* som.c (som_slurp_string_table): Allocate the strings with malloc
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "bfd.h"
25 #include "sysdep.h"
26
27 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
28
29 #include "libbfd.h"
30 #include "som.h"
31
32 #include <stdio.h>
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/file.h>
38 #include <errno.h>
39
40 /* Magic not defined in standard HP-UX header files until 8.0 */
41
42 #ifndef CPU_PA_RISC1_0
43 #define CPU_PA_RISC1_0 0x20B
44 #endif /* CPU_PA_RISC1_0 */
45
46 #ifndef CPU_PA_RISC1_1
47 #define CPU_PA_RISC1_1 0x210
48 #endif /* CPU_PA_RISC1_1 */
49
50 #ifndef _PA_RISC1_0_ID
51 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
52 #endif /* _PA_RISC1_0_ID */
53
54 #ifndef _PA_RISC1_1_ID
55 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
56 #endif /* _PA_RISC1_1_ID */
57
58 #ifndef _PA_RISC_MAXID
59 #define _PA_RISC_MAXID 0x2FF
60 #endif /* _PA_RISC_MAXID */
61
62 #ifndef _PA_RISC_ID
63 #define _PA_RISC_ID(__m_num) \
64 (((__m_num) == _PA_RISC1_0_ID) || \
65 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
66 #endif /* _PA_RISC_ID */
67
68
69 /* HIUX in it's infinite stupidity changed the names for several "well
70 known" constants. Work around such braindamage. Try the HPUX version
71 first, then the HIUX version, and finally provide a default. */
72 #ifdef HPUX_AUX_ID
73 #define EXEC_AUX_ID HPUX_AUX_ID
74 #endif
75
76 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
77 #define EXEC_AUX_ID HIUX_AUX_ID
78 #endif
79
80 #ifndef EXEC_AUX_ID
81 #define EXEC_AUX_ID 0
82 #endif
83
84 /* Size (in chars) of the temporary buffers used during fixup and string
85 table writes. */
86
87 #define SOM_TMP_BUFSIZE 8192
88
89 /* Size of the hash table in archives. */
90 #define SOM_LST_HASH_SIZE 31
91
92 /* Max number of SOMs to be found in an archive. */
93 #define SOM_LST_MODULE_LIMIT 1024
94
95 /* Generic alignment macro. */
96 #define SOM_ALIGN(val, alignment) \
97 (((val) + (alignment) - 1) & ~((alignment) - 1))
98
99 /* SOM allows any one of the four previous relocations to be reused
100 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
101 relocations are always a single byte, using a R_PREV_FIXUP instead
102 of some multi-byte relocation makes object files smaller.
103
104 Note one side effect of using a R_PREV_FIXUP is the relocation that
105 is being repeated moves to the front of the queue. */
106 struct reloc_queue
107 {
108 unsigned char *reloc;
109 unsigned int size;
110 } reloc_queue[4];
111
112 /* This fully describes the symbol types which may be attached to
113 an EXPORT or IMPORT directive. Only SOM uses this formation
114 (ELF has no need for it). */
115 typedef enum
116 {
117 SYMBOL_TYPE_UNKNOWN,
118 SYMBOL_TYPE_ABSOLUTE,
119 SYMBOL_TYPE_CODE,
120 SYMBOL_TYPE_DATA,
121 SYMBOL_TYPE_ENTRY,
122 SYMBOL_TYPE_MILLICODE,
123 SYMBOL_TYPE_PLABEL,
124 SYMBOL_TYPE_PRI_PROG,
125 SYMBOL_TYPE_SEC_PROG,
126 } pa_symbol_type;
127
128 struct section_to_type
129 {
130 char *section;
131 char type;
132 };
133
134 /* Assorted symbol information that needs to be derived from the BFD symbol
135 and/or the BFD backend private symbol data. */
136 struct som_misc_symbol_info
137 {
138 unsigned int symbol_type;
139 unsigned int symbol_scope;
140 unsigned int arg_reloc;
141 unsigned int symbol_info;
142 unsigned int symbol_value;
143 };
144
145 /* Forward declarations */
146
147 static boolean som_mkobject PARAMS ((bfd *));
148 static const bfd_target * som_object_setup PARAMS ((bfd *,
149 struct header *,
150 struct som_exec_auxhdr *));
151 static boolean setup_sections PARAMS ((bfd *, struct header *));
152 static const bfd_target * som_object_p PARAMS ((bfd *));
153 static boolean som_write_object_contents PARAMS ((bfd *));
154 static boolean som_slurp_string_table PARAMS ((bfd *));
155 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
156 static long som_get_symtab_upper_bound PARAMS ((bfd *));
157 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
158 arelent **, asymbol **));
159 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
160 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
161 arelent *, asection *,
162 asymbol **, boolean));
163 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
164 asymbol **, boolean));
165 static long som_get_symtab PARAMS ((bfd *, asymbol **));
166 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
167 static void som_print_symbol PARAMS ((bfd *, PTR,
168 asymbol *, bfd_print_symbol_type));
169 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
170 static boolean som_bfd_copy_private_symbol_data PARAMS ((bfd *, asymbol *,
171 bfd *, asymbol *));
172 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
173 bfd *, asection *));
174 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
175 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
176 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
177 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
178 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
179 file_ptr, bfd_size_type));
180 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
181 file_ptr, bfd_size_type));
182 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
183 unsigned long));
184 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
185 asymbol **, bfd_vma,
186 CONST char **,
187 CONST char **,
188 unsigned int *));
189 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
190 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
191 struct symbol_dictionary_record *));
192 static int log2 PARAMS ((unsigned int));
193 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
194 asymbol *, PTR,
195 asection *, bfd *,
196 char **));
197 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
198 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
199 struct reloc_queue *));
200 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
201 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
202 struct reloc_queue *));
203 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
204 unsigned int,
205 struct reloc_queue *));
206
207 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
208 unsigned char *, unsigned int *,
209 struct reloc_queue *));
210 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
211 unsigned int *,
212 struct reloc_queue *));
213 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
214 unsigned int *,
215 arelent *, int,
216 struct reloc_queue *));
217 static unsigned long som_count_spaces PARAMS ((bfd *));
218 static unsigned long som_count_subspaces PARAMS ((bfd *));
219 static int compare_syms PARAMS ((const void *, const void *));
220 static int compare_subspaces PARAMS ((const void *, const void *));
221 static unsigned long som_compute_checksum PARAMS ((bfd *));
222 static boolean som_prep_headers PARAMS ((bfd *));
223 static int som_sizeof_headers PARAMS ((bfd *, boolean));
224 static boolean som_finish_writing PARAMS ((bfd *));
225 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
226 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
227 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
228 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
229 unsigned int *));
230 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
231 asymbol **, unsigned int,
232 unsigned *));
233 static boolean som_begin_writing PARAMS ((bfd *));
234 static reloc_howto_type * som_bfd_reloc_type_lookup
235 PARAMS ((bfd *, bfd_reloc_code_real_type));
236 static char som_section_type PARAMS ((const char *));
237 static int som_decode_symclass PARAMS ((asymbol *));
238 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
239 symindex *));
240
241 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
242 carsym **syms));
243 static boolean som_slurp_armap PARAMS ((bfd *));
244 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
245 unsigned int, int));
246 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
247 struct som_misc_symbol_info *));
248 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
249 unsigned int *));
250 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
251 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
252 unsigned int,
253 struct lst_header));
254 static CONST char *normalize PARAMS ((CONST char *file));
255 static boolean som_is_space PARAMS ((asection *));
256 static boolean som_is_subspace PARAMS ((asection *));
257 static boolean som_is_container PARAMS ((asection *, asection *));
258 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
259 static boolean som_bfd_link_split_section PARAMS ((bfd *, asection *));
260
261 /* Map SOM section names to POSIX/BSD single-character symbol types.
262
263 This table includes all the standard subspaces as defined in the
264 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
265 some reason was left out, and sections specific to embedded stabs. */
266
267 static const struct section_to_type stt[] = {
268 {"$TEXT$", 't'},
269 {"$SHLIB_INFO$", 't'},
270 {"$MILLICODE$", 't'},
271 {"$LIT$", 't'},
272 {"$CODE$", 't'},
273 {"$UNWIND_START$", 't'},
274 {"$UNWIND$", 't'},
275 {"$PRIVATE$", 'd'},
276 {"$PLT$", 'd'},
277 {"$SHLIB_DATA$", 'd'},
278 {"$DATA$", 'd'},
279 {"$SHORTDATA$", 'g'},
280 {"$DLT$", 'd'},
281 {"$GLOBAL$", 'g'},
282 {"$SHORTBSS$", 's'},
283 {"$BSS$", 'b'},
284 {"$GDB_STRINGS$", 'N'},
285 {"$GDB_SYMBOLS$", 'N'},
286 {0, 0}
287 };
288
289 /* About the relocation formatting table...
290
291 There are 256 entries in the table, one for each possible
292 relocation opcode available in SOM. We index the table by
293 the relocation opcode. The names and operations are those
294 defined by a.out_800 (4).
295
296 Right now this table is only used to count and perform minimal
297 processing on relocation streams so that they can be internalized
298 into BFD and symbolically printed by utilities. To make actual use
299 of them would be much more difficult, BFD's concept of relocations
300 is far too simple to handle SOM relocations. The basic assumption
301 that a relocation can be completely processed independent of other
302 relocations before an object file is written is invalid for SOM.
303
304 The SOM relocations are meant to be processed as a stream, they
305 specify copying of data from the input section to the output section
306 while possibly modifying the data in some manner. They also can
307 specify that a variable number of zeros or uninitialized data be
308 inserted on in the output segment at the current offset. Some
309 relocations specify that some previous relocation be re-applied at
310 the current location in the input/output sections. And finally a number
311 of relocations have effects on other sections (R_ENTRY, R_EXIT,
312 R_UNWIND_AUX and a variety of others). There isn't even enough room
313 in the BFD relocation data structure to store enough information to
314 perform all the relocations.
315
316 Each entry in the table has three fields.
317
318 The first entry is an index into this "class" of relocations. This
319 index can then be used as a variable within the relocation itself.
320
321 The second field is a format string which actually controls processing
322 of the relocation. It uses a simple postfix machine to do calculations
323 based on variables/constants found in the string and the relocation
324 stream.
325
326 The third field specifys whether or not this relocation may use
327 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
328 stored in the instruction.
329
330 Variables:
331
332 L = input space byte count
333 D = index into class of relocations
334 M = output space byte count
335 N = statement number (unused?)
336 O = stack operation
337 R = parameter relocation bits
338 S = symbol index
339 T = first 32 bits of stack unwind information
340 U = second 32 bits of stack unwind information
341 V = a literal constant (usually used in the next relocation)
342 P = a previous relocation
343
344 Lower case letters (starting with 'b') refer to following
345 bytes in the relocation stream. 'b' is the next 1 byte,
346 c is the next 2 bytes, d is the next 3 bytes, etc...
347 This is the variable part of the relocation entries that
348 makes our life a living hell.
349
350 numerical constants are also used in the format string. Note
351 the constants are represented in decimal.
352
353 '+', "*" and "=" represents the obvious postfix operators.
354 '<' represents a left shift.
355
356 Stack Operations:
357
358 Parameter Relocation Bits:
359
360 Unwind Entries:
361
362 Previous Relocations: The index field represents which in the queue
363 of 4 previous fixups should be re-applied.
364
365 Literal Constants: These are generally used to represent addend
366 parts of relocations when these constants are not stored in the
367 fields of the instructions themselves. For example the instruction
368 addil foo-$global$-0x1234 would use an override for "0x1234" rather
369 than storing it into the addil itself. */
370
371 struct fixup_format
372 {
373 int D;
374 char *format;
375 };
376
377 static const struct fixup_format som_fixup_formats[256] =
378 {
379 /* R_NO_RELOCATION */
380 0, "LD1+4*=", /* 0x00 */
381 1, "LD1+4*=", /* 0x01 */
382 2, "LD1+4*=", /* 0x02 */
383 3, "LD1+4*=", /* 0x03 */
384 4, "LD1+4*=", /* 0x04 */
385 5, "LD1+4*=", /* 0x05 */
386 6, "LD1+4*=", /* 0x06 */
387 7, "LD1+4*=", /* 0x07 */
388 8, "LD1+4*=", /* 0x08 */
389 9, "LD1+4*=", /* 0x09 */
390 10, "LD1+4*=", /* 0x0a */
391 11, "LD1+4*=", /* 0x0b */
392 12, "LD1+4*=", /* 0x0c */
393 13, "LD1+4*=", /* 0x0d */
394 14, "LD1+4*=", /* 0x0e */
395 15, "LD1+4*=", /* 0x0f */
396 16, "LD1+4*=", /* 0x10 */
397 17, "LD1+4*=", /* 0x11 */
398 18, "LD1+4*=", /* 0x12 */
399 19, "LD1+4*=", /* 0x13 */
400 20, "LD1+4*=", /* 0x14 */
401 21, "LD1+4*=", /* 0x15 */
402 22, "LD1+4*=", /* 0x16 */
403 23, "LD1+4*=", /* 0x17 */
404 0, "LD8<b+1+4*=", /* 0x18 */
405 1, "LD8<b+1+4*=", /* 0x19 */
406 2, "LD8<b+1+4*=", /* 0x1a */
407 3, "LD8<b+1+4*=", /* 0x1b */
408 0, "LD16<c+1+4*=", /* 0x1c */
409 1, "LD16<c+1+4*=", /* 0x1d */
410 2, "LD16<c+1+4*=", /* 0x1e */
411 0, "Ld1+=", /* 0x1f */
412 /* R_ZEROES */
413 0, "Lb1+4*=", /* 0x20 */
414 1, "Ld1+=", /* 0x21 */
415 /* R_UNINIT */
416 0, "Lb1+4*=", /* 0x22 */
417 1, "Ld1+=", /* 0x23 */
418 /* R_RELOCATION */
419 0, "L4=", /* 0x24 */
420 /* R_DATA_ONE_SYMBOL */
421 0, "L4=Sb=", /* 0x25 */
422 1, "L4=Sd=", /* 0x26 */
423 /* R_DATA_PLEBEL */
424 0, "L4=Sb=", /* 0x27 */
425 1, "L4=Sd=", /* 0x28 */
426 /* R_SPACE_REF */
427 0, "L4=", /* 0x29 */
428 /* R_REPEATED_INIT */
429 0, "L4=Mb1+4*=", /* 0x2a */
430 1, "Lb4*=Mb1+L*=", /* 0x2b */
431 2, "Lb4*=Md1+4*=", /* 0x2c */
432 3, "Ld1+=Me1+=", /* 0x2d */
433 /* R_RESERVED */
434 0, "", /* 0x2e */
435 0, "", /* 0x2f */
436 /* R_PCREL_CALL */
437 0, "L4=RD=Sb=", /* 0x30 */
438 1, "L4=RD=Sb=", /* 0x31 */
439 2, "L4=RD=Sb=", /* 0x32 */
440 3, "L4=RD=Sb=", /* 0x33 */
441 4, "L4=RD=Sb=", /* 0x34 */
442 5, "L4=RD=Sb=", /* 0x35 */
443 6, "L4=RD=Sb=", /* 0x36 */
444 7, "L4=RD=Sb=", /* 0x37 */
445 8, "L4=RD=Sb=", /* 0x38 */
446 9, "L4=RD=Sb=", /* 0x39 */
447 0, "L4=RD8<b+=Sb=",/* 0x3a */
448 1, "L4=RD8<b+=Sb=",/* 0x3b */
449 0, "L4=RD8<b+=Sd=",/* 0x3c */
450 1, "L4=RD8<b+=Sd=",/* 0x3d */
451 /* R_RESERVED */
452 0, "", /* 0x3e */
453 0, "", /* 0x3f */
454 /* R_ABS_CALL */
455 0, "L4=RD=Sb=", /* 0x40 */
456 1, "L4=RD=Sb=", /* 0x41 */
457 2, "L4=RD=Sb=", /* 0x42 */
458 3, "L4=RD=Sb=", /* 0x43 */
459 4, "L4=RD=Sb=", /* 0x44 */
460 5, "L4=RD=Sb=", /* 0x45 */
461 6, "L4=RD=Sb=", /* 0x46 */
462 7, "L4=RD=Sb=", /* 0x47 */
463 8, "L4=RD=Sb=", /* 0x48 */
464 9, "L4=RD=Sb=", /* 0x49 */
465 0, "L4=RD8<b+=Sb=",/* 0x4a */
466 1, "L4=RD8<b+=Sb=",/* 0x4b */
467 0, "L4=RD8<b+=Sd=",/* 0x4c */
468 1, "L4=RD8<b+=Sd=",/* 0x4d */
469 /* R_RESERVED */
470 0, "", /* 0x4e */
471 0, "", /* 0x4f */
472 /* R_DP_RELATIVE */
473 0, "L4=SD=", /* 0x50 */
474 1, "L4=SD=", /* 0x51 */
475 2, "L4=SD=", /* 0x52 */
476 3, "L4=SD=", /* 0x53 */
477 4, "L4=SD=", /* 0x54 */
478 5, "L4=SD=", /* 0x55 */
479 6, "L4=SD=", /* 0x56 */
480 7, "L4=SD=", /* 0x57 */
481 8, "L4=SD=", /* 0x58 */
482 9, "L4=SD=", /* 0x59 */
483 10, "L4=SD=", /* 0x5a */
484 11, "L4=SD=", /* 0x5b */
485 12, "L4=SD=", /* 0x5c */
486 13, "L4=SD=", /* 0x5d */
487 14, "L4=SD=", /* 0x5e */
488 15, "L4=SD=", /* 0x5f */
489 16, "L4=SD=", /* 0x60 */
490 17, "L4=SD=", /* 0x61 */
491 18, "L4=SD=", /* 0x62 */
492 19, "L4=SD=", /* 0x63 */
493 20, "L4=SD=", /* 0x64 */
494 21, "L4=SD=", /* 0x65 */
495 22, "L4=SD=", /* 0x66 */
496 23, "L4=SD=", /* 0x67 */
497 24, "L4=SD=", /* 0x68 */
498 25, "L4=SD=", /* 0x69 */
499 26, "L4=SD=", /* 0x6a */
500 27, "L4=SD=", /* 0x6b */
501 28, "L4=SD=", /* 0x6c */
502 29, "L4=SD=", /* 0x6d */
503 30, "L4=SD=", /* 0x6e */
504 31, "L4=SD=", /* 0x6f */
505 32, "L4=Sb=", /* 0x70 */
506 33, "L4=Sd=", /* 0x71 */
507 /* R_RESERVED */
508 0, "", /* 0x72 */
509 0, "", /* 0x73 */
510 0, "", /* 0x74 */
511 0, "", /* 0x75 */
512 0, "", /* 0x76 */
513 0, "", /* 0x77 */
514 /* R_DLT_REL */
515 0, "L4=Sb=", /* 0x78 */
516 1, "L4=Sd=", /* 0x79 */
517 /* R_RESERVED */
518 0, "", /* 0x7a */
519 0, "", /* 0x7b */
520 0, "", /* 0x7c */
521 0, "", /* 0x7d */
522 0, "", /* 0x7e */
523 0, "", /* 0x7f */
524 /* R_CODE_ONE_SYMBOL */
525 0, "L4=SD=", /* 0x80 */
526 1, "L4=SD=", /* 0x81 */
527 2, "L4=SD=", /* 0x82 */
528 3, "L4=SD=", /* 0x83 */
529 4, "L4=SD=", /* 0x84 */
530 5, "L4=SD=", /* 0x85 */
531 6, "L4=SD=", /* 0x86 */
532 7, "L4=SD=", /* 0x87 */
533 8, "L4=SD=", /* 0x88 */
534 9, "L4=SD=", /* 0x89 */
535 10, "L4=SD=", /* 0x8q */
536 11, "L4=SD=", /* 0x8b */
537 12, "L4=SD=", /* 0x8c */
538 13, "L4=SD=", /* 0x8d */
539 14, "L4=SD=", /* 0x8e */
540 15, "L4=SD=", /* 0x8f */
541 16, "L4=SD=", /* 0x90 */
542 17, "L4=SD=", /* 0x91 */
543 18, "L4=SD=", /* 0x92 */
544 19, "L4=SD=", /* 0x93 */
545 20, "L4=SD=", /* 0x94 */
546 21, "L4=SD=", /* 0x95 */
547 22, "L4=SD=", /* 0x96 */
548 23, "L4=SD=", /* 0x97 */
549 24, "L4=SD=", /* 0x98 */
550 25, "L4=SD=", /* 0x99 */
551 26, "L4=SD=", /* 0x9a */
552 27, "L4=SD=", /* 0x9b */
553 28, "L4=SD=", /* 0x9c */
554 29, "L4=SD=", /* 0x9d */
555 30, "L4=SD=", /* 0x9e */
556 31, "L4=SD=", /* 0x9f */
557 32, "L4=Sb=", /* 0xa0 */
558 33, "L4=Sd=", /* 0xa1 */
559 /* R_RESERVED */
560 0, "", /* 0xa2 */
561 0, "", /* 0xa3 */
562 0, "", /* 0xa4 */
563 0, "", /* 0xa5 */
564 0, "", /* 0xa6 */
565 0, "", /* 0xa7 */
566 0, "", /* 0xa8 */
567 0, "", /* 0xa9 */
568 0, "", /* 0xaa */
569 0, "", /* 0xab */
570 0, "", /* 0xac */
571 0, "", /* 0xad */
572 /* R_MILLI_REL */
573 0, "L4=Sb=", /* 0xae */
574 1, "L4=Sd=", /* 0xaf */
575 /* R_CODE_PLABEL */
576 0, "L4=Sb=", /* 0xb0 */
577 1, "L4=Sd=", /* 0xb1 */
578 /* R_BREAKPOINT */
579 0, "L4=", /* 0xb2 */
580 /* R_ENTRY */
581 0, "Te=Ue=", /* 0xb3 */
582 1, "Uf=", /* 0xb4 */
583 /* R_ALT_ENTRY */
584 0, "", /* 0xb5 */
585 /* R_EXIT */
586 0, "", /* 0xb6 */
587 /* R_BEGIN_TRY */
588 0, "", /* 0xb7 */
589 /* R_END_TRY */
590 0, "R0=", /* 0xb8 */
591 1, "Rb4*=", /* 0xb9 */
592 2, "Rd4*=", /* 0xba */
593 /* R_BEGIN_BRTAB */
594 0, "", /* 0xbb */
595 /* R_END_BRTAB */
596 0, "", /* 0xbc */
597 /* R_STATEMENT */
598 0, "Nb=", /* 0xbd */
599 1, "Nc=", /* 0xbe */
600 2, "Nd=", /* 0xbf */
601 /* R_DATA_EXPR */
602 0, "L4=", /* 0xc0 */
603 /* R_CODE_EXPR */
604 0, "L4=", /* 0xc1 */
605 /* R_FSEL */
606 0, "", /* 0xc2 */
607 /* R_LSEL */
608 0, "", /* 0xc3 */
609 /* R_RSEL */
610 0, "", /* 0xc4 */
611 /* R_N_MODE */
612 0, "", /* 0xc5 */
613 /* R_S_MODE */
614 0, "", /* 0xc6 */
615 /* R_D_MODE */
616 0, "", /* 0xc7 */
617 /* R_R_MODE */
618 0, "", /* 0xc8 */
619 /* R_DATA_OVERRIDE */
620 0, "V0=", /* 0xc9 */
621 1, "Vb=", /* 0xca */
622 2, "Vc=", /* 0xcb */
623 3, "Vd=", /* 0xcc */
624 4, "Ve=", /* 0xcd */
625 /* R_TRANSLATED */
626 0, "", /* 0xce */
627 /* R_RESERVED */
628 0, "", /* 0xcf */
629 /* R_COMP1 */
630 0, "Ob=", /* 0xd0 */
631 /* R_COMP2 */
632 0, "Ob=Sd=", /* 0xd1 */
633 /* R_COMP3 */
634 0, "Ob=Ve=", /* 0xd2 */
635 /* R_PREV_FIXUP */
636 0, "P", /* 0xd3 */
637 1, "P", /* 0xd4 */
638 2, "P", /* 0xd5 */
639 3, "P", /* 0xd6 */
640 /* R_RESERVED */
641 0, "", /* 0xd7 */
642 0, "", /* 0xd8 */
643 0, "", /* 0xd9 */
644 0, "", /* 0xda */
645 0, "", /* 0xdb */
646 0, "", /* 0xdc */
647 0, "", /* 0xdd */
648 0, "", /* 0xde */
649 0, "", /* 0xdf */
650 0, "", /* 0xe0 */
651 0, "", /* 0xe1 */
652 0, "", /* 0xe2 */
653 0, "", /* 0xe3 */
654 0, "", /* 0xe4 */
655 0, "", /* 0xe5 */
656 0, "", /* 0xe6 */
657 0, "", /* 0xe7 */
658 0, "", /* 0xe8 */
659 0, "", /* 0xe9 */
660 0, "", /* 0xea */
661 0, "", /* 0xeb */
662 0, "", /* 0xec */
663 0, "", /* 0xed */
664 0, "", /* 0xee */
665 0, "", /* 0xef */
666 0, "", /* 0xf0 */
667 0, "", /* 0xf1 */
668 0, "", /* 0xf2 */
669 0, "", /* 0xf3 */
670 0, "", /* 0xf4 */
671 0, "", /* 0xf5 */
672 0, "", /* 0xf6 */
673 0, "", /* 0xf7 */
674 0, "", /* 0xf8 */
675 0, "", /* 0xf9 */
676 0, "", /* 0xfa */
677 0, "", /* 0xfb */
678 0, "", /* 0xfc */
679 0, "", /* 0xfd */
680 0, "", /* 0xfe */
681 0, "", /* 0xff */
682 };
683
684 static const int comp1_opcodes[] =
685 {
686 0x00,
687 0x40,
688 0x41,
689 0x42,
690 0x43,
691 0x44,
692 0x45,
693 0x46,
694 0x47,
695 0x48,
696 0x49,
697 0x4a,
698 0x4b,
699 0x60,
700 0x80,
701 0xa0,
702 0xc0,
703 -1
704 };
705
706 static const int comp2_opcodes[] =
707 {
708 0x00,
709 0x80,
710 0x82,
711 0xc0,
712 -1
713 };
714
715 static const int comp3_opcodes[] =
716 {
717 0x00,
718 0x02,
719 -1
720 };
721
722 /* These apparently are not in older versions of hpux reloc.h. */
723 #ifndef R_DLT_REL
724 #define R_DLT_REL 0x78
725 #endif
726
727 #ifndef R_AUX_UNWIND
728 #define R_AUX_UNWIND 0xcf
729 #endif
730
731 #ifndef R_SEC_STMT
732 #define R_SEC_STMT 0xd7
733 #endif
734
735 static reloc_howto_type som_hppa_howto_table[] =
736 {
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
747 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
748 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
749 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
750 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
751 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
752 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
753 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
754 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
755 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
756 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
757 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
758 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
759 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
760 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
761 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
762 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
763 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
764 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
765 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
766 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
767 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
768 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
769 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
770 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
771 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
772 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
773 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
774 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
775 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
776 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
777 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
778 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
779 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
780 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
781 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
782 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
783 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
784 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
785 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
786 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
787 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
788 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
789 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
790 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
791 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
792 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
793 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
794 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
795 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
796 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
797 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
798 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
799 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
800 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
801 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
802 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
803 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
804 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
805 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
806 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
807 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
808 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
809 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
810 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
811 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
812 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
813 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
814 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
815 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
816 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
830 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
831 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
832 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
833 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
834 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
835 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
836 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
837 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
838 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
839 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
840 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
841 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
842 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
843 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
844 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
845 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
846 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
847 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
848 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
849 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
850 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
851 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
852 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
853 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
854 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
855 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
858 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
859 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
860 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
861 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
862 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
863 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
864 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
878 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
879 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
880 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
881 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
882 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
883 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
884 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
885 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
886 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
887 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
888 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
889 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
890 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
891 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
892 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
893 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
894 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
895 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
896 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
897 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
898 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
899 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
904 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
905 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
906 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
907 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
908 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
909 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
910 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
911 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
912 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
913 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
914 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
915 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
916 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
917 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
918 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
919 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
920 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
921 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
922 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
923 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
924 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
925 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
926 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
927 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
928 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
929 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
930 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
931 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
932 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
933 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
934 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
935 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
936 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
937 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
938 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
939 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
940 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
941 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
942 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
943 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
944 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
945 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
946 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
947 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
948 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
949 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
950 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
951 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
952 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
970 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
971 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
972 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
973 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
974 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
975 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
976 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
977 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
978 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
979 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
980 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
981 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
982 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
983 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
984 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
985 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
986 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
987 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
988 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
989 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
990 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
991 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
992 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
993
994 /* Initialize the SOM relocation queue. By definition the queue holds
995 the last four multibyte fixups. */
996
997 static void
998 som_initialize_reloc_queue (queue)
999 struct reloc_queue *queue;
1000 {
1001 queue[0].reloc = NULL;
1002 queue[0].size = 0;
1003 queue[1].reloc = NULL;
1004 queue[1].size = 0;
1005 queue[2].reloc = NULL;
1006 queue[2].size = 0;
1007 queue[3].reloc = NULL;
1008 queue[3].size = 0;
1009 }
1010
1011 /* Insert a new relocation into the relocation queue. */
1012
1013 static void
1014 som_reloc_queue_insert (p, size, queue)
1015 unsigned char *p;
1016 unsigned int size;
1017 struct reloc_queue *queue;
1018 {
1019 queue[3].reloc = queue[2].reloc;
1020 queue[3].size = queue[2].size;
1021 queue[2].reloc = queue[1].reloc;
1022 queue[2].size = queue[1].size;
1023 queue[1].reloc = queue[0].reloc;
1024 queue[1].size = queue[0].size;
1025 queue[0].reloc = p;
1026 queue[0].size = size;
1027 }
1028
1029 /* When an entry in the relocation queue is reused, the entry moves
1030 to the front of the queue. */
1031
1032 static void
1033 som_reloc_queue_fix (queue, index)
1034 struct reloc_queue *queue;
1035 unsigned int index;
1036 {
1037 if (index == 0)
1038 return;
1039
1040 if (index == 1)
1041 {
1042 unsigned char *tmp1 = queue[0].reloc;
1043 unsigned int tmp2 = queue[0].size;
1044 queue[0].reloc = queue[1].reloc;
1045 queue[0].size = queue[1].size;
1046 queue[1].reloc = tmp1;
1047 queue[1].size = tmp2;
1048 return;
1049 }
1050
1051 if (index == 2)
1052 {
1053 unsigned char *tmp1 = queue[0].reloc;
1054 unsigned int tmp2 = queue[0].size;
1055 queue[0].reloc = queue[2].reloc;
1056 queue[0].size = queue[2].size;
1057 queue[2].reloc = queue[1].reloc;
1058 queue[2].size = queue[1].size;
1059 queue[1].reloc = tmp1;
1060 queue[1].size = tmp2;
1061 return;
1062 }
1063
1064 if (index == 3)
1065 {
1066 unsigned char *tmp1 = queue[0].reloc;
1067 unsigned int tmp2 = queue[0].size;
1068 queue[0].reloc = queue[3].reloc;
1069 queue[0].size = queue[3].size;
1070 queue[3].reloc = queue[2].reloc;
1071 queue[3].size = queue[2].size;
1072 queue[2].reloc = queue[1].reloc;
1073 queue[2].size = queue[1].size;
1074 queue[1].reloc = tmp1;
1075 queue[1].size = tmp2;
1076 return;
1077 }
1078 abort();
1079 }
1080
1081 /* Search for a particular relocation in the relocation queue. */
1082
1083 static int
1084 som_reloc_queue_find (p, size, queue)
1085 unsigned char *p;
1086 unsigned int size;
1087 struct reloc_queue *queue;
1088 {
1089 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1090 && size == queue[0].size)
1091 return 0;
1092 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1093 && size == queue[1].size)
1094 return 1;
1095 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1096 && size == queue[2].size)
1097 return 2;
1098 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1099 && size == queue[3].size)
1100 return 3;
1101 return -1;
1102 }
1103
1104 static unsigned char *
1105 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1106 bfd *abfd;
1107 int *subspace_reloc_sizep;
1108 unsigned char *p;
1109 unsigned int size;
1110 struct reloc_queue *queue;
1111 {
1112 int queue_index = som_reloc_queue_find (p, size, queue);
1113
1114 if (queue_index != -1)
1115 {
1116 /* Found this in a previous fixup. Undo the fixup we
1117 just built and use R_PREV_FIXUP instead. We saved
1118 a total of size - 1 bytes in the fixup stream. */
1119 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1120 p += 1;
1121 *subspace_reloc_sizep += 1;
1122 som_reloc_queue_fix (queue, queue_index);
1123 }
1124 else
1125 {
1126 som_reloc_queue_insert (p, size, queue);
1127 *subspace_reloc_sizep += size;
1128 p += size;
1129 }
1130 return p;
1131 }
1132
1133 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1134 bytes without any relocation. Update the size of the subspace
1135 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1136 current pointer into the relocation stream. */
1137
1138 static unsigned char *
1139 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1140 bfd *abfd;
1141 unsigned int skip;
1142 unsigned char *p;
1143 unsigned int *subspace_reloc_sizep;
1144 struct reloc_queue *queue;
1145 {
1146 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1147 then R_PREV_FIXUPs to get the difference down to a
1148 reasonable size. */
1149 if (skip >= 0x1000000)
1150 {
1151 skip -= 0x1000000;
1152 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1153 bfd_put_8 (abfd, 0xff, p + 1);
1154 bfd_put_16 (abfd, 0xffff, p + 2);
1155 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1156 while (skip >= 0x1000000)
1157 {
1158 skip -= 0x1000000;
1159 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1160 p++;
1161 *subspace_reloc_sizep += 1;
1162 /* No need to adjust queue here since we are repeating the
1163 most recent fixup. */
1164 }
1165 }
1166
1167 /* The difference must be less than 0x1000000. Use one
1168 more R_NO_RELOCATION entry to get to the right difference. */
1169 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1170 {
1171 /* Difference can be handled in a simple single-byte
1172 R_NO_RELOCATION entry. */
1173 if (skip <= 0x60)
1174 {
1175 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1176 *subspace_reloc_sizep += 1;
1177 p++;
1178 }
1179 /* Handle it with a two byte R_NO_RELOCATION entry. */
1180 else if (skip <= 0x1000)
1181 {
1182 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1183 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1184 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1185 }
1186 /* Handle it with a three byte R_NO_RELOCATION entry. */
1187 else
1188 {
1189 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1190 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1191 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1192 }
1193 }
1194 /* Ugh. Punt and use a 4 byte entry. */
1195 else if (skip > 0)
1196 {
1197 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1198 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1199 bfd_put_16 (abfd, skip - 1, p + 2);
1200 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1201 }
1202 return p;
1203 }
1204
1205 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1206 from a BFD relocation. Update the size of the subspace relocation
1207 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1208 into the relocation stream. */
1209
1210 static unsigned char *
1211 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1212 bfd *abfd;
1213 int addend;
1214 unsigned char *p;
1215 unsigned int *subspace_reloc_sizep;
1216 struct reloc_queue *queue;
1217 {
1218 if ((unsigned)(addend) + 0x80 < 0x100)
1219 {
1220 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1221 bfd_put_8 (abfd, addend, p + 1);
1222 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1223 }
1224 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1225 {
1226 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1227 bfd_put_16 (abfd, addend, p + 1);
1228 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1229 }
1230 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1231 {
1232 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1233 bfd_put_8 (abfd, addend >> 16, p + 1);
1234 bfd_put_16 (abfd, addend, p + 2);
1235 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1236 }
1237 else
1238 {
1239 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1240 bfd_put_32 (abfd, addend, p + 1);
1241 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1242 }
1243 return p;
1244 }
1245
1246 /* Handle a single function call relocation. */
1247
1248 static unsigned char *
1249 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1250 bfd *abfd;
1251 unsigned char *p;
1252 unsigned int *subspace_reloc_sizep;
1253 arelent *bfd_reloc;
1254 int sym_num;
1255 struct reloc_queue *queue;
1256 {
1257 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1258 int rtn_bits = arg_bits & 0x3;
1259 int type, done = 0;
1260
1261 /* You'll never believe all this is necessary to handle relocations
1262 for function calls. Having to compute and pack the argument
1263 relocation bits is the real nightmare.
1264
1265 If you're interested in how this works, just forget it. You really
1266 do not want to know about this braindamage. */
1267
1268 /* First see if this can be done with a "simple" relocation. Simple
1269 relocations have a symbol number < 0x100 and have simple encodings
1270 of argument relocations. */
1271
1272 if (sym_num < 0x100)
1273 {
1274 switch (arg_bits)
1275 {
1276 case 0:
1277 case 1:
1278 type = 0;
1279 break;
1280 case 1 << 8:
1281 case 1 << 8 | 1:
1282 type = 1;
1283 break;
1284 case 1 << 8 | 1 << 6:
1285 case 1 << 8 | 1 << 6 | 1:
1286 type = 2;
1287 break;
1288 case 1 << 8 | 1 << 6 | 1 << 4:
1289 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1290 type = 3;
1291 break;
1292 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1293 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1294 type = 4;
1295 break;
1296 default:
1297 /* Not one of the easy encodings. This will have to be
1298 handled by the more complex code below. */
1299 type = -1;
1300 break;
1301 }
1302 if (type != -1)
1303 {
1304 /* Account for the return value too. */
1305 if (rtn_bits)
1306 type += 5;
1307
1308 /* Emit a 2 byte relocation. Then see if it can be handled
1309 with a relocation which is already in the relocation queue. */
1310 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1311 bfd_put_8 (abfd, sym_num, p + 1);
1312 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1313 done = 1;
1314 }
1315 }
1316
1317 /* If this could not be handled with a simple relocation, then do a hard
1318 one. Hard relocations occur if the symbol number was too high or if
1319 the encoding of argument relocation bits is too complex. */
1320 if (! done)
1321 {
1322 /* Don't ask about these magic sequences. I took them straight
1323 from gas-1.36 which took them from the a.out man page. */
1324 type = rtn_bits;
1325 if ((arg_bits >> 6 & 0xf) == 0xe)
1326 type += 9 * 40;
1327 else
1328 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1329 if ((arg_bits >> 2 & 0xf) == 0xe)
1330 type += 9 * 4;
1331 else
1332 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1333
1334 /* Output the first two bytes of the relocation. These describe
1335 the length of the relocation and encoding style. */
1336 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1337 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1338 p);
1339 bfd_put_8 (abfd, type, p + 1);
1340
1341 /* Now output the symbol index and see if this bizarre relocation
1342 just happened to be in the relocation queue. */
1343 if (sym_num < 0x100)
1344 {
1345 bfd_put_8 (abfd, sym_num, p + 2);
1346 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1347 }
1348 else
1349 {
1350 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1351 bfd_put_16 (abfd, sym_num, p + 3);
1352 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1353 }
1354 }
1355 return p;
1356 }
1357
1358
1359 /* Return the logarithm of X, base 2, considering X unsigned.
1360 Abort -1 if X is not a power or two or is zero. */
1361
1362 static int
1363 log2 (x)
1364 unsigned int x;
1365 {
1366 int log = 0;
1367
1368 /* Test for 0 or a power of 2. */
1369 if (x == 0 || x != (x & -x))
1370 return -1;
1371
1372 while ((x >>= 1) != 0)
1373 log++;
1374 return log;
1375 }
1376
1377 static bfd_reloc_status_type
1378 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1379 input_section, output_bfd, error_message)
1380 bfd *abfd;
1381 arelent *reloc_entry;
1382 asymbol *symbol_in;
1383 PTR data;
1384 asection *input_section;
1385 bfd *output_bfd;
1386 char **error_message;
1387 {
1388 if (output_bfd)
1389 {
1390 reloc_entry->address += input_section->output_offset;
1391 return bfd_reloc_ok;
1392 }
1393 return bfd_reloc_ok;
1394 }
1395
1396 /* Given a generic HPPA relocation type, the instruction format,
1397 and a field selector, return one or more appropriate SOM relocations. */
1398
1399 int **
1400 hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff)
1401 bfd *abfd;
1402 int base_type;
1403 int format;
1404 enum hppa_reloc_field_selector_type_alt field;
1405 int sym_diff;
1406 {
1407 int *final_type, **final_types;
1408
1409 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 6);
1410 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1411 if (!final_types || !final_type)
1412 {
1413 bfd_set_error (bfd_error_no_memory);
1414 return NULL;
1415 }
1416
1417 /* The field selector may require additional relocations to be
1418 generated. It's impossible to know at this moment if additional
1419 relocations will be needed, so we make them. The code to actually
1420 write the relocation/fixup stream is responsible for removing
1421 any redundant relocations. */
1422 switch (field)
1423 {
1424 case e_fsel:
1425 case e_psel:
1426 case e_lpsel:
1427 case e_rpsel:
1428 final_types[0] = final_type;
1429 final_types[1] = NULL;
1430 final_types[2] = NULL;
1431 *final_type = base_type;
1432 break;
1433
1434 case e_tsel:
1435 case e_ltsel:
1436 case e_rtsel:
1437 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1438 if (!final_types[0])
1439 {
1440 bfd_set_error (bfd_error_no_memory);
1441 return NULL;
1442 }
1443 if (field == e_tsel)
1444 *final_types[0] = R_FSEL;
1445 else if (field == e_ltsel)
1446 *final_types[0] = R_LSEL;
1447 else
1448 *final_types[0] = R_RSEL;
1449 final_types[1] = final_type;
1450 final_types[2] = NULL;
1451 *final_type = base_type;
1452 break;
1453
1454 case e_lssel:
1455 case e_rssel:
1456 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1457 if (!final_types[0])
1458 {
1459 bfd_set_error (bfd_error_no_memory);
1460 return NULL;
1461 }
1462 *final_types[0] = R_S_MODE;
1463 final_types[1] = final_type;
1464 final_types[2] = NULL;
1465 *final_type = base_type;
1466 break;
1467
1468 case e_lsel:
1469 case e_rsel:
1470 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1471 if (!final_types[0])
1472 {
1473 bfd_set_error (bfd_error_no_memory);
1474 return NULL;
1475 }
1476 *final_types[0] = R_N_MODE;
1477 final_types[1] = final_type;
1478 final_types[2] = NULL;
1479 *final_type = base_type;
1480 break;
1481
1482 case e_ldsel:
1483 case e_rdsel:
1484 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1485 if (!final_types[0])
1486 {
1487 bfd_set_error (bfd_error_no_memory);
1488 return NULL;
1489 }
1490 *final_types[0] = R_D_MODE;
1491 final_types[1] = final_type;
1492 final_types[2] = NULL;
1493 *final_type = base_type;
1494 break;
1495
1496 case e_lrsel:
1497 case e_rrsel:
1498 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1499 if (!final_types[0])
1500 {
1501 bfd_set_error (bfd_error_no_memory);
1502 return NULL;
1503 }
1504 *final_types[0] = R_R_MODE;
1505 final_types[1] = final_type;
1506 final_types[2] = NULL;
1507 *final_type = base_type;
1508 break;
1509 }
1510
1511 switch (base_type)
1512 {
1513 case R_HPPA:
1514 /* The difference of two symbols needs *very* special handling. */
1515 if (sym_diff)
1516 {
1517 final_types[0] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1518 final_types[1] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1519 final_types[2] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1520 final_types[3] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1521 if (!final_types[0] || !final_types[1] || !final_types[2])
1522 {
1523 bfd_set_error (bfd_error_no_memory);
1524 return NULL;
1525 }
1526 if (field == e_fsel)
1527 *final_types[0] = R_FSEL;
1528 else if (field == e_rsel)
1529 *final_types[0] = R_RSEL;
1530 else if (field == e_lsel)
1531 *final_types[0] = R_LSEL;
1532 *final_types[1] = R_COMP2;
1533 *final_types[2] = R_COMP2;
1534 *final_types[3] = R_COMP1;
1535 final_types[4] = final_type;
1536 *final_types[4] = R_CODE_EXPR;
1537 final_types[5] = NULL;
1538 break;
1539 }
1540 /* PLABELs get their own relocation type. */
1541 else if (field == e_psel
1542 || field == e_lpsel
1543 || field == e_rpsel)
1544 {
1545 /* A PLABEL relocation that has a size of 32 bits must
1546 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1547 if (format == 32)
1548 *final_type = R_DATA_PLABEL;
1549 else
1550 *final_type = R_CODE_PLABEL;
1551 }
1552 /* PIC stuff. */
1553 else if (field == e_tsel
1554 || field == e_ltsel
1555 || field == e_rtsel)
1556 *final_type = R_DLT_REL;
1557 /* A relocation in the data space is always a full 32bits. */
1558 else if (format == 32)
1559 *final_type = R_DATA_ONE_SYMBOL;
1560
1561 break;
1562
1563 case R_HPPA_GOTOFF:
1564 /* More PLABEL special cases. */
1565 if (field == e_psel
1566 || field == e_lpsel
1567 || field == e_rpsel)
1568 *final_type = R_DATA_PLABEL;
1569 break;
1570
1571 case R_HPPA_COMPLEX:
1572 /* The difference of two symbols needs *very* special handling. */
1573 if (sym_diff)
1574 {
1575 final_types[0] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1576 final_types[1] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1577 final_types[2] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1578 final_types[3] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1579 if (!final_types[0] || !final_types[1] || !final_types[2])
1580 {
1581 bfd_set_error (bfd_error_no_memory);
1582 return NULL;
1583 }
1584 if (field == e_fsel)
1585 *final_types[0] = R_FSEL;
1586 else if (field == e_rsel)
1587 *final_types[0] = R_RSEL;
1588 else if (field == e_lsel)
1589 *final_types[0] = R_LSEL;
1590 *final_types[1] = R_COMP2;
1591 *final_types[2] = R_COMP2;
1592 *final_types[3] = R_COMP1;
1593 final_types[4] = final_type;
1594 *final_types[4] = R_CODE_EXPR;
1595 final_types[5] = NULL;
1596 break;
1597 }
1598 else
1599 break;
1600
1601 case R_HPPA_NONE:
1602 case R_HPPA_ABS_CALL:
1603 case R_HPPA_PCREL_CALL:
1604 /* Right now we can default all these. */
1605 break;
1606 }
1607 return final_types;
1608 }
1609
1610 /* Return the address of the correct entry in the PA SOM relocation
1611 howto table. */
1612
1613 /*ARGSUSED*/
1614 static reloc_howto_type *
1615 som_bfd_reloc_type_lookup (abfd, code)
1616 bfd *abfd;
1617 bfd_reloc_code_real_type code;
1618 {
1619 if ((int) code < (int) R_NO_RELOCATION + 255)
1620 {
1621 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1622 return &som_hppa_howto_table[(int) code];
1623 }
1624
1625 return (reloc_howto_type *) 0;
1626 }
1627
1628 /* Perform some initialization for an object. Save results of this
1629 initialization in the BFD. */
1630
1631 static const bfd_target *
1632 som_object_setup (abfd, file_hdrp, aux_hdrp)
1633 bfd *abfd;
1634 struct header *file_hdrp;
1635 struct som_exec_auxhdr *aux_hdrp;
1636 {
1637 asection *section;
1638 int found;
1639
1640 /* som_mkobject will set bfd_error if som_mkobject fails. */
1641 if (som_mkobject (abfd) != true)
1642 return 0;
1643
1644 /* Set BFD flags based on what information is available in the SOM. */
1645 abfd->flags = NO_FLAGS;
1646 if (file_hdrp->symbol_total)
1647 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1648
1649 switch (file_hdrp->a_magic)
1650 {
1651 case DEMAND_MAGIC:
1652 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1653 break;
1654 case SHARE_MAGIC:
1655 abfd->flags |= (WP_TEXT | EXEC_P);
1656 break;
1657 case EXEC_MAGIC:
1658 abfd->flags |= (EXEC_P);
1659 break;
1660 case RELOC_MAGIC:
1661 abfd->flags |= HAS_RELOC;
1662 break;
1663 #ifdef SHL_MAGIC
1664 case SHL_MAGIC:
1665 #endif
1666 #ifdef DL_MAGIC
1667 case DL_MAGIC:
1668 #endif
1669 abfd->flags |= DYNAMIC;
1670 break;
1671
1672 default:
1673 break;
1674 }
1675
1676 /* Allocate space to hold the saved exec header information. */
1677 obj_som_exec_data (abfd) = (struct som_exec_data *)
1678 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1679 if (obj_som_exec_data (abfd) == NULL)
1680 {
1681 bfd_set_error (bfd_error_no_memory);
1682 return NULL;
1683 }
1684
1685 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1686
1687 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1688 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1689
1690 It's about time, OSF has used the new id since at least 1992;
1691 HPUX didn't start till nearly 1995!.
1692
1693 The new approach examines the entry field. If it's zero or not 4
1694 byte aligned then it's not a proper code address and we guess it's
1695 really the executable flags. */
1696 found = 0;
1697 for (section = abfd->sections; section; section = section->next)
1698 {
1699 if ((section->flags & SEC_CODE) == 0)
1700 continue;
1701 if (aux_hdrp->exec_entry >= section->vma
1702 && aux_hdrp->exec_entry < section->vma + section->_cooked_size)
1703 found = 1;
1704 }
1705 if (aux_hdrp->exec_entry == 0
1706 || (aux_hdrp->exec_entry & 0x3) != 0
1707 || ! found)
1708 {
1709 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1710 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1711 }
1712 else
1713 {
1714 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1715 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1716 }
1717
1718 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1719 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1720
1721 /* Initialize the saved symbol table and string table to NULL.
1722 Save important offsets and sizes from the SOM header into
1723 the BFD. */
1724 obj_som_stringtab (abfd) = (char *) NULL;
1725 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1726 obj_som_sorted_syms (abfd) = NULL;
1727 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1728 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1729 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1730 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1731 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1732
1733 return abfd->xvec;
1734 }
1735
1736 /* Convert all of the space and subspace info into BFD sections. Each space
1737 contains a number of subspaces, which in turn describe the mapping between
1738 regions of the exec file, and the address space that the program runs in.
1739 BFD sections which correspond to spaces will overlap the sections for the
1740 associated subspaces. */
1741
1742 static boolean
1743 setup_sections (abfd, file_hdr)
1744 bfd *abfd;
1745 struct header *file_hdr;
1746 {
1747 char *space_strings;
1748 unsigned int space_index, i;
1749 unsigned int total_subspaces = 0;
1750 asection **subspace_sections, *section;
1751
1752 /* First, read in space names */
1753
1754 space_strings = malloc (file_hdr->space_strings_size);
1755 if (!space_strings && file_hdr->space_strings_size != 0)
1756 {
1757 bfd_set_error (bfd_error_no_memory);
1758 goto error_return;
1759 }
1760
1761 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1762 goto error_return;
1763 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1764 != file_hdr->space_strings_size)
1765 goto error_return;
1766
1767 /* Loop over all of the space dictionaries, building up sections */
1768 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1769 {
1770 struct space_dictionary_record space;
1771 struct subspace_dictionary_record subspace, save_subspace;
1772 int subspace_index;
1773 asection *space_asect;
1774 char *newname;
1775
1776 /* Read the space dictionary element */
1777 if (bfd_seek (abfd, file_hdr->space_location
1778 + space_index * sizeof space, SEEK_SET) < 0)
1779 goto error_return;
1780 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1781 goto error_return;
1782
1783 /* Setup the space name string */
1784 space.name.n_name = space.name.n_strx + space_strings;
1785
1786 /* Make a section out of it */
1787 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1788 if (!newname)
1789 goto error_return;
1790 strcpy (newname, space.name.n_name);
1791
1792 space_asect = bfd_make_section_anyway (abfd, newname);
1793 if (!space_asect)
1794 goto error_return;
1795
1796 if (space.is_loadable == 0)
1797 space_asect->flags |= SEC_DEBUGGING;
1798
1799 /* Set up all the attributes for the space. */
1800 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1801 space.is_private, space.sort_key,
1802 space.space_number) == false)
1803 goto error_return;
1804
1805 /* If the space has no subspaces, then we're done. */
1806 if (space.subspace_quantity == 0)
1807 continue;
1808
1809 /* Now, read in the first subspace for this space */
1810 if (bfd_seek (abfd, file_hdr->subspace_location
1811 + space.subspace_index * sizeof subspace,
1812 SEEK_SET) < 0)
1813 goto error_return;
1814 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1815 goto error_return;
1816 /* Seek back to the start of the subspaces for loop below */
1817 if (bfd_seek (abfd, file_hdr->subspace_location
1818 + space.subspace_index * sizeof subspace,
1819 SEEK_SET) < 0)
1820 goto error_return;
1821
1822 /* Setup the start address and file loc from the first subspace record */
1823 space_asect->vma = subspace.subspace_start;
1824 space_asect->filepos = subspace.file_loc_init_value;
1825 space_asect->alignment_power = log2 (subspace.alignment);
1826 if (space_asect->alignment_power == -1)
1827 goto error_return;
1828
1829 /* Initialize save_subspace so we can reliably determine if this
1830 loop placed any useful values into it. */
1831 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1832
1833 /* Loop over the rest of the subspaces, building up more sections */
1834 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1835 subspace_index++)
1836 {
1837 asection *subspace_asect;
1838
1839 /* Read in the next subspace */
1840 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1841 != sizeof subspace)
1842 goto error_return;
1843
1844 /* Setup the subspace name string */
1845 subspace.name.n_name = subspace.name.n_strx + space_strings;
1846
1847 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1848 if (!newname)
1849 goto error_return;
1850 strcpy (newname, subspace.name.n_name);
1851
1852 /* Make a section out of this subspace */
1853 subspace_asect = bfd_make_section_anyway (abfd, newname);
1854 if (!subspace_asect)
1855 goto error_return;
1856
1857 /* Store private information about the section. */
1858 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1859 subspace.access_control_bits,
1860 subspace.sort_key,
1861 subspace.quadrant) == false)
1862 goto error_return;
1863
1864 /* Keep an easy mapping between subspaces and sections.
1865 Note we do not necessarily read the subspaces in the
1866 same order in which they appear in the object file.
1867
1868 So to make the target index come out correctly, we
1869 store the location of the subspace header in target
1870 index, then sort using the location of the subspace
1871 header as the key. Then we can assign correct
1872 subspace indices. */
1873 total_subspaces++;
1874 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
1875
1876 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1877 by the access_control_bits in the subspace header. */
1878 switch (subspace.access_control_bits >> 4)
1879 {
1880 /* Readonly data. */
1881 case 0x0:
1882 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1883 break;
1884
1885 /* Normal data. */
1886 case 0x1:
1887 subspace_asect->flags |= SEC_DATA;
1888 break;
1889
1890 /* Readonly code and the gateways.
1891 Gateways have other attributes which do not map
1892 into anything BFD knows about. */
1893 case 0x2:
1894 case 0x4:
1895 case 0x5:
1896 case 0x6:
1897 case 0x7:
1898 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1899 break;
1900
1901 /* dynamic (writable) code. */
1902 case 0x3:
1903 subspace_asect->flags |= SEC_CODE;
1904 break;
1905 }
1906
1907 if (subspace.dup_common || subspace.is_common)
1908 subspace_asect->flags |= SEC_IS_COMMON;
1909 else if (subspace.subspace_length > 0)
1910 subspace_asect->flags |= SEC_HAS_CONTENTS;
1911
1912 if (subspace.is_loadable)
1913 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1914 else
1915 subspace_asect->flags |= SEC_DEBUGGING;
1916
1917 if (subspace.code_only)
1918 subspace_asect->flags |= SEC_CODE;
1919
1920 /* Both file_loc_init_value and initialization_length will
1921 be zero for a BSS like subspace. */
1922 if (subspace.file_loc_init_value == 0
1923 && subspace.initialization_length == 0)
1924 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
1925
1926 /* This subspace has relocations.
1927 The fixup_request_quantity is a byte count for the number of
1928 entries in the relocation stream; it is not the actual number
1929 of relocations in the subspace. */
1930 if (subspace.fixup_request_quantity != 0)
1931 {
1932 subspace_asect->flags |= SEC_RELOC;
1933 subspace_asect->rel_filepos = subspace.fixup_request_index;
1934 som_section_data (subspace_asect)->reloc_size
1935 = subspace.fixup_request_quantity;
1936 /* We can not determine this yet. When we read in the
1937 relocation table the correct value will be filled in. */
1938 subspace_asect->reloc_count = -1;
1939 }
1940
1941 /* Update save_subspace if appropriate. */
1942 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1943 save_subspace = subspace;
1944
1945 subspace_asect->vma = subspace.subspace_start;
1946 subspace_asect->_cooked_size = subspace.subspace_length;
1947 subspace_asect->_raw_size = subspace.subspace_length;
1948 subspace_asect->filepos = subspace.file_loc_init_value;
1949 subspace_asect->alignment_power = log2 (subspace.alignment);
1950 if (subspace_asect->alignment_power == -1)
1951 goto error_return;
1952 }
1953
1954 /* Yow! there is no subspace within the space which actually
1955 has initialized information in it; this should never happen
1956 as far as I know. */
1957 if (!save_subspace.file_loc_init_value)
1958 goto error_return;
1959
1960 /* Setup the sizes for the space section based upon the info in the
1961 last subspace of the space. */
1962 space_asect->_cooked_size = save_subspace.subspace_start
1963 - space_asect->vma + save_subspace.subspace_length;
1964 space_asect->_raw_size = save_subspace.file_loc_init_value
1965 - space_asect->filepos + save_subspace.initialization_length;
1966 }
1967 /* Now that we've read in all the subspace records, we need to assign
1968 a target index to each subspace. */
1969 subspace_sections = (asection **) malloc (total_subspaces
1970 * sizeof (asection *));
1971 if (subspace_sections == NULL)
1972 goto error_return;
1973
1974 for (i = 0, section = abfd->sections; section; section = section->next)
1975 {
1976 if (!som_is_subspace (section))
1977 continue;
1978
1979 subspace_sections[i] = section;
1980 i++;
1981 }
1982 qsort (subspace_sections, total_subspaces,
1983 sizeof (asection *), compare_subspaces);
1984
1985 /* subspace_sections is now sorted in the order in which the subspaces
1986 appear in the object file. Assign an index to each one now. */
1987 for (i = 0; i < total_subspaces; i++)
1988 subspace_sections[i]->target_index = i;
1989
1990 if (space_strings != NULL)
1991 free (space_strings);
1992
1993 if (subspace_sections != NULL)
1994 free (subspace_sections);
1995
1996 return true;
1997
1998 error_return:
1999 if (space_strings != NULL)
2000 free (space_strings);
2001
2002 if (subspace_sections != NULL)
2003 free (subspace_sections);
2004 return false;
2005 }
2006
2007 /* Read in a SOM object and make it into a BFD. */
2008
2009 static const bfd_target *
2010 som_object_p (abfd)
2011 bfd *abfd;
2012 {
2013 struct header file_hdr;
2014 struct som_exec_auxhdr aux_hdr;
2015
2016 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
2017 {
2018 if (bfd_get_error () != bfd_error_system_call)
2019 bfd_set_error (bfd_error_wrong_format);
2020 return 0;
2021 }
2022
2023 if (!_PA_RISC_ID (file_hdr.system_id))
2024 {
2025 bfd_set_error (bfd_error_wrong_format);
2026 return 0;
2027 }
2028
2029 switch (file_hdr.a_magic)
2030 {
2031 case RELOC_MAGIC:
2032 case EXEC_MAGIC:
2033 case SHARE_MAGIC:
2034 case DEMAND_MAGIC:
2035 #ifdef DL_MAGIC
2036 case DL_MAGIC:
2037 #endif
2038 #ifdef SHL_MAGIC
2039 case SHL_MAGIC:
2040 #endif
2041 #ifdef EXECLIBMAGIC
2042 case EXECLIBMAGIC:
2043 #endif
2044 #ifdef SHARED_MAGIC_CNX
2045 case SHARED_MAGIC_CNX:
2046 #endif
2047 break;
2048 default:
2049 bfd_set_error (bfd_error_wrong_format);
2050 return 0;
2051 }
2052
2053 if (file_hdr.version_id != VERSION_ID
2054 && file_hdr.version_id != NEW_VERSION_ID)
2055 {
2056 bfd_set_error (bfd_error_wrong_format);
2057 return 0;
2058 }
2059
2060 /* If the aux_header_size field in the file header is zero, then this
2061 object is an incomplete executable (a .o file). Do not try to read
2062 a non-existant auxiliary header. */
2063 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
2064 if (file_hdr.aux_header_size != 0)
2065 {
2066 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
2067 {
2068 if (bfd_get_error () != bfd_error_system_call)
2069 bfd_set_error (bfd_error_wrong_format);
2070 return 0;
2071 }
2072 }
2073
2074 if (!setup_sections (abfd, &file_hdr))
2075 {
2076 /* setup_sections does not bubble up a bfd error code. */
2077 bfd_set_error (bfd_error_bad_value);
2078 return 0;
2079 }
2080
2081 /* This appears to be a valid SOM object. Do some initialization. */
2082 return som_object_setup (abfd, &file_hdr, &aux_hdr);
2083 }
2084
2085 /* Create a SOM object. */
2086
2087 static boolean
2088 som_mkobject (abfd)
2089 bfd *abfd;
2090 {
2091 /* Allocate memory to hold backend information. */
2092 abfd->tdata.som_data = (struct som_data_struct *)
2093 bfd_zalloc (abfd, sizeof (struct som_data_struct));
2094 if (abfd->tdata.som_data == NULL)
2095 {
2096 bfd_set_error (bfd_error_no_memory);
2097 return false;
2098 }
2099 return true;
2100 }
2101
2102 /* Initialize some information in the file header. This routine makes
2103 not attempt at doing the right thing for a full executable; it
2104 is only meant to handle relocatable objects. */
2105
2106 static boolean
2107 som_prep_headers (abfd)
2108 bfd *abfd;
2109 {
2110 struct header *file_hdr;
2111 asection *section;
2112
2113 /* Make and attach a file header to the BFD. */
2114 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
2115 if (file_hdr == NULL)
2116
2117 {
2118 bfd_set_error (bfd_error_no_memory);
2119 return false;
2120 }
2121 obj_som_file_hdr (abfd) = file_hdr;
2122
2123 if (abfd->flags & (EXEC_P | DYNAMIC))
2124 {
2125
2126 /* Make and attach an exec header to the BFD. */
2127 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
2128 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
2129 if (obj_som_exec_hdr (abfd) == NULL)
2130 {
2131 bfd_set_error (bfd_error_no_memory);
2132 return false;
2133 }
2134
2135 if (abfd->flags & D_PAGED)
2136 file_hdr->a_magic = DEMAND_MAGIC;
2137 else if (abfd->flags & WP_TEXT)
2138 file_hdr->a_magic = SHARE_MAGIC;
2139 #ifdef SHL_MAGIC
2140 else if (abfd->flags & DYNAMIC)
2141 file_hdr->a_magic = SHL_MAGIC;
2142 #endif
2143 else
2144 file_hdr->a_magic = EXEC_MAGIC;
2145 }
2146 else
2147 file_hdr->a_magic = RELOC_MAGIC;
2148
2149 /* Only new format SOM is supported. */
2150 file_hdr->version_id = NEW_VERSION_ID;
2151
2152 /* These fields are optional, and embedding timestamps is not always
2153 a wise thing to do, it makes comparing objects during a multi-stage
2154 bootstrap difficult. */
2155 file_hdr->file_time.secs = 0;
2156 file_hdr->file_time.nanosecs = 0;
2157
2158 file_hdr->entry_space = 0;
2159 file_hdr->entry_subspace = 0;
2160 file_hdr->entry_offset = 0;
2161 file_hdr->presumed_dp = 0;
2162
2163 /* Now iterate over the sections translating information from
2164 BFD sections to SOM spaces/subspaces. */
2165
2166 for (section = abfd->sections; section != NULL; section = section->next)
2167 {
2168 /* Ignore anything which has not been marked as a space or
2169 subspace. */
2170 if (!som_is_space (section) && !som_is_subspace (section))
2171 continue;
2172
2173 if (som_is_space (section))
2174 {
2175 /* Allocate space for the space dictionary. */
2176 som_section_data (section)->space_dict
2177 = (struct space_dictionary_record *)
2178 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2179 if (som_section_data (section)->space_dict == NULL)
2180 {
2181 bfd_set_error (bfd_error_no_memory);
2182 return false;
2183 }
2184 /* Set space attributes. Note most attributes of SOM spaces
2185 are set based on the subspaces it contains. */
2186 som_section_data (section)->space_dict->loader_fix_index = -1;
2187 som_section_data (section)->space_dict->init_pointer_index = -1;
2188
2189 /* Set more attributes that were stuffed away in private data. */
2190 som_section_data (section)->space_dict->sort_key =
2191 som_section_data (section)->copy_data->sort_key;
2192 som_section_data (section)->space_dict->is_defined =
2193 som_section_data (section)->copy_data->is_defined;
2194 som_section_data (section)->space_dict->is_private =
2195 som_section_data (section)->copy_data->is_private;
2196 som_section_data (section)->space_dict->space_number =
2197 som_section_data (section)->copy_data->space_number;
2198 }
2199 else
2200 {
2201 /* Allocate space for the subspace dictionary. */
2202 som_section_data (section)->subspace_dict
2203 = (struct subspace_dictionary_record *)
2204 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2205 if (som_section_data (section)->subspace_dict == NULL)
2206 {
2207 bfd_set_error (bfd_error_no_memory);
2208 return false;
2209 }
2210
2211 /* Set subspace attributes. Basic stuff is done here, additional
2212 attributes are filled in later as more information becomes
2213 available. */
2214 if (section->flags & SEC_IS_COMMON)
2215 {
2216 som_section_data (section)->subspace_dict->dup_common = 1;
2217 som_section_data (section)->subspace_dict->is_common = 1;
2218 }
2219
2220 if (section->flags & SEC_ALLOC)
2221 som_section_data (section)->subspace_dict->is_loadable = 1;
2222
2223 if (section->flags & SEC_CODE)
2224 som_section_data (section)->subspace_dict->code_only = 1;
2225
2226 som_section_data (section)->subspace_dict->subspace_start =
2227 section->vma;
2228 som_section_data (section)->subspace_dict->subspace_length =
2229 bfd_section_size (abfd, section);
2230 som_section_data (section)->subspace_dict->initialization_length =
2231 bfd_section_size (abfd, section);
2232 som_section_data (section)->subspace_dict->alignment =
2233 1 << section->alignment_power;
2234
2235 /* Set more attributes that were stuffed away in private data. */
2236 som_section_data (section)->subspace_dict->sort_key =
2237 som_section_data (section)->copy_data->sort_key;
2238 som_section_data (section)->subspace_dict->access_control_bits =
2239 som_section_data (section)->copy_data->access_control_bits;
2240 som_section_data (section)->subspace_dict->quadrant =
2241 som_section_data (section)->copy_data->quadrant;
2242 }
2243 }
2244 return true;
2245 }
2246
2247 /* Return true if the given section is a SOM space, false otherwise. */
2248
2249 static boolean
2250 som_is_space (section)
2251 asection *section;
2252 {
2253 /* If no copy data is available, then it's neither a space nor a
2254 subspace. */
2255 if (som_section_data (section)->copy_data == NULL)
2256 return false;
2257
2258 /* If the containing space isn't the same as the given section,
2259 then this isn't a space. */
2260 if (som_section_data (section)->copy_data->container != section
2261 && (som_section_data (section)->copy_data->container->output_section
2262 != section))
2263 return false;
2264
2265 /* OK. Must be a space. */
2266 return true;
2267 }
2268
2269 /* Return true if the given section is a SOM subspace, false otherwise. */
2270
2271 static boolean
2272 som_is_subspace (section)
2273 asection *section;
2274 {
2275 /* If no copy data is available, then it's neither a space nor a
2276 subspace. */
2277 if (som_section_data (section)->copy_data == NULL)
2278 return false;
2279
2280 /* If the containing space is the same as the given section,
2281 then this isn't a subspace. */
2282 if (som_section_data (section)->copy_data->container == section
2283 || (som_section_data (section)->copy_data->container->output_section
2284 == section))
2285 return false;
2286
2287 /* OK. Must be a subspace. */
2288 return true;
2289 }
2290
2291 /* Return true if the given space containins the given subspace. It
2292 is safe to assume space really is a space, and subspace really
2293 is a subspace. */
2294
2295 static boolean
2296 som_is_container (space, subspace)
2297 asection *space, *subspace;
2298 {
2299 return (som_section_data (subspace)->copy_data->container == space
2300 || (som_section_data (subspace)->copy_data->container->output_section
2301 == space));
2302 }
2303
2304 /* Count and return the number of spaces attached to the given BFD. */
2305
2306 static unsigned long
2307 som_count_spaces (abfd)
2308 bfd *abfd;
2309 {
2310 int count = 0;
2311 asection *section;
2312
2313 for (section = abfd->sections; section != NULL; section = section->next)
2314 count += som_is_space (section);
2315
2316 return count;
2317 }
2318
2319 /* Count the number of subspaces attached to the given BFD. */
2320
2321 static unsigned long
2322 som_count_subspaces (abfd)
2323 bfd *abfd;
2324 {
2325 int count = 0;
2326 asection *section;
2327
2328 for (section = abfd->sections; section != NULL; section = section->next)
2329 count += som_is_subspace (section);
2330
2331 return count;
2332 }
2333
2334 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2335
2336 We desire symbols to be ordered starting with the symbol with the
2337 highest relocation count down to the symbol with the lowest relocation
2338 count. Doing so compacts the relocation stream. */
2339
2340 static int
2341 compare_syms (arg1, arg2)
2342 const PTR arg1;
2343 const PTR arg2;
2344
2345 {
2346 asymbol **sym1 = (asymbol **) arg1;
2347 asymbol **sym2 = (asymbol **) arg2;
2348 unsigned int count1, count2;
2349
2350 /* Get relocation count for each symbol. Note that the count
2351 is stored in the udata pointer for section symbols! */
2352 if ((*sym1)->flags & BSF_SECTION_SYM)
2353 count1 = (*sym1)->udata.i;
2354 else
2355 count1 = som_symbol_data (*sym1)->reloc_count;
2356
2357 if ((*sym2)->flags & BSF_SECTION_SYM)
2358 count2 = (*sym2)->udata.i;
2359 else
2360 count2 = som_symbol_data (*sym2)->reloc_count;
2361
2362 /* Return the appropriate value. */
2363 if (count1 < count2)
2364 return 1;
2365 else if (count1 > count2)
2366 return -1;
2367 return 0;
2368 }
2369
2370 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2371 and subspace. */
2372
2373 static int
2374 compare_subspaces (arg1, arg2)
2375 const PTR arg1;
2376 const PTR arg2;
2377
2378 {
2379 asection **subspace1 = (asection **) arg1;
2380 asection **subspace2 = (asection **) arg2;
2381 unsigned int count1, count2;
2382
2383 if ((*subspace1)->target_index < (*subspace2)->target_index)
2384 return -1;
2385 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2386 return 1;
2387 else
2388 return 0;
2389 }
2390
2391 /* Perform various work in preparation for emitting the fixup stream. */
2392
2393 static void
2394 som_prep_for_fixups (abfd, syms, num_syms)
2395 bfd *abfd;
2396 asymbol **syms;
2397 unsigned long num_syms;
2398 {
2399 int i;
2400 asection *section;
2401 asymbol **sorted_syms;
2402
2403 /* Most SOM relocations involving a symbol have a length which is
2404 dependent on the index of the symbol. So symbols which are
2405 used often in relocations should have a small index. */
2406
2407 /* First initialize the counters for each symbol. */
2408 for (i = 0; i < num_syms; i++)
2409 {
2410 /* Handle a section symbol; these have no pointers back to the
2411 SOM symbol info. So we just use the udata field to hold the
2412 relocation count. */
2413 if (som_symbol_data (syms[i]) == NULL
2414 || syms[i]->flags & BSF_SECTION_SYM)
2415 {
2416 syms[i]->flags |= BSF_SECTION_SYM;
2417 syms[i]->udata.i = 0;
2418 }
2419 else
2420 som_symbol_data (syms[i])->reloc_count = 0;
2421 }
2422
2423 /* Now that the counters are initialized, make a weighted count
2424 of how often a given symbol is used in a relocation. */
2425 for (section = abfd->sections; section != NULL; section = section->next)
2426 {
2427 int i;
2428
2429 /* Does this section have any relocations? */
2430 if (section->reloc_count <= 0)
2431 continue;
2432
2433 /* Walk through each relocation for this section. */
2434 for (i = 1; i < section->reloc_count; i++)
2435 {
2436 arelent *reloc = section->orelocation[i];
2437 int scale;
2438
2439 /* A relocation against a symbol in the *ABS* section really
2440 does not have a symbol. Likewise if the symbol isn't associated
2441 with any section. */
2442 if (reloc->sym_ptr_ptr == NULL
2443 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2444 continue;
2445
2446 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2447 and R_CODE_ONE_SYMBOL relocations to come first. These
2448 two relocations have single byte versions if the symbol
2449 index is very small. */
2450 if (reloc->howto->type == R_DP_RELATIVE
2451 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2452 scale = 2;
2453 else
2454 scale = 1;
2455
2456 /* Handle section symbols by storing the count in the udata
2457 field. It will not be used and the count is very important
2458 for these symbols. */
2459 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2460 {
2461 (*reloc->sym_ptr_ptr)->udata.i =
2462 (*reloc->sym_ptr_ptr)->udata.i + scale;
2463 continue;
2464 }
2465
2466 /* A normal symbol. Increment the count. */
2467 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2468 }
2469 }
2470
2471 /* Sort a copy of the symbol table, rather than the canonical
2472 output symbol table. */
2473 sorted_syms = (asymbol **) bfd_zalloc (abfd, num_syms * sizeof (asymbol *));
2474 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2475 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2476 obj_som_sorted_syms (abfd) = sorted_syms;
2477
2478 /* Compute the symbol indexes, they will be needed by the relocation
2479 code. */
2480 for (i = 0; i < num_syms; i++)
2481 {
2482 /* A section symbol. Again, there is no pointer to backend symbol
2483 information, so we reuse the udata field again. */
2484 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2485 sorted_syms[i]->udata.i = i;
2486 else
2487 som_symbol_data (sorted_syms[i])->index = i;
2488 }
2489 }
2490
2491 static boolean
2492 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2493 bfd *abfd;
2494 unsigned long current_offset;
2495 unsigned int *total_reloc_sizep;
2496 {
2497 unsigned int i, j;
2498 /* Chunk of memory that we can use as buffer space, then throw
2499 away. */
2500 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2501 unsigned char *p;
2502 unsigned int total_reloc_size = 0;
2503 unsigned int subspace_reloc_size = 0;
2504 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2505 asection *section = abfd->sections;
2506
2507 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2508 p = tmp_space;
2509
2510 /* All the fixups for a particular subspace are emitted in a single
2511 stream. All the subspaces for a particular space are emitted
2512 as a single stream.
2513
2514 So, to get all the locations correct one must iterate through all the
2515 spaces, for each space iterate through its subspaces and output a
2516 fixups stream. */
2517 for (i = 0; i < num_spaces; i++)
2518 {
2519 asection *subsection;
2520
2521 /* Find a space. */
2522 while (!som_is_space (section))
2523 section = section->next;
2524
2525 /* Now iterate through each of its subspaces. */
2526 for (subsection = abfd->sections;
2527 subsection != NULL;
2528 subsection = subsection->next)
2529 {
2530 int reloc_offset, current_rounding_mode;
2531
2532 /* Find a subspace of this space. */
2533 if (!som_is_subspace (subsection)
2534 || !som_is_container (section, subsection))
2535 continue;
2536
2537 /* If this subspace does not have real data, then we are
2538 finised with it. */
2539 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2540 {
2541 som_section_data (subsection)->subspace_dict->fixup_request_index
2542 = -1;
2543 continue;
2544 }
2545
2546 /* This subspace has some relocations. Put the relocation stream
2547 index into the subspace record. */
2548 som_section_data (subsection)->subspace_dict->fixup_request_index
2549 = total_reloc_size;
2550
2551 /* To make life easier start over with a clean slate for
2552 each subspace. Seek to the start of the relocation stream
2553 for this subspace in preparation for writing out its fixup
2554 stream. */
2555 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2556 return false;
2557
2558 /* Buffer space has already been allocated. Just perform some
2559 initialization here. */
2560 p = tmp_space;
2561 subspace_reloc_size = 0;
2562 reloc_offset = 0;
2563 som_initialize_reloc_queue (reloc_queue);
2564 current_rounding_mode = R_N_MODE;
2565
2566 /* Translate each BFD relocation into one or more SOM
2567 relocations. */
2568 for (j = 0; j < subsection->reloc_count; j++)
2569 {
2570 arelent *bfd_reloc = subsection->orelocation[j];
2571 unsigned int skip;
2572 int sym_num;
2573
2574 /* Get the symbol number. Remember it's stored in a
2575 special place for section symbols. */
2576 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2577 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2578 else
2579 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2580
2581 /* If there is not enough room for the next couple relocations,
2582 then dump the current buffer contents now. Also reinitialize
2583 the relocation queue.
2584
2585 No single BFD relocation could ever translate into more
2586 than 100 bytes of SOM relocations (20bytes is probably the
2587 upper limit, but leave lots of space for growth). */
2588 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2589 {
2590 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2591 != p - tmp_space)
2592 return false;
2593
2594 p = tmp_space;
2595 som_initialize_reloc_queue (reloc_queue);
2596 }
2597
2598 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2599 skipped. */
2600 skip = bfd_reloc->address - reloc_offset;
2601 p = som_reloc_skip (abfd, skip, p,
2602 &subspace_reloc_size, reloc_queue);
2603
2604 /* Update reloc_offset for the next iteration.
2605
2606 Many relocations do not consume input bytes. They
2607 are markers, or set state necessary to perform some
2608 later relocation. */
2609 switch (bfd_reloc->howto->type)
2610 {
2611 /* This only needs to handle relocations that may be
2612 made by hppa_som_gen_reloc. */
2613 case R_ENTRY:
2614 case R_ALT_ENTRY:
2615 case R_EXIT:
2616 case R_N_MODE:
2617 case R_S_MODE:
2618 case R_D_MODE:
2619 case R_R_MODE:
2620 case R_FSEL:
2621 case R_LSEL:
2622 case R_RSEL:
2623 case R_COMP1:
2624 case R_COMP2:
2625 case R_BEGIN_BRTAB:
2626 case R_END_BRTAB:
2627 reloc_offset = bfd_reloc->address;
2628 break;
2629
2630 default:
2631 reloc_offset = bfd_reloc->address + 4;
2632 break;
2633 }
2634
2635 /* Now the actual relocation we care about. */
2636 switch (bfd_reloc->howto->type)
2637 {
2638 case R_PCREL_CALL:
2639 case R_ABS_CALL:
2640 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2641 bfd_reloc, sym_num, reloc_queue);
2642 break;
2643
2644 case R_CODE_ONE_SYMBOL:
2645 case R_DP_RELATIVE:
2646 /* Account for any addend. */
2647 if (bfd_reloc->addend)
2648 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2649 &subspace_reloc_size, reloc_queue);
2650
2651 if (sym_num < 0x20)
2652 {
2653 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2654 subspace_reloc_size += 1;
2655 p += 1;
2656 }
2657 else if (sym_num < 0x100)
2658 {
2659 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2660 bfd_put_8 (abfd, sym_num, p + 1);
2661 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2662 2, reloc_queue);
2663 }
2664 else if (sym_num < 0x10000000)
2665 {
2666 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2667 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2668 bfd_put_16 (abfd, sym_num, p + 2);
2669 p = try_prev_fixup (abfd, &subspace_reloc_size,
2670 p, 4, reloc_queue);
2671 }
2672 else
2673 abort ();
2674 break;
2675
2676 case R_DATA_ONE_SYMBOL:
2677 case R_DATA_PLABEL:
2678 case R_CODE_PLABEL:
2679 case R_DLT_REL:
2680 /* Account for any addend using R_DATA_OVERRIDE. */
2681 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2682 && bfd_reloc->addend)
2683 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2684 &subspace_reloc_size, reloc_queue);
2685
2686 if (sym_num < 0x100)
2687 {
2688 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2689 bfd_put_8 (abfd, sym_num, p + 1);
2690 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2691 2, reloc_queue);
2692 }
2693 else if (sym_num < 0x10000000)
2694 {
2695 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2696 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2697 bfd_put_16 (abfd, sym_num, p + 2);
2698 p = try_prev_fixup (abfd, &subspace_reloc_size,
2699 p, 4, reloc_queue);
2700 }
2701 else
2702 abort ();
2703 break;
2704
2705 case R_ENTRY:
2706 {
2707 int tmp;
2708 arelent *tmp_reloc = NULL;
2709 bfd_put_8 (abfd, R_ENTRY, p);
2710
2711 /* R_ENTRY relocations have 64 bits of associated
2712 data. Unfortunately the addend field of a bfd
2713 relocation is only 32 bits. So, we split up
2714 the 64bit unwind information and store part in
2715 the R_ENTRY relocation, and the rest in the R_EXIT
2716 relocation. */
2717 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2718
2719 /* Find the next R_EXIT relocation. */
2720 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2721 {
2722 tmp_reloc = subsection->orelocation[tmp];
2723 if (tmp_reloc->howto->type == R_EXIT)
2724 break;
2725 }
2726
2727 if (tmp == subsection->reloc_count)
2728 abort ();
2729
2730 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2731 p = try_prev_fixup (abfd, &subspace_reloc_size,
2732 p, 9, reloc_queue);
2733 break;
2734 }
2735
2736 case R_N_MODE:
2737 case R_S_MODE:
2738 case R_D_MODE:
2739 case R_R_MODE:
2740 /* If this relocation requests the current rounding
2741 mode, then it is redundant. */
2742 if (bfd_reloc->howto->type != current_rounding_mode)
2743 {
2744 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2745 subspace_reloc_size += 1;
2746 p += 1;
2747 current_rounding_mode = bfd_reloc->howto->type;
2748 }
2749 break;
2750
2751 case R_EXIT:
2752 case R_ALT_ENTRY:
2753 case R_FSEL:
2754 case R_LSEL:
2755 case R_RSEL:
2756 case R_BEGIN_BRTAB:
2757 case R_END_BRTAB:
2758 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2759 subspace_reloc_size += 1;
2760 p += 1;
2761 break;
2762
2763 case R_COMP1:
2764 /* The only time we generate R_COMP1, R_COMP2 and
2765 R_CODE_EXPR relocs is for the difference of two
2766 symbols. Hence we can cheat here. */
2767 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2768 bfd_put_8 (abfd, 0x44, p + 1);
2769 p = try_prev_fixup (abfd, &subspace_reloc_size,
2770 p, 2, reloc_queue);
2771 break;
2772
2773 case R_COMP2:
2774 /* The only time we generate R_COMP1, R_COMP2 and
2775 R_CODE_EXPR relocs is for the difference of two
2776 symbols. Hence we can cheat here. */
2777 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2778 bfd_put_8 (abfd, 0x80, p + 1);
2779 bfd_put_8 (abfd, sym_num >> 16, p + 2);
2780 bfd_put_16 (abfd, sym_num, p + 3);
2781 p = try_prev_fixup (abfd, &subspace_reloc_size,
2782 p, 5, reloc_queue);
2783 break;
2784
2785 case R_CODE_EXPR:
2786 /* The only time we generate R_COMP1, R_COMP2 and
2787 R_CODE_EXPR relocs is for the difference of two
2788 symbols. Hence we can cheat here. */
2789 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2790 subspace_reloc_size += 1;
2791 p += 1;
2792 break;
2793
2794 /* Put a "R_RESERVED" relocation in the stream if
2795 we hit something we do not understand. The linker
2796 will complain loudly if this ever happens. */
2797 default:
2798 bfd_put_8 (abfd, 0xff, p);
2799 subspace_reloc_size += 1;
2800 p += 1;
2801 break;
2802 }
2803 }
2804
2805 /* Last BFD relocation for a subspace has been processed.
2806 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2807 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2808 - reloc_offset,
2809 p, &subspace_reloc_size, reloc_queue);
2810
2811 /* Scribble out the relocations. */
2812 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2813 != p - tmp_space)
2814 return false;
2815 p = tmp_space;
2816
2817 total_reloc_size += subspace_reloc_size;
2818 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2819 = subspace_reloc_size;
2820 }
2821 section = section->next;
2822 }
2823 *total_reloc_sizep = total_reloc_size;
2824 return true;
2825 }
2826
2827 /* Write out the space/subspace string table. */
2828
2829 static boolean
2830 som_write_space_strings (abfd, current_offset, string_sizep)
2831 bfd *abfd;
2832 unsigned long current_offset;
2833 unsigned int *string_sizep;
2834 {
2835 /* Chunk of memory that we can use as buffer space, then throw
2836 away. */
2837 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2838 unsigned char *p;
2839 unsigned int strings_size = 0;
2840 asection *section;
2841
2842 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2843 p = tmp_space;
2844
2845 /* Seek to the start of the space strings in preparation for writing
2846 them out. */
2847 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2848 return false;
2849
2850 /* Walk through all the spaces and subspaces (order is not important)
2851 building up and writing string table entries for their names. */
2852 for (section = abfd->sections; section != NULL; section = section->next)
2853 {
2854 int length;
2855
2856 /* Only work with space/subspaces; avoid any other sections
2857 which might have been made (.text for example). */
2858 if (!som_is_space (section) && !som_is_subspace (section))
2859 continue;
2860
2861 /* Get the length of the space/subspace name. */
2862 length = strlen (section->name);
2863
2864 /* If there is not enough room for the next entry, then dump the
2865 current buffer contents now. Each entry will take 4 bytes to
2866 hold the string length + the string itself + null terminator. */
2867 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2868 {
2869 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2870 != p - tmp_space)
2871 return false;
2872 /* Reset to beginning of the buffer space. */
2873 p = tmp_space;
2874 }
2875
2876 /* First element in a string table entry is the length of the
2877 string. Alignment issues are already handled. */
2878 bfd_put_32 (abfd, length, p);
2879 p += 4;
2880 strings_size += 4;
2881
2882 /* Record the index in the space/subspace records. */
2883 if (som_is_space (section))
2884 som_section_data (section)->space_dict->name.n_strx = strings_size;
2885 else
2886 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2887
2888 /* Next comes the string itself + a null terminator. */
2889 strcpy (p, section->name);
2890 p += length + 1;
2891 strings_size += length + 1;
2892
2893 /* Always align up to the next word boundary. */
2894 while (strings_size % 4)
2895 {
2896 bfd_put_8 (abfd, 0, p);
2897 p++;
2898 strings_size++;
2899 }
2900 }
2901
2902 /* Done with the space/subspace strings. Write out any information
2903 contained in a partial block. */
2904 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2905 return false;
2906 *string_sizep = strings_size;
2907 return true;
2908 }
2909
2910 /* Write out the symbol string table. */
2911
2912 static boolean
2913 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2914 bfd *abfd;
2915 unsigned long current_offset;
2916 asymbol **syms;
2917 unsigned int num_syms;
2918 unsigned int *string_sizep;
2919 {
2920 unsigned int i;
2921
2922 /* Chunk of memory that we can use as buffer space, then throw
2923 away. */
2924 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2925 unsigned char *p;
2926 unsigned int strings_size = 0;
2927
2928 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2929 p = tmp_space;
2930
2931 /* Seek to the start of the space strings in preparation for writing
2932 them out. */
2933 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2934 return false;
2935
2936 for (i = 0; i < num_syms; i++)
2937 {
2938 int length = strlen (syms[i]->name);
2939
2940 /* If there is not enough room for the next entry, then dump the
2941 current buffer contents now. */
2942 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2943 {
2944 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2945 != p - tmp_space)
2946 return false;
2947 /* Reset to beginning of the buffer space. */
2948 p = tmp_space;
2949 }
2950
2951 /* First element in a string table entry is the length of the
2952 string. This must always be 4 byte aligned. This is also
2953 an appropriate time to fill in the string index field in the
2954 symbol table entry. */
2955 bfd_put_32 (abfd, length, p);
2956 strings_size += 4;
2957 p += 4;
2958
2959 /* Next comes the string itself + a null terminator. */
2960 strcpy (p, syms[i]->name);
2961
2962 som_symbol_data(syms[i])->stringtab_offset = strings_size;
2963 p += length + 1;
2964 strings_size += length + 1;
2965
2966 /* Always align up to the next word boundary. */
2967 while (strings_size % 4)
2968 {
2969 bfd_put_8 (abfd, 0, p);
2970 strings_size++;
2971 p++;
2972 }
2973 }
2974
2975 /* Scribble out any partial block. */
2976 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2977 return false;
2978
2979 *string_sizep = strings_size;
2980 return true;
2981 }
2982
2983 /* Compute variable information to be placed in the SOM headers,
2984 space/subspace dictionaries, relocation streams, etc. Begin
2985 writing parts of the object file. */
2986
2987 static boolean
2988 som_begin_writing (abfd)
2989 bfd *abfd;
2990 {
2991 unsigned long current_offset = 0;
2992 int strings_size = 0;
2993 unsigned int total_reloc_size = 0;
2994 unsigned long num_spaces, num_subspaces, i;
2995 asection *section;
2996 unsigned int total_subspaces = 0;
2997 struct som_exec_auxhdr *exec_header = NULL;
2998
2999 /* The file header will always be first in an object file,
3000 everything else can be in random locations. To keep things
3001 "simple" BFD will lay out the object file in the manner suggested
3002 by the PRO ABI for PA-RISC Systems. */
3003
3004 /* Before any output can really begin offsets for all the major
3005 portions of the object file must be computed. So, starting
3006 with the initial file header compute (and sometimes write)
3007 each portion of the object file. */
3008
3009 /* Make room for the file header, it's contents are not complete
3010 yet, so it can not be written at this time. */
3011 current_offset += sizeof (struct header);
3012
3013 /* Any auxiliary headers will follow the file header. Right now
3014 we support only the copyright and version headers. */
3015 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3016 obj_som_file_hdr (abfd)->aux_header_size = 0;
3017 if (abfd->flags & (EXEC_P | DYNAMIC))
3018 {
3019 /* Parts of the exec header will be filled in later, so
3020 delay writing the header itself. Fill in the defaults,
3021 and write it later. */
3022 current_offset += sizeof (struct som_exec_auxhdr);
3023 obj_som_file_hdr (abfd)->aux_header_size
3024 += sizeof (struct som_exec_auxhdr);
3025 exec_header = obj_som_exec_hdr (abfd);
3026 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3027 exec_header->som_auxhdr.length = 40;
3028 }
3029 if (obj_som_version_hdr (abfd) != NULL)
3030 {
3031 unsigned int len;
3032
3033 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3034 return false;
3035
3036 /* Write the aux_id structure and the string length. */
3037 len = sizeof (struct aux_id) + sizeof (unsigned int);
3038 obj_som_file_hdr (abfd)->aux_header_size += len;
3039 current_offset += len;
3040 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
3041 return false;
3042
3043 /* Write the version string. */
3044 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3045 obj_som_file_hdr (abfd)->aux_header_size += len;
3046 current_offset += len;
3047 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
3048 len, 1, abfd) != len)
3049 return false;
3050 }
3051
3052 if (obj_som_copyright_hdr (abfd) != NULL)
3053 {
3054 unsigned int len;
3055
3056 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3057 return false;
3058
3059 /* Write the aux_id structure and the string length. */
3060 len = sizeof (struct aux_id) + sizeof (unsigned int);
3061 obj_som_file_hdr (abfd)->aux_header_size += len;
3062 current_offset += len;
3063 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
3064 return false;
3065
3066 /* Write the copyright string. */
3067 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3068 obj_som_file_hdr (abfd)->aux_header_size += len;
3069 current_offset += len;
3070 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
3071 len, 1, abfd) != len)
3072 return false;
3073 }
3074
3075 /* Next comes the initialization pointers; we have no initialization
3076 pointers, so current offset does not change. */
3077 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3078 obj_som_file_hdr (abfd)->init_array_total = 0;
3079
3080 /* Next are the space records. These are fixed length records.
3081
3082 Count the number of spaces to determine how much room is needed
3083 in the object file for the space records.
3084
3085 The names of the spaces are stored in a separate string table,
3086 and the index for each space into the string table is computed
3087 below. Therefore, it is not possible to write the space headers
3088 at this time. */
3089 num_spaces = som_count_spaces (abfd);
3090 obj_som_file_hdr (abfd)->space_location = current_offset;
3091 obj_som_file_hdr (abfd)->space_total = num_spaces;
3092 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3093
3094 /* Next are the subspace records. These are fixed length records.
3095
3096 Count the number of subspaes to determine how much room is needed
3097 in the object file for the subspace records.
3098
3099 A variety if fields in the subspace record are still unknown at
3100 this time (index into string table, fixup stream location/size, etc). */
3101 num_subspaces = som_count_subspaces (abfd);
3102 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3103 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3104 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
3105
3106 /* Next is the string table for the space/subspace names. We will
3107 build and write the string table on the fly. At the same time
3108 we will fill in the space/subspace name index fields. */
3109
3110 /* The string table needs to be aligned on a word boundary. */
3111 if (current_offset % 4)
3112 current_offset += (4 - (current_offset % 4));
3113
3114 /* Mark the offset of the space/subspace string table in the
3115 file header. */
3116 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3117
3118 /* Scribble out the space strings. */
3119 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
3120 return false;
3121
3122 /* Record total string table size in the header and update the
3123 current offset. */
3124 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3125 current_offset += strings_size;
3126
3127 /* Next is the compiler records. We do not use these. */
3128 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3129 obj_som_file_hdr (abfd)->compiler_total = 0;
3130
3131 /* Now compute the file positions for the loadable subspaces, taking
3132 care to make sure everything stays properly aligned. */
3133
3134 section = abfd->sections;
3135 for (i = 0; i < num_spaces; i++)
3136 {
3137 asection *subsection;
3138 int first_subspace;
3139 unsigned int subspace_offset = 0;
3140
3141 /* Find a space. */
3142 while (!som_is_space (section))
3143 section = section->next;
3144
3145 first_subspace = 1;
3146 /* Now look for all its subspaces. */
3147 for (subsection = abfd->sections;
3148 subsection != NULL;
3149 subsection = subsection->next)
3150 {
3151
3152 if (!som_is_subspace (subsection)
3153 || !som_is_container (section, subsection)
3154 || (subsection->flags & SEC_ALLOC) == 0)
3155 continue;
3156
3157 /* If this is the first subspace in the space, and we are
3158 building an executable, then take care to make sure all
3159 the alignments are correct and update the exec header. */
3160 if (first_subspace
3161 && (abfd->flags & (EXEC_P | DYNAMIC)))
3162 {
3163 /* Demand paged executables have each space aligned to a
3164 page boundary. Sharable executables (write-protected
3165 text) have just the private (aka data & bss) space aligned
3166 to a page boundary. Ugh. Not true for HPUX.
3167
3168 The HPUX kernel requires the text to always be page aligned
3169 within the file regardless of the executable's type. */
3170 if (abfd->flags & (D_PAGED | DYNAMIC)
3171 || (subsection->flags & SEC_CODE)
3172 || ((abfd->flags & WP_TEXT)
3173 && (subsection->flags & SEC_DATA)))
3174 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3175
3176 /* Update the exec header. */
3177 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3178 {
3179 exec_header->exec_tmem = section->vma;
3180 exec_header->exec_tfile = current_offset;
3181 }
3182 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3183 {
3184 exec_header->exec_dmem = section->vma;
3185 exec_header->exec_dfile = current_offset;
3186 }
3187
3188 /* Keep track of exactly where we are within a particular
3189 space. This is necessary as the braindamaged HPUX
3190 loader will create holes between subspaces *and*
3191 subspace alignments are *NOT* preserved. What a crock. */
3192 subspace_offset = subsection->vma;
3193
3194 /* Only do this for the first subspace within each space. */
3195 first_subspace = 0;
3196 }
3197 else if (abfd->flags & (EXEC_P | DYNAMIC))
3198 {
3199 /* The braindamaged HPUX loader may have created a hole
3200 between two subspaces. It is *not* sufficient to use
3201 the alignment specifications within the subspaces to
3202 account for these holes -- I've run into at least one
3203 case where the loader left one code subspace unaligned
3204 in a final executable.
3205
3206 To combat this we keep a current offset within each space,
3207 and use the subspace vma fields to detect and preserve
3208 holes. What a crock!
3209
3210 ps. This is not necessary for unloadable space/subspaces. */
3211 current_offset += subsection->vma - subspace_offset;
3212 if (subsection->flags & SEC_CODE)
3213 exec_header->exec_tsize += subsection->vma - subspace_offset;
3214 else
3215 exec_header->exec_dsize += subsection->vma - subspace_offset;
3216 subspace_offset += subsection->vma - subspace_offset;
3217 }
3218
3219
3220 subsection->target_index = total_subspaces++;
3221 /* This is real data to be loaded from the file. */
3222 if (subsection->flags & SEC_LOAD)
3223 {
3224 /* Update the size of the code & data. */
3225 if (abfd->flags & (EXEC_P | DYNAMIC)
3226 && subsection->flags & SEC_CODE)
3227 exec_header->exec_tsize += subsection->_cooked_size;
3228 else if (abfd->flags & (EXEC_P | DYNAMIC)
3229 && subsection->flags & SEC_DATA)
3230 exec_header->exec_dsize += subsection->_cooked_size;
3231 som_section_data (subsection)->subspace_dict->file_loc_init_value
3232 = current_offset;
3233 subsection->filepos = current_offset;
3234 current_offset += bfd_section_size (abfd, subsection);
3235 subspace_offset += bfd_section_size (abfd, subsection);
3236 }
3237 /* Looks like uninitialized data. */
3238 else
3239 {
3240 /* Update the size of the bss section. */
3241 if (abfd->flags & (EXEC_P | DYNAMIC))
3242 exec_header->exec_bsize += subsection->_cooked_size;
3243
3244 som_section_data (subsection)->subspace_dict->file_loc_init_value
3245 = 0;
3246 som_section_data (subsection)->subspace_dict->
3247 initialization_length = 0;
3248 }
3249 }
3250 /* Goto the next section. */
3251 section = section->next;
3252 }
3253
3254 /* Finally compute the file positions for unloadable subspaces.
3255 If building an executable, start the unloadable stuff on its
3256 own page. */
3257
3258 if (abfd->flags & (EXEC_P | DYNAMIC))
3259 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3260
3261 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3262 section = abfd->sections;
3263 for (i = 0; i < num_spaces; i++)
3264 {
3265 asection *subsection;
3266
3267 /* Find a space. */
3268 while (!som_is_space (section))
3269 section = section->next;
3270
3271 if (abfd->flags & (EXEC_P | DYNAMIC))
3272 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3273
3274 /* Now look for all its subspaces. */
3275 for (subsection = abfd->sections;
3276 subsection != NULL;
3277 subsection = subsection->next)
3278 {
3279
3280 if (!som_is_subspace (subsection)
3281 || !som_is_container (section, subsection)
3282 || (subsection->flags & SEC_ALLOC) != 0)
3283 continue;
3284
3285 subsection->target_index = total_subspaces++;
3286 /* This is real data to be loaded from the file. */
3287 if ((subsection->flags & SEC_LOAD) == 0)
3288 {
3289 som_section_data (subsection)->subspace_dict->file_loc_init_value
3290 = current_offset;
3291 subsection->filepos = current_offset;
3292 current_offset += bfd_section_size (abfd, subsection);
3293 }
3294 /* Looks like uninitialized data. */
3295 else
3296 {
3297 som_section_data (subsection)->subspace_dict->file_loc_init_value
3298 = 0;
3299 som_section_data (subsection)->subspace_dict->
3300 initialization_length = bfd_section_size (abfd, subsection);
3301 }
3302 }
3303 /* Goto the next section. */
3304 section = section->next;
3305 }
3306
3307 /* If building an executable, then make sure to seek to and write
3308 one byte at the end of the file to make sure any necessary
3309 zeros are filled in. Ugh. */
3310 if (abfd->flags & (EXEC_P | DYNAMIC))
3311 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3312 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3313 return false;
3314 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3315 return false;
3316
3317 obj_som_file_hdr (abfd)->unloadable_sp_size
3318 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3319
3320 /* Loader fixups are not supported in any way shape or form. */
3321 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3322 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3323
3324 /* Done. Store the total size of the SOM so far. */
3325 obj_som_file_hdr (abfd)->som_length = current_offset;
3326
3327 return true;
3328 }
3329
3330 /* Finally, scribble out the various headers to the disk. */
3331
3332 static boolean
3333 som_finish_writing (abfd)
3334 bfd *abfd;
3335 {
3336 int num_spaces = som_count_spaces (abfd);
3337 asymbol **syms = bfd_get_outsymbols (abfd);
3338 int i, num_syms, strings_size;
3339 int subspace_index = 0;
3340 file_ptr location;
3341 asection *section;
3342 unsigned long current_offset;
3343 unsigned int total_reloc_size;
3344
3345 /* Next is the symbol table. These are fixed length records.
3346
3347 Count the number of symbols to determine how much room is needed
3348 in the object file for the symbol table.
3349
3350 The names of the symbols are stored in a separate string table,
3351 and the index for each symbol name into the string table is computed
3352 below. Therefore, it is not possible to write the symbol table
3353 at this time.
3354
3355 These used to be output before the subspace contents, but they
3356 were moved here to work around a stupid bug in the hpux linker
3357 (fixed in hpux10). */
3358 current_offset = obj_som_file_hdr (abfd)->som_length;
3359
3360 /* Make sure we're on a word boundary. */
3361 if (current_offset % 4)
3362 current_offset += (4 - (current_offset % 4));
3363
3364 num_syms = bfd_get_symcount (abfd);
3365 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3366 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3367 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3368
3369 /* Next are the symbol strings.
3370 Align them to a word boundary. */
3371 if (current_offset % 4)
3372 current_offset += (4 - (current_offset % 4));
3373 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3374
3375 /* Scribble out the symbol strings. */
3376 if (som_write_symbol_strings (abfd, current_offset, syms,
3377 num_syms, &strings_size)
3378 == false)
3379 return false;
3380
3381 /* Record total string table size in header and update the
3382 current offset. */
3383 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3384 current_offset += strings_size;
3385
3386 /* Do prep work before handling fixups. */
3387 som_prep_for_fixups (abfd,
3388 bfd_get_outsymbols (abfd),
3389 bfd_get_symcount (abfd));
3390
3391 /* At the end of the file is the fixup stream which starts on a
3392 word boundary. */
3393 if (current_offset % 4)
3394 current_offset += (4 - (current_offset % 4));
3395 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3396
3397 /* Write the fixups and update fields in subspace headers which
3398 relate to the fixup stream. */
3399 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
3400 return false;
3401
3402 /* Record the total size of the fixup stream in the file header. */
3403 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3404
3405 /* Done. Store the total size of the SOM. */
3406 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
3407
3408 /* Now that the symbol table information is complete, build and
3409 write the symbol table. */
3410 if (som_build_and_write_symbol_table (abfd) == false)
3411 return false;
3412
3413 /* Subspaces are written first so that we can set up information
3414 about them in their containing spaces as the subspace is written. */
3415
3416 /* Seek to the start of the subspace dictionary records. */
3417 location = obj_som_file_hdr (abfd)->subspace_location;
3418 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3419 return false;
3420
3421 section = abfd->sections;
3422 /* Now for each loadable space write out records for its subspaces. */
3423 for (i = 0; i < num_spaces; i++)
3424 {
3425 asection *subsection;
3426
3427 /* Find a space. */
3428 while (!som_is_space (section))
3429 section = section->next;
3430
3431 /* Now look for all its subspaces. */
3432 for (subsection = abfd->sections;
3433 subsection != NULL;
3434 subsection = subsection->next)
3435 {
3436
3437 /* Skip any section which does not correspond to a space
3438 or subspace. Or does not have SEC_ALLOC set (and therefore
3439 has no real bits on the disk). */
3440 if (!som_is_subspace (subsection)
3441 || !som_is_container (section, subsection)
3442 || (subsection->flags & SEC_ALLOC) == 0)
3443 continue;
3444
3445 /* If this is the first subspace for this space, then save
3446 the index of the subspace in its containing space. Also
3447 set "is_loadable" in the containing space. */
3448
3449 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3450 {
3451 som_section_data (section)->space_dict->is_loadable = 1;
3452 som_section_data (section)->space_dict->subspace_index
3453 = subspace_index;
3454 }
3455
3456 /* Increment the number of subspaces seen and the number of
3457 subspaces contained within the current space. */
3458 subspace_index++;
3459 som_section_data (section)->space_dict->subspace_quantity++;
3460
3461 /* Mark the index of the current space within the subspace's
3462 dictionary record. */
3463 som_section_data (subsection)->subspace_dict->space_index = i;
3464
3465 /* Dump the current subspace header. */
3466 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3467 sizeof (struct subspace_dictionary_record), 1, abfd)
3468 != sizeof (struct subspace_dictionary_record))
3469 return false;
3470 }
3471 /* Goto the next section. */
3472 section = section->next;
3473 }
3474
3475 /* Now repeat the process for unloadable subspaces. */
3476 section = abfd->sections;
3477 /* Now for each space write out records for its subspaces. */
3478 for (i = 0; i < num_spaces; i++)
3479 {
3480 asection *subsection;
3481
3482 /* Find a space. */
3483 while (!som_is_space (section))
3484 section = section->next;
3485
3486 /* Now look for all its subspaces. */
3487 for (subsection = abfd->sections;
3488 subsection != NULL;
3489 subsection = subsection->next)
3490 {
3491
3492 /* Skip any section which does not correspond to a space or
3493 subspace, or which SEC_ALLOC set (and therefore handled
3494 in the loadable spaces/subspaces code above). */
3495
3496 if (!som_is_subspace (subsection)
3497 || !som_is_container (section, subsection)
3498 || (subsection->flags & SEC_ALLOC) != 0)
3499 continue;
3500
3501 /* If this is the first subspace for this space, then save
3502 the index of the subspace in its containing space. Clear
3503 "is_loadable". */
3504
3505 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3506 {
3507 som_section_data (section)->space_dict->is_loadable = 0;
3508 som_section_data (section)->space_dict->subspace_index
3509 = subspace_index;
3510 }
3511
3512 /* Increment the number of subspaces seen and the number of
3513 subspaces contained within the current space. */
3514 som_section_data (section)->space_dict->subspace_quantity++;
3515 subspace_index++;
3516
3517 /* Mark the index of the current space within the subspace's
3518 dictionary record. */
3519 som_section_data (subsection)->subspace_dict->space_index = i;
3520
3521 /* Dump this subspace header. */
3522 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3523 sizeof (struct subspace_dictionary_record), 1, abfd)
3524 != sizeof (struct subspace_dictionary_record))
3525 return false;
3526 }
3527 /* Goto the next section. */
3528 section = section->next;
3529 }
3530
3531 /* All the subspace dictiondary records are written, and all the
3532 fields are set up in the space dictionary records.
3533
3534 Seek to the right location and start writing the space
3535 dictionary records. */
3536 location = obj_som_file_hdr (abfd)->space_location;
3537 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3538 return false;
3539
3540 section = abfd->sections;
3541 for (i = 0; i < num_spaces; i++)
3542 {
3543
3544 /* Find a space. */
3545 while (!som_is_space (section))
3546 section = section->next;
3547
3548 /* Dump its header */
3549 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3550 sizeof (struct space_dictionary_record), 1, abfd)
3551 != sizeof (struct space_dictionary_record))
3552 return false;
3553
3554 /* Goto the next section. */
3555 section = section->next;
3556 }
3557
3558 /* Setting of the system_id has to happen very late now that copying of
3559 BFD private data happens *after* section contents are set. */
3560 if (abfd->flags & (EXEC_P | DYNAMIC))
3561 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3562 else if (bfd_get_mach (abfd) == pa11)
3563 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_1;
3564 else
3565 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3566
3567 /* Compute the checksum for the file header just before writing
3568 the header to disk. */
3569 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3570
3571 /* Only thing left to do is write out the file header. It is always
3572 at location zero. Seek there and write it. */
3573 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3574 return false;
3575 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3576 sizeof (struct header), 1, abfd)
3577 != sizeof (struct header))
3578 return false;
3579
3580 /* Now write the exec header. */
3581 if (abfd->flags & (EXEC_P | DYNAMIC))
3582 {
3583 long tmp;
3584 struct som_exec_auxhdr *exec_header;
3585
3586 exec_header = obj_som_exec_hdr (abfd);
3587 exec_header->exec_entry = bfd_get_start_address (abfd);
3588 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3589
3590 /* Oh joys. Ram some of the BSS data into the DATA section
3591 to be compatable with how the hp linker makes objects
3592 (saves memory space). */
3593 tmp = exec_header->exec_dsize;
3594 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3595 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3596 if (exec_header->exec_bsize < 0)
3597 exec_header->exec_bsize = 0;
3598 exec_header->exec_dsize = tmp;
3599
3600 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3601 SEEK_SET) < 0)
3602 return false;
3603
3604 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3605 != AUX_HDR_SIZE)
3606 return false;
3607 }
3608 return true;
3609 }
3610
3611 /* Compute and return the checksum for a SOM file header. */
3612
3613 static unsigned long
3614 som_compute_checksum (abfd)
3615 bfd *abfd;
3616 {
3617 unsigned long checksum, count, i;
3618 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3619
3620 checksum = 0;
3621 count = sizeof (struct header) / sizeof (unsigned long);
3622 for (i = 0; i < count; i++)
3623 checksum ^= *(buffer + i);
3624
3625 return checksum;
3626 }
3627
3628 static void
3629 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3630 bfd *abfd;
3631 asymbol *sym;
3632 struct som_misc_symbol_info *info;
3633 {
3634 /* Initialize. */
3635 memset (info, 0, sizeof (struct som_misc_symbol_info));
3636
3637 /* The HP SOM linker requires detailed type information about
3638 all symbols (including undefined symbols!). Unfortunately,
3639 the type specified in an import/export statement does not
3640 always match what the linker wants. Severe braindamage. */
3641
3642 /* Section symbols will not have a SOM symbol type assigned to
3643 them yet. Assign all section symbols type ST_DATA. */
3644 if (sym->flags & BSF_SECTION_SYM)
3645 info->symbol_type = ST_DATA;
3646 else
3647 {
3648 /* Common symbols must have scope SS_UNSAT and type
3649 ST_STORAGE or the linker will choke. */
3650 if (bfd_is_com_section (sym->section))
3651 {
3652 info->symbol_scope = SS_UNSAT;
3653 info->symbol_type = ST_STORAGE;
3654 }
3655
3656 /* It is possible to have a symbol without an associated
3657 type. This happens if the user imported the symbol
3658 without a type and the symbol was never defined
3659 locally. If BSF_FUNCTION is set for this symbol, then
3660 assign it type ST_CODE (the HP linker requires undefined
3661 external functions to have type ST_CODE rather than ST_ENTRY). */
3662 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3663 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3664 && bfd_is_und_section (sym->section)
3665 && sym->flags & BSF_FUNCTION)
3666 info->symbol_type = ST_CODE;
3667
3668 /* Handle function symbols which were defined in this file.
3669 They should have type ST_ENTRY. Also retrieve the argument
3670 relocation bits from the SOM backend information. */
3671 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3672 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3673 && (sym->flags & BSF_FUNCTION))
3674 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3675 && (sym->flags & BSF_FUNCTION)))
3676 {
3677 info->symbol_type = ST_ENTRY;
3678 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3679 }
3680
3681 /* If the type is unknown at this point, it should be ST_DATA or
3682 ST_CODE (function/ST_ENTRY symbols were handled as special
3683 cases above). */
3684 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3685 {
3686 if (sym->section->flags & SEC_CODE)
3687 info->symbol_type = ST_CODE;
3688 else
3689 info->symbol_type = ST_DATA;
3690 }
3691
3692 /* From now on it's a very simple mapping. */
3693 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3694 info->symbol_type = ST_ABSOLUTE;
3695 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3696 info->symbol_type = ST_CODE;
3697 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3698 info->symbol_type = ST_DATA;
3699 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3700 info->symbol_type = ST_MILLICODE;
3701 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3702 info->symbol_type = ST_PLABEL;
3703 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3704 info->symbol_type = ST_PRI_PROG;
3705 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3706 info->symbol_type = ST_SEC_PROG;
3707 }
3708
3709 /* Now handle the symbol's scope. Exported data which is not
3710 in the common section has scope SS_UNIVERSAL. Note scope
3711 of common symbols was handled earlier! */
3712 if (bfd_is_und_section (sym->section))
3713 info->symbol_scope = SS_UNSAT;
3714 else if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3715 info->symbol_scope = SS_UNIVERSAL;
3716 /* Anything else which is not in the common section has scope
3717 SS_LOCAL. */
3718 else if (! bfd_is_com_section (sym->section))
3719 info->symbol_scope = SS_LOCAL;
3720
3721 /* Now set the symbol_info field. It has no real meaning
3722 for undefined or common symbols, but the HP linker will
3723 choke if it's not set to some "reasonable" value. We
3724 use zero as a reasonable value. */
3725 if (bfd_is_com_section (sym->section)
3726 || bfd_is_und_section (sym->section)
3727 || bfd_is_abs_section (sym->section))
3728 info->symbol_info = 0;
3729 /* For all other symbols, the symbol_info field contains the
3730 subspace index of the space this symbol is contained in. */
3731 else
3732 info->symbol_info = sym->section->target_index;
3733
3734 /* Set the symbol's value. */
3735 info->symbol_value = sym->value + sym->section->vma;
3736 }
3737
3738 /* Build and write, in one big chunk, the entire symbol table for
3739 this BFD. */
3740
3741 static boolean
3742 som_build_and_write_symbol_table (abfd)
3743 bfd *abfd;
3744 {
3745 unsigned int num_syms = bfd_get_symcount (abfd);
3746 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3747 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
3748 struct symbol_dictionary_record *som_symtab = NULL;
3749 int i, symtab_size;
3750
3751 /* Compute total symbol table size and allocate a chunk of memory
3752 to hold the symbol table as we build it. */
3753 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3754 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3755 if (som_symtab == NULL && symtab_size != 0)
3756 {
3757 bfd_set_error (bfd_error_no_memory);
3758 goto error_return;
3759 }
3760 memset (som_symtab, 0, symtab_size);
3761
3762 /* Walk over each symbol. */
3763 for (i = 0; i < num_syms; i++)
3764 {
3765 struct som_misc_symbol_info info;
3766
3767 /* This is really an index into the symbol strings table.
3768 By the time we get here, the index has already been
3769 computed and stored into the name field in the BFD symbol. */
3770 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
3771
3772 /* Derive SOM information from the BFD symbol. */
3773 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3774
3775 /* Now use it. */
3776 som_symtab[i].symbol_type = info.symbol_type;
3777 som_symtab[i].symbol_scope = info.symbol_scope;
3778 som_symtab[i].arg_reloc = info.arg_reloc;
3779 som_symtab[i].symbol_info = info.symbol_info;
3780 som_symtab[i].symbol_value = info.symbol_value;
3781 }
3782
3783 /* Everything is ready, seek to the right location and
3784 scribble out the symbol table. */
3785 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3786 return false;
3787
3788 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3789 goto error_return;
3790
3791 if (som_symtab != NULL)
3792 free (som_symtab);
3793 return true;
3794 error_return:
3795 if (som_symtab != NULL)
3796 free (som_symtab);
3797 return false;
3798 }
3799
3800 /* Write an object in SOM format. */
3801
3802 static boolean
3803 som_write_object_contents (abfd)
3804 bfd *abfd;
3805 {
3806 if (abfd->output_has_begun == false)
3807 {
3808 /* Set up fixed parts of the file, space, and subspace headers.
3809 Notify the world that output has begun. */
3810 som_prep_headers (abfd);
3811 abfd->output_has_begun = true;
3812 /* Start writing the object file. This include all the string
3813 tables, fixup streams, and other portions of the object file. */
3814 som_begin_writing (abfd);
3815 }
3816
3817 return (som_finish_writing (abfd));
3818 }
3819
3820 \f
3821 /* Read and save the string table associated with the given BFD. */
3822
3823 static boolean
3824 som_slurp_string_table (abfd)
3825 bfd *abfd;
3826 {
3827 char *stringtab;
3828
3829 /* Use the saved version if its available. */
3830 if (obj_som_stringtab (abfd) != NULL)
3831 return true;
3832
3833 /* I don't think this can currently happen, and I'm not sure it should
3834 really be an error, but it's better than getting unpredictable results
3835 from the host's malloc when passed a size of zero. */
3836 if (obj_som_stringtab_size (abfd) == 0)
3837 {
3838 bfd_set_error (bfd_error_no_symbols);
3839 return false;
3840 }
3841
3842 /* Allocate and read in the string table. */
3843 stringtab = malloc (obj_som_stringtab_size (abfd));
3844 bzero (stringtab, obj_som_stringtab_size (abfd));
3845 if (stringtab == NULL)
3846 {
3847 bfd_set_error (bfd_error_no_memory);
3848 return false;
3849 }
3850
3851 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3852 return false;
3853
3854 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3855 != obj_som_stringtab_size (abfd))
3856 return false;
3857
3858 /* Save our results and return success. */
3859 obj_som_stringtab (abfd) = stringtab;
3860 return true;
3861 }
3862
3863 /* Return the amount of data (in bytes) required to hold the symbol
3864 table for this object. */
3865
3866 static long
3867 som_get_symtab_upper_bound (abfd)
3868 bfd *abfd;
3869 {
3870 if (!som_slurp_symbol_table (abfd))
3871 return -1;
3872
3873 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3874 }
3875
3876 /* Convert from a SOM subspace index to a BFD section. */
3877
3878 static asection *
3879 bfd_section_from_som_symbol (abfd, symbol)
3880 bfd *abfd;
3881 struct symbol_dictionary_record *symbol;
3882 {
3883 asection *section;
3884
3885 /* The meaning of the symbol_info field changes for functions
3886 within executables. So only use the quick symbol_info mapping for
3887 incomplete objects and non-function symbols in executables. */
3888 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3889 || (symbol->symbol_type != ST_ENTRY
3890 && symbol->symbol_type != ST_PRI_PROG
3891 && symbol->symbol_type != ST_SEC_PROG
3892 && symbol->symbol_type != ST_MILLICODE))
3893 {
3894 unsigned int index = symbol->symbol_info;
3895 for (section = abfd->sections; section != NULL; section = section->next)
3896 if (section->target_index == index && som_is_subspace (section))
3897 return section;
3898
3899 /* Could be a symbol from an external library (such as an OMOS
3900 shared library). Don't abort. */
3901 return bfd_abs_section_ptr;
3902
3903 }
3904 else
3905 {
3906 unsigned int value = symbol->symbol_value;
3907
3908 /* For executables we will have to use the symbol's address and
3909 find out what section would contain that address. Yuk. */
3910 for (section = abfd->sections; section; section = section->next)
3911 {
3912 if (value >= section->vma
3913 && value <= section->vma + section->_cooked_size
3914 && som_is_subspace (section))
3915 return section;
3916 }
3917
3918 /* Could be a symbol from an external library (such as an OMOS
3919 shared library). Don't abort. */
3920 return bfd_abs_section_ptr;
3921
3922 }
3923 }
3924
3925 /* Read and save the symbol table associated with the given BFD. */
3926
3927 static unsigned int
3928 som_slurp_symbol_table (abfd)
3929 bfd *abfd;
3930 {
3931 int symbol_count = bfd_get_symcount (abfd);
3932 int symsize = sizeof (struct symbol_dictionary_record);
3933 char *stringtab;
3934 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3935 som_symbol_type *sym, *symbase;
3936
3937 /* Return saved value if it exists. */
3938 if (obj_som_symtab (abfd) != NULL)
3939 goto successful_return;
3940
3941 /* Special case. This is *not* an error. */
3942 if (symbol_count == 0)
3943 goto successful_return;
3944
3945 if (!som_slurp_string_table (abfd))
3946 goto error_return;
3947
3948 stringtab = obj_som_stringtab (abfd);
3949
3950 symbase = (som_symbol_type *)
3951 malloc (symbol_count * sizeof (som_symbol_type));
3952 bzero (symbase, symbol_count * sizeof (som_symbol_type));
3953 if (symbase == NULL)
3954 {
3955 bfd_set_error (bfd_error_no_memory);
3956 goto error_return;
3957 }
3958
3959 /* Read in the external SOM representation. */
3960 buf = malloc (symbol_count * symsize);
3961 if (buf == NULL && symbol_count * symsize != 0)
3962 {
3963 bfd_set_error (bfd_error_no_memory);
3964 goto error_return;
3965 }
3966 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3967 goto error_return;
3968 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3969 != symbol_count * symsize)
3970 goto error_return;
3971
3972 /* Iterate over all the symbols and internalize them. */
3973 endbufp = buf + symbol_count;
3974 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3975 {
3976
3977 /* I don't think we care about these. */
3978 if (bufp->symbol_type == ST_SYM_EXT
3979 || bufp->symbol_type == ST_ARG_EXT)
3980 continue;
3981
3982 /* Set some private data we care about. */
3983 if (bufp->symbol_type == ST_NULL)
3984 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3985 else if (bufp->symbol_type == ST_ABSOLUTE)
3986 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3987 else if (bufp->symbol_type == ST_DATA)
3988 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3989 else if (bufp->symbol_type == ST_CODE)
3990 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3991 else if (bufp->symbol_type == ST_PRI_PROG)
3992 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3993 else if (bufp->symbol_type == ST_SEC_PROG)
3994 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3995 else if (bufp->symbol_type == ST_ENTRY)
3996 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3997 else if (bufp->symbol_type == ST_MILLICODE)
3998 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3999 else if (bufp->symbol_type == ST_PLABEL)
4000 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
4001 else
4002 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4003 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
4004
4005 /* Some reasonable defaults. */
4006 sym->symbol.the_bfd = abfd;
4007 sym->symbol.name = bufp->name.n_strx + stringtab;
4008 sym->symbol.value = bufp->symbol_value;
4009 sym->symbol.section = 0;
4010 sym->symbol.flags = 0;
4011
4012 switch (bufp->symbol_type)
4013 {
4014 case ST_ENTRY:
4015 case ST_MILLICODE:
4016 sym->symbol.flags |= BSF_FUNCTION;
4017 sym->symbol.value &= ~0x3;
4018 break;
4019
4020 case ST_STUB:
4021 case ST_CODE:
4022 case ST_PRI_PROG:
4023 case ST_SEC_PROG:
4024 sym->symbol.value &= ~0x3;
4025 /* If the symbol's scope is ST_UNSAT, then these are
4026 undefined function symbols. */
4027 if (bufp->symbol_scope == SS_UNSAT)
4028 sym->symbol.flags |= BSF_FUNCTION;
4029
4030
4031 default:
4032 break;
4033 }
4034
4035 /* Handle scoping and section information. */
4036 switch (bufp->symbol_scope)
4037 {
4038 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4039 so the section associated with this symbol can't be known. */
4040 case SS_EXTERNAL:
4041 if (bufp->symbol_type != ST_STORAGE)
4042 sym->symbol.section = bfd_und_section_ptr;
4043 else
4044 sym->symbol.section = bfd_com_section_ptr;
4045 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4046 break;
4047
4048 case SS_UNSAT:
4049 if (bufp->symbol_type != ST_STORAGE)
4050 sym->symbol.section = bfd_und_section_ptr;
4051 else
4052 sym->symbol.section = bfd_com_section_ptr;
4053 break;
4054
4055 case SS_UNIVERSAL:
4056 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4057 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4058 sym->symbol.value -= sym->symbol.section->vma;
4059 break;
4060
4061 #if 0
4062 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
4063 Sound dumb? It is. */
4064 case SS_GLOBAL:
4065 #endif
4066 case SS_LOCAL:
4067 sym->symbol.flags |= BSF_LOCAL;
4068 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4069 sym->symbol.value -= sym->symbol.section->vma;
4070 break;
4071 }
4072
4073 /* Mark section symbols and symbols used by the debugger.
4074 Note $START$ is a magic code symbol, NOT a section symbol. */
4075 if (sym->symbol.name[0] == '$'
4076 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4077 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4078 sym->symbol.flags |= BSF_SECTION_SYM;
4079 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
4080 {
4081 sym->symbol.flags |= BSF_SECTION_SYM;
4082 sym->symbol.name = sym->symbol.section->name;
4083 }
4084 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
4085 sym->symbol.flags |= BSF_DEBUGGING;
4086
4087 /* Note increment at bottom of loop, since we skip some symbols
4088 we can not include it as part of the for statement. */
4089 sym++;
4090 }
4091
4092 /* Save our results and return success. */
4093 obj_som_symtab (abfd) = symbase;
4094 successful_return:
4095 if (buf != NULL)
4096 free (buf);
4097 return (true);
4098
4099 error_return:
4100 if (buf != NULL)
4101 free (buf);
4102 return false;
4103 }
4104
4105 /* Canonicalize a SOM symbol table. Return the number of entries
4106 in the symbol table. */
4107
4108 static long
4109 som_get_symtab (abfd, location)
4110 bfd *abfd;
4111 asymbol **location;
4112 {
4113 int i;
4114 som_symbol_type *symbase;
4115
4116 if (!som_slurp_symbol_table (abfd))
4117 return -1;
4118
4119 i = bfd_get_symcount (abfd);
4120 symbase = obj_som_symtab (abfd);
4121
4122 for (; i > 0; i--, location++, symbase++)
4123 *location = &symbase->symbol;
4124
4125 /* Final null pointer. */
4126 *location = 0;
4127 return (bfd_get_symcount (abfd));
4128 }
4129
4130 /* Make a SOM symbol. There is nothing special to do here. */
4131
4132 static asymbol *
4133 som_make_empty_symbol (abfd)
4134 bfd *abfd;
4135 {
4136 som_symbol_type *new =
4137 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
4138 if (new == NULL)
4139 {
4140 bfd_set_error (bfd_error_no_memory);
4141 return 0;
4142 }
4143 new->symbol.the_bfd = abfd;
4144
4145 return &new->symbol;
4146 }
4147
4148 /* Print symbol information. */
4149
4150 static void
4151 som_print_symbol (ignore_abfd, afile, symbol, how)
4152 bfd *ignore_abfd;
4153 PTR afile;
4154 asymbol *symbol;
4155 bfd_print_symbol_type how;
4156 {
4157 FILE *file = (FILE *) afile;
4158 switch (how)
4159 {
4160 case bfd_print_symbol_name:
4161 fprintf (file, "%s", symbol->name);
4162 break;
4163 case bfd_print_symbol_more:
4164 fprintf (file, "som ");
4165 fprintf_vma (file, symbol->value);
4166 fprintf (file, " %lx", (long) symbol->flags);
4167 break;
4168 case bfd_print_symbol_all:
4169 {
4170 CONST char *section_name;
4171 section_name = symbol->section ? symbol->section->name : "(*none*)";
4172 bfd_print_symbol_vandf ((PTR) file, symbol);
4173 fprintf (file, " %s\t%s", section_name, symbol->name);
4174 break;
4175 }
4176 }
4177 }
4178
4179 static boolean
4180 som_bfd_is_local_label (abfd, sym)
4181 bfd *abfd;
4182 asymbol *sym;
4183 {
4184 return (sym->name[0] == 'L' && sym->name[1] == '$');
4185 }
4186
4187 /* Count or process variable-length SOM fixup records.
4188
4189 To avoid code duplication we use this code both to compute the number
4190 of relocations requested by a stream, and to internalize the stream.
4191
4192 When computing the number of relocations requested by a stream the
4193 variables rptr, section, and symbols have no meaning.
4194
4195 Return the number of relocations requested by the fixup stream. When
4196 not just counting
4197
4198 This needs at least two or three more passes to get it cleaned up. */
4199
4200 static unsigned int
4201 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
4202 unsigned char *fixup;
4203 unsigned int end;
4204 arelent *internal_relocs;
4205 asection *section;
4206 asymbol **symbols;
4207 boolean just_count;
4208 {
4209 unsigned int op, varname, deallocate_contents = 0;
4210 unsigned char *end_fixups = &fixup[end];
4211 const struct fixup_format *fp;
4212 char *cp;
4213 unsigned char *save_fixup;
4214 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4215 const int *subop;
4216 arelent *rptr= internal_relocs;
4217 unsigned int offset = 0;
4218
4219 #define var(c) variables[(c) - 'A']
4220 #define push(v) (*sp++ = (v))
4221 #define pop() (*--sp)
4222 #define emptystack() (sp == stack)
4223
4224 som_initialize_reloc_queue (reloc_queue);
4225 memset (variables, 0, sizeof (variables));
4226 memset (stack, 0, sizeof (stack));
4227 count = 0;
4228 prev_fixup = 0;
4229 saved_unwind_bits = 0;
4230 sp = stack;
4231
4232 while (fixup < end_fixups)
4233 {
4234
4235 /* Save pointer to the start of this fixup. We'll use
4236 it later to determine if it is necessary to put this fixup
4237 on the queue. */
4238 save_fixup = fixup;
4239
4240 /* Get the fixup code and its associated format. */
4241 op = *fixup++;
4242 fp = &som_fixup_formats[op];
4243
4244 /* Handle a request for a previous fixup. */
4245 if (*fp->format == 'P')
4246 {
4247 /* Get pointer to the beginning of the prev fixup, move
4248 the repeated fixup to the head of the queue. */
4249 fixup = reloc_queue[fp->D].reloc;
4250 som_reloc_queue_fix (reloc_queue, fp->D);
4251 prev_fixup = 1;
4252
4253 /* Get the fixup code and its associated format. */
4254 op = *fixup++;
4255 fp = &som_fixup_formats[op];
4256 }
4257
4258 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4259 if (! just_count
4260 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4261 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4262 {
4263 rptr->address = offset;
4264 rptr->howto = &som_hppa_howto_table[op];
4265 rptr->addend = 0;
4266 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4267 }
4268
4269 /* Set default input length to 0. Get the opcode class index
4270 into D. */
4271 var ('L') = 0;
4272 var ('D') = fp->D;
4273 var ('U') = saved_unwind_bits;
4274
4275 /* Get the opcode format. */
4276 cp = fp->format;
4277
4278 /* Process the format string. Parsing happens in two phases,
4279 parse RHS, then assign to LHS. Repeat until no more
4280 characters in the format string. */
4281 while (*cp)
4282 {
4283 /* The variable this pass is going to compute a value for. */
4284 varname = *cp++;
4285
4286 /* Start processing RHS. Continue until a NULL or '=' is found. */
4287 do
4288 {
4289 c = *cp++;
4290
4291 /* If this is a variable, push it on the stack. */
4292 if (isupper (c))
4293 push (var (c));
4294
4295 /* If this is a lower case letter, then it represents
4296 additional data from the fixup stream to be pushed onto
4297 the stack. */
4298 else if (islower (c))
4299 {
4300 int bits = (c - 'a') * 8;
4301 for (v = 0; c > 'a'; --c)
4302 v = (v << 8) | *fixup++;
4303 if (varname == 'V')
4304 v = sign_extend (v, bits);
4305 push (v);
4306 }
4307
4308 /* A decimal constant. Push it on the stack. */
4309 else if (isdigit (c))
4310 {
4311 v = c - '0';
4312 while (isdigit (*cp))
4313 v = (v * 10) + (*cp++ - '0');
4314 push (v);
4315 }
4316 else
4317
4318 /* An operator. Pop two two values from the stack and
4319 use them as operands to the given operation. Push
4320 the result of the operation back on the stack. */
4321 switch (c)
4322 {
4323 case '+':
4324 v = pop ();
4325 v += pop ();
4326 push (v);
4327 break;
4328 case '*':
4329 v = pop ();
4330 v *= pop ();
4331 push (v);
4332 break;
4333 case '<':
4334 v = pop ();
4335 v = pop () << v;
4336 push (v);
4337 break;
4338 default:
4339 abort ();
4340 }
4341 }
4342 while (*cp && *cp != '=');
4343
4344 /* Move over the equal operator. */
4345 cp++;
4346
4347 /* Pop the RHS off the stack. */
4348 c = pop ();
4349
4350 /* Perform the assignment. */
4351 var (varname) = c;
4352
4353 /* Handle side effects. and special 'O' stack cases. */
4354 switch (varname)
4355 {
4356 /* Consume some bytes from the input space. */
4357 case 'L':
4358 offset += c;
4359 break;
4360 /* A symbol to use in the relocation. Make a note
4361 of this if we are not just counting. */
4362 case 'S':
4363 if (! just_count)
4364 rptr->sym_ptr_ptr = &symbols[c];
4365 break;
4366 /* Argument relocation bits for a function call. */
4367 case 'R':
4368 if (! just_count)
4369 {
4370 unsigned int tmp = var ('R');
4371 rptr->addend = 0;
4372
4373 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4374 && R_PCREL_CALL + 10 > op)
4375 || (som_hppa_howto_table[op].type == R_ABS_CALL
4376 && R_ABS_CALL + 10 > op))
4377 {
4378 /* Simple encoding. */
4379 if (tmp > 4)
4380 {
4381 tmp -= 5;
4382 rptr->addend |= 1;
4383 }
4384 if (tmp == 4)
4385 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4386 else if (tmp == 3)
4387 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4388 else if (tmp == 2)
4389 rptr->addend |= 1 << 8 | 1 << 6;
4390 else if (tmp == 1)
4391 rptr->addend |= 1 << 8;
4392 }
4393 else
4394 {
4395 unsigned int tmp1, tmp2;
4396
4397 /* First part is easy -- low order two bits are
4398 directly copied, then shifted away. */
4399 rptr->addend = tmp & 0x3;
4400 tmp >>= 2;
4401
4402 /* Diving the result by 10 gives us the second
4403 part. If it is 9, then the first two words
4404 are a double precision paramater, else it is
4405 3 * the first arg bits + the 2nd arg bits. */
4406 tmp1 = tmp / 10;
4407 tmp -= tmp1 * 10;
4408 if (tmp1 == 9)
4409 rptr->addend += (0xe << 6);
4410 else
4411 {
4412 /* Get the two pieces. */
4413 tmp2 = tmp1 / 3;
4414 tmp1 -= tmp2 * 3;
4415 /* Put them in the addend. */
4416 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4417 }
4418
4419 /* What's left is the third part. It's unpacked
4420 just like the second. */
4421 if (tmp == 9)
4422 rptr->addend += (0xe << 2);
4423 else
4424 {
4425 tmp2 = tmp / 3;
4426 tmp -= tmp2 * 3;
4427 rptr->addend += (tmp2 << 4) + (tmp << 2);
4428 }
4429 }
4430 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4431 }
4432 break;
4433 /* Handle the linker expression stack. */
4434 case 'O':
4435 switch (op)
4436 {
4437 case R_COMP1:
4438 subop = comp1_opcodes;
4439 break;
4440 case R_COMP2:
4441 subop = comp2_opcodes;
4442 break;
4443 case R_COMP3:
4444 subop = comp3_opcodes;
4445 break;
4446 default:
4447 abort ();
4448 }
4449 while (*subop <= (unsigned char) c)
4450 ++subop;
4451 --subop;
4452 break;
4453 /* The lower 32unwind bits must be persistent. */
4454 case 'U':
4455 saved_unwind_bits = var ('U');
4456 break;
4457
4458 default:
4459 break;
4460 }
4461 }
4462
4463 /* If we used a previous fixup, clean up after it. */
4464 if (prev_fixup)
4465 {
4466 fixup = save_fixup + 1;
4467 prev_fixup = 0;
4468 }
4469 /* Queue it. */
4470 else if (fixup > save_fixup + 1)
4471 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4472
4473 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4474 fixups to BFD. */
4475 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4476 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4477 {
4478 /* Done with a single reloction. Loop back to the top. */
4479 if (! just_count)
4480 {
4481 if (som_hppa_howto_table[op].type == R_ENTRY)
4482 rptr->addend = var ('T');
4483 else if (som_hppa_howto_table[op].type == R_EXIT)
4484 rptr->addend = var ('U');
4485 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4486 || som_hppa_howto_table[op].type == R_ABS_CALL)
4487 ;
4488 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4489 {
4490 unsigned addend = var ('V');
4491
4492 /* Try what was specified in R_DATA_OVERRIDE first
4493 (if anything). Then the hard way using the
4494 section contents. */
4495 rptr->addend = var ('V');
4496
4497 if (rptr->addend == 0 && !section->contents)
4498 {
4499 /* Got to read the damn contents first. We don't
4500 bother saving the contents (yet). Add it one
4501 day if the need arises. */
4502 section->contents = malloc (section->_raw_size);
4503 if (section->contents == NULL)
4504 return -1;
4505
4506 deallocate_contents = 1;
4507 bfd_get_section_contents (section->owner,
4508 section,
4509 section->contents,
4510 0,
4511 section->_raw_size);
4512 }
4513 else if (rptr->addend == 0)
4514 rptr->addend = bfd_get_32 (section->owner,
4515 (section->contents
4516 + offset - var ('L')));
4517
4518 }
4519 else
4520 rptr->addend = var ('V');
4521 rptr++;
4522 }
4523 count++;
4524 /* Now that we've handled a "full" relocation, reset
4525 some state. */
4526 memset (variables, 0, sizeof (variables));
4527 memset (stack, 0, sizeof (stack));
4528 }
4529 }
4530 if (deallocate_contents)
4531 free (section->contents);
4532
4533 return count;
4534
4535 #undef var
4536 #undef push
4537 #undef pop
4538 #undef emptystack
4539 }
4540
4541 /* Read in the relocs (aka fixups in SOM terms) for a section.
4542
4543 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4544 set to true to indicate it only needs a count of the number
4545 of actual relocations. */
4546
4547 static boolean
4548 som_slurp_reloc_table (abfd, section, symbols, just_count)
4549 bfd *abfd;
4550 asection *section;
4551 asymbol **symbols;
4552 boolean just_count;
4553 {
4554 char *external_relocs;
4555 unsigned int fixup_stream_size;
4556 arelent *internal_relocs;
4557 unsigned int num_relocs;
4558
4559 fixup_stream_size = som_section_data (section)->reloc_size;
4560 /* If there were no relocations, then there is nothing to do. */
4561 if (section->reloc_count == 0)
4562 return true;
4563
4564 /* If reloc_count is -1, then the relocation stream has not been
4565 parsed. We must do so now to know how many relocations exist. */
4566 if (section->reloc_count == -1)
4567 {
4568 external_relocs = (char *) malloc (fixup_stream_size);
4569 if (external_relocs == (char *) NULL)
4570 {
4571 bfd_set_error (bfd_error_no_memory);
4572 return false;
4573 }
4574 /* Read in the external forms. */
4575 if (bfd_seek (abfd,
4576 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4577 SEEK_SET)
4578 != 0)
4579 return false;
4580 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4581 != fixup_stream_size)
4582 return false;
4583
4584 /* Let callers know how many relocations found.
4585 also save the relocation stream as we will
4586 need it again. */
4587 section->reloc_count = som_set_reloc_info (external_relocs,
4588 fixup_stream_size,
4589 NULL, NULL, NULL, true);
4590
4591 som_section_data (section)->reloc_stream = external_relocs;
4592 }
4593
4594 /* If the caller only wanted a count, then return now. */
4595 if (just_count)
4596 return true;
4597
4598 num_relocs = section->reloc_count;
4599 external_relocs = som_section_data (section)->reloc_stream;
4600 /* Return saved information about the relocations if it is available. */
4601 if (section->relocation != (arelent *) NULL)
4602 return true;
4603
4604 internal_relocs = (arelent *)
4605 bfd_zalloc (abfd, (num_relocs * sizeof (arelent)));
4606 if (internal_relocs == (arelent *) NULL)
4607 {
4608 bfd_set_error (bfd_error_no_memory);
4609 return false;
4610 }
4611
4612 /* Process and internalize the relocations. */
4613 som_set_reloc_info (external_relocs, fixup_stream_size,
4614 internal_relocs, section, symbols, false);
4615
4616 /* We're done with the external relocations. Free them. */
4617 free (external_relocs);
4618
4619 /* Save our results and return success. */
4620 section->relocation = internal_relocs;
4621 return (true);
4622 }
4623
4624 /* Return the number of bytes required to store the relocation
4625 information associated with the given section. */
4626
4627 static long
4628 som_get_reloc_upper_bound (abfd, asect)
4629 bfd *abfd;
4630 sec_ptr asect;
4631 {
4632 /* If section has relocations, then read in the relocation stream
4633 and parse it to determine how many relocations exist. */
4634 if (asect->flags & SEC_RELOC)
4635 {
4636 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4637 return -1;
4638 return (asect->reloc_count + 1) * sizeof (arelent *);
4639 }
4640 /* There are no relocations. */
4641 return 0;
4642 }
4643
4644 /* Convert relocations from SOM (external) form into BFD internal
4645 form. Return the number of relocations. */
4646
4647 static long
4648 som_canonicalize_reloc (abfd, section, relptr, symbols)
4649 bfd *abfd;
4650 sec_ptr section;
4651 arelent **relptr;
4652 asymbol **symbols;
4653 {
4654 arelent *tblptr;
4655 int count;
4656
4657 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4658 return -1;
4659
4660 count = section->reloc_count;
4661 tblptr = section->relocation;
4662
4663 while (count--)
4664 *relptr++ = tblptr++;
4665
4666 *relptr = (arelent *) NULL;
4667 return section->reloc_count;
4668 }
4669
4670 extern const bfd_target som_vec;
4671
4672 /* A hook to set up object file dependent section information. */
4673
4674 static boolean
4675 som_new_section_hook (abfd, newsect)
4676 bfd *abfd;
4677 asection *newsect;
4678 {
4679 newsect->used_by_bfd =
4680 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4681 if (!newsect->used_by_bfd)
4682 {
4683 bfd_set_error (bfd_error_no_memory);
4684 return false;
4685 }
4686 newsect->alignment_power = 3;
4687
4688 /* We allow more than three sections internally */
4689 return true;
4690 }
4691
4692 /* Copy any private info we understand from the input symbol
4693 to the output symbol. */
4694
4695 static boolean
4696 som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol)
4697 bfd *ibfd;
4698 asymbol *isymbol;
4699 bfd *obfd;
4700 asymbol *osymbol;
4701 {
4702 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
4703 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
4704
4705 /* One day we may try to grok other private data. */
4706 if (ibfd->xvec->flavour != bfd_target_som_flavour
4707 || obfd->xvec->flavour != bfd_target_som_flavour)
4708 return false;
4709
4710 /* The only private information we need to copy is the argument relocation
4711 bits. */
4712 output_symbol->tc_data.hppa_arg_reloc = input_symbol->tc_data.hppa_arg_reloc;
4713
4714 return true;
4715 }
4716
4717 /* Copy any private info we understand from the input section
4718 to the output section. */
4719 static boolean
4720 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4721 bfd *ibfd;
4722 asection *isection;
4723 bfd *obfd;
4724 asection *osection;
4725 {
4726 /* One day we may try to grok other private data. */
4727 if (ibfd->xvec->flavour != bfd_target_som_flavour
4728 || obfd->xvec->flavour != bfd_target_som_flavour
4729 || (!som_is_space (isection) && !som_is_subspace (isection)))
4730 return true;
4731
4732 som_section_data (osection)->copy_data
4733 = (struct som_copyable_section_data_struct *)
4734 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4735 if (som_section_data (osection)->copy_data == NULL)
4736 {
4737 bfd_set_error (bfd_error_no_memory);
4738 return false;
4739 }
4740
4741 memcpy (som_section_data (osection)->copy_data,
4742 som_section_data (isection)->copy_data,
4743 sizeof (struct som_copyable_section_data_struct));
4744
4745 /* Reparent if necessary. */
4746 if (som_section_data (osection)->copy_data->container)
4747 som_section_data (osection)->copy_data->container =
4748 som_section_data (osection)->copy_data->container->output_section;
4749
4750 return true;
4751 }
4752
4753 /* Copy any private info we understand from the input bfd
4754 to the output bfd. */
4755
4756 static boolean
4757 som_bfd_copy_private_bfd_data (ibfd, obfd)
4758 bfd *ibfd, *obfd;
4759 {
4760 /* One day we may try to grok other private data. */
4761 if (ibfd->xvec->flavour != bfd_target_som_flavour
4762 || obfd->xvec->flavour != bfd_target_som_flavour)
4763 return true;
4764
4765 /* Allocate some memory to hold the data we need. */
4766 obj_som_exec_data (obfd) = (struct som_exec_data *)
4767 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4768 if (obj_som_exec_data (obfd) == NULL)
4769 {
4770 bfd_set_error (bfd_error_no_memory);
4771 return false;
4772 }
4773
4774 /* Now copy the data. */
4775 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4776 sizeof (struct som_exec_data));
4777
4778 return true;
4779 }
4780
4781 /* Set backend info for sections which can not be described
4782 in the BFD data structures. */
4783
4784 boolean
4785 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4786 asection *section;
4787 int defined;
4788 int private;
4789 unsigned int sort_key;
4790 int spnum;
4791 {
4792 /* Allocate memory to hold the magic information. */
4793 if (som_section_data (section)->copy_data == NULL)
4794 {
4795 som_section_data (section)->copy_data
4796 = (struct som_copyable_section_data_struct *)
4797 bfd_zalloc (section->owner,
4798 sizeof (struct som_copyable_section_data_struct));
4799 if (som_section_data (section)->copy_data == NULL)
4800 {
4801 bfd_set_error (bfd_error_no_memory);
4802 return false;
4803 }
4804 }
4805 som_section_data (section)->copy_data->sort_key = sort_key;
4806 som_section_data (section)->copy_data->is_defined = defined;
4807 som_section_data (section)->copy_data->is_private = private;
4808 som_section_data (section)->copy_data->container = section;
4809 som_section_data (section)->copy_data->space_number = spnum;
4810 return true;
4811 }
4812
4813 /* Set backend info for subsections which can not be described
4814 in the BFD data structures. */
4815
4816 boolean
4817 bfd_som_set_subsection_attributes (section, container, access,
4818 sort_key, quadrant)
4819 asection *section;
4820 asection *container;
4821 int access;
4822 unsigned int sort_key;
4823 int quadrant;
4824 {
4825 /* Allocate memory to hold the magic information. */
4826 if (som_section_data (section)->copy_data == NULL)
4827 {
4828 som_section_data (section)->copy_data
4829 = (struct som_copyable_section_data_struct *)
4830 bfd_zalloc (section->owner,
4831 sizeof (struct som_copyable_section_data_struct));
4832 if (som_section_data (section)->copy_data == NULL)
4833 {
4834 bfd_set_error (bfd_error_no_memory);
4835 return false;
4836 }
4837 }
4838 som_section_data (section)->copy_data->sort_key = sort_key;
4839 som_section_data (section)->copy_data->access_control_bits = access;
4840 som_section_data (section)->copy_data->quadrant = quadrant;
4841 som_section_data (section)->copy_data->container = container;
4842 return true;
4843 }
4844
4845 /* Set the full SOM symbol type. SOM needs far more symbol information
4846 than any other object file format I'm aware of. It is mandatory
4847 to be able to know if a symbol is an entry point, millicode, data,
4848 code, absolute, storage request, or procedure label. If you get
4849 the symbol type wrong your program will not link. */
4850
4851 void
4852 bfd_som_set_symbol_type (symbol, type)
4853 asymbol *symbol;
4854 unsigned int type;
4855 {
4856 som_symbol_data (symbol)->som_type = type;
4857 }
4858
4859 /* Attach an auxiliary header to the BFD backend so that it may be
4860 written into the object file. */
4861 boolean
4862 bfd_som_attach_aux_hdr (abfd, type, string)
4863 bfd *abfd;
4864 int type;
4865 char *string;
4866 {
4867 if (type == VERSION_AUX_ID)
4868 {
4869 int len = strlen (string);
4870 int pad = 0;
4871
4872 if (len % 4)
4873 pad = (4 - (len % 4));
4874 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4875 bfd_zalloc (abfd, sizeof (struct aux_id)
4876 + sizeof (unsigned int) + len + pad);
4877 if (!obj_som_version_hdr (abfd))
4878 {
4879 bfd_set_error (bfd_error_no_memory);
4880 return false;
4881 }
4882 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4883 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4884 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4885 obj_som_version_hdr (abfd)->string_length = len;
4886 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4887 }
4888 else if (type == COPYRIGHT_AUX_ID)
4889 {
4890 int len = strlen (string);
4891 int pad = 0;
4892
4893 if (len % 4)
4894 pad = (4 - (len % 4));
4895 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4896 bfd_zalloc (abfd, sizeof (struct aux_id)
4897 + sizeof (unsigned int) + len + pad);
4898 if (!obj_som_copyright_hdr (abfd))
4899 {
4900 bfd_set_error (bfd_error_no_memory);
4901 return false;
4902 }
4903 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4904 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4905 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4906 obj_som_copyright_hdr (abfd)->string_length = len;
4907 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4908 }
4909 return true;
4910 }
4911
4912 static boolean
4913 som_get_section_contents (abfd, section, location, offset, count)
4914 bfd *abfd;
4915 sec_ptr section;
4916 PTR location;
4917 file_ptr offset;
4918 bfd_size_type count;
4919 {
4920 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
4921 return true;
4922 if ((bfd_size_type)(offset+count) > section->_raw_size
4923 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4924 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4925 return (false); /* on error */
4926 return (true);
4927 }
4928
4929 static boolean
4930 som_set_section_contents (abfd, section, location, offset, count)
4931 bfd *abfd;
4932 sec_ptr section;
4933 PTR location;
4934 file_ptr offset;
4935 bfd_size_type count;
4936 {
4937 if (abfd->output_has_begun == false)
4938 {
4939 /* Set up fixed parts of the file, space, and subspace headers.
4940 Notify the world that output has begun. */
4941 som_prep_headers (abfd);
4942 abfd->output_has_begun = true;
4943 /* Start writing the object file. This include all the string
4944 tables, fixup streams, and other portions of the object file. */
4945 som_begin_writing (abfd);
4946 }
4947
4948 /* Only write subspaces which have "real" contents (eg. the contents
4949 are not generated at run time by the OS). */
4950 if (!som_is_subspace (section)
4951 || ((section->flags & SEC_HAS_CONTENTS) == 0))
4952 return true;
4953
4954 /* Seek to the proper offset within the object file and write the
4955 data. */
4956 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4957 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4958 return false;
4959
4960 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4961 return false;
4962 return true;
4963 }
4964
4965 static boolean
4966 som_set_arch_mach (abfd, arch, machine)
4967 bfd *abfd;
4968 enum bfd_architecture arch;
4969 unsigned long machine;
4970 {
4971 /* Allow any architecture to be supported by the SOM backend */
4972 return bfd_default_set_arch_mach (abfd, arch, machine);
4973 }
4974
4975 static boolean
4976 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4977 functionname_ptr, line_ptr)
4978 bfd *abfd;
4979 asection *section;
4980 asymbol **symbols;
4981 bfd_vma offset;
4982 CONST char **filename_ptr;
4983 CONST char **functionname_ptr;
4984 unsigned int *line_ptr;
4985 {
4986 return (false);
4987 }
4988
4989 static int
4990 som_sizeof_headers (abfd, reloc)
4991 bfd *abfd;
4992 boolean reloc;
4993 {
4994 (*_bfd_error_handler) ("som_sizeof_headers unimplemented");
4995 fflush (stderr);
4996 abort ();
4997 return (0);
4998 }
4999
5000 /* Return the single-character symbol type corresponding to
5001 SOM section S, or '?' for an unknown SOM section. */
5002
5003 static char
5004 som_section_type (s)
5005 const char *s;
5006 {
5007 const struct section_to_type *t;
5008
5009 for (t = &stt[0]; t->section; t++)
5010 if (!strcmp (s, t->section))
5011 return t->type;
5012 return '?';
5013 }
5014
5015 static int
5016 som_decode_symclass (symbol)
5017 asymbol *symbol;
5018 {
5019 char c;
5020
5021 if (bfd_is_com_section (symbol->section))
5022 return 'C';
5023 if (bfd_is_und_section (symbol->section))
5024 return 'U';
5025 if (bfd_is_ind_section (symbol->section))
5026 return 'I';
5027 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
5028 return '?';
5029
5030 if (bfd_is_abs_section (symbol->section)
5031 || (som_symbol_data (symbol) != NULL
5032 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5033 c = 'a';
5034 else if (symbol->section)
5035 c = som_section_type (symbol->section->name);
5036 else
5037 return '?';
5038 if (symbol->flags & BSF_GLOBAL)
5039 c = toupper (c);
5040 return c;
5041 }
5042
5043 /* Return information about SOM symbol SYMBOL in RET. */
5044
5045 static void
5046 som_get_symbol_info (ignore_abfd, symbol, ret)
5047 bfd *ignore_abfd;
5048 asymbol *symbol;
5049 symbol_info *ret;
5050 {
5051 ret->type = som_decode_symclass (symbol);
5052 if (ret->type != 'U')
5053 ret->value = symbol->value+symbol->section->vma;
5054 else
5055 ret->value = 0;
5056 ret->name = symbol->name;
5057 }
5058
5059 /* Count the number of symbols in the archive symbol table. Necessary
5060 so that we can allocate space for all the carsyms at once. */
5061
5062 static boolean
5063 som_bfd_count_ar_symbols (abfd, lst_header, count)
5064 bfd *abfd;
5065 struct lst_header *lst_header;
5066 symindex *count;
5067 {
5068 unsigned int i;
5069 unsigned int *hash_table = NULL;
5070 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5071
5072 hash_table =
5073 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
5074 if (hash_table == NULL && lst_header->hash_size != 0)
5075 {
5076 bfd_set_error (bfd_error_no_memory);
5077 goto error_return;
5078 }
5079
5080 /* Don't forget to initialize the counter! */
5081 *count = 0;
5082
5083 /* Read in the hash table. The has table is an array of 32bit file offsets
5084 which point to the hash chains. */
5085 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5086 != lst_header->hash_size * 4)
5087 goto error_return;
5088
5089 /* Walk each chain counting the number of symbols found on that particular
5090 chain. */
5091 for (i = 0; i < lst_header->hash_size; i++)
5092 {
5093 struct lst_symbol_record lst_symbol;
5094
5095 /* An empty chain has zero as it's file offset. */
5096 if (hash_table[i] == 0)
5097 continue;
5098
5099 /* Seek to the first symbol in this hash chain. */
5100 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5101 goto error_return;
5102
5103 /* Read in this symbol and update the counter. */
5104 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5105 != sizeof (lst_symbol))
5106 goto error_return;
5107
5108 (*count)++;
5109
5110 /* Now iterate through the rest of the symbols on this chain. */
5111 while (lst_symbol.next_entry)
5112 {
5113
5114 /* Seek to the next symbol. */
5115 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5116 < 0)
5117 goto error_return;
5118
5119 /* Read the symbol in and update the counter. */
5120 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5121 != sizeof (lst_symbol))
5122 goto error_return;
5123
5124 (*count)++;
5125 }
5126 }
5127 if (hash_table != NULL)
5128 free (hash_table);
5129 return true;
5130
5131 error_return:
5132 if (hash_table != NULL)
5133 free (hash_table);
5134 return false;
5135 }
5136
5137 /* Fill in the canonical archive symbols (SYMS) from the archive described
5138 by ABFD and LST_HEADER. */
5139
5140 static boolean
5141 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
5142 bfd *abfd;
5143 struct lst_header *lst_header;
5144 carsym **syms;
5145 {
5146 unsigned int i, len;
5147 carsym *set = syms[0];
5148 unsigned int *hash_table = NULL;
5149 struct som_entry *som_dict = NULL;
5150 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5151
5152 hash_table =
5153 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
5154 if (hash_table == NULL && lst_header->hash_size != 0)
5155 {
5156 bfd_set_error (bfd_error_no_memory);
5157 goto error_return;
5158 }
5159
5160 som_dict =
5161 (struct som_entry *) malloc (lst_header->module_count
5162 * sizeof (struct som_entry));
5163 if (som_dict == NULL && lst_header->module_count != 0)
5164 {
5165 bfd_set_error (bfd_error_no_memory);
5166 goto error_return;
5167 }
5168
5169 /* Read in the hash table. The has table is an array of 32bit file offsets
5170 which point to the hash chains. */
5171 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5172 != lst_header->hash_size * 4)
5173 goto error_return;
5174
5175 /* Seek to and read in the SOM dictionary. We will need this to fill
5176 in the carsym's filepos field. */
5177 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
5178 goto error_return;
5179
5180 if (bfd_read ((PTR) som_dict, lst_header->module_count,
5181 sizeof (struct som_entry), abfd)
5182 != lst_header->module_count * sizeof (struct som_entry))
5183 goto error_return;
5184
5185 /* Walk each chain filling in the carsyms as we go along. */
5186 for (i = 0; i < lst_header->hash_size; i++)
5187 {
5188 struct lst_symbol_record lst_symbol;
5189
5190 /* An empty chain has zero as it's file offset. */
5191 if (hash_table[i] == 0)
5192 continue;
5193
5194 /* Seek to and read the first symbol on the chain. */
5195 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5196 goto error_return;
5197
5198 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5199 != sizeof (lst_symbol))
5200 goto error_return;
5201
5202 /* Get the name of the symbol, first get the length which is stored
5203 as a 32bit integer just before the symbol.
5204
5205 One might ask why we don't just read in the entire string table
5206 and index into it. Well, according to the SOM ABI the string
5207 index can point *anywhere* in the archive to save space, so just
5208 using the string table would not be safe. */
5209 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5210 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5211 goto error_return;
5212
5213 if (bfd_read (&len, 1, 4, abfd) != 4)
5214 goto error_return;
5215
5216 /* Allocate space for the name and null terminate it too. */
5217 set->name = bfd_zalloc (abfd, len + 1);
5218 if (!set->name)
5219 {
5220 bfd_set_error (bfd_error_no_memory);
5221 goto error_return;
5222 }
5223 if (bfd_read (set->name, 1, len, abfd) != len)
5224 goto error_return;
5225
5226 set->name[len] = 0;
5227
5228 /* Fill in the file offset. Note that the "location" field points
5229 to the SOM itself, not the ar_hdr in front of it. */
5230 set->file_offset = som_dict[lst_symbol.som_index].location
5231 - sizeof (struct ar_hdr);
5232
5233 /* Go to the next symbol. */
5234 set++;
5235
5236 /* Iterate through the rest of the chain. */
5237 while (lst_symbol.next_entry)
5238 {
5239 /* Seek to the next symbol and read it in. */
5240 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
5241 goto error_return;
5242
5243 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5244 != sizeof (lst_symbol))
5245 goto error_return;
5246
5247 /* Seek to the name length & string and read them in. */
5248 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5249 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5250 goto error_return;
5251
5252 if (bfd_read (&len, 1, 4, abfd) != 4)
5253 goto error_return;
5254
5255 /* Allocate space for the name and null terminate it too. */
5256 set->name = bfd_zalloc (abfd, len + 1);
5257 if (!set->name)
5258 {
5259 bfd_set_error (bfd_error_no_memory);
5260 goto error_return;
5261 }
5262
5263 if (bfd_read (set->name, 1, len, abfd) != len)
5264 goto error_return;
5265 set->name[len] = 0;
5266
5267 /* Fill in the file offset. Note that the "location" field points
5268 to the SOM itself, not the ar_hdr in front of it. */
5269 set->file_offset = som_dict[lst_symbol.som_index].location
5270 - sizeof (struct ar_hdr);
5271
5272 /* Go on to the next symbol. */
5273 set++;
5274 }
5275 }
5276 /* If we haven't died by now, then we successfully read the entire
5277 archive symbol table. */
5278 if (hash_table != NULL)
5279 free (hash_table);
5280 if (som_dict != NULL)
5281 free (som_dict);
5282 return true;
5283
5284 error_return:
5285 if (hash_table != NULL)
5286 free (hash_table);
5287 if (som_dict != NULL)
5288 free (som_dict);
5289 return false;
5290 }
5291
5292 /* Read in the LST from the archive. */
5293 static boolean
5294 som_slurp_armap (abfd)
5295 bfd *abfd;
5296 {
5297 struct lst_header lst_header;
5298 struct ar_hdr ar_header;
5299 unsigned int parsed_size;
5300 struct artdata *ardata = bfd_ardata (abfd);
5301 char nextname[17];
5302 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
5303
5304 /* Special cases. */
5305 if (i == 0)
5306 return true;
5307 if (i != 16)
5308 return false;
5309
5310 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
5311 return false;
5312
5313 /* For archives without .o files there is no symbol table. */
5314 if (strncmp (nextname, "/ ", 16))
5315 {
5316 bfd_has_map (abfd) = false;
5317 return true;
5318 }
5319
5320 /* Read in and sanity check the archive header. */
5321 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
5322 != sizeof (struct ar_hdr))
5323 return false;
5324
5325 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5326 {
5327 bfd_set_error (bfd_error_malformed_archive);
5328 return false;
5329 }
5330
5331 /* How big is the archive symbol table entry? */
5332 errno = 0;
5333 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5334 if (errno != 0)
5335 {
5336 bfd_set_error (bfd_error_malformed_archive);
5337 return false;
5338 }
5339
5340 /* Save off the file offset of the first real user data. */
5341 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5342
5343 /* Read in the library symbol table. We'll make heavy use of this
5344 in just a minute. */
5345 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
5346 != sizeof (struct lst_header))
5347 return false;
5348
5349 /* Sanity check. */
5350 if (lst_header.a_magic != LIBMAGIC)
5351 {
5352 bfd_set_error (bfd_error_malformed_archive);
5353 return false;
5354 }
5355
5356 /* Count the number of symbols in the library symbol table. */
5357 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
5358 == false)
5359 return false;
5360
5361 /* Get back to the start of the library symbol table. */
5362 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
5363 + sizeof (struct lst_header), SEEK_SET) < 0)
5364 return false;
5365
5366 /* Initializae the cache and allocate space for the library symbols. */
5367 ardata->cache = 0;
5368 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5369 (ardata->symdef_count
5370 * sizeof (carsym)));
5371 if (!ardata->symdefs)
5372 {
5373 bfd_set_error (bfd_error_no_memory);
5374 return false;
5375 }
5376
5377 /* Now fill in the canonical archive symbols. */
5378 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5379 == false)
5380 return false;
5381
5382 /* Seek back to the "first" file in the archive. Note the "first"
5383 file may be the extended name table. */
5384 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5385 return false;
5386
5387 /* Notify the generic archive code that we have a symbol map. */
5388 bfd_has_map (abfd) = true;
5389 return true;
5390 }
5391
5392 /* Begin preparing to write a SOM library symbol table.
5393
5394 As part of the prep work we need to determine the number of symbols
5395 and the size of the associated string section. */
5396
5397 static boolean
5398 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5399 bfd *abfd;
5400 unsigned int *num_syms, *stringsize;
5401 {
5402 bfd *curr_bfd = abfd->archive_head;
5403
5404 /* Some initialization. */
5405 *num_syms = 0;
5406 *stringsize = 0;
5407
5408 /* Iterate over each BFD within this archive. */
5409 while (curr_bfd != NULL)
5410 {
5411 unsigned int curr_count, i;
5412 som_symbol_type *sym;
5413
5414 /* Don't bother for non-SOM objects. */
5415 if (curr_bfd->format != bfd_object
5416 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5417 {
5418 curr_bfd = curr_bfd->next;
5419 continue;
5420 }
5421
5422 /* Make sure the symbol table has been read, then snag a pointer
5423 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5424 but doing so avoids allocating lots of extra memory. */
5425 if (som_slurp_symbol_table (curr_bfd) == false)
5426 return false;
5427
5428 sym = obj_som_symtab (curr_bfd);
5429 curr_count = bfd_get_symcount (curr_bfd);
5430
5431 /* Examine each symbol to determine if it belongs in the
5432 library symbol table. */
5433 for (i = 0; i < curr_count; i++, sym++)
5434 {
5435 struct som_misc_symbol_info info;
5436
5437 /* Derive SOM information from the BFD symbol. */
5438 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5439
5440 /* Should we include this symbol? */
5441 if (info.symbol_type == ST_NULL
5442 || info.symbol_type == ST_SYM_EXT
5443 || info.symbol_type == ST_ARG_EXT)
5444 continue;
5445
5446 /* Only global symbols and unsatisfied commons. */
5447 if (info.symbol_scope != SS_UNIVERSAL
5448 && info.symbol_type != ST_STORAGE)
5449 continue;
5450
5451 /* Do no include undefined symbols. */
5452 if (bfd_is_und_section (sym->symbol.section))
5453 continue;
5454
5455 /* Bump the various counters, being careful to honor
5456 alignment considerations in the string table. */
5457 (*num_syms)++;
5458 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5459 while (*stringsize % 4)
5460 (*stringsize)++;
5461 }
5462
5463 curr_bfd = curr_bfd->next;
5464 }
5465 return true;
5466 }
5467
5468 /* Hash a symbol name based on the hashing algorithm presented in the
5469 SOM ABI. */
5470 static unsigned int
5471 som_bfd_ar_symbol_hash (symbol)
5472 asymbol *symbol;
5473 {
5474 unsigned int len = strlen (symbol->name);
5475
5476 /* Names with length 1 are special. */
5477 if (len == 1)
5478 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5479
5480 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5481 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5482 }
5483
5484 static CONST char *
5485 normalize (file)
5486 CONST char *file;
5487 {
5488 CONST char *filename = strrchr (file, '/');
5489
5490 if (filename != NULL)
5491 filename++;
5492 else
5493 filename = file;
5494 return filename;
5495 }
5496
5497 /* Do the bulk of the work required to write the SOM library
5498 symbol table. */
5499
5500 static boolean
5501 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5502 bfd *abfd;
5503 unsigned int nsyms, string_size;
5504 struct lst_header lst;
5505 {
5506 file_ptr lst_filepos;
5507 char *strings = NULL, *p;
5508 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5509 bfd *curr_bfd;
5510 unsigned int *hash_table = NULL;
5511 struct som_entry *som_dict = NULL;
5512 struct lst_symbol_record **last_hash_entry = NULL;
5513 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5514 unsigned int maxname = abfd->xvec->ar_max_namelen;
5515
5516 hash_table =
5517 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5518 if (hash_table == NULL && lst.hash_size != 0)
5519 {
5520 bfd_set_error (bfd_error_no_memory);
5521 goto error_return;
5522 }
5523 som_dict =
5524 (struct som_entry *) malloc (lst.module_count
5525 * sizeof (struct som_entry));
5526 if (som_dict == NULL && lst.module_count != 0)
5527 {
5528 bfd_set_error (bfd_error_no_memory);
5529 goto error_return;
5530 }
5531
5532 last_hash_entry =
5533 ((struct lst_symbol_record **)
5534 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5535 if (last_hash_entry == NULL && lst.hash_size != 0)
5536 {
5537 bfd_set_error (bfd_error_no_memory);
5538 goto error_return;
5539 }
5540
5541 /* Lots of fields are file positions relative to the start
5542 of the lst record. So save its location. */
5543 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5544
5545 /* Some initialization. */
5546 memset (hash_table, 0, 4 * lst.hash_size);
5547 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5548 memset (last_hash_entry, 0,
5549 lst.hash_size * sizeof (struct lst_symbol_record *));
5550
5551 /* Symbols have som_index fields, so we have to keep track of the
5552 index of each SOM in the archive.
5553
5554 The SOM dictionary has (among other things) the absolute file
5555 position for the SOM which a particular dictionary entry
5556 describes. We have to compute that information as we iterate
5557 through the SOMs/symbols. */
5558 som_index = 0;
5559 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5560
5561 /* Yow! We have to know the size of the extended name table
5562 too. */
5563 for (curr_bfd = abfd->archive_head;
5564 curr_bfd != NULL;
5565 curr_bfd = curr_bfd->next)
5566 {
5567 CONST char *normal = normalize (curr_bfd->filename);
5568 unsigned int thislen;
5569
5570 if (!normal)
5571 {
5572 bfd_set_error (bfd_error_no_memory);
5573 return false;
5574 }
5575 thislen = strlen (normal);
5576 if (thislen > maxname)
5577 extended_name_length += thislen + 1;
5578 }
5579
5580 /* Make room for the archive header and the contents of the
5581 extended string table. */
5582 if (extended_name_length)
5583 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5584
5585 /* Make sure we're properly aligned. */
5586 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5587
5588 /* FIXME should be done with buffers just like everything else... */
5589 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5590 if (lst_syms == NULL && nsyms != 0)
5591 {
5592 bfd_set_error (bfd_error_no_memory);
5593 goto error_return;
5594 }
5595 strings = malloc (string_size);
5596 if (strings == NULL && string_size != 0)
5597 {
5598 bfd_set_error (bfd_error_no_memory);
5599 goto error_return;
5600 }
5601
5602 p = strings;
5603 curr_lst_sym = lst_syms;
5604
5605 curr_bfd = abfd->archive_head;
5606 while (curr_bfd != NULL)
5607 {
5608 unsigned int curr_count, i;
5609 som_symbol_type *sym;
5610
5611 /* Don't bother for non-SOM objects. */
5612 if (curr_bfd->format != bfd_object
5613 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5614 {
5615 curr_bfd = curr_bfd->next;
5616 continue;
5617 }
5618
5619 /* Make sure the symbol table has been read, then snag a pointer
5620 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5621 but doing so avoids allocating lots of extra memory. */
5622 if (som_slurp_symbol_table (curr_bfd) == false)
5623 goto error_return;
5624
5625 sym = obj_som_symtab (curr_bfd);
5626 curr_count = bfd_get_symcount (curr_bfd);
5627
5628 for (i = 0; i < curr_count; i++, sym++)
5629 {
5630 struct som_misc_symbol_info info;
5631
5632 /* Derive SOM information from the BFD symbol. */
5633 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5634
5635 /* Should we include this symbol? */
5636 if (info.symbol_type == ST_NULL
5637 || info.symbol_type == ST_SYM_EXT
5638 || info.symbol_type == ST_ARG_EXT)
5639 continue;
5640
5641 /* Only global symbols and unsatisfied commons. */
5642 if (info.symbol_scope != SS_UNIVERSAL
5643 && info.symbol_type != ST_STORAGE)
5644 continue;
5645
5646 /* Do no include undefined symbols. */
5647 if (bfd_is_und_section (sym->symbol.section))
5648 continue;
5649
5650 /* If this is the first symbol from this SOM, then update
5651 the SOM dictionary too. */
5652 if (som_dict[som_index].location == 0)
5653 {
5654 som_dict[som_index].location = curr_som_offset;
5655 som_dict[som_index].length = arelt_size (curr_bfd);
5656 }
5657
5658 /* Fill in the lst symbol record. */
5659 curr_lst_sym->hidden = 0;
5660 curr_lst_sym->secondary_def = 0;
5661 curr_lst_sym->symbol_type = info.symbol_type;
5662 curr_lst_sym->symbol_scope = info.symbol_scope;
5663 curr_lst_sym->check_level = 0;
5664 curr_lst_sym->must_qualify = 0;
5665 curr_lst_sym->initially_frozen = 0;
5666 curr_lst_sym->memory_resident = 0;
5667 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5668 curr_lst_sym->dup_common = 0;
5669 curr_lst_sym->xleast = 0;
5670 curr_lst_sym->arg_reloc = info.arg_reloc;
5671 curr_lst_sym->name.n_strx = p - strings + 4;
5672 curr_lst_sym->qualifier_name.n_strx = 0;
5673 curr_lst_sym->symbol_info = info.symbol_info;
5674 curr_lst_sym->symbol_value = info.symbol_value;
5675 curr_lst_sym->symbol_descriptor = 0;
5676 curr_lst_sym->reserved = 0;
5677 curr_lst_sym->som_index = som_index;
5678 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5679 curr_lst_sym->next_entry = 0;
5680
5681 /* Insert into the hash table. */
5682 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5683 {
5684 struct lst_symbol_record *tmp;
5685
5686 /* There is already something at the head of this hash chain,
5687 so tack this symbol onto the end of the chain. */
5688 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5689 tmp->next_entry
5690 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5691 + lst.hash_size * 4
5692 + lst.module_count * sizeof (struct som_entry)
5693 + sizeof (struct lst_header);
5694 }
5695 else
5696 {
5697 /* First entry in this hash chain. */
5698 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5699 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5700 + lst.hash_size * 4
5701 + lst.module_count * sizeof (struct som_entry)
5702 + sizeof (struct lst_header);
5703 }
5704
5705 /* Keep track of the last symbol we added to this chain so we can
5706 easily update its next_entry pointer. */
5707 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5708 = curr_lst_sym;
5709
5710
5711 /* Update the string table. */
5712 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5713 p += 4;
5714 strcpy (p, sym->symbol.name);
5715 p += strlen (sym->symbol.name) + 1;
5716 while ((int)p % 4)
5717 {
5718 bfd_put_8 (abfd, 0, p);
5719 p++;
5720 }
5721
5722 /* Head to the next symbol. */
5723 curr_lst_sym++;
5724 }
5725
5726 /* Keep track of where each SOM will finally reside; then look
5727 at the next BFD. */
5728 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5729
5730 /* A particular object in the archive may have an odd length; the
5731 linker requires objects begin on an even boundary. So round
5732 up the current offset as necessary. */
5733 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5734 curr_bfd = curr_bfd->next;
5735 som_index++;
5736 }
5737
5738 /* Now scribble out the hash table. */
5739 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5740 != lst.hash_size * 4)
5741 goto error_return;
5742
5743 /* Then the SOM dictionary. */
5744 if (bfd_write ((PTR) som_dict, lst.module_count,
5745 sizeof (struct som_entry), abfd)
5746 != lst.module_count * sizeof (struct som_entry))
5747 goto error_return;
5748
5749 /* The library symbols. */
5750 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5751 != nsyms * sizeof (struct lst_symbol_record))
5752 goto error_return;
5753
5754 /* And finally the strings. */
5755 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5756 goto error_return;
5757
5758 if (hash_table != NULL)
5759 free (hash_table);
5760 if (som_dict != NULL)
5761 free (som_dict);
5762 if (last_hash_entry != NULL)
5763 free (last_hash_entry);
5764 if (lst_syms != NULL)
5765 free (lst_syms);
5766 if (strings != NULL)
5767 free (strings);
5768 return true;
5769
5770 error_return:
5771 if (hash_table != NULL)
5772 free (hash_table);
5773 if (som_dict != NULL)
5774 free (som_dict);
5775 if (last_hash_entry != NULL)
5776 free (last_hash_entry);
5777 if (lst_syms != NULL)
5778 free (lst_syms);
5779 if (strings != NULL)
5780 free (strings);
5781
5782 return false;
5783 }
5784
5785 /* SOM almost uses the SVR4 style extended name support, but not
5786 quite. */
5787
5788 static boolean
5789 som_construct_extended_name_table (abfd, tabloc, tablen, name)
5790 bfd *abfd;
5791 char **tabloc;
5792 bfd_size_type *tablen;
5793 const char **name;
5794 {
5795 *name = "//";
5796 return _bfd_construct_extended_name_table (abfd, false, tabloc, tablen);
5797 }
5798
5799 /* Write out the LST for the archive.
5800
5801 You'll never believe this is really how armaps are handled in SOM... */
5802
5803 /*ARGSUSED*/
5804 static boolean
5805 som_write_armap (abfd, elength, map, orl_count, stridx)
5806 bfd *abfd;
5807 unsigned int elength;
5808 struct orl *map;
5809 unsigned int orl_count;
5810 int stridx;
5811 {
5812 bfd *curr_bfd;
5813 struct stat statbuf;
5814 unsigned int i, lst_size, nsyms, stringsize;
5815 struct ar_hdr hdr;
5816 struct lst_header lst;
5817 int *p;
5818
5819 /* We'll use this for the archive's date and mode later. */
5820 if (stat (abfd->filename, &statbuf) != 0)
5821 {
5822 bfd_set_error (bfd_error_system_call);
5823 return false;
5824 }
5825 /* Fudge factor. */
5826 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5827
5828 /* Account for the lst header first. */
5829 lst_size = sizeof (struct lst_header);
5830
5831 /* Start building the LST header. */
5832 /* FIXME: Do we need to examine each element to determine the
5833 largest id number? */
5834 lst.system_id = CPU_PA_RISC1_0;
5835 lst.a_magic = LIBMAGIC;
5836 lst.version_id = VERSION_ID;
5837 lst.file_time.secs = 0;
5838 lst.file_time.nanosecs = 0;
5839
5840 lst.hash_loc = lst_size;
5841 lst.hash_size = SOM_LST_HASH_SIZE;
5842
5843 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5844 lst_size += 4 * SOM_LST_HASH_SIZE;
5845
5846 /* We need to count the number of SOMs in this archive. */
5847 curr_bfd = abfd->archive_head;
5848 lst.module_count = 0;
5849 while (curr_bfd != NULL)
5850 {
5851 /* Only true SOM objects count. */
5852 if (curr_bfd->format == bfd_object
5853 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5854 lst.module_count++;
5855 curr_bfd = curr_bfd->next;
5856 }
5857 lst.module_limit = lst.module_count;
5858 lst.dir_loc = lst_size;
5859 lst_size += sizeof (struct som_entry) * lst.module_count;
5860
5861 /* We don't support import/export tables, auxiliary headers,
5862 or free lists yet. Make the linker work a little harder
5863 to make our life easier. */
5864
5865 lst.export_loc = 0;
5866 lst.export_count = 0;
5867 lst.import_loc = 0;
5868 lst.aux_loc = 0;
5869 lst.aux_size = 0;
5870
5871 /* Count how many symbols we will have on the hash chains and the
5872 size of the associated string table. */
5873 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5874 return false;
5875
5876 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5877
5878 /* For the string table. One day we might actually use this info
5879 to avoid small seeks/reads when reading archives. */
5880 lst.string_loc = lst_size;
5881 lst.string_size = stringsize;
5882 lst_size += stringsize;
5883
5884 /* SOM ABI says this must be zero. */
5885 lst.free_list = 0;
5886 lst.file_end = lst_size;
5887
5888 /* Compute the checksum. Must happen after the entire lst header
5889 has filled in. */
5890 p = (int *)&lst;
5891 lst.checksum = 0;
5892 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5893 lst.checksum ^= *p++;
5894
5895 sprintf (hdr.ar_name, "/ ");
5896 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5897 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5898 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5899 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5900 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5901 hdr.ar_fmag[0] = '`';
5902 hdr.ar_fmag[1] = '\012';
5903
5904 /* Turn any nulls into spaces. */
5905 for (i = 0; i < sizeof (struct ar_hdr); i++)
5906 if (((char *) (&hdr))[i] == '\0')
5907 (((char *) (&hdr))[i]) = ' ';
5908
5909 /* Scribble out the ar header. */
5910 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5911 != sizeof (struct ar_hdr))
5912 return false;
5913
5914 /* Now scribble out the lst header. */
5915 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5916 != sizeof (struct lst_header))
5917 return false;
5918
5919 /* Build and write the armap. */
5920 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5921 return false;
5922
5923 /* Done. */
5924 return true;
5925 }
5926
5927 /* Free all information we have cached for this BFD. We can always
5928 read it again later if we need it. */
5929
5930 static boolean
5931 som_bfd_free_cached_info (abfd)
5932 bfd *abfd;
5933 {
5934 asection *o;
5935
5936 if (bfd_get_format (abfd) != bfd_object)
5937 return true;
5938
5939 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5940 /* Free the native string and symbol tables. */
5941 FREE (obj_som_symtab (abfd));
5942 FREE (obj_som_stringtab (abfd));
5943 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5944 {
5945 /* Free the native relocations. */
5946 o->reloc_count = -1;
5947 FREE (som_section_data (o)->reloc_stream);
5948 /* Free the generic relocations. */
5949 FREE (o->relocation);
5950 }
5951 #undef FREE
5952
5953 return true;
5954 }
5955
5956 /* End of miscellaneous support functions. */
5957
5958 /* Linker support functions. */
5959 static boolean
5960 som_bfd_link_split_section (abfd, sec)
5961 bfd *abfd;
5962 asection *sec;
5963 {
5964 return (som_is_subspace (sec) && sec->_raw_size > 240000);
5965 }
5966
5967 #define som_close_and_cleanup som_bfd_free_cached_info
5968
5969 #define som_read_ar_hdr _bfd_generic_read_ar_hdr
5970 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5971 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5972 #define som_truncate_arname bfd_bsd_truncate_arname
5973 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5974 #define som_update_armap_timestamp bfd_true
5975 #define som_bfd_print_private_bfd_data _bfd_generic_bfd_print_private_bfd_data
5976
5977 #define som_get_lineno _bfd_nosymbols_get_lineno
5978 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5979 #define som_read_minisymbols _bfd_generic_read_minisymbols
5980 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
5981
5982 #define som_bfd_get_relocated_section_contents \
5983 bfd_generic_get_relocated_section_contents
5984 #define som_bfd_relax_section bfd_generic_relax_section
5985 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5986 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5987 #define som_bfd_final_link _bfd_generic_final_link
5988
5989 const bfd_target som_vec =
5990 {
5991 "som", /* name */
5992 bfd_target_som_flavour,
5993 true, /* target byte order */
5994 true, /* target headers byte order */
5995 (HAS_RELOC | EXEC_P | /* object flags */
5996 HAS_LINENO | HAS_DEBUG |
5997 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5998 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5999 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
6000
6001 /* leading_symbol_char: is the first char of a user symbol
6002 predictable, and if so what is it */
6003 0,
6004 '/', /* ar_pad_char */
6005 14, /* ar_max_namelen */
6006 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6007 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6008 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
6009 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6010 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6011 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
6012 {_bfd_dummy_target,
6013 som_object_p, /* bfd_check_format */
6014 bfd_generic_archive_p,
6015 _bfd_dummy_target
6016 },
6017 {
6018 bfd_false,
6019 som_mkobject,
6020 _bfd_generic_mkarchive,
6021 bfd_false
6022 },
6023 {
6024 bfd_false,
6025 som_write_object_contents,
6026 _bfd_write_archive_contents,
6027 bfd_false,
6028 },
6029 #undef som
6030
6031 BFD_JUMP_TABLE_GENERIC (som),
6032 BFD_JUMP_TABLE_COPY (som),
6033 BFD_JUMP_TABLE_CORE (_bfd_nocore),
6034 BFD_JUMP_TABLE_ARCHIVE (som),
6035 BFD_JUMP_TABLE_SYMBOLS (som),
6036 BFD_JUMP_TABLE_RELOCS (som),
6037 BFD_JUMP_TABLE_WRITE (som),
6038 BFD_JUMP_TABLE_LINK (som),
6039 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6040
6041 (PTR) 0
6042 };
6043
6044 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.345908 seconds and 4 git commands to generate.