* libbfd.c (bfd_read): Set bfd_error as appropriate for a short
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/dir.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/user.h> /* After a.out.h */
38 #include <sys/file.h>
39 #include <errno.h>
40
41 /* Magic not defined in standard HP-UX header files until 8.0 */
42
43 #ifndef CPU_PA_RISC1_0
44 #define CPU_PA_RISC1_0 0x20B
45 #endif /* CPU_PA_RISC1_0 */
46
47 #ifndef CPU_PA_RISC1_1
48 #define CPU_PA_RISC1_1 0x210
49 #endif /* CPU_PA_RISC1_1 */
50
51 #ifndef _PA_RISC1_0_ID
52 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
53 #endif /* _PA_RISC1_0_ID */
54
55 #ifndef _PA_RISC1_1_ID
56 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
57 #endif /* _PA_RISC1_1_ID */
58
59 #ifndef _PA_RISC_MAXID
60 #define _PA_RISC_MAXID 0x2FF
61 #endif /* _PA_RISC_MAXID */
62
63 #ifndef _PA_RISC_ID
64 #define _PA_RISC_ID(__m_num) \
65 (((__m_num) == _PA_RISC1_0_ID) || \
66 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
67 #endif /* _PA_RISC_ID */
68
69 /* Size (in chars) of the temporary buffers used during fixup and string
70 table writes. */
71
72 #define SOM_TMP_BUFSIZE 8192
73
74 /* Size of the hash table in archives. */
75 #define SOM_LST_HASH_SIZE 31
76
77 /* Max number of SOMs to be found in an archive. */
78 #define SOM_LST_MODULE_LIMIT 1024
79
80 /* Generic alignment macro. */
81 #define SOM_ALIGN(val, alignment) \
82 (((val) + (alignment) - 1) & ~((alignment) - 1))
83
84 /* SOM allows any one of the four previous relocations to be reused
85 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
86 relocations are always a single byte, using a R_PREV_FIXUP instead
87 of some multi-byte relocation makes object files smaller.
88
89 Note one side effect of using a R_PREV_FIXUP is the relocation that
90 is being repeated moves to the front of the queue. */
91 struct reloc_queue
92 {
93 unsigned char *reloc;
94 unsigned int size;
95 } reloc_queue[4];
96
97 /* This fully describes the symbol types which may be attached to
98 an EXPORT or IMPORT directive. Only SOM uses this formation
99 (ELF has no need for it). */
100 typedef enum
101 {
102 SYMBOL_TYPE_UNKNOWN,
103 SYMBOL_TYPE_ABSOLUTE,
104 SYMBOL_TYPE_CODE,
105 SYMBOL_TYPE_DATA,
106 SYMBOL_TYPE_ENTRY,
107 SYMBOL_TYPE_MILLICODE,
108 SYMBOL_TYPE_PLABEL,
109 SYMBOL_TYPE_PRI_PROG,
110 SYMBOL_TYPE_SEC_PROG,
111 } pa_symbol_type;
112
113 struct section_to_type
114 {
115 char *section;
116 char type;
117 };
118
119 /* Assorted symbol information that needs to be derived from the BFD symbol
120 and/or the BFD backend private symbol data. */
121 struct som_misc_symbol_info
122 {
123 unsigned int symbol_type;
124 unsigned int symbol_scope;
125 unsigned int arg_reloc;
126 unsigned int symbol_info;
127 unsigned int symbol_value;
128 };
129
130 /* Forward declarations */
131
132 static boolean som_mkobject PARAMS ((bfd *));
133 static bfd_target * som_object_setup PARAMS ((bfd *,
134 struct header *,
135 struct som_exec_auxhdr *));
136 static boolean setup_sections PARAMS ((bfd *, struct header *));
137 static bfd_target * som_object_p PARAMS ((bfd *));
138 static boolean som_write_object_contents PARAMS ((bfd *));
139 static boolean som_slurp_string_table PARAMS ((bfd *));
140 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
141 static unsigned int som_get_symtab_upper_bound PARAMS ((bfd *));
142 static unsigned int som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
143 arelent **, asymbol **));
144 static unsigned int som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
145 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
146 arelent *, asection *,
147 asymbol **, boolean));
148 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
149 asymbol **, boolean));
150 static unsigned int som_get_symtab PARAMS ((bfd *, asymbol **));
151 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
152 static void som_print_symbol PARAMS ((bfd *, PTR,
153 asymbol *, bfd_print_symbol_type));
154 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
155 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
156 bfd *, asection *));
157 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
158 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
159 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
160 file_ptr, bfd_size_type));
161 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
162 unsigned long));
163 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
164 asymbol **, bfd_vma,
165 CONST char **,
166 CONST char **,
167 unsigned int *));
168 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
169 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
170 struct symbol_dictionary_record *));
171 static int log2 PARAMS ((unsigned int));
172 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
173 asymbol *, PTR,
174 asection *, bfd *,
175 char **));
176 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
177 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
178 struct reloc_queue *));
179 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
180 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
181 struct reloc_queue *));
182 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
183 unsigned int,
184 struct reloc_queue *));
185
186 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
187 unsigned char *, unsigned int *,
188 struct reloc_queue *));
189 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
190 unsigned int *,
191 struct reloc_queue *));
192 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
193 unsigned int *,
194 arelent *, int,
195 struct reloc_queue *));
196 static unsigned long som_count_spaces PARAMS ((bfd *));
197 static unsigned long som_count_subspaces PARAMS ((bfd *));
198 static int compare_syms PARAMS ((asymbol **, asymbol **));
199 static unsigned long som_compute_checksum PARAMS ((bfd *));
200 static boolean som_prep_headers PARAMS ((bfd *));
201 static int som_sizeof_headers PARAMS ((bfd *, boolean));
202 static boolean som_write_headers PARAMS ((bfd *));
203 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
204 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
205 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
206 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
207 unsigned int *));
208 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
209 asymbol **, unsigned int,
210 unsigned *));
211 static boolean som_begin_writing PARAMS ((bfd *));
212 static const reloc_howto_type * som_bfd_reloc_type_lookup
213 PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
214 static char som_section_type PARAMS ((const char *));
215 static int som_decode_symclass PARAMS ((asymbol *));
216 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
217 symindex *));
218
219 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
220 carsym **syms));
221 static boolean som_slurp_armap PARAMS ((bfd *));
222 static boolean som_write_armap PARAMS ((bfd *));
223 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
224 struct som_misc_symbol_info *));
225 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
226 unsigned int *));
227 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
228 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
229 unsigned int,
230 struct lst_header));
231 static CONST char *normalize PARAMS ((CONST char *file));
232 static boolean som_is_space PARAMS ((asection *));
233 static boolean som_is_subspace PARAMS ((asection *));
234 static boolean som_is_container PARAMS ((asection *, asection *));
235
236 /* Map SOM section names to POSIX/BSD single-character symbol types.
237
238 This table includes all the standard subspaces as defined in the
239 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
240 some reason was left out, and sections specific to embedded stabs. */
241
242 static const struct section_to_type stt[] = {
243 {"$TEXT$", 't'},
244 {"$SHLIB_INFO$", 't'},
245 {"$MILLICODE$", 't'},
246 {"$LIT$", 't'},
247 {"$CODE$", 't'},
248 {"$UNWIND_START$", 't'},
249 {"$UNWIND$", 't'},
250 {"$PRIVATE$", 'd'},
251 {"$PLT$", 'd'},
252 {"$SHLIB_DATA$", 'd'},
253 {"$DATA$", 'd'},
254 {"$SHORTDATA$", 'g'},
255 {"$DLT$", 'd'},
256 {"$GLOBAL$", 'g'},
257 {"$SHORTBSS$", 's'},
258 {"$BSS$", 'b'},
259 {"$GDB_STRINGS$", 'N'},
260 {"$GDB_SYMBOLS$", 'N'},
261 {0, 0}
262 };
263
264 /* About the relocation formatting table...
265
266 There are 256 entries in the table, one for each possible
267 relocation opcode available in SOM. We index the table by
268 the relocation opcode. The names and operations are those
269 defined by a.out_800 (4).
270
271 Right now this table is only used to count and perform minimal
272 processing on relocation streams so that they can be internalized
273 into BFD and symbolically printed by utilities. To make actual use
274 of them would be much more difficult, BFD's concept of relocations
275 is far too simple to handle SOM relocations. The basic assumption
276 that a relocation can be completely processed independent of other
277 relocations before an object file is written is invalid for SOM.
278
279 The SOM relocations are meant to be processed as a stream, they
280 specify copying of data from the input section to the output section
281 while possibly modifying the data in some manner. They also can
282 specify that a variable number of zeros or uninitialized data be
283 inserted on in the output segment at the current offset. Some
284 relocations specify that some previous relocation be re-applied at
285 the current location in the input/output sections. And finally a number
286 of relocations have effects on other sections (R_ENTRY, R_EXIT,
287 R_UNWIND_AUX and a variety of others). There isn't even enough room
288 in the BFD relocation data structure to store enough information to
289 perform all the relocations.
290
291 Each entry in the table has three fields.
292
293 The first entry is an index into this "class" of relocations. This
294 index can then be used as a variable within the relocation itself.
295
296 The second field is a format string which actually controls processing
297 of the relocation. It uses a simple postfix machine to do calculations
298 based on variables/constants found in the string and the relocation
299 stream.
300
301 The third field specifys whether or not this relocation may use
302 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
303 stored in the instruction.
304
305 Variables:
306
307 L = input space byte count
308 D = index into class of relocations
309 M = output space byte count
310 N = statement number (unused?)
311 O = stack operation
312 R = parameter relocation bits
313 S = symbol index
314 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
315 V = a literal constant (usually used in the next relocation)
316 P = a previous relocation
317
318 Lower case letters (starting with 'b') refer to following
319 bytes in the relocation stream. 'b' is the next 1 byte,
320 c is the next 2 bytes, d is the next 3 bytes, etc...
321 This is the variable part of the relocation entries that
322 makes our life a living hell.
323
324 numerical constants are also used in the format string. Note
325 the constants are represented in decimal.
326
327 '+', "*" and "=" represents the obvious postfix operators.
328 '<' represents a left shift.
329
330 Stack Operations:
331
332 Parameter Relocation Bits:
333
334 Unwind Entries:
335
336 Previous Relocations: The index field represents which in the queue
337 of 4 previous fixups should be re-applied.
338
339 Literal Constants: These are generally used to represent addend
340 parts of relocations when these constants are not stored in the
341 fields of the instructions themselves. For example the instruction
342 addil foo-$global$-0x1234 would use an override for "0x1234" rather
343 than storing it into the addil itself. */
344
345 struct fixup_format
346 {
347 int D;
348 char *format;
349 };
350
351 static const struct fixup_format som_fixup_formats[256] =
352 {
353 /* R_NO_RELOCATION */
354 0, "LD1+4*=", /* 0x00 */
355 1, "LD1+4*=", /* 0x01 */
356 2, "LD1+4*=", /* 0x02 */
357 3, "LD1+4*=", /* 0x03 */
358 4, "LD1+4*=", /* 0x04 */
359 5, "LD1+4*=", /* 0x05 */
360 6, "LD1+4*=", /* 0x06 */
361 7, "LD1+4*=", /* 0x07 */
362 8, "LD1+4*=", /* 0x08 */
363 9, "LD1+4*=", /* 0x09 */
364 10, "LD1+4*=", /* 0x0a */
365 11, "LD1+4*=", /* 0x0b */
366 12, "LD1+4*=", /* 0x0c */
367 13, "LD1+4*=", /* 0x0d */
368 14, "LD1+4*=", /* 0x0e */
369 15, "LD1+4*=", /* 0x0f */
370 16, "LD1+4*=", /* 0x10 */
371 17, "LD1+4*=", /* 0x11 */
372 18, "LD1+4*=", /* 0x12 */
373 19, "LD1+4*=", /* 0x13 */
374 20, "LD1+4*=", /* 0x14 */
375 21, "LD1+4*=", /* 0x15 */
376 22, "LD1+4*=", /* 0x16 */
377 23, "LD1+4*=", /* 0x17 */
378 0, "LD8<b+1+4*=", /* 0x18 */
379 1, "LD8<b+1+4*=", /* 0x19 */
380 2, "LD8<b+1+4*=", /* 0x1a */
381 3, "LD8<b+1+4*=", /* 0x1b */
382 0, "LD16<c+1+4*=", /* 0x1c */
383 1, "LD16<c+1+4*=", /* 0x1d */
384 2, "LD16<c+1+4*=", /* 0x1e */
385 0, "Ld1+=", /* 0x1f */
386 /* R_ZEROES */
387 0, "Lb1+4*=", /* 0x20 */
388 1, "Ld1+=", /* 0x21 */
389 /* R_UNINIT */
390 0, "Lb1+4*=", /* 0x22 */
391 1, "Ld1+=", /* 0x23 */
392 /* R_RELOCATION */
393 0, "L4=", /* 0x24 */
394 /* R_DATA_ONE_SYMBOL */
395 0, "L4=Sb=", /* 0x25 */
396 1, "L4=Sd=", /* 0x26 */
397 /* R_DATA_PLEBEL */
398 0, "L4=Sb=", /* 0x27 */
399 1, "L4=Sd=", /* 0x28 */
400 /* R_SPACE_REF */
401 0, "L4=", /* 0x29 */
402 /* R_REPEATED_INIT */
403 0, "L4=Mb1+4*=", /* 0x2a */
404 1, "Lb4*=Mb1+L*=", /* 0x2b */
405 2, "Lb4*=Md1+4*=", /* 0x2c */
406 3, "Ld1+=Me1+=", /* 0x2d */
407 /* R_RESERVED */
408 0, "", /* 0x2e */
409 0, "", /* 0x2f */
410 /* R_PCREL_CALL */
411 0, "L4=RD=Sb=", /* 0x30 */
412 1, "L4=RD=Sb=", /* 0x31 */
413 2, "L4=RD=Sb=", /* 0x32 */
414 3, "L4=RD=Sb=", /* 0x33 */
415 4, "L4=RD=Sb=", /* 0x34 */
416 5, "L4=RD=Sb=", /* 0x35 */
417 6, "L4=RD=Sb=", /* 0x36 */
418 7, "L4=RD=Sb=", /* 0x37 */
419 8, "L4=RD=Sb=", /* 0x38 */
420 9, "L4=RD=Sb=", /* 0x39 */
421 0, "L4=RD8<b+=Sb=",/* 0x3a */
422 1, "L4=RD8<b+=Sb=",/* 0x3b */
423 0, "L4=RD8<b+=Sd=",/* 0x3c */
424 1, "L4=RD8<b+=Sd=",/* 0x3d */
425 /* R_RESERVED */
426 0, "", /* 0x3e */
427 0, "", /* 0x3f */
428 /* R_ABS_CALL */
429 0, "L4=RD=Sb=", /* 0x40 */
430 1, "L4=RD=Sb=", /* 0x41 */
431 2, "L4=RD=Sb=", /* 0x42 */
432 3, "L4=RD=Sb=", /* 0x43 */
433 4, "L4=RD=Sb=", /* 0x44 */
434 5, "L4=RD=Sb=", /* 0x45 */
435 6, "L4=RD=Sb=", /* 0x46 */
436 7, "L4=RD=Sb=", /* 0x47 */
437 8, "L4=RD=Sb=", /* 0x48 */
438 9, "L4=RD=Sb=", /* 0x49 */
439 0, "L4=RD8<b+=Sb=",/* 0x4a */
440 1, "L4=RD8<b+=Sb=",/* 0x4b */
441 0, "L4=RD8<b+=Sd=",/* 0x4c */
442 1, "L4=RD8<b+=Sd=",/* 0x4d */
443 /* R_RESERVED */
444 0, "", /* 0x4e */
445 0, "", /* 0x4f */
446 /* R_DP_RELATIVE */
447 0, "L4=SD=", /* 0x50 */
448 1, "L4=SD=", /* 0x51 */
449 2, "L4=SD=", /* 0x52 */
450 3, "L4=SD=", /* 0x53 */
451 4, "L4=SD=", /* 0x54 */
452 5, "L4=SD=", /* 0x55 */
453 6, "L4=SD=", /* 0x56 */
454 7, "L4=SD=", /* 0x57 */
455 8, "L4=SD=", /* 0x58 */
456 9, "L4=SD=", /* 0x59 */
457 10, "L4=SD=", /* 0x5a */
458 11, "L4=SD=", /* 0x5b */
459 12, "L4=SD=", /* 0x5c */
460 13, "L4=SD=", /* 0x5d */
461 14, "L4=SD=", /* 0x5e */
462 15, "L4=SD=", /* 0x5f */
463 16, "L4=SD=", /* 0x60 */
464 17, "L4=SD=", /* 0x61 */
465 18, "L4=SD=", /* 0x62 */
466 19, "L4=SD=", /* 0x63 */
467 20, "L4=SD=", /* 0x64 */
468 21, "L4=SD=", /* 0x65 */
469 22, "L4=SD=", /* 0x66 */
470 23, "L4=SD=", /* 0x67 */
471 24, "L4=SD=", /* 0x68 */
472 25, "L4=SD=", /* 0x69 */
473 26, "L4=SD=", /* 0x6a */
474 27, "L4=SD=", /* 0x6b */
475 28, "L4=SD=", /* 0x6c */
476 29, "L4=SD=", /* 0x6d */
477 30, "L4=SD=", /* 0x6e */
478 31, "L4=SD=", /* 0x6f */
479 32, "L4=Sb=", /* 0x70 */
480 33, "L4=Sd=", /* 0x71 */
481 /* R_RESERVED */
482 0, "", /* 0x72 */
483 0, "", /* 0x73 */
484 0, "", /* 0x74 */
485 0, "", /* 0x75 */
486 0, "", /* 0x76 */
487 0, "", /* 0x77 */
488 /* R_DLT_REL */
489 0, "L4=Sb=", /* 0x78 */
490 1, "L4=Sd=", /* 0x79 */
491 /* R_RESERVED */
492 0, "", /* 0x7a */
493 0, "", /* 0x7b */
494 0, "", /* 0x7c */
495 0, "", /* 0x7d */
496 0, "", /* 0x7e */
497 0, "", /* 0x7f */
498 /* R_CODE_ONE_SYMBOL */
499 0, "L4=SD=", /* 0x80 */
500 1, "L4=SD=", /* 0x81 */
501 2, "L4=SD=", /* 0x82 */
502 3, "L4=SD=", /* 0x83 */
503 4, "L4=SD=", /* 0x84 */
504 5, "L4=SD=", /* 0x85 */
505 6, "L4=SD=", /* 0x86 */
506 7, "L4=SD=", /* 0x87 */
507 8, "L4=SD=", /* 0x88 */
508 9, "L4=SD=", /* 0x89 */
509 10, "L4=SD=", /* 0x8q */
510 11, "L4=SD=", /* 0x8b */
511 12, "L4=SD=", /* 0x8c */
512 13, "L4=SD=", /* 0x8d */
513 14, "L4=SD=", /* 0x8e */
514 15, "L4=SD=", /* 0x8f */
515 16, "L4=SD=", /* 0x90 */
516 17, "L4=SD=", /* 0x91 */
517 18, "L4=SD=", /* 0x92 */
518 19, "L4=SD=", /* 0x93 */
519 20, "L4=SD=", /* 0x94 */
520 21, "L4=SD=", /* 0x95 */
521 22, "L4=SD=", /* 0x96 */
522 23, "L4=SD=", /* 0x97 */
523 24, "L4=SD=", /* 0x98 */
524 25, "L4=SD=", /* 0x99 */
525 26, "L4=SD=", /* 0x9a */
526 27, "L4=SD=", /* 0x9b */
527 28, "L4=SD=", /* 0x9c */
528 29, "L4=SD=", /* 0x9d */
529 30, "L4=SD=", /* 0x9e */
530 31, "L4=SD=", /* 0x9f */
531 32, "L4=Sb=", /* 0xa0 */
532 33, "L4=Sd=", /* 0xa1 */
533 /* R_RESERVED */
534 0, "", /* 0xa2 */
535 0, "", /* 0xa3 */
536 0, "", /* 0xa4 */
537 0, "", /* 0xa5 */
538 0, "", /* 0xa6 */
539 0, "", /* 0xa7 */
540 0, "", /* 0xa8 */
541 0, "", /* 0xa9 */
542 0, "", /* 0xaa */
543 0, "", /* 0xab */
544 0, "", /* 0xac */
545 0, "", /* 0xad */
546 /* R_MILLI_REL */
547 0, "L4=Sb=", /* 0xae */
548 1, "L4=Sd=", /* 0xaf */
549 /* R_CODE_PLABEL */
550 0, "L4=Sb=", /* 0xb0 */
551 1, "L4=Sd=", /* 0xb1 */
552 /* R_BREAKPOINT */
553 0, "L4=", /* 0xb2 */
554 /* R_ENTRY */
555 0, "Ui=", /* 0xb3 */
556 1, "Uf=", /* 0xb4 */
557 /* R_ALT_ENTRY */
558 0, "", /* 0xb5 */
559 /* R_EXIT */
560 0, "", /* 0xb6 */
561 /* R_BEGIN_TRY */
562 0, "", /* 0xb7 */
563 /* R_END_TRY */
564 0, "R0=", /* 0xb8 */
565 1, "Rb4*=", /* 0xb9 */
566 2, "Rd4*=", /* 0xba */
567 /* R_BEGIN_BRTAB */
568 0, "", /* 0xbb */
569 /* R_END_BRTAB */
570 0, "", /* 0xbc */
571 /* R_STATEMENT */
572 0, "Nb=", /* 0xbd */
573 1, "Nc=", /* 0xbe */
574 2, "Nd=", /* 0xbf */
575 /* R_DATA_EXPR */
576 0, "L4=", /* 0xc0 */
577 /* R_CODE_EXPR */
578 0, "L4=", /* 0xc1 */
579 /* R_FSEL */
580 0, "", /* 0xc2 */
581 /* R_LSEL */
582 0, "", /* 0xc3 */
583 /* R_RSEL */
584 0, "", /* 0xc4 */
585 /* R_N_MODE */
586 0, "", /* 0xc5 */
587 /* R_S_MODE */
588 0, "", /* 0xc6 */
589 /* R_D_MODE */
590 0, "", /* 0xc7 */
591 /* R_R_MODE */
592 0, "", /* 0xc8 */
593 /* R_DATA_OVERRIDE */
594 0, "V0=", /* 0xc9 */
595 1, "Vb=", /* 0xca */
596 2, "Vc=", /* 0xcb */
597 3, "Vd=", /* 0xcc */
598 4, "Ve=", /* 0xcd */
599 /* R_TRANSLATED */
600 0, "", /* 0xce */
601 /* R_RESERVED */
602 0, "", /* 0xcf */
603 /* R_COMP1 */
604 0, "Ob=", /* 0xd0 */
605 /* R_COMP2 */
606 0, "Ob=Sd=", /* 0xd1 */
607 /* R_COMP3 */
608 0, "Ob=Ve=", /* 0xd2 */
609 /* R_PREV_FIXUP */
610 0, "P", /* 0xd3 */
611 1, "P", /* 0xd4 */
612 2, "P", /* 0xd5 */
613 3, "P", /* 0xd6 */
614 /* R_RESERVED */
615 0, "", /* 0xd7 */
616 0, "", /* 0xd8 */
617 0, "", /* 0xd9 */
618 0, "", /* 0xda */
619 0, "", /* 0xdb */
620 0, "", /* 0xdc */
621 0, "", /* 0xdd */
622 0, "", /* 0xde */
623 0, "", /* 0xdf */
624 0, "", /* 0xe0 */
625 0, "", /* 0xe1 */
626 0, "", /* 0xe2 */
627 0, "", /* 0xe3 */
628 0, "", /* 0xe4 */
629 0, "", /* 0xe5 */
630 0, "", /* 0xe6 */
631 0, "", /* 0xe7 */
632 0, "", /* 0xe8 */
633 0, "", /* 0xe9 */
634 0, "", /* 0xea */
635 0, "", /* 0xeb */
636 0, "", /* 0xec */
637 0, "", /* 0xed */
638 0, "", /* 0xee */
639 0, "", /* 0xef */
640 0, "", /* 0xf0 */
641 0, "", /* 0xf1 */
642 0, "", /* 0xf2 */
643 0, "", /* 0xf3 */
644 0, "", /* 0xf4 */
645 0, "", /* 0xf5 */
646 0, "", /* 0xf6 */
647 0, "", /* 0xf7 */
648 0, "", /* 0xf8 */
649 0, "", /* 0xf9 */
650 0, "", /* 0xfa */
651 0, "", /* 0xfb */
652 0, "", /* 0xfc */
653 0, "", /* 0xfd */
654 0, "", /* 0xfe */
655 0, "", /* 0xff */
656 };
657
658 static const int comp1_opcodes[] =
659 {
660 0x00,
661 0x40,
662 0x41,
663 0x42,
664 0x43,
665 0x44,
666 0x45,
667 0x46,
668 0x47,
669 0x48,
670 0x49,
671 0x4a,
672 0x4b,
673 0x60,
674 0x80,
675 0xa0,
676 0xc0,
677 -1
678 };
679
680 static const int comp2_opcodes[] =
681 {
682 0x00,
683 0x80,
684 0x82,
685 0xc0,
686 -1
687 };
688
689 static const int comp3_opcodes[] =
690 {
691 0x00,
692 0x02,
693 -1
694 };
695
696 /* These apparently are not in older versions of hpux reloc.h. */
697 #ifndef R_DLT_REL
698 #define R_DLT_REL 0x78
699 #endif
700
701 #ifndef R_AUX_UNWIND
702 #define R_AUX_UNWIND 0xcf
703 #endif
704
705 #ifndef R_SEC_STMT
706 #define R_SEC_STMT 0xd7
707 #endif
708
709 static reloc_howto_type som_hppa_howto_table[] =
710 {
711 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
712 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
713 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
714 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
715 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
716 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
717 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
718 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
719 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
720 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
721 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
722 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
723 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
724 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
725 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
726 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
727 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
728 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
744 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
745 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
746 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
747 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
748 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
749 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
750 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
751 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
752 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
753 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
754 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
755 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
756 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
757 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
758 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
759 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
760 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
761 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
762 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
763 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
764 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
765 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
766 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
767 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
768 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
769 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
770 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
771 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
772 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
773 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
774 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
775 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
776 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
777 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
778 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
779 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
780 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
781 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
782 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
783 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
784 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
785 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
786 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
787 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
788 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
789 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
790 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
791 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
792 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
793 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
794 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
795 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
796 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
797 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
798 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
799 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
800 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
801 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
802 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
803 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
804 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
805 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
806 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
807 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
808 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
827 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
828 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
829 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
830 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
831 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
832 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
833 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
834 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
835 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
836 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
837 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
838 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
839 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
840 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
841 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
842 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
843 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
844 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
845 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
846 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
847 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
848 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
849 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
850 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
851 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
852 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
853 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
854 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
855 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
856 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
875 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
876 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
877 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
878 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
879 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
880 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
881 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
882 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
883 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
884 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
885 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
886 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
887 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
888 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
889 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
890 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
891 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
892 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
893 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
894 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
895 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
896 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
897 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
898 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
899 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
900 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
901 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
902 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
903 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
904 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
905 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
906 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
907 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
908 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
909 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
910 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
911 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
912 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
913 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
914 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
915 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
916 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
917 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
918 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
919 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
920 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
921 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
922 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
923 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
924 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
925 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
926 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
927 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
928 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
929 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
930 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
931 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
932 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
933 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
934 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
935 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
936 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
937 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
938 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
939 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
940 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
967
968 /* Initialize the SOM relocation queue. By definition the queue holds
969 the last four multibyte fixups. */
970
971 static void
972 som_initialize_reloc_queue (queue)
973 struct reloc_queue *queue;
974 {
975 queue[0].reloc = NULL;
976 queue[0].size = 0;
977 queue[1].reloc = NULL;
978 queue[1].size = 0;
979 queue[2].reloc = NULL;
980 queue[2].size = 0;
981 queue[3].reloc = NULL;
982 queue[3].size = 0;
983 }
984
985 /* Insert a new relocation into the relocation queue. */
986
987 static void
988 som_reloc_queue_insert (p, size, queue)
989 unsigned char *p;
990 unsigned int size;
991 struct reloc_queue *queue;
992 {
993 queue[3].reloc = queue[2].reloc;
994 queue[3].size = queue[2].size;
995 queue[2].reloc = queue[1].reloc;
996 queue[2].size = queue[1].size;
997 queue[1].reloc = queue[0].reloc;
998 queue[1].size = queue[0].size;
999 queue[0].reloc = p;
1000 queue[0].size = size;
1001 }
1002
1003 /* When an entry in the relocation queue is reused, the entry moves
1004 to the front of the queue. */
1005
1006 static void
1007 som_reloc_queue_fix (queue, index)
1008 struct reloc_queue *queue;
1009 unsigned int index;
1010 {
1011 if (index == 0)
1012 return;
1013
1014 if (index == 1)
1015 {
1016 unsigned char *tmp1 = queue[0].reloc;
1017 unsigned int tmp2 = queue[0].size;
1018 queue[0].reloc = queue[1].reloc;
1019 queue[0].size = queue[1].size;
1020 queue[1].reloc = tmp1;
1021 queue[1].size = tmp2;
1022 return;
1023 }
1024
1025 if (index == 2)
1026 {
1027 unsigned char *tmp1 = queue[0].reloc;
1028 unsigned int tmp2 = queue[0].size;
1029 queue[0].reloc = queue[2].reloc;
1030 queue[0].size = queue[2].size;
1031 queue[2].reloc = queue[1].reloc;
1032 queue[2].size = queue[1].size;
1033 queue[1].reloc = tmp1;
1034 queue[1].size = tmp2;
1035 return;
1036 }
1037
1038 if (index == 3)
1039 {
1040 unsigned char *tmp1 = queue[0].reloc;
1041 unsigned int tmp2 = queue[0].size;
1042 queue[0].reloc = queue[3].reloc;
1043 queue[0].size = queue[3].size;
1044 queue[3].reloc = queue[2].reloc;
1045 queue[3].size = queue[2].size;
1046 queue[2].reloc = queue[1].reloc;
1047 queue[2].size = queue[1].size;
1048 queue[1].reloc = tmp1;
1049 queue[1].size = tmp2;
1050 return;
1051 }
1052 abort();
1053 }
1054
1055 /* Search for a particular relocation in the relocation queue. */
1056
1057 static int
1058 som_reloc_queue_find (p, size, queue)
1059 unsigned char *p;
1060 unsigned int size;
1061 struct reloc_queue *queue;
1062 {
1063 if (queue[0].reloc && !bcmp (p, queue[0].reloc, size)
1064 && size == queue[0].size)
1065 return 0;
1066 if (queue[1].reloc && !bcmp (p, queue[1].reloc, size)
1067 && size == queue[1].size)
1068 return 1;
1069 if (queue[2].reloc && !bcmp (p, queue[2].reloc, size)
1070 && size == queue[2].size)
1071 return 2;
1072 if (queue[3].reloc && !bcmp (p, queue[3].reloc, size)
1073 && size == queue[3].size)
1074 return 3;
1075 return -1;
1076 }
1077
1078 static unsigned char *
1079 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1080 bfd *abfd;
1081 int *subspace_reloc_sizep;
1082 unsigned char *p;
1083 unsigned int size;
1084 struct reloc_queue *queue;
1085 {
1086 int queue_index = som_reloc_queue_find (p, size, queue);
1087
1088 if (queue_index != -1)
1089 {
1090 /* Found this in a previous fixup. Undo the fixup we
1091 just built and use R_PREV_FIXUP instead. We saved
1092 a total of size - 1 bytes in the fixup stream. */
1093 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1094 p += 1;
1095 *subspace_reloc_sizep += 1;
1096 som_reloc_queue_fix (queue, queue_index);
1097 }
1098 else
1099 {
1100 som_reloc_queue_insert (p, size, queue);
1101 *subspace_reloc_sizep += size;
1102 p += size;
1103 }
1104 return p;
1105 }
1106
1107 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1108 bytes without any relocation. Update the size of the subspace
1109 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1110 current pointer into the relocation stream. */
1111
1112 static unsigned char *
1113 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1114 bfd *abfd;
1115 unsigned int skip;
1116 unsigned char *p;
1117 unsigned int *subspace_reloc_sizep;
1118 struct reloc_queue *queue;
1119 {
1120 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1121 then R_PREV_FIXUPs to get the difference down to a
1122 reasonable size. */
1123 if (skip >= 0x1000000)
1124 {
1125 skip -= 0x1000000;
1126 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1127 bfd_put_8 (abfd, 0xff, p + 1);
1128 bfd_put_16 (abfd, 0xffff, p + 2);
1129 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1130 while (skip >= 0x1000000)
1131 {
1132 skip -= 0x1000000;
1133 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1134 p++;
1135 *subspace_reloc_sizep += 1;
1136 /* No need to adjust queue here since we are repeating the
1137 most recent fixup. */
1138 }
1139 }
1140
1141 /* The difference must be less than 0x1000000. Use one
1142 more R_NO_RELOCATION entry to get to the right difference. */
1143 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1144 {
1145 /* Difference can be handled in a simple single-byte
1146 R_NO_RELOCATION entry. */
1147 if (skip <= 0x60)
1148 {
1149 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1150 *subspace_reloc_sizep += 1;
1151 p++;
1152 }
1153 /* Handle it with a two byte R_NO_RELOCATION entry. */
1154 else if (skip <= 0x1000)
1155 {
1156 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1157 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1158 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1159 }
1160 /* Handle it with a three byte R_NO_RELOCATION entry. */
1161 else
1162 {
1163 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1164 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1165 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1166 }
1167 }
1168 /* Ugh. Punt and use a 4 byte entry. */
1169 else if (skip > 0)
1170 {
1171 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1172 bfd_put_8 (abfd, skip >> 16, p + 1);
1173 bfd_put_16 (abfd, skip, p + 2);
1174 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1175 }
1176 return p;
1177 }
1178
1179 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1180 from a BFD relocation. Update the size of the subspace relocation
1181 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1182 into the relocation stream. */
1183
1184 static unsigned char *
1185 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1186 bfd *abfd;
1187 int addend;
1188 unsigned char *p;
1189 unsigned int *subspace_reloc_sizep;
1190 struct reloc_queue *queue;
1191 {
1192 if ((unsigned)(addend) + 0x80 < 0x100)
1193 {
1194 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1195 bfd_put_8 (abfd, addend, p + 1);
1196 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1197 }
1198 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1199 {
1200 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1201 bfd_put_16 (abfd, addend, p + 1);
1202 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1203 }
1204 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1205 {
1206 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1207 bfd_put_8 (abfd, addend >> 16, p + 1);
1208 bfd_put_16 (abfd, addend, p + 2);
1209 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1210 }
1211 else
1212 {
1213 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1214 bfd_put_32 (abfd, addend, p + 1);
1215 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1216 }
1217 return p;
1218 }
1219
1220 /* Handle a single function call relocation. */
1221
1222 static unsigned char *
1223 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1224 bfd *abfd;
1225 unsigned char *p;
1226 unsigned int *subspace_reloc_sizep;
1227 arelent *bfd_reloc;
1228 int sym_num;
1229 struct reloc_queue *queue;
1230 {
1231 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1232 int rtn_bits = arg_bits & 0x3;
1233 int type, done = 0;
1234
1235 /* You'll never believe all this is necessary to handle relocations
1236 for function calls. Having to compute and pack the argument
1237 relocation bits is the real nightmare.
1238
1239 If you're interested in how this works, just forget it. You really
1240 do not want to know about this braindamage. */
1241
1242 /* First see if this can be done with a "simple" relocation. Simple
1243 relocations have a symbol number < 0x100 and have simple encodings
1244 of argument relocations. */
1245
1246 if (sym_num < 0x100)
1247 {
1248 switch (arg_bits)
1249 {
1250 case 0:
1251 case 1:
1252 type = 0;
1253 break;
1254 case 1 << 8:
1255 case 1 << 8 | 1:
1256 type = 1;
1257 break;
1258 case 1 << 8 | 1 << 6:
1259 case 1 << 8 | 1 << 6 | 1:
1260 type = 2;
1261 break;
1262 case 1 << 8 | 1 << 6 | 1 << 4:
1263 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1264 type = 3;
1265 break;
1266 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1267 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1268 type = 4;
1269 break;
1270 default:
1271 /* Not one of the easy encodings. This will have to be
1272 handled by the more complex code below. */
1273 type = -1;
1274 break;
1275 }
1276 if (type != -1)
1277 {
1278 /* Account for the return value too. */
1279 if (rtn_bits)
1280 type += 5;
1281
1282 /* Emit a 2 byte relocation. Then see if it can be handled
1283 with a relocation which is already in the relocation queue. */
1284 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1285 bfd_put_8 (abfd, sym_num, p + 1);
1286 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1287 done = 1;
1288 }
1289 }
1290
1291 /* If this could not be handled with a simple relocation, then do a hard
1292 one. Hard relocations occur if the symbol number was too high or if
1293 the encoding of argument relocation bits is too complex. */
1294 if (! done)
1295 {
1296 /* Don't ask about these magic sequences. I took them straight
1297 from gas-1.36 which took them from the a.out man page. */
1298 type = rtn_bits;
1299 if ((arg_bits >> 6 & 0xf) == 0xe)
1300 type += 9 * 40;
1301 else
1302 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1303 if ((arg_bits >> 2 & 0xf) == 0xe)
1304 type += 9 * 4;
1305 else
1306 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1307
1308 /* Output the first two bytes of the relocation. These describe
1309 the length of the relocation and encoding style. */
1310 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1311 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1312 p);
1313 bfd_put_8 (abfd, type, p + 1);
1314
1315 /* Now output the symbol index and see if this bizarre relocation
1316 just happened to be in the relocation queue. */
1317 if (sym_num < 0x100)
1318 {
1319 bfd_put_8 (abfd, sym_num, p + 2);
1320 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1321 }
1322 else
1323 {
1324 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1325 bfd_put_16 (abfd, sym_num, p + 3);
1326 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1327 }
1328 }
1329 return p;
1330 }
1331
1332
1333 /* Return the logarithm of X, base 2, considering X unsigned.
1334 Abort -1 if X is not a power or two or is zero. */
1335
1336 static int
1337 log2 (x)
1338 unsigned int x;
1339 {
1340 int log = 0;
1341
1342 /* Test for 0 or a power of 2. */
1343 if (x == 0 || x != (x & -x))
1344 return -1;
1345
1346 while ((x >>= 1) != 0)
1347 log++;
1348 return log;
1349 }
1350
1351 static bfd_reloc_status_type
1352 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1353 input_section, output_bfd, error_message)
1354 bfd *abfd;
1355 arelent *reloc_entry;
1356 asymbol *symbol_in;
1357 PTR data;
1358 asection *input_section;
1359 bfd *output_bfd;
1360 char **error_message;
1361 {
1362 if (output_bfd)
1363 {
1364 reloc_entry->address += input_section->output_offset;
1365 return bfd_reloc_ok;
1366 }
1367 return bfd_reloc_ok;
1368 }
1369
1370 /* Given a generic HPPA relocation type, the instruction format,
1371 and a field selector, return one or more appropriate SOM relocations. */
1372
1373 int **
1374 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1375 bfd *abfd;
1376 int base_type;
1377 int format;
1378 enum hppa_reloc_field_selector_type_alt field;
1379 {
1380 int *final_type, **final_types;
1381
1382 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1383 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1384 if (!final_types || !final_type)
1385 {
1386 bfd_set_error (bfd_error_no_memory);
1387 return NULL;
1388 }
1389
1390 /* The field selector may require additional relocations to be
1391 generated. It's impossible to know at this moment if additional
1392 relocations will be needed, so we make them. The code to actually
1393 write the relocation/fixup stream is responsible for removing
1394 any redundant relocations. */
1395 switch (field)
1396 {
1397 case e_fsel:
1398 case e_psel:
1399 case e_lpsel:
1400 case e_rpsel:
1401 final_types[0] = final_type;
1402 final_types[1] = NULL;
1403 final_types[2] = NULL;
1404 *final_type = base_type;
1405 break;
1406
1407 case e_tsel:
1408 case e_ltsel:
1409 case e_rtsel:
1410 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1411 if (!final_types[0])
1412 {
1413 bfd_set_error (bfd_error_no_memory);
1414 return NULL;
1415 }
1416 if (field == e_tsel)
1417 *final_types[0] = R_FSEL;
1418 else if (field == e_ltsel)
1419 *final_types[0] = R_LSEL;
1420 else
1421 *final_types[0] = R_RSEL;
1422 final_types[1] = final_type;
1423 final_types[2] = NULL;
1424 *final_type = base_type;
1425 break;
1426
1427 case e_lssel:
1428 case e_rssel:
1429 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1430 if (!final_types[0])
1431 {
1432 bfd_set_error (bfd_error_no_memory);
1433 return NULL;
1434 }
1435 *final_types[0] = R_S_MODE;
1436 final_types[1] = final_type;
1437 final_types[2] = NULL;
1438 *final_type = base_type;
1439 break;
1440
1441 case e_lsel:
1442 case e_rsel:
1443 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1444 if (!final_types[0])
1445 {
1446 bfd_set_error (bfd_error_no_memory);
1447 return NULL;
1448 }
1449 *final_types[0] = R_N_MODE;
1450 final_types[1] = final_type;
1451 final_types[2] = NULL;
1452 *final_type = base_type;
1453 break;
1454
1455 case e_ldsel:
1456 case e_rdsel:
1457 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1458 if (!final_types[0])
1459 {
1460 bfd_set_error (bfd_error_no_memory);
1461 return NULL;
1462 }
1463 *final_types[0] = R_D_MODE;
1464 final_types[1] = final_type;
1465 final_types[2] = NULL;
1466 *final_type = base_type;
1467 break;
1468
1469 case e_lrsel:
1470 case e_rrsel:
1471 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1472 if (!final_types[0])
1473 {
1474 bfd_set_error (bfd_error_no_memory);
1475 return NULL;
1476 }
1477 *final_types[0] = R_R_MODE;
1478 final_types[1] = final_type;
1479 final_types[2] = NULL;
1480 *final_type = base_type;
1481 break;
1482 }
1483
1484 switch (base_type)
1485 {
1486 case R_HPPA:
1487 /* PLABELs get their own relocation type. */
1488 if (field == e_psel
1489 || field == e_lpsel
1490 || field == e_rpsel)
1491 {
1492 /* A PLABEL relocation that has a size of 32 bits must
1493 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1494 if (format == 32)
1495 *final_type = R_DATA_PLABEL;
1496 else
1497 *final_type = R_CODE_PLABEL;
1498 }
1499 /* PIC stuff. */
1500 else if (field == e_tsel
1501 || field == e_ltsel
1502 || field == e_rtsel)
1503 *final_type = R_DLT_REL;
1504 /* A relocation in the data space is always a full 32bits. */
1505 else if (format == 32)
1506 *final_type = R_DATA_ONE_SYMBOL;
1507
1508 break;
1509
1510 case R_HPPA_GOTOFF:
1511 /* More PLABEL special cases. */
1512 if (field == e_psel
1513 || field == e_lpsel
1514 || field == e_rpsel)
1515 *final_type = R_DATA_PLABEL;
1516 break;
1517
1518 case R_HPPA_NONE:
1519 case R_HPPA_ABS_CALL:
1520 case R_HPPA_PCREL_CALL:
1521 case R_HPPA_COMPLEX:
1522 case R_HPPA_COMPLEX_PCREL_CALL:
1523 case R_HPPA_COMPLEX_ABS_CALL:
1524 /* Right now we can default all these. */
1525 break;
1526 }
1527 return final_types;
1528 }
1529
1530 /* Return the address of the correct entry in the PA SOM relocation
1531 howto table. */
1532
1533 static const reloc_howto_type *
1534 som_bfd_reloc_type_lookup (arch, code)
1535 bfd_arch_info_type *arch;
1536 bfd_reloc_code_real_type code;
1537 {
1538 if ((int) code < (int) R_NO_RELOCATION + 255)
1539 {
1540 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1541 return &som_hppa_howto_table[(int) code];
1542 }
1543
1544 return (reloc_howto_type *) 0;
1545 }
1546
1547 /* Perform some initialization for an object. Save results of this
1548 initialization in the BFD. */
1549
1550 static bfd_target *
1551 som_object_setup (abfd, file_hdrp, aux_hdrp)
1552 bfd *abfd;
1553 struct header *file_hdrp;
1554 struct som_exec_auxhdr *aux_hdrp;
1555 {
1556 /* som_mkobject will set bfd_error if som_mkobject fails. */
1557 if (som_mkobject (abfd) != true)
1558 return 0;
1559
1560 /* Set BFD flags based on what information is available in the SOM. */
1561 abfd->flags = NO_FLAGS;
1562 if (file_hdrp->symbol_total)
1563 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1564
1565 switch (file_hdrp->a_magic)
1566 {
1567 case DEMAND_MAGIC:
1568 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1569 break;
1570 case SHARE_MAGIC:
1571 abfd->flags |= (WP_TEXT | EXEC_P);
1572 break;
1573 case EXEC_MAGIC:
1574 abfd->flags |= (EXEC_P);
1575 break;
1576 case RELOC_MAGIC:
1577 abfd->flags |= HAS_RELOC;
1578 break;
1579 default:
1580 break;
1581 }
1582
1583 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1584 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1585 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1586
1587 /* Initialize the saved symbol table and string table to NULL.
1588 Save important offsets and sizes from the SOM header into
1589 the BFD. */
1590 obj_som_stringtab (abfd) = (char *) NULL;
1591 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1592 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1593 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1594 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1595 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1596
1597 obj_som_exec_data (abfd) = (struct som_exec_data *)
1598 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1599 if (obj_som_exec_data (abfd) == NULL)
1600 {
1601 bfd_set_error (bfd_error_no_memory);
1602 return NULL;
1603 }
1604
1605 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1606 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1607 return abfd->xvec;
1608 }
1609
1610 /* Convert all of the space and subspace info into BFD sections. Each space
1611 contains a number of subspaces, which in turn describe the mapping between
1612 regions of the exec file, and the address space that the program runs in.
1613 BFD sections which correspond to spaces will overlap the sections for the
1614 associated subspaces. */
1615
1616 static boolean
1617 setup_sections (abfd, file_hdr)
1618 bfd *abfd;
1619 struct header *file_hdr;
1620 {
1621 char *space_strings;
1622 int space_index;
1623 unsigned int total_subspaces = 0;
1624
1625 /* First, read in space names */
1626
1627 space_strings = malloc (file_hdr->space_strings_size);
1628 if (!space_strings && file_hdr->space_strings_size != 0)
1629 {
1630 bfd_set_error (bfd_error_no_memory);
1631 goto error_return;
1632 }
1633
1634 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1635 goto error_return;
1636 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1637 != file_hdr->space_strings_size)
1638 goto error_return;
1639
1640 /* Loop over all of the space dictionaries, building up sections */
1641 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1642 {
1643 struct space_dictionary_record space;
1644 struct subspace_dictionary_record subspace, save_subspace;
1645 int subspace_index;
1646 asection *space_asect;
1647 char *newname;
1648
1649 /* Read the space dictionary element */
1650 if (bfd_seek (abfd, file_hdr->space_location
1651 + space_index * sizeof space, SEEK_SET) < 0)
1652 goto error_return;
1653 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1654 goto error_return;
1655
1656 /* Setup the space name string */
1657 space.name.n_name = space.name.n_strx + space_strings;
1658
1659 /* Make a section out of it */
1660 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1661 if (!newname)
1662 goto error_return;
1663 strcpy (newname, space.name.n_name);
1664
1665 space_asect = bfd_make_section_anyway (abfd, newname);
1666 if (!space_asect)
1667 goto error_return;
1668
1669 if (space.is_loadable == 0)
1670 space_asect->flags |= SEC_DEBUGGING;
1671
1672 /* Set up all the attributes for the space. */
1673 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1674 space.is_private, space.sort_key,
1675 space.space_number) == false)
1676 goto error_return;
1677
1678 /* Now, read in the first subspace for this space */
1679 if (bfd_seek (abfd, file_hdr->subspace_location
1680 + space.subspace_index * sizeof subspace,
1681 SEEK_SET) < 0)
1682 goto error_return;
1683 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1684 goto error_return;
1685 /* Seek back to the start of the subspaces for loop below */
1686 if (bfd_seek (abfd, file_hdr->subspace_location
1687 + space.subspace_index * sizeof subspace,
1688 SEEK_SET) < 0)
1689 goto error_return;
1690
1691 /* Setup the start address and file loc from the first subspace record */
1692 space_asect->vma = subspace.subspace_start;
1693 space_asect->filepos = subspace.file_loc_init_value;
1694 space_asect->alignment_power = log2 (subspace.alignment);
1695 if (space_asect->alignment_power == -1)
1696 goto error_return;
1697
1698 /* Initialize save_subspace so we can reliably determine if this
1699 loop placed any useful values into it. */
1700 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1701
1702 /* Loop over the rest of the subspaces, building up more sections */
1703 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1704 subspace_index++)
1705 {
1706 asection *subspace_asect;
1707
1708 /* Read in the next subspace */
1709 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1710 != sizeof subspace)
1711 goto error_return;
1712
1713 /* Setup the subspace name string */
1714 subspace.name.n_name = subspace.name.n_strx + space_strings;
1715
1716 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1717 if (!newname)
1718 goto error_return;
1719 strcpy (newname, subspace.name.n_name);
1720
1721 /* Make a section out of this subspace */
1722 subspace_asect = bfd_make_section_anyway (abfd, newname);
1723 if (!subspace_asect)
1724 goto error_return;
1725
1726 /* Store private information about the section. */
1727 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1728 subspace.access_control_bits,
1729 subspace.sort_key,
1730 subspace.quadrant) == false)
1731 goto error_return;
1732
1733 /* Keep an easy mapping between subspaces and sections. */
1734 subspace_asect->target_index = total_subspaces++;
1735
1736 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1737 by the access_control_bits in the subspace header. */
1738 switch (subspace.access_control_bits >> 4)
1739 {
1740 /* Readonly data. */
1741 case 0x0:
1742 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1743 break;
1744
1745 /* Normal data. */
1746 case 0x1:
1747 subspace_asect->flags |= SEC_DATA;
1748 break;
1749
1750 /* Readonly code and the gateways.
1751 Gateways have other attributes which do not map
1752 into anything BFD knows about. */
1753 case 0x2:
1754 case 0x4:
1755 case 0x5:
1756 case 0x6:
1757 case 0x7:
1758 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1759 break;
1760
1761 /* dynamic (writable) code. */
1762 case 0x3:
1763 subspace_asect->flags |= SEC_CODE;
1764 break;
1765 }
1766
1767 if (subspace.dup_common || subspace.is_common)
1768 subspace_asect->flags |= SEC_IS_COMMON;
1769 else if (subspace.subspace_length > 0)
1770 subspace_asect->flags |= SEC_HAS_CONTENTS;
1771
1772 if (subspace.is_loadable)
1773 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1774 else
1775 subspace_asect->flags |= SEC_DEBUGGING;
1776
1777 if (subspace.code_only)
1778 subspace_asect->flags |= SEC_CODE;
1779
1780 /* Both file_loc_init_value and initialization_length will
1781 be zero for a BSS like subspace. */
1782 if (subspace.file_loc_init_value == 0
1783 && subspace.initialization_length == 0)
1784 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1785
1786 /* This subspace has relocations.
1787 The fixup_request_quantity is a byte count for the number of
1788 entries in the relocation stream; it is not the actual number
1789 of relocations in the subspace. */
1790 if (subspace.fixup_request_quantity != 0)
1791 {
1792 subspace_asect->flags |= SEC_RELOC;
1793 subspace_asect->rel_filepos = subspace.fixup_request_index;
1794 som_section_data (subspace_asect)->reloc_size
1795 = subspace.fixup_request_quantity;
1796 /* We can not determine this yet. When we read in the
1797 relocation table the correct value will be filled in. */
1798 subspace_asect->reloc_count = -1;
1799 }
1800
1801 /* Update save_subspace if appropriate. */
1802 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1803 save_subspace = subspace;
1804
1805 subspace_asect->vma = subspace.subspace_start;
1806 subspace_asect->_cooked_size = subspace.subspace_length;
1807 subspace_asect->_raw_size = subspace.subspace_length;
1808 subspace_asect->filepos = subspace.file_loc_init_value;
1809 subspace_asect->alignment_power = log2 (subspace.alignment);
1810 if (subspace_asect->alignment_power == -1)
1811 goto error_return;
1812 }
1813
1814 /* Yow! there is no subspace within the space which actually
1815 has initialized information in it; this should never happen
1816 as far as I know. */
1817 if (!save_subspace.file_loc_init_value)
1818 goto error_return;
1819
1820 /* Setup the sizes for the space section based upon the info in the
1821 last subspace of the space. */
1822 space_asect->_cooked_size = save_subspace.subspace_start
1823 - space_asect->vma + save_subspace.subspace_length;
1824 space_asect->_raw_size = save_subspace.file_loc_init_value
1825 - space_asect->filepos + save_subspace.initialization_length;
1826 }
1827 if (space_strings != NULL)
1828 free (space_strings);
1829 return true;
1830
1831 error_return:
1832 if (space_strings != NULL)
1833 free (space_strings);
1834 return false;
1835 }
1836
1837 /* Read in a SOM object and make it into a BFD. */
1838
1839 static bfd_target *
1840 som_object_p (abfd)
1841 bfd *abfd;
1842 {
1843 struct header file_hdr;
1844 struct som_exec_auxhdr aux_hdr;
1845
1846 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1847 {
1848 if (bfd_get_error () != bfd_error_system_call)
1849 bfd_set_error (bfd_error_wrong_format);
1850 return 0;
1851 }
1852
1853 if (!_PA_RISC_ID (file_hdr.system_id))
1854 {
1855 bfd_set_error (bfd_error_wrong_format);
1856 return 0;
1857 }
1858
1859 switch (file_hdr.a_magic)
1860 {
1861 case RELOC_MAGIC:
1862 case EXEC_MAGIC:
1863 case SHARE_MAGIC:
1864 case DEMAND_MAGIC:
1865 #ifdef DL_MAGIC
1866 case DL_MAGIC:
1867 #endif
1868 #ifdef SHL_MAGIC
1869 case SHL_MAGIC:
1870 #endif
1871 #ifdef EXECLIBMAGIC
1872 case EXECLIBMAGIC:
1873 #endif
1874 #ifdef SHARED_MAGIC_CNX
1875 case SHARED_MAGIC_CNX:
1876 #endif
1877 break;
1878 default:
1879 bfd_set_error (bfd_error_wrong_format);
1880 return 0;
1881 }
1882
1883 if (file_hdr.version_id != VERSION_ID
1884 && file_hdr.version_id != NEW_VERSION_ID)
1885 {
1886 bfd_set_error (bfd_error_wrong_format);
1887 return 0;
1888 }
1889
1890 /* If the aux_header_size field in the file header is zero, then this
1891 object is an incomplete executable (a .o file). Do not try to read
1892 a non-existant auxiliary header. */
1893 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1894 if (file_hdr.aux_header_size != 0)
1895 {
1896 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1897 {
1898 if (bfd_get_error () != bfd_error_system_call)
1899 bfd_set_error (bfd_error_wrong_format);
1900 return 0;
1901 }
1902 }
1903
1904 if (!setup_sections (abfd, &file_hdr))
1905 {
1906 /* setup_sections does not bubble up a bfd error code. */
1907 bfd_set_error (bfd_error_bad_value);
1908 return 0;
1909 }
1910
1911 /* This appears to be a valid SOM object. Do some initialization. */
1912 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1913 }
1914
1915 /* Create a SOM object. */
1916
1917 static boolean
1918 som_mkobject (abfd)
1919 bfd *abfd;
1920 {
1921 /* Allocate memory to hold backend information. */
1922 abfd->tdata.som_data = (struct som_data_struct *)
1923 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1924 if (abfd->tdata.som_data == NULL)
1925 {
1926 bfd_set_error (bfd_error_no_memory);
1927 return false;
1928 }
1929 return true;
1930 }
1931
1932 /* Initialize some information in the file header. This routine makes
1933 not attempt at doing the right thing for a full executable; it
1934 is only meant to handle relocatable objects. */
1935
1936 static boolean
1937 som_prep_headers (abfd)
1938 bfd *abfd;
1939 {
1940 struct header *file_hdr;
1941 asection *section;
1942
1943 /* Make and attach a file header to the BFD. */
1944 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1945 if (file_hdr == NULL)
1946
1947 {
1948 bfd_set_error (bfd_error_no_memory);
1949 return false;
1950 }
1951 obj_som_file_hdr (abfd) = file_hdr;
1952
1953 /* FIXME. This should really be conditional based on whether or not
1954 PA1.1 instructions/registers have been used. */
1955 if (abfd->flags & EXEC_P)
1956 file_hdr->system_id = obj_som_exec_data (abfd)->system_id;
1957 else
1958 file_hdr->system_id = CPU_PA_RISC1_0;
1959
1960 if (abfd->flags & EXEC_P)
1961 {
1962 if (abfd->flags & D_PAGED)
1963 file_hdr->a_magic = DEMAND_MAGIC;
1964 else if (abfd->flags & WP_TEXT)
1965 file_hdr->a_magic = SHARE_MAGIC;
1966 else
1967 file_hdr->a_magic = EXEC_MAGIC;
1968 }
1969 else
1970 file_hdr->a_magic = RELOC_MAGIC;
1971
1972 /* Only new format SOM is supported. */
1973 file_hdr->version_id = NEW_VERSION_ID;
1974
1975 /* These fields are optional, and embedding timestamps is not always
1976 a wise thing to do, it makes comparing objects during a multi-stage
1977 bootstrap difficult. */
1978 file_hdr->file_time.secs = 0;
1979 file_hdr->file_time.nanosecs = 0;
1980
1981 file_hdr->entry_space = 0;
1982 file_hdr->entry_subspace = 0;
1983 file_hdr->entry_offset = 0;
1984 file_hdr->presumed_dp = 0;
1985
1986 /* Now iterate over the sections translating information from
1987 BFD sections to SOM spaces/subspaces. */
1988
1989 for (section = abfd->sections; section != NULL; section = section->next)
1990 {
1991 /* Ignore anything which has not been marked as a space or
1992 subspace. */
1993 if (!som_is_space (section) && !som_is_subspace (section))
1994 continue;
1995
1996 if (som_is_space (section))
1997 {
1998 /* Allocate space for the space dictionary. */
1999 som_section_data (section)->space_dict
2000 = (struct space_dictionary_record *)
2001 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2002 if (som_section_data (section)->space_dict == NULL)
2003 {
2004 bfd_set_error (bfd_error_no_memory);
2005 return false;
2006 }
2007 /* Set space attributes. Note most attributes of SOM spaces
2008 are set based on the subspaces it contains. */
2009 som_section_data (section)->space_dict->loader_fix_index = -1;
2010 som_section_data (section)->space_dict->init_pointer_index = -1;
2011
2012 /* Set more attributes that were stuffed away in private data. */
2013 som_section_data (section)->space_dict->sort_key =
2014 som_section_data (section)->copy_data->sort_key;
2015 som_section_data (section)->space_dict->is_defined =
2016 som_section_data (section)->copy_data->is_defined;
2017 som_section_data (section)->space_dict->is_private =
2018 som_section_data (section)->copy_data->is_private;
2019 som_section_data (section)->space_dict->space_number =
2020 section->target_index;
2021 }
2022 else
2023 {
2024 /* Allocate space for the subspace dictionary. */
2025 som_section_data (section)->subspace_dict
2026 = (struct subspace_dictionary_record *)
2027 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2028 if (som_section_data (section)->subspace_dict == NULL)
2029 {
2030 bfd_set_error (bfd_error_no_memory);
2031 return false;
2032 }
2033
2034 /* Set subspace attributes. Basic stuff is done here, additional
2035 attributes are filled in later as more information becomes
2036 available. */
2037 if (section->flags & SEC_IS_COMMON)
2038 {
2039 som_section_data (section)->subspace_dict->dup_common = 1;
2040 som_section_data (section)->subspace_dict->is_common = 1;
2041 }
2042
2043 if (section->flags & SEC_ALLOC)
2044 som_section_data (section)->subspace_dict->is_loadable = 1;
2045
2046 if (section->flags & SEC_CODE)
2047 som_section_data (section)->subspace_dict->code_only = 1;
2048
2049 som_section_data (section)->subspace_dict->subspace_start =
2050 section->vma;
2051 som_section_data (section)->subspace_dict->subspace_length =
2052 bfd_section_size (abfd, section);
2053 som_section_data (section)->subspace_dict->initialization_length =
2054 bfd_section_size (abfd, section);
2055 som_section_data (section)->subspace_dict->alignment =
2056 1 << section->alignment_power;
2057
2058 /* Set more attributes that were stuffed away in private data. */
2059 som_section_data (section)->subspace_dict->sort_key =
2060 som_section_data (section)->copy_data->sort_key;
2061 som_section_data (section)->subspace_dict->access_control_bits =
2062 som_section_data (section)->copy_data->access_control_bits;
2063 som_section_data (section)->subspace_dict->quadrant =
2064 som_section_data (section)->copy_data->quadrant;
2065 }
2066 }
2067 return true;
2068 }
2069
2070 /* Return true if the given section is a SOM space, false otherwise. */
2071
2072 static boolean
2073 som_is_space (section)
2074 asection *section;
2075 {
2076 /* If no copy data is available, then it's neither a space nor a
2077 subspace. */
2078 if (som_section_data (section)->copy_data == NULL)
2079 return false;
2080
2081 /* If the containing space isn't the same as the given section,
2082 then this isn't a space. */
2083 if (som_section_data (section)->copy_data->container != section)
2084 return false;
2085
2086 /* OK. Must be a space. */
2087 return true;
2088 }
2089
2090 /* Return true if the given section is a SOM subspace, false otherwise. */
2091
2092 static boolean
2093 som_is_subspace (section)
2094 asection *section;
2095 {
2096 /* If no copy data is available, then it's neither a space nor a
2097 subspace. */
2098 if (som_section_data (section)->copy_data == NULL)
2099 return false;
2100
2101 /* If the containing space is the same as the given section,
2102 then this isn't a subspace. */
2103 if (som_section_data (section)->copy_data->container == section)
2104 return false;
2105
2106 /* OK. Must be a subspace. */
2107 return true;
2108 }
2109
2110 /* Return true if the given space containins the given subspace. It
2111 is safe to assume space really is a space, and subspace really
2112 is a subspace. */
2113
2114 static boolean
2115 som_is_container (space, subspace)
2116 asection *space, *subspace;
2117 {
2118 return som_section_data (subspace)->copy_data->container == space;
2119 }
2120
2121 /* Count and return the number of spaces attached to the given BFD. */
2122
2123 static unsigned long
2124 som_count_spaces (abfd)
2125 bfd *abfd;
2126 {
2127 int count = 0;
2128 asection *section;
2129
2130 for (section = abfd->sections; section != NULL; section = section->next)
2131 count += som_is_space (section);
2132
2133 return count;
2134 }
2135
2136 /* Count the number of subspaces attached to the given BFD. */
2137
2138 static unsigned long
2139 som_count_subspaces (abfd)
2140 bfd *abfd;
2141 {
2142 int count = 0;
2143 asection *section;
2144
2145 for (section = abfd->sections; section != NULL; section = section->next)
2146 count += som_is_subspace (section);
2147
2148 return count;
2149 }
2150
2151 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2152
2153 We desire symbols to be ordered starting with the symbol with the
2154 highest relocation count down to the symbol with the lowest relocation
2155 count. Doing so compacts the relocation stream. */
2156
2157 static int
2158 compare_syms (sym1, sym2)
2159 asymbol **sym1;
2160 asymbol **sym2;
2161
2162 {
2163 unsigned int count1, count2;
2164
2165 /* Get relocation count for each symbol. Note that the count
2166 is stored in the udata pointer for section symbols! */
2167 if ((*sym1)->flags & BSF_SECTION_SYM)
2168 count1 = (int)(*sym1)->udata;
2169 else
2170 count1 = som_symbol_data (*sym1)->reloc_count;
2171
2172 if ((*sym2)->flags & BSF_SECTION_SYM)
2173 count2 = (int)(*sym2)->udata;
2174 else
2175 count2 = som_symbol_data (*sym2)->reloc_count;
2176
2177 /* Return the appropriate value. */
2178 if (count1 < count2)
2179 return 1;
2180 else if (count1 > count2)
2181 return -1;
2182 return 0;
2183 }
2184
2185 /* Perform various work in preparation for emitting the fixup stream. */
2186
2187 static void
2188 som_prep_for_fixups (abfd, syms, num_syms)
2189 bfd *abfd;
2190 asymbol **syms;
2191 unsigned long num_syms;
2192 {
2193 int i;
2194 asection *section;
2195
2196 /* Most SOM relocations involving a symbol have a length which is
2197 dependent on the index of the symbol. So symbols which are
2198 used often in relocations should have a small index. */
2199
2200 /* First initialize the counters for each symbol. */
2201 for (i = 0; i < num_syms; i++)
2202 {
2203 /* Handle a section symbol; these have no pointers back to the
2204 SOM symbol info. So we just use the pointer field (udata)
2205 to hold the relocation count. */
2206 if (som_symbol_data (syms[i]) == NULL
2207 || syms[i]->flags & BSF_SECTION_SYM)
2208 {
2209 syms[i]->flags |= BSF_SECTION_SYM;
2210 syms[i]->udata = (PTR) 0;
2211 }
2212 else
2213 som_symbol_data (syms[i])->reloc_count = 0;
2214 }
2215
2216 /* Now that the counters are initialized, make a weighted count
2217 of how often a given symbol is used in a relocation. */
2218 for (section = abfd->sections; section != NULL; section = section->next)
2219 {
2220 int i;
2221
2222 /* Does this section have any relocations? */
2223 if (section->reloc_count <= 0)
2224 continue;
2225
2226 /* Walk through each relocation for this section. */
2227 for (i = 1; i < section->reloc_count; i++)
2228 {
2229 arelent *reloc = section->orelocation[i];
2230 int scale;
2231
2232 /* A relocation against a symbol in the *ABS* section really
2233 does not have a symbol. Likewise if the symbol isn't associated
2234 with any section. */
2235 if (reloc->sym_ptr_ptr == NULL
2236 || (*reloc->sym_ptr_ptr)->section == &bfd_abs_section)
2237 continue;
2238
2239 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2240 and R_CODE_ONE_SYMBOL relocations to come first. These
2241 two relocations have single byte versions if the symbol
2242 index is very small. */
2243 if (reloc->howto->type == R_DP_RELATIVE
2244 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2245 scale = 2;
2246 else
2247 scale = 1;
2248
2249 /* Handle section symbols by ramming the count in the udata
2250 field. It will not be used and the count is very important
2251 for these symbols. */
2252 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2253 {
2254 (*reloc->sym_ptr_ptr)->udata =
2255 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2256 continue;
2257 }
2258
2259 /* A normal symbol. Increment the count. */
2260 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2261 }
2262 }
2263
2264 /* Now sort the symbols. */
2265 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2266
2267 /* Compute the symbol indexes, they will be needed by the relocation
2268 code. */
2269 for (i = 0; i < num_syms; i++)
2270 {
2271 /* A section symbol. Again, there is no pointer to backend symbol
2272 information, so we reuse (abuse) the udata field again. */
2273 if (syms[i]->flags & BSF_SECTION_SYM)
2274 syms[i]->udata = (PTR) i;
2275 else
2276 som_symbol_data (syms[i])->index = i;
2277 }
2278 }
2279
2280 static boolean
2281 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2282 bfd *abfd;
2283 unsigned long current_offset;
2284 unsigned int *total_reloc_sizep;
2285 {
2286 unsigned int i, j;
2287 /* Chunk of memory that we can use as buffer space, then throw
2288 away. */
2289 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2290 unsigned char *p;
2291 unsigned int total_reloc_size = 0;
2292 unsigned int subspace_reloc_size = 0;
2293 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2294 asection *section = abfd->sections;
2295
2296 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2297 p = tmp_space;
2298
2299 /* All the fixups for a particular subspace are emitted in a single
2300 stream. All the subspaces for a particular space are emitted
2301 as a single stream.
2302
2303 So, to get all the locations correct one must iterate through all the
2304 spaces, for each space iterate through its subspaces and output a
2305 fixups stream. */
2306 for (i = 0; i < num_spaces; i++)
2307 {
2308 asection *subsection;
2309
2310 /* Find a space. */
2311 while (!som_is_space (section))
2312 section = section->next;
2313
2314 /* Now iterate through each of its subspaces. */
2315 for (subsection = abfd->sections;
2316 subsection != NULL;
2317 subsection = subsection->next)
2318 {
2319 int reloc_offset, current_rounding_mode;
2320
2321 /* Find a subspace of this space. */
2322 if (!som_is_subspace (subsection)
2323 || !som_is_container (section, subsection))
2324 continue;
2325
2326 /* If this subspace had no relocations, then we're finished
2327 with it. */
2328 if (subsection->reloc_count <= 0)
2329 {
2330 som_section_data (subsection)->subspace_dict->fixup_request_index
2331 = -1;
2332 continue;
2333 }
2334
2335 /* This subspace has some relocations. Put the relocation stream
2336 index into the subspace record. */
2337 som_section_data (subsection)->subspace_dict->fixup_request_index
2338 = total_reloc_size;
2339
2340 /* To make life easier start over with a clean slate for
2341 each subspace. Seek to the start of the relocation stream
2342 for this subspace in preparation for writing out its fixup
2343 stream. */
2344 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2345 return false;
2346
2347 /* Buffer space has already been allocated. Just perform some
2348 initialization here. */
2349 p = tmp_space;
2350 subspace_reloc_size = 0;
2351 reloc_offset = 0;
2352 som_initialize_reloc_queue (reloc_queue);
2353 current_rounding_mode = R_N_MODE;
2354
2355 /* Translate each BFD relocation into one or more SOM
2356 relocations. */
2357 for (j = 0; j < subsection->reloc_count; j++)
2358 {
2359 arelent *bfd_reloc = subsection->orelocation[j];
2360 unsigned int skip;
2361 int sym_num;
2362
2363 /* Get the symbol number. Remember it's stored in a
2364 special place for section symbols. */
2365 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2366 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2367 else
2368 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2369
2370 /* If there is not enough room for the next couple relocations,
2371 then dump the current buffer contents now. Also reinitialize
2372 the relocation queue.
2373
2374 No single BFD relocation could ever translate into more
2375 than 100 bytes of SOM relocations (20bytes is probably the
2376 upper limit, but leave lots of space for growth). */
2377 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2378 {
2379 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2380 != p - tmp_space)
2381 return false;
2382
2383 p = tmp_space;
2384 som_initialize_reloc_queue (reloc_queue);
2385 }
2386
2387 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2388 skipped. */
2389 skip = bfd_reloc->address - reloc_offset;
2390 p = som_reloc_skip (abfd, skip, p,
2391 &subspace_reloc_size, reloc_queue);
2392
2393 /* Update reloc_offset for the next iteration.
2394
2395 Many relocations do not consume input bytes. They
2396 are markers, or set state necessary to perform some
2397 later relocation. */
2398 switch (bfd_reloc->howto->type)
2399 {
2400 /* This only needs to handle relocations that may be
2401 made by hppa_som_gen_reloc. */
2402 case R_ENTRY:
2403 case R_EXIT:
2404 case R_N_MODE:
2405 case R_S_MODE:
2406 case R_D_MODE:
2407 case R_R_MODE:
2408 case R_FSEL:
2409 case R_LSEL:
2410 case R_RSEL:
2411 reloc_offset = bfd_reloc->address;
2412 break;
2413
2414 default:
2415 reloc_offset = bfd_reloc->address + 4;
2416 break;
2417 }
2418
2419 /* Now the actual relocation we care about. */
2420 switch (bfd_reloc->howto->type)
2421 {
2422 case R_PCREL_CALL:
2423 case R_ABS_CALL:
2424 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2425 bfd_reloc, sym_num, reloc_queue);
2426 break;
2427
2428 case R_CODE_ONE_SYMBOL:
2429 case R_DP_RELATIVE:
2430 /* Account for any addend. */
2431 if (bfd_reloc->addend)
2432 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2433 &subspace_reloc_size, reloc_queue);
2434
2435 if (sym_num < 0x20)
2436 {
2437 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2438 subspace_reloc_size += 1;
2439 p += 1;
2440 }
2441 else if (sym_num < 0x100)
2442 {
2443 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2444 bfd_put_8 (abfd, sym_num, p + 1);
2445 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2446 2, reloc_queue);
2447 }
2448 else if (sym_num < 0x10000000)
2449 {
2450 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2451 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2452 bfd_put_16 (abfd, sym_num, p + 2);
2453 p = try_prev_fixup (abfd, &subspace_reloc_size,
2454 p, 4, reloc_queue);
2455 }
2456 else
2457 abort ();
2458 break;
2459
2460 case R_DATA_ONE_SYMBOL:
2461 case R_DATA_PLABEL:
2462 case R_CODE_PLABEL:
2463 case R_DLT_REL:
2464 /* Account for any addend. */
2465 if (bfd_reloc->addend)
2466 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2467 &subspace_reloc_size, reloc_queue);
2468
2469 if (sym_num < 0x100)
2470 {
2471 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2472 bfd_put_8 (abfd, sym_num, p + 1);
2473 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2474 2, reloc_queue);
2475 }
2476 else if (sym_num < 0x10000000)
2477 {
2478 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2479 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2480 bfd_put_16 (abfd, sym_num, p + 2);
2481 p = try_prev_fixup (abfd, &subspace_reloc_size,
2482 p, 4, reloc_queue);
2483 }
2484 else
2485 abort ();
2486 break;
2487
2488 case R_ENTRY:
2489 {
2490 int *descp
2491 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2492 bfd_put_8 (abfd, R_ENTRY, p);
2493 bfd_put_32 (abfd, descp[0], p + 1);
2494 bfd_put_32 (abfd, descp[1], p + 5);
2495 p = try_prev_fixup (abfd, &subspace_reloc_size,
2496 p, 9, reloc_queue);
2497 break;
2498 }
2499
2500 case R_EXIT:
2501 bfd_put_8 (abfd, R_EXIT, p);
2502 subspace_reloc_size += 1;
2503 p += 1;
2504 break;
2505
2506 case R_N_MODE:
2507 case R_S_MODE:
2508 case R_D_MODE:
2509 case R_R_MODE:
2510 /* If this relocation requests the current rounding
2511 mode, then it is redundant. */
2512 if (bfd_reloc->howto->type != current_rounding_mode)
2513 {
2514 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2515 subspace_reloc_size += 1;
2516 p += 1;
2517 current_rounding_mode = bfd_reloc->howto->type;
2518 }
2519 break;
2520
2521 case R_FSEL:
2522 case R_LSEL:
2523 case R_RSEL:
2524 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2525 subspace_reloc_size += 1;
2526 p += 1;
2527 break;
2528
2529 /* Put a "R_RESERVED" relocation in the stream if
2530 we hit something we do not understand. The linker
2531 will complain loudly if this ever happens. */
2532 default:
2533 bfd_put_8 (abfd, 0xff, p);
2534 subspace_reloc_size += 1;
2535 p += 1;
2536 break;
2537 }
2538 }
2539
2540 /* Last BFD relocation for a subspace has been processed.
2541 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2542 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2543 - reloc_offset,
2544 p, &subspace_reloc_size, reloc_queue);
2545
2546 /* Scribble out the relocations. */
2547 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2548 != p - tmp_space)
2549 return false;
2550 p = tmp_space;
2551
2552 total_reloc_size += subspace_reloc_size;
2553 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2554 = subspace_reloc_size;
2555 }
2556 section = section->next;
2557 }
2558 *total_reloc_sizep = total_reloc_size;
2559 return true;
2560 }
2561
2562 /* Write out the space/subspace string table. */
2563
2564 static boolean
2565 som_write_space_strings (abfd, current_offset, string_sizep)
2566 bfd *abfd;
2567 unsigned long current_offset;
2568 unsigned int *string_sizep;
2569 {
2570 /* Chunk of memory that we can use as buffer space, then throw
2571 away. */
2572 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2573 unsigned char *p;
2574 unsigned int strings_size = 0;
2575 asection *section;
2576
2577 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2578 p = tmp_space;
2579
2580 /* Seek to the start of the space strings in preparation for writing
2581 them out. */
2582 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2583 return false;
2584
2585 /* Walk through all the spaces and subspaces (order is not important)
2586 building up and writing string table entries for their names. */
2587 for (section = abfd->sections; section != NULL; section = section->next)
2588 {
2589 int length;
2590
2591 /* Only work with space/subspaces; avoid any other sections
2592 which might have been made (.text for example). */
2593 if (!som_is_space (section) && !som_is_subspace (section))
2594 continue;
2595
2596 /* Get the length of the space/subspace name. */
2597 length = strlen (section->name);
2598
2599 /* If there is not enough room for the next entry, then dump the
2600 current buffer contents now. Each entry will take 4 bytes to
2601 hold the string length + the string itself + null terminator. */
2602 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2603 {
2604 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2605 != p - tmp_space)
2606 return false;
2607 /* Reset to beginning of the buffer space. */
2608 p = tmp_space;
2609 }
2610
2611 /* First element in a string table entry is the length of the
2612 string. Alignment issues are already handled. */
2613 bfd_put_32 (abfd, length, p);
2614 p += 4;
2615 strings_size += 4;
2616
2617 /* Record the index in the space/subspace records. */
2618 if (som_is_space (section))
2619 som_section_data (section)->space_dict->name.n_strx = strings_size;
2620 else
2621 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2622
2623 /* Next comes the string itself + a null terminator. */
2624 strcpy (p, section->name);
2625 p += length + 1;
2626 strings_size += length + 1;
2627
2628 /* Always align up to the next word boundary. */
2629 while (strings_size % 4)
2630 {
2631 bfd_put_8 (abfd, 0, p);
2632 p++;
2633 strings_size++;
2634 }
2635 }
2636
2637 /* Done with the space/subspace strings. Write out any information
2638 contained in a partial block. */
2639 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2640 return false;
2641 *string_sizep = strings_size;
2642 return true;
2643 }
2644
2645 /* Write out the symbol string table. */
2646
2647 static boolean
2648 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2649 bfd *abfd;
2650 unsigned long current_offset;
2651 asymbol **syms;
2652 unsigned int num_syms;
2653 unsigned int *string_sizep;
2654 {
2655 unsigned int i;
2656
2657 /* Chunk of memory that we can use as buffer space, then throw
2658 away. */
2659 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2660 unsigned char *p;
2661 unsigned int strings_size = 0;
2662
2663 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2664 p = tmp_space;
2665
2666 /* Seek to the start of the space strings in preparation for writing
2667 them out. */
2668 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2669 return false;
2670
2671 for (i = 0; i < num_syms; i++)
2672 {
2673 int length = strlen (syms[i]->name);
2674
2675 /* If there is not enough room for the next entry, then dump the
2676 current buffer contents now. */
2677 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2678 {
2679 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2680 != p - tmp_space)
2681 return false;
2682 /* Reset to beginning of the buffer space. */
2683 p = tmp_space;
2684 }
2685
2686 /* First element in a string table entry is the length of the
2687 string. This must always be 4 byte aligned. This is also
2688 an appropriate time to fill in the string index field in the
2689 symbol table entry. */
2690 bfd_put_32 (abfd, length, p);
2691 strings_size += 4;
2692 p += 4;
2693
2694 /* Next comes the string itself + a null terminator. */
2695 strcpy (p, syms[i]->name);
2696
2697 /* ACK. FIXME. */
2698 syms[i]->name = (char *)strings_size;
2699 p += length + 1;
2700 strings_size += length + 1;
2701
2702 /* Always align up to the next word boundary. */
2703 while (strings_size % 4)
2704 {
2705 bfd_put_8 (abfd, 0, p);
2706 strings_size++;
2707 p++;
2708 }
2709 }
2710
2711 /* Scribble out any partial block. */
2712 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2713 return false;
2714
2715 *string_sizep = strings_size;
2716 return true;
2717 }
2718
2719 /* Compute variable information to be placed in the SOM headers,
2720 space/subspace dictionaries, relocation streams, etc. Begin
2721 writing parts of the object file. */
2722
2723 static boolean
2724 som_begin_writing (abfd)
2725 bfd *abfd;
2726 {
2727 unsigned long current_offset = 0;
2728 int strings_size = 0;
2729 unsigned int total_reloc_size = 0;
2730 unsigned long num_spaces, num_subspaces, num_syms, i;
2731 asection *section;
2732 asymbol **syms = bfd_get_outsymbols (abfd);
2733 unsigned int total_subspaces = 0;
2734 struct som_exec_auxhdr exec_header;
2735
2736 /* The file header will always be first in an object file,
2737 everything else can be in random locations. To keep things
2738 "simple" BFD will lay out the object file in the manner suggested
2739 by the PRO ABI for PA-RISC Systems. */
2740
2741 /* Before any output can really begin offsets for all the major
2742 portions of the object file must be computed. So, starting
2743 with the initial file header compute (and sometimes write)
2744 each portion of the object file. */
2745
2746 /* Make room for the file header, it's contents are not complete
2747 yet, so it can not be written at this time. */
2748 current_offset += sizeof (struct header);
2749
2750 /* Any auxiliary headers will follow the file header. Right now
2751 we support only the copyright and version headers. */
2752 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2753 obj_som_file_hdr (abfd)->aux_header_size = 0;
2754 if (abfd->flags & EXEC_P)
2755 {
2756 /* Parts of the exec header will be filled in later, so
2757 delay writing the header itself. Fill in the defaults,
2758 and write it later. */
2759 current_offset += sizeof (exec_header);
2760 obj_som_file_hdr (abfd)->aux_header_size += sizeof (exec_header);
2761 memset (&exec_header, 0, sizeof (exec_header));
2762 exec_header.som_auxhdr.type = HPUX_AUX_ID;
2763 exec_header.som_auxhdr.length = 40;
2764 }
2765 if (obj_som_version_hdr (abfd) != NULL)
2766 {
2767 unsigned int len;
2768
2769 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2770 return false;
2771
2772 /* Write the aux_id structure and the string length. */
2773 len = sizeof (struct aux_id) + sizeof (unsigned int);
2774 obj_som_file_hdr (abfd)->aux_header_size += len;
2775 current_offset += len;
2776 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2777 return false;
2778
2779 /* Write the version string. */
2780 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2781 obj_som_file_hdr (abfd)->aux_header_size += len;
2782 current_offset += len;
2783 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2784 len, 1, abfd) != len)
2785 return false;
2786 }
2787
2788 if (obj_som_copyright_hdr (abfd) != NULL)
2789 {
2790 unsigned int len;
2791
2792 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2793 return false;
2794
2795 /* Write the aux_id structure and the string length. */
2796 len = sizeof (struct aux_id) + sizeof (unsigned int);
2797 obj_som_file_hdr (abfd)->aux_header_size += len;
2798 current_offset += len;
2799 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2800 return false;
2801
2802 /* Write the copyright string. */
2803 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2804 obj_som_file_hdr (abfd)->aux_header_size += len;
2805 current_offset += len;
2806 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2807 len, 1, abfd) != len)
2808 return false;
2809 }
2810
2811 /* Next comes the initialization pointers; we have no initialization
2812 pointers, so current offset does not change. */
2813 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2814 obj_som_file_hdr (abfd)->init_array_total = 0;
2815
2816 /* Next are the space records. These are fixed length records.
2817
2818 Count the number of spaces to determine how much room is needed
2819 in the object file for the space records.
2820
2821 The names of the spaces are stored in a separate string table,
2822 and the index for each space into the string table is computed
2823 below. Therefore, it is not possible to write the space headers
2824 at this time. */
2825 num_spaces = som_count_spaces (abfd);
2826 obj_som_file_hdr (abfd)->space_location = current_offset;
2827 obj_som_file_hdr (abfd)->space_total = num_spaces;
2828 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2829
2830 /* Next are the subspace records. These are fixed length records.
2831
2832 Count the number of subspaes to determine how much room is needed
2833 in the object file for the subspace records.
2834
2835 A variety if fields in the subspace record are still unknown at
2836 this time (index into string table, fixup stream location/size, etc). */
2837 num_subspaces = som_count_subspaces (abfd);
2838 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2839 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2840 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2841
2842 /* Next is the string table for the space/subspace names. We will
2843 build and write the string table on the fly. At the same time
2844 we will fill in the space/subspace name index fields. */
2845
2846 /* The string table needs to be aligned on a word boundary. */
2847 if (current_offset % 4)
2848 current_offset += (4 - (current_offset % 4));
2849
2850 /* Mark the offset of the space/subspace string table in the
2851 file header. */
2852 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2853
2854 /* Scribble out the space strings. */
2855 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2856 return false;
2857
2858 /* Record total string table size in the header and update the
2859 current offset. */
2860 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2861 current_offset += strings_size;
2862
2863 /* Next is the symbol table. These are fixed length records.
2864
2865 Count the number of symbols to determine how much room is needed
2866 in the object file for the symbol table.
2867
2868 The names of the symbols are stored in a separate string table,
2869 and the index for each symbol name into the string table is computed
2870 below. Therefore, it is not possible to write the symobl table
2871 at this time. */
2872 num_syms = bfd_get_symcount (abfd);
2873 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2874 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2875 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2876
2877 /* Do prep work before handling fixups. */
2878 som_prep_for_fixups (abfd, syms, num_syms);
2879
2880 /* Next comes the fixup stream which starts on a word boundary. */
2881 if (current_offset % 4)
2882 current_offset += (4 - (current_offset % 4));
2883 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2884
2885 /* Write the fixups and update fields in subspace headers which
2886 relate to the fixup stream. */
2887 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2888 return false;
2889
2890 /* Record the total size of the fixup stream in the file header. */
2891 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2892 current_offset += total_reloc_size;
2893
2894 /* Next are the symbol strings.
2895 Align them to a word boundary. */
2896 if (current_offset % 4)
2897 current_offset += (4 - (current_offset % 4));
2898 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2899
2900 /* Scribble out the symbol strings. */
2901 if (som_write_symbol_strings (abfd, current_offset, syms,
2902 num_syms, &strings_size)
2903 == false)
2904 return false;
2905
2906 /* Record total string table size in header and update the
2907 current offset. */
2908 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2909 current_offset += strings_size;
2910
2911 /* Next is the compiler records. We do not use these. */
2912 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2913 obj_som_file_hdr (abfd)->compiler_total = 0;
2914
2915 /* Now compute the file positions for the loadable subspaces, taking
2916 care to make sure everything stays properly aligned. */
2917
2918 section = abfd->sections;
2919 for (i = 0; i < num_spaces; i++)
2920 {
2921 asection *subsection;
2922 int first_subspace;
2923
2924 /* Find a space. */
2925 while (!som_is_space (section))
2926 section = section->next;
2927
2928 first_subspace = 1;
2929 /* Now look for all its subspaces. */
2930 for (subsection = abfd->sections;
2931 subsection != NULL;
2932 subsection = subsection->next)
2933 {
2934
2935 if (!som_is_subspace (subsection)
2936 || !som_is_container (section, subsection)
2937 || (subsection->flags & SEC_ALLOC) == 0)
2938 continue;
2939
2940 /* If this is the first subspace in the space, and we are
2941 building an executable, then take care to make sure all
2942 the alignments are correct and update the exec header. */
2943 if (first_subspace
2944 && (abfd->flags & EXEC_P))
2945 {
2946 /* Demand paged executables have each space aligned to a
2947 page boundary. Sharable executables (write-protected
2948 text) have just the private (aka data & bss) space aligned
2949 to a page boundary. Ugh. Not true for HPUX.
2950
2951 The HPUX kernel requires the text to always be page aligned
2952 within the file regardless of the executable's type. */
2953 if (abfd->flags & D_PAGED
2954 || (subsection->flags & SEC_CODE)
2955 || ((abfd->flags & WP_TEXT)
2956 && (subsection->flags & SEC_DATA)))
2957 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
2958
2959 /* Update the exec header. */
2960 if (subsection->flags & SEC_CODE && exec_header.exec_tfile == 0)
2961 {
2962 exec_header.exec_tmem = section->vma;
2963 exec_header.exec_tfile = current_offset;
2964 }
2965 if (subsection->flags & SEC_DATA && exec_header.exec_dfile == 0)
2966 {
2967 exec_header.exec_dmem = section->vma;
2968 exec_header.exec_dfile = current_offset;
2969 }
2970
2971 /* Only do this for the first subspace within each space. */
2972 first_subspace = 0;
2973 }
2974 else if (abfd->flags & EXEC_P)
2975 {
2976 /* Have to keep proper alignments for the subspaces
2977 in executables too! */
2978 if (subsection->flags & SEC_CODE)
2979 {
2980 unsigned tmp = exec_header.exec_tsize;
2981
2982 tmp = SOM_ALIGN (tmp, 1 << subsection->alignment_power);
2983 current_offset += (tmp - exec_header.exec_tsize);
2984 exec_header.exec_tsize = tmp;
2985 }
2986 else
2987 {
2988 unsigned tmp = exec_header.exec_dsize;
2989
2990 tmp = SOM_ALIGN (tmp, 1 << subsection->alignment_power);
2991 current_offset += (tmp - exec_header.exec_dsize);
2992 exec_header.exec_dsize = tmp;
2993 }
2994 }
2995
2996 subsection->target_index = total_subspaces++;
2997 /* This is real data to be loaded from the file. */
2998 if (subsection->flags & SEC_LOAD)
2999 {
3000 /* Update the size of the code & data. */
3001 if (abfd->flags & EXEC_P
3002 && subsection->flags & SEC_CODE)
3003 exec_header.exec_tsize += subsection->_cooked_size;
3004 else if (abfd->flags & EXEC_P
3005 && subsection->flags & SEC_DATA)
3006 exec_header.exec_dsize += subsection->_cooked_size;
3007 som_section_data (subsection)->subspace_dict->file_loc_init_value
3008 = current_offset;
3009 section->filepos = current_offset;
3010 current_offset += bfd_section_size (abfd, subsection);
3011 }
3012 /* Looks like uninitialized data. */
3013 else
3014 {
3015 /* Update the size of the bss section. */
3016 if (abfd->flags & EXEC_P)
3017 exec_header.exec_bsize += subsection->_cooked_size;
3018
3019 som_section_data (subsection)->subspace_dict->file_loc_init_value
3020 = 0;
3021 som_section_data (subsection)->subspace_dict->
3022 initialization_length = 0;
3023 }
3024 }
3025 /* Goto the next section. */
3026 section = section->next;
3027 }
3028
3029 /* Finally compute the file positions for unloadable subspaces.
3030 If building an executable, start the unloadable stuff on its
3031 own page. */
3032
3033 if (abfd->flags & EXEC_P)
3034 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3035
3036 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3037 section = abfd->sections;
3038 for (i = 0; i < num_spaces; i++)
3039 {
3040 asection *subsection;
3041
3042 /* Find a space. */
3043 while (!som_is_space (section))
3044 section = section->next;
3045
3046 if (abfd->flags & EXEC_P)
3047 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3048
3049 /* Now look for all its subspaces. */
3050 for (subsection = abfd->sections;
3051 subsection != NULL;
3052 subsection = subsection->next)
3053 {
3054
3055 if (!som_is_subspace (subsection)
3056 || !som_is_container (section, subsection)
3057 || (subsection->flags & SEC_ALLOC) != 0)
3058 continue;
3059
3060 subsection->target_index = total_subspaces;
3061 /* This is real data to be loaded from the file. */
3062 if ((subsection->flags & SEC_LOAD) == 0)
3063 {
3064 som_section_data (subsection)->subspace_dict->file_loc_init_value
3065 = current_offset;
3066 section->filepos = current_offset;
3067 current_offset += bfd_section_size (abfd, subsection);
3068 }
3069 /* Looks like uninitialized data. */
3070 else
3071 {
3072 som_section_data (subsection)->subspace_dict->file_loc_init_value
3073 = 0;
3074 som_section_data (subsection)->subspace_dict->
3075 initialization_length = bfd_section_size (abfd, subsection);
3076 }
3077 }
3078 /* Goto the next section. */
3079 section = section->next;
3080 }
3081
3082 /* If building an executable, then make sure to seek to and write
3083 one byte at the end of the file to make sure any necessary
3084 zeros are filled in. Ugh. */
3085 if (abfd->flags & EXEC_P)
3086 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3087 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3088 return false;
3089 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3090 return false;
3091
3092 obj_som_file_hdr (abfd)->unloadable_sp_size
3093 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3094
3095 /* Loader fixups are not supported in any way shape or form. */
3096 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3097 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3098
3099 /* Done. Store the total size of the SOM. */
3100 obj_som_file_hdr (abfd)->som_length = current_offset;
3101
3102 /* Now write the exec header. */
3103 if (abfd->flags & EXEC_P)
3104 {
3105 long tmp;
3106
3107 exec_header.exec_entry = bfd_get_start_address (abfd);
3108 exec_header.exec_flags = obj_som_exec_data (abfd)->exec_flags;
3109
3110 /* Oh joys. Ram some of the BSS data into the DATA section
3111 to be compatable with how the hp linker makes objects
3112 (saves memory space). */
3113 tmp = exec_header.exec_dsize;
3114 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3115 exec_header.exec_bsize -= (tmp - exec_header.exec_dsize);
3116 if (exec_header.exec_bsize < 0)
3117 exec_header.exec_bsize = 0;
3118 exec_header.exec_dsize = tmp;
3119
3120 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3121 SEEK_SET) < 0)
3122 return false;
3123
3124 if (bfd_write ((PTR) &exec_header, AUX_HDR_SIZE, 1, abfd)
3125 != AUX_HDR_SIZE)
3126 return false;
3127 }
3128 return true;
3129 }
3130
3131 /* Finally, scribble out the various headers to the disk. */
3132
3133 static boolean
3134 som_write_headers (abfd)
3135 bfd *abfd;
3136 {
3137 int num_spaces = som_count_spaces (abfd);
3138 int i;
3139 int subspace_index = 0;
3140 file_ptr location;
3141 asection *section;
3142
3143 /* Subspaces are written first so that we can set up information
3144 about them in their containing spaces as the subspace is written. */
3145
3146 /* Seek to the start of the subspace dictionary records. */
3147 location = obj_som_file_hdr (abfd)->subspace_location;
3148 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3149 return false;
3150
3151 section = abfd->sections;
3152 /* Now for each loadable space write out records for its subspaces. */
3153 for (i = 0; i < num_spaces; i++)
3154 {
3155 asection *subsection;
3156
3157 /* Find a space. */
3158 while (!som_is_space (section))
3159 section = section->next;
3160
3161 /* Now look for all its subspaces. */
3162 for (subsection = abfd->sections;
3163 subsection != NULL;
3164 subsection = subsection->next)
3165 {
3166
3167 /* Skip any section which does not correspond to a space
3168 or subspace. Or does not have SEC_ALLOC set (and therefore
3169 has no real bits on the disk). */
3170 if (!som_is_subspace (subsection)
3171 || !som_is_container (section, subsection)
3172 || (subsection->flags & SEC_ALLOC) == 0)
3173 continue;
3174
3175 /* If this is the first subspace for this space, then save
3176 the index of the subspace in its containing space. Also
3177 set "is_loadable" in the containing space. */
3178
3179 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3180 {
3181 som_section_data (section)->space_dict->is_loadable = 1;
3182 som_section_data (section)->space_dict->subspace_index
3183 = subspace_index;
3184 }
3185
3186 /* Increment the number of subspaces seen and the number of
3187 subspaces contained within the current space. */
3188 subspace_index++;
3189 som_section_data (section)->space_dict->subspace_quantity++;
3190
3191 /* Mark the index of the current space within the subspace's
3192 dictionary record. */
3193 som_section_data (subsection)->subspace_dict->space_index = i;
3194
3195 /* Dump the current subspace header. */
3196 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3197 sizeof (struct subspace_dictionary_record), 1, abfd)
3198 != sizeof (struct subspace_dictionary_record))
3199 return false;
3200 }
3201 /* Goto the next section. */
3202 section = section->next;
3203 }
3204
3205 /* Now repeat the process for unloadable subspaces. */
3206 section = abfd->sections;
3207 /* Now for each space write out records for its subspaces. */
3208 for (i = 0; i < num_spaces; i++)
3209 {
3210 asection *subsection;
3211
3212 /* Find a space. */
3213 while (!som_is_space (section))
3214 section = section->next;
3215
3216 /* Now look for all its subspaces. */
3217 for (subsection = abfd->sections;
3218 subsection != NULL;
3219 subsection = subsection->next)
3220 {
3221
3222 /* Skip any section which does not correspond to a space or
3223 subspace, or which SEC_ALLOC set (and therefore handled
3224 in the loadable spaces/subspaces code above). */
3225
3226 if (!som_is_subspace (subsection)
3227 || !som_is_container (section, subsection)
3228 || (subsection->flags & SEC_ALLOC) != 0)
3229 continue;
3230
3231 /* If this is the first subspace for this space, then save
3232 the index of the subspace in its containing space. Clear
3233 "is_loadable". */
3234
3235 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3236 {
3237 som_section_data (section)->space_dict->is_loadable = 0;
3238 som_section_data (section)->space_dict->subspace_index
3239 = subspace_index;
3240 }
3241
3242 /* Increment the number of subspaces seen and the number of
3243 subspaces contained within the current space. */
3244 som_section_data (section)->space_dict->subspace_quantity++;
3245 subspace_index++;
3246
3247 /* Mark the index of the current space within the subspace's
3248 dictionary record. */
3249 som_section_data (subsection)->subspace_dict->space_index = i;
3250
3251 /* Dump this subspace header. */
3252 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3253 sizeof (struct subspace_dictionary_record), 1, abfd)
3254 != sizeof (struct subspace_dictionary_record))
3255 return false;
3256 }
3257 /* Goto the next section. */
3258 section = section->next;
3259 }
3260
3261 /* All the subspace dictiondary records are written, and all the
3262 fields are set up in the space dictionary records.
3263
3264 Seek to the right location and start writing the space
3265 dictionary records. */
3266 location = obj_som_file_hdr (abfd)->space_location;
3267 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3268 return false;
3269
3270 section = abfd->sections;
3271 for (i = 0; i < num_spaces; i++)
3272 {
3273
3274 /* Find a space. */
3275 while (!som_is_space (section))
3276 section = section->next;
3277
3278 /* Dump its header */
3279 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3280 sizeof (struct space_dictionary_record), 1, abfd)
3281 != sizeof (struct space_dictionary_record))
3282 return false;
3283
3284 /* Goto the next section. */
3285 section = section->next;
3286 }
3287
3288 /* Only thing left to do is write out the file header. It is always
3289 at location zero. Seek there and write it. */
3290 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3291 return false;
3292 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3293 sizeof (struct header), 1, abfd)
3294 != sizeof (struct header))
3295 return false;
3296 return true;
3297 }
3298
3299 /* Compute and return the checksum for a SOM file header. */
3300
3301 static unsigned long
3302 som_compute_checksum (abfd)
3303 bfd *abfd;
3304 {
3305 unsigned long checksum, count, i;
3306 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3307
3308 checksum = 0;
3309 count = sizeof (struct header) / sizeof (unsigned long);
3310 for (i = 0; i < count; i++)
3311 checksum ^= *(buffer + i);
3312
3313 return checksum;
3314 }
3315
3316 static void
3317 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3318 bfd *abfd;
3319 asymbol *sym;
3320 struct som_misc_symbol_info *info;
3321 {
3322 /* Initialize. */
3323 memset (info, 0, sizeof (struct som_misc_symbol_info));
3324
3325 /* The HP SOM linker requires detailed type information about
3326 all symbols (including undefined symbols!). Unfortunately,
3327 the type specified in an import/export statement does not
3328 always match what the linker wants. Severe braindamage. */
3329
3330 /* Section symbols will not have a SOM symbol type assigned to
3331 them yet. Assign all section symbols type ST_DATA. */
3332 if (sym->flags & BSF_SECTION_SYM)
3333 info->symbol_type = ST_DATA;
3334 else
3335 {
3336 /* Common symbols must have scope SS_UNSAT and type
3337 ST_STORAGE or the linker will choke. */
3338 if (sym->section == &bfd_com_section)
3339 {
3340 info->symbol_scope = SS_UNSAT;
3341 info->symbol_type = ST_STORAGE;
3342 }
3343
3344 /* It is possible to have a symbol without an associated
3345 type. This happens if the user imported the symbol
3346 without a type and the symbol was never defined
3347 locally. If BSF_FUNCTION is set for this symbol, then
3348 assign it type ST_CODE (the HP linker requires undefined
3349 external functions to have type ST_CODE rather than ST_ENTRY). */
3350 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3351 && sym->section == &bfd_und_section
3352 && sym->flags & BSF_FUNCTION)
3353 info->symbol_type = ST_CODE;
3354
3355 /* Handle function symbols which were defined in this file.
3356 They should have type ST_ENTRY. Also retrieve the argument
3357 relocation bits from the SOM backend information. */
3358 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3359 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3360 && (sym->flags & BSF_FUNCTION))
3361 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3362 && (sym->flags & BSF_FUNCTION)))
3363 {
3364 info->symbol_type = ST_ENTRY;
3365 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3366 }
3367
3368 /* If the type is unknown at this point, it should be
3369 ST_DATA (functions were handled as special cases above). */
3370 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3371 info->symbol_type = ST_DATA;
3372
3373 /* From now on it's a very simple mapping. */
3374 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3375 info->symbol_type = ST_ABSOLUTE;
3376 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3377 info->symbol_type = ST_CODE;
3378 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3379 info->symbol_type = ST_DATA;
3380 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3381 info->symbol_type = ST_MILLICODE;
3382 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3383 info->symbol_type = ST_PLABEL;
3384 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3385 info->symbol_type = ST_PRI_PROG;
3386 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3387 info->symbol_type = ST_SEC_PROG;
3388 }
3389
3390 /* Now handle the symbol's scope. Exported data which is not
3391 in the common section has scope SS_UNIVERSAL. Note scope
3392 of common symbols was handled earlier! */
3393 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3394 info->symbol_scope = SS_UNIVERSAL;
3395 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3396 else if (sym->section == &bfd_und_section)
3397 info->symbol_scope = SS_UNSAT;
3398 /* Anything else which is not in the common section has scope
3399 SS_LOCAL. */
3400 else if (sym->section != &bfd_com_section)
3401 info->symbol_scope = SS_LOCAL;
3402
3403 /* Now set the symbol_info field. It has no real meaning
3404 for undefined or common symbols, but the HP linker will
3405 choke if it's not set to some "reasonable" value. We
3406 use zero as a reasonable value. */
3407 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section
3408 || sym->section == &bfd_abs_section)
3409 info->symbol_info = 0;
3410 /* For all other symbols, the symbol_info field contains the
3411 subspace index of the space this symbol is contained in. */
3412 else
3413 info->symbol_info = sym->section->target_index;
3414
3415 /* Set the symbol's value. */
3416 info->symbol_value = sym->value + sym->section->vma;
3417 }
3418
3419 /* Build and write, in one big chunk, the entire symbol table for
3420 this BFD. */
3421
3422 static boolean
3423 som_build_and_write_symbol_table (abfd)
3424 bfd *abfd;
3425 {
3426 unsigned int num_syms = bfd_get_symcount (abfd);
3427 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3428 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3429 struct symbol_dictionary_record *som_symtab = NULL;
3430 int i, symtab_size;
3431
3432 /* Compute total symbol table size and allocate a chunk of memory
3433 to hold the symbol table as we build it. */
3434 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3435 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3436 if (som_symtab == NULL && symtab_size != 0)
3437 {
3438 bfd_set_error (bfd_error_no_memory);
3439 goto error_return;
3440 }
3441 memset (som_symtab, 0, symtab_size);
3442
3443 /* Walk over each symbol. */
3444 for (i = 0; i < num_syms; i++)
3445 {
3446 struct som_misc_symbol_info info;
3447
3448 /* This is really an index into the symbol strings table.
3449 By the time we get here, the index has already been
3450 computed and stored into the name field in the BFD symbol. */
3451 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3452
3453 /* Derive SOM information from the BFD symbol. */
3454 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3455
3456 /* Now use it. */
3457 som_symtab[i].symbol_type = info.symbol_type;
3458 som_symtab[i].symbol_scope = info.symbol_scope;
3459 som_symtab[i].arg_reloc = info.arg_reloc;
3460 som_symtab[i].symbol_info = info.symbol_info;
3461 som_symtab[i].symbol_value = info.symbol_value;
3462 }
3463
3464 /* Everything is ready, seek to the right location and
3465 scribble out the symbol table. */
3466 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3467 return false;
3468
3469 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3470 goto error_return;
3471
3472 if (som_symtab != NULL)
3473 free (som_symtab);
3474 return true;
3475 error_return:
3476 if (som_symtab != NULL)
3477 free (som_symtab);
3478 return false;
3479 }
3480
3481 /* Write an object in SOM format. */
3482
3483 static boolean
3484 som_write_object_contents (abfd)
3485 bfd *abfd;
3486 {
3487 if (abfd->output_has_begun == false)
3488 {
3489 /* Set up fixed parts of the file, space, and subspace headers.
3490 Notify the world that output has begun. */
3491 som_prep_headers (abfd);
3492 abfd->output_has_begun = true;
3493 /* Start writing the object file. This include all the string
3494 tables, fixup streams, and other portions of the object file. */
3495 som_begin_writing (abfd);
3496 }
3497
3498 /* Now that the symbol table information is complete, build and
3499 write the symbol table. */
3500 if (som_build_and_write_symbol_table (abfd) == false)
3501 return false;
3502
3503 /* Compute the checksum for the file header just before writing
3504 the header to disk. */
3505 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3506 return (som_write_headers (abfd));
3507 }
3508
3509 \f
3510 /* Read and save the string table associated with the given BFD. */
3511
3512 static boolean
3513 som_slurp_string_table (abfd)
3514 bfd *abfd;
3515 {
3516 char *stringtab;
3517
3518 /* Use the saved version if its available. */
3519 if (obj_som_stringtab (abfd) != NULL)
3520 return true;
3521
3522 /* Allocate and read in the string table. */
3523 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3524 if (stringtab == NULL)
3525 {
3526 bfd_set_error (bfd_error_no_memory);
3527 return false;
3528 }
3529
3530 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3531 return false;
3532
3533 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3534 != obj_som_stringtab_size (abfd))
3535 return false;
3536
3537 /* Save our results and return success. */
3538 obj_som_stringtab (abfd) = stringtab;
3539 return true;
3540 }
3541
3542 /* Return the amount of data (in bytes) required to hold the symbol
3543 table for this object. */
3544
3545 static unsigned int
3546 som_get_symtab_upper_bound (abfd)
3547 bfd *abfd;
3548 {
3549 if (!som_slurp_symbol_table (abfd))
3550 return 0;
3551
3552 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3553 }
3554
3555 /* Convert from a SOM subspace index to a BFD section. */
3556
3557 static asection *
3558 bfd_section_from_som_symbol (abfd, symbol)
3559 bfd *abfd;
3560 struct symbol_dictionary_record *symbol;
3561 {
3562 asection *section;
3563
3564 /* The meaning of the symbol_info field changes for functions
3565 within executables. So only use the quick symbol_info mapping for
3566 incomplete objects and non-function symbols in executables. */
3567 if ((abfd->flags & EXEC_P) == 0
3568 || (symbol->symbol_type != ST_ENTRY
3569 && symbol->symbol_type != ST_PRI_PROG
3570 && symbol->symbol_type != ST_SEC_PROG
3571 && symbol->symbol_type != ST_MILLICODE))
3572 {
3573 unsigned int index = symbol->symbol_info;
3574 for (section = abfd->sections; section != NULL; section = section->next)
3575 if (section->target_index == index)
3576 return section;
3577
3578 /* Should never happen. */
3579 abort();
3580 }
3581 else
3582 {
3583 unsigned int value = symbol->symbol_value;
3584 unsigned int found = 0;
3585
3586 /* For executables we will have to use the symbol's address and
3587 find out what section would contain that address. Yuk. */
3588 for (section = abfd->sections; section; section = section->next)
3589 {
3590 if (value >= section->vma
3591 && value <= section->vma + section->_cooked_size)
3592 return section;
3593 }
3594
3595 /* Should never happen. */
3596 abort ();
3597 }
3598 }
3599
3600 /* Read and save the symbol table associated with the given BFD. */
3601
3602 static unsigned int
3603 som_slurp_symbol_table (abfd)
3604 bfd *abfd;
3605 {
3606 int symbol_count = bfd_get_symcount (abfd);
3607 int symsize = sizeof (struct symbol_dictionary_record);
3608 char *stringtab;
3609 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3610 som_symbol_type *sym, *symbase;
3611
3612 /* Return saved value if it exists. */
3613 if (obj_som_symtab (abfd) != NULL)
3614 goto successful_return;
3615
3616 /* Special case. This is *not* an error. */
3617 if (symbol_count == 0)
3618 goto successful_return;
3619
3620 if (!som_slurp_string_table (abfd))
3621 goto error_return;
3622
3623 stringtab = obj_som_stringtab (abfd);
3624
3625 symbase = (som_symbol_type *)
3626 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3627 if (symbase == NULL)
3628 {
3629 bfd_set_error (bfd_error_no_memory);
3630 goto error_return;
3631 }
3632
3633 /* Read in the external SOM representation. */
3634 buf = malloc (symbol_count * symsize);
3635 if (buf == NULL && symbol_count * symsize != 0)
3636 {
3637 bfd_set_error (bfd_error_no_memory);
3638 goto error_return;
3639 }
3640 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3641 goto error_return;
3642 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3643 != symbol_count * symsize)
3644 goto error_return;
3645
3646 /* Iterate over all the symbols and internalize them. */
3647 endbufp = buf + symbol_count;
3648 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3649 {
3650
3651 /* I don't think we care about these. */
3652 if (bufp->symbol_type == ST_SYM_EXT
3653 || bufp->symbol_type == ST_ARG_EXT)
3654 continue;
3655
3656 /* Set some private data we care about. */
3657 if (bufp->symbol_type == ST_NULL)
3658 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3659 else if (bufp->symbol_type == ST_ABSOLUTE)
3660 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3661 else if (bufp->symbol_type == ST_DATA)
3662 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3663 else if (bufp->symbol_type == ST_CODE)
3664 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3665 else if (bufp->symbol_type == ST_PRI_PROG)
3666 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3667 else if (bufp->symbol_type == ST_SEC_PROG)
3668 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3669 else if (bufp->symbol_type == ST_ENTRY)
3670 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3671 else if (bufp->symbol_type == ST_MILLICODE)
3672 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3673 else if (bufp->symbol_type == ST_PLABEL)
3674 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3675 else
3676 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3677 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3678
3679 /* Some reasonable defaults. */
3680 sym->symbol.the_bfd = abfd;
3681 sym->symbol.name = bufp->name.n_strx + stringtab;
3682 sym->symbol.value = bufp->symbol_value;
3683 sym->symbol.section = 0;
3684 sym->symbol.flags = 0;
3685
3686 switch (bufp->symbol_type)
3687 {
3688 case ST_ENTRY:
3689 case ST_PRI_PROG:
3690 case ST_SEC_PROG:
3691 case ST_MILLICODE:
3692 sym->symbol.flags |= BSF_FUNCTION;
3693 sym->symbol.value &= ~0x3;
3694 break;
3695
3696 case ST_STUB:
3697 case ST_CODE:
3698 sym->symbol.value &= ~0x3;
3699
3700 default:
3701 break;
3702 }
3703
3704 /* Handle scoping and section information. */
3705 switch (bufp->symbol_scope)
3706 {
3707 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3708 so the section associated with this symbol can't be known. */
3709 case SS_EXTERNAL:
3710 if (bufp->symbol_type != ST_STORAGE)
3711 sym->symbol.section = &bfd_und_section;
3712 else
3713 sym->symbol.section = &bfd_com_section;
3714 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3715 break;
3716
3717 case SS_UNSAT:
3718 if (bufp->symbol_type != ST_STORAGE)
3719 sym->symbol.section = &bfd_und_section;
3720 else
3721 sym->symbol.section = &bfd_com_section;
3722 break;
3723
3724 case SS_UNIVERSAL:
3725 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3726 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3727 sym->symbol.value -= sym->symbol.section->vma;
3728 break;
3729
3730 #if 0
3731 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3732 Sound dumb? It is. */
3733 case SS_GLOBAL:
3734 #endif
3735 case SS_LOCAL:
3736 sym->symbol.flags |= BSF_LOCAL;
3737 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3738 sym->symbol.value -= sym->symbol.section->vma;
3739 break;
3740 }
3741
3742 /* Mark section symbols and symbols used by the debugger. */
3743 if (sym->symbol.name[0] == '$'
3744 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$')
3745 sym->symbol.flags |= BSF_SECTION_SYM;
3746 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3747 {
3748 sym->symbol.flags |= BSF_SECTION_SYM;
3749 sym->symbol.name = sym->symbol.section->name;
3750 }
3751 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3752 sym->symbol.flags |= BSF_DEBUGGING;
3753
3754 /* Note increment at bottom of loop, since we skip some symbols
3755 we can not include it as part of the for statement. */
3756 sym++;
3757 }
3758
3759 /* Save our results and return success. */
3760 obj_som_symtab (abfd) = symbase;
3761 successful_return:
3762 if (buf != NULL)
3763 free (buf);
3764 return (true);
3765
3766 error_return:
3767 if (buf != NULL)
3768 free (buf);
3769 return false;
3770 }
3771
3772 /* Canonicalize a SOM symbol table. Return the number of entries
3773 in the symbol table. */
3774
3775 static unsigned int
3776 som_get_symtab (abfd, location)
3777 bfd *abfd;
3778 asymbol **location;
3779 {
3780 int i;
3781 som_symbol_type *symbase;
3782
3783 if (!som_slurp_symbol_table (abfd))
3784 return 0;
3785
3786 i = bfd_get_symcount (abfd);
3787 symbase = obj_som_symtab (abfd);
3788
3789 for (; i > 0; i--, location++, symbase++)
3790 *location = &symbase->symbol;
3791
3792 /* Final null pointer. */
3793 *location = 0;
3794 return (bfd_get_symcount (abfd));
3795 }
3796
3797 /* Make a SOM symbol. There is nothing special to do here. */
3798
3799 static asymbol *
3800 som_make_empty_symbol (abfd)
3801 bfd *abfd;
3802 {
3803 som_symbol_type *new =
3804 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3805 if (new == NULL)
3806 {
3807 bfd_set_error (bfd_error_no_memory);
3808 return 0;
3809 }
3810 new->symbol.the_bfd = abfd;
3811
3812 return &new->symbol;
3813 }
3814
3815 /* Print symbol information. */
3816
3817 static void
3818 som_print_symbol (ignore_abfd, afile, symbol, how)
3819 bfd *ignore_abfd;
3820 PTR afile;
3821 asymbol *symbol;
3822 bfd_print_symbol_type how;
3823 {
3824 FILE *file = (FILE *) afile;
3825 switch (how)
3826 {
3827 case bfd_print_symbol_name:
3828 fprintf (file, "%s", symbol->name);
3829 break;
3830 case bfd_print_symbol_more:
3831 fprintf (file, "som ");
3832 fprintf_vma (file, symbol->value);
3833 fprintf (file, " %lx", (long) symbol->flags);
3834 break;
3835 case bfd_print_symbol_all:
3836 {
3837 CONST char *section_name;
3838 section_name = symbol->section ? symbol->section->name : "(*none*)";
3839 bfd_print_symbol_vandf ((PTR) file, symbol);
3840 fprintf (file, " %s\t%s", section_name, symbol->name);
3841 break;
3842 }
3843 }
3844 }
3845
3846 static boolean
3847 som_bfd_is_local_label (abfd, sym)
3848 bfd *abfd;
3849 asymbol *sym;
3850 {
3851 return (sym->name[0] == 'L' && sym->name[1] == '$');
3852 }
3853
3854 /* Count or process variable-length SOM fixup records.
3855
3856 To avoid code duplication we use this code both to compute the number
3857 of relocations requested by a stream, and to internalize the stream.
3858
3859 When computing the number of relocations requested by a stream the
3860 variables rptr, section, and symbols have no meaning.
3861
3862 Return the number of relocations requested by the fixup stream. When
3863 not just counting
3864
3865 This needs at least two or three more passes to get it cleaned up. */
3866
3867 static unsigned int
3868 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3869 unsigned char *fixup;
3870 unsigned int end;
3871 arelent *internal_relocs;
3872 asection *section;
3873 asymbol **symbols;
3874 boolean just_count;
3875 {
3876 unsigned int op, varname;
3877 unsigned char *end_fixups = &fixup[end];
3878 const struct fixup_format *fp;
3879 char *cp;
3880 unsigned char *save_fixup;
3881 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3882 const int *subop;
3883 arelent *rptr= internal_relocs;
3884 unsigned int offset = just_count ? 0 : section->vma;
3885
3886 #define var(c) variables[(c) - 'A']
3887 #define push(v) (*sp++ = (v))
3888 #define pop() (*--sp)
3889 #define emptystack() (sp == stack)
3890
3891 som_initialize_reloc_queue (reloc_queue);
3892 memset (variables, 0, sizeof (variables));
3893 memset (stack, 0, sizeof (stack));
3894 count = 0;
3895 prev_fixup = 0;
3896 sp = stack;
3897
3898 while (fixup < end_fixups)
3899 {
3900
3901 /* Save pointer to the start of this fixup. We'll use
3902 it later to determine if it is necessary to put this fixup
3903 on the queue. */
3904 save_fixup = fixup;
3905
3906 /* Get the fixup code and its associated format. */
3907 op = *fixup++;
3908 fp = &som_fixup_formats[op];
3909
3910 /* Handle a request for a previous fixup. */
3911 if (*fp->format == 'P')
3912 {
3913 /* Get pointer to the beginning of the prev fixup, move
3914 the repeated fixup to the head of the queue. */
3915 fixup = reloc_queue[fp->D].reloc;
3916 som_reloc_queue_fix (reloc_queue, fp->D);
3917 prev_fixup = 1;
3918
3919 /* Get the fixup code and its associated format. */
3920 op = *fixup++;
3921 fp = &som_fixup_formats[op];
3922 }
3923
3924 /* If we are not just counting, set some reasonable defaults. */
3925 if (! just_count)
3926 {
3927 rptr->address = offset;
3928 rptr->howto = &som_hppa_howto_table[op];
3929 rptr->addend = 0;
3930 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3931 }
3932
3933 /* Set default input length to 0. Get the opcode class index
3934 into D. */
3935 var ('L') = 0;
3936 var ('D') = fp->D;
3937
3938 /* Get the opcode format. */
3939 cp = fp->format;
3940
3941 /* Process the format string. Parsing happens in two phases,
3942 parse RHS, then assign to LHS. Repeat until no more
3943 characters in the format string. */
3944 while (*cp)
3945 {
3946 /* The variable this pass is going to compute a value for. */
3947 varname = *cp++;
3948
3949 /* Start processing RHS. Continue until a NULL or '=' is found. */
3950 do
3951 {
3952 c = *cp++;
3953
3954 /* If this is a variable, push it on the stack. */
3955 if (isupper (c))
3956 push (var (c));
3957
3958 /* If this is a lower case letter, then it represents
3959 additional data from the fixup stream to be pushed onto
3960 the stack. */
3961 else if (islower (c))
3962 {
3963 for (v = 0; c > 'a'; --c)
3964 v = (v << 8) | *fixup++;
3965 push (v);
3966 }
3967
3968 /* A decimal constant. Push it on the stack. */
3969 else if (isdigit (c))
3970 {
3971 v = c - '0';
3972 while (isdigit (*cp))
3973 v = (v * 10) + (*cp++ - '0');
3974 push (v);
3975 }
3976 else
3977
3978 /* An operator. Pop two two values from the stack and
3979 use them as operands to the given operation. Push
3980 the result of the operation back on the stack. */
3981 switch (c)
3982 {
3983 case '+':
3984 v = pop ();
3985 v += pop ();
3986 push (v);
3987 break;
3988 case '*':
3989 v = pop ();
3990 v *= pop ();
3991 push (v);
3992 break;
3993 case '<':
3994 v = pop ();
3995 v = pop () << v;
3996 push (v);
3997 break;
3998 default:
3999 abort ();
4000 }
4001 }
4002 while (*cp && *cp != '=');
4003
4004 /* Move over the equal operator. */
4005 cp++;
4006
4007 /* Pop the RHS off the stack. */
4008 c = pop ();
4009
4010 /* Perform the assignment. */
4011 var (varname) = c;
4012
4013 /* Handle side effects. and special 'O' stack cases. */
4014 switch (varname)
4015 {
4016 /* Consume some bytes from the input space. */
4017 case 'L':
4018 offset += c;
4019 break;
4020 /* A symbol to use in the relocation. Make a note
4021 of this if we are not just counting. */
4022 case 'S':
4023 if (! just_count)
4024 rptr->sym_ptr_ptr = &symbols[c];
4025 break;
4026 /* Handle the linker expression stack. */
4027 case 'O':
4028 switch (op)
4029 {
4030 case R_COMP1:
4031 subop = comp1_opcodes;
4032 break;
4033 case R_COMP2:
4034 subop = comp2_opcodes;
4035 break;
4036 case R_COMP3:
4037 subop = comp3_opcodes;
4038 break;
4039 default:
4040 abort ();
4041 }
4042 while (*subop <= (unsigned char) c)
4043 ++subop;
4044 --subop;
4045 break;
4046 default:
4047 break;
4048 }
4049 }
4050
4051 /* If we used a previous fixup, clean up after it. */
4052 if (prev_fixup)
4053 {
4054 fixup = save_fixup + 1;
4055 prev_fixup = 0;
4056 }
4057 /* Queue it. */
4058 else if (fixup > save_fixup + 1)
4059 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4060
4061 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4062 fixups to BFD. */
4063 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4064 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4065 {
4066 /* Done with a single reloction. Loop back to the top. */
4067 if (! just_count)
4068 {
4069 rptr->addend = var ('V');
4070 rptr++;
4071 }
4072 count++;
4073 /* Now that we've handled a "full" relocation, reset
4074 some state. */
4075 memset (variables, 0, sizeof (variables));
4076 memset (stack, 0, sizeof (stack));
4077 }
4078 }
4079 return count;
4080
4081 #undef var
4082 #undef push
4083 #undef pop
4084 #undef emptystack
4085 }
4086
4087 /* Read in the relocs (aka fixups in SOM terms) for a section.
4088
4089 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4090 set to true to indicate it only needs a count of the number
4091 of actual relocations. */
4092
4093 static boolean
4094 som_slurp_reloc_table (abfd, section, symbols, just_count)
4095 bfd *abfd;
4096 asection *section;
4097 asymbol **symbols;
4098 boolean just_count;
4099 {
4100 char *external_relocs;
4101 unsigned int fixup_stream_size;
4102 arelent *internal_relocs;
4103 unsigned int num_relocs;
4104
4105 fixup_stream_size = som_section_data (section)->reloc_size;
4106 /* If there were no relocations, then there is nothing to do. */
4107 if (section->reloc_count == 0)
4108 return true;
4109
4110 /* If reloc_count is -1, then the relocation stream has not been
4111 parsed. We must do so now to know how many relocations exist. */
4112 if (section->reloc_count == -1)
4113 {
4114 external_relocs = (char *) bfd_zalloc (abfd, fixup_stream_size);
4115 if (external_relocs == (char *) NULL)
4116 {
4117 bfd_set_error (bfd_error_no_memory);
4118 return false;
4119 }
4120 /* Read in the external forms. */
4121 if (bfd_seek (abfd,
4122 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4123 SEEK_SET)
4124 != 0)
4125 return false;
4126 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4127 != fixup_stream_size)
4128 return false;
4129
4130 /* Let callers know how many relocations found.
4131 also save the relocation stream as we will
4132 need it again. */
4133 section->reloc_count = som_set_reloc_info (external_relocs,
4134 fixup_stream_size,
4135 NULL, NULL, NULL, true);
4136
4137 som_section_data (section)->reloc_stream = external_relocs;
4138 }
4139
4140 /* If the caller only wanted a count, then return now. */
4141 if (just_count)
4142 return true;
4143
4144 num_relocs = section->reloc_count;
4145 external_relocs = som_section_data (section)->reloc_stream;
4146 /* Return saved information about the relocations if it is available. */
4147 if (section->relocation != (arelent *) NULL)
4148 return true;
4149
4150 internal_relocs = (arelent *) bfd_zalloc (abfd,
4151 num_relocs * sizeof (arelent));
4152 if (internal_relocs == (arelent *) NULL)
4153 {
4154 bfd_set_error (bfd_error_no_memory);
4155 return false;
4156 }
4157
4158 /* Process and internalize the relocations. */
4159 som_set_reloc_info (external_relocs, fixup_stream_size,
4160 internal_relocs, section, symbols, false);
4161
4162 /* Save our results and return success. */
4163 section->relocation = internal_relocs;
4164 return (true);
4165 }
4166
4167 /* Return the number of bytes required to store the relocation
4168 information associated with the given section. */
4169
4170 static unsigned int
4171 som_get_reloc_upper_bound (abfd, asect)
4172 bfd *abfd;
4173 sec_ptr asect;
4174 {
4175 /* If section has relocations, then read in the relocation stream
4176 and parse it to determine how many relocations exist. */
4177 if (asect->flags & SEC_RELOC)
4178 {
4179 if (som_slurp_reloc_table (abfd, asect, NULL, true))
4180 return (asect->reloc_count + 1) * sizeof (arelent);
4181 }
4182 /* Either there are no relocations or an error occurred while
4183 reading and parsing the relocation stream. */
4184 return 0;
4185 }
4186
4187 /* Convert relocations from SOM (external) form into BFD internal
4188 form. Return the number of relocations. */
4189
4190 static unsigned int
4191 som_canonicalize_reloc (abfd, section, relptr, symbols)
4192 bfd *abfd;
4193 sec_ptr section;
4194 arelent **relptr;
4195 asymbol **symbols;
4196 {
4197 arelent *tblptr;
4198 int count;
4199
4200 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4201 return 0;
4202
4203 count = section->reloc_count;
4204 tblptr = section->relocation;
4205 if (tblptr == (arelent *) NULL)
4206 return 0;
4207
4208 while (count--)
4209 *relptr++ = tblptr++;
4210
4211 *relptr = (arelent *) NULL;
4212 return section->reloc_count;
4213 }
4214
4215 extern bfd_target som_vec;
4216
4217 /* A hook to set up object file dependent section information. */
4218
4219 static boolean
4220 som_new_section_hook (abfd, newsect)
4221 bfd *abfd;
4222 asection *newsect;
4223 {
4224 newsect->used_by_bfd =
4225 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4226 if (!newsect->used_by_bfd)
4227 {
4228 bfd_set_error (bfd_error_no_memory);
4229 return false;
4230 }
4231 newsect->alignment_power = 3;
4232
4233 /* We allow more than three sections internally */
4234 return true;
4235 }
4236
4237 /* Copy any private info we understand from the input section
4238 to the output section. */
4239 static boolean
4240 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4241 bfd *ibfd;
4242 asection *isection;
4243 bfd *obfd;
4244 asection *osection;
4245 {
4246 /* One day we may try to grok other private data. */
4247 if (ibfd->xvec->flavour != bfd_target_som_flavour
4248 || obfd->xvec->flavour != bfd_target_som_flavour
4249 || (!som_is_space (isection) && !som_is_subspace (isection)))
4250 return false;
4251
4252 som_section_data (osection)->copy_data
4253 = (struct som_copyable_section_data_struct *)
4254 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4255 if (som_section_data (osection)->copy_data == NULL)
4256 {
4257 bfd_set_error (bfd_error_no_memory);
4258 return false;
4259 }
4260
4261 memcpy (som_section_data (osection)->copy_data,
4262 som_section_data (isection)->copy_data,
4263 sizeof (struct som_copyable_section_data_struct));
4264
4265 /* Reparent if necessary. */
4266 if (som_section_data (osection)->copy_data->container)
4267 som_section_data (osection)->copy_data->container =
4268 som_section_data (osection)->copy_data->container->output_section;
4269
4270 return true;
4271 }
4272
4273 /* Copy any private info we understand from the input bfd
4274 to the output bfd. */
4275
4276 static boolean
4277 som_bfd_copy_private_bfd_data (ibfd, obfd)
4278 bfd *ibfd, *obfd;
4279 {
4280 /* One day we may try to grok other private data. */
4281 if (ibfd->xvec->flavour != bfd_target_som_flavour
4282 || obfd->xvec->flavour != bfd_target_som_flavour)
4283 return false;
4284
4285 /* Allocate some memory to hold the data we need. */
4286 obj_som_exec_data (obfd) = (struct som_exec_data *)
4287 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4288 if (obj_som_exec_data (obfd) == NULL)
4289 {
4290 bfd_set_error (bfd_error_no_memory);
4291 return false;
4292 }
4293
4294 /* Now copy the data. */
4295 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4296 sizeof (struct som_exec_data));
4297
4298 return true;
4299 }
4300
4301 /* Set backend info for sections which can not be described
4302 in the BFD data structures. */
4303
4304 boolean
4305 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4306 asection *section;
4307 int defined;
4308 int private;
4309 unsigned int sort_key;
4310 int spnum;
4311 {
4312 /* Allocate memory to hold the magic information. */
4313 if (som_section_data (section)->copy_data == NULL)
4314 {
4315 som_section_data (section)->copy_data
4316 = (struct som_copyable_section_data_struct *)
4317 bfd_zalloc (section->owner,
4318 sizeof (struct som_copyable_section_data_struct));
4319 if (som_section_data (section)->copy_data == NULL)
4320 {
4321 bfd_set_error (bfd_error_no_memory);
4322 return false;
4323 }
4324 }
4325 som_section_data (section)->copy_data->sort_key = sort_key;
4326 som_section_data (section)->copy_data->is_defined = defined;
4327 som_section_data (section)->copy_data->is_private = private;
4328 som_section_data (section)->copy_data->container = section;
4329 section->target_index = spnum;
4330 return true;
4331 }
4332
4333 /* Set backend info for subsections which can not be described
4334 in the BFD data structures. */
4335
4336 boolean
4337 bfd_som_set_subsection_attributes (section, container, access,
4338 sort_key, quadrant)
4339 asection *section;
4340 asection *container;
4341 int access;
4342 unsigned int sort_key;
4343 int quadrant;
4344 {
4345 /* Allocate memory to hold the magic information. */
4346 if (som_section_data (section)->copy_data == NULL)
4347 {
4348 som_section_data (section)->copy_data
4349 = (struct som_copyable_section_data_struct *)
4350 bfd_zalloc (section->owner,
4351 sizeof (struct som_copyable_section_data_struct));
4352 if (som_section_data (section)->copy_data == NULL)
4353 {
4354 bfd_set_error (bfd_error_no_memory);
4355 return false;
4356 }
4357 }
4358 som_section_data (section)->copy_data->sort_key = sort_key;
4359 som_section_data (section)->copy_data->access_control_bits = access;
4360 som_section_data (section)->copy_data->quadrant = quadrant;
4361 som_section_data (section)->copy_data->container = container;
4362 return true;
4363 }
4364
4365 /* Set the full SOM symbol type. SOM needs far more symbol information
4366 than any other object file format I'm aware of. It is mandatory
4367 to be able to know if a symbol is an entry point, millicode, data,
4368 code, absolute, storage request, or procedure label. If you get
4369 the symbol type wrong your program will not link. */
4370
4371 void
4372 bfd_som_set_symbol_type (symbol, type)
4373 asymbol *symbol;
4374 unsigned int type;
4375 {
4376 som_symbol_data (symbol)->som_type = type;
4377 }
4378
4379 /* Attach 64bits of unwind information to a symbol (which hopefully
4380 is a function of some kind!). It would be better to keep this
4381 in the R_ENTRY relocation, but there is not enough space. */
4382
4383 void
4384 bfd_som_attach_unwind_info (symbol, unwind_desc)
4385 asymbol *symbol;
4386 char *unwind_desc;
4387 {
4388 som_symbol_data (symbol)->unwind = unwind_desc;
4389 }
4390
4391 /* Attach an auxiliary header to the BFD backend so that it may be
4392 written into the object file. */
4393 boolean
4394 bfd_som_attach_aux_hdr (abfd, type, string)
4395 bfd *abfd;
4396 int type;
4397 char *string;
4398 {
4399 if (type == VERSION_AUX_ID)
4400 {
4401 int len = strlen (string);
4402 int pad = 0;
4403
4404 if (len % 4)
4405 pad = (4 - (len % 4));
4406 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4407 bfd_zalloc (abfd, sizeof (struct aux_id)
4408 + sizeof (unsigned int) + len + pad);
4409 if (!obj_som_version_hdr (abfd))
4410 {
4411 bfd_set_error (bfd_error_no_memory);
4412 return false;
4413 }
4414 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4415 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4416 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4417 obj_som_version_hdr (abfd)->string_length = len;
4418 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4419 }
4420 else if (type == COPYRIGHT_AUX_ID)
4421 {
4422 int len = strlen (string);
4423 int pad = 0;
4424
4425 if (len % 4)
4426 pad = (4 - (len % 4));
4427 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4428 bfd_zalloc (abfd, sizeof (struct aux_id)
4429 + sizeof (unsigned int) + len + pad);
4430 if (!obj_som_copyright_hdr (abfd))
4431 {
4432 bfd_set_error (bfd_error_no_memory);
4433 return false;
4434 }
4435 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4436 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4437 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4438 obj_som_copyright_hdr (abfd)->string_length = len;
4439 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4440 }
4441 return true;
4442 }
4443
4444 static boolean
4445 som_set_section_contents (abfd, section, location, offset, count)
4446 bfd *abfd;
4447 sec_ptr section;
4448 PTR location;
4449 file_ptr offset;
4450 bfd_size_type count;
4451 {
4452 if (abfd->output_has_begun == false)
4453 {
4454 /* Set up fixed parts of the file, space, and subspace headers.
4455 Notify the world that output has begun. */
4456 som_prep_headers (abfd);
4457 abfd->output_has_begun = true;
4458 /* Start writing the object file. This include all the string
4459 tables, fixup streams, and other portions of the object file. */
4460 som_begin_writing (abfd);
4461 }
4462
4463 /* Only write subspaces which have "real" contents (eg. the contents
4464 are not generated at run time by the OS). */
4465 if (!som_is_subspace (section)
4466 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4467 return true;
4468
4469 /* Seek to the proper offset within the object file and write the
4470 data. */
4471 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4472 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4473 return false;
4474
4475 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4476 return false;
4477 return true;
4478 }
4479
4480 static boolean
4481 som_set_arch_mach (abfd, arch, machine)
4482 bfd *abfd;
4483 enum bfd_architecture arch;
4484 unsigned long machine;
4485 {
4486 /* Allow any architecture to be supported by the SOM backend */
4487 return bfd_default_set_arch_mach (abfd, arch, machine);
4488 }
4489
4490 static boolean
4491 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4492 functionname_ptr, line_ptr)
4493 bfd *abfd;
4494 asection *section;
4495 asymbol **symbols;
4496 bfd_vma offset;
4497 CONST char **filename_ptr;
4498 CONST char **functionname_ptr;
4499 unsigned int *line_ptr;
4500 {
4501 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4502 fflush (stderr);
4503 abort ();
4504 return (false);
4505 }
4506
4507 static int
4508 som_sizeof_headers (abfd, reloc)
4509 bfd *abfd;
4510 boolean reloc;
4511 {
4512 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4513 fflush (stderr);
4514 abort ();
4515 return (0);
4516 }
4517
4518 /* Return the single-character symbol type corresponding to
4519 SOM section S, or '?' for an unknown SOM section. */
4520
4521 static char
4522 som_section_type (s)
4523 const char *s;
4524 {
4525 const struct section_to_type *t;
4526
4527 for (t = &stt[0]; t->section; t++)
4528 if (!strcmp (s, t->section))
4529 return t->type;
4530 return '?';
4531 }
4532
4533 static int
4534 som_decode_symclass (symbol)
4535 asymbol *symbol;
4536 {
4537 char c;
4538
4539 if (bfd_is_com_section (symbol->section))
4540 return 'C';
4541 if (symbol->section == &bfd_und_section)
4542 return 'U';
4543 if (symbol->section == &bfd_ind_section)
4544 return 'I';
4545 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4546 return '?';
4547
4548 if (symbol->section == &bfd_abs_section)
4549 c = 'a';
4550 else if (symbol->section)
4551 c = som_section_type (symbol->section->name);
4552 else
4553 return '?';
4554 if (symbol->flags & BSF_GLOBAL)
4555 c = toupper (c);
4556 return c;
4557 }
4558
4559 /* Return information about SOM symbol SYMBOL in RET. */
4560
4561 static void
4562 som_get_symbol_info (ignore_abfd, symbol, ret)
4563 bfd *ignore_abfd;
4564 asymbol *symbol;
4565 symbol_info *ret;
4566 {
4567 ret->type = som_decode_symclass (symbol);
4568 if (ret->type != 'U')
4569 ret->value = symbol->value+symbol->section->vma;
4570 else
4571 ret->value = 0;
4572 ret->name = symbol->name;
4573 }
4574
4575 /* Count the number of symbols in the archive symbol table. Necessary
4576 so that we can allocate space for all the carsyms at once. */
4577
4578 static boolean
4579 som_bfd_count_ar_symbols (abfd, lst_header, count)
4580 bfd *abfd;
4581 struct lst_header *lst_header;
4582 symindex *count;
4583 {
4584 unsigned int i;
4585 unsigned int *hash_table = NULL;
4586 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4587
4588 hash_table =
4589 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4590 if (hash_table == NULL && lst_header->hash_size != 0)
4591 {
4592 bfd_set_error (bfd_error_no_memory);
4593 goto error_return;
4594 }
4595
4596 /* Don't forget to initialize the counter! */
4597 *count = 0;
4598
4599 /* Read in the hash table. The has table is an array of 32bit file offsets
4600 which point to the hash chains. */
4601 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4602 != lst_header->hash_size * 4)
4603 goto error_return;
4604
4605 /* Walk each chain counting the number of symbols found on that particular
4606 chain. */
4607 for (i = 0; i < lst_header->hash_size; i++)
4608 {
4609 struct lst_symbol_record lst_symbol;
4610
4611 /* An empty chain has zero as it's file offset. */
4612 if (hash_table[i] == 0)
4613 continue;
4614
4615 /* Seek to the first symbol in this hash chain. */
4616 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4617 goto error_return;
4618
4619 /* Read in this symbol and update the counter. */
4620 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4621 != sizeof (lst_symbol))
4622 goto error_return;
4623
4624 (*count)++;
4625
4626 /* Now iterate through the rest of the symbols on this chain. */
4627 while (lst_symbol.next_entry)
4628 {
4629
4630 /* Seek to the next symbol. */
4631 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4632 < 0)
4633 goto error_return;
4634
4635 /* Read the symbol in and update the counter. */
4636 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4637 != sizeof (lst_symbol))
4638 goto error_return;
4639
4640 (*count)++;
4641 }
4642 }
4643 if (hash_table != NULL)
4644 free (hash_table);
4645 return true;
4646
4647 error_return:
4648 if (hash_table != NULL)
4649 free (hash_table);
4650 return false;
4651 }
4652
4653 /* Fill in the canonical archive symbols (SYMS) from the archive described
4654 by ABFD and LST_HEADER. */
4655
4656 static boolean
4657 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4658 bfd *abfd;
4659 struct lst_header *lst_header;
4660 carsym **syms;
4661 {
4662 unsigned int i, len;
4663 carsym *set = syms[0];
4664 unsigned int *hash_table = NULL;
4665 struct som_entry *som_dict = NULL;
4666 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4667
4668 hash_table =
4669 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4670 if (hash_table == NULL && lst_header->hash_size != 0)
4671 {
4672 bfd_set_error (bfd_error_no_memory);
4673 goto error_return;
4674 }
4675
4676 som_dict =
4677 (struct som_entry *) malloc (lst_header->module_count
4678 * sizeof (struct som_entry));
4679 if (som_dict == NULL && lst_header->module_count != 0)
4680 {
4681 bfd_set_error (bfd_error_no_memory);
4682 goto error_return;
4683 }
4684
4685 /* Read in the hash table. The has table is an array of 32bit file offsets
4686 which point to the hash chains. */
4687 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4688 != lst_header->hash_size * 4)
4689 goto error_return;
4690
4691 /* Seek to and read in the SOM dictionary. We will need this to fill
4692 in the carsym's filepos field. */
4693 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4694 goto error_return;
4695
4696 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4697 sizeof (struct som_entry), abfd)
4698 != lst_header->module_count * sizeof (struct som_entry))
4699 goto error_return;
4700
4701 /* Walk each chain filling in the carsyms as we go along. */
4702 for (i = 0; i < lst_header->hash_size; i++)
4703 {
4704 struct lst_symbol_record lst_symbol;
4705
4706 /* An empty chain has zero as it's file offset. */
4707 if (hash_table[i] == 0)
4708 continue;
4709
4710 /* Seek to and read the first symbol on the chain. */
4711 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4712 goto error_return;
4713
4714 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4715 != sizeof (lst_symbol))
4716 goto error_return;
4717
4718 /* Get the name of the symbol, first get the length which is stored
4719 as a 32bit integer just before the symbol.
4720
4721 One might ask why we don't just read in the entire string table
4722 and index into it. Well, according to the SOM ABI the string
4723 index can point *anywhere* in the archive to save space, so just
4724 using the string table would not be safe. */
4725 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4726 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4727 goto error_return;
4728
4729 if (bfd_read (&len, 1, 4, abfd) != 4)
4730 goto error_return;
4731
4732 /* Allocate space for the name and null terminate it too. */
4733 set->name = bfd_zalloc (abfd, len + 1);
4734 if (!set->name)
4735 {
4736 bfd_set_error (bfd_error_no_memory);
4737 goto error_return;
4738 }
4739 if (bfd_read (set->name, 1, len, abfd) != len)
4740 goto error_return;
4741
4742 set->name[len] = 0;
4743
4744 /* Fill in the file offset. Note that the "location" field points
4745 to the SOM itself, not the ar_hdr in front of it. */
4746 set->file_offset = som_dict[lst_symbol.som_index].location
4747 - sizeof (struct ar_hdr);
4748
4749 /* Go to the next symbol. */
4750 set++;
4751
4752 /* Iterate through the rest of the chain. */
4753 while (lst_symbol.next_entry)
4754 {
4755 /* Seek to the next symbol and read it in. */
4756 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4757 goto error_return;
4758
4759 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4760 != sizeof (lst_symbol))
4761 goto error_return;
4762
4763 /* Seek to the name length & string and read them in. */
4764 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4765 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4766 goto error_return;
4767
4768 if (bfd_read (&len, 1, 4, abfd) != 4)
4769 goto error_return;
4770
4771 /* Allocate space for the name and null terminate it too. */
4772 set->name = bfd_zalloc (abfd, len + 1);
4773 if (!set->name)
4774 {
4775 bfd_set_error (bfd_error_no_memory);
4776 goto error_return;
4777 }
4778
4779 if (bfd_read (set->name, 1, len, abfd) != len)
4780 goto error_return;
4781 set->name[len] = 0;
4782
4783 /* Fill in the file offset. Note that the "location" field points
4784 to the SOM itself, not the ar_hdr in front of it. */
4785 set->file_offset = som_dict[lst_symbol.som_index].location
4786 - sizeof (struct ar_hdr);
4787
4788 /* Go on to the next symbol. */
4789 set++;
4790 }
4791 }
4792 /* If we haven't died by now, then we successfully read the entire
4793 archive symbol table. */
4794 if (hash_table != NULL)
4795 free (hash_table);
4796 if (som_dict != NULL)
4797 free (som_dict);
4798 return true;
4799
4800 error_return:
4801 if (hash_table != NULL)
4802 free (hash_table);
4803 if (som_dict != NULL)
4804 free (som_dict);
4805 return false;
4806 }
4807
4808 /* Read in the LST from the archive. */
4809 static boolean
4810 som_slurp_armap (abfd)
4811 bfd *abfd;
4812 {
4813 struct lst_header lst_header;
4814 struct ar_hdr ar_header;
4815 unsigned int parsed_size;
4816 struct artdata *ardata = bfd_ardata (abfd);
4817 char nextname[17];
4818 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4819
4820 /* Special cases. */
4821 if (i == 0)
4822 return true;
4823 if (i != 16)
4824 return false;
4825
4826 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4827 return false;
4828
4829 /* For archives without .o files there is no symbol table. */
4830 if (strncmp (nextname, "/ ", 16))
4831 {
4832 bfd_has_map (abfd) = false;
4833 return true;
4834 }
4835
4836 /* Read in and sanity check the archive header. */
4837 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4838 != sizeof (struct ar_hdr))
4839 return false;
4840
4841 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4842 {
4843 bfd_set_error (bfd_error_malformed_archive);
4844 return false;
4845 }
4846
4847 /* How big is the archive symbol table entry? */
4848 errno = 0;
4849 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4850 if (errno != 0)
4851 {
4852 bfd_set_error (bfd_error_malformed_archive);
4853 return false;
4854 }
4855
4856 /* Save off the file offset of the first real user data. */
4857 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4858
4859 /* Read in the library symbol table. We'll make heavy use of this
4860 in just a minute. */
4861 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4862 != sizeof (struct lst_header))
4863 return false;
4864
4865 /* Sanity check. */
4866 if (lst_header.a_magic != LIBMAGIC)
4867 {
4868 bfd_set_error (bfd_error_malformed_archive);
4869 return false;
4870 }
4871
4872 /* Count the number of symbols in the library symbol table. */
4873 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4874 == false)
4875 return false;
4876
4877 /* Get back to the start of the library symbol table. */
4878 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4879 + sizeof (struct lst_header), SEEK_SET) < 0)
4880 return false;
4881
4882 /* Initializae the cache and allocate space for the library symbols. */
4883 ardata->cache = 0;
4884 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4885 (ardata->symdef_count
4886 * sizeof (carsym)));
4887 if (!ardata->symdefs)
4888 {
4889 bfd_set_error (bfd_error_no_memory);
4890 return false;
4891 }
4892
4893 /* Now fill in the canonical archive symbols. */
4894 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4895 == false)
4896 return false;
4897
4898 /* Seek back to the "first" file in the archive. Note the "first"
4899 file may be the extended name table. */
4900 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
4901 return false;
4902
4903 /* Notify the generic archive code that we have a symbol map. */
4904 bfd_has_map (abfd) = true;
4905 return true;
4906 }
4907
4908 /* Begin preparing to write a SOM library symbol table.
4909
4910 As part of the prep work we need to determine the number of symbols
4911 and the size of the associated string section. */
4912
4913 static boolean
4914 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
4915 bfd *abfd;
4916 unsigned int *num_syms, *stringsize;
4917 {
4918 bfd *curr_bfd = abfd->archive_head;
4919
4920 /* Some initialization. */
4921 *num_syms = 0;
4922 *stringsize = 0;
4923
4924 /* Iterate over each BFD within this archive. */
4925 while (curr_bfd != NULL)
4926 {
4927 unsigned int curr_count, i;
4928 som_symbol_type *sym;
4929
4930 /* Don't bother for non-SOM objects. */
4931 if (curr_bfd->format != bfd_object
4932 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
4933 {
4934 curr_bfd = curr_bfd->next;
4935 continue;
4936 }
4937
4938 /* Make sure the symbol table has been read, then snag a pointer
4939 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4940 but doing so avoids allocating lots of extra memory. */
4941 if (som_slurp_symbol_table (curr_bfd) == false)
4942 return false;
4943
4944 sym = obj_som_symtab (curr_bfd);
4945 curr_count = bfd_get_symcount (curr_bfd);
4946
4947 /* Examine each symbol to determine if it belongs in the
4948 library symbol table. */
4949 for (i = 0; i < curr_count; i++, sym++)
4950 {
4951 struct som_misc_symbol_info info;
4952
4953 /* Derive SOM information from the BFD symbol. */
4954 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
4955
4956 /* Should we include this symbol? */
4957 if (info.symbol_type == ST_NULL
4958 || info.symbol_type == ST_SYM_EXT
4959 || info.symbol_type == ST_ARG_EXT)
4960 continue;
4961
4962 /* Only global symbols and unsatisfied commons. */
4963 if (info.symbol_scope != SS_UNIVERSAL
4964 && info.symbol_type != ST_STORAGE)
4965 continue;
4966
4967 /* Do no include undefined symbols. */
4968 if (sym->symbol.section == &bfd_und_section)
4969 continue;
4970
4971 /* Bump the various counters, being careful to honor
4972 alignment considerations in the string table. */
4973 (*num_syms)++;
4974 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
4975 while (*stringsize % 4)
4976 (*stringsize)++;
4977 }
4978
4979 curr_bfd = curr_bfd->next;
4980 }
4981 return true;
4982 }
4983
4984 /* Hash a symbol name based on the hashing algorithm presented in the
4985 SOM ABI. */
4986 static unsigned int
4987 som_bfd_ar_symbol_hash (symbol)
4988 asymbol *symbol;
4989 {
4990 unsigned int len = strlen (symbol->name);
4991
4992 /* Names with length 1 are special. */
4993 if (len == 1)
4994 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
4995
4996 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
4997 | (symbol->name[len-2] << 8) | symbol->name[len-1];
4998 }
4999
5000 static CONST char *
5001 normalize (file)
5002 CONST char *file;
5003 {
5004 CONST char *filename = strrchr (file, '/');
5005
5006 if (filename != NULL)
5007 filename++;
5008 else
5009 filename = file;
5010 return filename;
5011 }
5012
5013 /* Do the bulk of the work required to write the SOM library
5014 symbol table. */
5015
5016 static boolean
5017 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5018 bfd *abfd;
5019 unsigned int nsyms, string_size;
5020 struct lst_header lst;
5021 {
5022 file_ptr lst_filepos;
5023 char *strings = NULL, *p;
5024 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5025 bfd *curr_bfd;
5026 unsigned int *hash_table = NULL;
5027 struct som_entry *som_dict = NULL;
5028 struct lst_symbol_record **last_hash_entry = NULL;
5029 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5030 unsigned int maxname = abfd->xvec->ar_max_namelen;
5031
5032 hash_table =
5033 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5034 if (hash_table == NULL && lst.hash_size != 0)
5035 {
5036 bfd_set_error (bfd_error_no_memory);
5037 goto error_return;
5038 }
5039 som_dict =
5040 (struct som_entry *) malloc (lst.module_count
5041 * sizeof (struct som_entry));
5042 if (som_dict == NULL && lst.module_count != 0)
5043 {
5044 bfd_set_error (bfd_error_no_memory);
5045 goto error_return;
5046 }
5047
5048 last_hash_entry =
5049 ((struct lst_symbol_record **)
5050 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5051 if (last_hash_entry == NULL && lst.hash_size != 0)
5052 {
5053 bfd_set_error (bfd_error_no_memory);
5054 goto error_return;
5055 }
5056
5057 /* Lots of fields are file positions relative to the start
5058 of the lst record. So save its location. */
5059 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5060
5061 /* Some initialization. */
5062 memset (hash_table, 0, 4 * lst.hash_size);
5063 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5064 memset (last_hash_entry, 0,
5065 lst.hash_size * sizeof (struct lst_symbol_record *));
5066
5067 /* Symbols have som_index fields, so we have to keep track of the
5068 index of each SOM in the archive.
5069
5070 The SOM dictionary has (among other things) the absolute file
5071 position for the SOM which a particular dictionary entry
5072 describes. We have to compute that information as we iterate
5073 through the SOMs/symbols. */
5074 som_index = 0;
5075 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5076
5077 /* Yow! We have to know the size of the extended name table
5078 too. */
5079 for (curr_bfd = abfd->archive_head;
5080 curr_bfd != NULL;
5081 curr_bfd = curr_bfd->next)
5082 {
5083 CONST char *normal = normalize (curr_bfd->filename);
5084 unsigned int thislen;
5085
5086 if (!normal)
5087 {
5088 bfd_set_error (bfd_error_no_memory);
5089 return false;
5090 }
5091 thislen = strlen (normal);
5092 if (thislen > maxname)
5093 extended_name_length += thislen + 1;
5094 }
5095
5096 /* Make room for the archive header and the contents of the
5097 extended string table. */
5098 if (extended_name_length)
5099 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5100
5101 /* Make sure we're properly aligned. */
5102 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5103
5104 /* FIXME should be done with buffers just like everything else... */
5105 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5106 if (lst_syms == NULL && nsyms != 0)
5107 {
5108 bfd_set_error (bfd_error_no_memory);
5109 goto error_return;
5110 }
5111 strings = malloc (string_size);
5112 if (strings == NULL && string_size != 0)
5113 {
5114 bfd_set_error (bfd_error_no_memory);
5115 goto error_return;
5116 }
5117
5118 p = strings;
5119 curr_lst_sym = lst_syms;
5120
5121 curr_bfd = abfd->archive_head;
5122 while (curr_bfd != NULL)
5123 {
5124 unsigned int curr_count, i;
5125 som_symbol_type *sym;
5126
5127 /* Don't bother for non-SOM objects. */
5128 if (curr_bfd->format != bfd_object
5129 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5130 {
5131 curr_bfd = curr_bfd->next;
5132 continue;
5133 }
5134
5135 /* Make sure the symbol table has been read, then snag a pointer
5136 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5137 but doing so avoids allocating lots of extra memory. */
5138 if (som_slurp_symbol_table (curr_bfd) == false)
5139 goto error_return;
5140
5141 sym = obj_som_symtab (curr_bfd);
5142 curr_count = bfd_get_symcount (curr_bfd);
5143
5144 for (i = 0; i < curr_count; i++, sym++)
5145 {
5146 struct som_misc_symbol_info info;
5147
5148 /* Derive SOM information from the BFD symbol. */
5149 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5150
5151 /* Should we include this symbol? */
5152 if (info.symbol_type == ST_NULL
5153 || info.symbol_type == ST_SYM_EXT
5154 || info.symbol_type == ST_ARG_EXT)
5155 continue;
5156
5157 /* Only global symbols and unsatisfied commons. */
5158 if (info.symbol_scope != SS_UNIVERSAL
5159 && info.symbol_type != ST_STORAGE)
5160 continue;
5161
5162 /* Do no include undefined symbols. */
5163 if (sym->symbol.section == &bfd_und_section)
5164 continue;
5165
5166 /* If this is the first symbol from this SOM, then update
5167 the SOM dictionary too. */
5168 if (som_dict[som_index].location == 0)
5169 {
5170 som_dict[som_index].location = curr_som_offset;
5171 som_dict[som_index].length = arelt_size (curr_bfd);
5172 }
5173
5174 /* Fill in the lst symbol record. */
5175 curr_lst_sym->hidden = 0;
5176 curr_lst_sym->secondary_def = 0;
5177 curr_lst_sym->symbol_type = info.symbol_type;
5178 curr_lst_sym->symbol_scope = info.symbol_scope;
5179 curr_lst_sym->check_level = 0;
5180 curr_lst_sym->must_qualify = 0;
5181 curr_lst_sym->initially_frozen = 0;
5182 curr_lst_sym->memory_resident = 0;
5183 curr_lst_sym->is_common = (sym->symbol.section == &bfd_com_section);
5184 curr_lst_sym->dup_common = 0;
5185 curr_lst_sym->xleast = 0;
5186 curr_lst_sym->arg_reloc = info.arg_reloc;
5187 curr_lst_sym->name.n_strx = p - strings + 4;
5188 curr_lst_sym->qualifier_name.n_strx = 0;
5189 curr_lst_sym->symbol_info = info.symbol_info;
5190 curr_lst_sym->symbol_value = info.symbol_value;
5191 curr_lst_sym->symbol_descriptor = 0;
5192 curr_lst_sym->reserved = 0;
5193 curr_lst_sym->som_index = som_index;
5194 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5195 curr_lst_sym->next_entry = 0;
5196
5197 /* Insert into the hash table. */
5198 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5199 {
5200 struct lst_symbol_record *tmp;
5201
5202 /* There is already something at the head of this hash chain,
5203 so tack this symbol onto the end of the chain. */
5204 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5205 tmp->next_entry
5206 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5207 + lst.hash_size * 4
5208 + lst.module_count * sizeof (struct som_entry)
5209 + sizeof (struct lst_header);
5210 }
5211 else
5212 {
5213 /* First entry in this hash chain. */
5214 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5215 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5216 + lst.hash_size * 4
5217 + lst.module_count * sizeof (struct som_entry)
5218 + sizeof (struct lst_header);
5219 }
5220
5221 /* Keep track of the last symbol we added to this chain so we can
5222 easily update its next_entry pointer. */
5223 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5224 = curr_lst_sym;
5225
5226
5227 /* Update the string table. */
5228 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5229 p += 4;
5230 strcpy (p, sym->symbol.name);
5231 p += strlen (sym->symbol.name) + 1;
5232 while ((int)p % 4)
5233 {
5234 bfd_put_8 (abfd, 0, p);
5235 p++;
5236 }
5237
5238 /* Head to the next symbol. */
5239 curr_lst_sym++;
5240 }
5241
5242 /* Keep track of where each SOM will finally reside; then look
5243 at the next BFD. */
5244 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5245 curr_bfd = curr_bfd->next;
5246 som_index++;
5247 }
5248
5249 /* Now scribble out the hash table. */
5250 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5251 != lst.hash_size * 4)
5252 goto error_return;
5253
5254 /* Then the SOM dictionary. */
5255 if (bfd_write ((PTR) som_dict, lst.module_count,
5256 sizeof (struct som_entry), abfd)
5257 != lst.module_count * sizeof (struct som_entry))
5258 goto error_return;
5259
5260 /* The library symbols. */
5261 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5262 != nsyms * sizeof (struct lst_symbol_record))
5263 goto error_return;
5264
5265 /* And finally the strings. */
5266 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5267 goto error_return;
5268
5269 if (hash_table != NULL)
5270 free (hash_table);
5271 if (som_dict != NULL)
5272 free (som_dict);
5273 if (last_hash_entry != NULL)
5274 free (last_hash_entry);
5275 if (lst_syms != NULL)
5276 free (lst_syms);
5277 if (strings != NULL)
5278 free (strings);
5279 return true;
5280
5281 error_return:
5282 if (hash_table != NULL)
5283 free (hash_table);
5284 if (som_dict != NULL)
5285 free (som_dict);
5286 if (last_hash_entry != NULL)
5287 free (last_hash_entry);
5288 if (lst_syms != NULL)
5289 free (lst_syms);
5290 if (strings != NULL)
5291 free (strings);
5292
5293 return false;
5294 }
5295
5296 /* Write out the LST for the archive.
5297
5298 You'll never believe this is really how armaps are handled in SOM... */
5299
5300 static boolean
5301 som_write_armap (abfd)
5302 bfd *abfd;
5303 {
5304 bfd *curr_bfd;
5305 struct stat statbuf;
5306 unsigned int i, lst_size, nsyms, stringsize;
5307 struct ar_hdr hdr;
5308 struct lst_header lst;
5309 int *p;
5310
5311 /* We'll use this for the archive's date and mode later. */
5312 if (stat (abfd->filename, &statbuf) != 0)
5313 {
5314 bfd_set_error (bfd_error_system_call);
5315 return false;
5316 }
5317 /* Fudge factor. */
5318 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5319
5320 /* Account for the lst header first. */
5321 lst_size = sizeof (struct lst_header);
5322
5323 /* Start building the LST header. */
5324 lst.system_id = HP9000S800_ID;
5325 lst.a_magic = LIBMAGIC;
5326 lst.version_id = VERSION_ID;
5327 lst.file_time.secs = 0;
5328 lst.file_time.nanosecs = 0;
5329
5330 lst.hash_loc = lst_size;
5331 lst.hash_size = SOM_LST_HASH_SIZE;
5332
5333 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5334 lst_size += 4 * SOM_LST_HASH_SIZE;
5335
5336 /* We need to count the number of SOMs in this archive. */
5337 curr_bfd = abfd->archive_head;
5338 lst.module_count = 0;
5339 while (curr_bfd != NULL)
5340 {
5341 /* Only true SOM objects count. */
5342 if (curr_bfd->format == bfd_object
5343 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5344 lst.module_count++;
5345 curr_bfd = curr_bfd->next;
5346 }
5347 lst.module_limit = lst.module_count;
5348 lst.dir_loc = lst_size;
5349 lst_size += sizeof (struct som_entry) * lst.module_count;
5350
5351 /* We don't support import/export tables, auxiliary headers,
5352 or free lists yet. Make the linker work a little harder
5353 to make our life easier. */
5354
5355 lst.export_loc = 0;
5356 lst.export_count = 0;
5357 lst.import_loc = 0;
5358 lst.aux_loc = 0;
5359 lst.aux_size = 0;
5360
5361 /* Count how many symbols we will have on the hash chains and the
5362 size of the associated string table. */
5363 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5364 return false;
5365
5366 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5367
5368 /* For the string table. One day we might actually use this info
5369 to avoid small seeks/reads when reading archives. */
5370 lst.string_loc = lst_size;
5371 lst.string_size = stringsize;
5372 lst_size += stringsize;
5373
5374 /* SOM ABI says this must be zero. */
5375 lst.free_list = 0;
5376 lst.file_end = lst_size;
5377
5378 /* Compute the checksum. Must happen after the entire lst header
5379 has filled in. */
5380 p = (int *)&lst;
5381 lst.checksum = 0;
5382 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5383 lst.checksum ^= *p++;
5384
5385 sprintf (hdr.ar_name, "/ ");
5386 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5387 sprintf (hdr.ar_uid, "%d", getuid ());
5388 sprintf (hdr.ar_gid, "%d", getgid ());
5389 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5390 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5391 hdr.ar_fmag[0] = '`';
5392 hdr.ar_fmag[1] = '\012';
5393
5394 /* Turn any nulls into spaces. */
5395 for (i = 0; i < sizeof (struct ar_hdr); i++)
5396 if (((char *) (&hdr))[i] == '\0')
5397 (((char *) (&hdr))[i]) = ' ';
5398
5399 /* Scribble out the ar header. */
5400 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5401 != sizeof (struct ar_hdr))
5402 return false;
5403
5404 /* Now scribble out the lst header. */
5405 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5406 != sizeof (struct lst_header))
5407 return false;
5408
5409 /* Build and write the armap. */
5410 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5411 return false;
5412
5413 /* Done. */
5414 return true;
5415 }
5416
5417 /* End of miscellaneous support functions. */
5418
5419 #define som_bfd_debug_info_start bfd_void
5420 #define som_bfd_debug_info_end bfd_void
5421 #define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
5422
5423 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5424 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5425 #define som_truncate_arname bfd_bsd_truncate_arname
5426 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5427
5428 #define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
5429 #define som_close_and_cleanup bfd_generic_close_and_cleanup
5430 #define som_get_section_contents bfd_generic_get_section_contents
5431
5432 #define som_bfd_get_relocated_section_contents \
5433 bfd_generic_get_relocated_section_contents
5434 #define som_bfd_relax_section bfd_generic_relax_section
5435 #define som_bfd_make_debug_symbol \
5436 ((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
5437 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5438 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5439 #define som_bfd_final_link _bfd_generic_final_link
5440
5441 /* Core file support is in the hpux-core backend. */
5442 #define som_core_file_failing_command _bfd_dummy_core_file_failing_command
5443 #define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
5444 #define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
5445
5446 bfd_target som_vec =
5447 {
5448 "som", /* name */
5449 bfd_target_som_flavour,
5450 true, /* target byte order */
5451 true, /* target headers byte order */
5452 (HAS_RELOC | EXEC_P | /* object flags */
5453 HAS_LINENO | HAS_DEBUG |
5454 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
5455 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5456 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5457
5458 /* leading_symbol_char: is the first char of a user symbol
5459 predictable, and if so what is it */
5460 0,
5461 '/', /* ar_pad_char */
5462 14, /* ar_max_namelen */
5463 3, /* minimum alignment */
5464 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5465 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5466 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5467 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5468 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5469 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5470 {_bfd_dummy_target,
5471 som_object_p, /* bfd_check_format */
5472 bfd_generic_archive_p,
5473 _bfd_dummy_target
5474 },
5475 {
5476 bfd_false,
5477 som_mkobject,
5478 _bfd_generic_mkarchive,
5479 bfd_false
5480 },
5481 {
5482 bfd_false,
5483 som_write_object_contents,
5484 _bfd_write_archive_contents,
5485 bfd_false,
5486 },
5487 #undef som
5488 JUMP_TABLE (som),
5489 (PTR) 0
5490 };
5491
5492 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.151385 seconds and 4 git commands to generate.