* section.c (bfd_get_section_contents): Put in parens to get
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <signal.h>
35 #include <machine/reg.h>
36 #include <sys/file.h>
37 #include <errno.h>
38
39 /* Magic not defined in standard HP-UX header files until 8.0 */
40
41 #ifndef CPU_PA_RISC1_0
42 #define CPU_PA_RISC1_0 0x20B
43 #endif /* CPU_PA_RISC1_0 */
44
45 #ifndef CPU_PA_RISC1_1
46 #define CPU_PA_RISC1_1 0x210
47 #endif /* CPU_PA_RISC1_1 */
48
49 #ifndef _PA_RISC1_0_ID
50 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
51 #endif /* _PA_RISC1_0_ID */
52
53 #ifndef _PA_RISC1_1_ID
54 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
55 #endif /* _PA_RISC1_1_ID */
56
57 #ifndef _PA_RISC_MAXID
58 #define _PA_RISC_MAXID 0x2FF
59 #endif /* _PA_RISC_MAXID */
60
61 #ifndef _PA_RISC_ID
62 #define _PA_RISC_ID(__m_num) \
63 (((__m_num) == _PA_RISC1_0_ID) || \
64 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
65 #endif /* _PA_RISC_ID */
66
67
68 /* HIUX in it's infinite stupidity changed the names for several "well
69 known" constants. Work around such braindamage. Try the HPUX version
70 first, then the HIUX version, and finally provide a default. */
71 #ifdef HPUX_AUX_ID
72 #define EXEC_AUX_ID HPUX_AUX_ID
73 #endif
74
75 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
76 #define EXEC_AUX_ID HIUX_AUX_ID
77 #endif
78
79 #ifndef EXEC_AUX_ID
80 #define EXEC_AUX_ID 0
81 #endif
82
83 /* Size (in chars) of the temporary buffers used during fixup and string
84 table writes. */
85
86 #define SOM_TMP_BUFSIZE 8192
87
88 /* Size of the hash table in archives. */
89 #define SOM_LST_HASH_SIZE 31
90
91 /* Max number of SOMs to be found in an archive. */
92 #define SOM_LST_MODULE_LIMIT 1024
93
94 /* Generic alignment macro. */
95 #define SOM_ALIGN(val, alignment) \
96 (((val) + (alignment) - 1) & ~((alignment) - 1))
97
98 /* SOM allows any one of the four previous relocations to be reused
99 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
100 relocations are always a single byte, using a R_PREV_FIXUP instead
101 of some multi-byte relocation makes object files smaller.
102
103 Note one side effect of using a R_PREV_FIXUP is the relocation that
104 is being repeated moves to the front of the queue. */
105 struct reloc_queue
106 {
107 unsigned char *reloc;
108 unsigned int size;
109 } reloc_queue[4];
110
111 /* This fully describes the symbol types which may be attached to
112 an EXPORT or IMPORT directive. Only SOM uses this formation
113 (ELF has no need for it). */
114 typedef enum
115 {
116 SYMBOL_TYPE_UNKNOWN,
117 SYMBOL_TYPE_ABSOLUTE,
118 SYMBOL_TYPE_CODE,
119 SYMBOL_TYPE_DATA,
120 SYMBOL_TYPE_ENTRY,
121 SYMBOL_TYPE_MILLICODE,
122 SYMBOL_TYPE_PLABEL,
123 SYMBOL_TYPE_PRI_PROG,
124 SYMBOL_TYPE_SEC_PROG,
125 } pa_symbol_type;
126
127 struct section_to_type
128 {
129 char *section;
130 char type;
131 };
132
133 /* Assorted symbol information that needs to be derived from the BFD symbol
134 and/or the BFD backend private symbol data. */
135 struct som_misc_symbol_info
136 {
137 unsigned int symbol_type;
138 unsigned int symbol_scope;
139 unsigned int arg_reloc;
140 unsigned int symbol_info;
141 unsigned int symbol_value;
142 };
143
144 /* Forward declarations */
145
146 static boolean som_mkobject PARAMS ((bfd *));
147 static const bfd_target * som_object_setup PARAMS ((bfd *,
148 struct header *,
149 struct som_exec_auxhdr *));
150 static boolean setup_sections PARAMS ((bfd *, struct header *));
151 static const bfd_target * som_object_p PARAMS ((bfd *));
152 static boolean som_write_object_contents PARAMS ((bfd *));
153 static boolean som_slurp_string_table PARAMS ((bfd *));
154 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
155 static long som_get_symtab_upper_bound PARAMS ((bfd *));
156 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
157 arelent **, asymbol **));
158 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
159 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
160 arelent *, asection *,
161 asymbol **, boolean));
162 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
163 asymbol **, boolean));
164 static long som_get_symtab PARAMS ((bfd *, asymbol **));
165 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
166 static void som_print_symbol PARAMS ((bfd *, PTR,
167 asymbol *, bfd_print_symbol_type));
168 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
169 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
170 bfd *, asection *));
171 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
172 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
173 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
174 file_ptr, bfd_size_type));
175 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
176 file_ptr, bfd_size_type));
177 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
178 unsigned long));
179 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
180 asymbol **, bfd_vma,
181 CONST char **,
182 CONST char **,
183 unsigned int *));
184 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
185 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
186 struct symbol_dictionary_record *));
187 static int log2 PARAMS ((unsigned int));
188 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
189 asymbol *, PTR,
190 asection *, bfd *,
191 char **));
192 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
193 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
194 struct reloc_queue *));
195 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
196 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
197 struct reloc_queue *));
198 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
199 unsigned int,
200 struct reloc_queue *));
201
202 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
203 unsigned char *, unsigned int *,
204 struct reloc_queue *));
205 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
206 unsigned int *,
207 struct reloc_queue *));
208 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
209 unsigned int *,
210 arelent *, int,
211 struct reloc_queue *));
212 static unsigned long som_count_spaces PARAMS ((bfd *));
213 static unsigned long som_count_subspaces PARAMS ((bfd *));
214 static int compare_syms PARAMS ((const void *, const void *));
215 static unsigned long som_compute_checksum PARAMS ((bfd *));
216 static boolean som_prep_headers PARAMS ((bfd *));
217 static int som_sizeof_headers PARAMS ((bfd *, boolean));
218 static boolean som_write_headers PARAMS ((bfd *));
219 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
220 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
221 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
222 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
223 unsigned int *));
224 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
225 asymbol **, unsigned int,
226 unsigned *));
227 static boolean som_begin_writing PARAMS ((bfd *));
228 static const reloc_howto_type * som_bfd_reloc_type_lookup
229 PARAMS ((bfd *, bfd_reloc_code_real_type));
230 static char som_section_type PARAMS ((const char *));
231 static int som_decode_symclass PARAMS ((asymbol *));
232 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
233 symindex *));
234
235 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
236 carsym **syms));
237 static boolean som_slurp_armap PARAMS ((bfd *));
238 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
239 unsigned int, int));
240 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
241 struct som_misc_symbol_info *));
242 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
243 unsigned int *));
244 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
245 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
246 unsigned int,
247 struct lst_header));
248 static CONST char *normalize PARAMS ((CONST char *file));
249 static boolean som_is_space PARAMS ((asection *));
250 static boolean som_is_subspace PARAMS ((asection *));
251 static boolean som_is_container PARAMS ((asection *, asection *));
252 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
253
254 /* Map SOM section names to POSIX/BSD single-character symbol types.
255
256 This table includes all the standard subspaces as defined in the
257 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
258 some reason was left out, and sections specific to embedded stabs. */
259
260 static const struct section_to_type stt[] = {
261 {"$TEXT$", 't'},
262 {"$SHLIB_INFO$", 't'},
263 {"$MILLICODE$", 't'},
264 {"$LIT$", 't'},
265 {"$CODE$", 't'},
266 {"$UNWIND_START$", 't'},
267 {"$UNWIND$", 't'},
268 {"$PRIVATE$", 'd'},
269 {"$PLT$", 'd'},
270 {"$SHLIB_DATA$", 'd'},
271 {"$DATA$", 'd'},
272 {"$SHORTDATA$", 'g'},
273 {"$DLT$", 'd'},
274 {"$GLOBAL$", 'g'},
275 {"$SHORTBSS$", 's'},
276 {"$BSS$", 'b'},
277 {"$GDB_STRINGS$", 'N'},
278 {"$GDB_SYMBOLS$", 'N'},
279 {0, 0}
280 };
281
282 /* About the relocation formatting table...
283
284 There are 256 entries in the table, one for each possible
285 relocation opcode available in SOM. We index the table by
286 the relocation opcode. The names and operations are those
287 defined by a.out_800 (4).
288
289 Right now this table is only used to count and perform minimal
290 processing on relocation streams so that they can be internalized
291 into BFD and symbolically printed by utilities. To make actual use
292 of them would be much more difficult, BFD's concept of relocations
293 is far too simple to handle SOM relocations. The basic assumption
294 that a relocation can be completely processed independent of other
295 relocations before an object file is written is invalid for SOM.
296
297 The SOM relocations are meant to be processed as a stream, they
298 specify copying of data from the input section to the output section
299 while possibly modifying the data in some manner. They also can
300 specify that a variable number of zeros or uninitialized data be
301 inserted on in the output segment at the current offset. Some
302 relocations specify that some previous relocation be re-applied at
303 the current location in the input/output sections. And finally a number
304 of relocations have effects on other sections (R_ENTRY, R_EXIT,
305 R_UNWIND_AUX and a variety of others). There isn't even enough room
306 in the BFD relocation data structure to store enough information to
307 perform all the relocations.
308
309 Each entry in the table has three fields.
310
311 The first entry is an index into this "class" of relocations. This
312 index can then be used as a variable within the relocation itself.
313
314 The second field is a format string which actually controls processing
315 of the relocation. It uses a simple postfix machine to do calculations
316 based on variables/constants found in the string and the relocation
317 stream.
318
319 The third field specifys whether or not this relocation may use
320 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
321 stored in the instruction.
322
323 Variables:
324
325 L = input space byte count
326 D = index into class of relocations
327 M = output space byte count
328 N = statement number (unused?)
329 O = stack operation
330 R = parameter relocation bits
331 S = symbol index
332 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
333 V = a literal constant (usually used in the next relocation)
334 P = a previous relocation
335
336 Lower case letters (starting with 'b') refer to following
337 bytes in the relocation stream. 'b' is the next 1 byte,
338 c is the next 2 bytes, d is the next 3 bytes, etc...
339 This is the variable part of the relocation entries that
340 makes our life a living hell.
341
342 numerical constants are also used in the format string. Note
343 the constants are represented in decimal.
344
345 '+', "*" and "=" represents the obvious postfix operators.
346 '<' represents a left shift.
347
348 Stack Operations:
349
350 Parameter Relocation Bits:
351
352 Unwind Entries:
353
354 Previous Relocations: The index field represents which in the queue
355 of 4 previous fixups should be re-applied.
356
357 Literal Constants: These are generally used to represent addend
358 parts of relocations when these constants are not stored in the
359 fields of the instructions themselves. For example the instruction
360 addil foo-$global$-0x1234 would use an override for "0x1234" rather
361 than storing it into the addil itself. */
362
363 struct fixup_format
364 {
365 int D;
366 char *format;
367 };
368
369 static const struct fixup_format som_fixup_formats[256] =
370 {
371 /* R_NO_RELOCATION */
372 0, "LD1+4*=", /* 0x00 */
373 1, "LD1+4*=", /* 0x01 */
374 2, "LD1+4*=", /* 0x02 */
375 3, "LD1+4*=", /* 0x03 */
376 4, "LD1+4*=", /* 0x04 */
377 5, "LD1+4*=", /* 0x05 */
378 6, "LD1+4*=", /* 0x06 */
379 7, "LD1+4*=", /* 0x07 */
380 8, "LD1+4*=", /* 0x08 */
381 9, "LD1+4*=", /* 0x09 */
382 10, "LD1+4*=", /* 0x0a */
383 11, "LD1+4*=", /* 0x0b */
384 12, "LD1+4*=", /* 0x0c */
385 13, "LD1+4*=", /* 0x0d */
386 14, "LD1+4*=", /* 0x0e */
387 15, "LD1+4*=", /* 0x0f */
388 16, "LD1+4*=", /* 0x10 */
389 17, "LD1+4*=", /* 0x11 */
390 18, "LD1+4*=", /* 0x12 */
391 19, "LD1+4*=", /* 0x13 */
392 20, "LD1+4*=", /* 0x14 */
393 21, "LD1+4*=", /* 0x15 */
394 22, "LD1+4*=", /* 0x16 */
395 23, "LD1+4*=", /* 0x17 */
396 0, "LD8<b+1+4*=", /* 0x18 */
397 1, "LD8<b+1+4*=", /* 0x19 */
398 2, "LD8<b+1+4*=", /* 0x1a */
399 3, "LD8<b+1+4*=", /* 0x1b */
400 0, "LD16<c+1+4*=", /* 0x1c */
401 1, "LD16<c+1+4*=", /* 0x1d */
402 2, "LD16<c+1+4*=", /* 0x1e */
403 0, "Ld1+=", /* 0x1f */
404 /* R_ZEROES */
405 0, "Lb1+4*=", /* 0x20 */
406 1, "Ld1+=", /* 0x21 */
407 /* R_UNINIT */
408 0, "Lb1+4*=", /* 0x22 */
409 1, "Ld1+=", /* 0x23 */
410 /* R_RELOCATION */
411 0, "L4=", /* 0x24 */
412 /* R_DATA_ONE_SYMBOL */
413 0, "L4=Sb=", /* 0x25 */
414 1, "L4=Sd=", /* 0x26 */
415 /* R_DATA_PLEBEL */
416 0, "L4=Sb=", /* 0x27 */
417 1, "L4=Sd=", /* 0x28 */
418 /* R_SPACE_REF */
419 0, "L4=", /* 0x29 */
420 /* R_REPEATED_INIT */
421 0, "L4=Mb1+4*=", /* 0x2a */
422 1, "Lb4*=Mb1+L*=", /* 0x2b */
423 2, "Lb4*=Md1+4*=", /* 0x2c */
424 3, "Ld1+=Me1+=", /* 0x2d */
425 /* R_RESERVED */
426 0, "", /* 0x2e */
427 0, "", /* 0x2f */
428 /* R_PCREL_CALL */
429 0, "L4=RD=Sb=", /* 0x30 */
430 1, "L4=RD=Sb=", /* 0x31 */
431 2, "L4=RD=Sb=", /* 0x32 */
432 3, "L4=RD=Sb=", /* 0x33 */
433 4, "L4=RD=Sb=", /* 0x34 */
434 5, "L4=RD=Sb=", /* 0x35 */
435 6, "L4=RD=Sb=", /* 0x36 */
436 7, "L4=RD=Sb=", /* 0x37 */
437 8, "L4=RD=Sb=", /* 0x38 */
438 9, "L4=RD=Sb=", /* 0x39 */
439 0, "L4=RD8<b+=Sb=",/* 0x3a */
440 1, "L4=RD8<b+=Sb=",/* 0x3b */
441 0, "L4=RD8<b+=Sd=",/* 0x3c */
442 1, "L4=RD8<b+=Sd=",/* 0x3d */
443 /* R_RESERVED */
444 0, "", /* 0x3e */
445 0, "", /* 0x3f */
446 /* R_ABS_CALL */
447 0, "L4=RD=Sb=", /* 0x40 */
448 1, "L4=RD=Sb=", /* 0x41 */
449 2, "L4=RD=Sb=", /* 0x42 */
450 3, "L4=RD=Sb=", /* 0x43 */
451 4, "L4=RD=Sb=", /* 0x44 */
452 5, "L4=RD=Sb=", /* 0x45 */
453 6, "L4=RD=Sb=", /* 0x46 */
454 7, "L4=RD=Sb=", /* 0x47 */
455 8, "L4=RD=Sb=", /* 0x48 */
456 9, "L4=RD=Sb=", /* 0x49 */
457 0, "L4=RD8<b+=Sb=",/* 0x4a */
458 1, "L4=RD8<b+=Sb=",/* 0x4b */
459 0, "L4=RD8<b+=Sd=",/* 0x4c */
460 1, "L4=RD8<b+=Sd=",/* 0x4d */
461 /* R_RESERVED */
462 0, "", /* 0x4e */
463 0, "", /* 0x4f */
464 /* R_DP_RELATIVE */
465 0, "L4=SD=", /* 0x50 */
466 1, "L4=SD=", /* 0x51 */
467 2, "L4=SD=", /* 0x52 */
468 3, "L4=SD=", /* 0x53 */
469 4, "L4=SD=", /* 0x54 */
470 5, "L4=SD=", /* 0x55 */
471 6, "L4=SD=", /* 0x56 */
472 7, "L4=SD=", /* 0x57 */
473 8, "L4=SD=", /* 0x58 */
474 9, "L4=SD=", /* 0x59 */
475 10, "L4=SD=", /* 0x5a */
476 11, "L4=SD=", /* 0x5b */
477 12, "L4=SD=", /* 0x5c */
478 13, "L4=SD=", /* 0x5d */
479 14, "L4=SD=", /* 0x5e */
480 15, "L4=SD=", /* 0x5f */
481 16, "L4=SD=", /* 0x60 */
482 17, "L4=SD=", /* 0x61 */
483 18, "L4=SD=", /* 0x62 */
484 19, "L4=SD=", /* 0x63 */
485 20, "L4=SD=", /* 0x64 */
486 21, "L4=SD=", /* 0x65 */
487 22, "L4=SD=", /* 0x66 */
488 23, "L4=SD=", /* 0x67 */
489 24, "L4=SD=", /* 0x68 */
490 25, "L4=SD=", /* 0x69 */
491 26, "L4=SD=", /* 0x6a */
492 27, "L4=SD=", /* 0x6b */
493 28, "L4=SD=", /* 0x6c */
494 29, "L4=SD=", /* 0x6d */
495 30, "L4=SD=", /* 0x6e */
496 31, "L4=SD=", /* 0x6f */
497 32, "L4=Sb=", /* 0x70 */
498 33, "L4=Sd=", /* 0x71 */
499 /* R_RESERVED */
500 0, "", /* 0x72 */
501 0, "", /* 0x73 */
502 0, "", /* 0x74 */
503 0, "", /* 0x75 */
504 0, "", /* 0x76 */
505 0, "", /* 0x77 */
506 /* R_DLT_REL */
507 0, "L4=Sb=", /* 0x78 */
508 1, "L4=Sd=", /* 0x79 */
509 /* R_RESERVED */
510 0, "", /* 0x7a */
511 0, "", /* 0x7b */
512 0, "", /* 0x7c */
513 0, "", /* 0x7d */
514 0, "", /* 0x7e */
515 0, "", /* 0x7f */
516 /* R_CODE_ONE_SYMBOL */
517 0, "L4=SD=", /* 0x80 */
518 1, "L4=SD=", /* 0x81 */
519 2, "L4=SD=", /* 0x82 */
520 3, "L4=SD=", /* 0x83 */
521 4, "L4=SD=", /* 0x84 */
522 5, "L4=SD=", /* 0x85 */
523 6, "L4=SD=", /* 0x86 */
524 7, "L4=SD=", /* 0x87 */
525 8, "L4=SD=", /* 0x88 */
526 9, "L4=SD=", /* 0x89 */
527 10, "L4=SD=", /* 0x8q */
528 11, "L4=SD=", /* 0x8b */
529 12, "L4=SD=", /* 0x8c */
530 13, "L4=SD=", /* 0x8d */
531 14, "L4=SD=", /* 0x8e */
532 15, "L4=SD=", /* 0x8f */
533 16, "L4=SD=", /* 0x90 */
534 17, "L4=SD=", /* 0x91 */
535 18, "L4=SD=", /* 0x92 */
536 19, "L4=SD=", /* 0x93 */
537 20, "L4=SD=", /* 0x94 */
538 21, "L4=SD=", /* 0x95 */
539 22, "L4=SD=", /* 0x96 */
540 23, "L4=SD=", /* 0x97 */
541 24, "L4=SD=", /* 0x98 */
542 25, "L4=SD=", /* 0x99 */
543 26, "L4=SD=", /* 0x9a */
544 27, "L4=SD=", /* 0x9b */
545 28, "L4=SD=", /* 0x9c */
546 29, "L4=SD=", /* 0x9d */
547 30, "L4=SD=", /* 0x9e */
548 31, "L4=SD=", /* 0x9f */
549 32, "L4=Sb=", /* 0xa0 */
550 33, "L4=Sd=", /* 0xa1 */
551 /* R_RESERVED */
552 0, "", /* 0xa2 */
553 0, "", /* 0xa3 */
554 0, "", /* 0xa4 */
555 0, "", /* 0xa5 */
556 0, "", /* 0xa6 */
557 0, "", /* 0xa7 */
558 0, "", /* 0xa8 */
559 0, "", /* 0xa9 */
560 0, "", /* 0xaa */
561 0, "", /* 0xab */
562 0, "", /* 0xac */
563 0, "", /* 0xad */
564 /* R_MILLI_REL */
565 0, "L4=Sb=", /* 0xae */
566 1, "L4=Sd=", /* 0xaf */
567 /* R_CODE_PLABEL */
568 0, "L4=Sb=", /* 0xb0 */
569 1, "L4=Sd=", /* 0xb1 */
570 /* R_BREAKPOINT */
571 0, "L4=", /* 0xb2 */
572 /* R_ENTRY */
573 0, "Ui=", /* 0xb3 */
574 1, "Uf=", /* 0xb4 */
575 /* R_ALT_ENTRY */
576 0, "", /* 0xb5 */
577 /* R_EXIT */
578 0, "", /* 0xb6 */
579 /* R_BEGIN_TRY */
580 0, "", /* 0xb7 */
581 /* R_END_TRY */
582 0, "R0=", /* 0xb8 */
583 1, "Rb4*=", /* 0xb9 */
584 2, "Rd4*=", /* 0xba */
585 /* R_BEGIN_BRTAB */
586 0, "", /* 0xbb */
587 /* R_END_BRTAB */
588 0, "", /* 0xbc */
589 /* R_STATEMENT */
590 0, "Nb=", /* 0xbd */
591 1, "Nc=", /* 0xbe */
592 2, "Nd=", /* 0xbf */
593 /* R_DATA_EXPR */
594 0, "L4=", /* 0xc0 */
595 /* R_CODE_EXPR */
596 0, "L4=", /* 0xc1 */
597 /* R_FSEL */
598 0, "", /* 0xc2 */
599 /* R_LSEL */
600 0, "", /* 0xc3 */
601 /* R_RSEL */
602 0, "", /* 0xc4 */
603 /* R_N_MODE */
604 0, "", /* 0xc5 */
605 /* R_S_MODE */
606 0, "", /* 0xc6 */
607 /* R_D_MODE */
608 0, "", /* 0xc7 */
609 /* R_R_MODE */
610 0, "", /* 0xc8 */
611 /* R_DATA_OVERRIDE */
612 0, "V0=", /* 0xc9 */
613 1, "Vb=", /* 0xca */
614 2, "Vc=", /* 0xcb */
615 3, "Vd=", /* 0xcc */
616 4, "Ve=", /* 0xcd */
617 /* R_TRANSLATED */
618 0, "", /* 0xce */
619 /* R_RESERVED */
620 0, "", /* 0xcf */
621 /* R_COMP1 */
622 0, "Ob=", /* 0xd0 */
623 /* R_COMP2 */
624 0, "Ob=Sd=", /* 0xd1 */
625 /* R_COMP3 */
626 0, "Ob=Ve=", /* 0xd2 */
627 /* R_PREV_FIXUP */
628 0, "P", /* 0xd3 */
629 1, "P", /* 0xd4 */
630 2, "P", /* 0xd5 */
631 3, "P", /* 0xd6 */
632 /* R_RESERVED */
633 0, "", /* 0xd7 */
634 0, "", /* 0xd8 */
635 0, "", /* 0xd9 */
636 0, "", /* 0xda */
637 0, "", /* 0xdb */
638 0, "", /* 0xdc */
639 0, "", /* 0xdd */
640 0, "", /* 0xde */
641 0, "", /* 0xdf */
642 0, "", /* 0xe0 */
643 0, "", /* 0xe1 */
644 0, "", /* 0xe2 */
645 0, "", /* 0xe3 */
646 0, "", /* 0xe4 */
647 0, "", /* 0xe5 */
648 0, "", /* 0xe6 */
649 0, "", /* 0xe7 */
650 0, "", /* 0xe8 */
651 0, "", /* 0xe9 */
652 0, "", /* 0xea */
653 0, "", /* 0xeb */
654 0, "", /* 0xec */
655 0, "", /* 0xed */
656 0, "", /* 0xee */
657 0, "", /* 0xef */
658 0, "", /* 0xf0 */
659 0, "", /* 0xf1 */
660 0, "", /* 0xf2 */
661 0, "", /* 0xf3 */
662 0, "", /* 0xf4 */
663 0, "", /* 0xf5 */
664 0, "", /* 0xf6 */
665 0, "", /* 0xf7 */
666 0, "", /* 0xf8 */
667 0, "", /* 0xf9 */
668 0, "", /* 0xfa */
669 0, "", /* 0xfb */
670 0, "", /* 0xfc */
671 0, "", /* 0xfd */
672 0, "", /* 0xfe */
673 0, "", /* 0xff */
674 };
675
676 static const int comp1_opcodes[] =
677 {
678 0x00,
679 0x40,
680 0x41,
681 0x42,
682 0x43,
683 0x44,
684 0x45,
685 0x46,
686 0x47,
687 0x48,
688 0x49,
689 0x4a,
690 0x4b,
691 0x60,
692 0x80,
693 0xa0,
694 0xc0,
695 -1
696 };
697
698 static const int comp2_opcodes[] =
699 {
700 0x00,
701 0x80,
702 0x82,
703 0xc0,
704 -1
705 };
706
707 static const int comp3_opcodes[] =
708 {
709 0x00,
710 0x02,
711 -1
712 };
713
714 /* These apparently are not in older versions of hpux reloc.h. */
715 #ifndef R_DLT_REL
716 #define R_DLT_REL 0x78
717 #endif
718
719 #ifndef R_AUX_UNWIND
720 #define R_AUX_UNWIND 0xcf
721 #endif
722
723 #ifndef R_SEC_STMT
724 #define R_SEC_STMT 0xd7
725 #endif
726
727 static reloc_howto_type som_hppa_howto_table[] =
728 {
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
747 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
748 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
749 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
750 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
751 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
752 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
753 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
754 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
755 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
756 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
757 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
758 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
759 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
760 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
761 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
762 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
763 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
764 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
765 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
766 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
767 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
768 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
769 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
770 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
771 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
772 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
773 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
774 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
775 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
778 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
779 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
780 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
781 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
782 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
783 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
784 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
785 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
786 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
787 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
788 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
789 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
790 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
791 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
794 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
795 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
796 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
797 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
798 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
799 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
800 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
801 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
802 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
803 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
804 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
805 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
806 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
807 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
808 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
830 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
831 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
832 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
833 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
834 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
835 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
836 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
837 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
838 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
839 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
840 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
841 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
842 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
843 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
844 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
845 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
846 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
847 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
848 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
849 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
850 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
851 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
852 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
853 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
854 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
855 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
878 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
879 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
880 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
881 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
882 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
883 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
884 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
885 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
886 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
887 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
888 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
889 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
890 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
891 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
892 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
893 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
894 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
895 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
896 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
897 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
898 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
899 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
904 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
905 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
906 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
907 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
908 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
909 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
910 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
911 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
912 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
913 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
914 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
915 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
916 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
917 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
918 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
919 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
920 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
921 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
922 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
923 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
924 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
925 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
926 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
927 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
928 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
929 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
930 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
931 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
932 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
933 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
934 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
935 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
936 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
937 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
938 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
939 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
940 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
941 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
942 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
943 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
944 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
970 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
971 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
972 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
973 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
974 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
975 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
976 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
977 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
978 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
979 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
980 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
981 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
982 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
983 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
984 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
985
986 /* Initialize the SOM relocation queue. By definition the queue holds
987 the last four multibyte fixups. */
988
989 static void
990 som_initialize_reloc_queue (queue)
991 struct reloc_queue *queue;
992 {
993 queue[0].reloc = NULL;
994 queue[0].size = 0;
995 queue[1].reloc = NULL;
996 queue[1].size = 0;
997 queue[2].reloc = NULL;
998 queue[2].size = 0;
999 queue[3].reloc = NULL;
1000 queue[3].size = 0;
1001 }
1002
1003 /* Insert a new relocation into the relocation queue. */
1004
1005 static void
1006 som_reloc_queue_insert (p, size, queue)
1007 unsigned char *p;
1008 unsigned int size;
1009 struct reloc_queue *queue;
1010 {
1011 queue[3].reloc = queue[2].reloc;
1012 queue[3].size = queue[2].size;
1013 queue[2].reloc = queue[1].reloc;
1014 queue[2].size = queue[1].size;
1015 queue[1].reloc = queue[0].reloc;
1016 queue[1].size = queue[0].size;
1017 queue[0].reloc = p;
1018 queue[0].size = size;
1019 }
1020
1021 /* When an entry in the relocation queue is reused, the entry moves
1022 to the front of the queue. */
1023
1024 static void
1025 som_reloc_queue_fix (queue, index)
1026 struct reloc_queue *queue;
1027 unsigned int index;
1028 {
1029 if (index == 0)
1030 return;
1031
1032 if (index == 1)
1033 {
1034 unsigned char *tmp1 = queue[0].reloc;
1035 unsigned int tmp2 = queue[0].size;
1036 queue[0].reloc = queue[1].reloc;
1037 queue[0].size = queue[1].size;
1038 queue[1].reloc = tmp1;
1039 queue[1].size = tmp2;
1040 return;
1041 }
1042
1043 if (index == 2)
1044 {
1045 unsigned char *tmp1 = queue[0].reloc;
1046 unsigned int tmp2 = queue[0].size;
1047 queue[0].reloc = queue[2].reloc;
1048 queue[0].size = queue[2].size;
1049 queue[2].reloc = queue[1].reloc;
1050 queue[2].size = queue[1].size;
1051 queue[1].reloc = tmp1;
1052 queue[1].size = tmp2;
1053 return;
1054 }
1055
1056 if (index == 3)
1057 {
1058 unsigned char *tmp1 = queue[0].reloc;
1059 unsigned int tmp2 = queue[0].size;
1060 queue[0].reloc = queue[3].reloc;
1061 queue[0].size = queue[3].size;
1062 queue[3].reloc = queue[2].reloc;
1063 queue[3].size = queue[2].size;
1064 queue[2].reloc = queue[1].reloc;
1065 queue[2].size = queue[1].size;
1066 queue[1].reloc = tmp1;
1067 queue[1].size = tmp2;
1068 return;
1069 }
1070 abort();
1071 }
1072
1073 /* Search for a particular relocation in the relocation queue. */
1074
1075 static int
1076 som_reloc_queue_find (p, size, queue)
1077 unsigned char *p;
1078 unsigned int size;
1079 struct reloc_queue *queue;
1080 {
1081 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1082 && size == queue[0].size)
1083 return 0;
1084 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1085 && size == queue[1].size)
1086 return 1;
1087 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1088 && size == queue[2].size)
1089 return 2;
1090 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1091 && size == queue[3].size)
1092 return 3;
1093 return -1;
1094 }
1095
1096 static unsigned char *
1097 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1098 bfd *abfd;
1099 int *subspace_reloc_sizep;
1100 unsigned char *p;
1101 unsigned int size;
1102 struct reloc_queue *queue;
1103 {
1104 int queue_index = som_reloc_queue_find (p, size, queue);
1105
1106 if (queue_index != -1)
1107 {
1108 /* Found this in a previous fixup. Undo the fixup we
1109 just built and use R_PREV_FIXUP instead. We saved
1110 a total of size - 1 bytes in the fixup stream. */
1111 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1112 p += 1;
1113 *subspace_reloc_sizep += 1;
1114 som_reloc_queue_fix (queue, queue_index);
1115 }
1116 else
1117 {
1118 som_reloc_queue_insert (p, size, queue);
1119 *subspace_reloc_sizep += size;
1120 p += size;
1121 }
1122 return p;
1123 }
1124
1125 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1126 bytes without any relocation. Update the size of the subspace
1127 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1128 current pointer into the relocation stream. */
1129
1130 static unsigned char *
1131 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1132 bfd *abfd;
1133 unsigned int skip;
1134 unsigned char *p;
1135 unsigned int *subspace_reloc_sizep;
1136 struct reloc_queue *queue;
1137 {
1138 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1139 then R_PREV_FIXUPs to get the difference down to a
1140 reasonable size. */
1141 if (skip >= 0x1000000)
1142 {
1143 skip -= 0x1000000;
1144 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1145 bfd_put_8 (abfd, 0xff, p + 1);
1146 bfd_put_16 (abfd, 0xffff, p + 2);
1147 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1148 while (skip >= 0x1000000)
1149 {
1150 skip -= 0x1000000;
1151 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1152 p++;
1153 *subspace_reloc_sizep += 1;
1154 /* No need to adjust queue here since we are repeating the
1155 most recent fixup. */
1156 }
1157 }
1158
1159 /* The difference must be less than 0x1000000. Use one
1160 more R_NO_RELOCATION entry to get to the right difference. */
1161 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1162 {
1163 /* Difference can be handled in a simple single-byte
1164 R_NO_RELOCATION entry. */
1165 if (skip <= 0x60)
1166 {
1167 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1168 *subspace_reloc_sizep += 1;
1169 p++;
1170 }
1171 /* Handle it with a two byte R_NO_RELOCATION entry. */
1172 else if (skip <= 0x1000)
1173 {
1174 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1175 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1176 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1177 }
1178 /* Handle it with a three byte R_NO_RELOCATION entry. */
1179 else
1180 {
1181 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1182 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1183 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1184 }
1185 }
1186 /* Ugh. Punt and use a 4 byte entry. */
1187 else if (skip > 0)
1188 {
1189 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1190 bfd_put_8 (abfd, skip >> 16, p + 1);
1191 bfd_put_16 (abfd, skip, p + 2);
1192 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1193 }
1194 return p;
1195 }
1196
1197 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1198 from a BFD relocation. Update the size of the subspace relocation
1199 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1200 into the relocation stream. */
1201
1202 static unsigned char *
1203 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1204 bfd *abfd;
1205 int addend;
1206 unsigned char *p;
1207 unsigned int *subspace_reloc_sizep;
1208 struct reloc_queue *queue;
1209 {
1210 if ((unsigned)(addend) + 0x80 < 0x100)
1211 {
1212 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1213 bfd_put_8 (abfd, addend, p + 1);
1214 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1215 }
1216 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1217 {
1218 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1219 bfd_put_16 (abfd, addend, p + 1);
1220 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1221 }
1222 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1223 {
1224 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1225 bfd_put_8 (abfd, addend >> 16, p + 1);
1226 bfd_put_16 (abfd, addend, p + 2);
1227 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1228 }
1229 else
1230 {
1231 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1232 bfd_put_32 (abfd, addend, p + 1);
1233 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1234 }
1235 return p;
1236 }
1237
1238 /* Handle a single function call relocation. */
1239
1240 static unsigned char *
1241 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1242 bfd *abfd;
1243 unsigned char *p;
1244 unsigned int *subspace_reloc_sizep;
1245 arelent *bfd_reloc;
1246 int sym_num;
1247 struct reloc_queue *queue;
1248 {
1249 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1250 int rtn_bits = arg_bits & 0x3;
1251 int type, done = 0;
1252
1253 /* You'll never believe all this is necessary to handle relocations
1254 for function calls. Having to compute and pack the argument
1255 relocation bits is the real nightmare.
1256
1257 If you're interested in how this works, just forget it. You really
1258 do not want to know about this braindamage. */
1259
1260 /* First see if this can be done with a "simple" relocation. Simple
1261 relocations have a symbol number < 0x100 and have simple encodings
1262 of argument relocations. */
1263
1264 if (sym_num < 0x100)
1265 {
1266 switch (arg_bits)
1267 {
1268 case 0:
1269 case 1:
1270 type = 0;
1271 break;
1272 case 1 << 8:
1273 case 1 << 8 | 1:
1274 type = 1;
1275 break;
1276 case 1 << 8 | 1 << 6:
1277 case 1 << 8 | 1 << 6 | 1:
1278 type = 2;
1279 break;
1280 case 1 << 8 | 1 << 6 | 1 << 4:
1281 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1282 type = 3;
1283 break;
1284 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1285 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1286 type = 4;
1287 break;
1288 default:
1289 /* Not one of the easy encodings. This will have to be
1290 handled by the more complex code below. */
1291 type = -1;
1292 break;
1293 }
1294 if (type != -1)
1295 {
1296 /* Account for the return value too. */
1297 if (rtn_bits)
1298 type += 5;
1299
1300 /* Emit a 2 byte relocation. Then see if it can be handled
1301 with a relocation which is already in the relocation queue. */
1302 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1303 bfd_put_8 (abfd, sym_num, p + 1);
1304 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1305 done = 1;
1306 }
1307 }
1308
1309 /* If this could not be handled with a simple relocation, then do a hard
1310 one. Hard relocations occur if the symbol number was too high or if
1311 the encoding of argument relocation bits is too complex. */
1312 if (! done)
1313 {
1314 /* Don't ask about these magic sequences. I took them straight
1315 from gas-1.36 which took them from the a.out man page. */
1316 type = rtn_bits;
1317 if ((arg_bits >> 6 & 0xf) == 0xe)
1318 type += 9 * 40;
1319 else
1320 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1321 if ((arg_bits >> 2 & 0xf) == 0xe)
1322 type += 9 * 4;
1323 else
1324 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1325
1326 /* Output the first two bytes of the relocation. These describe
1327 the length of the relocation and encoding style. */
1328 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1329 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1330 p);
1331 bfd_put_8 (abfd, type, p + 1);
1332
1333 /* Now output the symbol index and see if this bizarre relocation
1334 just happened to be in the relocation queue. */
1335 if (sym_num < 0x100)
1336 {
1337 bfd_put_8 (abfd, sym_num, p + 2);
1338 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1339 }
1340 else
1341 {
1342 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1343 bfd_put_16 (abfd, sym_num, p + 3);
1344 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1345 }
1346 }
1347 return p;
1348 }
1349
1350
1351 /* Return the logarithm of X, base 2, considering X unsigned.
1352 Abort -1 if X is not a power or two or is zero. */
1353
1354 static int
1355 log2 (x)
1356 unsigned int x;
1357 {
1358 int log = 0;
1359
1360 /* Test for 0 or a power of 2. */
1361 if (x == 0 || x != (x & -x))
1362 return -1;
1363
1364 while ((x >>= 1) != 0)
1365 log++;
1366 return log;
1367 }
1368
1369 static bfd_reloc_status_type
1370 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1371 input_section, output_bfd, error_message)
1372 bfd *abfd;
1373 arelent *reloc_entry;
1374 asymbol *symbol_in;
1375 PTR data;
1376 asection *input_section;
1377 bfd *output_bfd;
1378 char **error_message;
1379 {
1380 if (output_bfd)
1381 {
1382 reloc_entry->address += input_section->output_offset;
1383 return bfd_reloc_ok;
1384 }
1385 return bfd_reloc_ok;
1386 }
1387
1388 /* Given a generic HPPA relocation type, the instruction format,
1389 and a field selector, return one or more appropriate SOM relocations. */
1390
1391 int **
1392 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1393 bfd *abfd;
1394 int base_type;
1395 int format;
1396 enum hppa_reloc_field_selector_type_alt field;
1397 {
1398 int *final_type, **final_types;
1399
1400 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1401 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1402 if (!final_types || !final_type)
1403 {
1404 bfd_set_error (bfd_error_no_memory);
1405 return NULL;
1406 }
1407
1408 /* The field selector may require additional relocations to be
1409 generated. It's impossible to know at this moment if additional
1410 relocations will be needed, so we make them. The code to actually
1411 write the relocation/fixup stream is responsible for removing
1412 any redundant relocations. */
1413 switch (field)
1414 {
1415 case e_fsel:
1416 case e_psel:
1417 case e_lpsel:
1418 case e_rpsel:
1419 final_types[0] = final_type;
1420 final_types[1] = NULL;
1421 final_types[2] = NULL;
1422 *final_type = base_type;
1423 break;
1424
1425 case e_tsel:
1426 case e_ltsel:
1427 case e_rtsel:
1428 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1429 if (!final_types[0])
1430 {
1431 bfd_set_error (bfd_error_no_memory);
1432 return NULL;
1433 }
1434 if (field == e_tsel)
1435 *final_types[0] = R_FSEL;
1436 else if (field == e_ltsel)
1437 *final_types[0] = R_LSEL;
1438 else
1439 *final_types[0] = R_RSEL;
1440 final_types[1] = final_type;
1441 final_types[2] = NULL;
1442 *final_type = base_type;
1443 break;
1444
1445 case e_lssel:
1446 case e_rssel:
1447 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1448 if (!final_types[0])
1449 {
1450 bfd_set_error (bfd_error_no_memory);
1451 return NULL;
1452 }
1453 *final_types[0] = R_S_MODE;
1454 final_types[1] = final_type;
1455 final_types[2] = NULL;
1456 *final_type = base_type;
1457 break;
1458
1459 case e_lsel:
1460 case e_rsel:
1461 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1462 if (!final_types[0])
1463 {
1464 bfd_set_error (bfd_error_no_memory);
1465 return NULL;
1466 }
1467 *final_types[0] = R_N_MODE;
1468 final_types[1] = final_type;
1469 final_types[2] = NULL;
1470 *final_type = base_type;
1471 break;
1472
1473 case e_ldsel:
1474 case e_rdsel:
1475 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1476 if (!final_types[0])
1477 {
1478 bfd_set_error (bfd_error_no_memory);
1479 return NULL;
1480 }
1481 *final_types[0] = R_D_MODE;
1482 final_types[1] = final_type;
1483 final_types[2] = NULL;
1484 *final_type = base_type;
1485 break;
1486
1487 case e_lrsel:
1488 case e_rrsel:
1489 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1490 if (!final_types[0])
1491 {
1492 bfd_set_error (bfd_error_no_memory);
1493 return NULL;
1494 }
1495 *final_types[0] = R_R_MODE;
1496 final_types[1] = final_type;
1497 final_types[2] = NULL;
1498 *final_type = base_type;
1499 break;
1500 }
1501
1502 switch (base_type)
1503 {
1504 case R_HPPA:
1505 /* PLABELs get their own relocation type. */
1506 if (field == e_psel
1507 || field == e_lpsel
1508 || field == e_rpsel)
1509 {
1510 /* A PLABEL relocation that has a size of 32 bits must
1511 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1512 if (format == 32)
1513 *final_type = R_DATA_PLABEL;
1514 else
1515 *final_type = R_CODE_PLABEL;
1516 }
1517 /* PIC stuff. */
1518 else if (field == e_tsel
1519 || field == e_ltsel
1520 || field == e_rtsel)
1521 *final_type = R_DLT_REL;
1522 /* A relocation in the data space is always a full 32bits. */
1523 else if (format == 32)
1524 *final_type = R_DATA_ONE_SYMBOL;
1525
1526 break;
1527
1528 case R_HPPA_GOTOFF:
1529 /* More PLABEL special cases. */
1530 if (field == e_psel
1531 || field == e_lpsel
1532 || field == e_rpsel)
1533 *final_type = R_DATA_PLABEL;
1534 break;
1535
1536 case R_HPPA_NONE:
1537 case R_HPPA_ABS_CALL:
1538 case R_HPPA_PCREL_CALL:
1539 /* Right now we can default all these. */
1540 break;
1541 }
1542 return final_types;
1543 }
1544
1545 /* Return the address of the correct entry in the PA SOM relocation
1546 howto table. */
1547
1548 /*ARGSUSED*/
1549 static const reloc_howto_type *
1550 som_bfd_reloc_type_lookup (abfd, code)
1551 bfd *abfd;
1552 bfd_reloc_code_real_type code;
1553 {
1554 if ((int) code < (int) R_NO_RELOCATION + 255)
1555 {
1556 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1557 return &som_hppa_howto_table[(int) code];
1558 }
1559
1560 return (reloc_howto_type *) 0;
1561 }
1562
1563 /* Perform some initialization for an object. Save results of this
1564 initialization in the BFD. */
1565
1566 static const bfd_target *
1567 som_object_setup (abfd, file_hdrp, aux_hdrp)
1568 bfd *abfd;
1569 struct header *file_hdrp;
1570 struct som_exec_auxhdr *aux_hdrp;
1571 {
1572 /* som_mkobject will set bfd_error if som_mkobject fails. */
1573 if (som_mkobject (abfd) != true)
1574 return 0;
1575
1576 /* Set BFD flags based on what information is available in the SOM. */
1577 abfd->flags = NO_FLAGS;
1578 if (file_hdrp->symbol_total)
1579 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1580
1581 switch (file_hdrp->a_magic)
1582 {
1583 case DEMAND_MAGIC:
1584 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1585 break;
1586 case SHARE_MAGIC:
1587 abfd->flags |= (WP_TEXT | EXEC_P);
1588 break;
1589 case EXEC_MAGIC:
1590 abfd->flags |= (EXEC_P);
1591 break;
1592 case RELOC_MAGIC:
1593 abfd->flags |= HAS_RELOC;
1594 break;
1595 #ifdef SHL_MAGIC
1596 case SHL_MAGIC:
1597 #endif
1598 #ifdef DL_MAGIC
1599 case DL_MAGIC:
1600 #endif
1601 abfd->flags |= DYNAMIC;
1602 break;
1603
1604 default:
1605 break;
1606 }
1607
1608 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1609 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1610 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1611
1612 /* Initialize the saved symbol table and string table to NULL.
1613 Save important offsets and sizes from the SOM header into
1614 the BFD. */
1615 obj_som_stringtab (abfd) = (char *) NULL;
1616 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1617 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1618 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1619 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1620 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1621
1622 obj_som_exec_data (abfd) = (struct som_exec_data *)
1623 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1624 if (obj_som_exec_data (abfd) == NULL)
1625 {
1626 bfd_set_error (bfd_error_no_memory);
1627 return NULL;
1628 }
1629
1630 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1631 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1632 return abfd->xvec;
1633 }
1634
1635 /* Convert all of the space and subspace info into BFD sections. Each space
1636 contains a number of subspaces, which in turn describe the mapping between
1637 regions of the exec file, and the address space that the program runs in.
1638 BFD sections which correspond to spaces will overlap the sections for the
1639 associated subspaces. */
1640
1641 static boolean
1642 setup_sections (abfd, file_hdr)
1643 bfd *abfd;
1644 struct header *file_hdr;
1645 {
1646 char *space_strings;
1647 int space_index;
1648 unsigned int total_subspaces = 0;
1649
1650 /* First, read in space names */
1651
1652 space_strings = malloc (file_hdr->space_strings_size);
1653 if (!space_strings && file_hdr->space_strings_size != 0)
1654 {
1655 bfd_set_error (bfd_error_no_memory);
1656 goto error_return;
1657 }
1658
1659 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1660 goto error_return;
1661 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1662 != file_hdr->space_strings_size)
1663 goto error_return;
1664
1665 /* Loop over all of the space dictionaries, building up sections */
1666 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1667 {
1668 struct space_dictionary_record space;
1669 struct subspace_dictionary_record subspace, save_subspace;
1670 int subspace_index;
1671 asection *space_asect;
1672 char *newname;
1673
1674 /* Read the space dictionary element */
1675 if (bfd_seek (abfd, file_hdr->space_location
1676 + space_index * sizeof space, SEEK_SET) < 0)
1677 goto error_return;
1678 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1679 goto error_return;
1680
1681 /* Setup the space name string */
1682 space.name.n_name = space.name.n_strx + space_strings;
1683
1684 /* Make a section out of it */
1685 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1686 if (!newname)
1687 goto error_return;
1688 strcpy (newname, space.name.n_name);
1689
1690 space_asect = bfd_make_section_anyway (abfd, newname);
1691 if (!space_asect)
1692 goto error_return;
1693
1694 if (space.is_loadable == 0)
1695 space_asect->flags |= SEC_DEBUGGING;
1696
1697 /* Set up all the attributes for the space. */
1698 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1699 space.is_private, space.sort_key,
1700 space.space_number) == false)
1701 goto error_return;
1702
1703 /* Now, read in the first subspace for this space */
1704 if (bfd_seek (abfd, file_hdr->subspace_location
1705 + space.subspace_index * sizeof subspace,
1706 SEEK_SET) < 0)
1707 goto error_return;
1708 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1709 goto error_return;
1710 /* Seek back to the start of the subspaces for loop below */
1711 if (bfd_seek (abfd, file_hdr->subspace_location
1712 + space.subspace_index * sizeof subspace,
1713 SEEK_SET) < 0)
1714 goto error_return;
1715
1716 /* Setup the start address and file loc from the first subspace record */
1717 space_asect->vma = subspace.subspace_start;
1718 space_asect->filepos = subspace.file_loc_init_value;
1719 space_asect->alignment_power = log2 (subspace.alignment);
1720 if (space_asect->alignment_power == -1)
1721 goto error_return;
1722
1723 /* Initialize save_subspace so we can reliably determine if this
1724 loop placed any useful values into it. */
1725 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1726
1727 /* Loop over the rest of the subspaces, building up more sections */
1728 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1729 subspace_index++)
1730 {
1731 asection *subspace_asect;
1732
1733 /* Read in the next subspace */
1734 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1735 != sizeof subspace)
1736 goto error_return;
1737
1738 /* Setup the subspace name string */
1739 subspace.name.n_name = subspace.name.n_strx + space_strings;
1740
1741 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1742 if (!newname)
1743 goto error_return;
1744 strcpy (newname, subspace.name.n_name);
1745
1746 /* Make a section out of this subspace */
1747 subspace_asect = bfd_make_section_anyway (abfd, newname);
1748 if (!subspace_asect)
1749 goto error_return;
1750
1751 /* Store private information about the section. */
1752 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1753 subspace.access_control_bits,
1754 subspace.sort_key,
1755 subspace.quadrant) == false)
1756 goto error_return;
1757
1758 /* Keep an easy mapping between subspaces and sections. */
1759 subspace_asect->target_index = total_subspaces++;
1760
1761 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1762 by the access_control_bits in the subspace header. */
1763 switch (subspace.access_control_bits >> 4)
1764 {
1765 /* Readonly data. */
1766 case 0x0:
1767 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1768 break;
1769
1770 /* Normal data. */
1771 case 0x1:
1772 subspace_asect->flags |= SEC_DATA;
1773 break;
1774
1775 /* Readonly code and the gateways.
1776 Gateways have other attributes which do not map
1777 into anything BFD knows about. */
1778 case 0x2:
1779 case 0x4:
1780 case 0x5:
1781 case 0x6:
1782 case 0x7:
1783 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1784 break;
1785
1786 /* dynamic (writable) code. */
1787 case 0x3:
1788 subspace_asect->flags |= SEC_CODE;
1789 break;
1790 }
1791
1792 if (subspace.dup_common || subspace.is_common)
1793 subspace_asect->flags |= SEC_IS_COMMON;
1794 else if (subspace.subspace_length > 0)
1795 subspace_asect->flags |= SEC_HAS_CONTENTS;
1796
1797 if (subspace.is_loadable)
1798 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1799 else
1800 subspace_asect->flags |= SEC_DEBUGGING;
1801
1802 if (subspace.code_only)
1803 subspace_asect->flags |= SEC_CODE;
1804
1805 /* Both file_loc_init_value and initialization_length will
1806 be zero for a BSS like subspace. */
1807 if (subspace.file_loc_init_value == 0
1808 && subspace.initialization_length == 0)
1809 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1810
1811 /* This subspace has relocations.
1812 The fixup_request_quantity is a byte count for the number of
1813 entries in the relocation stream; it is not the actual number
1814 of relocations in the subspace. */
1815 if (subspace.fixup_request_quantity != 0)
1816 {
1817 subspace_asect->flags |= SEC_RELOC;
1818 subspace_asect->rel_filepos = subspace.fixup_request_index;
1819 som_section_data (subspace_asect)->reloc_size
1820 = subspace.fixup_request_quantity;
1821 /* We can not determine this yet. When we read in the
1822 relocation table the correct value will be filled in. */
1823 subspace_asect->reloc_count = -1;
1824 }
1825
1826 /* Update save_subspace if appropriate. */
1827 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1828 save_subspace = subspace;
1829
1830 subspace_asect->vma = subspace.subspace_start;
1831 subspace_asect->_cooked_size = subspace.subspace_length;
1832 subspace_asect->_raw_size = subspace.subspace_length;
1833 subspace_asect->filepos = subspace.file_loc_init_value;
1834 subspace_asect->alignment_power = log2 (subspace.alignment);
1835 if (subspace_asect->alignment_power == -1)
1836 goto error_return;
1837 }
1838
1839 /* Yow! there is no subspace within the space which actually
1840 has initialized information in it; this should never happen
1841 as far as I know. */
1842 if (!save_subspace.file_loc_init_value)
1843 goto error_return;
1844
1845 /* Setup the sizes for the space section based upon the info in the
1846 last subspace of the space. */
1847 space_asect->_cooked_size = save_subspace.subspace_start
1848 - space_asect->vma + save_subspace.subspace_length;
1849 space_asect->_raw_size = save_subspace.file_loc_init_value
1850 - space_asect->filepos + save_subspace.initialization_length;
1851 }
1852 if (space_strings != NULL)
1853 free (space_strings);
1854 return true;
1855
1856 error_return:
1857 if (space_strings != NULL)
1858 free (space_strings);
1859 return false;
1860 }
1861
1862 /* Read in a SOM object and make it into a BFD. */
1863
1864 static const bfd_target *
1865 som_object_p (abfd)
1866 bfd *abfd;
1867 {
1868 struct header file_hdr;
1869 struct som_exec_auxhdr aux_hdr;
1870
1871 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1872 {
1873 if (bfd_get_error () != bfd_error_system_call)
1874 bfd_set_error (bfd_error_wrong_format);
1875 return 0;
1876 }
1877
1878 if (!_PA_RISC_ID (file_hdr.system_id))
1879 {
1880 bfd_set_error (bfd_error_wrong_format);
1881 return 0;
1882 }
1883
1884 switch (file_hdr.a_magic)
1885 {
1886 case RELOC_MAGIC:
1887 case EXEC_MAGIC:
1888 case SHARE_MAGIC:
1889 case DEMAND_MAGIC:
1890 #ifdef DL_MAGIC
1891 case DL_MAGIC:
1892 #endif
1893 #ifdef SHL_MAGIC
1894 case SHL_MAGIC:
1895 #endif
1896 #ifdef EXECLIBMAGIC
1897 case EXECLIBMAGIC:
1898 #endif
1899 #ifdef SHARED_MAGIC_CNX
1900 case SHARED_MAGIC_CNX:
1901 #endif
1902 break;
1903 default:
1904 bfd_set_error (bfd_error_wrong_format);
1905 return 0;
1906 }
1907
1908 if (file_hdr.version_id != VERSION_ID
1909 && file_hdr.version_id != NEW_VERSION_ID)
1910 {
1911 bfd_set_error (bfd_error_wrong_format);
1912 return 0;
1913 }
1914
1915 /* If the aux_header_size field in the file header is zero, then this
1916 object is an incomplete executable (a .o file). Do not try to read
1917 a non-existant auxiliary header. */
1918 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1919 if (file_hdr.aux_header_size != 0)
1920 {
1921 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1922 {
1923 if (bfd_get_error () != bfd_error_system_call)
1924 bfd_set_error (bfd_error_wrong_format);
1925 return 0;
1926 }
1927 }
1928
1929 if (!setup_sections (abfd, &file_hdr))
1930 {
1931 /* setup_sections does not bubble up a bfd error code. */
1932 bfd_set_error (bfd_error_bad_value);
1933 return 0;
1934 }
1935
1936 /* This appears to be a valid SOM object. Do some initialization. */
1937 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1938 }
1939
1940 /* Create a SOM object. */
1941
1942 static boolean
1943 som_mkobject (abfd)
1944 bfd *abfd;
1945 {
1946 /* Allocate memory to hold backend information. */
1947 abfd->tdata.som_data = (struct som_data_struct *)
1948 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1949 if (abfd->tdata.som_data == NULL)
1950 {
1951 bfd_set_error (bfd_error_no_memory);
1952 return false;
1953 }
1954 return true;
1955 }
1956
1957 /* Initialize some information in the file header. This routine makes
1958 not attempt at doing the right thing for a full executable; it
1959 is only meant to handle relocatable objects. */
1960
1961 static boolean
1962 som_prep_headers (abfd)
1963 bfd *abfd;
1964 {
1965 struct header *file_hdr;
1966 asection *section;
1967
1968 /* Make and attach a file header to the BFD. */
1969 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1970 if (file_hdr == NULL)
1971
1972 {
1973 bfd_set_error (bfd_error_no_memory);
1974 return false;
1975 }
1976 obj_som_file_hdr (abfd) = file_hdr;
1977
1978 if (abfd->flags & (EXEC_P | DYNAMIC))
1979 {
1980 if (abfd->flags & D_PAGED)
1981 file_hdr->a_magic = DEMAND_MAGIC;
1982 else if (abfd->flags & WP_TEXT)
1983 file_hdr->a_magic = SHARE_MAGIC;
1984 #ifdef SHL_MAGIC
1985 else if (abfd->flags & DYNAMIC)
1986 file_hdr->a_magic = SHL_MAGIC;
1987 #endif
1988 else
1989 file_hdr->a_magic = EXEC_MAGIC;
1990 }
1991 else
1992 file_hdr->a_magic = RELOC_MAGIC;
1993
1994 /* Only new format SOM is supported. */
1995 file_hdr->version_id = NEW_VERSION_ID;
1996
1997 /* These fields are optional, and embedding timestamps is not always
1998 a wise thing to do, it makes comparing objects during a multi-stage
1999 bootstrap difficult. */
2000 file_hdr->file_time.secs = 0;
2001 file_hdr->file_time.nanosecs = 0;
2002
2003 file_hdr->entry_space = 0;
2004 file_hdr->entry_subspace = 0;
2005 file_hdr->entry_offset = 0;
2006 file_hdr->presumed_dp = 0;
2007
2008 /* Now iterate over the sections translating information from
2009 BFD sections to SOM spaces/subspaces. */
2010
2011 for (section = abfd->sections; section != NULL; section = section->next)
2012 {
2013 /* Ignore anything which has not been marked as a space or
2014 subspace. */
2015 if (!som_is_space (section) && !som_is_subspace (section))
2016 continue;
2017
2018 if (som_is_space (section))
2019 {
2020 /* Allocate space for the space dictionary. */
2021 som_section_data (section)->space_dict
2022 = (struct space_dictionary_record *)
2023 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2024 if (som_section_data (section)->space_dict == NULL)
2025 {
2026 bfd_set_error (bfd_error_no_memory);
2027 return false;
2028 }
2029 /* Set space attributes. Note most attributes of SOM spaces
2030 are set based on the subspaces it contains. */
2031 som_section_data (section)->space_dict->loader_fix_index = -1;
2032 som_section_data (section)->space_dict->init_pointer_index = -1;
2033
2034 /* Set more attributes that were stuffed away in private data. */
2035 som_section_data (section)->space_dict->sort_key =
2036 som_section_data (section)->copy_data->sort_key;
2037 som_section_data (section)->space_dict->is_defined =
2038 som_section_data (section)->copy_data->is_defined;
2039 som_section_data (section)->space_dict->is_private =
2040 som_section_data (section)->copy_data->is_private;
2041 som_section_data (section)->space_dict->space_number =
2042 som_section_data (section)->copy_data->space_number;
2043 }
2044 else
2045 {
2046 /* Allocate space for the subspace dictionary. */
2047 som_section_data (section)->subspace_dict
2048 = (struct subspace_dictionary_record *)
2049 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2050 if (som_section_data (section)->subspace_dict == NULL)
2051 {
2052 bfd_set_error (bfd_error_no_memory);
2053 return false;
2054 }
2055
2056 /* Set subspace attributes. Basic stuff is done here, additional
2057 attributes are filled in later as more information becomes
2058 available. */
2059 if (section->flags & SEC_IS_COMMON)
2060 {
2061 som_section_data (section)->subspace_dict->dup_common = 1;
2062 som_section_data (section)->subspace_dict->is_common = 1;
2063 }
2064
2065 if (section->flags & SEC_ALLOC)
2066 som_section_data (section)->subspace_dict->is_loadable = 1;
2067
2068 if (section->flags & SEC_CODE)
2069 som_section_data (section)->subspace_dict->code_only = 1;
2070
2071 som_section_data (section)->subspace_dict->subspace_start =
2072 section->vma;
2073 som_section_data (section)->subspace_dict->subspace_length =
2074 bfd_section_size (abfd, section);
2075 som_section_data (section)->subspace_dict->initialization_length =
2076 bfd_section_size (abfd, section);
2077 som_section_data (section)->subspace_dict->alignment =
2078 1 << section->alignment_power;
2079
2080 /* Set more attributes that were stuffed away in private data. */
2081 som_section_data (section)->subspace_dict->sort_key =
2082 som_section_data (section)->copy_data->sort_key;
2083 som_section_data (section)->subspace_dict->access_control_bits =
2084 som_section_data (section)->copy_data->access_control_bits;
2085 som_section_data (section)->subspace_dict->quadrant =
2086 som_section_data (section)->copy_data->quadrant;
2087 }
2088 }
2089 return true;
2090 }
2091
2092 /* Return true if the given section is a SOM space, false otherwise. */
2093
2094 static boolean
2095 som_is_space (section)
2096 asection *section;
2097 {
2098 /* If no copy data is available, then it's neither a space nor a
2099 subspace. */
2100 if (som_section_data (section)->copy_data == NULL)
2101 return false;
2102
2103 /* If the containing space isn't the same as the given section,
2104 then this isn't a space. */
2105 if (som_section_data (section)->copy_data->container != section)
2106 return false;
2107
2108 /* OK. Must be a space. */
2109 return true;
2110 }
2111
2112 /* Return true if the given section is a SOM subspace, false otherwise. */
2113
2114 static boolean
2115 som_is_subspace (section)
2116 asection *section;
2117 {
2118 /* If no copy data is available, then it's neither a space nor a
2119 subspace. */
2120 if (som_section_data (section)->copy_data == NULL)
2121 return false;
2122
2123 /* If the containing space is the same as the given section,
2124 then this isn't a subspace. */
2125 if (som_section_data (section)->copy_data->container == section)
2126 return false;
2127
2128 /* OK. Must be a subspace. */
2129 return true;
2130 }
2131
2132 /* Return true if the given space containins the given subspace. It
2133 is safe to assume space really is a space, and subspace really
2134 is a subspace. */
2135
2136 static boolean
2137 som_is_container (space, subspace)
2138 asection *space, *subspace;
2139 {
2140 return som_section_data (subspace)->copy_data->container == space;
2141 }
2142
2143 /* Count and return the number of spaces attached to the given BFD. */
2144
2145 static unsigned long
2146 som_count_spaces (abfd)
2147 bfd *abfd;
2148 {
2149 int count = 0;
2150 asection *section;
2151
2152 for (section = abfd->sections; section != NULL; section = section->next)
2153 count += som_is_space (section);
2154
2155 return count;
2156 }
2157
2158 /* Count the number of subspaces attached to the given BFD. */
2159
2160 static unsigned long
2161 som_count_subspaces (abfd)
2162 bfd *abfd;
2163 {
2164 int count = 0;
2165 asection *section;
2166
2167 for (section = abfd->sections; section != NULL; section = section->next)
2168 count += som_is_subspace (section);
2169
2170 return count;
2171 }
2172
2173 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2174
2175 We desire symbols to be ordered starting with the symbol with the
2176 highest relocation count down to the symbol with the lowest relocation
2177 count. Doing so compacts the relocation stream. */
2178
2179 static int
2180 compare_syms (arg1, arg2)
2181 const PTR arg1;
2182 const PTR arg2;
2183
2184 {
2185 asymbol **sym1 = (asymbol **) arg1;
2186 asymbol **sym2 = (asymbol **) arg2;
2187 unsigned int count1, count2;
2188
2189 /* Get relocation count for each symbol. Note that the count
2190 is stored in the udata pointer for section symbols! */
2191 if ((*sym1)->flags & BSF_SECTION_SYM)
2192 count1 = (int)(*sym1)->udata;
2193 else
2194 count1 = som_symbol_data (*sym1)->reloc_count;
2195
2196 if ((*sym2)->flags & BSF_SECTION_SYM)
2197 count2 = (int)(*sym2)->udata;
2198 else
2199 count2 = som_symbol_data (*sym2)->reloc_count;
2200
2201 /* Return the appropriate value. */
2202 if (count1 < count2)
2203 return 1;
2204 else if (count1 > count2)
2205 return -1;
2206 return 0;
2207 }
2208
2209 /* Perform various work in preparation for emitting the fixup stream. */
2210
2211 static void
2212 som_prep_for_fixups (abfd, syms, num_syms)
2213 bfd *abfd;
2214 asymbol **syms;
2215 unsigned long num_syms;
2216 {
2217 int i;
2218 asection *section;
2219
2220 /* Most SOM relocations involving a symbol have a length which is
2221 dependent on the index of the symbol. So symbols which are
2222 used often in relocations should have a small index. */
2223
2224 /* First initialize the counters for each symbol. */
2225 for (i = 0; i < num_syms; i++)
2226 {
2227 /* Handle a section symbol; these have no pointers back to the
2228 SOM symbol info. So we just use the pointer field (udata)
2229 to hold the relocation count. */
2230 if (som_symbol_data (syms[i]) == NULL
2231 || syms[i]->flags & BSF_SECTION_SYM)
2232 {
2233 syms[i]->flags |= BSF_SECTION_SYM;
2234 syms[i]->udata = (PTR) 0;
2235 }
2236 else
2237 som_symbol_data (syms[i])->reloc_count = 0;
2238 }
2239
2240 /* Now that the counters are initialized, make a weighted count
2241 of how often a given symbol is used in a relocation. */
2242 for (section = abfd->sections; section != NULL; section = section->next)
2243 {
2244 int i;
2245
2246 /* Does this section have any relocations? */
2247 if (section->reloc_count <= 0)
2248 continue;
2249
2250 /* Walk through each relocation for this section. */
2251 for (i = 1; i < section->reloc_count; i++)
2252 {
2253 arelent *reloc = section->orelocation[i];
2254 int scale;
2255
2256 /* A relocation against a symbol in the *ABS* section really
2257 does not have a symbol. Likewise if the symbol isn't associated
2258 with any section. */
2259 if (reloc->sym_ptr_ptr == NULL
2260 || (*reloc->sym_ptr_ptr)->section == &bfd_abs_section)
2261 continue;
2262
2263 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2264 and R_CODE_ONE_SYMBOL relocations to come first. These
2265 two relocations have single byte versions if the symbol
2266 index is very small. */
2267 if (reloc->howto->type == R_DP_RELATIVE
2268 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2269 scale = 2;
2270 else
2271 scale = 1;
2272
2273 /* Handle section symbols by ramming the count in the udata
2274 field. It will not be used and the count is very important
2275 for these symbols. */
2276 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2277 {
2278 (*reloc->sym_ptr_ptr)->udata =
2279 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2280 continue;
2281 }
2282
2283 /* A normal symbol. Increment the count. */
2284 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2285 }
2286 }
2287
2288 /* Now sort the symbols. */
2289 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2290
2291 /* Compute the symbol indexes, they will be needed by the relocation
2292 code. */
2293 for (i = 0; i < num_syms; i++)
2294 {
2295 /* A section symbol. Again, there is no pointer to backend symbol
2296 information, so we reuse (abuse) the udata field again. */
2297 if (syms[i]->flags & BSF_SECTION_SYM)
2298 syms[i]->udata = (PTR) i;
2299 else
2300 som_symbol_data (syms[i])->index = i;
2301 }
2302 }
2303
2304 static boolean
2305 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2306 bfd *abfd;
2307 unsigned long current_offset;
2308 unsigned int *total_reloc_sizep;
2309 {
2310 unsigned int i, j;
2311 /* Chunk of memory that we can use as buffer space, then throw
2312 away. */
2313 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2314 unsigned char *p;
2315 unsigned int total_reloc_size = 0;
2316 unsigned int subspace_reloc_size = 0;
2317 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2318 asection *section = abfd->sections;
2319
2320 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2321 p = tmp_space;
2322
2323 /* All the fixups for a particular subspace are emitted in a single
2324 stream. All the subspaces for a particular space are emitted
2325 as a single stream.
2326
2327 So, to get all the locations correct one must iterate through all the
2328 spaces, for each space iterate through its subspaces and output a
2329 fixups stream. */
2330 for (i = 0; i < num_spaces; i++)
2331 {
2332 asection *subsection;
2333
2334 /* Find a space. */
2335 while (!som_is_space (section))
2336 section = section->next;
2337
2338 /* Now iterate through each of its subspaces. */
2339 for (subsection = abfd->sections;
2340 subsection != NULL;
2341 subsection = subsection->next)
2342 {
2343 int reloc_offset, current_rounding_mode;
2344
2345 /* Find a subspace of this space. */
2346 if (!som_is_subspace (subsection)
2347 || !som_is_container (section, subsection))
2348 continue;
2349
2350 /* If this subspace does not have real data, then we are
2351 finised with it. */
2352 if ((subsection->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0)
2353 {
2354 som_section_data (subsection)->subspace_dict->fixup_request_index
2355 = -1;
2356 continue;
2357 }
2358
2359 /* This subspace has some relocations. Put the relocation stream
2360 index into the subspace record. */
2361 som_section_data (subsection)->subspace_dict->fixup_request_index
2362 = total_reloc_size;
2363
2364 /* To make life easier start over with a clean slate for
2365 each subspace. Seek to the start of the relocation stream
2366 for this subspace in preparation for writing out its fixup
2367 stream. */
2368 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2369 return false;
2370
2371 /* Buffer space has already been allocated. Just perform some
2372 initialization here. */
2373 p = tmp_space;
2374 subspace_reloc_size = 0;
2375 reloc_offset = 0;
2376 som_initialize_reloc_queue (reloc_queue);
2377 current_rounding_mode = R_N_MODE;
2378
2379 /* Translate each BFD relocation into one or more SOM
2380 relocations. */
2381 for (j = 0; j < subsection->reloc_count; j++)
2382 {
2383 arelent *bfd_reloc = subsection->orelocation[j];
2384 unsigned int skip;
2385 int sym_num;
2386
2387 /* Get the symbol number. Remember it's stored in a
2388 special place for section symbols. */
2389 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2390 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2391 else
2392 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2393
2394 /* If there is not enough room for the next couple relocations,
2395 then dump the current buffer contents now. Also reinitialize
2396 the relocation queue.
2397
2398 No single BFD relocation could ever translate into more
2399 than 100 bytes of SOM relocations (20bytes is probably the
2400 upper limit, but leave lots of space for growth). */
2401 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2402 {
2403 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2404 != p - tmp_space)
2405 return false;
2406
2407 p = tmp_space;
2408 som_initialize_reloc_queue (reloc_queue);
2409 }
2410
2411 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2412 skipped. */
2413 skip = bfd_reloc->address - reloc_offset;
2414 p = som_reloc_skip (abfd, skip, p,
2415 &subspace_reloc_size, reloc_queue);
2416
2417 /* Update reloc_offset for the next iteration.
2418
2419 Many relocations do not consume input bytes. They
2420 are markers, or set state necessary to perform some
2421 later relocation. */
2422 switch (bfd_reloc->howto->type)
2423 {
2424 /* This only needs to handle relocations that may be
2425 made by hppa_som_gen_reloc. */
2426 case R_ENTRY:
2427 case R_EXIT:
2428 case R_N_MODE:
2429 case R_S_MODE:
2430 case R_D_MODE:
2431 case R_R_MODE:
2432 case R_FSEL:
2433 case R_LSEL:
2434 case R_RSEL:
2435 reloc_offset = bfd_reloc->address;
2436 break;
2437
2438 default:
2439 reloc_offset = bfd_reloc->address + 4;
2440 break;
2441 }
2442
2443 /* Now the actual relocation we care about. */
2444 switch (bfd_reloc->howto->type)
2445 {
2446 case R_PCREL_CALL:
2447 case R_ABS_CALL:
2448 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2449 bfd_reloc, sym_num, reloc_queue);
2450 break;
2451
2452 case R_CODE_ONE_SYMBOL:
2453 case R_DP_RELATIVE:
2454 /* Account for any addend. */
2455 if (bfd_reloc->addend)
2456 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2457 &subspace_reloc_size, reloc_queue);
2458
2459 if (sym_num < 0x20)
2460 {
2461 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2462 subspace_reloc_size += 1;
2463 p += 1;
2464 }
2465 else if (sym_num < 0x100)
2466 {
2467 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2468 bfd_put_8 (abfd, sym_num, p + 1);
2469 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2470 2, reloc_queue);
2471 }
2472 else if (sym_num < 0x10000000)
2473 {
2474 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2475 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2476 bfd_put_16 (abfd, sym_num, p + 2);
2477 p = try_prev_fixup (abfd, &subspace_reloc_size,
2478 p, 4, reloc_queue);
2479 }
2480 else
2481 abort ();
2482 break;
2483
2484 case R_DATA_ONE_SYMBOL:
2485 case R_DATA_PLABEL:
2486 case R_CODE_PLABEL:
2487 case R_DLT_REL:
2488 /* Account for any addend. */
2489 if (bfd_reloc->addend)
2490 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2491 &subspace_reloc_size, reloc_queue);
2492
2493 if (sym_num < 0x100)
2494 {
2495 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2496 bfd_put_8 (abfd, sym_num, p + 1);
2497 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2498 2, reloc_queue);
2499 }
2500 else if (sym_num < 0x10000000)
2501 {
2502 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2503 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2504 bfd_put_16 (abfd, sym_num, p + 2);
2505 p = try_prev_fixup (abfd, &subspace_reloc_size,
2506 p, 4, reloc_queue);
2507 }
2508 else
2509 abort ();
2510 break;
2511
2512 case R_ENTRY:
2513 {
2514 int *descp
2515 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2516 bfd_put_8 (abfd, R_ENTRY, p);
2517 bfd_put_32 (abfd, descp[0], p + 1);
2518 bfd_put_32 (abfd, descp[1], p + 5);
2519 p = try_prev_fixup (abfd, &subspace_reloc_size,
2520 p, 9, reloc_queue);
2521 break;
2522 }
2523
2524 case R_EXIT:
2525 bfd_put_8 (abfd, R_EXIT, p);
2526 subspace_reloc_size += 1;
2527 p += 1;
2528 break;
2529
2530 case R_N_MODE:
2531 case R_S_MODE:
2532 case R_D_MODE:
2533 case R_R_MODE:
2534 /* If this relocation requests the current rounding
2535 mode, then it is redundant. */
2536 if (bfd_reloc->howto->type != current_rounding_mode)
2537 {
2538 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2539 subspace_reloc_size += 1;
2540 p += 1;
2541 current_rounding_mode = bfd_reloc->howto->type;
2542 }
2543 break;
2544
2545 case R_FSEL:
2546 case R_LSEL:
2547 case R_RSEL:
2548 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2549 subspace_reloc_size += 1;
2550 p += 1;
2551 break;
2552
2553 /* Put a "R_RESERVED" relocation in the stream if
2554 we hit something we do not understand. The linker
2555 will complain loudly if this ever happens. */
2556 default:
2557 bfd_put_8 (abfd, 0xff, p);
2558 subspace_reloc_size += 1;
2559 p += 1;
2560 break;
2561 }
2562 }
2563
2564 /* Last BFD relocation for a subspace has been processed.
2565 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2566 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2567 - reloc_offset,
2568 p, &subspace_reloc_size, reloc_queue);
2569
2570 /* Scribble out the relocations. */
2571 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2572 != p - tmp_space)
2573 return false;
2574 p = tmp_space;
2575
2576 total_reloc_size += subspace_reloc_size;
2577 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2578 = subspace_reloc_size;
2579 }
2580 section = section->next;
2581 }
2582 *total_reloc_sizep = total_reloc_size;
2583 return true;
2584 }
2585
2586 /* Write out the space/subspace string table. */
2587
2588 static boolean
2589 som_write_space_strings (abfd, current_offset, string_sizep)
2590 bfd *abfd;
2591 unsigned long current_offset;
2592 unsigned int *string_sizep;
2593 {
2594 /* Chunk of memory that we can use as buffer space, then throw
2595 away. */
2596 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2597 unsigned char *p;
2598 unsigned int strings_size = 0;
2599 asection *section;
2600
2601 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2602 p = tmp_space;
2603
2604 /* Seek to the start of the space strings in preparation for writing
2605 them out. */
2606 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2607 return false;
2608
2609 /* Walk through all the spaces and subspaces (order is not important)
2610 building up and writing string table entries for their names. */
2611 for (section = abfd->sections; section != NULL; section = section->next)
2612 {
2613 int length;
2614
2615 /* Only work with space/subspaces; avoid any other sections
2616 which might have been made (.text for example). */
2617 if (!som_is_space (section) && !som_is_subspace (section))
2618 continue;
2619
2620 /* Get the length of the space/subspace name. */
2621 length = strlen (section->name);
2622
2623 /* If there is not enough room for the next entry, then dump the
2624 current buffer contents now. Each entry will take 4 bytes to
2625 hold the string length + the string itself + null terminator. */
2626 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2627 {
2628 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2629 != p - tmp_space)
2630 return false;
2631 /* Reset to beginning of the buffer space. */
2632 p = tmp_space;
2633 }
2634
2635 /* First element in a string table entry is the length of the
2636 string. Alignment issues are already handled. */
2637 bfd_put_32 (abfd, length, p);
2638 p += 4;
2639 strings_size += 4;
2640
2641 /* Record the index in the space/subspace records. */
2642 if (som_is_space (section))
2643 som_section_data (section)->space_dict->name.n_strx = strings_size;
2644 else
2645 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2646
2647 /* Next comes the string itself + a null terminator. */
2648 strcpy (p, section->name);
2649 p += length + 1;
2650 strings_size += length + 1;
2651
2652 /* Always align up to the next word boundary. */
2653 while (strings_size % 4)
2654 {
2655 bfd_put_8 (abfd, 0, p);
2656 p++;
2657 strings_size++;
2658 }
2659 }
2660
2661 /* Done with the space/subspace strings. Write out any information
2662 contained in a partial block. */
2663 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2664 return false;
2665 *string_sizep = strings_size;
2666 return true;
2667 }
2668
2669 /* Write out the symbol string table. */
2670
2671 static boolean
2672 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2673 bfd *abfd;
2674 unsigned long current_offset;
2675 asymbol **syms;
2676 unsigned int num_syms;
2677 unsigned int *string_sizep;
2678 {
2679 unsigned int i;
2680
2681 /* Chunk of memory that we can use as buffer space, then throw
2682 away. */
2683 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2684 unsigned char *p;
2685 unsigned int strings_size = 0;
2686
2687 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2688 p = tmp_space;
2689
2690 /* Seek to the start of the space strings in preparation for writing
2691 them out. */
2692 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2693 return false;
2694
2695 for (i = 0; i < num_syms; i++)
2696 {
2697 int length = strlen (syms[i]->name);
2698
2699 /* If there is not enough room for the next entry, then dump the
2700 current buffer contents now. */
2701 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2702 {
2703 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2704 != p - tmp_space)
2705 return false;
2706 /* Reset to beginning of the buffer space. */
2707 p = tmp_space;
2708 }
2709
2710 /* First element in a string table entry is the length of the
2711 string. This must always be 4 byte aligned. This is also
2712 an appropriate time to fill in the string index field in the
2713 symbol table entry. */
2714 bfd_put_32 (abfd, length, p);
2715 strings_size += 4;
2716 p += 4;
2717
2718 /* Next comes the string itself + a null terminator. */
2719 strcpy (p, syms[i]->name);
2720
2721 /* ACK. FIXME. */
2722 syms[i]->name = (char *)strings_size;
2723 p += length + 1;
2724 strings_size += length + 1;
2725
2726 /* Always align up to the next word boundary. */
2727 while (strings_size % 4)
2728 {
2729 bfd_put_8 (abfd, 0, p);
2730 strings_size++;
2731 p++;
2732 }
2733 }
2734
2735 /* Scribble out any partial block. */
2736 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2737 return false;
2738
2739 *string_sizep = strings_size;
2740 return true;
2741 }
2742
2743 /* Compute variable information to be placed in the SOM headers,
2744 space/subspace dictionaries, relocation streams, etc. Begin
2745 writing parts of the object file. */
2746
2747 static boolean
2748 som_begin_writing (abfd)
2749 bfd *abfd;
2750 {
2751 unsigned long current_offset = 0;
2752 int strings_size = 0;
2753 unsigned int total_reloc_size = 0;
2754 unsigned long num_spaces, num_subspaces, num_syms, i;
2755 asection *section;
2756 asymbol **syms = bfd_get_outsymbols (abfd);
2757 unsigned int total_subspaces = 0;
2758 struct som_exec_auxhdr exec_header;
2759
2760 /* The file header will always be first in an object file,
2761 everything else can be in random locations. To keep things
2762 "simple" BFD will lay out the object file in the manner suggested
2763 by the PRO ABI for PA-RISC Systems. */
2764
2765 /* Before any output can really begin offsets for all the major
2766 portions of the object file must be computed. So, starting
2767 with the initial file header compute (and sometimes write)
2768 each portion of the object file. */
2769
2770 /* Make room for the file header, it's contents are not complete
2771 yet, so it can not be written at this time. */
2772 current_offset += sizeof (struct header);
2773
2774 /* Any auxiliary headers will follow the file header. Right now
2775 we support only the copyright and version headers. */
2776 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2777 obj_som_file_hdr (abfd)->aux_header_size = 0;
2778 if (abfd->flags & (EXEC_P | DYNAMIC))
2779 {
2780 /* Parts of the exec header will be filled in later, so
2781 delay writing the header itself. Fill in the defaults,
2782 and write it later. */
2783 current_offset += sizeof (exec_header);
2784 obj_som_file_hdr (abfd)->aux_header_size += sizeof (exec_header);
2785 memset (&exec_header, 0, sizeof (exec_header));
2786 exec_header.som_auxhdr.type = EXEC_AUX_ID;
2787 exec_header.som_auxhdr.length = 40;
2788 }
2789 if (obj_som_version_hdr (abfd) != NULL)
2790 {
2791 unsigned int len;
2792
2793 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2794 return false;
2795
2796 /* Write the aux_id structure and the string length. */
2797 len = sizeof (struct aux_id) + sizeof (unsigned int);
2798 obj_som_file_hdr (abfd)->aux_header_size += len;
2799 current_offset += len;
2800 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2801 return false;
2802
2803 /* Write the version string. */
2804 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2805 obj_som_file_hdr (abfd)->aux_header_size += len;
2806 current_offset += len;
2807 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2808 len, 1, abfd) != len)
2809 return false;
2810 }
2811
2812 if (obj_som_copyright_hdr (abfd) != NULL)
2813 {
2814 unsigned int len;
2815
2816 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2817 return false;
2818
2819 /* Write the aux_id structure and the string length. */
2820 len = sizeof (struct aux_id) + sizeof (unsigned int);
2821 obj_som_file_hdr (abfd)->aux_header_size += len;
2822 current_offset += len;
2823 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2824 return false;
2825
2826 /* Write the copyright string. */
2827 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2828 obj_som_file_hdr (abfd)->aux_header_size += len;
2829 current_offset += len;
2830 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2831 len, 1, abfd) != len)
2832 return false;
2833 }
2834
2835 /* Next comes the initialization pointers; we have no initialization
2836 pointers, so current offset does not change. */
2837 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2838 obj_som_file_hdr (abfd)->init_array_total = 0;
2839
2840 /* Next are the space records. These are fixed length records.
2841
2842 Count the number of spaces to determine how much room is needed
2843 in the object file for the space records.
2844
2845 The names of the spaces are stored in a separate string table,
2846 and the index for each space into the string table is computed
2847 below. Therefore, it is not possible to write the space headers
2848 at this time. */
2849 num_spaces = som_count_spaces (abfd);
2850 obj_som_file_hdr (abfd)->space_location = current_offset;
2851 obj_som_file_hdr (abfd)->space_total = num_spaces;
2852 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2853
2854 /* Next are the subspace records. These are fixed length records.
2855
2856 Count the number of subspaes to determine how much room is needed
2857 in the object file for the subspace records.
2858
2859 A variety if fields in the subspace record are still unknown at
2860 this time (index into string table, fixup stream location/size, etc). */
2861 num_subspaces = som_count_subspaces (abfd);
2862 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2863 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2864 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2865
2866 /* Next is the string table for the space/subspace names. We will
2867 build and write the string table on the fly. At the same time
2868 we will fill in the space/subspace name index fields. */
2869
2870 /* The string table needs to be aligned on a word boundary. */
2871 if (current_offset % 4)
2872 current_offset += (4 - (current_offset % 4));
2873
2874 /* Mark the offset of the space/subspace string table in the
2875 file header. */
2876 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2877
2878 /* Scribble out the space strings. */
2879 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2880 return false;
2881
2882 /* Record total string table size in the header and update the
2883 current offset. */
2884 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2885 current_offset += strings_size;
2886
2887 /* Next is the symbol table. These are fixed length records.
2888
2889 Count the number of symbols to determine how much room is needed
2890 in the object file for the symbol table.
2891
2892 The names of the symbols are stored in a separate string table,
2893 and the index for each symbol name into the string table is computed
2894 below. Therefore, it is not possible to write the symobl table
2895 at this time. */
2896 num_syms = bfd_get_symcount (abfd);
2897 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2898 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2899 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2900
2901 /* Do prep work before handling fixups. */
2902 som_prep_for_fixups (abfd, syms, num_syms);
2903
2904 /* Next comes the fixup stream which starts on a word boundary. */
2905 if (current_offset % 4)
2906 current_offset += (4 - (current_offset % 4));
2907 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2908
2909 /* Write the fixups and update fields in subspace headers which
2910 relate to the fixup stream. */
2911 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2912 return false;
2913
2914 /* Record the total size of the fixup stream in the file header. */
2915 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2916 current_offset += total_reloc_size;
2917
2918 /* Next are the symbol strings.
2919 Align them to a word boundary. */
2920 if (current_offset % 4)
2921 current_offset += (4 - (current_offset % 4));
2922 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2923
2924 /* Scribble out the symbol strings. */
2925 if (som_write_symbol_strings (abfd, current_offset, syms,
2926 num_syms, &strings_size)
2927 == false)
2928 return false;
2929
2930 /* Record total string table size in header and update the
2931 current offset. */
2932 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2933 current_offset += strings_size;
2934
2935 /* Next is the compiler records. We do not use these. */
2936 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2937 obj_som_file_hdr (abfd)->compiler_total = 0;
2938
2939 /* Now compute the file positions for the loadable subspaces, taking
2940 care to make sure everything stays properly aligned. */
2941
2942 section = abfd->sections;
2943 for (i = 0; i < num_spaces; i++)
2944 {
2945 asection *subsection;
2946 int first_subspace;
2947 unsigned int subspace_offset = 0;
2948
2949 /* Find a space. */
2950 while (!som_is_space (section))
2951 section = section->next;
2952
2953 first_subspace = 1;
2954 /* Now look for all its subspaces. */
2955 for (subsection = abfd->sections;
2956 subsection != NULL;
2957 subsection = subsection->next)
2958 {
2959
2960 if (!som_is_subspace (subsection)
2961 || !som_is_container (section, subsection)
2962 || (subsection->flags & SEC_ALLOC) == 0)
2963 continue;
2964
2965 /* If this is the first subspace in the space, and we are
2966 building an executable, then take care to make sure all
2967 the alignments are correct and update the exec header. */
2968 if (first_subspace
2969 && (abfd->flags & (EXEC_P | DYNAMIC)))
2970 {
2971 /* Demand paged executables have each space aligned to a
2972 page boundary. Sharable executables (write-protected
2973 text) have just the private (aka data & bss) space aligned
2974 to a page boundary. Ugh. Not true for HPUX.
2975
2976 The HPUX kernel requires the text to always be page aligned
2977 within the file regardless of the executable's type. */
2978 if (abfd->flags & (D_PAGED | DYNAMIC)
2979 || (subsection->flags & SEC_CODE)
2980 || ((abfd->flags & WP_TEXT)
2981 && (subsection->flags & SEC_DATA)))
2982 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
2983
2984 /* Update the exec header. */
2985 if (subsection->flags & SEC_CODE && exec_header.exec_tfile == 0)
2986 {
2987 exec_header.exec_tmem = section->vma;
2988 exec_header.exec_tfile = current_offset;
2989 }
2990 if (subsection->flags & SEC_DATA && exec_header.exec_dfile == 0)
2991 {
2992 exec_header.exec_dmem = section->vma;
2993 exec_header.exec_dfile = current_offset;
2994 }
2995
2996 /* Keep track of exactly where we are within a particular
2997 space. This is necessary as the braindamaged HPUX
2998 loader will create holes between subspaces *and*
2999 subspace alignments are *NOT* preserved. What a crock. */
3000 subspace_offset = subsection->vma;
3001
3002 /* Only do this for the first subspace within each space. */
3003 first_subspace = 0;
3004 }
3005 else if (abfd->flags & (EXEC_P | DYNAMIC))
3006 {
3007 /* The braindamaged HPUX loader may have created a hole
3008 between two subspaces. It is *not* sufficient to use
3009 the alignment specifications within the subspaces to
3010 account for these holes -- I've run into at least one
3011 case where the loader left one code subspace unaligned
3012 in a final executable.
3013
3014 To combat this we keep a current offset within each space,
3015 and use the subspace vma fields to detect and preserve
3016 holes. What a crock!
3017
3018 ps. This is not necessary for unloadable space/subspaces. */
3019 current_offset += subsection->vma - subspace_offset;
3020 if (subsection->flags & SEC_CODE)
3021 exec_header.exec_tsize += subsection->vma - subspace_offset;
3022 else
3023 exec_header.exec_dsize += subsection->vma - subspace_offset;
3024 subspace_offset += subsection->vma - subspace_offset;
3025 }
3026
3027
3028 subsection->target_index = total_subspaces++;
3029 /* This is real data to be loaded from the file. */
3030 if (subsection->flags & SEC_LOAD)
3031 {
3032 /* Update the size of the code & data. */
3033 if (abfd->flags & (EXEC_P | DYNAMIC)
3034 && subsection->flags & SEC_CODE)
3035 exec_header.exec_tsize += subsection->_cooked_size;
3036 else if (abfd->flags & (EXEC_P | DYNAMIC)
3037 && subsection->flags & SEC_DATA)
3038 exec_header.exec_dsize += subsection->_cooked_size;
3039 som_section_data (subsection)->subspace_dict->file_loc_init_value
3040 = current_offset;
3041 subsection->filepos = current_offset;
3042 current_offset += bfd_section_size (abfd, subsection);
3043 subspace_offset += bfd_section_size (abfd, subsection);
3044 }
3045 /* Looks like uninitialized data. */
3046 else
3047 {
3048 /* Update the size of the bss section. */
3049 if (abfd->flags & (EXEC_P | DYNAMIC))
3050 exec_header.exec_bsize += subsection->_cooked_size;
3051
3052 som_section_data (subsection)->subspace_dict->file_loc_init_value
3053 = 0;
3054 som_section_data (subsection)->subspace_dict->
3055 initialization_length = 0;
3056 }
3057 }
3058 /* Goto the next section. */
3059 section = section->next;
3060 }
3061
3062 /* Finally compute the file positions for unloadable subspaces.
3063 If building an executable, start the unloadable stuff on its
3064 own page. */
3065
3066 if (abfd->flags & (EXEC_P | DYNAMIC))
3067 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3068
3069 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3070 section = abfd->sections;
3071 for (i = 0; i < num_spaces; i++)
3072 {
3073 asection *subsection;
3074
3075 /* Find a space. */
3076 while (!som_is_space (section))
3077 section = section->next;
3078
3079 if (abfd->flags & (EXEC_P | DYNAMIC))
3080 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3081
3082 /* Now look for all its subspaces. */
3083 for (subsection = abfd->sections;
3084 subsection != NULL;
3085 subsection = subsection->next)
3086 {
3087
3088 if (!som_is_subspace (subsection)
3089 || !som_is_container (section, subsection)
3090 || (subsection->flags & SEC_ALLOC) != 0)
3091 continue;
3092
3093 subsection->target_index = total_subspaces;
3094 /* This is real data to be loaded from the file. */
3095 if ((subsection->flags & SEC_LOAD) == 0)
3096 {
3097 som_section_data (subsection)->subspace_dict->file_loc_init_value
3098 = current_offset;
3099 subsection->filepos = current_offset;
3100 current_offset += bfd_section_size (abfd, subsection);
3101 }
3102 /* Looks like uninitialized data. */
3103 else
3104 {
3105 som_section_data (subsection)->subspace_dict->file_loc_init_value
3106 = 0;
3107 som_section_data (subsection)->subspace_dict->
3108 initialization_length = bfd_section_size (abfd, subsection);
3109 }
3110 }
3111 /* Goto the next section. */
3112 section = section->next;
3113 }
3114
3115 /* If building an executable, then make sure to seek to and write
3116 one byte at the end of the file to make sure any necessary
3117 zeros are filled in. Ugh. */
3118 if (abfd->flags & (EXEC_P | DYNAMIC))
3119 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3120 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3121 return false;
3122 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3123 return false;
3124
3125 obj_som_file_hdr (abfd)->unloadable_sp_size
3126 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3127
3128 /* Loader fixups are not supported in any way shape or form. */
3129 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3130 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3131
3132 /* Done. Store the total size of the SOM. */
3133 obj_som_file_hdr (abfd)->som_length = current_offset;
3134
3135 /* Now write the exec header. */
3136 if (abfd->flags & (EXEC_P | DYNAMIC))
3137 {
3138 long tmp;
3139
3140 exec_header.exec_entry = bfd_get_start_address (abfd);
3141 exec_header.exec_flags = obj_som_exec_data (abfd)->exec_flags;
3142
3143 /* Oh joys. Ram some of the BSS data into the DATA section
3144 to be compatable with how the hp linker makes objects
3145 (saves memory space). */
3146 tmp = exec_header.exec_dsize;
3147 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3148 exec_header.exec_bsize -= (tmp - exec_header.exec_dsize);
3149 if (exec_header.exec_bsize < 0)
3150 exec_header.exec_bsize = 0;
3151 exec_header.exec_dsize = tmp;
3152
3153 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3154 SEEK_SET) < 0)
3155 return false;
3156
3157 if (bfd_write ((PTR) &exec_header, AUX_HDR_SIZE, 1, abfd)
3158 != AUX_HDR_SIZE)
3159 return false;
3160 }
3161 return true;
3162 }
3163
3164 /* Finally, scribble out the various headers to the disk. */
3165
3166 static boolean
3167 som_write_headers (abfd)
3168 bfd *abfd;
3169 {
3170 int num_spaces = som_count_spaces (abfd);
3171 int i;
3172 int subspace_index = 0;
3173 file_ptr location;
3174 asection *section;
3175
3176 /* Subspaces are written first so that we can set up information
3177 about them in their containing spaces as the subspace is written. */
3178
3179 /* Seek to the start of the subspace dictionary records. */
3180 location = obj_som_file_hdr (abfd)->subspace_location;
3181 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3182 return false;
3183
3184 section = abfd->sections;
3185 /* Now for each loadable space write out records for its subspaces. */
3186 for (i = 0; i < num_spaces; i++)
3187 {
3188 asection *subsection;
3189
3190 /* Find a space. */
3191 while (!som_is_space (section))
3192 section = section->next;
3193
3194 /* Now look for all its subspaces. */
3195 for (subsection = abfd->sections;
3196 subsection != NULL;
3197 subsection = subsection->next)
3198 {
3199
3200 /* Skip any section which does not correspond to a space
3201 or subspace. Or does not have SEC_ALLOC set (and therefore
3202 has no real bits on the disk). */
3203 if (!som_is_subspace (subsection)
3204 || !som_is_container (section, subsection)
3205 || (subsection->flags & SEC_ALLOC) == 0)
3206 continue;
3207
3208 /* If this is the first subspace for this space, then save
3209 the index of the subspace in its containing space. Also
3210 set "is_loadable" in the containing space. */
3211
3212 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3213 {
3214 som_section_data (section)->space_dict->is_loadable = 1;
3215 som_section_data (section)->space_dict->subspace_index
3216 = subspace_index;
3217 }
3218
3219 /* Increment the number of subspaces seen and the number of
3220 subspaces contained within the current space. */
3221 subspace_index++;
3222 som_section_data (section)->space_dict->subspace_quantity++;
3223
3224 /* Mark the index of the current space within the subspace's
3225 dictionary record. */
3226 som_section_data (subsection)->subspace_dict->space_index = i;
3227
3228 /* Dump the current subspace header. */
3229 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3230 sizeof (struct subspace_dictionary_record), 1, abfd)
3231 != sizeof (struct subspace_dictionary_record))
3232 return false;
3233 }
3234 /* Goto the next section. */
3235 section = section->next;
3236 }
3237
3238 /* Now repeat the process for unloadable subspaces. */
3239 section = abfd->sections;
3240 /* Now for each space write out records for its subspaces. */
3241 for (i = 0; i < num_spaces; i++)
3242 {
3243 asection *subsection;
3244
3245 /* Find a space. */
3246 while (!som_is_space (section))
3247 section = section->next;
3248
3249 /* Now look for all its subspaces. */
3250 for (subsection = abfd->sections;
3251 subsection != NULL;
3252 subsection = subsection->next)
3253 {
3254
3255 /* Skip any section which does not correspond to a space or
3256 subspace, or which SEC_ALLOC set (and therefore handled
3257 in the loadable spaces/subspaces code above). */
3258
3259 if (!som_is_subspace (subsection)
3260 || !som_is_container (section, subsection)
3261 || (subsection->flags & SEC_ALLOC) != 0)
3262 continue;
3263
3264 /* If this is the first subspace for this space, then save
3265 the index of the subspace in its containing space. Clear
3266 "is_loadable". */
3267
3268 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3269 {
3270 som_section_data (section)->space_dict->is_loadable = 0;
3271 som_section_data (section)->space_dict->subspace_index
3272 = subspace_index;
3273 }
3274
3275 /* Increment the number of subspaces seen and the number of
3276 subspaces contained within the current space. */
3277 som_section_data (section)->space_dict->subspace_quantity++;
3278 subspace_index++;
3279
3280 /* Mark the index of the current space within the subspace's
3281 dictionary record. */
3282 som_section_data (subsection)->subspace_dict->space_index = i;
3283
3284 /* Dump this subspace header. */
3285 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3286 sizeof (struct subspace_dictionary_record), 1, abfd)
3287 != sizeof (struct subspace_dictionary_record))
3288 return false;
3289 }
3290 /* Goto the next section. */
3291 section = section->next;
3292 }
3293
3294 /* All the subspace dictiondary records are written, and all the
3295 fields are set up in the space dictionary records.
3296
3297 Seek to the right location and start writing the space
3298 dictionary records. */
3299 location = obj_som_file_hdr (abfd)->space_location;
3300 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3301 return false;
3302
3303 section = abfd->sections;
3304 for (i = 0; i < num_spaces; i++)
3305 {
3306
3307 /* Find a space. */
3308 while (!som_is_space (section))
3309 section = section->next;
3310
3311 /* Dump its header */
3312 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3313 sizeof (struct space_dictionary_record), 1, abfd)
3314 != sizeof (struct space_dictionary_record))
3315 return false;
3316
3317 /* Goto the next section. */
3318 section = section->next;
3319 }
3320
3321 /* FIXME. This should really be conditional based on whether or not
3322 PA1.1 instructions/registers have been used.
3323
3324 Setting of the system_id has to happen very late now that copying of
3325 BFD private data happens *after* section contents are set. */
3326 if (abfd->flags & (EXEC_P | DYNAMIC))
3327 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3328 else
3329 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3330
3331 /* Compute the checksum for the file header just before writing
3332 the header to disk. */
3333 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3334
3335 /* Only thing left to do is write out the file header. It is always
3336 at location zero. Seek there and write it. */
3337 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3338 return false;
3339 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3340 sizeof (struct header), 1, abfd)
3341 != sizeof (struct header))
3342 return false;
3343 return true;
3344 }
3345
3346 /* Compute and return the checksum for a SOM file header. */
3347
3348 static unsigned long
3349 som_compute_checksum (abfd)
3350 bfd *abfd;
3351 {
3352 unsigned long checksum, count, i;
3353 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3354
3355 checksum = 0;
3356 count = sizeof (struct header) / sizeof (unsigned long);
3357 for (i = 0; i < count; i++)
3358 checksum ^= *(buffer + i);
3359
3360 return checksum;
3361 }
3362
3363 static void
3364 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3365 bfd *abfd;
3366 asymbol *sym;
3367 struct som_misc_symbol_info *info;
3368 {
3369 /* Initialize. */
3370 memset (info, 0, sizeof (struct som_misc_symbol_info));
3371
3372 /* The HP SOM linker requires detailed type information about
3373 all symbols (including undefined symbols!). Unfortunately,
3374 the type specified in an import/export statement does not
3375 always match what the linker wants. Severe braindamage. */
3376
3377 /* Section symbols will not have a SOM symbol type assigned to
3378 them yet. Assign all section symbols type ST_DATA. */
3379 if (sym->flags & BSF_SECTION_SYM)
3380 info->symbol_type = ST_DATA;
3381 else
3382 {
3383 /* Common symbols must have scope SS_UNSAT and type
3384 ST_STORAGE or the linker will choke. */
3385 if (sym->section == &bfd_com_section)
3386 {
3387 info->symbol_scope = SS_UNSAT;
3388 info->symbol_type = ST_STORAGE;
3389 }
3390
3391 /* It is possible to have a symbol without an associated
3392 type. This happens if the user imported the symbol
3393 without a type and the symbol was never defined
3394 locally. If BSF_FUNCTION is set for this symbol, then
3395 assign it type ST_CODE (the HP linker requires undefined
3396 external functions to have type ST_CODE rather than ST_ENTRY). */
3397 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3398 && sym->section == &bfd_und_section
3399 && sym->flags & BSF_FUNCTION)
3400 info->symbol_type = ST_CODE;
3401
3402 /* Handle function symbols which were defined in this file.
3403 They should have type ST_ENTRY. Also retrieve the argument
3404 relocation bits from the SOM backend information. */
3405 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3406 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3407 && (sym->flags & BSF_FUNCTION))
3408 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3409 && (sym->flags & BSF_FUNCTION)))
3410 {
3411 info->symbol_type = ST_ENTRY;
3412 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3413 }
3414
3415 /* If the type is unknown at this point, it should be
3416 ST_DATA (functions were handled as special cases above). */
3417 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3418 info->symbol_type = ST_DATA;
3419
3420 /* From now on it's a very simple mapping. */
3421 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3422 info->symbol_type = ST_ABSOLUTE;
3423 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3424 info->symbol_type = ST_CODE;
3425 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3426 info->symbol_type = ST_DATA;
3427 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3428 info->symbol_type = ST_MILLICODE;
3429 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3430 info->symbol_type = ST_PLABEL;
3431 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3432 info->symbol_type = ST_PRI_PROG;
3433 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3434 info->symbol_type = ST_SEC_PROG;
3435 }
3436
3437 /* Now handle the symbol's scope. Exported data which is not
3438 in the common section has scope SS_UNIVERSAL. Note scope
3439 of common symbols was handled earlier! */
3440 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3441 info->symbol_scope = SS_UNIVERSAL;
3442 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3443 else if (sym->section == &bfd_und_section)
3444 info->symbol_scope = SS_UNSAT;
3445 /* Anything else which is not in the common section has scope
3446 SS_LOCAL. */
3447 else if (sym->section != &bfd_com_section)
3448 info->symbol_scope = SS_LOCAL;
3449
3450 /* Now set the symbol_info field. It has no real meaning
3451 for undefined or common symbols, but the HP linker will
3452 choke if it's not set to some "reasonable" value. We
3453 use zero as a reasonable value. */
3454 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section
3455 || sym->section == &bfd_abs_section)
3456 info->symbol_info = 0;
3457 /* For all other symbols, the symbol_info field contains the
3458 subspace index of the space this symbol is contained in. */
3459 else
3460 info->symbol_info = sym->section->target_index;
3461
3462 /* Set the symbol's value. */
3463 info->symbol_value = sym->value + sym->section->vma;
3464 }
3465
3466 /* Build and write, in one big chunk, the entire symbol table for
3467 this BFD. */
3468
3469 static boolean
3470 som_build_and_write_symbol_table (abfd)
3471 bfd *abfd;
3472 {
3473 unsigned int num_syms = bfd_get_symcount (abfd);
3474 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3475 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3476 struct symbol_dictionary_record *som_symtab = NULL;
3477 int i, symtab_size;
3478
3479 /* Compute total symbol table size and allocate a chunk of memory
3480 to hold the symbol table as we build it. */
3481 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3482 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3483 if (som_symtab == NULL && symtab_size != 0)
3484 {
3485 bfd_set_error (bfd_error_no_memory);
3486 goto error_return;
3487 }
3488 memset (som_symtab, 0, symtab_size);
3489
3490 /* Walk over each symbol. */
3491 for (i = 0; i < num_syms; i++)
3492 {
3493 struct som_misc_symbol_info info;
3494
3495 /* This is really an index into the symbol strings table.
3496 By the time we get here, the index has already been
3497 computed and stored into the name field in the BFD symbol. */
3498 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3499
3500 /* Derive SOM information from the BFD symbol. */
3501 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3502
3503 /* Now use it. */
3504 som_symtab[i].symbol_type = info.symbol_type;
3505 som_symtab[i].symbol_scope = info.symbol_scope;
3506 som_symtab[i].arg_reloc = info.arg_reloc;
3507 som_symtab[i].symbol_info = info.symbol_info;
3508 som_symtab[i].symbol_value = info.symbol_value;
3509 }
3510
3511 /* Everything is ready, seek to the right location and
3512 scribble out the symbol table. */
3513 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3514 return false;
3515
3516 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3517 goto error_return;
3518
3519 if (som_symtab != NULL)
3520 free (som_symtab);
3521 return true;
3522 error_return:
3523 if (som_symtab != NULL)
3524 free (som_symtab);
3525 return false;
3526 }
3527
3528 /* Write an object in SOM format. */
3529
3530 static boolean
3531 som_write_object_contents (abfd)
3532 bfd *abfd;
3533 {
3534 if (abfd->output_has_begun == false)
3535 {
3536 /* Set up fixed parts of the file, space, and subspace headers.
3537 Notify the world that output has begun. */
3538 som_prep_headers (abfd);
3539 abfd->output_has_begun = true;
3540 /* Start writing the object file. This include all the string
3541 tables, fixup streams, and other portions of the object file. */
3542 som_begin_writing (abfd);
3543 }
3544
3545 /* Now that the symbol table information is complete, build and
3546 write the symbol table. */
3547 if (som_build_and_write_symbol_table (abfd) == false)
3548 return false;
3549
3550 return (som_write_headers (abfd));
3551 }
3552
3553 \f
3554 /* Read and save the string table associated with the given BFD. */
3555
3556 static boolean
3557 som_slurp_string_table (abfd)
3558 bfd *abfd;
3559 {
3560 char *stringtab;
3561
3562 /* Use the saved version if its available. */
3563 if (obj_som_stringtab (abfd) != NULL)
3564 return true;
3565
3566 /* I don't think this can currently happen, and I'm not sure it should
3567 really be an error, but it's better than getting unpredictable results
3568 from the host's malloc when passed a size of zero. */
3569 if (obj_som_stringtab_size (abfd) == 0)
3570 {
3571 bfd_set_error (bfd_error_no_symbols);
3572 return false;
3573 }
3574
3575 /* Allocate and read in the string table. */
3576 stringtab = malloc (obj_som_stringtab_size (abfd));
3577 if (stringtab == NULL)
3578 {
3579 bfd_set_error (bfd_error_no_memory);
3580 return false;
3581 }
3582
3583 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3584 return false;
3585
3586 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3587 != obj_som_stringtab_size (abfd))
3588 return false;
3589
3590 /* Save our results and return success. */
3591 obj_som_stringtab (abfd) = stringtab;
3592 return true;
3593 }
3594
3595 /* Return the amount of data (in bytes) required to hold the symbol
3596 table for this object. */
3597
3598 static long
3599 som_get_symtab_upper_bound (abfd)
3600 bfd *abfd;
3601 {
3602 if (!som_slurp_symbol_table (abfd))
3603 return -1;
3604
3605 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3606 }
3607
3608 /* Convert from a SOM subspace index to a BFD section. */
3609
3610 static asection *
3611 bfd_section_from_som_symbol (abfd, symbol)
3612 bfd *abfd;
3613 struct symbol_dictionary_record *symbol;
3614 {
3615 asection *section;
3616
3617 /* The meaning of the symbol_info field changes for functions
3618 within executables. So only use the quick symbol_info mapping for
3619 incomplete objects and non-function symbols in executables. */
3620 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3621 || (symbol->symbol_type != ST_ENTRY
3622 && symbol->symbol_type != ST_PRI_PROG
3623 && symbol->symbol_type != ST_SEC_PROG
3624 && symbol->symbol_type != ST_MILLICODE))
3625 {
3626 unsigned int index = symbol->symbol_info;
3627 for (section = abfd->sections; section != NULL; section = section->next)
3628 if (section->target_index == index)
3629 return section;
3630
3631 /* Should never happen. */
3632 abort();
3633 }
3634 else
3635 {
3636 unsigned int value = symbol->symbol_value;
3637
3638 /* For executables we will have to use the symbol's address and
3639 find out what section would contain that address. Yuk. */
3640 for (section = abfd->sections; section; section = section->next)
3641 {
3642 if (value >= section->vma
3643 && value <= section->vma + section->_cooked_size)
3644 return section;
3645 }
3646
3647 /* Should never happen. */
3648 abort ();
3649 }
3650 }
3651
3652 /* Read and save the symbol table associated with the given BFD. */
3653
3654 static unsigned int
3655 som_slurp_symbol_table (abfd)
3656 bfd *abfd;
3657 {
3658 int symbol_count = bfd_get_symcount (abfd);
3659 int symsize = sizeof (struct symbol_dictionary_record);
3660 char *stringtab;
3661 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3662 som_symbol_type *sym, *symbase;
3663
3664 /* Return saved value if it exists. */
3665 if (obj_som_symtab (abfd) != NULL)
3666 goto successful_return;
3667
3668 /* Special case. This is *not* an error. */
3669 if (symbol_count == 0)
3670 goto successful_return;
3671
3672 if (!som_slurp_string_table (abfd))
3673 goto error_return;
3674
3675 stringtab = obj_som_stringtab (abfd);
3676
3677 symbase = (som_symbol_type *)
3678 malloc (symbol_count * sizeof (som_symbol_type));
3679 if (symbase == NULL)
3680 {
3681 bfd_set_error (bfd_error_no_memory);
3682 goto error_return;
3683 }
3684
3685 /* Read in the external SOM representation. */
3686 buf = malloc (symbol_count * symsize);
3687 if (buf == NULL && symbol_count * symsize != 0)
3688 {
3689 bfd_set_error (bfd_error_no_memory);
3690 goto error_return;
3691 }
3692 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3693 goto error_return;
3694 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3695 != symbol_count * symsize)
3696 goto error_return;
3697
3698 /* Iterate over all the symbols and internalize them. */
3699 endbufp = buf + symbol_count;
3700 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3701 {
3702
3703 /* I don't think we care about these. */
3704 if (bufp->symbol_type == ST_SYM_EXT
3705 || bufp->symbol_type == ST_ARG_EXT)
3706 continue;
3707
3708 /* Set some private data we care about. */
3709 if (bufp->symbol_type == ST_NULL)
3710 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3711 else if (bufp->symbol_type == ST_ABSOLUTE)
3712 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3713 else if (bufp->symbol_type == ST_DATA)
3714 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3715 else if (bufp->symbol_type == ST_CODE)
3716 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3717 else if (bufp->symbol_type == ST_PRI_PROG)
3718 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3719 else if (bufp->symbol_type == ST_SEC_PROG)
3720 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3721 else if (bufp->symbol_type == ST_ENTRY)
3722 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3723 else if (bufp->symbol_type == ST_MILLICODE)
3724 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3725 else if (bufp->symbol_type == ST_PLABEL)
3726 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3727 else
3728 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3729 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3730
3731 /* Some reasonable defaults. */
3732 sym->symbol.the_bfd = abfd;
3733 sym->symbol.name = bufp->name.n_strx + stringtab;
3734 sym->symbol.value = bufp->symbol_value;
3735 sym->symbol.section = 0;
3736 sym->symbol.flags = 0;
3737
3738 switch (bufp->symbol_type)
3739 {
3740 case ST_ENTRY:
3741 case ST_PRI_PROG:
3742 case ST_SEC_PROG:
3743 case ST_MILLICODE:
3744 sym->symbol.flags |= BSF_FUNCTION;
3745 sym->symbol.value &= ~0x3;
3746 break;
3747
3748 case ST_STUB:
3749 case ST_CODE:
3750 sym->symbol.value &= ~0x3;
3751
3752 default:
3753 break;
3754 }
3755
3756 /* Handle scoping and section information. */
3757 switch (bufp->symbol_scope)
3758 {
3759 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3760 so the section associated with this symbol can't be known. */
3761 case SS_EXTERNAL:
3762 if (bufp->symbol_type != ST_STORAGE)
3763 sym->symbol.section = &bfd_und_section;
3764 else
3765 sym->symbol.section = &bfd_com_section;
3766 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3767 break;
3768
3769 case SS_UNSAT:
3770 if (bufp->symbol_type != ST_STORAGE)
3771 sym->symbol.section = &bfd_und_section;
3772 else
3773 sym->symbol.section = &bfd_com_section;
3774 break;
3775
3776 case SS_UNIVERSAL:
3777 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3778 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3779 sym->symbol.value -= sym->symbol.section->vma;
3780 break;
3781
3782 #if 0
3783 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3784 Sound dumb? It is. */
3785 case SS_GLOBAL:
3786 #endif
3787 case SS_LOCAL:
3788 sym->symbol.flags |= BSF_LOCAL;
3789 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3790 sym->symbol.value -= sym->symbol.section->vma;
3791 break;
3792 }
3793
3794 /* Mark section symbols and symbols used by the debugger. */
3795 if (sym->symbol.name[0] == '$'
3796 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$')
3797 sym->symbol.flags |= BSF_SECTION_SYM;
3798 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3799 {
3800 sym->symbol.flags |= BSF_SECTION_SYM;
3801 sym->symbol.name = sym->symbol.section->name;
3802 }
3803 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3804 sym->symbol.flags |= BSF_DEBUGGING;
3805
3806 /* Note increment at bottom of loop, since we skip some symbols
3807 we can not include it as part of the for statement. */
3808 sym++;
3809 }
3810
3811 /* Save our results and return success. */
3812 obj_som_symtab (abfd) = symbase;
3813 successful_return:
3814 if (buf != NULL)
3815 free (buf);
3816 return (true);
3817
3818 error_return:
3819 if (buf != NULL)
3820 free (buf);
3821 return false;
3822 }
3823
3824 /* Canonicalize a SOM symbol table. Return the number of entries
3825 in the symbol table. */
3826
3827 static long
3828 som_get_symtab (abfd, location)
3829 bfd *abfd;
3830 asymbol **location;
3831 {
3832 int i;
3833 som_symbol_type *symbase;
3834
3835 if (!som_slurp_symbol_table (abfd))
3836 return -1;
3837
3838 i = bfd_get_symcount (abfd);
3839 symbase = obj_som_symtab (abfd);
3840
3841 for (; i > 0; i--, location++, symbase++)
3842 *location = &symbase->symbol;
3843
3844 /* Final null pointer. */
3845 *location = 0;
3846 return (bfd_get_symcount (abfd));
3847 }
3848
3849 /* Make a SOM symbol. There is nothing special to do here. */
3850
3851 static asymbol *
3852 som_make_empty_symbol (abfd)
3853 bfd *abfd;
3854 {
3855 som_symbol_type *new =
3856 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3857 if (new == NULL)
3858 {
3859 bfd_set_error (bfd_error_no_memory);
3860 return 0;
3861 }
3862 new->symbol.the_bfd = abfd;
3863
3864 return &new->symbol;
3865 }
3866
3867 /* Print symbol information. */
3868
3869 static void
3870 som_print_symbol (ignore_abfd, afile, symbol, how)
3871 bfd *ignore_abfd;
3872 PTR afile;
3873 asymbol *symbol;
3874 bfd_print_symbol_type how;
3875 {
3876 FILE *file = (FILE *) afile;
3877 switch (how)
3878 {
3879 case bfd_print_symbol_name:
3880 fprintf (file, "%s", symbol->name);
3881 break;
3882 case bfd_print_symbol_more:
3883 fprintf (file, "som ");
3884 fprintf_vma (file, symbol->value);
3885 fprintf (file, " %lx", (long) symbol->flags);
3886 break;
3887 case bfd_print_symbol_all:
3888 {
3889 CONST char *section_name;
3890 section_name = symbol->section ? symbol->section->name : "(*none*)";
3891 bfd_print_symbol_vandf ((PTR) file, symbol);
3892 fprintf (file, " %s\t%s", section_name, symbol->name);
3893 break;
3894 }
3895 }
3896 }
3897
3898 static boolean
3899 som_bfd_is_local_label (abfd, sym)
3900 bfd *abfd;
3901 asymbol *sym;
3902 {
3903 return (sym->name[0] == 'L' && sym->name[1] == '$');
3904 }
3905
3906 /* Count or process variable-length SOM fixup records.
3907
3908 To avoid code duplication we use this code both to compute the number
3909 of relocations requested by a stream, and to internalize the stream.
3910
3911 When computing the number of relocations requested by a stream the
3912 variables rptr, section, and symbols have no meaning.
3913
3914 Return the number of relocations requested by the fixup stream. When
3915 not just counting
3916
3917 This needs at least two or three more passes to get it cleaned up. */
3918
3919 static unsigned int
3920 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3921 unsigned char *fixup;
3922 unsigned int end;
3923 arelent *internal_relocs;
3924 asection *section;
3925 asymbol **symbols;
3926 boolean just_count;
3927 {
3928 unsigned int op, varname;
3929 unsigned char *end_fixups = &fixup[end];
3930 const struct fixup_format *fp;
3931 char *cp;
3932 unsigned char *save_fixup;
3933 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3934 const int *subop;
3935 arelent *rptr= internal_relocs;
3936 unsigned int offset = just_count ? 0 : section->vma;
3937
3938 #define var(c) variables[(c) - 'A']
3939 #define push(v) (*sp++ = (v))
3940 #define pop() (*--sp)
3941 #define emptystack() (sp == stack)
3942
3943 som_initialize_reloc_queue (reloc_queue);
3944 memset (variables, 0, sizeof (variables));
3945 memset (stack, 0, sizeof (stack));
3946 count = 0;
3947 prev_fixup = 0;
3948 sp = stack;
3949
3950 while (fixup < end_fixups)
3951 {
3952
3953 /* Save pointer to the start of this fixup. We'll use
3954 it later to determine if it is necessary to put this fixup
3955 on the queue. */
3956 save_fixup = fixup;
3957
3958 /* Get the fixup code and its associated format. */
3959 op = *fixup++;
3960 fp = &som_fixup_formats[op];
3961
3962 /* Handle a request for a previous fixup. */
3963 if (*fp->format == 'P')
3964 {
3965 /* Get pointer to the beginning of the prev fixup, move
3966 the repeated fixup to the head of the queue. */
3967 fixup = reloc_queue[fp->D].reloc;
3968 som_reloc_queue_fix (reloc_queue, fp->D);
3969 prev_fixup = 1;
3970
3971 /* Get the fixup code and its associated format. */
3972 op = *fixup++;
3973 fp = &som_fixup_formats[op];
3974 }
3975
3976 /* If this fixup will be passed to BFD, set some reasonable defaults. */
3977 if (! just_count
3978 && som_hppa_howto_table[op].type != R_NO_RELOCATION
3979 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
3980 {
3981 rptr->address = offset;
3982 rptr->howto = &som_hppa_howto_table[op];
3983 rptr->addend = 0;
3984 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3985 }
3986
3987 /* Set default input length to 0. Get the opcode class index
3988 into D. */
3989 var ('L') = 0;
3990 var ('D') = fp->D;
3991
3992 /* Get the opcode format. */
3993 cp = fp->format;
3994
3995 /* Process the format string. Parsing happens in two phases,
3996 parse RHS, then assign to LHS. Repeat until no more
3997 characters in the format string. */
3998 while (*cp)
3999 {
4000 /* The variable this pass is going to compute a value for. */
4001 varname = *cp++;
4002
4003 /* Start processing RHS. Continue until a NULL or '=' is found. */
4004 do
4005 {
4006 c = *cp++;
4007
4008 /* If this is a variable, push it on the stack. */
4009 if (isupper (c))
4010 push (var (c));
4011
4012 /* If this is a lower case letter, then it represents
4013 additional data from the fixup stream to be pushed onto
4014 the stack. */
4015 else if (islower (c))
4016 {
4017 for (v = 0; c > 'a'; --c)
4018 v = (v << 8) | *fixup++;
4019 push (v);
4020 }
4021
4022 /* A decimal constant. Push it on the stack. */
4023 else if (isdigit (c))
4024 {
4025 v = c - '0';
4026 while (isdigit (*cp))
4027 v = (v * 10) + (*cp++ - '0');
4028 push (v);
4029 }
4030 else
4031
4032 /* An operator. Pop two two values from the stack and
4033 use them as operands to the given operation. Push
4034 the result of the operation back on the stack. */
4035 switch (c)
4036 {
4037 case '+':
4038 v = pop ();
4039 v += pop ();
4040 push (v);
4041 break;
4042 case '*':
4043 v = pop ();
4044 v *= pop ();
4045 push (v);
4046 break;
4047 case '<':
4048 v = pop ();
4049 v = pop () << v;
4050 push (v);
4051 break;
4052 default:
4053 abort ();
4054 }
4055 }
4056 while (*cp && *cp != '=');
4057
4058 /* Move over the equal operator. */
4059 cp++;
4060
4061 /* Pop the RHS off the stack. */
4062 c = pop ();
4063
4064 /* Perform the assignment. */
4065 var (varname) = c;
4066
4067 /* Handle side effects. and special 'O' stack cases. */
4068 switch (varname)
4069 {
4070 /* Consume some bytes from the input space. */
4071 case 'L':
4072 offset += c;
4073 break;
4074 /* A symbol to use in the relocation. Make a note
4075 of this if we are not just counting. */
4076 case 'S':
4077 if (! just_count)
4078 rptr->sym_ptr_ptr = &symbols[c];
4079 break;
4080 /* Handle the linker expression stack. */
4081 case 'O':
4082 switch (op)
4083 {
4084 case R_COMP1:
4085 subop = comp1_opcodes;
4086 break;
4087 case R_COMP2:
4088 subop = comp2_opcodes;
4089 break;
4090 case R_COMP3:
4091 subop = comp3_opcodes;
4092 break;
4093 default:
4094 abort ();
4095 }
4096 while (*subop <= (unsigned char) c)
4097 ++subop;
4098 --subop;
4099 break;
4100 default:
4101 break;
4102 }
4103 }
4104
4105 /* If we used a previous fixup, clean up after it. */
4106 if (prev_fixup)
4107 {
4108 fixup = save_fixup + 1;
4109 prev_fixup = 0;
4110 }
4111 /* Queue it. */
4112 else if (fixup > save_fixup + 1)
4113 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4114
4115 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4116 fixups to BFD. */
4117 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4118 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4119 {
4120 /* Done with a single reloction. Loop back to the top. */
4121 if (! just_count)
4122 {
4123 rptr->addend = var ('V');
4124 rptr++;
4125 }
4126 count++;
4127 /* Now that we've handled a "full" relocation, reset
4128 some state. */
4129 memset (variables, 0, sizeof (variables));
4130 memset (stack, 0, sizeof (stack));
4131 }
4132 }
4133 return count;
4134
4135 #undef var
4136 #undef push
4137 #undef pop
4138 #undef emptystack
4139 }
4140
4141 /* Read in the relocs (aka fixups in SOM terms) for a section.
4142
4143 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4144 set to true to indicate it only needs a count of the number
4145 of actual relocations. */
4146
4147 static boolean
4148 som_slurp_reloc_table (abfd, section, symbols, just_count)
4149 bfd *abfd;
4150 asection *section;
4151 asymbol **symbols;
4152 boolean just_count;
4153 {
4154 char *external_relocs;
4155 unsigned int fixup_stream_size;
4156 arelent *internal_relocs;
4157 unsigned int num_relocs;
4158
4159 fixup_stream_size = som_section_data (section)->reloc_size;
4160 /* If there were no relocations, then there is nothing to do. */
4161 if (section->reloc_count == 0)
4162 return true;
4163
4164 /* If reloc_count is -1, then the relocation stream has not been
4165 parsed. We must do so now to know how many relocations exist. */
4166 if (section->reloc_count == -1)
4167 {
4168 external_relocs = (char *) malloc (fixup_stream_size);
4169 if (external_relocs == (char *) NULL)
4170 {
4171 bfd_set_error (bfd_error_no_memory);
4172 return false;
4173 }
4174 /* Read in the external forms. */
4175 if (bfd_seek (abfd,
4176 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4177 SEEK_SET)
4178 != 0)
4179 return false;
4180 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4181 != fixup_stream_size)
4182 return false;
4183
4184 /* Let callers know how many relocations found.
4185 also save the relocation stream as we will
4186 need it again. */
4187 section->reloc_count = som_set_reloc_info (external_relocs,
4188 fixup_stream_size,
4189 NULL, NULL, NULL, true);
4190
4191 som_section_data (section)->reloc_stream = external_relocs;
4192 }
4193
4194 /* If the caller only wanted a count, then return now. */
4195 if (just_count)
4196 return true;
4197
4198 num_relocs = section->reloc_count;
4199 external_relocs = som_section_data (section)->reloc_stream;
4200 /* Return saved information about the relocations if it is available. */
4201 if (section->relocation != (arelent *) NULL)
4202 return true;
4203
4204 internal_relocs = (arelent *) malloc (num_relocs * sizeof (arelent));
4205 if (internal_relocs == (arelent *) NULL)
4206 {
4207 bfd_set_error (bfd_error_no_memory);
4208 return false;
4209 }
4210
4211 /* Process and internalize the relocations. */
4212 som_set_reloc_info (external_relocs, fixup_stream_size,
4213 internal_relocs, section, symbols, false);
4214
4215 /* Save our results and return success. */
4216 section->relocation = internal_relocs;
4217 return (true);
4218 }
4219
4220 /* Return the number of bytes required to store the relocation
4221 information associated with the given section. */
4222
4223 static long
4224 som_get_reloc_upper_bound (abfd, asect)
4225 bfd *abfd;
4226 sec_ptr asect;
4227 {
4228 /* If section has relocations, then read in the relocation stream
4229 and parse it to determine how many relocations exist. */
4230 if (asect->flags & SEC_RELOC)
4231 {
4232 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4233 return false;
4234 return (asect->reloc_count + 1) * sizeof (arelent);
4235 }
4236 /* There are no relocations. */
4237 return 0;
4238 }
4239
4240 /* Convert relocations from SOM (external) form into BFD internal
4241 form. Return the number of relocations. */
4242
4243 static long
4244 som_canonicalize_reloc (abfd, section, relptr, symbols)
4245 bfd *abfd;
4246 sec_ptr section;
4247 arelent **relptr;
4248 asymbol **symbols;
4249 {
4250 arelent *tblptr;
4251 int count;
4252
4253 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4254 return -1;
4255
4256 count = section->reloc_count;
4257 tblptr = section->relocation;
4258
4259 while (count--)
4260 *relptr++ = tblptr++;
4261
4262 *relptr = (arelent *) NULL;
4263 return section->reloc_count;
4264 }
4265
4266 extern const bfd_target som_vec;
4267
4268 /* A hook to set up object file dependent section information. */
4269
4270 static boolean
4271 som_new_section_hook (abfd, newsect)
4272 bfd *abfd;
4273 asection *newsect;
4274 {
4275 newsect->used_by_bfd =
4276 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4277 if (!newsect->used_by_bfd)
4278 {
4279 bfd_set_error (bfd_error_no_memory);
4280 return false;
4281 }
4282 newsect->alignment_power = 3;
4283
4284 /* We allow more than three sections internally */
4285 return true;
4286 }
4287
4288 /* Copy any private info we understand from the input section
4289 to the output section. */
4290 static boolean
4291 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4292 bfd *ibfd;
4293 asection *isection;
4294 bfd *obfd;
4295 asection *osection;
4296 {
4297 /* One day we may try to grok other private data. */
4298 if (ibfd->xvec->flavour != bfd_target_som_flavour
4299 || obfd->xvec->flavour != bfd_target_som_flavour
4300 || (!som_is_space (isection) && !som_is_subspace (isection)))
4301 return false;
4302
4303 som_section_data (osection)->copy_data
4304 = (struct som_copyable_section_data_struct *)
4305 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4306 if (som_section_data (osection)->copy_data == NULL)
4307 {
4308 bfd_set_error (bfd_error_no_memory);
4309 return false;
4310 }
4311
4312 memcpy (som_section_data (osection)->copy_data,
4313 som_section_data (isection)->copy_data,
4314 sizeof (struct som_copyable_section_data_struct));
4315
4316 /* Reparent if necessary. */
4317 if (som_section_data (osection)->copy_data->container)
4318 som_section_data (osection)->copy_data->container =
4319 som_section_data (osection)->copy_data->container->output_section;
4320
4321 return true;
4322 }
4323
4324 /* Copy any private info we understand from the input bfd
4325 to the output bfd. */
4326
4327 static boolean
4328 som_bfd_copy_private_bfd_data (ibfd, obfd)
4329 bfd *ibfd, *obfd;
4330 {
4331 /* One day we may try to grok other private data. */
4332 if (ibfd->xvec->flavour != bfd_target_som_flavour
4333 || obfd->xvec->flavour != bfd_target_som_flavour)
4334 return false;
4335
4336 /* Allocate some memory to hold the data we need. */
4337 obj_som_exec_data (obfd) = (struct som_exec_data *)
4338 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4339 if (obj_som_exec_data (obfd) == NULL)
4340 {
4341 bfd_set_error (bfd_error_no_memory);
4342 return false;
4343 }
4344
4345 /* Now copy the data. */
4346 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4347 sizeof (struct som_exec_data));
4348
4349 return true;
4350 }
4351
4352 /* Set backend info for sections which can not be described
4353 in the BFD data structures. */
4354
4355 boolean
4356 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4357 asection *section;
4358 int defined;
4359 int private;
4360 unsigned int sort_key;
4361 int spnum;
4362 {
4363 /* Allocate memory to hold the magic information. */
4364 if (som_section_data (section)->copy_data == NULL)
4365 {
4366 som_section_data (section)->copy_data
4367 = (struct som_copyable_section_data_struct *)
4368 bfd_zalloc (section->owner,
4369 sizeof (struct som_copyable_section_data_struct));
4370 if (som_section_data (section)->copy_data == NULL)
4371 {
4372 bfd_set_error (bfd_error_no_memory);
4373 return false;
4374 }
4375 }
4376 som_section_data (section)->copy_data->sort_key = sort_key;
4377 som_section_data (section)->copy_data->is_defined = defined;
4378 som_section_data (section)->copy_data->is_private = private;
4379 som_section_data (section)->copy_data->container = section;
4380 som_section_data (section)->copy_data->space_number = spnum;
4381 return true;
4382 }
4383
4384 /* Set backend info for subsections which can not be described
4385 in the BFD data structures. */
4386
4387 boolean
4388 bfd_som_set_subsection_attributes (section, container, access,
4389 sort_key, quadrant)
4390 asection *section;
4391 asection *container;
4392 int access;
4393 unsigned int sort_key;
4394 int quadrant;
4395 {
4396 /* Allocate memory to hold the magic information. */
4397 if (som_section_data (section)->copy_data == NULL)
4398 {
4399 som_section_data (section)->copy_data
4400 = (struct som_copyable_section_data_struct *)
4401 bfd_zalloc (section->owner,
4402 sizeof (struct som_copyable_section_data_struct));
4403 if (som_section_data (section)->copy_data == NULL)
4404 {
4405 bfd_set_error (bfd_error_no_memory);
4406 return false;
4407 }
4408 }
4409 som_section_data (section)->copy_data->sort_key = sort_key;
4410 som_section_data (section)->copy_data->access_control_bits = access;
4411 som_section_data (section)->copy_data->quadrant = quadrant;
4412 som_section_data (section)->copy_data->container = container;
4413 return true;
4414 }
4415
4416 /* Set the full SOM symbol type. SOM needs far more symbol information
4417 than any other object file format I'm aware of. It is mandatory
4418 to be able to know if a symbol is an entry point, millicode, data,
4419 code, absolute, storage request, or procedure label. If you get
4420 the symbol type wrong your program will not link. */
4421
4422 void
4423 bfd_som_set_symbol_type (symbol, type)
4424 asymbol *symbol;
4425 unsigned int type;
4426 {
4427 som_symbol_data (symbol)->som_type = type;
4428 }
4429
4430 /* Attach 64bits of unwind information to a symbol (which hopefully
4431 is a function of some kind!). It would be better to keep this
4432 in the R_ENTRY relocation, but there is not enough space. */
4433
4434 void
4435 bfd_som_attach_unwind_info (symbol, unwind_desc)
4436 asymbol *symbol;
4437 char *unwind_desc;
4438 {
4439 som_symbol_data (symbol)->unwind = unwind_desc;
4440 }
4441
4442 /* Attach an auxiliary header to the BFD backend so that it may be
4443 written into the object file. */
4444 boolean
4445 bfd_som_attach_aux_hdr (abfd, type, string)
4446 bfd *abfd;
4447 int type;
4448 char *string;
4449 {
4450 if (type == VERSION_AUX_ID)
4451 {
4452 int len = strlen (string);
4453 int pad = 0;
4454
4455 if (len % 4)
4456 pad = (4 - (len % 4));
4457 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4458 bfd_zalloc (abfd, sizeof (struct aux_id)
4459 + sizeof (unsigned int) + len + pad);
4460 if (!obj_som_version_hdr (abfd))
4461 {
4462 bfd_set_error (bfd_error_no_memory);
4463 return false;
4464 }
4465 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4466 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4467 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4468 obj_som_version_hdr (abfd)->string_length = len;
4469 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4470 }
4471 else if (type == COPYRIGHT_AUX_ID)
4472 {
4473 int len = strlen (string);
4474 int pad = 0;
4475
4476 if (len % 4)
4477 pad = (4 - (len % 4));
4478 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4479 bfd_zalloc (abfd, sizeof (struct aux_id)
4480 + sizeof (unsigned int) + len + pad);
4481 if (!obj_som_copyright_hdr (abfd))
4482 {
4483 bfd_set_error (bfd_error_no_memory);
4484 return false;
4485 }
4486 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4487 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4488 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4489 obj_som_copyright_hdr (abfd)->string_length = len;
4490 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4491 }
4492 return true;
4493 }
4494
4495 static boolean
4496 som_get_section_contents (abfd, section, location, offset, count)
4497 bfd *abfd;
4498 sec_ptr section;
4499 PTR location;
4500 file_ptr offset;
4501 bfd_size_type count;
4502 {
4503 if (count == 0 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4504 return true;
4505 if ((bfd_size_type)(offset+count) > section->_raw_size
4506 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4507 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4508 return (false); /* on error */
4509 return (true);
4510 }
4511
4512 static boolean
4513 som_set_section_contents (abfd, section, location, offset, count)
4514 bfd *abfd;
4515 sec_ptr section;
4516 PTR location;
4517 file_ptr offset;
4518 bfd_size_type count;
4519 {
4520 if (abfd->output_has_begun == false)
4521 {
4522 /* Set up fixed parts of the file, space, and subspace headers.
4523 Notify the world that output has begun. */
4524 som_prep_headers (abfd);
4525 abfd->output_has_begun = true;
4526 /* Start writing the object file. This include all the string
4527 tables, fixup streams, and other portions of the object file. */
4528 som_begin_writing (abfd);
4529 }
4530
4531 /* Only write subspaces which have "real" contents (eg. the contents
4532 are not generated at run time by the OS). */
4533 if (!som_is_subspace (section)
4534 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4535 return true;
4536
4537 /* Seek to the proper offset within the object file and write the
4538 data. */
4539 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4540 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4541 return false;
4542
4543 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4544 return false;
4545 return true;
4546 }
4547
4548 static boolean
4549 som_set_arch_mach (abfd, arch, machine)
4550 bfd *abfd;
4551 enum bfd_architecture arch;
4552 unsigned long machine;
4553 {
4554 /* Allow any architecture to be supported by the SOM backend */
4555 return bfd_default_set_arch_mach (abfd, arch, machine);
4556 }
4557
4558 static boolean
4559 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4560 functionname_ptr, line_ptr)
4561 bfd *abfd;
4562 asection *section;
4563 asymbol **symbols;
4564 bfd_vma offset;
4565 CONST char **filename_ptr;
4566 CONST char **functionname_ptr;
4567 unsigned int *line_ptr;
4568 {
4569 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4570 fflush (stderr);
4571 abort ();
4572 return (false);
4573 }
4574
4575 static int
4576 som_sizeof_headers (abfd, reloc)
4577 bfd *abfd;
4578 boolean reloc;
4579 {
4580 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4581 fflush (stderr);
4582 abort ();
4583 return (0);
4584 }
4585
4586 /* Return the single-character symbol type corresponding to
4587 SOM section S, or '?' for an unknown SOM section. */
4588
4589 static char
4590 som_section_type (s)
4591 const char *s;
4592 {
4593 const struct section_to_type *t;
4594
4595 for (t = &stt[0]; t->section; t++)
4596 if (!strcmp (s, t->section))
4597 return t->type;
4598 return '?';
4599 }
4600
4601 static int
4602 som_decode_symclass (symbol)
4603 asymbol *symbol;
4604 {
4605 char c;
4606
4607 if (bfd_is_com_section (symbol->section))
4608 return 'C';
4609 if (symbol->section == &bfd_und_section)
4610 return 'U';
4611 if (symbol->section == &bfd_ind_section)
4612 return 'I';
4613 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4614 return '?';
4615
4616 if (symbol->section == &bfd_abs_section)
4617 c = 'a';
4618 else if (symbol->section)
4619 c = som_section_type (symbol->section->name);
4620 else
4621 return '?';
4622 if (symbol->flags & BSF_GLOBAL)
4623 c = toupper (c);
4624 return c;
4625 }
4626
4627 /* Return information about SOM symbol SYMBOL in RET. */
4628
4629 static void
4630 som_get_symbol_info (ignore_abfd, symbol, ret)
4631 bfd *ignore_abfd;
4632 asymbol *symbol;
4633 symbol_info *ret;
4634 {
4635 ret->type = som_decode_symclass (symbol);
4636 if (ret->type != 'U')
4637 ret->value = symbol->value+symbol->section->vma;
4638 else
4639 ret->value = 0;
4640 ret->name = symbol->name;
4641 }
4642
4643 /* Count the number of symbols in the archive symbol table. Necessary
4644 so that we can allocate space for all the carsyms at once. */
4645
4646 static boolean
4647 som_bfd_count_ar_symbols (abfd, lst_header, count)
4648 bfd *abfd;
4649 struct lst_header *lst_header;
4650 symindex *count;
4651 {
4652 unsigned int i;
4653 unsigned int *hash_table = NULL;
4654 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4655
4656 hash_table =
4657 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4658 if (hash_table == NULL && lst_header->hash_size != 0)
4659 {
4660 bfd_set_error (bfd_error_no_memory);
4661 goto error_return;
4662 }
4663
4664 /* Don't forget to initialize the counter! */
4665 *count = 0;
4666
4667 /* Read in the hash table. The has table is an array of 32bit file offsets
4668 which point to the hash chains. */
4669 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4670 != lst_header->hash_size * 4)
4671 goto error_return;
4672
4673 /* Walk each chain counting the number of symbols found on that particular
4674 chain. */
4675 for (i = 0; i < lst_header->hash_size; i++)
4676 {
4677 struct lst_symbol_record lst_symbol;
4678
4679 /* An empty chain has zero as it's file offset. */
4680 if (hash_table[i] == 0)
4681 continue;
4682
4683 /* Seek to the first symbol in this hash chain. */
4684 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4685 goto error_return;
4686
4687 /* Read in this symbol and update the counter. */
4688 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4689 != sizeof (lst_symbol))
4690 goto error_return;
4691
4692 (*count)++;
4693
4694 /* Now iterate through the rest of the symbols on this chain. */
4695 while (lst_symbol.next_entry)
4696 {
4697
4698 /* Seek to the next symbol. */
4699 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4700 < 0)
4701 goto error_return;
4702
4703 /* Read the symbol in and update the counter. */
4704 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4705 != sizeof (lst_symbol))
4706 goto error_return;
4707
4708 (*count)++;
4709 }
4710 }
4711 if (hash_table != NULL)
4712 free (hash_table);
4713 return true;
4714
4715 error_return:
4716 if (hash_table != NULL)
4717 free (hash_table);
4718 return false;
4719 }
4720
4721 /* Fill in the canonical archive symbols (SYMS) from the archive described
4722 by ABFD and LST_HEADER. */
4723
4724 static boolean
4725 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4726 bfd *abfd;
4727 struct lst_header *lst_header;
4728 carsym **syms;
4729 {
4730 unsigned int i, len;
4731 carsym *set = syms[0];
4732 unsigned int *hash_table = NULL;
4733 struct som_entry *som_dict = NULL;
4734 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4735
4736 hash_table =
4737 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4738 if (hash_table == NULL && lst_header->hash_size != 0)
4739 {
4740 bfd_set_error (bfd_error_no_memory);
4741 goto error_return;
4742 }
4743
4744 som_dict =
4745 (struct som_entry *) malloc (lst_header->module_count
4746 * sizeof (struct som_entry));
4747 if (som_dict == NULL && lst_header->module_count != 0)
4748 {
4749 bfd_set_error (bfd_error_no_memory);
4750 goto error_return;
4751 }
4752
4753 /* Read in the hash table. The has table is an array of 32bit file offsets
4754 which point to the hash chains. */
4755 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4756 != lst_header->hash_size * 4)
4757 goto error_return;
4758
4759 /* Seek to and read in the SOM dictionary. We will need this to fill
4760 in the carsym's filepos field. */
4761 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4762 goto error_return;
4763
4764 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4765 sizeof (struct som_entry), abfd)
4766 != lst_header->module_count * sizeof (struct som_entry))
4767 goto error_return;
4768
4769 /* Walk each chain filling in the carsyms as we go along. */
4770 for (i = 0; i < lst_header->hash_size; i++)
4771 {
4772 struct lst_symbol_record lst_symbol;
4773
4774 /* An empty chain has zero as it's file offset. */
4775 if (hash_table[i] == 0)
4776 continue;
4777
4778 /* Seek to and read the first symbol on the chain. */
4779 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4780 goto error_return;
4781
4782 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4783 != sizeof (lst_symbol))
4784 goto error_return;
4785
4786 /* Get the name of the symbol, first get the length which is stored
4787 as a 32bit integer just before the symbol.
4788
4789 One might ask why we don't just read in the entire string table
4790 and index into it. Well, according to the SOM ABI the string
4791 index can point *anywhere* in the archive to save space, so just
4792 using the string table would not be safe. */
4793 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4794 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4795 goto error_return;
4796
4797 if (bfd_read (&len, 1, 4, abfd) != 4)
4798 goto error_return;
4799
4800 /* Allocate space for the name and null terminate it too. */
4801 set->name = bfd_zalloc (abfd, len + 1);
4802 if (!set->name)
4803 {
4804 bfd_set_error (bfd_error_no_memory);
4805 goto error_return;
4806 }
4807 if (bfd_read (set->name, 1, len, abfd) != len)
4808 goto error_return;
4809
4810 set->name[len] = 0;
4811
4812 /* Fill in the file offset. Note that the "location" field points
4813 to the SOM itself, not the ar_hdr in front of it. */
4814 set->file_offset = som_dict[lst_symbol.som_index].location
4815 - sizeof (struct ar_hdr);
4816
4817 /* Go to the next symbol. */
4818 set++;
4819
4820 /* Iterate through the rest of the chain. */
4821 while (lst_symbol.next_entry)
4822 {
4823 /* Seek to the next symbol and read it in. */
4824 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4825 goto error_return;
4826
4827 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4828 != sizeof (lst_symbol))
4829 goto error_return;
4830
4831 /* Seek to the name length & string and read them in. */
4832 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4833 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4834 goto error_return;
4835
4836 if (bfd_read (&len, 1, 4, abfd) != 4)
4837 goto error_return;
4838
4839 /* Allocate space for the name and null terminate it too. */
4840 set->name = bfd_zalloc (abfd, len + 1);
4841 if (!set->name)
4842 {
4843 bfd_set_error (bfd_error_no_memory);
4844 goto error_return;
4845 }
4846
4847 if (bfd_read (set->name, 1, len, abfd) != len)
4848 goto error_return;
4849 set->name[len] = 0;
4850
4851 /* Fill in the file offset. Note that the "location" field points
4852 to the SOM itself, not the ar_hdr in front of it. */
4853 set->file_offset = som_dict[lst_symbol.som_index].location
4854 - sizeof (struct ar_hdr);
4855
4856 /* Go on to the next symbol. */
4857 set++;
4858 }
4859 }
4860 /* If we haven't died by now, then we successfully read the entire
4861 archive symbol table. */
4862 if (hash_table != NULL)
4863 free (hash_table);
4864 if (som_dict != NULL)
4865 free (som_dict);
4866 return true;
4867
4868 error_return:
4869 if (hash_table != NULL)
4870 free (hash_table);
4871 if (som_dict != NULL)
4872 free (som_dict);
4873 return false;
4874 }
4875
4876 /* Read in the LST from the archive. */
4877 static boolean
4878 som_slurp_armap (abfd)
4879 bfd *abfd;
4880 {
4881 struct lst_header lst_header;
4882 struct ar_hdr ar_header;
4883 unsigned int parsed_size;
4884 struct artdata *ardata = bfd_ardata (abfd);
4885 char nextname[17];
4886 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4887
4888 /* Special cases. */
4889 if (i == 0)
4890 return true;
4891 if (i != 16)
4892 return false;
4893
4894 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4895 return false;
4896
4897 /* For archives without .o files there is no symbol table. */
4898 if (strncmp (nextname, "/ ", 16))
4899 {
4900 bfd_has_map (abfd) = false;
4901 return true;
4902 }
4903
4904 /* Read in and sanity check the archive header. */
4905 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4906 != sizeof (struct ar_hdr))
4907 return false;
4908
4909 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4910 {
4911 bfd_set_error (bfd_error_malformed_archive);
4912 return false;
4913 }
4914
4915 /* How big is the archive symbol table entry? */
4916 errno = 0;
4917 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4918 if (errno != 0)
4919 {
4920 bfd_set_error (bfd_error_malformed_archive);
4921 return false;
4922 }
4923
4924 /* Save off the file offset of the first real user data. */
4925 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4926
4927 /* Read in the library symbol table. We'll make heavy use of this
4928 in just a minute. */
4929 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4930 != sizeof (struct lst_header))
4931 return false;
4932
4933 /* Sanity check. */
4934 if (lst_header.a_magic != LIBMAGIC)
4935 {
4936 bfd_set_error (bfd_error_malformed_archive);
4937 return false;
4938 }
4939
4940 /* Count the number of symbols in the library symbol table. */
4941 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4942 == false)
4943 return false;
4944
4945 /* Get back to the start of the library symbol table. */
4946 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4947 + sizeof (struct lst_header), SEEK_SET) < 0)
4948 return false;
4949
4950 /* Initializae the cache and allocate space for the library symbols. */
4951 ardata->cache = 0;
4952 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4953 (ardata->symdef_count
4954 * sizeof (carsym)));
4955 if (!ardata->symdefs)
4956 {
4957 bfd_set_error (bfd_error_no_memory);
4958 return false;
4959 }
4960
4961 /* Now fill in the canonical archive symbols. */
4962 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4963 == false)
4964 return false;
4965
4966 /* Seek back to the "first" file in the archive. Note the "first"
4967 file may be the extended name table. */
4968 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
4969 return false;
4970
4971 /* Notify the generic archive code that we have a symbol map. */
4972 bfd_has_map (abfd) = true;
4973 return true;
4974 }
4975
4976 /* Begin preparing to write a SOM library symbol table.
4977
4978 As part of the prep work we need to determine the number of symbols
4979 and the size of the associated string section. */
4980
4981 static boolean
4982 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
4983 bfd *abfd;
4984 unsigned int *num_syms, *stringsize;
4985 {
4986 bfd *curr_bfd = abfd->archive_head;
4987
4988 /* Some initialization. */
4989 *num_syms = 0;
4990 *stringsize = 0;
4991
4992 /* Iterate over each BFD within this archive. */
4993 while (curr_bfd != NULL)
4994 {
4995 unsigned int curr_count, i;
4996 som_symbol_type *sym;
4997
4998 /* Don't bother for non-SOM objects. */
4999 if (curr_bfd->format != bfd_object
5000 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5001 {
5002 curr_bfd = curr_bfd->next;
5003 continue;
5004 }
5005
5006 /* Make sure the symbol table has been read, then snag a pointer
5007 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5008 but doing so avoids allocating lots of extra memory. */
5009 if (som_slurp_symbol_table (curr_bfd) == false)
5010 return false;
5011
5012 sym = obj_som_symtab (curr_bfd);
5013 curr_count = bfd_get_symcount (curr_bfd);
5014
5015 /* Examine each symbol to determine if it belongs in the
5016 library symbol table. */
5017 for (i = 0; i < curr_count; i++, sym++)
5018 {
5019 struct som_misc_symbol_info info;
5020
5021 /* Derive SOM information from the BFD symbol. */
5022 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5023
5024 /* Should we include this symbol? */
5025 if (info.symbol_type == ST_NULL
5026 || info.symbol_type == ST_SYM_EXT
5027 || info.symbol_type == ST_ARG_EXT)
5028 continue;
5029
5030 /* Only global symbols and unsatisfied commons. */
5031 if (info.symbol_scope != SS_UNIVERSAL
5032 && info.symbol_type != ST_STORAGE)
5033 continue;
5034
5035 /* Do no include undefined symbols. */
5036 if (sym->symbol.section == &bfd_und_section)
5037 continue;
5038
5039 /* Bump the various counters, being careful to honor
5040 alignment considerations in the string table. */
5041 (*num_syms)++;
5042 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5043 while (*stringsize % 4)
5044 (*stringsize)++;
5045 }
5046
5047 curr_bfd = curr_bfd->next;
5048 }
5049 return true;
5050 }
5051
5052 /* Hash a symbol name based on the hashing algorithm presented in the
5053 SOM ABI. */
5054 static unsigned int
5055 som_bfd_ar_symbol_hash (symbol)
5056 asymbol *symbol;
5057 {
5058 unsigned int len = strlen (symbol->name);
5059
5060 /* Names with length 1 are special. */
5061 if (len == 1)
5062 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5063
5064 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5065 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5066 }
5067
5068 static CONST char *
5069 normalize (file)
5070 CONST char *file;
5071 {
5072 CONST char *filename = strrchr (file, '/');
5073
5074 if (filename != NULL)
5075 filename++;
5076 else
5077 filename = file;
5078 return filename;
5079 }
5080
5081 /* Do the bulk of the work required to write the SOM library
5082 symbol table. */
5083
5084 static boolean
5085 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5086 bfd *abfd;
5087 unsigned int nsyms, string_size;
5088 struct lst_header lst;
5089 {
5090 file_ptr lst_filepos;
5091 char *strings = NULL, *p;
5092 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5093 bfd *curr_bfd;
5094 unsigned int *hash_table = NULL;
5095 struct som_entry *som_dict = NULL;
5096 struct lst_symbol_record **last_hash_entry = NULL;
5097 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5098 unsigned int maxname = abfd->xvec->ar_max_namelen;
5099
5100 hash_table =
5101 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5102 if (hash_table == NULL && lst.hash_size != 0)
5103 {
5104 bfd_set_error (bfd_error_no_memory);
5105 goto error_return;
5106 }
5107 som_dict =
5108 (struct som_entry *) malloc (lst.module_count
5109 * sizeof (struct som_entry));
5110 if (som_dict == NULL && lst.module_count != 0)
5111 {
5112 bfd_set_error (bfd_error_no_memory);
5113 goto error_return;
5114 }
5115
5116 last_hash_entry =
5117 ((struct lst_symbol_record **)
5118 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5119 if (last_hash_entry == NULL && lst.hash_size != 0)
5120 {
5121 bfd_set_error (bfd_error_no_memory);
5122 goto error_return;
5123 }
5124
5125 /* Lots of fields are file positions relative to the start
5126 of the lst record. So save its location. */
5127 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5128
5129 /* Some initialization. */
5130 memset (hash_table, 0, 4 * lst.hash_size);
5131 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5132 memset (last_hash_entry, 0,
5133 lst.hash_size * sizeof (struct lst_symbol_record *));
5134
5135 /* Symbols have som_index fields, so we have to keep track of the
5136 index of each SOM in the archive.
5137
5138 The SOM dictionary has (among other things) the absolute file
5139 position for the SOM which a particular dictionary entry
5140 describes. We have to compute that information as we iterate
5141 through the SOMs/symbols. */
5142 som_index = 0;
5143 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5144
5145 /* Yow! We have to know the size of the extended name table
5146 too. */
5147 for (curr_bfd = abfd->archive_head;
5148 curr_bfd != NULL;
5149 curr_bfd = curr_bfd->next)
5150 {
5151 CONST char *normal = normalize (curr_bfd->filename);
5152 unsigned int thislen;
5153
5154 if (!normal)
5155 {
5156 bfd_set_error (bfd_error_no_memory);
5157 return false;
5158 }
5159 thislen = strlen (normal);
5160 if (thislen > maxname)
5161 extended_name_length += thislen + 1;
5162 }
5163
5164 /* Make room for the archive header and the contents of the
5165 extended string table. */
5166 if (extended_name_length)
5167 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5168
5169 /* Make sure we're properly aligned. */
5170 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5171
5172 /* FIXME should be done with buffers just like everything else... */
5173 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5174 if (lst_syms == NULL && nsyms != 0)
5175 {
5176 bfd_set_error (bfd_error_no_memory);
5177 goto error_return;
5178 }
5179 strings = malloc (string_size);
5180 if (strings == NULL && string_size != 0)
5181 {
5182 bfd_set_error (bfd_error_no_memory);
5183 goto error_return;
5184 }
5185
5186 p = strings;
5187 curr_lst_sym = lst_syms;
5188
5189 curr_bfd = abfd->archive_head;
5190 while (curr_bfd != NULL)
5191 {
5192 unsigned int curr_count, i;
5193 som_symbol_type *sym;
5194
5195 /* Don't bother for non-SOM objects. */
5196 if (curr_bfd->format != bfd_object
5197 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5198 {
5199 curr_bfd = curr_bfd->next;
5200 continue;
5201 }
5202
5203 /* Make sure the symbol table has been read, then snag a pointer
5204 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5205 but doing so avoids allocating lots of extra memory. */
5206 if (som_slurp_symbol_table (curr_bfd) == false)
5207 goto error_return;
5208
5209 sym = obj_som_symtab (curr_bfd);
5210 curr_count = bfd_get_symcount (curr_bfd);
5211
5212 for (i = 0; i < curr_count; i++, sym++)
5213 {
5214 struct som_misc_symbol_info info;
5215
5216 /* Derive SOM information from the BFD symbol. */
5217 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5218
5219 /* Should we include this symbol? */
5220 if (info.symbol_type == ST_NULL
5221 || info.symbol_type == ST_SYM_EXT
5222 || info.symbol_type == ST_ARG_EXT)
5223 continue;
5224
5225 /* Only global symbols and unsatisfied commons. */
5226 if (info.symbol_scope != SS_UNIVERSAL
5227 && info.symbol_type != ST_STORAGE)
5228 continue;
5229
5230 /* Do no include undefined symbols. */
5231 if (sym->symbol.section == &bfd_und_section)
5232 continue;
5233
5234 /* If this is the first symbol from this SOM, then update
5235 the SOM dictionary too. */
5236 if (som_dict[som_index].location == 0)
5237 {
5238 som_dict[som_index].location = curr_som_offset;
5239 som_dict[som_index].length = arelt_size (curr_bfd);
5240 }
5241
5242 /* Fill in the lst symbol record. */
5243 curr_lst_sym->hidden = 0;
5244 curr_lst_sym->secondary_def = 0;
5245 curr_lst_sym->symbol_type = info.symbol_type;
5246 curr_lst_sym->symbol_scope = info.symbol_scope;
5247 curr_lst_sym->check_level = 0;
5248 curr_lst_sym->must_qualify = 0;
5249 curr_lst_sym->initially_frozen = 0;
5250 curr_lst_sym->memory_resident = 0;
5251 curr_lst_sym->is_common = (sym->symbol.section == &bfd_com_section);
5252 curr_lst_sym->dup_common = 0;
5253 curr_lst_sym->xleast = 0;
5254 curr_lst_sym->arg_reloc = info.arg_reloc;
5255 curr_lst_sym->name.n_strx = p - strings + 4;
5256 curr_lst_sym->qualifier_name.n_strx = 0;
5257 curr_lst_sym->symbol_info = info.symbol_info;
5258 curr_lst_sym->symbol_value = info.symbol_value;
5259 curr_lst_sym->symbol_descriptor = 0;
5260 curr_lst_sym->reserved = 0;
5261 curr_lst_sym->som_index = som_index;
5262 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5263 curr_lst_sym->next_entry = 0;
5264
5265 /* Insert into the hash table. */
5266 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5267 {
5268 struct lst_symbol_record *tmp;
5269
5270 /* There is already something at the head of this hash chain,
5271 so tack this symbol onto the end of the chain. */
5272 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5273 tmp->next_entry
5274 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5275 + lst.hash_size * 4
5276 + lst.module_count * sizeof (struct som_entry)
5277 + sizeof (struct lst_header);
5278 }
5279 else
5280 {
5281 /* First entry in this hash chain. */
5282 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5283 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5284 + lst.hash_size * 4
5285 + lst.module_count * sizeof (struct som_entry)
5286 + sizeof (struct lst_header);
5287 }
5288
5289 /* Keep track of the last symbol we added to this chain so we can
5290 easily update its next_entry pointer. */
5291 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5292 = curr_lst_sym;
5293
5294
5295 /* Update the string table. */
5296 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5297 p += 4;
5298 strcpy (p, sym->symbol.name);
5299 p += strlen (sym->symbol.name) + 1;
5300 while ((int)p % 4)
5301 {
5302 bfd_put_8 (abfd, 0, p);
5303 p++;
5304 }
5305
5306 /* Head to the next symbol. */
5307 curr_lst_sym++;
5308 }
5309
5310 /* Keep track of where each SOM will finally reside; then look
5311 at the next BFD. */
5312 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5313 curr_bfd = curr_bfd->next;
5314 som_index++;
5315 }
5316
5317 /* Now scribble out the hash table. */
5318 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5319 != lst.hash_size * 4)
5320 goto error_return;
5321
5322 /* Then the SOM dictionary. */
5323 if (bfd_write ((PTR) som_dict, lst.module_count,
5324 sizeof (struct som_entry), abfd)
5325 != lst.module_count * sizeof (struct som_entry))
5326 goto error_return;
5327
5328 /* The library symbols. */
5329 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5330 != nsyms * sizeof (struct lst_symbol_record))
5331 goto error_return;
5332
5333 /* And finally the strings. */
5334 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5335 goto error_return;
5336
5337 if (hash_table != NULL)
5338 free (hash_table);
5339 if (som_dict != NULL)
5340 free (som_dict);
5341 if (last_hash_entry != NULL)
5342 free (last_hash_entry);
5343 if (lst_syms != NULL)
5344 free (lst_syms);
5345 if (strings != NULL)
5346 free (strings);
5347 return true;
5348
5349 error_return:
5350 if (hash_table != NULL)
5351 free (hash_table);
5352 if (som_dict != NULL)
5353 free (som_dict);
5354 if (last_hash_entry != NULL)
5355 free (last_hash_entry);
5356 if (lst_syms != NULL)
5357 free (lst_syms);
5358 if (strings != NULL)
5359 free (strings);
5360
5361 return false;
5362 }
5363
5364 /* Write out the LST for the archive.
5365
5366 You'll never believe this is really how armaps are handled in SOM... */
5367
5368 /*ARGSUSED*/
5369 static boolean
5370 som_write_armap (abfd, elength, map, orl_count, stridx)
5371 bfd *abfd;
5372 unsigned int elength;
5373 struct orl *map;
5374 unsigned int orl_count;
5375 int stridx;
5376 {
5377 bfd *curr_bfd;
5378 struct stat statbuf;
5379 unsigned int i, lst_size, nsyms, stringsize;
5380 struct ar_hdr hdr;
5381 struct lst_header lst;
5382 int *p;
5383
5384 /* We'll use this for the archive's date and mode later. */
5385 if (stat (abfd->filename, &statbuf) != 0)
5386 {
5387 bfd_set_error (bfd_error_system_call);
5388 return false;
5389 }
5390 /* Fudge factor. */
5391 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5392
5393 /* Account for the lst header first. */
5394 lst_size = sizeof (struct lst_header);
5395
5396 /* Start building the LST header. */
5397 lst.system_id = CPU_PA_RISC1_0;
5398 lst.a_magic = LIBMAGIC;
5399 lst.version_id = VERSION_ID;
5400 lst.file_time.secs = 0;
5401 lst.file_time.nanosecs = 0;
5402
5403 lst.hash_loc = lst_size;
5404 lst.hash_size = SOM_LST_HASH_SIZE;
5405
5406 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5407 lst_size += 4 * SOM_LST_HASH_SIZE;
5408
5409 /* We need to count the number of SOMs in this archive. */
5410 curr_bfd = abfd->archive_head;
5411 lst.module_count = 0;
5412 while (curr_bfd != NULL)
5413 {
5414 /* Only true SOM objects count. */
5415 if (curr_bfd->format == bfd_object
5416 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5417 lst.module_count++;
5418 curr_bfd = curr_bfd->next;
5419 }
5420 lst.module_limit = lst.module_count;
5421 lst.dir_loc = lst_size;
5422 lst_size += sizeof (struct som_entry) * lst.module_count;
5423
5424 /* We don't support import/export tables, auxiliary headers,
5425 or free lists yet. Make the linker work a little harder
5426 to make our life easier. */
5427
5428 lst.export_loc = 0;
5429 lst.export_count = 0;
5430 lst.import_loc = 0;
5431 lst.aux_loc = 0;
5432 lst.aux_size = 0;
5433
5434 /* Count how many symbols we will have on the hash chains and the
5435 size of the associated string table. */
5436 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5437 return false;
5438
5439 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5440
5441 /* For the string table. One day we might actually use this info
5442 to avoid small seeks/reads when reading archives. */
5443 lst.string_loc = lst_size;
5444 lst.string_size = stringsize;
5445 lst_size += stringsize;
5446
5447 /* SOM ABI says this must be zero. */
5448 lst.free_list = 0;
5449 lst.file_end = lst_size;
5450
5451 /* Compute the checksum. Must happen after the entire lst header
5452 has filled in. */
5453 p = (int *)&lst;
5454 lst.checksum = 0;
5455 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5456 lst.checksum ^= *p++;
5457
5458 sprintf (hdr.ar_name, "/ ");
5459 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5460 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5461 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5462 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5463 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5464 hdr.ar_fmag[0] = '`';
5465 hdr.ar_fmag[1] = '\012';
5466
5467 /* Turn any nulls into spaces. */
5468 for (i = 0; i < sizeof (struct ar_hdr); i++)
5469 if (((char *) (&hdr))[i] == '\0')
5470 (((char *) (&hdr))[i]) = ' ';
5471
5472 /* Scribble out the ar header. */
5473 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5474 != sizeof (struct ar_hdr))
5475 return false;
5476
5477 /* Now scribble out the lst header. */
5478 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5479 != sizeof (struct lst_header))
5480 return false;
5481
5482 /* Build and write the armap. */
5483 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5484 return false;
5485
5486 /* Done. */
5487 return true;
5488 }
5489
5490 /* Free all information we have cached for this BFD. We can always
5491 read it again later if we need it. */
5492
5493 static boolean
5494 som_bfd_free_cached_info (abfd)
5495 bfd *abfd;
5496 {
5497 asection *o;
5498
5499 if (bfd_get_format (abfd) != bfd_object)
5500 return true;
5501
5502 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5503 /* Free the native string and symbol tables. */
5504 FREE (obj_som_symtab (abfd));
5505 FREE (obj_som_stringtab (abfd));
5506 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5507 {
5508 /* Free the native relocations. */
5509 o->reloc_count = -1;
5510 FREE (som_section_data (o)->reloc_stream);
5511 /* Free the generic relocations. */
5512 FREE (o->relocation);
5513 }
5514 #undef FREE
5515
5516 return true;
5517 }
5518
5519 /* End of miscellaneous support functions. */
5520
5521 #define som_close_and_cleanup som_bfd_free_cached_info
5522
5523 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5524 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5525 #define som_truncate_arname bfd_bsd_truncate_arname
5526 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5527
5528 #define som_get_lineno _bfd_nosymbols_get_lineno
5529 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5530
5531 #define som_bfd_get_relocated_section_contents \
5532 bfd_generic_get_relocated_section_contents
5533 #define som_bfd_relax_section bfd_generic_relax_section
5534 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5535 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5536 #define som_bfd_final_link _bfd_generic_final_link
5537
5538 const bfd_target som_vec =
5539 {
5540 "som", /* name */
5541 bfd_target_som_flavour,
5542 true, /* target byte order */
5543 true, /* target headers byte order */
5544 (HAS_RELOC | EXEC_P | /* object flags */
5545 HAS_LINENO | HAS_DEBUG |
5546 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5547 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5548 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5549
5550 /* leading_symbol_char: is the first char of a user symbol
5551 predictable, and if so what is it */
5552 0,
5553 '/', /* ar_pad_char */
5554 14, /* ar_max_namelen */
5555 3, /* minimum alignment */
5556 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5557 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5558 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5559 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5560 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5561 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5562 {_bfd_dummy_target,
5563 som_object_p, /* bfd_check_format */
5564 bfd_generic_archive_p,
5565 _bfd_dummy_target
5566 },
5567 {
5568 bfd_false,
5569 som_mkobject,
5570 _bfd_generic_mkarchive,
5571 bfd_false
5572 },
5573 {
5574 bfd_false,
5575 som_write_object_contents,
5576 _bfd_write_archive_contents,
5577 bfd_false,
5578 },
5579 #undef som
5580
5581 BFD_JUMP_TABLE_GENERIC (som),
5582 BFD_JUMP_TABLE_COPY (som),
5583 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5584 BFD_JUMP_TABLE_ARCHIVE (som),
5585 BFD_JUMP_TABLE_SYMBOLS (som),
5586 BFD_JUMP_TABLE_RELOCS (som),
5587 BFD_JUMP_TABLE_WRITE (som),
5588 BFD_JUMP_TABLE_LINK (som),
5589 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
5590
5591 (PTR) 0
5592 };
5593
5594 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.212584 seconds and 4 git commands to generate.