
379 /* R_NO_RELOCATION */
380 0, "LD1+4*=", /* 0x00 */
381 1, "LD1+4*=", /* 0x01 */
382 2, "LD1+4*=", /* 0x02 */
383 3, "LD1+4*=", /* 0x03 */
384 4, "LD1+4*=", /* 0x04 */
385 5, "LD1+4*=", /* 0x05 */
386 6, "LD1+4*=", /* 0x06 */
387 7, "LD1+4*=", /* 0x07 */
388 8, "LD1+4*=", /* 0x08 */
389 9, "LD1+4*=", /* 0x09 */
390 10, "LD1+4*=", /* 0x0a */
391 11, "LD1+4*=", /* 0x0b */
392 12, "LD1+4*=", /* 0x0c */
393 13, "LD1+4*=", /* 0x0d */
394 14, "LD1+4*=", /* 0x0e */
395 15, "LD1+4*=", /* 0x0f */
396 16, "LD1+4*=", /* 0x10 */
397 17, "LD1+4*=", /* 0x11 */
398 18, "LD1+4*=", /* 0x12 */
399 19, "LD1+4*=", /* 0x13 */
400 20, "LD1+4*=", /* 0x14 */
401 21, "LD1+4*=", /* 0x15 */
402 22, "LD1+4*=", /* 0x16 */
403 23, "LD1+4*=", /* 0x17 */
404 0, "LD8<b+1+4*=", /* 0x18 */
405 1, "LD8<b+1+4*=", /* 0x19 */
406 2, "LD8<b+1+4*=", /* 0x1a */
407 3, "LD8<b+1+4*=", /* 0x1b */
408 0, "LD16<c+1+4*=", /* 0x1c */
409 1, "LD16<c+1+4*=", /* 0x1d */
410 2, "LD16<c+1+4*=", /* 0x1e */
411 0, "Ld1+=", /* 0x1f */
412 /* R_ZEROES */
413 0, "Lb1+4*=", /* 0x20 */
414 1, "Ld1+=", /* 0x21 */
415 /* R_UNINIT */
416 0, "Lb1+4*=", /* 0x22 */
417 1, "Ld1+=", /* 0x23 */
418 /* R_RELOCATION */
419 0, "L4=", /* 0x24 */
420 /* R_DATA_ONE_SYMBOL */
421 0, "L4=Sb=", /* 0x25 */
422 1, "L4=Sd=", /* 0x26 */
423 /* R_DATA_PLEBEL */
424 0, "L4=Sb=", /* 0x27 */
425 1, "L4=Sd=", /* 0x28 */
426 /* R_SPACE_REF */
427 0, "L4=", /* 0x29 */
428 /* R_REPEATED_INIT */
429 0, "L4=Mb1+4*=", /* 0x2a */
430 1, "Lb4*=Mb1+L*=", /* 0x2b */
431 2, "Lb4*=Md1+4*=", /* 0x2c */
432 3, "Ld1+=Me1+=", /* 0x2d */
433 /* R_SHORT_PCREL_MODE */
434 0, "", /* 0x2e */
435 /* R_LONG_PCREL_MODE */
436 0, "", /* 0x2f */
437 /* R_PCREL_CALL */
438 0, "L4=RD=Sb=", /* 0x30 */
439 1, "L4=RD=Sb=", /* 0x31 */
440 2, "L4=RD=Sb=", /* 0x32 */
441 3, "L4=RD=Sb=", /* 0x33 */
442 4, "L4=RD=Sb=", /* 0x34 */
443 5, "L4=RD=Sb=", /* 0x35 */
444 6, "L4=RD=Sb=", /* 0x36 */
445 7, "L4=RD=Sb=", /* 0x37 */
446 8, "L4=RD=Sb=", /* 0x38 */
447 9, "L4=RD=Sb=", /* 0x39 */
448 0, "L4=RD8<b+=Sb=",/* 0x3a */
449 1, "L4=RD8<b+=Sb=",/* 0x3b */
450 0, "L4=RD8<b+=Sd=",/* 0x3c */
451 1, "L4=RD8<b+=Sd=",/* 0x3d */
452 /* R_RESERVED */
453 0, "", /* 0x3e */
454 0, "", /* 0x3f */
455 /* R_ABS_CALL */
456 0, "L4=RD=Sb=", /* 0x40 */
457 1, "L4=RD=Sb=", /* 0x41 */
458 2, "L4=RD=Sb=", /* 0x42 */
459 3, "L4=RD=Sb=", /* 0x43 */
460 4, "L4=RD=Sb=", /* 0x44 */
461 5, "L4=RD=Sb=", /* 0x45 */
462 6, "L4=RD=Sb=", /* 0x46 */
463 7, "L4=RD=Sb=", /* 0x47 */
464 8, "L4=RD=Sb=", /* 0x48 */
465 9, "L4=RD=Sb=", /* 0x49 */
466 0, "L4=RD8<b+=Sb=",/* 0x4a */
467 1, "L4=RD8<b+=Sb=",/* 0x4b */
468 0, "L4=RD8<b+=Sd=",/* 0x4c */
469 1, "L4=RD8<b+=Sd=",/* 0x4d */
470 /* R_RESERVED */
471 0, "", /* 0x4e */
472 0, "", /* 0x4f */
473 /* R_DP_RELATIVE */
474 0, "L4=SD=", /* 0x50 */
475 1, "L4=SD=", /* 0x51 */
476 2, "L4=SD=", /* 0x52 */
477 3, "L4=SD=", /* 0x53 */
478 4, "L4=SD=", /* 0x54 */
479 5, "L4=SD=", /* 0x55 */
480 6, "L4=SD=", /* 0x56 */
481 7, "L4=SD=", /* 0x57 */
482 8, "L4=SD=", /* 0x58 */
483 9, "L4=SD=", /* 0x59 */
484 10, "L4=SD=", /* 0x5a */
485 11, "L4=SD=", /* 0x5b */
486 12, "L4=SD=", /* 0x5c */
487 13, "L4=SD=", /* 0x5d */
488 14, "L4=SD=", /* 0x5e */
489 15, "L4=SD=", /* 0x5f */
490 16, "L4=SD=", /* 0x60 */
491 17, "L4=SD=", /* 0x61 */
492 18, "L4=SD=", /* 0x62 */
493 19, "L4=SD=", /* 0x63 */
494 20, "L4=SD=", /* 0x64 */
495 21, "L4=SD=", /* 0x65 */
496 22, "L4=SD=", /* 0x66 */
497 23, "L4=SD=", /* 0x67 */
498 24, "L4=SD=", /* 0x68 */
499 25, "L4=SD=", /* 0x69 */
500 26, "L4=SD=", /* 0x6a */
501 27, "L4=SD=", /* 0x6b */
502 28, "L4=SD=", /* 0x6c */
503 29, "L4=SD=", /* 0x6d */
504 30, "L4=SD=", /* 0x6e */
505 31, "L4=SD=", /* 0x6f */
506 32, "L4=Sb=", /* 0x70 */
507 33, "L4=Sd=", /* 0x71 */
508 /* R_RESERVED */
509 0, "", /* 0x72 */
510 0, "", /* 0x73 */
511 0, "", /* 0x74 */
512 0, "", /* 0x75 */
513 0, "", /* 0x76 */
514 0, "", /* 0x77 */
515 /* R_DLT_REL */
516 0, "L4=Sb=", /* 0x78 */
517 1, "L4=Sd=", /* 0x79 */
518 /* R_RESERVED */
519 0, "", /* 0x7a */
520 0, "", /* 0x7b */
521 0, "", /* 0x7c */
522 0, "", /* 0x7d */
523 0, "", /* 0x7e */
524 0, "", /* 0x7f */
525 /* R_CODE_ONE_SYMBOL */
526 0, "L4=SD=", /* 0x80 */
527 1, "L4=SD=", /* 0x81 */
528 2, "L4=SD=", /* 0x82 */
529 3, "L4=SD=", /* 0x83 */
530 4, "L4=SD=", /* 0x84 */
531 5, "L4=SD=", /* 0x85 */
532 6, "L4=SD=", /* 0x86 */
533 7, "L4=SD=", /* 0x87 */
534 8, "L4=SD=", /* 0x88 */
535 9, "L4=SD=", /* 0x89 */
536 10, "L4=SD=", /* 0x8q */
537 11, "L4=SD=", /* 0x8b */
538 12, "L4=SD=", /* 0x8c */
539 13, "L4=SD=", /* 0x8d */
540 14, "L4=SD=", /* 0x8e */
541 15, "L4=SD=", /* 0x8f */
542 16, "L4=SD=", /* 0x90 */
543 17, "L4=SD=", /* 0x91 */
544 18, "L4=SD=", /* 0x92 */
545 19, "L4=SD=", /* 0x93 */
546 20, "L4=SD=", /* 0x94 */
547 21, "L4=SD=", /* 0x95 */
548 22, "L4=SD=", /* 0x96 */
549 23, "L4=SD=", /* 0x97 */
550 24, "L4=SD=", /* 0x98 */
551 25, "L4=SD=", /* 0x99 */
552 26, "L4=SD=", /* 0x9a */
553 27, "L4=SD=", /* 0x9b */
554 28, "L4=SD=", /* 0x9c */
555 29, "L4=SD=", /* 0x9d */
556 30, "L4=SD=", /* 0x9e */
557 31, "L4=SD=", /* 0x9f */
558 32, "L4=Sb=", /* 0xa0 */
559 33, "L4=Sd=", /* 0xa1 */
560 /* R_RESERVED */
561 0, "", /* 0xa2 */
562 0, "", /* 0xa3 */
563 0, "", /* 0xa4 */
564 0, "", /* 0xa5 */
565 0, "", /* 0xa6 */
566 0, "", /* 0xa7 */
567 0, "", /* 0xa8 */
568 0, "", /* 0xa9 */
569 0, "", /* 0xaa */
570 0, "", /* 0xab */
571 0, "", /* 0xac */
572 0, "", /* 0xad */
573 /* R_MILLI_REL */
574 0, "L4=Sb=", /* 0xae */
575 1, "L4=Sd=", /* 0xaf */
576 /* R_CODE_PLABEL */
577 0, "L4=Sb=", /* 0xb0 */
578 1, "L4=Sd=", /* 0xb1 */
579 /* R_BREAKPOINT */
580 0, "L4=", /* 0xb2 */
581 /* R_ENTRY */
582 0, "Te=Ue=", /* 0xb3 */
583 1, "Uf=", /* 0xb4 */
584 /* R_ALT_ENTRY */
585 0, "", /* 0xb5 */
586 /* R_EXIT */
587 0, "", /* 0xb6 */
588 /* R_BEGIN_TRY */
589 0, "", /* 0xb7 */
590 /* R_END_TRY */
591 0, "R0=", /* 0xb8 */
592 1, "Rb4*=", /* 0xb9 */
593 2, "Rd4*=", /* 0xba */
594 /* R_BEGIN_BRTAB */
595 0, "", /* 0xbb */
596 /* R_END_BRTAB */
597 0, "", /* 0xbc */
598 /* R_STATEMENT */
599 0, "Nb=", /* 0xbd */
600 1, "Nc=", /* 0xbe */
601 2, "Nd=", /* 0xbf */
602 /* R_DATA_EXPR */
603 0, "L4=", /* 0xc0 */
604 /* R_CODE_EXPR */
605 0, "L4=", /* 0xc1 */
606 /* R_FSEL */
607 0, "", /* 0xc2 */
608 /* R_LSEL */
609 0, "", /* 0xc3 */
610 /* R_RSEL */
611 0, "", /* 0xc4 */
612 /* R_N_MODE */
613 0, "", /* 0xc5 */
614 /* R_S_MODE */
615 0, "", /* 0xc6 */
616 /* R_D_MODE */
617 0, "", /* 0xc7 */
618 /* R_R_MODE */
619 0, "", /* 0xc8 */
620 /* R_DATA_OVERRIDE */
621 0, "V0=", /* 0xc9 */
622 1, "Vb=", /* 0xca */
623 2, "Vc=", /* 0xcb */
624 3, "Vd=", /* 0xcc */
625 4, "Ve=", /* 0xcd */
626 /* R_TRANSLATED */
627 0, "", /* 0xce */
628 /* R_RESERVED */
629 0, "", /* 0xcf */
630 /* R_COMP1 */
631 0, "Ob=", /* 0xd0 */
632 /* R_COMP2 */
633 0, "Ob=Sd=", /* 0xd1 */
634 /* R_COMP3 */
635 0, "Ob=Ve=", /* 0xd2 */
636 /* R_PREV_FIXUP */
637 0, "P", /* 0xd3 */
638 1, "P", /* 0xd4 */
639 2, "P", /* 0xd5 */
640 3, "P", /* 0xd6 */
641 /* R_SEC_STMT */
642 0, "", /* 0xd7 */
643 /* R_N0SEL */
644 0, "", /* 0xd8 */
645 /* R_N1SEL */
646 0, "", /* 0xd9 */
647 /* R_LINETAB */
648 0, "", /* 0xda */
649 /* R_LINETAB_ESC */
650 0, "", /* 0xdb */
651 /* R_LTP_OVERRIDE */
652 0, "", /* 0xdc */
653 /* R_COMMENT */
654 0, "", /* 0xdd */
655 /* R_RESERVED */
656 0, "", /* 0xde */
657 0, "", /* 0xdf */
658 0, "", /* 0xe0 */
659 0, "", /* 0xe1 */
660 0, "", /* 0xe2 */
661 0, "", /* 0xe3 */
662 0, "", /* 0xe4 */
663 0, "", /* 0xe5 */
664 0, "", /* 0xe6 */
665 0, "", /* 0xe7 */
666 0, "", /* 0xe8 */
667 0, "", /* 0xe9 */
668 0, "", /* 0xea */
669 0, "", /* 0xeb */
670 0, "", /* 0xec */
671 0, "", /* 0xed */
672 0, "", /* 0xee */
673 0, "", /* 0xef */
674 0, "", /* 0xf0 */
675 0, "", /* 0xf1 */
676 0, "", /* 0xf2 */
677 0, "", /* 0xf3 */
678 0, "", /* 0xf4 */
679 0, "", /* 0xf5 */
680 0, "", /* 0xf6 */
681 0, "", /* 0xf7 */
682 0, "", /* 0xf8 */
683 0, "", /* 0xf9 */
684 0, "", /* 0xfa */
685 0, "", /* 0xfb */
686 0, "", /* 0xfc */
687 0, "", /* 0xfd */
688 0, "", /* 0xfe */
689 0, "", /* 0xff */
690 };
691
692 static const int comp1_opcodes[] =
693 {
694 0x00,
695 0x40,
696 0x41,
697 0x42,
698 0x43,
699 0x44,
700 0x45,
701 0x46,
702 0x47,
703 0x48,
704 0x49,
705 0x4a,
706 0x4b,
707 0x60,
708 0x80,
709 0xa0,
710 0xc0,
711 -1
712 };
713
714 static const int comp2_opcodes[] =
715 {
716 0x00,
717 0x80,
718 0x82,
719 0xc0,
720 -1
721 };
722
723 static const int comp3_opcodes[] =
724 {
725 0x00,
726 0x02,
727 -1
728 };
729
730 /* These apparently are not in older versions of hpux reloc.h (hpux7). */
731 #ifndef R_DLT_REL
732 #define R_DLT_REL 0x78
733 #endif
734
735 #ifndef R_AUX_UNWIND
736 #define R_AUX_UNWIND 0xcf
737 #endif
738
739 #ifndef R_SEC_STMT
740 #define R_SEC_STMT 0xd7
741 #endif
742
743 /* And these first appeared in hpux10. */
744 #ifndef R_SHORT_PCREL_MODE
745 #define R_SHORT_PCREL_MODE 0x3e
746 #endif
747
748 #ifndef R_LONG_PCREL_MODE
749 #define R_LONG_PCREL_MODE 0x3f
750 #endif
751
752 #ifndef R_N0SEL
753 #define R_N0SEL 0xd8
754 #endif
755
756 #ifndef R_N1SEL
757 #define R_N1SEL 0xd9
758 #endif
759
760 #ifndef R_LINETAB
761 #define R_LINETAB 0xda
762 #endif
763
764 #ifndef R_LINETAB_ESC
765 #define R_LINETAB_ESC 0xdb
766 #endif
767
768 #ifndef R_LTP_OVERRIDE
769 #define R_LTP_OVERRIDE 0xdc
770 #endif
771
772 #ifndef R_COMMENT
773 #define R_COMMENT 0xdd
774 #endif
775
776 static reloc_howto_type som_hppa_howto_table[] =
777 {
778 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
779 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
780 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
781 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
782 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
783 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
784 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
785 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
786 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
787 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
788 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
789 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
790 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
791 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
792 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
793 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
794 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
795 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
796 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
797 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
798 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
799 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
800 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
801 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
802 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
803 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
804 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
805 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
806 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
807 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
808 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
809 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
810 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
811 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
812 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
813 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
814 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
815 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
816 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
817 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
818 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
819 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
820 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
821 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
822 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
823 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
824 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
825 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
826 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
827 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
828 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
829 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
830 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
831 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
832 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
833 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
834 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
835 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
836 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
837 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
838 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
839 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
840 {R_SHORT_PCREL_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SHORT_PCREL_MODE"},
841 {R_LONG_PCREL_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LONG_PCREL_MODE"},
842 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
843 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
844 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
845 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
846 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
847 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
848 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
849 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
850 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
851 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
852 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
853 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
854 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
855 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
858 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
859 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
860 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
861 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
862 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
863 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
864 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
865 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
866 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
867 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
868 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
869 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
870 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
871 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
872 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
873 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
874 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
875 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
876 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
877 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
878 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
879 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
880 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
881 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
882 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
883 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
884 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
885 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
886 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
887 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
888 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
889 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
890 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
891 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
892 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
893 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
894 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
895 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
896 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
897 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
898 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
899 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
904 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
905 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
906 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
907 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
908 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
909 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
910 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
911 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
912 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
913 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
914 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
915 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
916 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
917 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
918 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
919 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
920 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
921 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
922 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
923 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
924 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
925 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
926 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
927 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
928 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
929 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
930 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
931 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
932 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
933 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
934 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
935 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
936 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
937 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
938 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
939 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
940 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
953 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
954 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
955 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
956 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
957 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
958 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
959 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
960 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
961 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
962 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
963 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
964 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
965 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
966 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
967 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
968 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
969 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
970 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
971 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
972 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
973 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
974 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
975 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
976 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
977 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
978 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
979 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
980 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
981 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
982 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
983 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
984 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
985 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
986 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
987 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
988 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
989 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
990 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
991 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
992 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
993 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
994 {R_N0SEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N0SEL"},
995 {R_N1SEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N1SEL"},
996 {R_LINETAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LINETAB"},
997 {R_LINETAB_ESC, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LINETAB_ESC"},
998 {R_LTP_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LTP_OVERRIDE"},
999 {R_COMMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMMENT"},
1000 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1001 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1002 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1003 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1004 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1005 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1006 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1007 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1008 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1009 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1010 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1011 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1012 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1013 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1014 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1015 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1016 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1017 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1018 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1019 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1020 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1021 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1022 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1023 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1024 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1025 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1026 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1027 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1028 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1029 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1030 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1031 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1032 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1033 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
1034
1035 /* Initialize the SOM relocation queue. By definition the queue holds
1036 the last four multibyte fixups. */
1037
1038 static void
1039 som_initialize_reloc_queue (queue)
1040 struct reloc_queue *queue;
1041 {
1042 queue[0].reloc = NULL;
1043 queue[0].size = 0;
1044 queue[1].reloc = NULL;
1045 queue[1].size = 0;
1046 queue[2].reloc = NULL;
1047 queue[2].size = 0;
1048 queue[3].reloc = NULL;
1049 queue[3].size = 0;
1050 }
1051
1052 /* Insert a new relocation into the relocation queue. */
1053
1054 static void
1055 som_reloc_queue_insert (p, size, queue)
1056 unsigned char *p;
1057 unsigned int size;
1058 struct reloc_queue *queue;
1059 {
1060 queue[3].reloc = queue[2].reloc;
1061 queue[3].size = queue[2].size;
1062 queue[2].reloc = queue[1].reloc;
1063 queue[2].size = queue[1].size;
1064 queue[1].reloc = queue[0].reloc;
1065 queue[1].size = queue[0].size;
1066 queue[0].reloc = p;
1067 queue[0].size = size;
1068 }
1069
1070 /* When an entry in the relocation queue is reused, the entry moves
1071 to the front of the queue. */
1072
1073 static void
1074 som_reloc_queue_fix (queue, index)
1075 struct reloc_queue *queue;
1076 unsigned int index;
1077 {
1078 if (index == 0)
1079 return;
1080
1081 if (index == 1)
1082 {
1083 unsigned char *tmp1 = queue[0].reloc;
1084 unsigned int tmp2 = queue[0].size;
1085 queue[0].reloc = queue[1].reloc;
1086 queue[0].size = queue[1].size;
1087 queue[1].reloc = tmp1;
1088 queue[1].size = tmp2;
1089 return;
1090 }
1091
1092 if (index == 2)
1093 {
1094 unsigned char *tmp1 = queue[0].reloc;
1095 unsigned int tmp2 = queue[0].size;
1096 queue[0].reloc = queue[2].reloc;
1097 queue[0].size = queue[2].size;
1098 queue[2].reloc = queue[1].reloc;
1099 queue[2].size = queue[1].size;
1100 queue[1].reloc = tmp1;
1101 queue[1].size = tmp2;
1102 return;
1103 }
1104
1105 if (index == 3)
1106 {
1107 unsigned char *tmp1 = queue[0].reloc;
1108 unsigned int tmp2 = queue[0].size;
1109 queue[0].reloc = queue[3].reloc;
1110 queue[0].size = queue[3].size;
1111 queue[3].reloc = queue[2].reloc;
1112 queue[3].size = queue[2].size;
1113 queue[2].reloc = queue[1].reloc;
1114 queue[2].size = queue[1].size;
1115 queue[1].reloc = tmp1;
1116 queue[1].size = tmp2;
1117 return;
1118 }
1119 abort();
1120 }
1121
1122 /* Search for a particular relocation in the relocation queue. */
1123
1124 static int
1125 som_reloc_queue_find (p, size, queue)
1126 unsigned char *p;
1127 unsigned int size;
1128 struct reloc_queue *queue;
1129 {
1130 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1131 && size == queue[0].size)
1132 return 0;
1133 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1134 && size == queue[1].size)
1135 return 1;
1136 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1137 && size == queue[2].size)
1138 return 2;
1139 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1140 && size == queue[3].size)
1141 return 3;
1142 return -1;
1143 }
1144
1145 static unsigned char *
1146 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1147 bfd *abfd;
1148 int *subspace_reloc_sizep;
1149 unsigned char *p;
1150 unsigned int size;
1151 struct reloc_queue *queue;
1152 {
1153 int queue_index = som_reloc_queue_find (p, size, queue);
1154
1155 if (queue_index != -1)
1156 {
1157 /* Found this in a previous fixup. Undo the fixup we
1158 just built and use R_PREV_FIXUP instead. We saved
1159 a total of size - 1 bytes in the fixup stream. */
1160 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1161 p += 1;
1162 *subspace_reloc_sizep += 1;
1163 som_reloc_queue_fix (queue, queue_index);
1164 }
1165 else
1166 {
1167 som_reloc_queue_insert (p, size, queue);
1168 *subspace_reloc_sizep += size;
1169 p += size;
1170 }
1171 return p;
1172 }
1173
1174 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1175 bytes without any relocation. Update the size of the subspace
1176 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1177 current pointer into the relocation stream. */
1178
1179 static unsigned char *
1180 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1181 bfd *abfd;
1182 unsigned int skip;
1183 unsigned char *p;
1184 unsigned int *subspace_reloc_sizep;
1185 struct reloc_queue *queue;
1186 {
1187 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1188 then R_PREV_FIXUPs to get the difference down to a
1189 reasonable size. */
1190 if (skip >= 0x1000000)
1191 {
1192 skip -= 0x1000000;
1193 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1194 bfd_put_8 (abfd, 0xff, p + 1);
1195 bfd_put_16 (abfd, 0xffff, p + 2);
1196 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1197 while (skip >= 0x1000000)
1198 {
1199 skip -= 0x1000000;
1200 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1201 p++;
1202 *subspace_reloc_sizep += 1;
1203 /* No need to adjust queue here since we are repeating the
1204 most recent fixup. */
1205 }
1206 }
1207
1208 /* The difference must be less than 0x1000000. Use one
1209 more R_NO_RELOCATION entry to get to the right difference. */
1210 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1211 {
1212 /* Difference can be handled in a simple single-byte
1213 R_NO_RELOCATION entry. */
1214 if (skip <= 0x60)
1215 {
1216 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1217 *subspace_reloc_sizep += 1;
1218 p++;
1219 }
1220 /* Handle it with a two byte R_NO_RELOCATION entry. */
1221 else if (skip <= 0x1000)
1222 {
1223 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1224 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1225 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1226 }
1227 /* Handle it with a three byte R_NO_RELOCATION entry. */
1228 else
1229 {
1230 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1231 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1232 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1233 }
1234 }
1235 /* Ugh. Punt and use a 4 byte entry. */
1236 else if (skip > 0)
1237 {
1238 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1239 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1240 bfd_put_16 (abfd, skip - 1, p + 2);
1241 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1242 }
1243 return p;
1244 }
1245
1246 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1247 from a BFD relocation. Update the size of the subspace relocation
1248 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1249 into the relocation stream. */
1250
1251 static unsigned char *
1252 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1253 bfd *abfd;
1254 int addend;
1255 unsigned char *p;
1256 unsigned int *subspace_reloc_sizep;
1257 struct reloc_queue *queue;
1258 {
1259 if ((unsigned)(addend) + 0x80 < 0x100)
1260 {
1261 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1262 bfd_put_8 (abfd, addend, p + 1);
1263 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1264 }
1265 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1266 {
1267 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1268 bfd_put_16 (abfd, addend, p + 1);
1269 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1270 }
1271 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1272 {
1273 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1274 bfd_put_8 (abfd, addend >> 16, p + 1);
1275 bfd_put_16 (abfd, addend, p + 2);
1276 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1277 }
1278 else
1279 {
1280 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1281 bfd_put_32 (abfd, addend, p + 1);
1282 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1283 }
1284 return p;
1285 }
1286
1287 /* Handle a single function call relocation. */
1288
1289 static unsigned char *
1290 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1291 bfd *abfd;
1292 unsigned char *p;
1293 unsigned int *subspace_reloc_sizep;
1294 arelent *bfd_reloc;
1295 int sym_num;
1296 struct reloc_queue *queue;
1297 {
1298 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1299 int rtn_bits = arg_bits & 0x3;
1300 int type, done = 0;
1301
1302 /* You'll never believe all this is necessary to handle relocations
1303 for function calls. Having to compute and pack the argument
1304 relocation bits is the real nightmare.
1305
1306 If you're interested in how this works, just forget it. You really
1307 do not want to know about this braindamage. */
1308
1309 /* First see if this can be done with a "simple" relocation. Simple
1310 relocations have a symbol number < 0x100 and have simple encodings
1311 of argument relocations. */
1312
1313 if (sym_num < 0x100)
1314 {
1315 switch (arg_bits)
1316 {
1317 case 0:
1318 case 1:
1319 type = 0;
1320 break;
1321 case 1 << 8:
1322 case 1 << 8 | 1:
1323 type = 1;
1324 break;
1325 case 1 << 8 | 1 << 6:
1326 case 1 << 8 | 1 << 6 | 1:
1327 type = 2;
1328 break;
1329 case 1 << 8 | 1 << 6 | 1 << 4:
1330 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1331 type = 3;
1332 break;
1333 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1334 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1335 type = 4;
1336 break;
1337 default:
1338 /* Not one of the easy encodings. This will have to be
1339 handled by the more complex code below. */
1340 type = -1;
1341 break;
1342 }
1343 if (type != -1)
1344 {
1345 /* Account for the return value too. */
1346 if (rtn_bits)
1347 type += 5;
1348
1349 /* Emit a 2 byte relocation. Then see if it can be handled
1350 with a relocation which is already in the relocation queue. */
1351 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1352 bfd_put_8 (abfd, sym_num, p + 1);
1353 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1354 done = 1;
1355 }
1356 }
1357
1358 /* If this could not be handled with a simple relocation, then do a hard
1359 one. Hard relocations occur if the symbol number was too high or if
1360 the encoding of argument relocation bits is too complex. */
1361 if (! done)
1362 {
1363 /* Don't ask about these magic sequences. I took them straight
1364 from gas-1.36 which took them from the a.out man page. */
1365 type = rtn_bits;
1366 if ((arg_bits >> 6 & 0xf) == 0xe)
1367 type += 9 * 40;
1368 else
1369 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1370 if ((arg_bits >> 2 & 0xf) == 0xe)
1371 type += 9 * 4;
1372 else
1373 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1374
1375 /* Output the first two bytes of the relocation. These describe
1376 the length of the relocation and encoding style. */
1377 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1378 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1379 p);
1380 bfd_put_8 (abfd, type, p + 1);
1381
1382 /* Now output the symbol index and see if this bizarre relocation
1383 just happened to be in the relocation queue. */
1384 if (sym_num < 0x100)
1385 {
1386 bfd_put_8 (abfd, sym_num, p + 2);
1387 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1388 }
1389 else
1390 {
1391 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1392 bfd_put_16 (abfd, sym_num, p + 3);
1393 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1394 }
1395 }
1396 return p;
1397 }
1398
1399
1400 /* Return the logarithm of X, base 2, considering X unsigned.
1401 Abort -1 if X is not a power or two or is zero. */
1402
1403 static int
1404 log2 (x)
1405 unsigned int x;
1406 {
1407 int log = 0;
1408
1409 /* Test for 0 or a power of 2. */
1410 if (x == 0 || x != (x & -x))
1411 return -1;
1412
1413 while ((x >>= 1) != 0)
1414 log++;
1415 return log;
1416 }
1417
1418 static bfd_reloc_status_type
1419 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1420 input_section, output_bfd, error_message)
1421 bfd *abfd;
1422 arelent *reloc_entry;
1423 asymbol *symbol_in;
1424 PTR data;
1425 asection *input_section;
1426 bfd *output_bfd;
1427 char **error_message;
1428 {
1429 if (output_bfd)
1430 {
1431 reloc_entry->address += input_section->output_offset;
1432 return bfd_reloc_ok;
1433 }
1434 return bfd_reloc_ok;
1435 }
1436
1437 /* Given a generic HPPA relocation type, the instruction format,
1438 and a field selector, return one or more appropriate SOM relocations. */
1439
1440 int **
1441 hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff)
1442 bfd *abfd;
1443 int base_type;
1444 int format;
1445 enum hppa_reloc_field_selector_type_alt field;
1446 int sym_diff;
1447 {
1448 int *final_type, **final_types;
1449
1450 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 6);
1451 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1452 if (!final_types || !final_type)
1453 return NULL;
1454
1455 /* The field selector may require additional relocations to be
1456 generated. It's impossible to know at this moment if additional
1457 relocations will be needed, so we make them. The code to actually
1458 write the relocation/fixup stream is responsible for removing
1459 any redundant relocations. */
1460 switch (field)
1461 {
1462 case e_fsel:
1463 case e_psel:
1464 case e_lpsel:
1465 case e_rpsel:
1466 final_types[0] = final_type;
1467 final_types[1] = NULL;
1468 final_types[2] = NULL;
1469 *final_type = base_type;
1470 break;
1471
1472 case e_tsel:
1473 case e_ltsel:
1474 case e_rtsel:
1475 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1476 if (!final_types[0])
1477 return NULL;
1478 if (field == e_tsel)
1479 *final_types[0] = R_FSEL;
1480 else if (field == e_ltsel)
1481 *final_types[0] = R_LSEL;
1482 else
1483 *final_types[0] = R_RSEL;
1484 final_types[1] = final_type;
1485 final_types[2] = NULL;
1486 *final_type = base_type;
1487 break;
1488
1489 case e_lssel:
1490 case e_rssel:
1491 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1492 if (!final_types[0])
1493 return NULL;
1494 *final_types[0] = R_S_MODE;
1495 final_types[1] = final_type;
1496 final_types[2] = NULL;
1497 *final_type = base_type;
1498 break;
1499
1500 case e_lsel:
1501 case e_rsel:
1502 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1503 if (!final_types[0])
1504 return NULL;
1505 *final_types[0] = R_N_MODE;
1506 final_types[1] = final_type;
1507 final_types[2] = NULL;
1508 *final_type = base_type;
1509 break;
1510
1511 case e_ldsel:
1512 case e_rdsel:
1513 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1514 if (!final_types[0])
1515 return NULL;
1516 *final_types[0] = R_D_MODE;
1517 final_types[1] = final_type;
1518 final_types[2] = NULL;
1519 *final_type = base_type;
1520 break;
1521
1522 case e_lrsel:
1523 case e_rrsel:
1524 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1525 if (!final_types[0])
1526 return NULL;
1527 *final_types[0] = R_R_MODE;
1528 final_types[1] = final_type;
1529 final_types[2] = NULL;
1530 *final_type = base_type;
1531 break;
1532
1533 case e_nsel:
1534 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1535 if (!final_types[0])
1536 return NULL;
1537 *final_types[0] = R_N1SEL;
1538 final_types[1] = final_type;
1539 final_types[2] = NULL;
1540 *final_type = base_type;
1541 break;
1542
1543 case e_nlsel:
1544 case e_nlrsel:
1545 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1546 if (!final_types[0])
1547 return NULL;
1548 *final_types[0] = R_N0SEL;
1549 final_types[1] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1550 if (!final_types[1])
1551 return NULL;
1552 if (field == e_nlsel)
1553 *final_types[1] = R_N_MODE;
1554 else
1555 *final_types[1] = R_R_MODE;
1556 final_types[2] = final_type;
1557 final_types[3] = NULL;
1558 *final_type = base_type;
1559 break;
1560 }
1561
1562 switch (base_type)
1563 {
1564 case R_HPPA:
1565 /* The difference of two symbols needs *very* special handling. */
1566 if (sym_diff)
1567 {
1568 final_types[0] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1569 final_types[1] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1570 final_types[2] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1571 final_types[3] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1572 if (!final_types[0] || !final_types[1] || !final_types[2])
1573 return NULL;
1574 if (field == e_fsel)
1575 *final_types[0] = R_FSEL;
1576 else if (field == e_rsel)
1577 *final_types[0] = R_RSEL;
1578 else if (field == e_lsel)
1579 *final_types[0] = R_LSEL;
1580 *final_types[1] = R_COMP2;
1581 *final_types[2] = R_COMP2;
1582 *final_types[3] = R_COMP1;
1583 final_types[4] = final_type;
1584 *final_types[4] = R_CODE_EXPR;
1585 final_types[5] = NULL;
1586 break;
1587 }
1588 /* PLABELs get their own relocation type. */
1589 else if (field == e_psel
1590 || field == e_lpsel
1591 || field == e_rpsel)
1592 {
1593 /* A PLABEL relocation that has a size of 32 bits must
1594 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1595 if (format == 32)
1596 *final_type = R_DATA_PLABEL;
1597 else
1598 *final_type = R_CODE_PLABEL;
1599 }
1600 /* PIC stuff. */
1601 else if (field == e_tsel
1602 || field == e_ltsel
1603 || field == e_rtsel)
1604 *final_type = R_DLT_REL;
1605 /* A relocation in the data space is always a full 32bits. */
1606 else if (format == 32)
1607 *final_type = R_DATA_ONE_SYMBOL;
1608
1609 break;
1610
1611 case R_HPPA_GOTOFF:
1612 /* More PLABEL special cases. */
1613 if (field == e_psel
1614 || field == e_lpsel
1615 || field == e_rpsel)
1616 *final_type = R_DATA_PLABEL;
1617 break;
1618
1619 case R_HPPA_COMPLEX:
1620 /* The difference of two symbols needs *very* special handling. */
1621 if (sym_diff)
1622 {
1623 final_types[0] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1624 final_types[1] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1625 final_types[2] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1626 final_types[3] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1627 if (!final_types[0] || !final_types[1] || !final_types[2])
1628 return NULL;
1629 if (field == e_fsel)
1630 *final_types[0] = R_FSEL;
1631 else if (field == e_rsel)
1632 *final_types[0] = R_RSEL;
1633 else if (field == e_lsel)
1634 *final_types[0] = R_LSEL;
1635 *final_types[1] = R_COMP2;
1636 *final_types[2] = R_COMP2;
1637 *final_types[3] = R_COMP1;
1638 final_types[4] = final_type;
1639 *final_types[4] = R_CODE_EXPR;
1640 final_types[5] = NULL;
1641 break;
1642 }
1643 else
1644 break;
1645
1646 case R_HPPA_NONE:
1647 case R_HPPA_ABS_CALL:
1648 case R_HPPA_PCREL_CALL:
1649 /* Right now we can default all these. */
1650 break;
1651 }
1652 return final_types;
1653 }
1654
1655 /* Return the address of the correct entry in the PA SOM relocation
1656 howto table. */
1657
1658 /*ARGSUSED*/
1659 static reloc_howto_type *
1660 som_bfd_reloc_type_lookup (abfd, code)
1661 bfd *abfd;
1662 bfd_reloc_code_real_type code;
1663 {
1664 if ((int) code < (int) R_NO_RELOCATION + 255)
1665 {
1666 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1667 return &som_hppa_howto_table[(int) code];
1668 }
1669
1670 return (reloc_howto_type *) 0;
1671 }
1672
1673 /* Perform some initialization for an object. Save results of this
1674 initialization in the BFD. */
1675
1676 static const bfd_target *
1677 som_object_setup (abfd, file_hdrp, aux_hdrp)
1678 bfd *abfd;
1679 struct header *file_hdrp;
1680 struct som_exec_auxhdr *aux_hdrp;
1681 {
1682 asection *section;
1683 int found;
1684
1685 /* som_mkobject will set bfd_error if som_mkobject fails. */
1686 if (som_mkobject (abfd) != true)
1687 return 0;
1688
1689 /* Set BFD flags based on what information is available in the SOM. */
1690 abfd->flags = NO_FLAGS;
1691 if (file_hdrp->symbol_total)
1692 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1693
1694 switch (file_hdrp->a_magic)
1695 {
1696 case DEMAND_MAGIC:
1697 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1698 break;
1699 case SHARE_MAGIC:
1700 abfd->flags |= (WP_TEXT | EXEC_P);
1701 break;
1702 case EXEC_MAGIC:
1703 abfd->flags |= (EXEC_P);
1704 break;
1705 case RELOC_MAGIC:
1706 abfd->flags |= HAS_RELOC;
1707 break;
1708 #ifdef SHL_MAGIC
1709 case SHL_MAGIC:
1710 #endif
1711 #ifdef DL_MAGIC
1712 case DL_MAGIC:
1713 #endif
1714 abfd->flags |= DYNAMIC;
1715 break;
1716
1717 default:
1718 break;
1719 }
1720
1721 /* Allocate space to hold the saved exec header information. */
1722 obj_som_exec_data (abfd) = (struct som_exec_data *)
1723 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1724 if (obj_som_exec_data (abfd) == NULL)
1725 return NULL;
1726
1727 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1728
1729 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1730 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1731
1732 It's about time, OSF has used the new id since at least 1992;
1733 HPUX didn't start till nearly 1995!.
1734
1735 The new approach examines the entry field. If it's zero or not 4
1736 byte aligned then it's not a proper code address and we guess it's
1737 really the executable flags. */
1738 found = 0;
1739 for (section = abfd->sections; section; section = section->next)
1740 {
1741 if ((section->flags & SEC_CODE) == 0)
1742 continue;
1743 if (aux_hdrp->exec_entry >= section->vma
1744 && aux_hdrp->exec_entry < section->vma + section->_cooked_size)
1745 found = 1;
1746 }
1747 if (aux_hdrp->exec_entry == 0
1748 || (aux_hdrp->exec_entry & 0x3) != 0
1749 || ! found)
1750 {
1751 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1752 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1753 }
1754 else
1755 {
1756 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1757 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1758 }
1759
1760 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1761 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1762
1763 /* Initialize the saved symbol table and string table to NULL.
1764 Save important offsets and sizes from the SOM header into
1765 the BFD. */
1766 obj_som_stringtab (abfd) = (char *) NULL;
1767 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1768 obj_som_sorted_syms (abfd) = NULL;
1769 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1770 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1771 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1772 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1773 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1774
1775 return abfd->xvec;
1776 }
1777
1778 /* Convert all of the space and subspace info into BFD sections. Each space
1779 contains a number of subspaces, which in turn describe the mapping between
1780 regions of the exec file, and the address space that the program runs in.
1781 BFD sections which correspond to spaces will overlap the sections for the
1782 associated subspaces. */
1783
1784 static boolean
1785 setup_sections (abfd, file_hdr)
1786 bfd *abfd;
1787 struct header *file_hdr;
1788 {
1789 char *space_strings;
1790 unsigned int space_index, i;
1791 unsigned int total_subspaces = 0;
1792 asection **subspace_sections, *section;
1793
1794 /* First, read in space names */
1795
1796 space_strings = bfd_malloc (file_hdr->space_strings_size);
1797 if (!space_strings && file_hdr->space_strings_size != 0)
1798 goto error_return;
1799
1800 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1801 goto error_return;
1802 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1803 != file_hdr->space_strings_size)
1804 goto error_return;
1805
1806 /* Loop over all of the space dictionaries, building up sections */
1807 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1808 {
1809 struct space_dictionary_record space;
1810 struct subspace_dictionary_record subspace, save_subspace;
1811 int subspace_index;
1812 asection *space_asect;
1813 char *newname;
1814
1815 /* Read the space dictionary element */
1816 if (bfd_seek (abfd, file_hdr->space_location
1817 + space_index * sizeof space, SEEK_SET) < 0)
1818 goto error_return;
1819 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1820 goto error_return;
1821
1822 /* Setup the space name string */
1823 space.name.n_name = space.name.n_strx + space_strings;
1824
1825 /* Make a section out of it */
1826 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1827 if (!newname)
1828 goto error_return;
1829 strcpy (newname, space.name.n_name);
1830
1831 space_asect = bfd_make_section_anyway (abfd, newname);
1832 if (!space_asect)
1833 goto error_return;
1834
1835 if (space.is_loadable == 0)
1836 space_asect->flags |= SEC_DEBUGGING;
1837
1838 /* Set up all the attributes for the space. */
1839 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1840 space.is_private, space.sort_key,
1841 space.space_number) == false)
1842 goto error_return;
1843
1844 /* If the space has no subspaces, then we're done. */
1845 if (space.subspace_quantity == 0)
1846 continue;
1847
1848 /* Now, read in the first subspace for this space */
1849 if (bfd_seek (abfd, file_hdr->subspace_location
1850 + space.subspace_index * sizeof subspace,
1851 SEEK_SET) < 0)
1852 goto error_return;
1853 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1854 goto error_return;
1855 /* Seek back to the start of the subspaces for loop below */
1856 if (bfd_seek (abfd, file_hdr->subspace_location
1857 + space.subspace_index * sizeof subspace,
1858 SEEK_SET) < 0)
1859 goto error_return;
1860
1861 /* Setup the start address and file loc from the first subspace record */
1862 space_asect->vma = subspace.subspace_start;
1863 space_asect->filepos = subspace.file_loc_init_value;
1864 space_asect->alignment_power = log2 (subspace.alignment);
1865 if (space_asect->alignment_power == -1)
1866 goto error_return;
1867
1868 /* Initialize save_subspace so we can reliably determine if this
1869 loop placed any useful values into it. */
1870 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1871
1872 /* Loop over the rest of the subspaces, building up more sections */
1873 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1874 subspace_index++)
1875 {
1876 asection *subspace_asect;
1877
1878 /* Read in the next subspace */
1879 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1880 != sizeof subspace)
1881 goto error_return;
1882
1883 /* Setup the subspace name string */
1884 subspace.name.n_name = subspace.name.n_strx + space_strings;
1885
1886 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1887 if (!newname)
1888 goto error_return;
1889 strcpy (newname, subspace.name.n_name);
1890
1891 /* Make a section out of this subspace */
1892 subspace_asect = bfd_make_section_anyway (abfd, newname);
1893 if (!subspace_asect)
1894 goto error_return;
1895
1896 /* Store private information about the section. */
1897 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1898 subspace.access_control_bits,
1899 subspace.sort_key,
1900 subspace.quadrant) == false)
1901 goto error_return;
1902
1903 /* Keep an easy mapping between subspaces and sections.
1904 Note we do not necessarily read the subspaces in the
1905 same order in which they appear in the object file.
1906
1907 So to make the target index come out correctly, we
1908 store the location of the subspace header in target
1909 index, then sort using the location of the subspace
1910 header as the key. Then we can assign correct
1911 subspace indices. */
1912 total_subspaces++;
1913 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
1914
1915 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1916 by the access_control_bits in the subspace header. */
1917 switch (subspace.access_control_bits >> 4)
1918 {
1919 /* Readonly data. */
1920 case 0x0:
1921 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1922 break;
1923
1924 /* Normal data. */
1925 case 0x1:
1926 subspace_asect->flags |= SEC_DATA;
1927 break;
1928
1929 /* Readonly code and the gateways.
1930 Gateways have other attributes which do not map
1931 into anything BFD knows about. */
1932 case 0x2:
1933 case 0x4:
1934 case 0x5:
1935 case 0x6:
1936 case 0x7:
1937 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1938 break;
1939
1940 /* dynamic (writable) code. */
1941 case 0x3:
1942 subspace_asect->flags |= SEC_CODE;
1943 break;
1944 }
1945
1946 if (subspace.dup_common || subspace.is_common)
1947 subspace_asect->flags |= SEC_IS_COMMON;
1948 else if (subspace.subspace_length > 0)
1949 subspace_asect->flags |= SEC_HAS_CONTENTS;
1950
1951 if (subspace.is_loadable)
1952 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1953 else
1954 subspace_asect->flags |= SEC_DEBUGGING;
1955
1956 if (subspace.code_only)
1957 subspace_asect->flags |= SEC_CODE;
1958
1959 /* Both file_loc_init_value and initialization_length will
1960 be zero for a BSS like subspace. */
1961 if (subspace.file_loc_init_value == 0
1962 && subspace.initialization_length == 0)
1963 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
1964
1965 /* This subspace has relocations.
1966 The fixup_request_quantity is a byte count for the number of
1967 entries in the relocation stream; it is not the actual number
1968 of relocations in the subspace. */
1969 if (subspace.fixup_request_quantity != 0)
1970 {
1971 subspace_asect->flags |= SEC_RELOC;
1972 subspace_asect->rel_filepos = subspace.fixup_request_index;
1973 som_section_data (subspace_asect)->reloc_size
1974 = subspace.fixup_request_quantity;
1975 /* We can not determine this yet. When we read in the
1976 relocation table the correct value will be filled in. */
1977 subspace_asect->reloc_count = -1;
1978 }
1979
1980 /* Update save_subspace if appropriate. */
1981 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1982 save_subspace = subspace;
1983
1984 subspace_asect->vma = subspace.subspace_start;
1985 subspace_asect->_cooked_size = subspace.subspace_length;
1986 subspace_asect->_raw_size = subspace.subspace_length;
1987 subspace_asect->filepos = subspace.file_loc_init_value;
1988 subspace_asect->alignment_power = log2 (subspace.alignment);
1989 if (subspace_asect->alignment_power == -1)
1990 goto error_return;
1991 }
1992
1993 /* Yow! there is no subspace within the space which actually
1994 has initialized information in it; this should never happen
1995 as far as I know. */
1996 if (!save_subspace.file_loc_init_value)
1997 goto error_return;
1998
1999 /* Setup the sizes for the space section based upon the info in the
2000 last subspace of the space. */
2001 space_asect->_cooked_size = save_subspace.subspace_start
2002 - space_asect->vma + save_subspace.subspace_length;
2003 space_asect->_raw_size = save_subspace.file_loc_init_value
2004 - space_asect->filepos + save_subspace.initialization_length;
2005 }
2006 /* Now that we've read in all the subspace records, we need to assign
2007 a target index to each subspace. */
2008 subspace_sections = (asection **) bfd_malloc (total_subspaces
2009 * sizeof (asection *));
2010 if (subspace_sections == NULL)
2011 goto error_return;
2012
2013 for (i = 0, section = abfd->sections; section; section = section->next)
2014 {
2015 if (!som_is_subspace (section))
2016 continue;
2017
2018 subspace_sections[i] = section;
2019 i++;
2020 }
2021 qsort (subspace_sections, total_subspaces,
2022 sizeof (asection *), compare_subspaces);
2023
2024 /* subspace_sections is now sorted in the order in which the subspaces
2025 appear in the object file. Assign an index to each one now. */
2026 for (i = 0; i < total_subspaces; i++)
2027 subspace_sections[i]->target_index = i;
2028
2029 if (space_strings != NULL)
2030 free (space_strings);
2031
2032 if (subspace_sections != NULL)
2033 free (subspace_sections);
2034
2035 return true;
2036
2037 error_return:
2038 if (space_strings != NULL)
2039 free (space_strings);
2040
2041 if (subspace_sections != NULL)
2042 free (subspace_sections);
2043 return false;
2044 }
2045
2046 /* Read in a SOM object and make it into a BFD. */
2047
2048 static const bfd_target *
2049 som_object_p (abfd)
2050 bfd *abfd;
2051 {
2052 struct header file_hdr;
2053 struct som_exec_auxhdr aux_hdr;
2054
2055 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
2056 {
2057 if (bfd_get_error () != bfd_error_system_call)
2058 bfd_set_error (bfd_error_wrong_format);
2059 return 0;
2060 }
2061
2062 if (!_PA_RISC_ID (file_hdr.system_id))
2063 {
2064 bfd_set_error (bfd_error_wrong_format);
2065 return 0;
2066 }
2067
2068 switch (file_hdr.a_magic)
2069 {
2070 case RELOC_MAGIC:
2071 case EXEC_MAGIC:
2072 case SHARE_MAGIC:
2073 case DEMAND_MAGIC:
2074 #ifdef DL_MAGIC
2075 case DL_MAGIC:
2076 #endif
2077 #ifdef SHL_MAGIC
2078 case SHL_MAGIC:
2079 #endif
2080 #ifdef EXECLIBMAGIC
2081 case EXECLIBMAGIC:
2082 #endif
2083 #ifdef SHARED_MAGIC_CNX
2084 case SHARED_MAGIC_CNX:
2085 #endif
2086 break;
2087 default:
2088 bfd_set_error (bfd_error_wrong_format);
2089 return 0;
2090 }
2091
2092 if (file_hdr.version_id != VERSION_ID
2093 && file_hdr.version_id != NEW_VERSION_ID)
2094 {
2095 bfd_set_error (bfd_error_wrong_format);
2096 return 0;
2097 }
2098
2099 /* If the aux_header_size field in the file header is zero, then this
2100 object is an incomplete executable (a .o file). Do not try to read
2101 a non-existant auxiliary header. */
2102 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
2103 if (file_hdr.aux_header_size != 0)
2104 {
2105 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
2106 {
2107 if (bfd_get_error () != bfd_error_system_call)
2108 bfd_set_error (bfd_error_wrong_format);
2109 return 0;
2110 }
2111 }
2112
2113 if (!setup_sections (abfd, &file_hdr))
2114 {
2115 /* setup_sections does not bubble up a bfd error code. */
2116 bfd_set_error (bfd_error_bad_value);
2117 return 0;
2118 }
2119
2120 /* This appears to be a valid SOM object. Do some initialization. */
2121 return som_object_setup (abfd, &file_hdr, &aux_hdr);
2122 }
2123
2124 /* Create a SOM object. */
2125
2126 static boolean
2127 som_mkobject (abfd)
2128 bfd *abfd;
2129 {
2130 /* Allocate memory to hold backend information. */
2131 abfd->tdata.som_data = (struct som_data_struct *)
2132 bfd_zalloc (abfd, sizeof (struct som_data_struct));
2133 if (abfd->tdata.som_data == NULL)
2134 return false;
2135 return true;
2136 }
2137
2138 /* Initialize some information in the file header. This routine makes
2139 not attempt at doing the right thing for a full executable; it
2140 is only meant to handle relocatable objects. */
2141
2142 static boolean
2143 som_prep_headers (abfd)
2144 bfd *abfd;
2145 {
2146 struct header *file_hdr;
2147 asection *section;
2148
2149 /* Make and attach a file header to the BFD. */
2150 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
2151 if (file_hdr == NULL)
2152 return false;
2153 obj_som_file_hdr (abfd) = file_hdr;
2154
2155 if (abfd->flags & (EXEC_P | DYNAMIC))
2156 {
2157
2158 /* Make and attach an exec header to the BFD. */
2159 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
2160 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
2161 if (obj_som_exec_hdr (abfd) == NULL)
2162 return false;
2163
2164 if (abfd->flags & D_PAGED)
2165 file_hdr->a_magic = DEMAND_MAGIC;
2166 else if (abfd->flags & WP_TEXT)
2167 file_hdr->a_magic = SHARE_MAGIC;
2168 #ifdef SHL_MAGIC
2169 else if (abfd->flags & DYNAMIC)
2170 file_hdr->a_magic = SHL_MAGIC;
2171 #endif
2172 else
2173 file_hdr->a_magic = EXEC_MAGIC;
2174 }
2175 else
2176 file_hdr->a_magic = RELOC_MAGIC;
2177
2178 /* Only new format SOM is supported. */
2179 file_hdr->version_id = NEW_VERSION_ID;
2180
2181 /* These fields are optional, and embedding timestamps is not always
2182 a wise thing to do, it makes comparing objects during a multi-stage
2183 bootstrap difficult. */
2184 file_hdr->file_time.secs = 0;
2185 file_hdr->file_time.nanosecs = 0;
2186
2187 file_hdr->entry_space = 0;
2188 file_hdr->entry_subspace = 0;
2189 file_hdr->entry_offset = 0;
2190 file_hdr->presumed_dp = 0;
2191
2192 /* Now iterate over the sections translating information from
2193 BFD sections to SOM spaces/subspaces. */
2194
2195 for (section = abfd->sections; section != NULL; section = section->next)
2196 {
2197 /* Ignore anything which has not been marked as a space or
2198 subspace. */
2199 if (!som_is_space (section) && !som_is_subspace (section))
2200 continue;
2201
2202 if (som_is_space (section))
2203 {
2204 /* Allocate space for the space dictionary. */
2205 som_section_data (section)->space_dict
2206 = (struct space_dictionary_record *)
2207 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2208 if (som_section_data (section)->space_dict == NULL)
2209 return false;
2210 /* Set space attributes. Note most attributes of SOM spaces
2211 are set based on the subspaces it contains. */
2212 som_section_data (section)->space_dict->loader_fix_index = -1;
2213 som_section_data (section)->space_dict->init_pointer_index = -1;
2214
2215 /* Set more attributes that were stuffed away in private data. */
2216 som_section_data (section)->space_dict->sort_key =
2217 som_section_data (section)->copy_data->sort_key;
2218 som_section_data (section)->space_dict->is_defined =
2219 som_section_data (section)->copy_data->is_defined;
2220 som_section_data (section)->space_dict->is_private =
2221 som_section_data (section)->copy_data->is_private;
2222 som_section_data (section)->space_dict->space_number =
2223 som_section_data (section)->copy_data->space_number;
2224 }
2225 else
2226 {
2227 /* Allocate space for the subspace dictionary. */
2228 som_section_data (section)->subspace_dict
2229 = (struct subspace_dictionary_record *)
2230 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2231 if (som_section_data (section)->subspace_dict == NULL)
2232 return false;
2233
2234 /* Set subspace attributes. Basic stuff is done here, additional
2235 attributes are filled in later as more information becomes
2236 available. */
2237 if (section->flags & SEC_IS_COMMON)
2238 {
2239 som_section_data (section)->subspace_dict->dup_common = 1;
2240 som_section_data (section)->subspace_dict->is_common = 1;
2241 }
2242
2243 if (section->flags & SEC_ALLOC)
2244 som_section_data (section)->subspace_dict->is_loadable = 1;
2245
2246 if (section->flags & SEC_CODE)
2247 som_section_data (section)->subspace_dict->code_only = 1;
2248
2249 som_section_data (section)->subspace_dict->subspace_start =
2250 section->vma;
2251 som_section_data (section)->subspace_dict->subspace_length =
2252 bfd_section_size (abfd, section);
2253 som_section_data (section)->subspace_dict->initialization_length =
2254 bfd_section_size (abfd, section);
2255 som_section_data (section)->subspace_dict->alignment =
2256 1 << section->alignment_power;
2257
2258 /* Set more attributes that were stuffed away in private data. */
2259 som_section_data (section)->subspace_dict->sort_key =
2260 som_section_data (section)->copy_data->sort_key;
2261 som_section_data (section)->subspace_dict->access_control_bits =
2262 som_section_data (section)->copy_data->access_control_bits;
2263 som_section_data (section)->subspace_dict->quadrant =
2264 som_section_data (section)->copy_data->quadrant;
2265 }
2266 }
2267 return true;
2268 }
2269
2270 /* Return true if the given section is a SOM space, false otherwise. */
2271
2272 static boolean
2273 som_is_space (section)
2274 asection *section;
2275 {
2276 /* If no copy data is available, then it's neither a space nor a
2277 subspace. */
2278 if (som_section_data (section)->copy_data == NULL)
2279 return false;
2280
2281 /* If the containing space isn't the same as the given section,
2282 then this isn't a space. */
2283 if (som_section_data (section)->copy_data->container != section
2284 && (som_section_data (section)->copy_data->container->output_section
2285 != section))
2286 return false;
2287
2288 /* OK. Must be a space. */
2289 return true;
2290 }
2291
2292 /* Return true if the given section is a SOM subspace, false otherwise. */
2293
2294 static boolean
2295 som_is_subspace (section)
2296 asection *section;
2297 {
2298 /* If no copy data is available, then it's neither a space nor a
2299 subspace. */
2300 if (som_section_data (section)->copy_data == NULL)
2301 return false;
2302
2303 /* If the containing space is the same as the given section,
2304 then this isn't a subspace. */
2305 if (som_section_data (section)->copy_data->container == section
2306 || (som_section_data (section)->copy_data->container->output_section
2307 == section))
2308 return false;
2309
2310 /* OK. Must be a subspace. */
2311 return true;
2312 }
2313
2314 /* Return true if the given space containins the given subspace. It
2315 is safe to assume space really is a space, and subspace really
2316 is a subspace. */
2317
2318 static boolean
2319 som_is_container (space, subspace)
2320 asection *space, *subspace;
2321 {
2322 return (som_section_data (subspace)->copy_data->container == space
2323 || (som_section_data (subspace)->copy_data->container->output_section
2324 == space));
2325 }
2326
2327 /* Count and return the number of spaces attached to the given BFD. */
2328
2329 static unsigned long
2330 som_count_spaces (abfd)
2331 bfd *abfd;
2332 {
2333 int count = 0;
2334 asection *section;
2335
2336 for (section = abfd->sections; section != NULL; section = section->next)
2337 count += som_is_space (section);
2338
2339 return count;
2340 }
2341
2342 /* Count the number of subspaces attached to the given BFD. */
2343
2344 static unsigned long
2345 som_count_subspaces (abfd)
2346 bfd *abfd;
2347 {
2348 int count = 0;
2349 asection *section;
2350
2351 for (section = abfd->sections; section != NULL; section = section->next)
2352 count += som_is_subspace (section);
2353
2354 return count;
2355 }
2356
2357 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2358
2359 We desire symbols to be ordered starting with the symbol with the
2360 highest relocation count down to the symbol with the lowest relocation
2361 count. Doing so compacts the relocation stream. */
2362
2363 static int
2364 compare_syms (arg1, arg2)
2365 const PTR arg1;
2366 const PTR arg2;
2367
2368 {
2369 asymbol **sym1 = (asymbol **) arg1;
2370 asymbol **sym2 = (asymbol **) arg2;
2371 unsigned int count1, count2;
2372
2373 /* Get relocation count for each symbol. Note that the count
2374 is stored in the udata pointer for section symbols! */
2375 if ((*sym1)->flags & BSF_SECTION_SYM)
2376 count1 = (*sym1)->udata.i;
2377 else
2378 count1 = som_symbol_data (*sym1)->reloc_count;
2379
2380 if ((*sym2)->flags & BSF_SECTION_SYM)
2381 count2 = (*sym2)->udata.i;
2382 else
2383 count2 = som_symbol_data (*sym2)->reloc_count;
2384
2385 /* Return the appropriate value. */
2386 if (count1 < count2)
2387 return 1;
2388 else if (count1 > count2)
2389 return -1;
2390 return 0;
2391 }
2392
2393 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2394 and subspace. */
2395
2396 static int
2397 compare_subspaces (arg1, arg2)
2398 const PTR arg1;
2399 const PTR arg2;
2400
2401 {
2402 asection **subspace1 = (asection **) arg1;
2403 asection **subspace2 = (asection **) arg2;
2404 unsigned int count1, count2;
2405
2406 if ((*subspace1)->target_index < (*subspace2)->target_index)
2407 return -1;
2408 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2409 return 1;
2410 else
2411 return 0;
2412 }
2413
2414 /* Perform various work in preparation for emitting the fixup stream. */
2415
2416 static void
2417 som_prep_for_fixups (abfd, syms, num_syms)
2418 bfd *abfd;
2419 asymbol **syms;
2420 unsigned long num_syms;
2421 {
2422 int i;
2423 asection *section;
2424 asymbol **sorted_syms;
2425
2426 /* Most SOM relocations involving a symbol have a length which is
2427 dependent on the index of the symbol. So symbols which are
2428 used often in relocations should have a small index. */
2429
2430 /* First initialize the counters for each symbol. */
2431 for (i = 0; i < num_syms; i++)
2432 {
2433 /* Handle a section symbol; these have no pointers back to the
2434 SOM symbol info. So we just use the udata field to hold the
2435 relocation count. */
2436 if (som_symbol_data (syms[i]) == NULL
2437 || syms[i]->flags & BSF_SECTION_SYM)
2438 {
2439 syms[i]->flags |= BSF_SECTION_SYM;
2440 syms[i]->udata.i = 0;
2441 }
2442 else
2443 som_symbol_data (syms[i])->reloc_count = 0;
2444 }
2445
2446 /* Now that the counters are initialized, make a weighted count
2447 of how often a given symbol is used in a relocation. */
2448 for (section = abfd->sections; section != NULL; section = section->next)
2449 {
2450 int i;
2451
2452 /* Does this section have any relocations? */
2453 if (section->reloc_count <= 0)
2454 continue;
2455
2456 /* Walk through each relocation for this section. */
2457 for (i = 1; i < section->reloc_count; i++)
2458 {
2459 arelent *reloc = section->orelocation[i];
2460 int scale;
2461
2462 /* A relocation against a symbol in the *ABS* section really
2463 does not have a symbol. Likewise if the symbol isn't associated
2464 with any section. */
2465 if (reloc->sym_ptr_ptr == NULL
2466 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2467 continue;
2468
2469 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2470 and R_CODE_ONE_SYMBOL relocations to come first. These
2471 two relocations have single byte versions if the symbol
2472 index is very small. */
2473 if (reloc->howto->type == R_DP_RELATIVE
2474 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2475 scale = 2;
2476 else
2477 scale = 1;
2478
2479 /* Handle section symbols by storing the count in the udata
2480 field. It will not be used and the count is very important
2481 for these symbols. */
2482 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2483 {
2484 (*reloc->sym_ptr_ptr)->udata.i =
2485 (*reloc->sym_ptr_ptr)->udata.i + scale;
2486 continue;
2487 }
2488
2489 /* A normal symbol. Increment the count. */
2490 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2491 }
2492 }
2493
2494 /* Sort a copy of the symbol table, rather than the canonical
2495 output symbol table. */
2496 sorted_syms = (asymbol **) bfd_zalloc (abfd, num_syms * sizeof (asymbol *));
2497 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2498 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2499 obj_som_sorted_syms (abfd) = sorted_syms;
2500
2501 /* Compute the symbol indexes, they will be needed by the relocation
2502 code. */
2503 for (i = 0; i < num_syms; i++)
2504 {
2505 /* A section symbol. Again, there is no pointer to backend symbol
2506 information, so we reuse the udata field again. */
2507 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2508 sorted_syms[i]->udata.i = i;
2509 else
2510 som_symbol_data (sorted_syms[i])->index = i;
2511 }
2512 }
2513
2514 static boolean
2515 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2516 bfd *abfd;
2517 unsigned long current_offset;
2518 unsigned int *total_reloc_sizep;
2519 {
2520 unsigned int i, j;
2521 /* Chunk of memory that we can use as buffer space, then throw
2522 away. */
2523 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2524 unsigned char *p;
2525 unsigned int total_reloc_size = 0;
2526 unsigned int subspace_reloc_size = 0;
2527 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2528 asection *section = abfd->sections;
2529
2530 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2531 p = tmp_space;
2532
2533 /* All the fixups for a particular subspace are emitted in a single
2534 stream. All the subspaces for a particular space are emitted
2535 as a single stream.
2536
2537 So, to get all the locations correct one must iterate through all the
2538 spaces, for each space iterate through its subspaces and output a
2539 fixups stream. */
2540 for (i = 0; i < num_spaces; i++)
2541 {
2542 asection *subsection;
2543
2544 /* Find a space. */
2545 while (!som_is_space (section))
2546 section = section->next;
2547
2548 /* Now iterate through each of its subspaces. */
2549 for (subsection = abfd->sections;
2550 subsection != NULL;
2551 subsection = subsection->next)
2552 {
2553 int reloc_offset, current_rounding_mode;
2554
2555 /* Find a subspace of this space. */
2556 if (!som_is_subspace (subsection)
2557 || !som_is_container (section, subsection))
2558 continue;
2559
2560 /* If this subspace does not have real data, then we are
2561 finised with it. */
2562 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2563 {
2564 som_section_data (subsection)->subspace_dict->fixup_request_index
2565 = -1;
2566 continue;
2567 }
2568
2569 /* This subspace has some relocations. Put the relocation stream
2570 index into the subspace record. */
2571 som_section_data (subsection)->subspace_dict->fixup_request_index
2572 = total_reloc_size;
2573
2574 /* To make life easier start over with a clean slate for
2575 each subspace. Seek to the start of the relocation stream
2576 for this subspace in preparation for writing out its fixup
2577 stream. */
2578 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2579 return false;
2580
2581 /* Buffer space has already been allocated. Just perform some
2582 initialization here. */
2583 p = tmp_space;
2584 subspace_reloc_size = 0;
2585 reloc_offset = 0;
2586 som_initialize_reloc_queue (reloc_queue);
2587 current_rounding_mode = R_N_MODE;
2588
2589 /* Translate each BFD relocation into one or more SOM
2590 relocations. */
2591 for (j = 0; j < subsection->reloc_count; j++)
2592 {
2593 arelent *bfd_reloc = subsection->orelocation[j];
2594 unsigned int skip;
2595 int sym_num;
2596
2597 /* Get the symbol number. Remember it's stored in a
2598 special place for section symbols. */
2599 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2600 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2601 else
2602 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2603
2604 /* If there is not enough room for the next couple relocations,
2605 then dump the current buffer contents now. Also reinitialize
2606 the relocation queue.
2607
2608 No single BFD relocation could ever translate into more
2609 than 100 bytes of SOM relocations (20bytes is probably the
2610 upper limit, but leave lots of space for growth). */
2611 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2612 {
2613 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2614 != p - tmp_space)
2615 return false;
2616
2617 p = tmp_space;
2618 som_initialize_reloc_queue (reloc_queue);
2619 }
2620
2621 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2622 skipped. */
2623 skip = bfd_reloc->address - reloc_offset;
2624 p = som_reloc_skip (abfd, skip, p,
2625 &subspace_reloc_size, reloc_queue);
2626
2627 /* Update reloc_offset for the next iteration.
2628
2629 Many relocations do not consume input bytes. They
2630 are markers, or set state necessary to perform some
2631 later relocation. */
2632 switch (bfd_reloc->howto->type)
2633 {
2634 case R_ENTRY:
2635 case R_ALT_ENTRY:
2636 case R_EXIT:
2637 case R_N_MODE:
2638 case R_S_MODE:
2639 case R_D_MODE:
2640 case R_R_MODE:
2641 case R_FSEL:
2642 case R_LSEL:
2643 case R_RSEL:
2644 case R_COMP1:
2645 case R_COMP2:
2646 case R_BEGIN_BRTAB:
2647 case R_END_BRTAB:
2648 case R_BEGIN_TRY:
2649 case R_END_TRY:
2650 case R_N0SEL:
2651 case R_N1SEL:
2652 reloc_offset = bfd_reloc->address;
2653 break;
2654
2655 default:
2656 reloc_offset = bfd_reloc->address + 4;
2657 break;
2658 }
2659
2660 /* Now the actual relocation we care about. */
2661 switch (bfd_reloc->howto->type)
2662 {
2663 case R_PCREL_CALL:
2664 case R_ABS_CALL:
2665 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2666 bfd_reloc, sym_num, reloc_queue);
2667 break;
2668
2669 case R_CODE_ONE_SYMBOL:
2670 case R_DP_RELATIVE:
2671 /* Account for any addend. */
2672 if (bfd_reloc->addend)
2673 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2674 &subspace_reloc_size, reloc_queue);
2675
2676 if (sym_num < 0x20)
2677 {
2678 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2679 subspace_reloc_size += 1;
2680 p += 1;
2681 }
2682 else if (sym_num < 0x100)
2683 {
2684 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2685 bfd_put_8 (abfd, sym_num, p + 1);
2686 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2687 2, reloc_queue);
2688 }
2689 else if (sym_num < 0x10000000)
2690 {
2691 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2692 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2693 bfd_put_16 (abfd, sym_num, p + 2);
2694 p = try_prev_fixup (abfd, &subspace_reloc_size,
2695 p, 4, reloc_queue);
2696 }
2697 else
2698 abort ();
2699 break;
2700
2701 case R_DATA_ONE_SYMBOL:
2702 case R_DATA_PLABEL:
2703 case R_CODE_PLABEL:
2704 case R_DLT_REL:
2705 /* Account for any addend using R_DATA_OVERRIDE. */
2706 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2707 && bfd_reloc->addend)
2708 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2709 &subspace_reloc_size, reloc_queue);
2710
2711 if (sym_num < 0x100)
2712 {
2713 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2714 bfd_put_8 (abfd, sym_num, p + 1);
2715 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2716 2, reloc_queue);
2717 }
2718 else if (sym_num < 0x10000000)
2719 {
2720 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2721 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2722 bfd_put_16 (abfd, sym_num, p + 2);
2723 p = try_prev_fixup (abfd, &subspace_reloc_size,
2724 p, 4, reloc_queue);
2725 }
2726 else
2727 abort ();
2728 break;
2729
2730 case R_ENTRY:
2731 {
2732 int tmp;
2733 arelent *tmp_reloc = NULL;
2734 bfd_put_8 (abfd, R_ENTRY, p);
2735
2736 /* R_ENTRY relocations have 64 bits of associated
2737 data. Unfortunately the addend field of a bfd
2738 relocation is only 32 bits. So, we split up
2739 the 64bit unwind information and store part in
2740 the R_ENTRY relocation, and the rest in the R_EXIT
2741 relocation. */
2742 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2743
2744 /* Find the next R_EXIT relocation. */
2745 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2746 {
2747 tmp_reloc = subsection->orelocation[tmp];
2748 if (tmp_reloc->howto->type == R_EXIT)
2749 break;
2750 }
2751
2752 if (tmp == subsection->reloc_count)
2753 abort ();
2754
2755 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2756 p = try_prev_fixup (abfd, &subspace_reloc_size,
2757 p, 9, reloc_queue);
2758 break;
2759 }
2760
2761 case R_N_MODE:
2762 case R_S_MODE:
2763 case R_D_MODE:
2764 case R_R_MODE:
2765 /* If this relocation requests the current rounding
2766 mode, then it is redundant. */
2767 if (bfd_reloc->howto->type != current_rounding_mode)
2768 {
2769 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2770 subspace_reloc_size += 1;
2771 p += 1;
2772 current_rounding_mode = bfd_reloc->howto->type;
2773 }
2774 break;
2775
2776 case R_EXIT:
2777 case R_ALT_ENTRY:
2778 case R_FSEL:
2779 case R_LSEL:
2780 case R_RSEL:
2781 case R_BEGIN_BRTAB:
2782 case R_END_BRTAB:
2783 case R_BEGIN_TRY:
2784 case R_N0SEL:
2785 case R_N1SEL:
2786 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2787 subspace_reloc_size += 1;
2788 p += 1;
2789 break;
2790
2791 case R_END_TRY:
2792 /* The end of a exception handling region. The reloc's
2793 addend contains the offset of the exception handling
2794 code. */
2795 if (bfd_reloc->addend == 0)
2796 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2797 else if (bfd_reloc->addend < 1024)
2798 {
2799 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2800 bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
2801 p = try_prev_fixup (abfd, &subspace_reloc_size,
2802 p, 2, reloc_queue);
2803 }
2804 else
2805 {
2806 bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
2807 bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
2808 bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
2809 p = try_prev_fixup (abfd, &subspace_reloc_size,
2810 p, 4, reloc_queue);
2811 }
2812 break;
2813
2814 case R_COMP1:
2815 /* The only time we generate R_COMP1, R_COMP2 and
2816 R_CODE_EXPR relocs is for the difference of two
2817 symbols. Hence we can cheat here. */
2818 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2819 bfd_put_8 (abfd, 0x44, p + 1);
2820 p = try_prev_fixup (abfd, &subspace_reloc_size,
2821 p, 2, reloc_queue);
2822 break;
2823
2824 case R_COMP2:
2825 /* The only time we generate R_COMP1, R_COMP2 and
2826 R_CODE_EXPR relocs is for the difference of two
2827 symbols. Hence we can cheat here. */
2828 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2829 bfd_put_8 (abfd, 0x80, p + 1);
2830 bfd_put_8 (abfd, sym_num >> 16, p + 2);
2831 bfd_put_16 (abfd, sym_num, p + 3);
2832 p = try_prev_fixup (abfd, &subspace_reloc_size,
2833 p, 5, reloc_queue);
2834 break;
2835
2836 case R_CODE_EXPR:
2837 /* The only time we generate R_COMP1, R_COMP2 and
2838 R_CODE_EXPR relocs is for the difference of two
2839 symbols. Hence we can cheat here. */
2840 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2841 subspace_reloc_size += 1;
2842 p += 1;
2843 break;
2844
2845 /* Put a "R_RESERVED" relocation in the stream if
2846 we hit something we do not understand. The linker
2847 will complain loudly if this ever happens. */
2848 default:
2849 bfd_put_8 (abfd, 0xff, p);
2850 subspace_reloc_size += 1;
2851 p += 1;
2852 break;
2853 }
2854 }
2855
2856 /* Last BFD relocation for a subspace has been processed.
2857 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2858 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2859 - reloc_offset,
2860 p, &subspace_reloc_size, reloc_queue);
2861
2862 /* Scribble out the relocations. */
2863 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2864 != p - tmp_space)
2865 return false;
2866 p = tmp_space;
2867
2868 total_reloc_size += subspace_reloc_size;
2869 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2870 = subspace_reloc_size;
2871 }
2872 section = section->next;
2873 }
2874 *total_reloc_sizep = total_reloc_size;
2875 return true;
2876 }
2877
2878 /* Write out the space/subspace string table. */
2879
2880 static boolean
2881 som_write_space_strings (abfd, current_offset, string_sizep)
2882 bfd *abfd;
2883 unsigned long current_offset;
2884 unsigned int *string_sizep;
2885 {
2886 /* Chunk of memory that we can use as buffer space, then throw
2887 away. */
2888 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2889 unsigned char *p;
2890 unsigned int strings_size = 0;
2891 asection *section;
2892
2893 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2894 p = tmp_space;
2895
2896 /* Seek to the start of the space strings in preparation for writing
2897 them out. */
2898 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2899 return false;
2900
2901 /* Walk through all the spaces and subspaces (order is not important)
2902 building up and writing string table entries for their names. */
2903 for (section = abfd->sections; section != NULL; section = section->next)
2904 {
2905 int length;
2906
2907 /* Only work with space/subspaces; avoid any other sections
2908 which might have been made (.text for example). */
2909 if (!som_is_space (section) && !som_is_subspace (section))
2910 continue;
2911
2912 /* Get the length of the space/subspace name. */
2913 length = strlen (section->name);
2914
2915 /* If there is not enough room for the next entry, then dump the
2916 current buffer contents now. Each entry will take 4 bytes to
2917 hold the string length + the string itself + null terminator. */
2918 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2919 {
2920 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2921 != p - tmp_space)
2922 return false;
2923 /* Reset to beginning of the buffer space. */
2924 p = tmp_space;
2925 }
2926
2927 /* First element in a string table entry is the length of the
2928 string. Alignment issues are already handled. */
2929 bfd_put_32 (abfd, length, p);
2930 p += 4;
2931 strings_size += 4;
2932
2933 /* Record the index in the space/subspace records. */
2934 if (som_is_space (section))
2935 som_section_data (section)->space_dict->name.n_strx = strings_size;
2936 else
2937 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2938
2939 /* Next comes the string itself + a null terminator. */
2940 strcpy (p, section->name);
2941 p += length + 1;
2942 strings_size += length + 1;
2943
2944 /* Always align up to the next word boundary. */
2945 while (strings_size % 4)
2946 {
2947 bfd_put_8 (abfd, 0, p);
2948 p++;
2949 strings_size++;
2950 }
2951 }
2952
2953 /* Done with the space/subspace strings. Write out any information
2954 contained in a partial block. */
2955 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2956 return false;
2957 *string_sizep = strings_size;
2958 return true;
2959 }
2960
2961 /* Write out the symbol string table. */
2962
2963 static boolean
2964 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2965 bfd *abfd;
2966 unsigned long current_offset;
2967 asymbol **syms;
2968 unsigned int num_syms;
2969 unsigned int *string_sizep;
2970 {
2971 unsigned int i;
2972
2973 /* Chunk of memory that we can use as buffer space, then throw
2974 away. */
2975 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2976 unsigned char *p;
2977 unsigned int strings_size = 0;
2978
2979 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2980 p = tmp_space;
2981
2982 /* Seek to the start of the space strings in preparation for writing
2983 them out. */
2984 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2985 return false;
2986
2987 for (i = 0; i < num_syms; i++)
2988 {
2989 int length = strlen (syms[i]->name);
2990
2991 /* If there is not enough room for the next entry, then dump the
2992 current buffer contents now. */
2993 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2994 {
2995 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2996 != p - tmp_space)
2997 return false;
2998 /* Reset to beginning of the buffer space. */
2999 p = tmp_space;
3000 }
3001
3002 /* First element in a string table entry is the length of the
3003 string. This must always be 4 byte aligned. This is also
3004 an appropriate time to fill in the string index field in the
3005 symbol table entry. */
3006 bfd_put_32 (abfd, length, p);
3007 strings_size += 4;
3008 p += 4;
3009
3010 /* Next comes the string itself + a null terminator. */
3011 strcpy (p, syms[i]->name);
3012
3013 som_symbol_data(syms[i])->stringtab_offset = strings_size;
3014 p += length + 1;
3015 strings_size += length + 1;
3016
3017 /* Always align up to the next word boundary. */
3018 while (strings_size % 4)
3019 {
3020 bfd_put_8 (abfd, 0, p);
3021 strings_size++;
3022 p++;
3023 }
3024 }
3025
3026 /* Scribble out any partial block. */
3027 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
3028 return false;
3029
3030 *string_sizep = strings_size;
3031 return true;
3032 }
3033
3034 /* Compute variable information to be placed in the SOM headers,
3035 space/subspace dictionaries, relocation streams, etc. Begin
3036 writing parts of the object file. */
3037
3038 static boolean
3039 som_begin_writing (abfd)
3040 bfd *abfd;
3041 {
3042 unsigned long current_offset = 0;
3043 int strings_size = 0;
3044 unsigned int total_reloc_size = 0;
3045 unsigned long num_spaces, num_subspaces, i;
3046 asection *section;
3047 unsigned int total_subspaces = 0;
3048 struct som_exec_auxhdr *exec_header = NULL;
3049
3050 /* The file header will always be first in an object file,
3051 everything else can be in random locations. To keep things
3052 "simple" BFD will lay out the object file in the manner suggested
3053 by the PRO ABI for PA-RISC Systems. */
3054
3055 /* Before any output can really begin offsets for all the major
3056 portions of the object file must be computed. So, starting
3057 with the initial file header compute (and sometimes write)
3058 each portion of the object file. */
3059
3060 /* Make room for the file header, it's contents are not complete
3061 yet, so it can not be written at this time. */
3062 current_offset += sizeof (struct header);
3063
3064 /* Any auxiliary headers will follow the file header. Right now
3065 we support only the copyright and version headers. */
3066 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3067 obj_som_file_hdr (abfd)->aux_header_size = 0;
3068 if (abfd->flags & (EXEC_P | DYNAMIC))
3069 {
3070 /* Parts of the exec header will be filled in later, so
3071 delay writing the header itself. Fill in the defaults,
3072 and write it later. */
3073 current_offset += sizeof (struct som_exec_auxhdr);
3074 obj_som_file_hdr (abfd)->aux_header_size
3075 += sizeof (struct som_exec_auxhdr);
3076 exec_header = obj_som_exec_hdr (abfd);
3077 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3078 exec_header->som_auxhdr.length = 40;
3079 }
3080 if (obj_som_version_hdr (abfd) != NULL)
3081 {
3082 unsigned int len;
3083
3084 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3085 return false;
3086
3087 /* Write the aux_id structure and the string length. */
3088 len = sizeof (struct aux_id) + sizeof (unsigned int);
3089 obj_som_file_hdr (abfd)->aux_header_size += len;
3090 current_offset += len;
3091 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
3092 return false;
3093
3094 /* Write the version string. */
3095 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3096 obj_som_file_hdr (abfd)->aux_header_size += len;
3097 current_offset += len;
3098 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
3099 len, 1, abfd) != len)
3100 return false;
3101 }
3102
3103 if (obj_som_copyright_hdr (abfd) != NULL)
3104 {
3105 unsigned int len;
3106
3107 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3108 return false;
3109
3110 /* Write the aux_id structure and the string length. */
3111 len = sizeof (struct aux_id) + sizeof (unsigned int);
3112 obj_som_file_hdr (abfd)->aux_header_size += len;
3113 current_offset += len;
3114 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
3115 return false;
3116
3117 /* Write the copyright string. */
3118 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3119 obj_som_file_hdr (abfd)->aux_header_size += len;
3120 current_offset += len;
3121 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
3122 len, 1, abfd) != len)
3123 return false;
3124 }
3125
3126 /* Next comes the initialization pointers; we have no initialization
3127 pointers, so current offset does not change. */
3128 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3129 obj_som_file_hdr (abfd)->init_array_total = 0;
3130
3131 /* Next are the space records. These are fixed length records.
3132
3133 Count the number of spaces to determine how much room is needed
3134 in the object file for the space records.
3135
3136 The names of the spaces are stored in a separate string table,
3137 and the index for each space into the string table is computed
3138 below. Therefore, it is not possible to write the space headers
3139 at this time. */
3140 num_spaces = som_count_spaces (abfd);
3141 obj_som_file_hdr (abfd)->space_location = current_offset;
3142 obj_som_file_hdr (abfd)->space_total = num_spaces;
3143 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3144
3145 /* Next are the subspace records. These are fixed length records.
3146
3147 Count the number of subspaes to determine how much room is needed
3148 in the object file for the subspace records.
3149
3150 A variety if fields in the subspace record are still unknown at
3151 this time (index into string table, fixup stream location/size, etc). */
3152 num_subspaces = som_count_subspaces (abfd);
3153 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3154 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3155 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
3156
3157 /* Next is the string table for the space/subspace names. We will
3158 build and write the string table on the fly. At the same time
3159 we will fill in the space/subspace name index fields. */
3160
3161 /* The string table needs to be aligned on a word boundary. */
3162 if (current_offset % 4)
3163 current_offset += (4 - (current_offset % 4));
3164
3165 /* Mark the offset of the space/subspace string table in the
3166 file header. */
3167 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3168
3169 /* Scribble out the space strings. */
3170 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
3171 return false;
3172
3173 /* Record total string table size in the header and update the
3174 current offset. */
3175 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3176 current_offset += strings_size;
3177
3178 /* Next is the compiler records. We do not use these. */
3179 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3180 obj_som_file_hdr (abfd)->compiler_total = 0;
3181
3182 /* Now compute the file positions for the loadable subspaces, taking
3183 care to make sure everything stays properly aligned. */
3184
3185 section = abfd->sections;
3186 for (i = 0; i < num_spaces; i++)
3187 {
3188 asection *subsection;
3189 int first_subspace;
3190 unsigned int subspace_offset = 0;
3191
3192 /* Find a space. */
3193 while (!som_is_space (section))
3194 section = section->next;
3195
3196 first_subspace = 1;
3197 /* Now look for all its subspaces. */
3198 for (subsection = abfd->sections;
3199 subsection != NULL;
3200 subsection = subsection->next)
3201 {
3202
3203 if (!som_is_subspace (subsection)
3204 || !som_is_container (section, subsection)
3205 || (subsection->flags & SEC_ALLOC) == 0)
3206 continue;
3207
3208 /* If this is the first subspace in the space, and we are
3209 building an executable, then take care to make sure all
3210 the alignments are correct and update the exec header. */
3211 if (first_subspace
3212 && (abfd->flags & (EXEC_P | DYNAMIC)))
3213 {
3214 /* Demand paged executables have each space aligned to a
3215 page boundary. Sharable executables (write-protected
3216 text) have just the private (aka data & bss) space aligned
3217 to a page boundary. Ugh. Not true for HPUX.
3218
3219 The HPUX kernel requires the text to always be page aligned
3220 within the file regardless of the executable's type. */
3221 if (abfd->flags & (D_PAGED | DYNAMIC)
3222 || (subsection->flags & SEC_CODE)
3223 || ((abfd->flags & WP_TEXT)
3224 && (subsection->flags & SEC_DATA)))
3225 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3226
3227 /* Update the exec header. */
3228 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3229 {
3230 exec_header->exec_tmem = section->vma;
3231 exec_header->exec_tfile = current_offset;
3232 }
3233 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3234 {
3235 exec_header->exec_dmem = section->vma;
3236 exec_header->exec_dfile = current_offset;
3237 }
3238
3239 /* Keep track of exactly where we are within a particular
3240 space. This is necessary as the braindamaged HPUX
3241 loader will create holes between subspaces *and*
3242 subspace alignments are *NOT* preserved. What a crock. */
3243 subspace_offset = subsection->vma;
3244
3245 /* Only do this for the first subspace within each space. */
3246 first_subspace = 0;
3247 }
3248 else if (abfd->flags & (EXEC_P | DYNAMIC))
3249 {
3250 /* The braindamaged HPUX loader may have created a hole
3251 between two subspaces. It is *not* sufficient to use
3252 the alignment specifications within the subspaces to
3253 account for these holes -- I've run into at least one
3254 case where the loader left one code subspace unaligned
3255 in a final executable.
3256
3257 To combat this we keep a current offset within each space,
3258 and use the subspace vma fields to detect and preserve
3259 holes. What a crock!
3260
3261 ps. This is not necessary for unloadable space/subspaces. */
3262 current_offset += subsection->vma - subspace_offset;
3263 if (subsection->flags & SEC_CODE)
3264 exec_header->exec_tsize += subsection->vma - subspace_offset;
3265 else
3266 exec_header->exec_dsize += subsection->vma - subspace_offset;
3267 subspace_offset += subsection->vma - subspace_offset;
3268 }
3269
3270
3271 subsection->target_index = total_subspaces++;
3272 /* This is real data to be loaded from the file. */
3273 if (subsection->flags & SEC_LOAD)
3274 {
3275 /* Update the size of the code & data. */
3276 if (abfd->flags & (EXEC_P | DYNAMIC)
3277 && subsection->flags & SEC_CODE)
3278 exec_header->exec_tsize += subsection->_cooked_size;
3279 else if (abfd->flags & (EXEC_P | DYNAMIC)
3280 && subsection->flags & SEC_DATA)
3281 exec_header->exec_dsize += subsection->_cooked_size;
3282 som_section_data (subsection)->subspace_dict->file_loc_init_value
3283 = current_offset;
3284 subsection->filepos = current_offset;
3285 current_offset += bfd_section_size (abfd, subsection);
3286 subspace_offset += bfd_section_size (abfd, subsection);
3287 }
3288 /* Looks like uninitialized data. */
3289 else
3290 {
3291 /* Update the size of the bss section. */
3292 if (abfd->flags & (EXEC_P | DYNAMIC))
3293 exec_header->exec_bsize += subsection->_cooked_size;
3294
3295 som_section_data (subsection)->subspace_dict->file_loc_init_value
3296 = 0;
3297 som_section_data (subsection)->subspace_dict->
3298 initialization_length = 0;
3299 }
3300 }
3301 /* Goto the next section. */
3302 section = section->next;
3303 }
3304
3305 /* Finally compute the file positions for unloadable subspaces.
3306 If building an executable, start the unloadable stuff on its
3307 own page. */
3308
3309 if (abfd->flags & (EXEC_P | DYNAMIC))
3310 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3311
3312 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3313 section = abfd->sections;
3314 for (i = 0; i < num_spaces; i++)
3315 {
3316 asection *subsection;
3317
3318 /* Find a space. */
3319 while (!som_is_space (section))
3320 section = section->next;
3321
3322 if (abfd->flags & (EXEC_P | DYNAMIC))
3323 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3324
3325 /* Now look for all its subspaces. */
3326 for (subsection = abfd->sections;
3327 subsection != NULL;
3328 subsection = subsection->next)
3329 {
3330
3331 if (!som_is_subspace (subsection)
3332 || !som_is_container (section, subsection)
3333 || (subsection->flags & SEC_ALLOC) != 0)
3334 continue;
3335
3336 subsection->target_index = total_subspaces++;
3337 /* This is real data to be loaded from the file. */
3338 if ((subsection->flags & SEC_LOAD) == 0)
3339 {
3340 som_section_data (subsection)->subspace_dict->file_loc_init_value
3341 = current_offset;
3342 subsection->filepos = current_offset;
3343 current_offset += bfd_section_size (abfd, subsection);
3344 }
3345 /* Looks like uninitialized data. */
3346 else
3347 {
3348 som_section_data (subsection)->subspace_dict->file_loc_init_value
3349 = 0;
3350 som_section_data (subsection)->subspace_dict->
3351 initialization_length = bfd_section_size (abfd, subsection);
3352 }
3353 }
3354 /* Goto the next section. */
3355 section = section->next;
3356 }
3357
3358 /* If building an executable, then make sure to seek to and write
3359 one byte at the end of the file to make sure any necessary
3360 zeros are filled in. Ugh. */
3361 if (abfd->flags & (EXEC_P | DYNAMIC))
3362 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3363 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3364 return false;
3365 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3366 return false;
3367
3368 obj_som_file_hdr (abfd)->unloadable_sp_size
3369 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3370
3371 /* Loader fixups are not supported in any way shape or form. */
3372 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3373 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3374
3375 /* Done. Store the total size of the SOM so far. */
3376 obj_som_file_hdr (abfd)->som_length = current_offset;
3377
3378 return true;
3379 }
3380
3381 /* Finally, scribble out the various headers to the disk. */
3382
3383 static boolean
3384 som_finish_writing (abfd)
3385 bfd *abfd;
3386 {
3387 int num_spaces = som_count_spaces (abfd);
3388 asymbol **syms = bfd_get_outsymbols (abfd);
3389 int i, num_syms, strings_size;
3390 int subspace_index = 0;
3391 file_ptr location;
3392 asection *section;
3393 unsigned long current_offset;
3394 unsigned int total_reloc_size;
3395
3396 /* Next is the symbol table. These are fixed length records.
3397
3398 Count the number of symbols to determine how much room is needed
3399 in the object file for the symbol table.
3400
3401 The names of the symbols are stored in a separate string table,
3402 and the index for each symbol name into the string table is computed
3403 below. Therefore, it is not possible to write the symbol table
3404 at this time.
3405
3406 These used to be output before the subspace contents, but they
3407 were moved here to work around a stupid bug in the hpux linker
3408 (fixed in hpux10). */
3409 current_offset = obj_som_file_hdr (abfd)->som_length;
3410
3411 /* Make sure we're on a word boundary. */
3412 if (current_offset % 4)
3413 current_offset += (4 - (current_offset % 4));
3414
3415 num_syms = bfd_get_symcount (abfd);
3416 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3417 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3418 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3419
3420 /* Next are the symbol strings.
3421 Align them to a word boundary. */
3422 if (current_offset % 4)
3423 current_offset += (4 - (current_offset % 4));
3424 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3425
3426 /* Scribble out the symbol strings. */
3427 if (som_write_symbol_strings (abfd, current_offset, syms,
3428 num_syms, &strings_size)
3429 == false)
3430 return false;
3431
3432 /* Record total string table size in header and update the
3433 current offset. */
3434 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3435 current_offset += strings_size;
3436
3437 /* Do prep work before handling fixups. */
3438 som_prep_for_fixups (abfd,
3439 bfd_get_outsymbols (abfd),
3440 bfd_get_symcount (abfd));
3441
3442 /* At the end of the file is the fixup stream which starts on a
3443 word boundary. */
3444 if (current_offset % 4)
3445 current_offset += (4 - (current_offset % 4));
3446 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3447
3448 /* Write the fixups and update fields in subspace headers which
3449 relate to the fixup stream. */
3450 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
3451 return false;
3452
3453 /* Record the total size of the fixup stream in the file header. */
3454 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3455
3456 /* Done. Store the total size of the SOM. */
3457 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
3458
3459 /* Now that the symbol table information is complete, build and
3460 write the symbol table. */
3461 if (som_build_and_write_symbol_table (abfd) == false)
3462 return false;
3463
3464 /* Subspaces are written first so that we can set up information
3465 about them in their containing spaces as the subspace is written. */
3466
3467 /* Seek to the start of the subspace dictionary records. */
3468 location = obj_som_file_hdr (abfd)->subspace_location;
3469 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3470 return false;
3471
3472 section = abfd->sections;
3473 /* Now for each loadable space write out records for its subspaces. */
3474 for (i = 0; i < num_spaces; i++)
3475 {
3476 asection *subsection;
3477
3478 /* Find a space. */
3479 while (!som_is_space (section))
3480 section = section->next;
3481
3482 /* Now look for all its subspaces. */
3483 for (subsection = abfd->sections;
3484 subsection != NULL;
3485 subsection = subsection->next)
3486 {
3487
3488 /* Skip any section which does not correspond to a space
3489 or subspace. Or does not have SEC_ALLOC set (and therefore
3490 has no real bits on the disk). */
3491 if (!som_is_subspace (subsection)
3492 || !som_is_container (section, subsection)
3493 || (subsection->flags & SEC_ALLOC) == 0)
3494 continue;
3495
3496 /* If this is the first subspace for this space, then save
3497 the index of the subspace in its containing space. Also
3498 set "is_loadable" in the containing space. */
3499
3500 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3501 {
3502 som_section_data (section)->space_dict->is_loadable = 1;
3503 som_section_data (section)->space_dict->subspace_index
3504 = subspace_index;
3505 }
3506
3507 /* Increment the number of subspaces seen and the number of
3508 subspaces contained within the current space. */
3509 subspace_index++;
3510 som_section_data (section)->space_dict->subspace_quantity++;
3511
3512 /* Mark the index of the current space within the subspace's
3513 dictionary record. */
3514 som_section_data (subsection)->subspace_dict->space_index = i;
3515
3516 /* Dump the current subspace header. */
3517 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3518 sizeof (struct subspace_dictionary_record), 1, abfd)
3519 != sizeof (struct subspace_dictionary_record))
3520 return false;
3521 }
3522 /* Goto the next section. */
3523 section = section->next;
3524 }
3525
3526 /* Now repeat the process for unloadable subspaces. */
3527 section = abfd->sections;
3528 /* Now for each space write out records for its subspaces. */
3529 for (i = 0; i < num_spaces; i++)
3530 {
3531 asection *subsection;
3532
3533 /* Find a space. */
3534 while (!som_is_space (section))
3535 section = section->next;
3536
3537 /* Now look for all its subspaces. */
3538 for (subsection = abfd->sections;
3539 subsection != NULL;
3540 subsection = subsection->next)
3541 {
3542
3543 /* Skip any section which does not correspond to a space or
3544 subspace, or which SEC_ALLOC set (and therefore handled
3545 in the loadable spaces/subspaces code above). */
3546
3547 if (!som_is_subspace (subsection)
3548 || !som_is_container (section, subsection)
3549 || (subsection->flags & SEC_ALLOC) != 0)
3550 continue;
3551
3552 /* If this is the first subspace for this space, then save
3553 the index of the subspace in its containing space. Clear
3554 "is_loadable". */
3555
3556 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3557 {
3558 som_section_data (section)->space_dict->is_loadable = 0;
3559 som_section_data (section)->space_dict->subspace_index
3560 = subspace_index;
3561 }
3562
3563 /* Increment the number of subspaces seen and the number of
3564 subspaces contained within the current space. */
3565 som_section_data (section)->space_dict->subspace_quantity++;
3566 subspace_index++;
3567
3568 /* Mark the index of the current space within the subspace's
3569 dictionary record. */
3570 som_section_data (subsection)->subspace_dict->space_index = i;
3571
3572 /* Dump this subspace header. */
3573 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3574 sizeof (struct subspace_dictionary_record), 1, abfd)
3575 != sizeof (struct subspace_dictionary_record))
3576 return false;
3577 }
3578 /* Goto the next section. */
3579 section = section->next;
3580 }
3581
3582 /* All the subspace dictiondary records are written, and all the
3583 fields are set up in the space dictionary records.
3584
3585 Seek to the right location and start writing the space
3586 dictionary records. */
3587 location = obj_som_file_hdr (abfd)->space_location;
3588 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3589 return false;
3590
3591 section = abfd->sections;
3592 for (i = 0; i < num_spaces; i++)
3593 {
3594
3595 /* Find a space. */
3596 while (!som_is_space (section))
3597 section = section->next;
3598
3599 /* Dump its header */
3600 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3601 sizeof (struct space_dictionary_record), 1, abfd)
3602 != sizeof (struct space_dictionary_record))
3603 return false;
3604
3605 /* Goto the next section. */
3606 section = section->next;
3607 }
3608
3609 /* Setting of the system_id has to happen very late now that copying of
3610 BFD private data happens *after* section contents are set. */
3611 if (abfd->flags & (EXEC_P | DYNAMIC))
3612 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3613 else if (bfd_get_mach (abfd) == pa11)
3614 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_1;
3615 else
3616 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3617
3618 /* Compute the checksum for the file header just before writing
3619 the header to disk. */
3620 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3621
3622 /* Only thing left to do is write out the file header. It is always
3623 at location zero. Seek there and write it. */
3624 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3625 return false;
3626 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3627 sizeof (struct header), 1, abfd)
3628 != sizeof (struct header))
3629 return false;
3630
3631 /* Now write the exec header. */
3632 if (abfd->flags & (EXEC_P | DYNAMIC))
3633 {
3634 long tmp;
3635 struct som_exec_auxhdr *exec_header;
3636
3637 exec_header = obj_som_exec_hdr (abfd);
3638 exec_header->exec_entry = bfd_get_start_address (abfd);
3639 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3640
3641 /* Oh joys. Ram some of the BSS data into the DATA section
3642 to be compatable with how the hp linker makes objects
3643 (saves memory space). */
3644 tmp = exec_header->exec_dsize;
3645 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3646 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3647 if (exec_header->exec_bsize < 0)
3648 exec_header->exec_bsize = 0;
3649 exec_header->exec_dsize = tmp;
3650
3651 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3652 SEEK_SET) < 0)
3653 return false;
3654
3655 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3656 != AUX_HDR_SIZE)
3657 return false;
3658 }
3659 return true;
3660 }
3661
3662 /* Compute and return the checksum for a SOM file header. */
3663
3664 static unsigned long
3665 som_compute_checksum (abfd)
3666 bfd *abfd;
3667 {
3668 unsigned long checksum, count, i;
3669 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3670
3671 checksum = 0;
3672 count = sizeof (struct header) / sizeof (unsigned long);
3673 for (i = 0; i < count; i++)
3674 checksum ^= *(buffer + i);
3675
3676 return checksum;
3677 }
3678
3679 static void
3680 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3681 bfd *abfd;
3682 asymbol *sym;
3683 struct som_misc_symbol_info *info;
3684 {
3685 /* Initialize. */
3686 memset (info, 0, sizeof (struct som_misc_symbol_info));
3687
3688 /* The HP SOM linker requires detailed type information about
3689 all symbols (including undefined symbols!). Unfortunately,
3690 the type specified in an import/export statement does not
3691 always match what the linker wants. Severe braindamage. */
3692
3693 /* Section symbols will not have a SOM symbol type assigned to
3694 them yet. Assign all section symbols type ST_DATA. */
3695 if (sym->flags & BSF_SECTION_SYM)
3696 info->symbol_type = ST_DATA;
3697 else
3698 {
3699 /* Common symbols must have scope SS_UNSAT and type
3700 ST_STORAGE or the linker will choke. */
3701 if (bfd_is_com_section (sym->section))
3702 {
3703 info->symbol_scope = SS_UNSAT;
3704 info->symbol_type = ST_STORAGE;
3705 }
3706
3707 /* It is possible to have a symbol without an associated
3708 type. This happens if the user imported the symbol
3709 without a type and the symbol was never defined
3710 locally. If BSF_FUNCTION is set for this symbol, then
3711 assign it type ST_CODE (the HP linker requires undefined
3712 external functions to have type ST_CODE rather than ST_ENTRY). */
3713 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3714 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3715 && bfd_is_und_section (sym->section)
3716 && sym->flags & BSF_FUNCTION)
3717 info->symbol_type = ST_CODE;
3718
3719 /* Handle function symbols which were defined in this file.
3720 They should have type ST_ENTRY. Also retrieve the argument
3721 relocation bits from the SOM backend information. */
3722 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3723 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3724 && (sym->flags & BSF_FUNCTION))
3725 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3726 && (sym->flags & BSF_FUNCTION)))
3727 {
3728 info->symbol_type = ST_ENTRY;
3729 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3730 }
3731
3732 /* For unknown symbols, set their type to ST_DATA.
3733
3734 We used to set the symbol type based on the section this symbol
3735 was in (ST_DATA for DATA sections, ST_CODE for CODE sections).
3736 Strictly speaking, this is the right approach. However, the
3737 linker chokes if we have an R_DATA_ONE_SYMBOL reloc involving
3738 an ST_CODE symbol in a shared library, which happens for
3739 exception handling tables.
3740
3741 I tried an alternate approach to generating exception handling
3742 tables using PUSH_SYM and DATA_EXPR relocs, but that fails to
3743 relocate exception handling tables in shared libraries.
3744
3745 What a pain. */
3746 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3747 info->symbol_type = ST_DATA;
3748
3749 /* From now on it's a very simple mapping. */
3750 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3751 info->symbol_type = ST_ABSOLUTE;
3752 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3753 info->symbol_type = ST_CODE;
3754 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3755 info->symbol_type = ST_DATA;
3756 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3757 info->symbol_type = ST_MILLICODE;
3758 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3759 info->symbol_type = ST_PLABEL;
3760 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3761 info->symbol_type = ST_PRI_PROG;
3762 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3763 info->symbol_type = ST_SEC_PROG;
3764 }
3765
3766 /* Now handle the symbol's scope. Exported data which is not
3767 in the common section has scope SS_UNIVERSAL. Note scope
3768 of common symbols was handled earlier! */
3769 if (bfd_is_und_section (sym->section))
3770 info->symbol_scope = SS_UNSAT;
3771 else if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3772 info->symbol_scope = SS_UNIVERSAL;
3773 /* Anything else which is not in the common section has scope
3774 SS_LOCAL. */
3775 else if (! bfd_is_com_section (sym->section))
3776 info->symbol_scope = SS_LOCAL;
3777
3778 /* Now set the symbol_info field. It has no real meaning
3779 for undefined or common symbols, but the HP linker will
3780 choke if it's not set to some "reasonable" value. We
3781 use zero as a reasonable value. */
3782 if (bfd_is_com_section (sym->section)
3783 || bfd_is_und_section (sym->section)
3784 || bfd_is_abs_section (sym->section))
3785 info->symbol_info = 0;
3786 /* For all other symbols, the symbol_info field contains the
3787 subspace index of the space this symbol is contained in. */
3788 else
3789 info->symbol_info = sym->section->target_index;
3790
3791 /* Set the symbol's value. */
3792 info->symbol_value = sym->value + sym->section->vma;
3793 }
3794
3795 /* Build and write, in one big chunk, the entire symbol table for
3796 this BFD. */
3797
3798 static boolean
3799 som_build_and_write_symbol_table (abfd)
3800 bfd *abfd;
3801 {
3802 unsigned int num_syms = bfd_get_symcount (abfd);
3803 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3804 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
3805 struct symbol_dictionary_record *som_symtab = NULL;
3806 int i, symtab_size;
3807
3808 /* Compute total symbol table size and allocate a chunk of memory
3809 to hold the symbol table as we build it. */
3810 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3811 som_symtab = (struct symbol_dictionary_record *) bfd_malloc (symtab_size);
3812 if (som_symtab == NULL && symtab_size != 0)
3813 goto error_return;
3814 memset (som_symtab, 0, symtab_size);
3815
3816 /* Walk over each symbol. */
3817 for (i = 0; i < num_syms; i++)
3818 {
3819 struct som_misc_symbol_info info;
3820
3821 /* This is really an index into the symbol strings table.
3822 By the time we get here, the index has already been
3823 computed and stored into the name field in the BFD symbol. */
3824 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
3825
3826 /* Derive SOM information from the BFD symbol. */
3827 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3828
3829 /* Now use it. */
3830 som_symtab[i].symbol_type = info.symbol_type;
3831 som_symtab[i].symbol_scope = info.symbol_scope;
3832 som_symtab[i].arg_reloc = info.arg_reloc;
3833 som_symtab[i].symbol_info = info.symbol_info;
3834 som_symtab[i].symbol_value = info.symbol_value;
3835 }
3836
3837 /* Everything is ready, seek to the right location and
3838 scribble out the symbol table. */
3839 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3840 return false;
3841
3842 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3843 goto error_return;
3844
3845 if (som_symtab != NULL)
3846 free (som_symtab);
3847 return true;
3848 error_return:
3849 if (som_symtab != NULL)
3850 free (som_symtab);
3851 return false;
3852 }
3853
3854 /* Write an object in SOM format. */
3855
3856 static boolean
3857 som_write_object_contents (abfd)
3858 bfd *abfd;
3859 {
3860 if (abfd->output_has_begun == false)
3861 {
3862 /* Set up fixed parts of the file, space, and subspace headers.
3863 Notify the world that output has begun. */
3864 som_prep_headers (abfd);
3865 abfd->output_has_begun = true;
3866 /* Start writing the object file. This include all the string
3867 tables, fixup streams, and other portions of the object file. */
3868 som_begin_writing (abfd);
3869 }
3870
3871 return (som_finish_writing (abfd));
3872 }
3873
3874 \f
3875 /* Read and save the string table associated with the given BFD. */
3876
3877 static boolean
3878 som_slurp_string_table (abfd)
3879 bfd *abfd;
3880 {
3881 char *stringtab;
3882
3883 /* Use the saved version if its available. */
3884 if (obj_som_stringtab (abfd) != NULL)
3885 return true;
3886
3887 /* I don't think this can currently happen, and I'm not sure it should
3888 really be an error, but it's better than getting unpredictable results
3889 from the host's malloc when passed a size of zero. */
3890 if (obj_som_stringtab_size (abfd) == 0)
3891 {
3892 bfd_set_error (bfd_error_no_symbols);
3893 return false;
3894 }
3895
3896 /* Allocate and read in the string table. */
3897 stringtab = bfd_malloc (obj_som_stringtab_size (abfd));
3898 if (stringtab == NULL)
3899 return false;
3900 memset (stringtab, 0, obj_som_stringtab_size (abfd));
3901
3902 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3903 return false;
3904
3905 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3906 != obj_som_stringtab_size (abfd))
3907 return false;
3908
3909 /* Save our results and return success. */
3910 obj_som_stringtab (abfd) = stringtab;
3911 return true;
3912 }
3913
3914 /* Return the amount of data (in bytes) required to hold the symbol
3915 table for this object. */
3916
3917 static long
3918 som_get_symtab_upper_bound (abfd)
3919 bfd *abfd;
3920 {
3921 if (!som_slurp_symbol_table (abfd))
3922 return -1;
3923
3924 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3925 }
3926
3927 /* Convert from a SOM subspace index to a BFD section. */
3928
3929 static asection *
3930 bfd_section_from_som_symbol (abfd, symbol)
3931 bfd *abfd;
3932 struct symbol_dictionary_record *symbol;
3933 {
3934 asection *section;
3935
3936 /* The meaning of the symbol_info field changes for functions
3937 within executables. So only use the quick symbol_info mapping for
3938 incomplete objects and non-function symbols in executables. */
3939 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3940 || (symbol->symbol_type != ST_ENTRY
3941 && symbol->symbol_type != ST_PRI_PROG
3942 && symbol->symbol_type != ST_SEC_PROG
3943 && symbol->symbol_type != ST_MILLICODE))
3944 {
3945 unsigned int index = symbol->symbol_info;
3946 for (section = abfd->sections; section != NULL; section = section->next)
3947 if (section->target_index == index && som_is_subspace (section))
3948 return section;
3949
3950 /* Could be a symbol from an external library (such as an OMOS
3951 shared library). Don't abort. */
3952 return bfd_abs_section_ptr;
3953
3954 }
3955 else
3956 {
3957 unsigned int value = symbol->symbol_value;
3958
3959 /* For executables we will have to use the symbol's address and
3960 find out what section would contain that address. Yuk. */
3961 for (section = abfd->sections; section; section = section->next)
3962 {
3963 if (value >= section->vma
3964 && value <= section->vma + section->_cooked_size
3965 && som_is_subspace (section))
3966 return section;
3967 }
3968
3969 /* Could be a symbol from an external library (such as an OMOS
3970 shared library). Don't abort. */
3971 return bfd_abs_section_ptr;
3972
3973 }
3974 }
3975
3976 /* Read and save the symbol table associated with the given BFD. */
3977
3978 static unsigned int
3979 som_slurp_symbol_table (abfd)
3980 bfd *abfd;
3981 {
3982 int symbol_count = bfd_get_symcount (abfd);
3983 int symsize = sizeof (struct symbol_dictionary_record);
3984 char *stringtab;
3985 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3986 som_symbol_type *sym, *symbase;
3987
3988 /* Return saved value if it exists. */
3989 if (obj_som_symtab (abfd) != NULL)
3990 goto successful_return;
3991
3992 /* Special case. This is *not* an error. */
3993 if (symbol_count == 0)
3994 goto successful_return;
3995
3996 if (!som_slurp_string_table (abfd))
3997 goto error_return;
3998
3999 stringtab = obj_som_stringtab (abfd);
4000
4001 symbase = ((som_symbol_type *)
4002 bfd_malloc (symbol_count * sizeof (som_symbol_type)));
4003 if (symbase == NULL)
4004 goto error_return;
4005 memset (symbase, 0, symbol_count * sizeof (som_symbol_type));
4006
4007 /* Read in the external SOM representation. */
4008 buf = bfd_malloc (symbol_count * symsize);
4009 if (buf == NULL && symbol_count * symsize != 0)
4010 goto error_return;
4011 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
4012 goto error_return;
4013 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
4014 != symbol_count * symsize)
4015 goto error_return;
4016
4017 /* Iterate over all the symbols and internalize them. */
4018 endbufp = buf + symbol_count;
4019 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
4020 {
4021
4022 /* I don't think we care about these. */
4023 if (bufp->symbol_type == ST_SYM_EXT
4024 || bufp->symbol_type == ST_ARG_EXT)
4025 continue;
4026
4027 /* Set some private data we care about. */
4028 if (bufp->symbol_type == ST_NULL)
4029 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4030 else if (bufp->symbol_type == ST_ABSOLUTE)
4031 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
4032 else if (bufp->symbol_type == ST_DATA)
4033 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
4034 else if (bufp->symbol_type == ST_CODE)
4035 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
4036 else if (bufp->symbol_type == ST_PRI_PROG)
4037 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
4038 else if (bufp->symbol_type == ST_SEC_PROG)
4039 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
4040 else if (bufp->symbol_type == ST_ENTRY)
4041 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
4042 else if (bufp->symbol_type == ST_MILLICODE)
4043 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
4044 else if (bufp->symbol_type == ST_PLABEL)
4045 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
4046 else
4047 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4048 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
4049
4050 /* Some reasonable defaults. */
4051 sym->symbol.the_bfd = abfd;
4052 sym->symbol.name = bufp->name.n_strx + stringtab;
4053 sym->symbol.value = bufp->symbol_value;
4054 sym->symbol.section = 0;
4055 sym->symbol.flags = 0;
4056
4057 switch (bufp->symbol_type)
4058 {
4059 case ST_ENTRY:
4060 case ST_MILLICODE:
4061 sym->symbol.flags |= BSF_FUNCTION;
4062 sym->symbol.value &= ~0x3;
4063 break;
4064
4065 case ST_STUB:
4066 case ST_CODE:
4067 case ST_PRI_PROG:
4068 case ST_SEC_PROG:
4069 sym->symbol.value &= ~0x3;
4070 /* If the symbol's scope is ST_UNSAT, then these are
4071 undefined function symbols. */
4072 if (bufp->symbol_scope == SS_UNSAT)
4073 sym->symbol.flags |= BSF_FUNCTION;
4074
4075
4076 default:
4077 break;
4078 }
4079
4080 /* Handle scoping and section information. */
4081 switch (bufp->symbol_scope)
4082 {
4083 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4084 so the section associated with this symbol can't be known. */
4085 case SS_EXTERNAL:
4086 if (bufp->symbol_type != ST_STORAGE)
4087 sym->symbol.section = bfd_und_section_ptr;
4088 else
4089 sym->symbol.section = bfd_com_section_ptr;
4090 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4091 break;
4092
4093 case SS_UNSAT:
4094 if (bufp->symbol_type != ST_STORAGE)
4095 sym->symbol.section = bfd_und_section_ptr;
4096 else
4097 sym->symbol.section = bfd_com_section_ptr;
4098 break;
4099
4100 case SS_UNIVERSAL:
4101 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4102 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4103 sym->symbol.value -= sym->symbol.section->vma;
4104 break;
4105
4106 #if 0
4107 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
4108 Sound dumb? It is. */
4109 case SS_GLOBAL:
4110 #endif
4111 case SS_LOCAL:
4112 sym->symbol.flags |= BSF_LOCAL;
4113 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4114 sym->symbol.value -= sym->symbol.section->vma;
4115 break;
4116 }
4117
4118 /* Mark section symbols and symbols used by the debugger.
4119 Note $START$ is a magic code symbol, NOT a section symbol. */
4120 if (sym->symbol.name[0] == '$'
4121 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4122 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4123 sym->symbol.flags |= BSF_SECTION_SYM;
4124 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
4125 {
4126 sym->symbol.flags |= BSF_SECTION_SYM;
4127 sym->symbol.name = sym->symbol.section->name;
4128 }
4129 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
4130 sym->symbol.flags |= BSF_DEBUGGING;
4131
4132 /* Note increment at bottom of loop, since we skip some symbols
4133 we can not include it as part of the for statement. */
4134 sym++;
4135 }
4136
4137 /* We modify the symbol count to record the number of BFD symbols we
4138 created. */
4139 bfd_get_symcount (abfd) = sym - symbase;
4140
4141 /* Save our results and return success. */
4142 obj_som_symtab (abfd) = symbase;
4143 successful_return:
4144 if (buf != NULL)
4145 free (buf);
4146 return (true);
4147
4148 error_return:
4149 if (buf != NULL)
4150 free (buf);
4151 return false;
4152 }
4153
4154 /* Canonicalize a SOM symbol table. Return the number of entries
4155 in the symbol table. */
4156
4157 static long
4158 som_get_symtab (abfd, location)
4159 bfd *abfd;
4160 asymbol **location;
4161 {
4162 int i;
4163 som_symbol_type *symbase;
4164
4165 if (!som_slurp_symbol_table (abfd))
4166 return -1;
4167
4168 i = bfd_get_symcount (abfd);
4169 symbase = obj_som_symtab (abfd);
4170
4171 for (; i > 0; i--, location++, symbase++)
4172 *location = &symbase->symbol;
4173
4174 /* Final null pointer. */
4175 *location = 0;
4176 return (bfd_get_symcount (abfd));
4177 }
4178
4179 /* Make a SOM symbol. There is nothing special to do here. */
4180
4181 static asymbol *
4182 som_make_empty_symbol (abfd)
4183 bfd *abfd;
4184 {
4185 som_symbol_type *new =
4186 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
4187 if (new == NULL)
4188 return 0;
4189 new->symbol.the_bfd = abfd;
4190
4191 return &new->symbol;
4192 }
4193
4194 /* Print symbol information. */
4195
4196 static void
4197 som_print_symbol (ignore_abfd, afile, symbol, how)
4198 bfd *ignore_abfd;
4199 PTR afile;
4200 asymbol *symbol;
4201 bfd_print_symbol_type how;
4202 {
4203 FILE *file = (FILE *) afile;
4204 switch (how)
4205 {
4206 case bfd_print_symbol_name:
4207 fprintf (file, "%s", symbol->name);
4208 break;
4209 case bfd_print_symbol_more:
4210 fprintf (file, "som ");
4211 fprintf_vma (file, symbol->value);
4212 fprintf (file, " %lx", (long) symbol->flags);
4213 break;
4214 case bfd_print_symbol_all:
4215 {
4216 CONST char *section_name;
4217 section_name = symbol->section ? symbol->section->name : "(*none*)";
4218 bfd_print_symbol_vandf ((PTR) file, symbol);
4219 fprintf (file, " %s\t%s", section_name, symbol->name);
4220 break;
4221 }
4222 }
4223 }
4224
4225 static boolean
4226 som_bfd_is_local_label (abfd, sym)
4227 bfd *abfd;
4228 asymbol *sym;
4229 {
4230 return (sym->name[0] == 'L' && sym->name[1] == '$');
4231 }
4232
4233 /* Count or process variable-length SOM fixup records.
4234
4235 To avoid code duplication we use this code both to compute the number
4236 of relocations requested by a stream, and to internalize the stream.
4237
4238 When computing the number of relocations requested by a stream the
4239 variables rptr, section, and symbols have no meaning.
4240
4241 Return the number of relocations requested by the fixup stream. When
4242 not just counting
4243
4244 This needs at least two or three more passes to get it cleaned up. */
4245
4246 static unsigned int
4247 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
4248 unsigned char *fixup;
4249 unsigned int end;
4250 arelent *internal_relocs;
4251 asection *section;
4252 asymbol **symbols;
4253 boolean just_count;
4254 {
4255 unsigned int op, varname, deallocate_contents = 0;
4256 unsigned char *end_fixups = &fixup[end];
4257 const struct fixup_format *fp;
4258 char *cp;
4259 unsigned char *save_fixup;
4260 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4261 const int *subop;
4262 arelent *rptr= internal_relocs;
4263 unsigned int offset = 0;
4264
4265 #define var(c) variables[(c) - 'A']
4266 #define push(v) (*sp++ = (v))
4267 #define pop() (*--sp)
4268 #define emptystack() (sp == stack)
4269
4270 som_initialize_reloc_queue (reloc_queue);
4271 memset (variables, 0, sizeof (variables));
4272 memset (stack, 0, sizeof (stack));
4273 count = 0;
4274 prev_fixup = 0;
4275 saved_unwind_bits = 0;
4276 sp = stack;
4277
4278 while (fixup < end_fixups)
4279 {
4280
4281 /* Save pointer to the start of this fixup. We'll use
4282 it later to determine if it is necessary to put this fixup
4283 on the queue. */
4284 save_fixup = fixup;
4285
4286 /* Get the fixup code and its associated format. */
4287 op = *fixup++;
4288 fp = &som_fixup_formats[op];
4289
4290 /* Handle a request for a previous fixup. */
4291 if (*fp->format == 'P')
4292 {
4293 /* Get pointer to the beginning of the prev fixup, move
4294 the repeated fixup to the head of the queue. */
4295 fixup = reloc_queue[fp->D].reloc;
4296 som_reloc_queue_fix (reloc_queue, fp->D);
4297 prev_fixup = 1;
4298
4299 /* Get the fixup code and its associated format. */
4300 op = *fixup++;
4301 fp = &som_fixup_formats[op];
4302 }
4303
4304 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4305 if (! just_count
4306 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4307 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4308 {
4309 rptr->address = offset;
4310 rptr->howto = &som_hppa_howto_table[op];
4311 rptr->addend = 0;
4312 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4313 }
4314
4315 /* Set default input length to 0. Get the opcode class index
4316 into D. */
4317 var ('L') = 0;
4318 var ('D') = fp->D;
4319 var ('U') = saved_unwind_bits;
4320
4321 /* Get the opcode format. */
4322 cp = fp->format;
4323
4324 /* Process the format string. Parsing happens in two phases,
4325 parse RHS, then assign to LHS. Repeat until no more
4326 characters in the format string. */
4327 while (*cp)
4328 {
4329 /* The variable this pass is going to compute a value for. */
4330 varname = *cp++;
4331
4332 /* Start processing RHS. Continue until a NULL or '=' is found. */
4333 do
4334 {
4335 c = *cp++;
4336
4337 /* If this is a variable, push it on the stack. */
4338 if (isupper (c))
4339 push (var (c));
4340
4341 /* If this is a lower case letter, then it represents
4342 additional data from the fixup stream to be pushed onto
4343 the stack. */
4344 else if (islower (c))
4345 {
4346 int bits = (c - 'a') * 8;
4347 for (v = 0; c > 'a'; --c)
4348 v = (v << 8) | *fixup++;
4349 if (varname == 'V')
4350 v = sign_extend (v, bits);
4351 push (v);
4352 }
4353
4354 /* A decimal constant. Push it on the stack. */
4355 else if (isdigit (c))
4356 {
4357 v = c - '0';
4358 while (isdigit (*cp))
4359 v = (v * 10) + (*cp++ - '0');
4360 push (v);
4361 }
4362 else
4363
4364 /* An operator. Pop two two values from the stack and
4365 use them as operands to the given operation. Push
4366 the result of the operation back on the stack. */
4367 switch (c)
4368 {
4369 case '+':
4370 v = pop ();
4371 v += pop ();
4372 push (v);
4373 break;
4374 case '*':
4375 v = pop ();
4376 v *= pop ();
4377 push (v);
4378 break;
4379 case '<':
4380 v = pop ();
4381 v = pop () << v;
4382 push (v);
4383 break;
4384 default:
4385 abort ();
4386 }
4387 }
4388 while (*cp && *cp != '=');
4389
4390 /* Move over the equal operator. */
4391 cp++;
4392
4393 /* Pop the RHS off the stack. */
4394 c = pop ();
4395
4396 /* Perform the assignment. */
4397 var (varname) = c;
4398
4399 /* Handle side effects. and special 'O' stack cases. */
4400 switch (varname)
4401 {
4402 /* Consume some bytes from the input space. */
4403 case 'L':
4404 offset += c;
4405 break;
4406 /* A symbol to use in the relocation. Make a note
4407 of this if we are not just counting. */
4408 case 'S':
4409 if (! just_count)
4410 rptr->sym_ptr_ptr = &symbols[c];
4411 break;
4412 /* Argument relocation bits for a function call. */
4413 case 'R':
4414 if (! just_count)
4415 {
4416 unsigned int tmp = var ('R');
4417 rptr->addend = 0;
4418
4419 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4420 && R_PCREL_CALL + 10 > op)
4421 || (som_hppa_howto_table[op].type == R_ABS_CALL
4422 && R_ABS_CALL + 10 > op))
4423 {
4424 /* Simple encoding. */
4425 if (tmp > 4)
4426 {
4427 tmp -= 5;
4428 rptr->addend |= 1;
4429 }
4430 if (tmp == 4)
4431 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4432 else if (tmp == 3)
4433 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4434 else if (tmp == 2)
4435 rptr->addend |= 1 << 8 | 1 << 6;
4436 else if (tmp == 1)
4437 rptr->addend |= 1 << 8;
4438 }
4439 else
4440 {
4441 unsigned int tmp1, tmp2;
4442
4443 /* First part is easy -- low order two bits are
4444 directly copied, then shifted away. */
4445 rptr->addend = tmp & 0x3;
4446 tmp >>= 2;
4447
4448 /* Diving the result by 10 gives us the second
4449 part. If it is 9, then the first two words
4450 are a double precision paramater, else it is
4451 3 * the first arg bits + the 2nd arg bits. */
4452 tmp1 = tmp / 10;
4453 tmp -= tmp1 * 10;
4454 if (tmp1 == 9)
4455 rptr->addend += (0xe << 6);
4456 else
4457 {
4458 /* Get the two pieces. */
4459 tmp2 = tmp1 / 3;
4460 tmp1 -= tmp2 * 3;
4461 /* Put them in the addend. */
4462 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4463 }
4464
4465 /* What's left is the third part. It's unpacked
4466 just like the second. */
4467 if (tmp == 9)
4468 rptr->addend += (0xe << 2);
4469 else
4470 {
4471 tmp2 = tmp / 3;
4472 tmp -= tmp2 * 3;
4473 rptr->addend += (tmp2 << 4) + (tmp << 2);
4474 }
4475 }
4476 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4477 }
4478 break;
4479 /* Handle the linker expression stack. */
4480 case 'O':
4481 switch (op)
4482 {
4483 case R_COMP1:
4484 subop = comp1_opcodes;
4485 break;
4486 case R_COMP2:
4487 subop = comp2_opcodes;
4488 break;
4489 case R_COMP3:
4490 subop = comp3_opcodes;
4491 break;
4492 default:
4493 abort ();
4494 }
4495 while (*subop <= (unsigned char) c)
4496 ++subop;
4497 --subop;
4498 break;
4499 /* The lower 32unwind bits must be persistent. */
4500 case 'U':
4501 saved_unwind_bits = var ('U');
4502 break;
4503
4504 default:
4505 break;
4506 }
4507 }
4508
4509 /* If we used a previous fixup, clean up after it. */
4510 if (prev_fixup)
4511 {
4512 fixup = save_fixup + 1;
4513 prev_fixup = 0;
4514 }
4515 /* Queue it. */
4516 else if (fixup > save_fixup + 1)
4517 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4518
4519 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4520 fixups to BFD. */
4521 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4522 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4523 {
4524 /* Done with a single reloction. Loop back to the top. */
4525 if (! just_count)
4526 {
4527 if (som_hppa_howto_table[op].type == R_ENTRY)
4528 rptr->addend = var ('T');
4529 else if (som_hppa_howto_table[op].type == R_EXIT)
4530 rptr->addend = var ('U');
4531 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4532 || som_hppa_howto_table[op].type == R_ABS_CALL)
4533 ;
4534 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4535 {
4536 unsigned addend = var ('V');
4537
4538 /* Try what was specified in R_DATA_OVERRIDE first
4539 (if anything). Then the hard way using the
4540 section contents. */
4541 rptr->addend = var ('V');
4542
4543 if (rptr->addend == 0 && !section->contents)
4544 {
4545 /* Got to read the damn contents first. We don't
4546 bother saving the contents (yet). Add it one
4547 day if the need arises. */
4548 section->contents = bfd_malloc (section->_raw_size);
4549 if (section->contents == NULL)
4550 return -1;
4551
4552 deallocate_contents = 1;
4553 bfd_get_section_contents (section->owner,
4554 section,
4555 section->contents,
4556 0,
4557 section->_raw_size);
4558 }
4559 else if (rptr->addend == 0)
4560 rptr->addend = bfd_get_32 (section->owner,
4561 (section->contents
4562 + offset - var ('L')));
4563
4564 }
4565 else
4566 rptr->addend = var ('V');
4567 rptr++;
4568 }
4569 count++;
4570 /* Now that we've handled a "full" relocation, reset
4571 some state. */
4572 memset (variables, 0, sizeof (variables));
4573 memset (stack, 0, sizeof (stack));
4574 }
4575 }
4576 if (deallocate_contents)
4577 free (section->contents);
4578
4579 return count;
4580
4581 #undef var
4582 #undef push
4583 #undef pop
4584 #undef emptystack
4585 }
4586
4587 /* Read in the relocs (aka fixups in SOM terms) for a section.
4588
4589 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4590 set to true to indicate it only needs a count of the number
4591 of actual relocations. */
4592
4593 static boolean
4594 som_slurp_reloc_table (abfd, section, symbols, just_count)
4595 bfd *abfd;
4596 asection *section;
4597 asymbol **symbols;
4598 boolean just_count;
4599 {
4600 char *external_relocs;
4601 unsigned int fixup_stream_size;
4602 arelent *internal_relocs;
4603 unsigned int num_relocs;
4604
4605 fixup_stream_size = som_section_data (section)->reloc_size;
4606 /* If there were no relocations, then there is nothing to do. */
4607 if (section->reloc_count == 0)
4608 return true;
4609
4610 /* If reloc_count is -1, then the relocation stream has not been
4611 parsed. We must do so now to know how many relocations exist. */
4612 if (section->reloc_count == -1)
4613 {
4614 external_relocs = (char *) bfd_malloc (fixup_stream_size);
4615 if (external_relocs == (char *) NULL)
4616 return false;
4617 /* Read in the external forms. */
4618 if (bfd_seek (abfd,
4619 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4620 SEEK_SET)
4621 != 0)
4622 return false;
4623 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4624 != fixup_stream_size)
4625 return false;
4626
4627 /* Let callers know how many relocations found.
4628 also save the relocation stream as we will
4629 need it again. */
4630 section->reloc_count = som_set_reloc_info (external_relocs,
4631 fixup_stream_size,
4632 NULL, NULL, NULL, true);
4633
4634 som_section_data (section)->reloc_stream = external_relocs;
4635 }
4636
4637 /* If the caller only wanted a count, then return now. */
4638 if (just_count)
4639 return true;
4640
4641 num_relocs = section->reloc_count;
4642 external_relocs = som_section_data (section)->reloc_stream;
4643 /* Return saved information about the relocations if it is available. */
4644 if (section->relocation != (arelent *) NULL)
4645 return true;
4646
4647 internal_relocs = (arelent *)
4648 bfd_zalloc (abfd, (num_relocs * sizeof (arelent)));
4649 if (internal_relocs == (arelent *) NULL)
4650 return false;
4651
4652 /* Process and internalize the relocations. */
4653 som_set_reloc_info (external_relocs, fixup_stream_size,
4654 internal_relocs, section, symbols, false);
4655
4656 /* We're done with the external relocations. Free them. */
4657 free (external_relocs);
4658 som_section_data (section)->reloc_stream = NULL;
4659
4660 /* Save our results and return success. */
4661 section->relocation = internal_relocs;
4662 return (true);
4663 }
4664
4665 /* Return the number of bytes required to store the relocation
4666 information associated with the given section. */
4667
4668 static long
4669 som_get_reloc_upper_bound (abfd, asect)
4670 bfd *abfd;
4671 sec_ptr asect;
4672 {
4673 /* If section has relocations, then read in the relocation stream
4674 and parse it to determine how many relocations exist. */
4675 if (asect->flags & SEC_RELOC)
4676 {
4677 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4678 return -1;
4679 return (asect->reloc_count + 1) * sizeof (arelent *);
4680 }
4681 /* There are no relocations. */
4682 return 0;
4683 }
4684
4685 /* Convert relocations from SOM (external) form into BFD internal
4686 form. Return the number of relocations. */
4687
4688 static long
4689 som_canonicalize_reloc (abfd, section, relptr, symbols)
4690 bfd *abfd;
4691 sec_ptr section;
4692 arelent **relptr;
4693 asymbol **symbols;
4694 {
4695 arelent *tblptr;
4696 int count;
4697
4698 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4699 return -1;
4700
4701 count = section->reloc_count;
4702 tblptr = section->relocation;
4703
4704 while (count--)
4705 *relptr++ = tblptr++;
4706
4707 *relptr = (arelent *) NULL;
4708 return section->reloc_count;
4709 }
4710
4711 extern const bfd_target som_vec;
4712
4713 /* A hook to set up object file dependent section information. */
4714
4715 static boolean
4716 som_new_section_hook (abfd, newsect)
4717 bfd *abfd;
4718 asection *newsect;
4719 {
4720 newsect->used_by_bfd =
4721 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4722 if (!newsect->used_by_bfd)
4723 return false;
4724 newsect->alignment_power = 3;
4725
4726 /* We allow more than three sections internally */
4727 return true;
4728 }
4729
4730 /* Copy any private info we understand from the input symbol
4731 to the output symbol. */
4732
4733 static boolean
4734 som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol)
4735 bfd *ibfd;
4736 asymbol *isymbol;
4737 bfd *obfd;
4738 asymbol *osymbol;
4739 {
4740 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
4741 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
4742
4743 /* One day we may try to grok other private data. */
4744 if (ibfd->xvec->flavour != bfd_target_som_flavour
4745 || obfd->xvec->flavour != bfd_target_som_flavour)
4746 return false;
4747
4748 /* The only private information we need to copy is the argument relocation
4749 bits. */
4750 output_symbol->tc_data.hppa_arg_reloc = input_symbol->tc_data.hppa_arg_reloc;
4751
4752 return true;
4753 }
4754
4755 /* Copy any private info we understand from the input section
4756 to the output section. */
4757 static boolean
4758 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4759 bfd *ibfd;
4760 asection *isection;
4761 bfd *obfd;
4762 asection *osection;
4763 {
4764 /* One day we may try to grok other private data. */
4765 if (ibfd->xvec->flavour != bfd_target_som_flavour
4766 || obfd->xvec->flavour != bfd_target_som_flavour
4767 || (!som_is_space (isection) && !som_is_subspace (isection)))
4768 return true;
4769
4770 som_section_data (osection)->copy_data
4771 = (struct som_copyable_section_data_struct *)
4772 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4773 if (som_section_data (osection)->copy_data == NULL)
4774 return false;
4775
4776 memcpy (som_section_data (osection)->copy_data,
4777 som_section_data (isection)->copy_data,
4778 sizeof (struct som_copyable_section_data_struct));
4779
4780 /* Reparent if necessary. */
4781 if (som_section_data (osection)->copy_data->container)
4782 som_section_data (osection)->copy_data->container =
4783 som_section_data (osection)->copy_data->container->output_section;
4784
4785 return true;
4786 }
4787
4788 /* Copy any private info we understand from the input bfd
4789 to the output bfd. */
4790
4791 static boolean
4792 som_bfd_copy_private_bfd_data (ibfd, obfd)
4793 bfd *ibfd, *obfd;
4794 {
4795 /* One day we may try to grok other private data. */
4796 if (ibfd->xvec->flavour != bfd_target_som_flavour
4797 || obfd->xvec->flavour != bfd_target_som_flavour)
4798 return true;
4799
4800 /* Allocate some memory to hold the data we need. */
4801 obj_som_exec_data (obfd) = (struct som_exec_data *)
4802 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4803 if (obj_som_exec_data (obfd) == NULL)
4804 return false;
4805
4806 /* Now copy the data. */
4807 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4808 sizeof (struct som_exec_data));
4809
4810 return true;
4811 }
4812
4813 /* Set backend info for sections which can not be described
4814 in the BFD data structures. */
4815
4816 boolean
4817 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4818 asection *section;
4819 int defined;
4820 int private;
4821 unsigned int sort_key;
4822 int spnum;
4823 {
4824 /* Allocate memory to hold the magic information. */
4825 if (som_section_data (section)->copy_data == NULL)
4826 {
4827 som_section_data (section)->copy_data
4828 = (struct som_copyable_section_data_struct *)
4829 bfd_zalloc (section->owner,
4830 sizeof (struct som_copyable_section_data_struct));
4831 if (som_section_data (section)->copy_data == NULL)
4832 return false;
4833 }
4834 som_section_data (section)->copy_data->sort_key = sort_key;
4835 som_section_data (section)->copy_data->is_defined = defined;
4836 som_section_data (section)->copy_data->is_private = private;
4837 som_section_data (section)->copy_data->container = section;
4838 som_section_data (section)->copy_data->space_number = spnum;
4839 return true;
4840 }
4841
4842 /* Set backend info for subsections which can not be described
4843 in the BFD data structures. */
4844
4845 boolean
4846 bfd_som_set_subsection_attributes (section, container, access,
4847 sort_key, quadrant)
4848 asection *section;
4849 asection *container;
4850 int access;
4851 unsigned int sort_key;
4852 int quadrant;
4853 {
4854 /* Allocate memory to hold the magic information. */
4855 if (som_section_data (section)->copy_data == NULL)
4856 {
4857 som_section_data (section)->copy_data
4858 = (struct som_copyable_section_data_struct *)
4859 bfd_zalloc (section->owner,
4860 sizeof (struct som_copyable_section_data_struct));
4861 if (som_section_data (section)->copy_data == NULL)
4862 return false;
4863 }
4864 som_section_data (section)->copy_data->sort_key = sort_key;
4865 som_section_data (section)->copy_data->access_control_bits = access;
4866 som_section_data (section)->copy_data->quadrant = quadrant;
4867 som_section_data (section)->copy_data->container = container;
4868 return true;
4869 }
4870
4871 /* Set the full SOM symbol type. SOM needs far more symbol information
4872 than any other object file format I'm aware of. It is mandatory
4873 to be able to know if a symbol is an entry point, millicode, data,
4874 code, absolute, storage request, or procedure label. If you get
4875 the symbol type wrong your program will not link. */
4876
4877 void
4878 bfd_som_set_symbol_type (symbol, type)
4879 asymbol *symbol;
4880 unsigned int type;
4881 {
4882 som_symbol_data (symbol)->som_type = type;
4883 }
4884
4885 /* Attach an auxiliary header to the BFD backend so that it may be
4886 written into the object file. */
4887 boolean
4888 bfd_som_attach_aux_hdr (abfd, type, string)
4889 bfd *abfd;
4890 int type;
4891 char *string;
4892 {
4893 if (type == VERSION_AUX_ID)
4894 {
4895 int len = strlen (string);
4896 int pad = 0;
4897
4898 if (len % 4)
4899 pad = (4 - (len % 4));
4900 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4901 bfd_zalloc (abfd, sizeof (struct aux_id)
4902 + sizeof (unsigned int) + len + pad);
4903 if (!obj_som_version_hdr (abfd))
4904 return false;
4905 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4906 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4907 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4908 obj_som_version_hdr (abfd)->string_length = len;
4909 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4910 }
4911 else if (type == COPYRIGHT_AUX_ID)
4912 {
4913 int len = strlen (string);
4914 int pad = 0;
4915
4916 if (len % 4)
4917 pad = (4 - (len % 4));
4918 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4919 bfd_zalloc (abfd, sizeof (struct aux_id)
4920 + sizeof (unsigned int) + len + pad);
4921 if (!obj_som_copyright_hdr (abfd))
4922 return false;
4923 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4924 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4925 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4926 obj_som_copyright_hdr (abfd)->string_length = len;
4927 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4928 }
4929 return true;
4930 }
4931
4932 static boolean
4933 som_get_section_contents (abfd, section, location, offset, count)
4934 bfd *abfd;
4935 sec_ptr section;
4936 PTR location;
4937 file_ptr offset;
4938 bfd_size_type count;
4939 {
4940 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
4941 return true;
4942 if ((bfd_size_type)(offset+count) > section->_raw_size
4943 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4944 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4945 return (false); /* on error */
4946 return (true);
4947 }
4948
4949 static boolean
4950 som_set_section_contents (abfd, section, location, offset, count)
4951 bfd *abfd;
4952 sec_ptr section;
4953 PTR location;
4954 file_ptr offset;
4955 bfd_size_type count;
4956 {
4957 if (abfd->output_has_begun == false)
4958 {
4959 /* Set up fixed parts of the file, space, and subspace headers.
4960 Notify the world that output has begun. */
4961 som_prep_headers (abfd);
4962 abfd->output_has_begun = true;
4963 /* Start writing the object file. This include all the string
4964 tables, fixup streams, and other portions of the object file. */
4965 som_begin_writing (abfd);
4966 }
4967
4968 /* Only write subspaces which have "real" contents (eg. the contents
4969 are not generated at run time by the OS). */
4970 if (!som_is_subspace (section)
4971 || ((section->flags & SEC_HAS_CONTENTS) == 0))
4972 return true;
4973
4974 /* Seek to the proper offset within the object file and write the
4975 data. */
4976 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4977 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4978 return false;
4979
4980 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4981 return false;
4982 return true;
4983 }
4984
4985 static boolean
4986 som_set_arch_mach (abfd, arch, machine)
4987 bfd *abfd;
4988 enum bfd_architecture arch;
4989 unsigned long machine;
4990 {
4991 /* Allow any architecture to be supported by the SOM backend */
4992 return bfd_default_set_arch_mach (abfd, arch, machine);
4993 }
4994
4995 static boolean
4996 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4997 functionname_ptr, line_ptr)
4998 bfd *abfd;
4999 asection *section;
5000 asymbol **symbols;
5001 bfd_vma offset;
5002 CONST char **filename_ptr;
5003 CONST char **functionname_ptr;
5004 unsigned int *line_ptr;
5005 {
5006 return (false);
5007 }
5008
5009 static int
5010 som_sizeof_headers (abfd, reloc)
5011 bfd *abfd;
5012 boolean reloc;
5013 {
5014 (*_bfd_error_handler) ("som_sizeof_headers unimplemented");
5015 fflush (stderr);
5016 abort ();
5017 return (0);
5018 }
5019
5020 /* Return the single-character symbol type corresponding to
5021 SOM section S, or '?' for an unknown SOM section. */
5022
5023 static char
5024 som_section_type (s)
5025 const char *s;
5026 {
5027 const struct section_to_type *t;
5028
5029 for (t = &stt[0]; t->section; t++)
5030 if (!strcmp (s, t->section))
5031 return t->type;
5032 return '?';
5033 }
5034
5035 static int
5036 som_decode_symclass (symbol)
5037 asymbol *symbol;
5038 {
5039 char c;
5040
5041 if (bfd_is_com_section (symbol->section))
5042 return 'C';
5043 if (bfd_is_und_section (symbol->section))
5044 return 'U';
5045 if (bfd_is_ind_section (symbol->section))
5046 return 'I';
5047 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
5048 return '?';
5049
5050 if (bfd_is_abs_section (symbol->section)
5051 || (som_symbol_data (symbol) != NULL
5052 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5053 c = 'a';
5054 else if (symbol->section)
5055 c = som_section_type (symbol->section->name);
5056 else
5057 return '?';
5058 if (symbol->flags & BSF_GLOBAL)
5059 c = toupper (c);
5060 return c;
5061 }
5062
5063 /* Return information about SOM symbol SYMBOL in RET. */
5064
5065 static void
5066 som_get_symbol_info (ignore_abfd, symbol, ret)
5067 bfd *ignore_abfd;
5068 asymbol *symbol;
5069 symbol_info *ret;
5070 {
5071 ret->type = som_decode_symclass (symbol);
5072 if (ret->type != 'U')
5073 ret->value = symbol->value+symbol->section->vma;
5074 else
5075 ret->value = 0;
5076 ret->name = symbol->name;
5077 }
5078
5079 /* Count the number of symbols in the archive symbol table. Necessary
5080 so that we can allocate space for all the carsyms at once. */
5081
5082 static boolean
5083 som_bfd_count_ar_symbols (abfd, lst_header, count)
5084 bfd *abfd;
5085 struct lst_header *lst_header;
5086 symindex *count;
5087 {
5088 unsigned int i;
5089 unsigned int *hash_table = NULL;
5090 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5091
5092 hash_table =
5093 (unsigned int *) bfd_malloc (lst_header->hash_size
5094 * sizeof (unsigned int));
5095 if (hash_table == NULL && lst_header->hash_size != 0)
5096 goto error_return;
5097
5098 /* Don't forget to initialize the counter! */
5099 *count = 0;
5100
5101 /* Read in the hash table. The has table is an array of 32bit file offsets
5102 which point to the hash chains. */
5103 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5104 != lst_header->hash_size * 4)
5105 goto error_return;
5106
5107 /* Walk each chain counting the number of symbols found on that particular
5108 chain. */
5109 for (i = 0; i < lst_header->hash_size; i++)
5110 {
5111 struct lst_symbol_record lst_symbol;
5112
5113 /* An empty chain has zero as it's file offset. */
5114 if (hash_table[i] == 0)
5115 continue;
5116
5117 /* Seek to the first symbol in this hash chain. */
5118 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5119 goto error_return;
5120
5121 /* Read in this symbol and update the counter. */
5122 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5123 != sizeof (lst_symbol))
5124 goto error_return;
5125
5126 (*count)++;
5127
5128 /* Now iterate through the rest of the symbols on this chain. */
5129 while (lst_symbol.next_entry)
5130 {
5131
5132 /* Seek to the next symbol. */
5133 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5134 < 0)
5135 goto error_return;
5136
5137 /* Read the symbol in and update the counter. */
5138 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5139 != sizeof (lst_symbol))
5140 goto error_return;
5141
5142 (*count)++;
5143 }
5144 }
5145 if (hash_table != NULL)
5146 free (hash_table);
5147 return true;
5148
5149 error_return:
5150 if (hash_table != NULL)
5151 free (hash_table);
5152 return false;
5153 }
5154
5155 /* Fill in the canonical archive symbols (SYMS) from the archive described
5156 by ABFD and LST_HEADER. */
5157
5158 static boolean
5159 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
5160 bfd *abfd;
5161 struct lst_header *lst_header;
5162 carsym **syms;
5163 {
5164 unsigned int i, len;
5165 carsym *set = syms[0];
5166 unsigned int *hash_table = NULL;
5167 struct som_entry *som_dict = NULL;
5168 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5169
5170 hash_table =
5171 (unsigned int *) bfd_malloc (lst_header->hash_size
5172 * sizeof (unsigned int));
5173 if (hash_table == NULL && lst_header->hash_size != 0)
5174 goto error_return;
5175
5176 som_dict =
5177 (struct som_entry *) bfd_malloc (lst_header->module_count
5178 * sizeof (struct som_entry));
5179 if (som_dict == NULL && lst_header->module_count != 0)
5180 goto error_return;
5181
5182 /* Read in the hash table. The has table is an array of 32bit file offsets
5183 which point to the hash chains. */
5184 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5185 != lst_header->hash_size * 4)
5186 goto error_return;
5187
5188 /* Seek to and read in the SOM dictionary. We will need this to fill
5189 in the carsym's filepos field. */
5190 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
5191 goto error_return;
5192
5193 if (bfd_read ((PTR) som_dict, lst_header->module_count,
5194 sizeof (struct som_entry), abfd)
5195 != lst_header->module_count * sizeof (struct som_entry))
5196 goto error_return;
5197
5198 /* Walk each chain filling in the carsyms as we go along. */
5199 for (i = 0; i < lst_header->hash_size; i++)
5200 {
5201 struct lst_symbol_record lst_symbol;
5202
5203 /* An empty chain has zero as it's file offset. */
5204 if (hash_table[i] == 0)
5205 continue;
5206
5207 /* Seek to and read the first symbol on the chain. */
5208 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5209 goto error_return;
5210
5211 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5212 != sizeof (lst_symbol))
5213 goto error_return;
5214
5215 /* Get the name of the symbol, first get the length which is stored
5216 as a 32bit integer just before the symbol.
5217
5218 One might ask why we don't just read in the entire string table
5219 and index into it. Well, according to the SOM ABI the string
5220 index can point *anywhere* in the archive to save space, so just
5221 using the string table would not be safe. */
5222 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5223 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5224 goto error_return;
5225
5226 if (bfd_read (&len, 1, 4, abfd) != 4)
5227 goto error_return;
5228
5229 /* Allocate space for the name and null terminate it too. */
5230 set->name = bfd_zalloc (abfd, len + 1);
5231 if (!set->name)
5232 goto error_return;
5233 if (bfd_read (set->name, 1, len, abfd) != len)
5234 goto error_return;
5235
5236 set->name[len] = 0;
5237
5238 /* Fill in the file offset. Note that the "location" field points
5239 to the SOM itself, not the ar_hdr in front of it. */
5240 set->file_offset = som_dict[lst_symbol.som_index].location
5241 - sizeof (struct ar_hdr);
5242
5243 /* Go to the next symbol. */
5244 set++;
5245
5246 /* Iterate through the rest of the chain. */
5247 while (lst_symbol.next_entry)
5248 {
5249 /* Seek to the next symbol and read it in. */
5250 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
5251 goto error_return;
5252
5253 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5254 != sizeof (lst_symbol))
5255 goto error_return;
5256
5257 /* Seek to the name length & string and read them in. */
5258 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5259 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5260 goto error_return;
5261
5262 if (bfd_read (&len, 1, 4, abfd) != 4)
5263 goto error_return;
5264
5265 /* Allocate space for the name and null terminate it too. */
5266 set->name = bfd_zalloc (abfd, len + 1);
5267 if (!set->name)
5268 goto error_return;
5269
5270 if (bfd_read (set->name, 1, len, abfd) != len)
5271 goto error_return;
5272 set->name[len] = 0;
5273
5274 /* Fill in the file offset. Note that the "location" field points
5275 to the SOM itself, not the ar_hdr in front of it. */
5276 set->file_offset = som_dict[lst_symbol.som_index].location
5277 - sizeof (struct ar_hdr);
5278
5279 /* Go on to the next symbol. */
5280 set++;
5281 }
5282 }
5283 /* If we haven't died by now, then we successfully read the entire
5284 archive symbol table. */
5285 if (hash_table != NULL)
5286 free (hash_table);
5287 if (som_dict != NULL)
5288 free (som_dict);
5289 return true;
5290
5291 error_return:
5292 if (hash_table != NULL)
5293 free (hash_table);
5294 if (som_dict != NULL)
5295 free (som_dict);
5296 return false;
5297 }
5298
5299 /* Read in the LST from the archive. */
5300 static boolean
5301 som_slurp_armap (abfd)
5302 bfd *abfd;
5303 {
5304 struct lst_header lst_header;
5305 struct ar_hdr ar_header;
5306 unsigned int parsed_size;
5307 struct artdata *ardata = bfd_ardata (abfd);
5308 char nextname[17];
5309 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
5310
5311 /* Special cases. */
5312 if (i == 0)
5313 return true;
5314 if (i != 16)
5315 return false;
5316
5317 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
5318 return false;
5319
5320 /* For archives without .o files there is no symbol table. */
5321 if (strncmp (nextname, "/ ", 16))
5322 {
5323 bfd_has_map (abfd) = false;
5324 return true;
5325 }
5326
5327 /* Read in and sanity check the archive header. */
5328 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
5329 != sizeof (struct ar_hdr))
5330 return false;
5331
5332 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5333 {
5334 bfd_set_error (bfd_error_malformed_archive);
5335 return false;
5336 }
5337
5338 /* How big is the archive symbol table entry? */
5339 errno = 0;
5340 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5341 if (errno != 0)
5342 {
5343 bfd_set_error (bfd_error_malformed_archive);
5344 return false;
5345 }
5346
5347 /* Save off the file offset of the first real user data. */
5348 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5349
5350 /* Read in the library symbol table. We'll make heavy use of this
5351 in just a minute. */
5352 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
5353 != sizeof (struct lst_header))
5354 return false;
5355
5356 /* Sanity check. */
5357 if (lst_header.a_magic != LIBMAGIC)
5358 {
5359 bfd_set_error (bfd_error_malformed_archive);
5360 return false;
5361 }
5362
5363 /* Count the number of symbols in the library symbol table. */
5364 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
5365 == false)
5366 return false;
5367
5368 /* Get back to the start of the library symbol table. */
5369 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
5370 + sizeof (struct lst_header), SEEK_SET) < 0)
5371 return false;
5372
5373 /* Initializae the cache and allocate space for the library symbols. */
5374 ardata->cache = 0;
5375 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5376 (ardata->symdef_count
5377 * sizeof (carsym)));
5378 if (!ardata->symdefs)
5379 return false;
5380
5381 /* Now fill in the canonical archive symbols. */
5382 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5383 == false)
5384 return false;
5385
5386 /* Seek back to the "first" file in the archive. Note the "first"
5387 file may be the extended name table. */
5388 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5389 return false;
5390
5391 /* Notify the generic archive code that we have a symbol map. */
5392 bfd_has_map (abfd) = true;
5393 return true;
5394 }
5395
5396 /* Begin preparing to write a SOM library symbol table.
5397
5398 As part of the prep work we need to determine the number of symbols
5399 and the size of the associated string section. */
5400
5401 static boolean
5402 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5403 bfd *abfd;
5404 unsigned int *num_syms, *stringsize;
5405 {
5406 bfd *curr_bfd = abfd->archive_head;
5407
5408 /* Some initialization. */
5409 *num_syms = 0;
5410 *stringsize = 0;
5411
5412 /* Iterate over each BFD within this archive. */
5413 while (curr_bfd != NULL)
5414 {
5415 unsigned int curr_count, i;
5416 som_symbol_type *sym;
5417
5418 /* Don't bother for non-SOM objects. */
5419 if (curr_bfd->format != bfd_object
5420 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5421 {
5422 curr_bfd = curr_bfd->next;
5423 continue;
5424 }
5425
5426 /* Make sure the symbol table has been read, then snag a pointer
5427 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5428 but doing so avoids allocating lots of extra memory. */
5429 if (som_slurp_symbol_table (curr_bfd) == false)
5430 return false;
5431
5432 sym = obj_som_symtab (curr_bfd);
5433 curr_count = bfd_get_symcount (curr_bfd);
5434
5435 /* Examine each symbol to determine if it belongs in the
5436 library symbol table. */
5437 for (i = 0; i < curr_count; i++, sym++)
5438 {
5439 struct som_misc_symbol_info info;
5440
5441 /* Derive SOM information from the BFD symbol. */
5442 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5443
5444 /* Should we include this symbol? */
5445 if (info.symbol_type == ST_NULL
5446 || info.symbol_type == ST_SYM_EXT
5447 || info.symbol_type == ST_ARG_EXT)
5448 continue;
5449
5450 /* Only global symbols and unsatisfied commons. */
5451 if (info.symbol_scope != SS_UNIVERSAL
5452 && info.symbol_type != ST_STORAGE)
5453 continue;
5454
5455 /* Do no include undefined symbols. */
5456 if (bfd_is_und_section (sym->symbol.section))
5457 continue;
5458
5459 /* Bump the various counters, being careful to honor
5460 alignment considerations in the string table. */
5461 (*num_syms)++;
5462 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5463 while (*stringsize % 4)
5464 (*stringsize)++;
5465 }
5466
5467 curr_bfd = curr_bfd->next;
5468 }
5469 return true;
5470 }
5471
5472 /* Hash a symbol name based on the hashing algorithm presented in the
5473 SOM ABI. */
5474 static unsigned int
5475 som_bfd_ar_symbol_hash (symbol)
5476 asymbol *symbol;
5477 {
5478 unsigned int len = strlen (symbol->name);
5479
5480 /* Names with length 1 are special. */
5481 if (len == 1)
5482 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5483
5484 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5485 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5486 }
5487
5488 static CONST char *
5489 normalize (file)
5490 CONST char *file;
5491 {
5492 CONST char *filename = strrchr (file, '/');
5493
5494 if (filename != NULL)
5495 filename++;
5496 else
5497 filename = file;
5498 return filename;
5499 }
5500
5501 /* Do the bulk of the work required to write the SOM library
5502 symbol table. */
5503
5504 static boolean
5505 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5506 bfd *abfd;
5507 unsigned int nsyms, string_size;
5508 struct lst_header lst;
5509 {
5510 file_ptr lst_filepos;
5511 char *strings = NULL, *p;
5512 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5513 bfd *curr_bfd;
5514 unsigned int *hash_table = NULL;
5515 struct som_entry *som_dict = NULL;
5516 struct lst_symbol_record **last_hash_entry = NULL;
5517 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5518 unsigned int maxname = abfd->xvec->ar_max_namelen;
5519
5520 hash_table =
5521 (unsigned int *) bfd_malloc (lst.hash_size * sizeof (unsigned int));
5522 if (hash_table == NULL && lst.hash_size != 0)
5523 goto error_return;
5524 som_dict =
5525 (struct som_entry *) bfd_malloc (lst.module_count
5526 * sizeof (struct som_entry));
5527 if (som_dict == NULL && lst.module_count != 0)
5528 goto error_return;
5529
5530 last_hash_entry =
5531 ((struct lst_symbol_record **)
5532 bfd_malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5533 if (last_hash_entry == NULL && lst.hash_size != 0)
5534 goto error_return;
5535
5536 /* Lots of fields are file positions relative to the start
5537 of the lst record. So save its location. */
5538 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5539
5540 /* Some initialization. */
5541 memset (hash_table, 0, 4 * lst.hash_size);
5542 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5543 memset (last_hash_entry, 0,
5544 lst.hash_size * sizeof (struct lst_symbol_record *));
5545
5546 /* Symbols have som_index fields, so we have to keep track of the
5547 index of each SOM in the archive.
5548
5549 The SOM dictionary has (among other things) the absolute file
5550 position for the SOM which a particular dictionary entry
5551 describes. We have to compute that information as we iterate
5552 through the SOMs/symbols. */
5553 som_index = 0;
5554 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5555
5556 /* Yow! We have to know the size of the extended name table
5557 too. */
5558 for (curr_bfd = abfd->archive_head;
5559 curr_bfd != NULL;
5560 curr_bfd = curr_bfd->next)
5561 {
5562 CONST char *normal = normalize (curr_bfd->filename);
5563 unsigned int thislen;
5564
5565 if (!normal)
5566 return false;
5567 thislen = strlen (normal);
5568 if (thislen > maxname)
5569 extended_name_length += thislen + 1;
5570 }
5571
5572 /* Make room for the archive header and the contents of the
5573 extended string table. */
5574 if (extended_name_length)
5575 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5576
5577 /* Make sure we're properly aligned. */
5578 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5579
5580 /* FIXME should be done with buffers just like everything else... */
5581 lst_syms = bfd_malloc (nsyms * sizeof (struct lst_symbol_record));
5582 if (lst_syms == NULL && nsyms != 0)
5583 goto error_return;
5584 strings = bfd_malloc (string_size);
5585 if (strings == NULL && string_size != 0)
5586 goto error_return;
5587
5588 p = strings;
5589 curr_lst_sym = lst_syms;
5590
5591 curr_bfd = abfd->archive_head;
5592 while (curr_bfd != NULL)
5593 {
5594 unsigned int curr_count, i;
5595 som_symbol_type *sym;
5596
5597 /* Don't bother for non-SOM objects. */
5598 if (curr_bfd->format != bfd_object
5599 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5600 {
5601 curr_bfd = curr_bfd->next;
5602 continue;
5603 }
5604
5605 /* Make sure the symbol table has been read, then snag a pointer
5606 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5607 but doing so avoids allocating lots of extra memory. */
5608 if (som_slurp_symbol_table (curr_bfd) == false)
5609 goto error_return;
5610
5611 sym = obj_som_symtab (curr_bfd);
5612 curr_count = bfd_get_symcount (curr_bfd);
5613
5614 for (i = 0; i < curr_count; i++, sym++)
5615 {
5616 struct som_misc_symbol_info info;
5617
5618 /* Derive SOM information from the BFD symbol. */
5619 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5620
5621 /* Should we include this symbol? */
5622 if (info.symbol_type == ST_NULL
5623 || info.symbol_type == ST_SYM_EXT
5624 || info.symbol_type == ST_ARG_EXT)
5625 continue;
5626
5627 /* Only global symbols and unsatisfied commons. */
5628 if (info.symbol_scope != SS_UNIVERSAL
5629 && info.symbol_type != ST_STORAGE)
5630 continue;
5631
5632 /* Do no include undefined symbols. */
5633 if (bfd_is_und_section (sym->symbol.section))
5634 continue;
5635
5636 /* If this is the first symbol from this SOM, then update
5637 the SOM dictionary too. */
5638 if (som_dict[som_index].location == 0)
5639 {
5640 som_dict[som_index].location = curr_som_offset;
5641 som_dict[som_index].length = arelt_size (curr_bfd);
5642 }
5643
5644 /* Fill in the lst symbol record. */
5645 curr_lst_sym->hidden = 0;
5646 curr_lst_sym->secondary_def = 0;
5647 curr_lst_sym->symbol_type = info.symbol_type;
5648 curr_lst_sym->symbol_scope = info.symbol_scope;
5649 curr_lst_sym->check_level = 0;
5650 curr_lst_sym->must_qualify = 0;
5651 curr_lst_sym->initially_frozen = 0;
5652 curr_lst_sym->memory_resident = 0;
5653 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5654 curr_lst_sym->dup_common = 0;
5655 curr_lst_sym->xleast = 0;
5656 curr_lst_sym->arg_reloc = info.arg_reloc;
5657 curr_lst_sym->name.n_strx = p - strings + 4;
5658 curr_lst_sym->qualifier_name.n_strx = 0;
5659 curr_lst_sym->symbol_info = info.symbol_info;
5660 curr_lst_sym->symbol_value = info.symbol_value;
5661 curr_lst_sym->symbol_descriptor = 0;
5662 curr_lst_sym->reserved = 0;
5663 curr_lst_sym->som_index = som_index;
5664 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5665 curr_lst_sym->next_entry = 0;
5666
5667 /* Insert into the hash table. */
5668 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5669 {
5670 struct lst_symbol_record *tmp;
5671
5672 /* There is already something at the head of this hash chain,
5673 so tack this symbol onto the end of the chain. */
5674 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5675 tmp->next_entry
5676 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5677 + lst.hash_size * 4
5678 + lst.module_count * sizeof (struct som_entry)
5679 + sizeof (struct lst_header);
5680 }
5681 else
5682 {
5683 /* First entry in this hash chain. */
5684 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5685 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5686 + lst.hash_size * 4
5687 + lst.module_count * sizeof (struct som_entry)
5688 + sizeof (struct lst_header);
5689 }
5690
5691 /* Keep track of the last symbol we added to this chain so we can
5692 easily update its next_entry pointer. */
5693 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5694 = curr_lst_sym;
5695
5696
5697 /* Update the string table. */
5698 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5699 p += 4;
5700 strcpy (p, sym->symbol.name);
5701 p += strlen (sym->symbol.name) + 1;
5702 while ((int)p % 4)
5703 {
5704 bfd_put_8 (abfd, 0, p);
5705 p++;
5706 }
5707
5708 /* Head to the next symbol. */
5709 curr_lst_sym++;
5710 }
5711
5712 /* Keep track of where each SOM will finally reside; then look
5713 at the next BFD. */
5714 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5715
5716 /* A particular object in the archive may have an odd length; the
5717 linker requires objects begin on an even boundary. So round
5718 up the current offset as necessary. */
5719 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5720 curr_bfd = curr_bfd->next;
5721 som_index++;
5722 }
5723
5724 /* Now scribble out the hash table. */
5725 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5726 != lst.hash_size * 4)
5727 goto error_return;
5728
5729 /* Then the SOM dictionary. */
5730 if (bfd_write ((PTR) som_dict, lst.module_count,
5731 sizeof (struct som_entry), abfd)
5732 != lst.module_count * sizeof (struct som_entry))
5733 goto error_return;
5734
5735 /* The library symbols. */
5736 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5737 != nsyms * sizeof (struct lst_symbol_record))
5738 goto error_return;
5739
5740 /* And finally the strings. */
5741 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5742 goto error_return;
5743
5744 if (hash_table != NULL)
5745 free (hash_table);
5746 if (som_dict != NULL)
5747 free (som_dict);
5748 if (last_hash_entry != NULL)
5749 free (last_hash_entry);
5750 if (lst_syms != NULL)
5751 free (lst_syms);
5752 if (strings != NULL)
5753 free (strings);
5754 return true;
5755
5756 error_return:
5757 if (hash_table != NULL)
5758 free (hash_table);
5759 if (som_dict != NULL)
5760 free (som_dict);
5761 if (last_hash_entry != NULL)
5762 free (last_hash_entry);
5763 if (lst_syms != NULL)
5764 free (lst_syms);
5765 if (strings != NULL)
5766 free (strings);
5767
5768 return false;
5769 }
5770
5771 /* SOM almost uses the SVR4 style extended name support, but not
5772 quite. */
5773
5774 static boolean
5775 som_construct_extended_name_table (abfd, tabloc, tablen, name)
5776 bfd *abfd;
5777 char **tabloc;
5778 bfd_size_type *tablen;
5779 const char **name;
5780 {
5781 *name = "//";
5782 return _bfd_construct_extended_name_table (abfd, false, tabloc, tablen);
5783 }
5784
5785 /* Write out the LST for the archive.
5786
5787 You'll never believe this is really how armaps are handled in SOM... */
5788
5789 /*ARGSUSED*/
5790 static boolean
5791 som_write_armap (abfd, elength, map, orl_count, stridx)
5792 bfd *abfd;
5793 unsigned int elength;
5794 struct orl *map;
5795 unsigned int orl_count;
5796 int stridx;
5797 {
5798 bfd *curr_bfd;
5799 struct stat statbuf;
5800 unsigned int i, lst_size, nsyms, stringsize;
5801 struct ar_hdr hdr;
5802 struct lst_header lst;
5803 int *p;
5804
5805 /* We'll use this for the archive's date and mode later. */
5806 if (stat (abfd->filename, &statbuf) != 0)
5807 {
5808 bfd_set_error (bfd_error_system_call);
5809 return false;
5810 }
5811 /* Fudge factor. */
5812 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5813
5814 /* Account for the lst header first. */
5815 lst_size = sizeof (struct lst_header);
5816
5817 /* Start building the LST header. */
5818 /* FIXME: Do we need to examine each element to determine the
5819 largest id number? */
5820 lst.system_id = CPU_PA_RISC1_0;
5821 lst.a_magic = LIBMAGIC;
5822 lst.version_id = VERSION_ID;
5823 lst.file_time.secs = 0;
5824 lst.file_time.nanosecs = 0;
5825
5826 lst.hash_loc = lst_size;
5827 lst.hash_size = SOM_LST_HASH_SIZE;
5828
5829 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5830 lst_size += 4 * SOM_LST_HASH_SIZE;
5831
5832 /* We need to count the number of SOMs in this archive. */
5833 curr_bfd = abfd->archive_head;
5834 lst.module_count = 0;
5835 while (curr_bfd != NULL)
5836 {
5837 /* Only true SOM objects count. */
5838 if (curr_bfd->format == bfd_object
5839 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5840 lst.module_count++;
5841 curr_bfd = curr_bfd->next;
5842 }
5843 lst.module_limit = lst.module_count;
5844 lst.dir_loc = lst_size;
5845 lst_size += sizeof (struct som_entry) * lst.module_count;
5846
5847 /* We don't support import/export tables, auxiliary headers,
5848 or free lists yet. Make the linker work a little harder
5849 to make our life easier. */
5850
5851 lst.export_loc = 0;
5852 lst.export_count = 0;
5853 lst.import_loc = 0;
5854 lst.aux_loc = 0;
5855 lst.aux_size = 0;
5856
5857 /* Count how many symbols we will have on the hash chains and the
5858 size of the associated string table. */
5859 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5860 return false;
5861
5862 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5863
5864 /* For the string table. One day we might actually use this info
5865 to avoid small seeks/reads when reading archives. */
5866 lst.string_loc = lst_size;
5867 lst.string_size = stringsize;
5868 lst_size += stringsize;
5869
5870 /* SOM ABI says this must be zero. */
5871 lst.free_list = 0;
5872 lst.file_end = lst_size;
5873
5874 /* Compute the checksum. Must happen after the entire lst header
5875 has filled in. */
5876 p = (int *)&lst;
5877 lst.checksum = 0;
5878 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5879 lst.checksum ^= *p++;
5880
5881 sprintf (hdr.ar_name, "/ ");
5882 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5883 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5884 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5885 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5886 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5887 hdr.ar_fmag[0] = '`';
5888 hdr.ar_fmag[1] = '\012';
5889
5890 /* Turn any nulls into spaces. */
5891 for (i = 0; i < sizeof (struct ar_hdr); i++)
5892 if (((char *) (&hdr))[i] == '\0')
5893 (((char *) (&hdr))[i]) = ' ';
5894
5895 /* Scribble out the ar header. */
5896 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5897 != sizeof (struct ar_hdr))
5898 return false;
5899
5900 /* Now scribble out the lst header. */
5901 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5902 != sizeof (struct lst_header))
5903 return false;
5904
5905 /* Build and write the armap. */
5906 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5907 return false;
5908
5909 /* Done. */
5910 return true;
5911 }
5912
5913 /* Free all information we have cached for this BFD. We can always
5914 read it again later if we need it. */
5915
5916 static boolean
5917 som_bfd_free_cached_info (abfd)
5918 bfd *abfd;
5919 {
5920 asection *o;
5921
5922 if (bfd_get_format (abfd) != bfd_object)
5923 return true;
5924
5925 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5926 /* Free the native string and symbol tables. */
5927 FREE (obj_som_symtab (abfd));
5928 FREE (obj_som_stringtab (abfd));
5929 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5930 {
5931 /* Free the native relocations. */
5932 o->reloc_count = -1;
5933 FREE (som_section_data (o)->reloc_stream);
5934 /* Free the generic relocations. */
5935 FREE (o->relocation);
5936 }
5937 #undef FREE
5938
5939 return true;
5940 }
5941
5942 /* End of miscellaneous support functions. */
5943
5944 /* Linker support functions. */
5945 static boolean
5946 som_bfd_link_split_section (abfd, sec)
5947 bfd *abfd;
5948 asection *sec;
5949 {
5950 return (som_is_subspace (sec) && sec->_raw_size > 240000);
5951 }
5952
5953 #define som_close_and_cleanup som_bfd_free_cached_info
5954
5955 #define som_read_ar_hdr _bfd_generic_read_ar_hdr
5956 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5957 #define som_get_elt_at_index _bfd_generic_get_elt_at_index
5958 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5959 #define som_truncate_arname bfd_bsd_truncate_arname
5960 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5961 #define som_update_armap_timestamp bfd_true
5962 #define som_bfd_print_private_bfd_data _bfd_generic_bfd_print_private_bfd_data
5963
5964 #define som_get_lineno _bfd_nosymbols_get_lineno
5965 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5966 #define som_read_minisymbols _bfd_generic_read_minisymbols
5967 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
5968 #define som_get_section_contents_in_window \
5969 _bfd_generic_get_section_contents_in_window
5970
5971 #define som_bfd_get_relocated_section_contents \
5972 bfd_generic_get_relocated_section_contents
5973 #define som_bfd_relax_section bfd_generic_relax_section
5974 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5975 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5976 #define som_bfd_final_link _bfd_generic_final_link
5977
5978
5979 const bfd_target som_vec =
5980 {
5981 "som", /* name */
5982 bfd_target_som_flavour,
5983 BFD_ENDIAN_BIG, /* target byte order */
5984 BFD_ENDIAN_BIG, /* target headers byte order */
5985 (HAS_RELOC | EXEC_P | /* object flags */
5986 HAS_LINENO | HAS_DEBUG |
5987 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5988 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5989 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5990
5991 /* leading_symbol_char: is the first char of a user symbol
5992 predictable, and if so what is it */
5993 0,
5994 '/', /* ar_pad_char */
5995 14, /* ar_max_namelen */
5996 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5997 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5998 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5999 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6000 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6001 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
6002 {_bfd_dummy_target,
6003 som_object_p, /* bfd_check_format */
6004 bfd_generic_archive_p,
6005 _bfd_dummy_target
6006 },
6007 {
6008 bfd_false,
6009 som_mkobject,
6010 _bfd_generic_mkarchive,
6011 bfd_false
6012 },
6013 {
6014 bfd_false,
6015 som_write_object_contents,
6016 _bfd_write_archive_contents,
6017 bfd_false,
6018 },
6019 #undef som
6020
6021 BFD_JUMP_TABLE_GENERIC (som),
6022 BFD_JUMP_TABLE_COPY (som),
6023 BFD_JUMP_TABLE_CORE (_bfd_nocore),
6024 BFD_JUMP_TABLE_ARCHIVE (som),
6025 BFD_JUMP_TABLE_SYMBOLS (som),
6026 BFD_JUMP_TABLE_RELOCS (som),
6027 BFD_JUMP_TABLE_WRITE (som),
6028 BFD_JUMP_TABLE_LINK (som),
6029 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6030
6031 (PTR) 0
6032 };
6033
6034 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.278193 seconds and 4 git commands to generate.