daily update
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah.
8
9 This file is part of BFD, the Binary File Descriptor library.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24 02111-1307, USA. */
25
26 #include "alloca-conf.h"
27 #include "bfd.h"
28 #include "sysdep.h"
29
30 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX)
31
32 #include "libbfd.h"
33 #include "som.h"
34 #include "safe-ctype.h"
35
36 #include <sys/param.h>
37 #include <signal.h>
38 #include <machine/reg.h>
39 #include <sys/file.h>
40
41 /* Magic not defined in standard HP-UX header files until 8.0. */
42
43 #ifndef CPU_PA_RISC1_0
44 #define CPU_PA_RISC1_0 0x20B
45 #endif /* CPU_PA_RISC1_0 */
46
47 #ifndef CPU_PA_RISC1_1
48 #define CPU_PA_RISC1_1 0x210
49 #endif /* CPU_PA_RISC1_1 */
50
51 #ifndef CPU_PA_RISC2_0
52 #define CPU_PA_RISC2_0 0x214
53 #endif /* CPU_PA_RISC2_0 */
54
55 #ifndef _PA_RISC1_0_ID
56 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
57 #endif /* _PA_RISC1_0_ID */
58
59 #ifndef _PA_RISC1_1_ID
60 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
61 #endif /* _PA_RISC1_1_ID */
62
63 #ifndef _PA_RISC2_0_ID
64 #define _PA_RISC2_0_ID CPU_PA_RISC2_0
65 #endif /* _PA_RISC2_0_ID */
66
67 #ifndef _PA_RISC_MAXID
68 #define _PA_RISC_MAXID 0x2FF
69 #endif /* _PA_RISC_MAXID */
70
71 #ifndef _PA_RISC_ID
72 #define _PA_RISC_ID(__m_num) \
73 (((__m_num) == _PA_RISC1_0_ID) || \
74 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
75 #endif /* _PA_RISC_ID */
76
77 /* HIUX in it's infinite stupidity changed the names for several "well
78 known" constants. Work around such braindamage. Try the HPUX version
79 first, then the HIUX version, and finally provide a default. */
80 #ifdef HPUX_AUX_ID
81 #define EXEC_AUX_ID HPUX_AUX_ID
82 #endif
83
84 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
85 #define EXEC_AUX_ID HIUX_AUX_ID
86 #endif
87
88 #ifndef EXEC_AUX_ID
89 #define EXEC_AUX_ID 0
90 #endif
91
92 /* Size (in chars) of the temporary buffers used during fixup and string
93 table writes. */
94
95 #define SOM_TMP_BUFSIZE 8192
96
97 /* Size of the hash table in archives. */
98 #define SOM_LST_HASH_SIZE 31
99
100 /* Max number of SOMs to be found in an archive. */
101 #define SOM_LST_MODULE_LIMIT 1024
102
103 /* Generic alignment macro. */
104 #define SOM_ALIGN(val, alignment) \
105 (((val) + (alignment) - 1) &~ ((unsigned long) (alignment) - 1))
106
107 /* SOM allows any one of the four previous relocations to be reused
108 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
109 relocations are always a single byte, using a R_PREV_FIXUP instead
110 of some multi-byte relocation makes object files smaller.
111
112 Note one side effect of using a R_PREV_FIXUP is the relocation that
113 is being repeated moves to the front of the queue. */
114 struct reloc_queue {
115 unsigned char *reloc;
116 unsigned int size;
117 } reloc_queue[4];
118
119 /* This fully describes the symbol types which may be attached to
120 an EXPORT or IMPORT directive. Only SOM uses this formation
121 (ELF has no need for it). */
122 typedef enum {
123 SYMBOL_TYPE_UNKNOWN,
124 SYMBOL_TYPE_ABSOLUTE,
125 SYMBOL_TYPE_CODE,
126 SYMBOL_TYPE_DATA,
127 SYMBOL_TYPE_ENTRY,
128 SYMBOL_TYPE_MILLICODE,
129 SYMBOL_TYPE_PLABEL,
130 SYMBOL_TYPE_PRI_PROG,
131 SYMBOL_TYPE_SEC_PROG,
132 } pa_symbol_type;
133
134 struct section_to_type {
135 char *section;
136 char type;
137 };
138
139 /* Assorted symbol information that needs to be derived from the BFD symbol
140 and/or the BFD backend private symbol data. */
141 struct som_misc_symbol_info {
142 unsigned int symbol_type;
143 unsigned int symbol_scope;
144 unsigned int arg_reloc;
145 unsigned int symbol_info;
146 unsigned int symbol_value;
147 unsigned int priv_level;
148 unsigned int secondary_def;
149 };
150
151 /* Forward declarations. */
152
153 static bfd_boolean som_mkobject
154 PARAMS ((bfd *));
155 static const bfd_target * som_object_setup
156 PARAMS ((bfd *, struct header *, struct som_exec_auxhdr *, unsigned long));
157 static bfd_boolean setup_sections
158 PARAMS ((bfd *, struct header *, unsigned long));
159 static const bfd_target * som_object_p
160 PARAMS ((bfd *));
161 static bfd_boolean som_write_object_contents
162 PARAMS ((bfd *));
163 static bfd_boolean som_slurp_string_table
164 PARAMS ((bfd *));
165 static unsigned int som_slurp_symbol_table
166 PARAMS ((bfd *));
167 static long som_get_symtab_upper_bound
168 PARAMS ((bfd *));
169 static long som_canonicalize_reloc
170 PARAMS ((bfd *, sec_ptr, arelent **, asymbol **));
171 static long som_get_reloc_upper_bound
172 PARAMS ((bfd *, sec_ptr));
173 static unsigned int som_set_reloc_info
174 PARAMS ((unsigned char *, unsigned int, arelent *, asection *,
175 asymbol **, bfd_boolean));
176 static bfd_boolean som_slurp_reloc_table
177 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
178 static long som_canonicalize_symtab
179 PARAMS ((bfd *, asymbol **));
180 static asymbol * som_make_empty_symbol
181 PARAMS ((bfd *));
182 static void som_print_symbol
183 PARAMS ((bfd *, PTR, asymbol *, bfd_print_symbol_type));
184 static bfd_boolean som_new_section_hook
185 PARAMS ((bfd *, asection *));
186 static bfd_boolean som_bfd_copy_private_symbol_data
187 PARAMS ((bfd *, asymbol *, bfd *, asymbol *));
188 static bfd_boolean som_bfd_copy_private_section_data
189 PARAMS ((bfd *, asection *, bfd *, asection *));
190 static bfd_boolean som_bfd_copy_private_bfd_data
191 PARAMS ((bfd *, bfd *));
192 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
193 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
194 static bfd_boolean som_bfd_is_local_label_name
195 PARAMS ((bfd *, const char *));
196 static bfd_boolean som_set_section_contents
197 PARAMS ((bfd *, sec_ptr, PTR, file_ptr, bfd_size_type));
198 static bfd_boolean som_get_section_contents
199 PARAMS ((bfd *, sec_ptr, PTR, file_ptr, bfd_size_type));
200 static bfd_boolean som_set_arch_mach
201 PARAMS ((bfd *, enum bfd_architecture, unsigned long));
202 static bfd_boolean som_find_nearest_line
203 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
204 const char **, unsigned int *));
205 static void som_get_symbol_info
206 PARAMS ((bfd *, asymbol *, symbol_info *));
207 static asection * bfd_section_from_som_symbol
208 PARAMS ((bfd *, struct symbol_dictionary_record *));
209 static int log2
210 PARAMS ((unsigned int));
211 static bfd_reloc_status_type hppa_som_reloc
212 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
213 static void som_initialize_reloc_queue
214 PARAMS ((struct reloc_queue *));
215 static void som_reloc_queue_insert
216 PARAMS ((unsigned char *, unsigned int, struct reloc_queue *));
217 static void som_reloc_queue_fix
218 PARAMS ((struct reloc_queue *, unsigned int));
219 static int som_reloc_queue_find
220 PARAMS ((unsigned char *, unsigned int, struct reloc_queue *));
221 static unsigned char * try_prev_fixup
222 PARAMS ((bfd *, int *, unsigned char *, unsigned int, struct reloc_queue *));
223 static unsigned char * som_reloc_skip
224 PARAMS ((bfd *, unsigned int, unsigned char *, unsigned int *,
225 struct reloc_queue *));
226 static unsigned char * som_reloc_addend
227 PARAMS ((bfd *, bfd_vma, unsigned char *, unsigned int *,
228 struct reloc_queue *));
229 static unsigned char * som_reloc_call
230 PARAMS ((bfd *, unsigned char *, unsigned int *, arelent *, int,
231 struct reloc_queue *));
232 static unsigned long som_count_spaces
233 PARAMS ((bfd *));
234 static unsigned long som_count_subspaces
235 PARAMS ((bfd *));
236 static int compare_syms
237 PARAMS ((const void *, const void *));
238 static int compare_subspaces
239 PARAMS ((const void *, const void *));
240 static unsigned long som_compute_checksum
241 PARAMS ((bfd *));
242 static bfd_boolean som_prep_headers
243 PARAMS ((bfd *));
244 static int som_sizeof_headers
245 PARAMS ((bfd *, bfd_boolean));
246 static bfd_boolean som_finish_writing
247 PARAMS ((bfd *));
248 static bfd_boolean som_build_and_write_symbol_table
249 PARAMS ((bfd *));
250 static void som_prep_for_fixups
251 PARAMS ((bfd *, asymbol **, unsigned long));
252 static bfd_boolean som_write_fixups
253 PARAMS ((bfd *, unsigned long, unsigned int *));
254 static bfd_boolean som_write_space_strings
255 PARAMS ((bfd *, unsigned long, unsigned int *));
256 static bfd_boolean som_write_symbol_strings
257 PARAMS ((bfd *, unsigned long, asymbol **, unsigned int, unsigned *,
258 COMPUNIT *));
259 static bfd_boolean som_begin_writing
260 PARAMS ((bfd *));
261 static reloc_howto_type * som_bfd_reloc_type_lookup
262 PARAMS ((bfd *, bfd_reloc_code_real_type));
263 static char som_section_type
264 PARAMS ((const char *));
265 static int som_decode_symclass
266 PARAMS ((asymbol *));
267 static bfd_boolean som_bfd_count_ar_symbols
268 PARAMS ((bfd *, struct lst_header *, symindex *));
269 static bfd_boolean som_bfd_fill_in_ar_symbols
270 PARAMS ((bfd *, struct lst_header *, carsym **));
271 static bfd_boolean som_slurp_armap
272 PARAMS ((bfd *));
273 static bfd_boolean som_write_armap
274 PARAMS ((bfd *, unsigned int, struct orl *, unsigned int, int));
275 static void som_bfd_derive_misc_symbol_info
276 PARAMS ((bfd *, asymbol *, struct som_misc_symbol_info *));
277 static bfd_boolean som_bfd_prep_for_ar_write
278 PARAMS ((bfd *, unsigned int *, unsigned int *));
279 static unsigned int som_bfd_ar_symbol_hash
280 PARAMS ((asymbol *));
281 static bfd_boolean som_bfd_ar_write_symbol_stuff
282 PARAMS ((bfd *, unsigned int, unsigned int, struct lst_header,
283 unsigned int));
284 static bfd_boolean som_is_space
285 PARAMS ((asection *));
286 static bfd_boolean som_is_subspace
287 PARAMS ((asection *));
288 static bfd_boolean som_is_container
289 PARAMS ((asection *, asection *));
290 static bfd_boolean som_bfd_free_cached_info
291 PARAMS ((bfd *));
292 static bfd_boolean som_bfd_link_split_section
293 PARAMS ((bfd *, asection *));
294
295 /* Map SOM section names to POSIX/BSD single-character symbol types.
296
297 This table includes all the standard subspaces as defined in the
298 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
299 some reason was left out, and sections specific to embedded stabs. */
300
301 static const struct section_to_type stt[] = {
302 {"$TEXT$", 't'},
303 {"$SHLIB_INFO$", 't'},
304 {"$MILLICODE$", 't'},
305 {"$LIT$", 't'},
306 {"$CODE$", 't'},
307 {"$UNWIND_START$", 't'},
308 {"$UNWIND$", 't'},
309 {"$PRIVATE$", 'd'},
310 {"$PLT$", 'd'},
311 {"$SHLIB_DATA$", 'd'},
312 {"$DATA$", 'd'},
313 {"$SHORTDATA$", 'g'},
314 {"$DLT$", 'd'},
315 {"$GLOBAL$", 'g'},
316 {"$SHORTBSS$", 's'},
317 {"$BSS$", 'b'},
318 {"$GDB_STRINGS$", 'N'},
319 {"$GDB_SYMBOLS$", 'N'},
320 {0, 0}
321 };
322
323 /* About the relocation formatting table...
324
325 There are 256 entries in the table, one for each possible
326 relocation opcode available in SOM. We index the table by
327 the relocation opcode. The names and operations are those
328 defined by a.out_800 (4).
329
330 Right now this table is only used to count and perform minimal
331 processing on relocation streams so that they can be internalized
332 into BFD and symbolically printed by utilities. To make actual use
333 of them would be much more difficult, BFD's concept of relocations
334 is far too simple to handle SOM relocations. The basic assumption
335 that a relocation can be completely processed independent of other
336 relocations before an object file is written is invalid for SOM.
337
338 The SOM relocations are meant to be processed as a stream, they
339 specify copying of data from the input section to the output section
340 while possibly modifying the data in some manner. They also can
341 specify that a variable number of zeros or uninitialized data be
342 inserted on in the output segment at the current offset. Some
343 relocations specify that some previous relocation be re-applied at
344 the current location in the input/output sections. And finally a number
345 of relocations have effects on other sections (R_ENTRY, R_EXIT,
346 R_UNWIND_AUX and a variety of others). There isn't even enough room
347 in the BFD relocation data structure to store enough information to
348 perform all the relocations.
349
350 Each entry in the table has three fields.
351
352 The first entry is an index into this "class" of relocations. This
353 index can then be used as a variable within the relocation itself.
354
355 The second field is a format string which actually controls processing
356 of the relocation. It uses a simple postfix machine to do calculations
357 based on variables/constants found in the string and the relocation
358 stream.
359
360 The third field specifys whether or not this relocation may use
361 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
362 stored in the instruction.
363
364 Variables:
365
366 L = input space byte count
367 D = index into class of relocations
368 M = output space byte count
369 N = statement number (unused?)
370 O = stack operation
371 R = parameter relocation bits
372 S = symbol index
373 T = first 32 bits of stack unwind information
374 U = second 32 bits of stack unwind information
375 V = a literal constant (usually used in the next relocation)
376 P = a previous relocation
377
378 Lower case letters (starting with 'b') refer to following
379 bytes in the relocation stream. 'b' is the next 1 byte,
380 c is the next 2 bytes, d is the next 3 bytes, etc...
381 This is the variable part of the relocation entries that
382 makes our life a living hell.
383
384 numerical constants are also used in the format string. Note
385 the constants are represented in decimal.
386
387 '+', "*" and "=" represents the obvious postfix operators.
388 '<' represents a left shift.
389
390 Stack Operations:
391
392 Parameter Relocation Bits:
393
394 Unwind Entries:
395
396 Previous Relocations: The index field represents which in the queue
397 of 4 previous fixups should be re-applied.
398
399 Literal Constants: These are generally used to represent addend
400 parts of relocations when these constants are not stored in the
401 fields of the instructions themselves. For example the instruction
402 addil foo-$global$-0x1234 would use an override for "0x1234" rather
403 than storing it into the addil itself. */
404
405 struct fixup_format {
406 int D;
407 const char *format;
408 };
409
410 static const struct fixup_format som_fixup_formats[256] = {
411 /* R_NO_RELOCATION */
412 { 0, "LD1+4*=" }, /* 0x00 */
413 { 1, "LD1+4*=" }, /* 0x01 */
414 { 2, "LD1+4*=" }, /* 0x02 */
415 { 3, "LD1+4*=" }, /* 0x03 */
416 { 4, "LD1+4*=" }, /* 0x04 */
417 { 5, "LD1+4*=" }, /* 0x05 */
418 { 6, "LD1+4*=" }, /* 0x06 */
419 { 7, "LD1+4*=" }, /* 0x07 */
420 { 8, "LD1+4*=" }, /* 0x08 */
421 { 9, "LD1+4*=" }, /* 0x09 */
422 { 10, "LD1+4*=" }, /* 0x0a */
423 { 11, "LD1+4*=" }, /* 0x0b */
424 { 12, "LD1+4*=" }, /* 0x0c */
425 { 13, "LD1+4*=" }, /* 0x0d */
426 { 14, "LD1+4*=" }, /* 0x0e */
427 { 15, "LD1+4*=" }, /* 0x0f */
428 { 16, "LD1+4*=" }, /* 0x10 */
429 { 17, "LD1+4*=" }, /* 0x11 */
430 { 18, "LD1+4*=" }, /* 0x12 */
431 { 19, "LD1+4*=" }, /* 0x13 */
432 { 20, "LD1+4*=" }, /* 0x14 */
433 { 21, "LD1+4*=" }, /* 0x15 */
434 { 22, "LD1+4*=" }, /* 0x16 */
435 { 23, "LD1+4*=" }, /* 0x17 */
436 { 0, "LD8<b+1+4*=" }, /* 0x18 */
437 { 1, "LD8<b+1+4*=" }, /* 0x19 */
438 { 2, "LD8<b+1+4*=" }, /* 0x1a */
439 { 3, "LD8<b+1+4*=" }, /* 0x1b */
440 { 0, "LD16<c+1+4*=" }, /* 0x1c */
441 { 1, "LD16<c+1+4*=" }, /* 0x1d */
442 { 2, "LD16<c+1+4*=" }, /* 0x1e */
443 { 0, "Ld1+=" }, /* 0x1f */
444 /* R_ZEROES */
445 { 0, "Lb1+4*=" }, /* 0x20 */
446 { 1, "Ld1+=" }, /* 0x21 */
447 /* R_UNINIT */
448 { 0, "Lb1+4*=" }, /* 0x22 */
449 { 1, "Ld1+=" }, /* 0x23 */
450 /* R_RELOCATION */
451 { 0, "L4=" }, /* 0x24 */
452 /* R_DATA_ONE_SYMBOL */
453 { 0, "L4=Sb=" }, /* 0x25 */
454 { 1, "L4=Sd=" }, /* 0x26 */
455 /* R_DATA_PLEBEL */
456 { 0, "L4=Sb=" }, /* 0x27 */
457 { 1, "L4=Sd=" }, /* 0x28 */
458 /* R_SPACE_REF */
459 { 0, "L4=" }, /* 0x29 */
460 /* R_REPEATED_INIT */
461 { 0, "L4=Mb1+4*=" }, /* 0x2a */
462 { 1, "Lb4*=Mb1+L*=" }, /* 0x2b */
463 { 2, "Lb4*=Md1+4*=" }, /* 0x2c */
464 { 3, "Ld1+=Me1+=" }, /* 0x2d */
465 { 0, "" }, /* 0x2e */
466 { 0, "" }, /* 0x2f */
467 /* R_PCREL_CALL */
468 { 0, "L4=RD=Sb=" }, /* 0x30 */
469 { 1, "L4=RD=Sb=" }, /* 0x31 */
470 { 2, "L4=RD=Sb=" }, /* 0x32 */
471 { 3, "L4=RD=Sb=" }, /* 0x33 */
472 { 4, "L4=RD=Sb=" }, /* 0x34 */
473 { 5, "L4=RD=Sb=" }, /* 0x35 */
474 { 6, "L4=RD=Sb=" }, /* 0x36 */
475 { 7, "L4=RD=Sb=" }, /* 0x37 */
476 { 8, "L4=RD=Sb=" }, /* 0x38 */
477 { 9, "L4=RD=Sb=" }, /* 0x39 */
478 { 0, "L4=RD8<b+=Sb=" }, /* 0x3a */
479 { 1, "L4=RD8<b+=Sb=" }, /* 0x3b */
480 { 0, "L4=RD8<b+=Sd=" }, /* 0x3c */
481 { 1, "L4=RD8<b+=Sd=" }, /* 0x3d */
482 /* R_SHORT_PCREL_MODE */
483 { 0, "" }, /* 0x3e */
484 /* R_LONG_PCREL_MODE */
485 { 0, "" }, /* 0x3f */
486 /* R_ABS_CALL */
487 { 0, "L4=RD=Sb=" }, /* 0x40 */
488 { 1, "L4=RD=Sb=" }, /* 0x41 */
489 { 2, "L4=RD=Sb=" }, /* 0x42 */
490 { 3, "L4=RD=Sb=" }, /* 0x43 */
491 { 4, "L4=RD=Sb=" }, /* 0x44 */
492 { 5, "L4=RD=Sb=" }, /* 0x45 */
493 { 6, "L4=RD=Sb=" }, /* 0x46 */
494 { 7, "L4=RD=Sb=" }, /* 0x47 */
495 { 8, "L4=RD=Sb=" }, /* 0x48 */
496 { 9, "L4=RD=Sb=" }, /* 0x49 */
497 { 0, "L4=RD8<b+=Sb=" }, /* 0x4a */
498 { 1, "L4=RD8<b+=Sb=" }, /* 0x4b */
499 { 0, "L4=RD8<b+=Sd=" }, /* 0x4c */
500 { 1, "L4=RD8<b+=Sd=" }, /* 0x4d */
501 /* R_RESERVED */
502 { 0, "" }, /* 0x4e */
503 { 0, "" }, /* 0x4f */
504 /* R_DP_RELATIVE */
505 { 0, "L4=SD=" }, /* 0x50 */
506 { 1, "L4=SD=" }, /* 0x51 */
507 { 2, "L4=SD=" }, /* 0x52 */
508 { 3, "L4=SD=" }, /* 0x53 */
509 { 4, "L4=SD=" }, /* 0x54 */
510 { 5, "L4=SD=" }, /* 0x55 */
511 { 6, "L4=SD=" }, /* 0x56 */
512 { 7, "L4=SD=" }, /* 0x57 */
513 { 8, "L4=SD=" }, /* 0x58 */
514 { 9, "L4=SD=" }, /* 0x59 */
515 { 10, "L4=SD=" }, /* 0x5a */
516 { 11, "L4=SD=" }, /* 0x5b */
517 { 12, "L4=SD=" }, /* 0x5c */
518 { 13, "L4=SD=" }, /* 0x5d */
519 { 14, "L4=SD=" }, /* 0x5e */
520 { 15, "L4=SD=" }, /* 0x5f */
521 { 16, "L4=SD=" }, /* 0x60 */
522 { 17, "L4=SD=" }, /* 0x61 */
523 { 18, "L4=SD=" }, /* 0x62 */
524 { 19, "L4=SD=" }, /* 0x63 */
525 { 20, "L4=SD=" }, /* 0x64 */
526 { 21, "L4=SD=" }, /* 0x65 */
527 { 22, "L4=SD=" }, /* 0x66 */
528 { 23, "L4=SD=" }, /* 0x67 */
529 { 24, "L4=SD=" }, /* 0x68 */
530 { 25, "L4=SD=" }, /* 0x69 */
531 { 26, "L4=SD=" }, /* 0x6a */
532 { 27, "L4=SD=" }, /* 0x6b */
533 { 28, "L4=SD=" }, /* 0x6c */
534 { 29, "L4=SD=" }, /* 0x6d */
535 { 30, "L4=SD=" }, /* 0x6e */
536 { 31, "L4=SD=" }, /* 0x6f */
537 { 32, "L4=Sb=" }, /* 0x70 */
538 { 33, "L4=Sd=" }, /* 0x71 */
539 /* R_RESERVED */
540 { 0, "" }, /* 0x72 */
541 { 0, "" }, /* 0x73 */
542 { 0, "" }, /* 0x74 */
543 { 0, "" }, /* 0x75 */
544 { 0, "" }, /* 0x76 */
545 { 0, "" }, /* 0x77 */
546 /* R_DLT_REL */
547 { 0, "L4=Sb=" }, /* 0x78 */
548 { 1, "L4=Sd=" }, /* 0x79 */
549 /* R_RESERVED */
550 { 0, "" }, /* 0x7a */
551 { 0, "" }, /* 0x7b */
552 { 0, "" }, /* 0x7c */
553 { 0, "" }, /* 0x7d */
554 { 0, "" }, /* 0x7e */
555 { 0, "" }, /* 0x7f */
556 /* R_CODE_ONE_SYMBOL */
557 { 0, "L4=SD=" }, /* 0x80 */
558 { 1, "L4=SD=" }, /* 0x81 */
559 { 2, "L4=SD=" }, /* 0x82 */
560 { 3, "L4=SD=" }, /* 0x83 */
561 { 4, "L4=SD=" }, /* 0x84 */
562 { 5, "L4=SD=" }, /* 0x85 */
563 { 6, "L4=SD=" }, /* 0x86 */
564 { 7, "L4=SD=" }, /* 0x87 */
565 { 8, "L4=SD=" }, /* 0x88 */
566 { 9, "L4=SD=" }, /* 0x89 */
567 { 10, "L4=SD=" }, /* 0x8q */
568 { 11, "L4=SD=" }, /* 0x8b */
569 { 12, "L4=SD=" }, /* 0x8c */
570 { 13, "L4=SD=" }, /* 0x8d */
571 { 14, "L4=SD=" }, /* 0x8e */
572 { 15, "L4=SD=" }, /* 0x8f */
573 { 16, "L4=SD=" }, /* 0x90 */
574 { 17, "L4=SD=" }, /* 0x91 */
575 { 18, "L4=SD=" }, /* 0x92 */
576 { 19, "L4=SD=" }, /* 0x93 */
577 { 20, "L4=SD=" }, /* 0x94 */
578 { 21, "L4=SD=" }, /* 0x95 */
579 { 22, "L4=SD=" }, /* 0x96 */
580 { 23, "L4=SD=" }, /* 0x97 */
581 { 24, "L4=SD=" }, /* 0x98 */
582 { 25, "L4=SD=" }, /* 0x99 */
583 { 26, "L4=SD=" }, /* 0x9a */
584 { 27, "L4=SD=" }, /* 0x9b */
585 { 28, "L4=SD=" }, /* 0x9c */
586 { 29, "L4=SD=" }, /* 0x9d */
587 { 30, "L4=SD=" }, /* 0x9e */
588 { 31, "L4=SD=" }, /* 0x9f */
589 { 32, "L4=Sb=" }, /* 0xa0 */
590 { 33, "L4=Sd=" }, /* 0xa1 */
591 /* R_RESERVED */
592 { 0, "" }, /* 0xa2 */
593 { 0, "" }, /* 0xa3 */
594 { 0, "" }, /* 0xa4 */
595 { 0, "" }, /* 0xa5 */
596 { 0, "" }, /* 0xa6 */
597 { 0, "" }, /* 0xa7 */
598 { 0, "" }, /* 0xa8 */
599 { 0, "" }, /* 0xa9 */
600 { 0, "" }, /* 0xaa */
601 { 0, "" }, /* 0xab */
602 { 0, "" }, /* 0xac */
603 { 0, "" }, /* 0xad */
604 /* R_MILLI_REL */
605 { 0, "L4=Sb=" }, /* 0xae */
606 { 1, "L4=Sd=" }, /* 0xaf */
607 /* R_CODE_PLABEL */
608 { 0, "L4=Sb=" }, /* 0xb0 */
609 { 1, "L4=Sd=" }, /* 0xb1 */
610 /* R_BREAKPOINT */
611 { 0, "L4=" }, /* 0xb2 */
612 /* R_ENTRY */
613 { 0, "Te=Ue=" }, /* 0xb3 */
614 { 1, "Uf=" }, /* 0xb4 */
615 /* R_ALT_ENTRY */
616 { 0, "" }, /* 0xb5 */
617 /* R_EXIT */
618 { 0, "" }, /* 0xb6 */
619 /* R_BEGIN_TRY */
620 { 0, "" }, /* 0xb7 */
621 /* R_END_TRY */
622 { 0, "R0=" }, /* 0xb8 */
623 { 1, "Rb4*=" }, /* 0xb9 */
624 { 2, "Rd4*=" }, /* 0xba */
625 /* R_BEGIN_BRTAB */
626 { 0, "" }, /* 0xbb */
627 /* R_END_BRTAB */
628 { 0, "" }, /* 0xbc */
629 /* R_STATEMENT */
630 { 0, "Nb=" }, /* 0xbd */
631 { 1, "Nc=" }, /* 0xbe */
632 { 2, "Nd=" }, /* 0xbf */
633 /* R_DATA_EXPR */
634 { 0, "L4=" }, /* 0xc0 */
635 /* R_CODE_EXPR */
636 { 0, "L4=" }, /* 0xc1 */
637 /* R_FSEL */
638 { 0, "" }, /* 0xc2 */
639 /* R_LSEL */
640 { 0, "" }, /* 0xc3 */
641 /* R_RSEL */
642 { 0, "" }, /* 0xc4 */
643 /* R_N_MODE */
644 { 0, "" }, /* 0xc5 */
645 /* R_S_MODE */
646 { 0, "" }, /* 0xc6 */
647 /* R_D_MODE */
648 { 0, "" }, /* 0xc7 */
649 /* R_R_MODE */
650 { 0, "" }, /* 0xc8 */
651 /* R_DATA_OVERRIDE */
652 { 0, "V0=" }, /* 0xc9 */
653 { 1, "Vb=" }, /* 0xca */
654 { 2, "Vc=" }, /* 0xcb */
655 { 3, "Vd=" }, /* 0xcc */
656 { 4, "Ve=" }, /* 0xcd */
657 /* R_TRANSLATED */
658 { 0, "" }, /* 0xce */
659 /* R_AUX_UNWIND */
660 { 0,"Sd=Ve=Ee=" }, /* 0xcf */
661 /* R_COMP1 */
662 { 0, "Ob=" }, /* 0xd0 */
663 /* R_COMP2 */
664 { 0, "Ob=Sd=" }, /* 0xd1 */
665 /* R_COMP3 */
666 { 0, "Ob=Ve=" }, /* 0xd2 */
667 /* R_PREV_FIXUP */
668 { 0, "P" }, /* 0xd3 */
669 { 1, "P" }, /* 0xd4 */
670 { 2, "P" }, /* 0xd5 */
671 { 3, "P" }, /* 0xd6 */
672 /* R_SEC_STMT */
673 { 0, "" }, /* 0xd7 */
674 /* R_N0SEL */
675 { 0, "" }, /* 0xd8 */
676 /* R_N1SEL */
677 { 0, "" }, /* 0xd9 */
678 /* R_LINETAB */
679 { 0, "Eb=Sd=Ve=" }, /* 0xda */
680 /* R_LINETAB_ESC */
681 { 0, "Eb=Mb=" }, /* 0xdb */
682 /* R_LTP_OVERRIDE */
683 { 0, "" }, /* 0xdc */
684 /* R_COMMENT */
685 { 0, "Ob=Vf=" }, /* 0xdd */
686 /* R_RESERVED */
687 { 0, "" }, /* 0xde */
688 { 0, "" }, /* 0xdf */
689 { 0, "" }, /* 0xe0 */
690 { 0, "" }, /* 0xe1 */
691 { 0, "" }, /* 0xe2 */
692 { 0, "" }, /* 0xe3 */
693 { 0, "" }, /* 0xe4 */
694 { 0, "" }, /* 0xe5 */
695 { 0, "" }, /* 0xe6 */
696 { 0, "" }, /* 0xe7 */
697 { 0, "" }, /* 0xe8 */
698 { 0, "" }, /* 0xe9 */
699 { 0, "" }, /* 0xea */
700 { 0, "" }, /* 0xeb */
701 { 0, "" }, /* 0xec */
702 { 0, "" }, /* 0xed */
703 { 0, "" }, /* 0xee */
704 { 0, "" }, /* 0xef */
705 { 0, "" }, /* 0xf0 */
706 { 0, "" }, /* 0xf1 */
707 { 0, "" }, /* 0xf2 */
708 { 0, "" }, /* 0xf3 */
709 { 0, "" }, /* 0xf4 */
710 { 0, "" }, /* 0xf5 */
711 { 0, "" }, /* 0xf6 */
712 { 0, "" }, /* 0xf7 */
713 { 0, "" }, /* 0xf8 */
714 { 0, "" }, /* 0xf9 */
715 { 0, "" }, /* 0xfa */
716 { 0, "" }, /* 0xfb */
717 { 0, "" }, /* 0xfc */
718 { 0, "" }, /* 0xfd */
719 { 0, "" }, /* 0xfe */
720 { 0, "" }, /* 0xff */
721 };
722
723 static const int comp1_opcodes[] = {
724 0x00,
725 0x40,
726 0x41,
727 0x42,
728 0x43,
729 0x44,
730 0x45,
731 0x46,
732 0x47,
733 0x48,
734 0x49,
735 0x4a,
736 0x4b,
737 0x60,
738 0x80,
739 0xa0,
740 0xc0,
741 -1
742 };
743
744 static const int comp2_opcodes[] = {
745 0x00,
746 0x80,
747 0x82,
748 0xc0,
749 -1
750 };
751
752 static const int comp3_opcodes[] = {
753 0x00,
754 0x02,
755 -1
756 };
757
758 /* These apparently are not in older versions of hpux reloc.h (hpux7). */
759 #ifndef R_DLT_REL
760 #define R_DLT_REL 0x78
761 #endif
762
763 #ifndef R_AUX_UNWIND
764 #define R_AUX_UNWIND 0xcf
765 #endif
766
767 #ifndef R_SEC_STMT
768 #define R_SEC_STMT 0xd7
769 #endif
770
771 /* And these first appeared in hpux10. */
772 #ifndef R_SHORT_PCREL_MODE
773 #define NO_PCREL_MODES
774 #define R_SHORT_PCREL_MODE 0x3e
775 #endif
776
777 #ifndef R_LONG_PCREL_MODE
778 #define R_LONG_PCREL_MODE 0x3f
779 #endif
780
781 #ifndef R_N0SEL
782 #define R_N0SEL 0xd8
783 #endif
784
785 #ifndef R_N1SEL
786 #define R_N1SEL 0xd9
787 #endif
788
789 #ifndef R_LINETAB
790 #define R_LINETAB 0xda
791 #endif
792
793 #ifndef R_LINETAB_ESC
794 #define R_LINETAB_ESC 0xdb
795 #endif
796
797 #ifndef R_LTP_OVERRIDE
798 #define R_LTP_OVERRIDE 0xdc
799 #endif
800
801 #ifndef R_COMMENT
802 #define R_COMMENT 0xdd
803 #endif
804
805 #define SOM_HOWTO(TYPE, NAME) \
806 HOWTO(TYPE, 0, 0, 32, FALSE, 0, 0, hppa_som_reloc, NAME, FALSE, 0, 0, FALSE)
807
808 static reloc_howto_type som_hppa_howto_table[] = {
809 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
810 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
811 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
812 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
813 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
814 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
815 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
816 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
817 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
818 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
819 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
820 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
821 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
822 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
823 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
824 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
825 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
826 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
827 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
828 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
829 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
830 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
831 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
832 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
833 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
834 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
835 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
836 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
837 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
838 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
839 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
840 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
841 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
842 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
843 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
844 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
845 SOM_HOWTO (R_RELOCATION, "R_RELOCATION"),
846 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
847 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
848 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
849 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
850 SOM_HOWTO (R_SPACE_REF, "R_SPACE_REF"),
851 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
852 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
853 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
854 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
855 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
856 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
857 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
858 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
859 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
860 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
861 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
862 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
863 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
864 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
865 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
866 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
867 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
868 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
869 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
870 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
871 SOM_HOWTO (R_SHORT_PCREL_MODE, "R_SHORT_PCREL_MODE"),
872 SOM_HOWTO (R_LONG_PCREL_MODE, "R_LONG_PCREL_MODE"),
873 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
874 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
875 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
876 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
877 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
878 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
879 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
880 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
881 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
882 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
883 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
884 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
885 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
886 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
887 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
888 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
889 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
890 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
891 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
892 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
893 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
894 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
895 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
896 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
897 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
898 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
899 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
900 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
901 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
902 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
903 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
904 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
905 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
906 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
907 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
908 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
909 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
910 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
911 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
912 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
913 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
914 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
915 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
916 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
917 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
918 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
919 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
920 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
921 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
922 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
923 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
924 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
925 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
926 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
927 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
928 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
929 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
930 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
931 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
932 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
933 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
934 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
935 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
936 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
937 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
938 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
939 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
940 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
941 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
942 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
943 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
944 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
945 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
946 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
947 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
948 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
949 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
950 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
951 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
952 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
953 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
954 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
955 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
956 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
957 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
958 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
959 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
960 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
961 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
962 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
963 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
964 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
965 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
966 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
967 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
968 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
969 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
970 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
971 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
972 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
973 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
974 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
975 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
976 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
977 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
978 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
979 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
980 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
981 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
982 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
983 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
984 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
985 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
986 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
987 SOM_HOWTO (R_BREAKPOINT, "R_BREAKPOINT"),
988 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
989 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
990 SOM_HOWTO (R_ALT_ENTRY, "R_ALT_ENTRY"),
991 SOM_HOWTO (R_EXIT, "R_EXIT"),
992 SOM_HOWTO (R_BEGIN_TRY, "R_BEGIN_TRY"),
993 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
994 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
995 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
996 SOM_HOWTO (R_BEGIN_BRTAB, "R_BEGIN_BRTAB"),
997 SOM_HOWTO (R_END_BRTAB, "R_END_BRTAB"),
998 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
999 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
1000 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
1001 SOM_HOWTO (R_DATA_EXPR, "R_DATA_EXPR"),
1002 SOM_HOWTO (R_CODE_EXPR, "R_CODE_EXPR"),
1003 SOM_HOWTO (R_FSEL, "R_FSEL"),
1004 SOM_HOWTO (R_LSEL, "R_LSEL"),
1005 SOM_HOWTO (R_RSEL, "R_RSEL"),
1006 SOM_HOWTO (R_N_MODE, "R_N_MODE"),
1007 SOM_HOWTO (R_S_MODE, "R_S_MODE"),
1008 SOM_HOWTO (R_D_MODE, "R_D_MODE"),
1009 SOM_HOWTO (R_R_MODE, "R_R_MODE"),
1010 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1011 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1012 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1013 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1014 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1015 SOM_HOWTO (R_TRANSLATED, "R_TRANSLATED"),
1016 SOM_HOWTO (R_AUX_UNWIND, "R_AUX_UNWIND"),
1017 SOM_HOWTO (R_COMP1, "R_COMP1"),
1018 SOM_HOWTO (R_COMP2, "R_COMP2"),
1019 SOM_HOWTO (R_COMP3, "R_COMP3"),
1020 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1021 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1022 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1023 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1024 SOM_HOWTO (R_SEC_STMT, "R_SEC_STMT"),
1025 SOM_HOWTO (R_N0SEL, "R_N0SEL"),
1026 SOM_HOWTO (R_N1SEL, "R_N1SEL"),
1027 SOM_HOWTO (R_LINETAB, "R_LINETAB"),
1028 SOM_HOWTO (R_LINETAB_ESC, "R_LINETAB_ESC"),
1029 SOM_HOWTO (R_LTP_OVERRIDE, "R_LTP_OVERRIDE"),
1030 SOM_HOWTO (R_COMMENT, "R_COMMENT"),
1031 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1032 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1033 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1034 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1035 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1036 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1037 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1038 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1039 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1040 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1041 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1042 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1043 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1044 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1045 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1046 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1047 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1048 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1049 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1050 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1051 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1052 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1053 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1054 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1055 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1056 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1057 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1058 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1059 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1060 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1061 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1062 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1063 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1064 SOM_HOWTO (R_RESERVED, "R_RESERVED")
1065 };
1066
1067 /* Initialize the SOM relocation queue. By definition the queue holds
1068 the last four multibyte fixups. */
1069
1070 static void
1071 som_initialize_reloc_queue (queue)
1072 struct reloc_queue *queue;
1073 {
1074 queue[0].reloc = NULL;
1075 queue[0].size = 0;
1076 queue[1].reloc = NULL;
1077 queue[1].size = 0;
1078 queue[2].reloc = NULL;
1079 queue[2].size = 0;
1080 queue[3].reloc = NULL;
1081 queue[3].size = 0;
1082 }
1083
1084 /* Insert a new relocation into the relocation queue. */
1085
1086 static void
1087 som_reloc_queue_insert (p, size, queue)
1088 unsigned char *p;
1089 unsigned int size;
1090 struct reloc_queue *queue;
1091 {
1092 queue[3].reloc = queue[2].reloc;
1093 queue[3].size = queue[2].size;
1094 queue[2].reloc = queue[1].reloc;
1095 queue[2].size = queue[1].size;
1096 queue[1].reloc = queue[0].reloc;
1097 queue[1].size = queue[0].size;
1098 queue[0].reloc = p;
1099 queue[0].size = size;
1100 }
1101
1102 /* When an entry in the relocation queue is reused, the entry moves
1103 to the front of the queue. */
1104
1105 static void
1106 som_reloc_queue_fix (queue, index)
1107 struct reloc_queue *queue;
1108 unsigned int index;
1109 {
1110 if (index == 0)
1111 return;
1112
1113 if (index == 1)
1114 {
1115 unsigned char *tmp1 = queue[0].reloc;
1116 unsigned int tmp2 = queue[0].size;
1117 queue[0].reloc = queue[1].reloc;
1118 queue[0].size = queue[1].size;
1119 queue[1].reloc = tmp1;
1120 queue[1].size = tmp2;
1121 return;
1122 }
1123
1124 if (index == 2)
1125 {
1126 unsigned char *tmp1 = queue[0].reloc;
1127 unsigned int tmp2 = queue[0].size;
1128 queue[0].reloc = queue[2].reloc;
1129 queue[0].size = queue[2].size;
1130 queue[2].reloc = queue[1].reloc;
1131 queue[2].size = queue[1].size;
1132 queue[1].reloc = tmp1;
1133 queue[1].size = tmp2;
1134 return;
1135 }
1136
1137 if (index == 3)
1138 {
1139 unsigned char *tmp1 = queue[0].reloc;
1140 unsigned int tmp2 = queue[0].size;
1141 queue[0].reloc = queue[3].reloc;
1142 queue[0].size = queue[3].size;
1143 queue[3].reloc = queue[2].reloc;
1144 queue[3].size = queue[2].size;
1145 queue[2].reloc = queue[1].reloc;
1146 queue[2].size = queue[1].size;
1147 queue[1].reloc = tmp1;
1148 queue[1].size = tmp2;
1149 return;
1150 }
1151 abort ();
1152 }
1153
1154 /* Search for a particular relocation in the relocation queue. */
1155
1156 static int
1157 som_reloc_queue_find (p, size, queue)
1158 unsigned char *p;
1159 unsigned int size;
1160 struct reloc_queue *queue;
1161 {
1162 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1163 && size == queue[0].size)
1164 return 0;
1165 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1166 && size == queue[1].size)
1167 return 1;
1168 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1169 && size == queue[2].size)
1170 return 2;
1171 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1172 && size == queue[3].size)
1173 return 3;
1174 return -1;
1175 }
1176
1177 static unsigned char *
1178 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1179 bfd *abfd ATTRIBUTE_UNUSED;
1180 int *subspace_reloc_sizep;
1181 unsigned char *p;
1182 unsigned int size;
1183 struct reloc_queue *queue;
1184 {
1185 int queue_index = som_reloc_queue_find (p, size, queue);
1186
1187 if (queue_index != -1)
1188 {
1189 /* Found this in a previous fixup. Undo the fixup we
1190 just built and use R_PREV_FIXUP instead. We saved
1191 a total of size - 1 bytes in the fixup stream. */
1192 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1193 p += 1;
1194 *subspace_reloc_sizep += 1;
1195 som_reloc_queue_fix (queue, queue_index);
1196 }
1197 else
1198 {
1199 som_reloc_queue_insert (p, size, queue);
1200 *subspace_reloc_sizep += size;
1201 p += size;
1202 }
1203 return p;
1204 }
1205
1206 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1207 bytes without any relocation. Update the size of the subspace
1208 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1209 current pointer into the relocation stream. */
1210
1211 static unsigned char *
1212 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1213 bfd *abfd;
1214 unsigned int skip;
1215 unsigned char *p;
1216 unsigned int *subspace_reloc_sizep;
1217 struct reloc_queue *queue;
1218 {
1219 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1220 then R_PREV_FIXUPs to get the difference down to a
1221 reasonable size. */
1222 if (skip >= 0x1000000)
1223 {
1224 skip -= 0x1000000;
1225 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1226 bfd_put_8 (abfd, 0xff, p + 1);
1227 bfd_put_16 (abfd, (bfd_vma) 0xffff, p + 2);
1228 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1229 while (skip >= 0x1000000)
1230 {
1231 skip -= 0x1000000;
1232 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1233 p++;
1234 *subspace_reloc_sizep += 1;
1235 /* No need to adjust queue here since we are repeating the
1236 most recent fixup. */
1237 }
1238 }
1239
1240 /* The difference must be less than 0x1000000. Use one
1241 more R_NO_RELOCATION entry to get to the right difference. */
1242 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1243 {
1244 /* Difference can be handled in a simple single-byte
1245 R_NO_RELOCATION entry. */
1246 if (skip <= 0x60)
1247 {
1248 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1249 *subspace_reloc_sizep += 1;
1250 p++;
1251 }
1252 /* Handle it with a two byte R_NO_RELOCATION entry. */
1253 else if (skip <= 0x1000)
1254 {
1255 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1256 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1257 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1258 }
1259 /* Handle it with a three byte R_NO_RELOCATION entry. */
1260 else
1261 {
1262 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1263 bfd_put_16 (abfd, (bfd_vma) (skip >> 2) - 1, p + 1);
1264 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1265 }
1266 }
1267 /* Ugh. Punt and use a 4 byte entry. */
1268 else if (skip > 0)
1269 {
1270 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1271 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1272 bfd_put_16 (abfd, (bfd_vma) skip - 1, p + 2);
1273 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1274 }
1275 return p;
1276 }
1277
1278 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1279 from a BFD relocation. Update the size of the subspace relocation
1280 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1281 into the relocation stream. */
1282
1283 static unsigned char *
1284 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1285 bfd *abfd;
1286 bfd_vma addend;
1287 unsigned char *p;
1288 unsigned int *subspace_reloc_sizep;
1289 struct reloc_queue *queue;
1290 {
1291 if (addend + 0x80 < 0x100)
1292 {
1293 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1294 bfd_put_8 (abfd, addend, p + 1);
1295 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1296 }
1297 else if (addend + 0x8000 < 0x10000)
1298 {
1299 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1300 bfd_put_16 (abfd, addend, p + 1);
1301 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1302 }
1303 else if (addend + 0x800000 < 0x1000000)
1304 {
1305 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1306 bfd_put_8 (abfd, addend >> 16, p + 1);
1307 bfd_put_16 (abfd, addend, p + 2);
1308 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1309 }
1310 else
1311 {
1312 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1313 bfd_put_32 (abfd, addend, p + 1);
1314 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1315 }
1316 return p;
1317 }
1318
1319 /* Handle a single function call relocation. */
1320
1321 static unsigned char *
1322 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1323 bfd *abfd;
1324 unsigned char *p;
1325 unsigned int *subspace_reloc_sizep;
1326 arelent *bfd_reloc;
1327 int sym_num;
1328 struct reloc_queue *queue;
1329 {
1330 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1331 int rtn_bits = arg_bits & 0x3;
1332 int type, done = 0;
1333
1334 /* You'll never believe all this is necessary to handle relocations
1335 for function calls. Having to compute and pack the argument
1336 relocation bits is the real nightmare.
1337
1338 If you're interested in how this works, just forget it. You really
1339 do not want to know about this braindamage. */
1340
1341 /* First see if this can be done with a "simple" relocation. Simple
1342 relocations have a symbol number < 0x100 and have simple encodings
1343 of argument relocations. */
1344
1345 if (sym_num < 0x100)
1346 {
1347 switch (arg_bits)
1348 {
1349 case 0:
1350 case 1:
1351 type = 0;
1352 break;
1353 case 1 << 8:
1354 case 1 << 8 | 1:
1355 type = 1;
1356 break;
1357 case 1 << 8 | 1 << 6:
1358 case 1 << 8 | 1 << 6 | 1:
1359 type = 2;
1360 break;
1361 case 1 << 8 | 1 << 6 | 1 << 4:
1362 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1363 type = 3;
1364 break;
1365 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1366 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1367 type = 4;
1368 break;
1369 default:
1370 /* Not one of the easy encodings. This will have to be
1371 handled by the more complex code below. */
1372 type = -1;
1373 break;
1374 }
1375 if (type != -1)
1376 {
1377 /* Account for the return value too. */
1378 if (rtn_bits)
1379 type += 5;
1380
1381 /* Emit a 2 byte relocation. Then see if it can be handled
1382 with a relocation which is already in the relocation queue. */
1383 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1384 bfd_put_8 (abfd, sym_num, p + 1);
1385 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1386 done = 1;
1387 }
1388 }
1389
1390 /* If this could not be handled with a simple relocation, then do a hard
1391 one. Hard relocations occur if the symbol number was too high or if
1392 the encoding of argument relocation bits is too complex. */
1393 if (! done)
1394 {
1395 /* Don't ask about these magic sequences. I took them straight
1396 from gas-1.36 which took them from the a.out man page. */
1397 type = rtn_bits;
1398 if ((arg_bits >> 6 & 0xf) == 0xe)
1399 type += 9 * 40;
1400 else
1401 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1402 if ((arg_bits >> 2 & 0xf) == 0xe)
1403 type += 9 * 4;
1404 else
1405 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1406
1407 /* Output the first two bytes of the relocation. These describe
1408 the length of the relocation and encoding style. */
1409 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1410 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1411 p);
1412 bfd_put_8 (abfd, type, p + 1);
1413
1414 /* Now output the symbol index and see if this bizarre relocation
1415 just happened to be in the relocation queue. */
1416 if (sym_num < 0x100)
1417 {
1418 bfd_put_8 (abfd, sym_num, p + 2);
1419 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1420 }
1421 else
1422 {
1423 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1424 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
1425 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1426 }
1427 }
1428 return p;
1429 }
1430
1431 /* Return the logarithm of X, base 2, considering X unsigned.
1432 Abort -1 if X is not a power or two or is zero. */
1433
1434 static int
1435 log2 (x)
1436 unsigned int x;
1437 {
1438 int log = 0;
1439
1440 /* Test for 0 or a power of 2. */
1441 if (x == 0 || x != (x & -x))
1442 return -1;
1443
1444 while ((x >>= 1) != 0)
1445 log++;
1446 return log;
1447 }
1448
1449 static bfd_reloc_status_type
1450 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1451 input_section, output_bfd, error_message)
1452 bfd *abfd ATTRIBUTE_UNUSED;
1453 arelent *reloc_entry;
1454 asymbol *symbol_in ATTRIBUTE_UNUSED;
1455 PTR data ATTRIBUTE_UNUSED;
1456 asection *input_section;
1457 bfd *output_bfd;
1458 char **error_message ATTRIBUTE_UNUSED;
1459 {
1460 if (output_bfd)
1461 {
1462 reloc_entry->address += input_section->output_offset;
1463 return bfd_reloc_ok;
1464 }
1465 return bfd_reloc_ok;
1466 }
1467
1468 /* Given a generic HPPA relocation type, the instruction format,
1469 and a field selector, return one or more appropriate SOM relocations. */
1470
1471 int **
1472 hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff, sym)
1473 bfd *abfd;
1474 int base_type;
1475 int format;
1476 enum hppa_reloc_field_selector_type_alt field;
1477 int sym_diff;
1478 asymbol *sym;
1479 {
1480 int *final_type, **final_types;
1481
1482 final_types = (int **) bfd_alloc (abfd, (bfd_size_type) sizeof (int *) * 6);
1483 final_type = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1484 if (!final_types || !final_type)
1485 return NULL;
1486
1487 /* The field selector may require additional relocations to be
1488 generated. It's impossible to know at this moment if additional
1489 relocations will be needed, so we make them. The code to actually
1490 write the relocation/fixup stream is responsible for removing
1491 any redundant relocations. */
1492 switch (field)
1493 {
1494 case e_fsel:
1495 case e_psel:
1496 case e_lpsel:
1497 case e_rpsel:
1498 final_types[0] = final_type;
1499 final_types[1] = NULL;
1500 final_types[2] = NULL;
1501 *final_type = base_type;
1502 break;
1503
1504 case e_tsel:
1505 case e_ltsel:
1506 case e_rtsel:
1507 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1508 if (!final_types[0])
1509 return NULL;
1510 if (field == e_tsel)
1511 *final_types[0] = R_FSEL;
1512 else if (field == e_ltsel)
1513 *final_types[0] = R_LSEL;
1514 else
1515 *final_types[0] = R_RSEL;
1516 final_types[1] = final_type;
1517 final_types[2] = NULL;
1518 *final_type = base_type;
1519 break;
1520
1521 case e_lssel:
1522 case e_rssel:
1523 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1524 if (!final_types[0])
1525 return NULL;
1526 *final_types[0] = R_S_MODE;
1527 final_types[1] = final_type;
1528 final_types[2] = NULL;
1529 *final_type = base_type;
1530 break;
1531
1532 case e_lsel:
1533 case e_rsel:
1534 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1535 if (!final_types[0])
1536 return NULL;
1537 *final_types[0] = R_N_MODE;
1538 final_types[1] = final_type;
1539 final_types[2] = NULL;
1540 *final_type = base_type;
1541 break;
1542
1543 case e_ldsel:
1544 case e_rdsel:
1545 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1546 if (!final_types[0])
1547 return NULL;
1548 *final_types[0] = R_D_MODE;
1549 final_types[1] = final_type;
1550 final_types[2] = NULL;
1551 *final_type = base_type;
1552 break;
1553
1554 case e_lrsel:
1555 case e_rrsel:
1556 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1557 if (!final_types[0])
1558 return NULL;
1559 *final_types[0] = R_R_MODE;
1560 final_types[1] = final_type;
1561 final_types[2] = NULL;
1562 *final_type = base_type;
1563 break;
1564
1565 case e_nsel:
1566 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1567 if (!final_types[0])
1568 return NULL;
1569 *final_types[0] = R_N1SEL;
1570 final_types[1] = final_type;
1571 final_types[2] = NULL;
1572 *final_type = base_type;
1573 break;
1574
1575 case e_nlsel:
1576 case e_nlrsel:
1577 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1578 if (!final_types[0])
1579 return NULL;
1580 *final_types[0] = R_N0SEL;
1581 final_types[1] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1582 if (!final_types[1])
1583 return NULL;
1584 if (field == e_nlsel)
1585 *final_types[1] = R_N_MODE;
1586 else
1587 *final_types[1] = R_R_MODE;
1588 final_types[2] = final_type;
1589 final_types[3] = NULL;
1590 *final_type = base_type;
1591 break;
1592 }
1593
1594 switch (base_type)
1595 {
1596 case R_HPPA:
1597 /* The difference of two symbols needs *very* special handling. */
1598 if (sym_diff)
1599 {
1600 bfd_size_type amt = sizeof (int);
1601 final_types[0] = (int *) bfd_alloc (abfd, amt);
1602 final_types[1] = (int *) bfd_alloc (abfd, amt);
1603 final_types[2] = (int *) bfd_alloc (abfd, amt);
1604 final_types[3] = (int *) bfd_alloc (abfd, amt);
1605 if (!final_types[0] || !final_types[1] || !final_types[2])
1606 return NULL;
1607 if (field == e_fsel)
1608 *final_types[0] = R_FSEL;
1609 else if (field == e_rsel)
1610 *final_types[0] = R_RSEL;
1611 else if (field == e_lsel)
1612 *final_types[0] = R_LSEL;
1613 *final_types[1] = R_COMP2;
1614 *final_types[2] = R_COMP2;
1615 *final_types[3] = R_COMP1;
1616 final_types[4] = final_type;
1617 if (format == 32)
1618 *final_types[4] = R_DATA_EXPR;
1619 else
1620 *final_types[4] = R_CODE_EXPR;
1621 final_types[5] = NULL;
1622 break;
1623 }
1624 /* PLABELs get their own relocation type. */
1625 else if (field == e_psel
1626 || field == e_lpsel
1627 || field == e_rpsel)
1628 {
1629 /* A PLABEL relocation that has a size of 32 bits must
1630 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1631 if (format == 32)
1632 *final_type = R_DATA_PLABEL;
1633 else
1634 *final_type = R_CODE_PLABEL;
1635 }
1636 /* PIC stuff. */
1637 else if (field == e_tsel
1638 || field == e_ltsel
1639 || field == e_rtsel)
1640 *final_type = R_DLT_REL;
1641 /* A relocation in the data space is always a full 32bits. */
1642 else if (format == 32)
1643 {
1644 *final_type = R_DATA_ONE_SYMBOL;
1645
1646 /* If there's no SOM symbol type associated with this BFD
1647 symbol, then set the symbol type to ST_DATA.
1648
1649 Only do this if the type is going to default later when
1650 we write the object file.
1651
1652 This is done so that the linker never encounters an
1653 R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
1654
1655 This allows the compiler to generate exception handling
1656 tables.
1657
1658 Note that one day we may need to also emit BEGIN_BRTAB and
1659 END_BRTAB to prevent the linker from optimizing away insns
1660 in exception handling regions. */
1661 if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
1662 && (sym->flags & BSF_SECTION_SYM) == 0
1663 && (sym->flags & BSF_FUNCTION) == 0
1664 && ! bfd_is_com_section (sym->section))
1665 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
1666 }
1667 break;
1668
1669 case R_HPPA_GOTOFF:
1670 /* More PLABEL special cases. */
1671 if (field == e_psel
1672 || field == e_lpsel
1673 || field == e_rpsel)
1674 *final_type = R_DATA_PLABEL;
1675 break;
1676
1677 case R_HPPA_COMPLEX:
1678 /* The difference of two symbols needs *very* special handling. */
1679 if (sym_diff)
1680 {
1681 bfd_size_type amt = sizeof (int);
1682 final_types[0] = (int *) bfd_alloc (abfd, amt);
1683 final_types[1] = (int *) bfd_alloc (abfd, amt);
1684 final_types[2] = (int *) bfd_alloc (abfd, amt);
1685 final_types[3] = (int *) bfd_alloc (abfd, amt);
1686 if (!final_types[0] || !final_types[1] || !final_types[2])
1687 return NULL;
1688 if (field == e_fsel)
1689 *final_types[0] = R_FSEL;
1690 else if (field == e_rsel)
1691 *final_types[0] = R_RSEL;
1692 else if (field == e_lsel)
1693 *final_types[0] = R_LSEL;
1694 *final_types[1] = R_COMP2;
1695 *final_types[2] = R_COMP2;
1696 *final_types[3] = R_COMP1;
1697 final_types[4] = final_type;
1698 if (format == 32)
1699 *final_types[4] = R_DATA_EXPR;
1700 else
1701 *final_types[4] = R_CODE_EXPR;
1702 final_types[5] = NULL;
1703 break;
1704 }
1705 else
1706 break;
1707
1708 case R_HPPA_NONE:
1709 case R_HPPA_ABS_CALL:
1710 /* Right now we can default all these. */
1711 break;
1712
1713 case R_HPPA_PCREL_CALL:
1714 {
1715 #ifndef NO_PCREL_MODES
1716 /* If we have short and long pcrel modes, then generate the proper
1717 mode selector, then the pcrel relocation. Redundant selectors
1718 will be eliminated as the relocs are sized and emitted. */
1719 bfd_size_type amt = sizeof (int);
1720 final_types[0] = (int *) bfd_alloc (abfd, amt);
1721 if (!final_types[0])
1722 return NULL;
1723 if (format == 17)
1724 *final_types[0] = R_SHORT_PCREL_MODE;
1725 else
1726 *final_types[0] = R_LONG_PCREL_MODE;
1727 final_types[1] = final_type;
1728 final_types[2] = NULL;
1729 *final_type = base_type;
1730 #endif
1731 break;
1732 }
1733 }
1734 return final_types;
1735 }
1736
1737 /* Return the address of the correct entry in the PA SOM relocation
1738 howto table. */
1739
1740 static reloc_howto_type *
1741 som_bfd_reloc_type_lookup (abfd, code)
1742 bfd *abfd ATTRIBUTE_UNUSED;
1743 bfd_reloc_code_real_type code;
1744 {
1745 if ((int) code < (int) R_NO_RELOCATION + 255)
1746 {
1747 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1748 return &som_hppa_howto_table[(int) code];
1749 }
1750
1751 return (reloc_howto_type *) 0;
1752 }
1753
1754 /* Perform some initialization for an object. Save results of this
1755 initialization in the BFD. */
1756
1757 static const bfd_target *
1758 som_object_setup (abfd, file_hdrp, aux_hdrp, current_offset)
1759 bfd *abfd;
1760 struct header *file_hdrp;
1761 struct som_exec_auxhdr *aux_hdrp;
1762 unsigned long current_offset;
1763 {
1764 asection *section;
1765 int found;
1766
1767 /* som_mkobject will set bfd_error if som_mkobject fails. */
1768 if (! som_mkobject (abfd))
1769 return 0;
1770
1771 /* Set BFD flags based on what information is available in the SOM. */
1772 abfd->flags = BFD_NO_FLAGS;
1773 if (file_hdrp->symbol_total)
1774 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1775
1776 switch (file_hdrp->a_magic)
1777 {
1778 case DEMAND_MAGIC:
1779 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1780 break;
1781 case SHARE_MAGIC:
1782 abfd->flags |= (WP_TEXT | EXEC_P);
1783 break;
1784 case EXEC_MAGIC:
1785 abfd->flags |= (EXEC_P);
1786 break;
1787 case RELOC_MAGIC:
1788 abfd->flags |= HAS_RELOC;
1789 break;
1790 #ifdef SHL_MAGIC
1791 case SHL_MAGIC:
1792 #endif
1793 #ifdef DL_MAGIC
1794 case DL_MAGIC:
1795 #endif
1796 abfd->flags |= DYNAMIC;
1797 break;
1798
1799 default:
1800 break;
1801 }
1802
1803 /* Allocate space to hold the saved exec header information. */
1804 obj_som_exec_data (abfd) = (struct som_exec_data *)
1805 bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_exec_data));
1806 if (obj_som_exec_data (abfd) == NULL)
1807 return NULL;
1808
1809 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1810
1811 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1812 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1813
1814 It's about time, OSF has used the new id since at least 1992;
1815 HPUX didn't start till nearly 1995!.
1816
1817 The new approach examines the entry field. If it's zero or not 4
1818 byte aligned then it's not a proper code address and we guess it's
1819 really the executable flags. */
1820 found = 0;
1821 for (section = abfd->sections; section; section = section->next)
1822 {
1823 if ((section->flags & SEC_CODE) == 0)
1824 continue;
1825 if (aux_hdrp->exec_entry >= section->vma
1826 && aux_hdrp->exec_entry < section->vma + section->_cooked_size)
1827 found = 1;
1828 }
1829 if (aux_hdrp->exec_entry == 0
1830 || (aux_hdrp->exec_entry & 0x3) != 0
1831 || ! found)
1832 {
1833 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1834 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1835 }
1836 else
1837 {
1838 bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset;
1839 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1840 }
1841
1842 obj_som_exec_data (abfd)->version_id = file_hdrp->version_id;
1843
1844 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1845 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1846
1847 /* Initialize the saved symbol table and string table to NULL.
1848 Save important offsets and sizes from the SOM header into
1849 the BFD. */
1850 obj_som_stringtab (abfd) = (char *) NULL;
1851 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1852 obj_som_sorted_syms (abfd) = NULL;
1853 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1854 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset;
1855 obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location
1856 + current_offset);
1857 obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location
1858 + current_offset);
1859 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1860
1861 return abfd->xvec;
1862 }
1863
1864 /* Convert all of the space and subspace info into BFD sections. Each space
1865 contains a number of subspaces, which in turn describe the mapping between
1866 regions of the exec file, and the address space that the program runs in.
1867 BFD sections which correspond to spaces will overlap the sections for the
1868 associated subspaces. */
1869
1870 static bfd_boolean
1871 setup_sections (abfd, file_hdr, current_offset)
1872 bfd *abfd;
1873 struct header *file_hdr;
1874 unsigned long current_offset;
1875 {
1876 char *space_strings;
1877 unsigned int space_index, i;
1878 unsigned int total_subspaces = 0;
1879 asection **subspace_sections = NULL;
1880 asection *section;
1881 bfd_size_type amt;
1882
1883 /* First, read in space names. */
1884
1885 amt = file_hdr->space_strings_size;
1886 space_strings = bfd_malloc (amt);
1887 if (!space_strings && amt != 0)
1888 goto error_return;
1889
1890 if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location,
1891 SEEK_SET) != 0)
1892 goto error_return;
1893 if (bfd_bread (space_strings, amt, abfd) != amt)
1894 goto error_return;
1895
1896 /* Loop over all of the space dictionaries, building up sections. */
1897 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1898 {
1899 struct space_dictionary_record space;
1900 struct subspace_dictionary_record subspace, save_subspace;
1901 int subspace_index;
1902 asection *space_asect;
1903 char *newname;
1904
1905 /* Read the space dictionary element. */
1906 if (bfd_seek (abfd,
1907 (current_offset + file_hdr->space_location
1908 + space_index * sizeof space),
1909 SEEK_SET) != 0)
1910 goto error_return;
1911 amt = sizeof space;
1912 if (bfd_bread (&space, amt, abfd) != amt)
1913 goto error_return;
1914
1915 /* Setup the space name string. */
1916 space.name.n_name = space.name.n_strx + space_strings;
1917
1918 /* Make a section out of it. */
1919 amt = strlen (space.name.n_name) + 1;
1920 newname = bfd_alloc (abfd, amt);
1921 if (!newname)
1922 goto error_return;
1923 strcpy (newname, space.name.n_name);
1924
1925 space_asect = bfd_make_section_anyway (abfd, newname);
1926 if (!space_asect)
1927 goto error_return;
1928
1929 if (space.is_loadable == 0)
1930 space_asect->flags |= SEC_DEBUGGING;
1931
1932 /* Set up all the attributes for the space. */
1933 if (! bfd_som_set_section_attributes (space_asect, space.is_defined,
1934 space.is_private, space.sort_key,
1935 space.space_number))
1936 goto error_return;
1937
1938 /* If the space has no subspaces, then we're done. */
1939 if (space.subspace_quantity == 0)
1940 continue;
1941
1942 /* Now, read in the first subspace for this space. */
1943 if (bfd_seek (abfd,
1944 (current_offset + file_hdr->subspace_location
1945 + space.subspace_index * sizeof subspace),
1946 SEEK_SET) != 0)
1947 goto error_return;
1948 amt = sizeof subspace;
1949 if (bfd_bread (&subspace, amt, abfd) != amt)
1950 goto error_return;
1951 /* Seek back to the start of the subspaces for loop below. */
1952 if (bfd_seek (abfd,
1953 (current_offset + file_hdr->subspace_location
1954 + space.subspace_index * sizeof subspace),
1955 SEEK_SET) != 0)
1956 goto error_return;
1957
1958 /* Setup the start address and file loc from the first subspace
1959 record. */
1960 space_asect->vma = subspace.subspace_start;
1961 space_asect->filepos = subspace.file_loc_init_value + current_offset;
1962 space_asect->alignment_power = log2 (subspace.alignment);
1963 if (space_asect->alignment_power == (unsigned) -1)
1964 goto error_return;
1965
1966 /* Initialize save_subspace so we can reliably determine if this
1967 loop placed any useful values into it. */
1968 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1969
1970 /* Loop over the rest of the subspaces, building up more sections. */
1971 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1972 subspace_index++)
1973 {
1974 asection *subspace_asect;
1975
1976 /* Read in the next subspace. */
1977 amt = sizeof subspace;
1978 if (bfd_bread (&subspace, amt, abfd) != amt)
1979 goto error_return;
1980
1981 /* Setup the subspace name string. */
1982 subspace.name.n_name = subspace.name.n_strx + space_strings;
1983
1984 amt = strlen (subspace.name.n_name) + 1;
1985 newname = bfd_alloc (abfd, amt);
1986 if (!newname)
1987 goto error_return;
1988 strcpy (newname, subspace.name.n_name);
1989
1990 /* Make a section out of this subspace. */
1991 subspace_asect = bfd_make_section_anyway (abfd, newname);
1992 if (!subspace_asect)
1993 goto error_return;
1994
1995 /* Store private information about the section. */
1996 if (! bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1997 subspace.access_control_bits,
1998 subspace.sort_key,
1999 subspace.quadrant))
2000 goto error_return;
2001
2002 /* Keep an easy mapping between subspaces and sections.
2003 Note we do not necessarily read the subspaces in the
2004 same order in which they appear in the object file.
2005
2006 So to make the target index come out correctly, we
2007 store the location of the subspace header in target
2008 index, then sort using the location of the subspace
2009 header as the key. Then we can assign correct
2010 subspace indices. */
2011 total_subspaces++;
2012 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
2013
2014 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
2015 by the access_control_bits in the subspace header. */
2016 switch (subspace.access_control_bits >> 4)
2017 {
2018 /* Readonly data. */
2019 case 0x0:
2020 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
2021 break;
2022
2023 /* Normal data. */
2024 case 0x1:
2025 subspace_asect->flags |= SEC_DATA;
2026 break;
2027
2028 /* Readonly code and the gateways.
2029 Gateways have other attributes which do not map
2030 into anything BFD knows about. */
2031 case 0x2:
2032 case 0x4:
2033 case 0x5:
2034 case 0x6:
2035 case 0x7:
2036 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
2037 break;
2038
2039 /* dynamic (writable) code. */
2040 case 0x3:
2041 subspace_asect->flags |= SEC_CODE;
2042 break;
2043 }
2044
2045 if (subspace.dup_common || subspace.is_common)
2046 subspace_asect->flags |= SEC_IS_COMMON;
2047 else if (subspace.subspace_length > 0)
2048 subspace_asect->flags |= SEC_HAS_CONTENTS;
2049
2050 if (subspace.is_loadable)
2051 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
2052 else
2053 subspace_asect->flags |= SEC_DEBUGGING;
2054
2055 if (subspace.code_only)
2056 subspace_asect->flags |= SEC_CODE;
2057
2058 /* Both file_loc_init_value and initialization_length will
2059 be zero for a BSS like subspace. */
2060 if (subspace.file_loc_init_value == 0
2061 && subspace.initialization_length == 0)
2062 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
2063
2064 /* This subspace has relocations.
2065 The fixup_request_quantity is a byte count for the number of
2066 entries in the relocation stream; it is not the actual number
2067 of relocations in the subspace. */
2068 if (subspace.fixup_request_quantity != 0)
2069 {
2070 subspace_asect->flags |= SEC_RELOC;
2071 subspace_asect->rel_filepos = subspace.fixup_request_index;
2072 som_section_data (subspace_asect)->reloc_size
2073 = subspace.fixup_request_quantity;
2074 /* We can not determine this yet. When we read in the
2075 relocation table the correct value will be filled in. */
2076 subspace_asect->reloc_count = (unsigned) -1;
2077 }
2078
2079 /* Update save_subspace if appropriate. */
2080 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
2081 save_subspace = subspace;
2082
2083 subspace_asect->vma = subspace.subspace_start;
2084 subspace_asect->_cooked_size = subspace.subspace_length;
2085 subspace_asect->_raw_size = subspace.subspace_length;
2086 subspace_asect->filepos = (subspace.file_loc_init_value
2087 + current_offset);
2088 subspace_asect->alignment_power = log2 (subspace.alignment);
2089 if (subspace_asect->alignment_power == (unsigned) -1)
2090 goto error_return;
2091 }
2092
2093 /* This can happen for a .o which defines symbols in otherwise
2094 empty subspaces. */
2095 if (!save_subspace.file_loc_init_value)
2096 {
2097 space_asect->_cooked_size = 0;
2098 space_asect->_raw_size = 0;
2099 }
2100 else
2101 {
2102 /* Setup the sizes for the space section based upon the info in the
2103 last subspace of the space. */
2104 space_asect->_cooked_size = (save_subspace.subspace_start
2105 - space_asect->vma
2106 + save_subspace.subspace_length);
2107 space_asect->_raw_size = (save_subspace.file_loc_init_value
2108 - space_asect->filepos
2109 + save_subspace.initialization_length);
2110 }
2111 }
2112 /* Now that we've read in all the subspace records, we need to assign
2113 a target index to each subspace. */
2114 amt = total_subspaces;
2115 amt *= sizeof (asection *);
2116 subspace_sections = (asection **) bfd_malloc (amt);
2117 if (subspace_sections == NULL)
2118 goto error_return;
2119
2120 for (i = 0, section = abfd->sections; section; section = section->next)
2121 {
2122 if (!som_is_subspace (section))
2123 continue;
2124
2125 subspace_sections[i] = section;
2126 i++;
2127 }
2128 qsort (subspace_sections, total_subspaces,
2129 sizeof (asection *), compare_subspaces);
2130
2131 /* subspace_sections is now sorted in the order in which the subspaces
2132 appear in the object file. Assign an index to each one now. */
2133 for (i = 0; i < total_subspaces; i++)
2134 subspace_sections[i]->target_index = i;
2135
2136 if (space_strings != NULL)
2137 free (space_strings);
2138
2139 if (subspace_sections != NULL)
2140 free (subspace_sections);
2141
2142 return TRUE;
2143
2144 error_return:
2145 if (space_strings != NULL)
2146 free (space_strings);
2147
2148 if (subspace_sections != NULL)
2149 free (subspace_sections);
2150 return FALSE;
2151 }
2152
2153 /* Read in a SOM object and make it into a BFD. */
2154
2155 static const bfd_target *
2156 som_object_p (abfd)
2157 bfd *abfd;
2158 {
2159 struct header file_hdr;
2160 struct som_exec_auxhdr aux_hdr;
2161 unsigned long current_offset = 0;
2162 struct lst_header lst_header;
2163 struct som_entry som_entry;
2164 bfd_size_type amt;
2165 #define ENTRY_SIZE sizeof (struct som_entry)
2166
2167 amt = FILE_HDR_SIZE;
2168 if (bfd_bread ((PTR) &file_hdr, amt, abfd) != amt)
2169 {
2170 if (bfd_get_error () != bfd_error_system_call)
2171 bfd_set_error (bfd_error_wrong_format);
2172 return 0;
2173 }
2174
2175 if (!_PA_RISC_ID (file_hdr.system_id))
2176 {
2177 bfd_set_error (bfd_error_wrong_format);
2178 return 0;
2179 }
2180
2181 switch (file_hdr.a_magic)
2182 {
2183 case RELOC_MAGIC:
2184 case EXEC_MAGIC:
2185 case SHARE_MAGIC:
2186 case DEMAND_MAGIC:
2187 #ifdef DL_MAGIC
2188 case DL_MAGIC:
2189 #endif
2190 #ifdef SHL_MAGIC
2191 case SHL_MAGIC:
2192 #endif
2193 #ifdef SHARED_MAGIC_CNX
2194 case SHARED_MAGIC_CNX:
2195 #endif
2196 break;
2197
2198 #ifdef EXECLIBMAGIC
2199 case EXECLIBMAGIC:
2200 /* Read the lst header and determine where the SOM directory begins. */
2201
2202 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
2203 {
2204 if (bfd_get_error () != bfd_error_system_call)
2205 bfd_set_error (bfd_error_wrong_format);
2206 return 0;
2207 }
2208
2209 amt = SLSTHDR;
2210 if (bfd_bread ((PTR) &lst_header, amt, abfd) != amt)
2211 {
2212 if (bfd_get_error () != bfd_error_system_call)
2213 bfd_set_error (bfd_error_wrong_format);
2214 return 0;
2215 }
2216
2217 /* Position to and read the first directory entry. */
2218
2219 if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) != 0)
2220 {
2221 if (bfd_get_error () != bfd_error_system_call)
2222 bfd_set_error (bfd_error_wrong_format);
2223 return 0;
2224 }
2225
2226 amt = ENTRY_SIZE;
2227 if (bfd_bread ((PTR) &som_entry, amt, abfd) != amt)
2228 {
2229 if (bfd_get_error () != bfd_error_system_call)
2230 bfd_set_error (bfd_error_wrong_format);
2231 return 0;
2232 }
2233
2234 /* Now position to the first SOM. */
2235
2236 if (bfd_seek (abfd, som_entry.location, SEEK_SET) != 0)
2237 {
2238 if (bfd_get_error () != bfd_error_system_call)
2239 bfd_set_error (bfd_error_wrong_format);
2240 return 0;
2241 }
2242
2243 current_offset = som_entry.location;
2244
2245 /* And finally, re-read the som header. */
2246 amt = FILE_HDR_SIZE;
2247 if (bfd_bread ((PTR) &file_hdr, amt, abfd) != amt)
2248 {
2249 if (bfd_get_error () != bfd_error_system_call)
2250 bfd_set_error (bfd_error_wrong_format);
2251 return 0;
2252 }
2253
2254 break;
2255 #endif
2256
2257 default:
2258 bfd_set_error (bfd_error_wrong_format);
2259 return 0;
2260 }
2261
2262 if (file_hdr.version_id != VERSION_ID
2263 && file_hdr.version_id != NEW_VERSION_ID)
2264 {
2265 bfd_set_error (bfd_error_wrong_format);
2266 return 0;
2267 }
2268
2269 /* If the aux_header_size field in the file header is zero, then this
2270 object is an incomplete executable (a .o file). Do not try to read
2271 a non-existant auxiliary header. */
2272 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
2273 if (file_hdr.aux_header_size != 0)
2274 {
2275 amt = AUX_HDR_SIZE;
2276 if (bfd_bread ((PTR) &aux_hdr, amt, abfd) != amt)
2277 {
2278 if (bfd_get_error () != bfd_error_system_call)
2279 bfd_set_error (bfd_error_wrong_format);
2280 return 0;
2281 }
2282 }
2283
2284 if (!setup_sections (abfd, &file_hdr, current_offset))
2285 {
2286 /* setup_sections does not bubble up a bfd error code. */
2287 bfd_set_error (bfd_error_bad_value);
2288 return 0;
2289 }
2290
2291 /* This appears to be a valid SOM object. Do some initialization. */
2292 return som_object_setup (abfd, &file_hdr, &aux_hdr, current_offset);
2293 }
2294
2295 /* Create a SOM object. */
2296
2297 static bfd_boolean
2298 som_mkobject (abfd)
2299 bfd *abfd;
2300 {
2301 /* Allocate memory to hold backend information. */
2302 abfd->tdata.som_data = (struct som_data_struct *)
2303 bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_data_struct));
2304 if (abfd->tdata.som_data == NULL)
2305 return FALSE;
2306 return TRUE;
2307 }
2308
2309 /* Initialize some information in the file header. This routine makes
2310 not attempt at doing the right thing for a full executable; it
2311 is only meant to handle relocatable objects. */
2312
2313 static bfd_boolean
2314 som_prep_headers (abfd)
2315 bfd *abfd;
2316 {
2317 struct header *file_hdr;
2318 asection *section;
2319 bfd_size_type amt = sizeof (struct header);
2320
2321 /* Make and attach a file header to the BFD. */
2322 file_hdr = (struct header *) bfd_zalloc (abfd, amt);
2323 if (file_hdr == NULL)
2324 return FALSE;
2325 obj_som_file_hdr (abfd) = file_hdr;
2326
2327 if (abfd->flags & (EXEC_P | DYNAMIC))
2328 {
2329 /* Make and attach an exec header to the BFD. */
2330 amt = sizeof (struct som_exec_auxhdr);
2331 obj_som_exec_hdr (abfd) =
2332 (struct som_exec_auxhdr *) bfd_zalloc (abfd, amt);
2333 if (obj_som_exec_hdr (abfd) == NULL)
2334 return FALSE;
2335
2336 if (abfd->flags & D_PAGED)
2337 file_hdr->a_magic = DEMAND_MAGIC;
2338 else if (abfd->flags & WP_TEXT)
2339 file_hdr->a_magic = SHARE_MAGIC;
2340 #ifdef SHL_MAGIC
2341 else if (abfd->flags & DYNAMIC)
2342 file_hdr->a_magic = SHL_MAGIC;
2343 #endif
2344 else
2345 file_hdr->a_magic = EXEC_MAGIC;
2346 }
2347 else
2348 file_hdr->a_magic = RELOC_MAGIC;
2349
2350 /* These fields are optional, and embedding timestamps is not always
2351 a wise thing to do, it makes comparing objects during a multi-stage
2352 bootstrap difficult. */
2353 file_hdr->file_time.secs = 0;
2354 file_hdr->file_time.nanosecs = 0;
2355
2356 file_hdr->entry_space = 0;
2357 file_hdr->entry_subspace = 0;
2358 file_hdr->entry_offset = 0;
2359 file_hdr->presumed_dp = 0;
2360
2361 /* Now iterate over the sections translating information from
2362 BFD sections to SOM spaces/subspaces. */
2363
2364 for (section = abfd->sections; section != NULL; section = section->next)
2365 {
2366 /* Ignore anything which has not been marked as a space or
2367 subspace. */
2368 if (!som_is_space (section) && !som_is_subspace (section))
2369 continue;
2370
2371 if (som_is_space (section))
2372 {
2373 /* Allocate space for the space dictionary. */
2374 amt = sizeof (struct space_dictionary_record);
2375 som_section_data (section)->space_dict =
2376 (struct space_dictionary_record *) bfd_zalloc (abfd, amt);
2377 if (som_section_data (section)->space_dict == NULL)
2378 return FALSE;
2379 /* Set space attributes. Note most attributes of SOM spaces
2380 are set based on the subspaces it contains. */
2381 som_section_data (section)->space_dict->loader_fix_index = -1;
2382 som_section_data (section)->space_dict->init_pointer_index = -1;
2383
2384 /* Set more attributes that were stuffed away in private data. */
2385 som_section_data (section)->space_dict->sort_key =
2386 som_section_data (section)->copy_data->sort_key;
2387 som_section_data (section)->space_dict->is_defined =
2388 som_section_data (section)->copy_data->is_defined;
2389 som_section_data (section)->space_dict->is_private =
2390 som_section_data (section)->copy_data->is_private;
2391 som_section_data (section)->space_dict->space_number =
2392 som_section_data (section)->copy_data->space_number;
2393 }
2394 else
2395 {
2396 /* Allocate space for the subspace dictionary. */
2397 amt = sizeof (struct subspace_dictionary_record);
2398 som_section_data (section)->subspace_dict =
2399 (struct subspace_dictionary_record *) bfd_zalloc (abfd, amt);
2400 if (som_section_data (section)->subspace_dict == NULL)
2401 return FALSE;
2402
2403 /* Set subspace attributes. Basic stuff is done here, additional
2404 attributes are filled in later as more information becomes
2405 available. */
2406 if (section->flags & SEC_IS_COMMON)
2407 {
2408 som_section_data (section)->subspace_dict->dup_common = 1;
2409 som_section_data (section)->subspace_dict->is_common = 1;
2410 }
2411
2412 if (section->flags & SEC_ALLOC)
2413 som_section_data (section)->subspace_dict->is_loadable = 1;
2414
2415 if (section->flags & SEC_CODE)
2416 som_section_data (section)->subspace_dict->code_only = 1;
2417
2418 som_section_data (section)->subspace_dict->subspace_start =
2419 section->vma;
2420 som_section_data (section)->subspace_dict->subspace_length =
2421 bfd_section_size (abfd, section);
2422 som_section_data (section)->subspace_dict->initialization_length =
2423 bfd_section_size (abfd, section);
2424 som_section_data (section)->subspace_dict->alignment =
2425 1 << section->alignment_power;
2426
2427 /* Set more attributes that were stuffed away in private data. */
2428 som_section_data (section)->subspace_dict->sort_key =
2429 som_section_data (section)->copy_data->sort_key;
2430 som_section_data (section)->subspace_dict->access_control_bits =
2431 som_section_data (section)->copy_data->access_control_bits;
2432 som_section_data (section)->subspace_dict->quadrant =
2433 som_section_data (section)->copy_data->quadrant;
2434 }
2435 }
2436 return TRUE;
2437 }
2438
2439 /* Return TRUE if the given section is a SOM space, FALSE otherwise. */
2440
2441 static bfd_boolean
2442 som_is_space (section)
2443 asection *section;
2444 {
2445 /* If no copy data is available, then it's neither a space nor a
2446 subspace. */
2447 if (som_section_data (section)->copy_data == NULL)
2448 return FALSE;
2449
2450 /* If the containing space isn't the same as the given section,
2451 then this isn't a space. */
2452 if (som_section_data (section)->copy_data->container != section
2453 && (som_section_data (section)->copy_data->container->output_section
2454 != section))
2455 return FALSE;
2456
2457 /* OK. Must be a space. */
2458 return TRUE;
2459 }
2460
2461 /* Return TRUE if the given section is a SOM subspace, FALSE otherwise. */
2462
2463 static bfd_boolean
2464 som_is_subspace (section)
2465 asection *section;
2466 {
2467 /* If no copy data is available, then it's neither a space nor a
2468 subspace. */
2469 if (som_section_data (section)->copy_data == NULL)
2470 return FALSE;
2471
2472 /* If the containing space is the same as the given section,
2473 then this isn't a subspace. */
2474 if (som_section_data (section)->copy_data->container == section
2475 || (som_section_data (section)->copy_data->container->output_section
2476 == section))
2477 return FALSE;
2478
2479 /* OK. Must be a subspace. */
2480 return TRUE;
2481 }
2482
2483 /* Return TRUE if the given space contains the given subspace. It
2484 is safe to assume space really is a space, and subspace really
2485 is a subspace. */
2486
2487 static bfd_boolean
2488 som_is_container (space, subspace)
2489 asection *space, *subspace;
2490 {
2491 return (som_section_data (subspace)->copy_data->container == space
2492 || (som_section_data (subspace)->copy_data->container->output_section
2493 == space));
2494 }
2495
2496 /* Count and return the number of spaces attached to the given BFD. */
2497
2498 static unsigned long
2499 som_count_spaces (abfd)
2500 bfd *abfd;
2501 {
2502 int count = 0;
2503 asection *section;
2504
2505 for (section = abfd->sections; section != NULL; section = section->next)
2506 count += som_is_space (section);
2507
2508 return count;
2509 }
2510
2511 /* Count the number of subspaces attached to the given BFD. */
2512
2513 static unsigned long
2514 som_count_subspaces (abfd)
2515 bfd *abfd;
2516 {
2517 int count = 0;
2518 asection *section;
2519
2520 for (section = abfd->sections; section != NULL; section = section->next)
2521 count += som_is_subspace (section);
2522
2523 return count;
2524 }
2525
2526 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2527
2528 We desire symbols to be ordered starting with the symbol with the
2529 highest relocation count down to the symbol with the lowest relocation
2530 count. Doing so compacts the relocation stream. */
2531
2532 static int
2533 compare_syms (arg1, arg2)
2534 const PTR arg1;
2535 const PTR arg2;
2536
2537 {
2538 asymbol **sym1 = (asymbol **) arg1;
2539 asymbol **sym2 = (asymbol **) arg2;
2540 unsigned int count1, count2;
2541
2542 /* Get relocation count for each symbol. Note that the count
2543 is stored in the udata pointer for section symbols! */
2544 if ((*sym1)->flags & BSF_SECTION_SYM)
2545 count1 = (*sym1)->udata.i;
2546 else
2547 count1 = som_symbol_data (*sym1)->reloc_count;
2548
2549 if ((*sym2)->flags & BSF_SECTION_SYM)
2550 count2 = (*sym2)->udata.i;
2551 else
2552 count2 = som_symbol_data (*sym2)->reloc_count;
2553
2554 /* Return the appropriate value. */
2555 if (count1 < count2)
2556 return 1;
2557 else if (count1 > count2)
2558 return -1;
2559 return 0;
2560 }
2561
2562 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2563 and subspace. */
2564
2565 static int
2566 compare_subspaces (arg1, arg2)
2567 const PTR arg1;
2568 const PTR arg2;
2569
2570 {
2571 asection **subspace1 = (asection **) arg1;
2572 asection **subspace2 = (asection **) arg2;
2573
2574 if ((*subspace1)->target_index < (*subspace2)->target_index)
2575 return -1;
2576 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2577 return 1;
2578 else
2579 return 0;
2580 }
2581
2582 /* Perform various work in preparation for emitting the fixup stream. */
2583
2584 static void
2585 som_prep_for_fixups (abfd, syms, num_syms)
2586 bfd *abfd;
2587 asymbol **syms;
2588 unsigned long num_syms;
2589 {
2590 unsigned long i;
2591 asection *section;
2592 asymbol **sorted_syms;
2593 bfd_size_type amt;
2594
2595 /* Most SOM relocations involving a symbol have a length which is
2596 dependent on the index of the symbol. So symbols which are
2597 used often in relocations should have a small index. */
2598
2599 /* First initialize the counters for each symbol. */
2600 for (i = 0; i < num_syms; i++)
2601 {
2602 /* Handle a section symbol; these have no pointers back to the
2603 SOM symbol info. So we just use the udata field to hold the
2604 relocation count. */
2605 if (som_symbol_data (syms[i]) == NULL
2606 || syms[i]->flags & BSF_SECTION_SYM)
2607 {
2608 syms[i]->flags |= BSF_SECTION_SYM;
2609 syms[i]->udata.i = 0;
2610 }
2611 else
2612 som_symbol_data (syms[i])->reloc_count = 0;
2613 }
2614
2615 /* Now that the counters are initialized, make a weighted count
2616 of how often a given symbol is used in a relocation. */
2617 for (section = abfd->sections; section != NULL; section = section->next)
2618 {
2619 int j;
2620
2621 /* Does this section have any relocations? */
2622 if ((int) section->reloc_count <= 0)
2623 continue;
2624
2625 /* Walk through each relocation for this section. */
2626 for (j = 1; j < (int) section->reloc_count; j++)
2627 {
2628 arelent *reloc = section->orelocation[j];
2629 int scale;
2630
2631 /* A relocation against a symbol in the *ABS* section really
2632 does not have a symbol. Likewise if the symbol isn't associated
2633 with any section. */
2634 if (reloc->sym_ptr_ptr == NULL
2635 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2636 continue;
2637
2638 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2639 and R_CODE_ONE_SYMBOL relocations to come first. These
2640 two relocations have single byte versions if the symbol
2641 index is very small. */
2642 if (reloc->howto->type == R_DP_RELATIVE
2643 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2644 scale = 2;
2645 else
2646 scale = 1;
2647
2648 /* Handle section symbols by storing the count in the udata
2649 field. It will not be used and the count is very important
2650 for these symbols. */
2651 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2652 {
2653 (*reloc->sym_ptr_ptr)->udata.i =
2654 (*reloc->sym_ptr_ptr)->udata.i + scale;
2655 continue;
2656 }
2657
2658 /* A normal symbol. Increment the count. */
2659 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2660 }
2661 }
2662
2663 /* Sort a copy of the symbol table, rather than the canonical
2664 output symbol table. */
2665 amt = num_syms;
2666 amt *= sizeof (asymbol *);
2667 sorted_syms = (asymbol **) bfd_zalloc (abfd, amt);
2668 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2669 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2670 obj_som_sorted_syms (abfd) = sorted_syms;
2671
2672 /* Compute the symbol indexes, they will be needed by the relocation
2673 code. */
2674 for (i = 0; i < num_syms; i++)
2675 {
2676 /* A section symbol. Again, there is no pointer to backend symbol
2677 information, so we reuse the udata field again. */
2678 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2679 sorted_syms[i]->udata.i = i;
2680 else
2681 som_symbol_data (sorted_syms[i])->index = i;
2682 }
2683 }
2684
2685 static bfd_boolean
2686 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2687 bfd *abfd;
2688 unsigned long current_offset;
2689 unsigned int *total_reloc_sizep;
2690 {
2691 unsigned int i, j;
2692 /* Chunk of memory that we can use as buffer space, then throw
2693 away. */
2694 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2695 unsigned char *p;
2696 unsigned int total_reloc_size = 0;
2697 unsigned int subspace_reloc_size = 0;
2698 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2699 asection *section = abfd->sections;
2700 bfd_size_type amt;
2701
2702 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2703 p = tmp_space;
2704
2705 /* All the fixups for a particular subspace are emitted in a single
2706 stream. All the subspaces for a particular space are emitted
2707 as a single stream.
2708
2709 So, to get all the locations correct one must iterate through all the
2710 spaces, for each space iterate through its subspaces and output a
2711 fixups stream. */
2712 for (i = 0; i < num_spaces; i++)
2713 {
2714 asection *subsection;
2715
2716 /* Find a space. */
2717 while (!som_is_space (section))
2718 section = section->next;
2719
2720 /* Now iterate through each of its subspaces. */
2721 for (subsection = abfd->sections;
2722 subsection != NULL;
2723 subsection = subsection->next)
2724 {
2725 int reloc_offset;
2726 unsigned int current_rounding_mode;
2727 #ifndef NO_PCREL_MODES
2728 int current_call_mode;
2729 #endif
2730
2731 /* Find a subspace of this space. */
2732 if (!som_is_subspace (subsection)
2733 || !som_is_container (section, subsection))
2734 continue;
2735
2736 /* If this subspace does not have real data, then we are
2737 finished with it. */
2738 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2739 {
2740 som_section_data (subsection)->subspace_dict->fixup_request_index
2741 = -1;
2742 continue;
2743 }
2744
2745 /* This subspace has some relocations. Put the relocation stream
2746 index into the subspace record. */
2747 som_section_data (subsection)->subspace_dict->fixup_request_index
2748 = total_reloc_size;
2749
2750 /* To make life easier start over with a clean slate for
2751 each subspace. Seek to the start of the relocation stream
2752 for this subspace in preparation for writing out its fixup
2753 stream. */
2754 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2755 return FALSE;
2756
2757 /* Buffer space has already been allocated. Just perform some
2758 initialization here. */
2759 p = tmp_space;
2760 subspace_reloc_size = 0;
2761 reloc_offset = 0;
2762 som_initialize_reloc_queue (reloc_queue);
2763 current_rounding_mode = R_N_MODE;
2764 #ifndef NO_PCREL_MODES
2765 current_call_mode = R_SHORT_PCREL_MODE;
2766 #endif
2767
2768 /* Translate each BFD relocation into one or more SOM
2769 relocations. */
2770 for (j = 0; j < subsection->reloc_count; j++)
2771 {
2772 arelent *bfd_reloc = subsection->orelocation[j];
2773 unsigned int skip;
2774 int sym_num;
2775
2776 /* Get the symbol number. Remember it's stored in a
2777 special place for section symbols. */
2778 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2779 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2780 else
2781 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2782
2783 /* If there is not enough room for the next couple relocations,
2784 then dump the current buffer contents now. Also reinitialize
2785 the relocation queue.
2786
2787 No single BFD relocation could ever translate into more
2788 than 100 bytes of SOM relocations (20bytes is probably the
2789 upper limit, but leave lots of space for growth). */
2790 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2791 {
2792 amt = p - tmp_space;
2793 if (bfd_bwrite ((PTR) tmp_space, amt, abfd) != amt)
2794 return FALSE;
2795
2796 p = tmp_space;
2797 som_initialize_reloc_queue (reloc_queue);
2798 }
2799
2800 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2801 skipped. */
2802 skip = bfd_reloc->address - reloc_offset;
2803 p = som_reloc_skip (abfd, skip, p,
2804 &subspace_reloc_size, reloc_queue);
2805
2806 /* Update reloc_offset for the next iteration.
2807
2808 Many relocations do not consume input bytes. They
2809 are markers, or set state necessary to perform some
2810 later relocation. */
2811 switch (bfd_reloc->howto->type)
2812 {
2813 case R_ENTRY:
2814 case R_ALT_ENTRY:
2815 case R_EXIT:
2816 case R_N_MODE:
2817 case R_S_MODE:
2818 case R_D_MODE:
2819 case R_R_MODE:
2820 case R_FSEL:
2821 case R_LSEL:
2822 case R_RSEL:
2823 case R_COMP1:
2824 case R_COMP2:
2825 case R_BEGIN_BRTAB:
2826 case R_END_BRTAB:
2827 case R_BEGIN_TRY:
2828 case R_END_TRY:
2829 case R_N0SEL:
2830 case R_N1SEL:
2831 #ifndef NO_PCREL_MODES
2832 case R_SHORT_PCREL_MODE:
2833 case R_LONG_PCREL_MODE:
2834 #endif
2835 reloc_offset = bfd_reloc->address;
2836 break;
2837
2838 default:
2839 reloc_offset = bfd_reloc->address + 4;
2840 break;
2841 }
2842
2843 /* Now the actual relocation we care about. */
2844 switch (bfd_reloc->howto->type)
2845 {
2846 case R_PCREL_CALL:
2847 case R_ABS_CALL:
2848 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2849 bfd_reloc, sym_num, reloc_queue);
2850 break;
2851
2852 case R_CODE_ONE_SYMBOL:
2853 case R_DP_RELATIVE:
2854 /* Account for any addend. */
2855 if (bfd_reloc->addend)
2856 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2857 &subspace_reloc_size, reloc_queue);
2858
2859 if (sym_num < 0x20)
2860 {
2861 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2862 subspace_reloc_size += 1;
2863 p += 1;
2864 }
2865 else if (sym_num < 0x100)
2866 {
2867 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2868 bfd_put_8 (abfd, sym_num, p + 1);
2869 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2870 2, reloc_queue);
2871 }
2872 else if (sym_num < 0x10000000)
2873 {
2874 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2875 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2876 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2877 p = try_prev_fixup (abfd, &subspace_reloc_size,
2878 p, 4, reloc_queue);
2879 }
2880 else
2881 abort ();
2882 break;
2883
2884 case R_DATA_ONE_SYMBOL:
2885 case R_DATA_PLABEL:
2886 case R_CODE_PLABEL:
2887 case R_DLT_REL:
2888 /* Account for any addend using R_DATA_OVERRIDE. */
2889 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2890 && bfd_reloc->addend)
2891 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2892 &subspace_reloc_size, reloc_queue);
2893
2894 if (sym_num < 0x100)
2895 {
2896 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2897 bfd_put_8 (abfd, sym_num, p + 1);
2898 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2899 2, reloc_queue);
2900 }
2901 else if (sym_num < 0x10000000)
2902 {
2903 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2904 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2905 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2906 p = try_prev_fixup (abfd, &subspace_reloc_size,
2907 p, 4, reloc_queue);
2908 }
2909 else
2910 abort ();
2911 break;
2912
2913 case R_ENTRY:
2914 {
2915 unsigned int tmp;
2916 arelent *tmp_reloc = NULL;
2917 bfd_put_8 (abfd, R_ENTRY, p);
2918
2919 /* R_ENTRY relocations have 64 bits of associated
2920 data. Unfortunately the addend field of a bfd
2921 relocation is only 32 bits. So, we split up
2922 the 64bit unwind information and store part in
2923 the R_ENTRY relocation, and the rest in the R_EXIT
2924 relocation. */
2925 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2926
2927 /* Find the next R_EXIT relocation. */
2928 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2929 {
2930 tmp_reloc = subsection->orelocation[tmp];
2931 if (tmp_reloc->howto->type == R_EXIT)
2932 break;
2933 }
2934
2935 if (tmp == subsection->reloc_count)
2936 abort ();
2937
2938 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2939 p = try_prev_fixup (abfd, &subspace_reloc_size,
2940 p, 9, reloc_queue);
2941 break;
2942 }
2943
2944 case R_N_MODE:
2945 case R_S_MODE:
2946 case R_D_MODE:
2947 case R_R_MODE:
2948 /* If this relocation requests the current rounding
2949 mode, then it is redundant. */
2950 if (bfd_reloc->howto->type != current_rounding_mode)
2951 {
2952 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2953 subspace_reloc_size += 1;
2954 p += 1;
2955 current_rounding_mode = bfd_reloc->howto->type;
2956 }
2957 break;
2958
2959 #ifndef NO_PCREL_MODES
2960 case R_LONG_PCREL_MODE:
2961 case R_SHORT_PCREL_MODE:
2962 if (bfd_reloc->howto->type != current_call_mode)
2963 {
2964 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2965 subspace_reloc_size += 1;
2966 p += 1;
2967 current_call_mode = bfd_reloc->howto->type;
2968 }
2969 break;
2970 #endif
2971
2972 case R_EXIT:
2973 case R_ALT_ENTRY:
2974 case R_FSEL:
2975 case R_LSEL:
2976 case R_RSEL:
2977 case R_BEGIN_BRTAB:
2978 case R_END_BRTAB:
2979 case R_BEGIN_TRY:
2980 case R_N0SEL:
2981 case R_N1SEL:
2982 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2983 subspace_reloc_size += 1;
2984 p += 1;
2985 break;
2986
2987 case R_END_TRY:
2988 /* The end of an exception handling region. The reloc's
2989 addend contains the offset of the exception handling
2990 code. */
2991 if (bfd_reloc->addend == 0)
2992 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2993 else if (bfd_reloc->addend < 1024)
2994 {
2995 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2996 bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
2997 p = try_prev_fixup (abfd, &subspace_reloc_size,
2998 p, 2, reloc_queue);
2999 }
3000 else
3001 {
3002 bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
3003 bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
3004 bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
3005 p = try_prev_fixup (abfd, &subspace_reloc_size,
3006 p, 4, reloc_queue);
3007 }
3008 break;
3009
3010 case R_COMP1:
3011 /* The only time we generate R_COMP1, R_COMP2 and
3012 R_CODE_EXPR relocs is for the difference of two
3013 symbols. Hence we can cheat here. */
3014 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3015 bfd_put_8 (abfd, 0x44, p + 1);
3016 p = try_prev_fixup (abfd, &subspace_reloc_size,
3017 p, 2, reloc_queue);
3018 break;
3019
3020 case R_COMP2:
3021 /* The only time we generate R_COMP1, R_COMP2 and
3022 R_CODE_EXPR relocs is for the difference of two
3023 symbols. Hence we can cheat here. */
3024 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3025 bfd_put_8 (abfd, 0x80, p + 1);
3026 bfd_put_8 (abfd, sym_num >> 16, p + 2);
3027 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
3028 p = try_prev_fixup (abfd, &subspace_reloc_size,
3029 p, 5, reloc_queue);
3030 break;
3031
3032 case R_CODE_EXPR:
3033 case R_DATA_EXPR:
3034 /* The only time we generate R_COMP1, R_COMP2 and
3035 R_CODE_EXPR relocs is for the difference of two
3036 symbols. Hence we can cheat here. */
3037 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3038 subspace_reloc_size += 1;
3039 p += 1;
3040 break;
3041
3042 /* Put a "R_RESERVED" relocation in the stream if
3043 we hit something we do not understand. The linker
3044 will complain loudly if this ever happens. */
3045 default:
3046 bfd_put_8 (abfd, 0xff, p);
3047 subspace_reloc_size += 1;
3048 p += 1;
3049 break;
3050 }
3051 }
3052
3053 /* Last BFD relocation for a subspace has been processed.
3054 Map the rest of the subspace with R_NO_RELOCATION fixups. */
3055 p = som_reloc_skip (abfd, (bfd_section_size (abfd, subsection)
3056 - reloc_offset),
3057 p, &subspace_reloc_size, reloc_queue);
3058
3059 /* Scribble out the relocations. */
3060 amt = p - tmp_space;
3061 if (bfd_bwrite ((PTR) tmp_space, amt, abfd) != amt)
3062 return FALSE;
3063 p = tmp_space;
3064
3065 total_reloc_size += subspace_reloc_size;
3066 som_section_data (subsection)->subspace_dict->fixup_request_quantity
3067 = subspace_reloc_size;
3068 }
3069 section = section->next;
3070 }
3071 *total_reloc_sizep = total_reloc_size;
3072 return TRUE;
3073 }
3074
3075 /* Write out the space/subspace string table. */
3076
3077 static bfd_boolean
3078 som_write_space_strings (abfd, current_offset, string_sizep)
3079 bfd *abfd;
3080 unsigned long current_offset;
3081 unsigned int *string_sizep;
3082 {
3083 /* Chunk of memory that we can use as buffer space, then throw
3084 away. */
3085 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3086 unsigned char *tmp_space = alloca (tmp_space_size);
3087 unsigned char *p = tmp_space;
3088 unsigned int strings_size = 0;
3089 asection *section;
3090 bfd_size_type amt;
3091
3092 /* Seek to the start of the space strings in preparation for writing
3093 them out. */
3094 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3095 return FALSE;
3096
3097 /* Walk through all the spaces and subspaces (order is not important)
3098 building up and writing string table entries for their names. */
3099 for (section = abfd->sections; section != NULL; section = section->next)
3100 {
3101 size_t length;
3102
3103 /* Only work with space/subspaces; avoid any other sections
3104 which might have been made (.text for example). */
3105 if (!som_is_space (section) && !som_is_subspace (section))
3106 continue;
3107
3108 /* Get the length of the space/subspace name. */
3109 length = strlen (section->name);
3110
3111 /* If there is not enough room for the next entry, then dump the
3112 current buffer contents now and maybe allocate a larger
3113 buffer. Each entry will take 4 bytes to hold the string
3114 length + the string itself + null terminator. */
3115 if (p - tmp_space + 5 + length > tmp_space_size)
3116 {
3117 /* Flush buffer before refilling or reallocating. */
3118 amt = p - tmp_space;
3119 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3120 return FALSE;
3121
3122 /* Reallocate if now empty buffer still too small. */
3123 if (5 + length > tmp_space_size)
3124 {
3125 /* Ensure a minimum growth factor to avoid O(n**2) space
3126 consumption for n strings. The optimal minimum
3127 factor seems to be 2, as no other value can guarantee
3128 wasting less than 50% space. (Note that we cannot
3129 deallocate space allocated by `alloca' without
3130 returning from this function.) The same technique is
3131 used a few more times below when a buffer is
3132 reallocated. */
3133 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3134 tmp_space = alloca (tmp_space_size);
3135 }
3136
3137 /* Reset to beginning of the (possibly new) buffer space. */
3138 p = tmp_space;
3139 }
3140
3141 /* First element in a string table entry is the length of the
3142 string. Alignment issues are already handled. */
3143 bfd_put_32 (abfd, (bfd_vma) length, p);
3144 p += 4;
3145 strings_size += 4;
3146
3147 /* Record the index in the space/subspace records. */
3148 if (som_is_space (section))
3149 som_section_data (section)->space_dict->name.n_strx = strings_size;
3150 else
3151 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
3152
3153 /* Next comes the string itself + a null terminator. */
3154 strcpy (p, section->name);
3155 p += length + 1;
3156 strings_size += length + 1;
3157
3158 /* Always align up to the next word boundary. */
3159 while (strings_size % 4)
3160 {
3161 bfd_put_8 (abfd, 0, p);
3162 p++;
3163 strings_size++;
3164 }
3165 }
3166
3167 /* Done with the space/subspace strings. Write out any information
3168 contained in a partial block. */
3169 amt = p - tmp_space;
3170 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3171 return FALSE;
3172 *string_sizep = strings_size;
3173 return TRUE;
3174 }
3175
3176 /* Write out the symbol string table. */
3177
3178 static bfd_boolean
3179 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep,
3180 compilation_unit)
3181 bfd *abfd;
3182 unsigned long current_offset;
3183 asymbol **syms;
3184 unsigned int num_syms;
3185 unsigned int *string_sizep;
3186 COMPUNIT *compilation_unit;
3187 {
3188 unsigned int i;
3189
3190 /* Chunk of memory that we can use as buffer space, then throw
3191 away. */
3192 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3193 unsigned char *tmp_space = alloca (tmp_space_size);
3194 unsigned char *p = tmp_space;
3195
3196 unsigned int strings_size = 0;
3197 unsigned char *comp[4];
3198 bfd_size_type amt;
3199
3200 /* This gets a bit gruesome because of the compilation unit. The
3201 strings within the compilation unit are part of the symbol
3202 strings, but don't have symbol_dictionary entries. So, manually
3203 write them and update the compilation unit header. On input, the
3204 compilation unit header contains local copies of the strings.
3205 Move them aside. */
3206 if (compilation_unit)
3207 {
3208 comp[0] = compilation_unit->name.n_name;
3209 comp[1] = compilation_unit->language_name.n_name;
3210 comp[2] = compilation_unit->product_id.n_name;
3211 comp[3] = compilation_unit->version_id.n_name;
3212 }
3213
3214 /* Seek to the start of the space strings in preparation for writing
3215 them out. */
3216 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3217 return FALSE;
3218
3219 if (compilation_unit)
3220 {
3221 for (i = 0; i < 4; i++)
3222 {
3223 size_t length = strlen (comp[i]);
3224
3225 /* If there is not enough room for the next entry, then dump
3226 the current buffer contents now and maybe allocate a
3227 larger buffer. */
3228 if (p - tmp_space + 5 + length > tmp_space_size)
3229 {
3230 /* Flush buffer before refilling or reallocating. */
3231 amt = p - tmp_space;
3232 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3233 return FALSE;
3234
3235 /* Reallocate if now empty buffer still too small. */
3236 if (5 + length > tmp_space_size)
3237 {
3238 /* See alloca above for discussion of new size. */
3239 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3240 tmp_space = alloca (tmp_space_size);
3241 }
3242
3243 /* Reset to beginning of the (possibly new) buffer
3244 space. */
3245 p = tmp_space;
3246 }
3247
3248 /* First element in a string table entry is the length of
3249 the string. This must always be 4 byte aligned. This is
3250 also an appropriate time to fill in the string index
3251 field in the symbol table entry. */
3252 bfd_put_32 (abfd, (bfd_vma) length, p);
3253 strings_size += 4;
3254 p += 4;
3255
3256 /* Next comes the string itself + a null terminator. */
3257 strcpy (p, comp[i]);
3258
3259 switch (i)
3260 {
3261 case 0:
3262 obj_som_compilation_unit (abfd)->name.n_strx = strings_size;
3263 break;
3264 case 1:
3265 obj_som_compilation_unit (abfd)->language_name.n_strx =
3266 strings_size;
3267 break;
3268 case 2:
3269 obj_som_compilation_unit (abfd)->product_id.n_strx =
3270 strings_size;
3271 break;
3272 case 3:
3273 obj_som_compilation_unit (abfd)->version_id.n_strx =
3274 strings_size;
3275 break;
3276 }
3277
3278 p += length + 1;
3279 strings_size += length + 1;
3280
3281 /* Always align up to the next word boundary. */
3282 while (strings_size % 4)
3283 {
3284 bfd_put_8 (abfd, 0, p);
3285 strings_size++;
3286 p++;
3287 }
3288 }
3289 }
3290
3291 for (i = 0; i < num_syms; i++)
3292 {
3293 size_t length = strlen (syms[i]->name);
3294
3295 /* If there is not enough room for the next entry, then dump the
3296 current buffer contents now and maybe allocate a larger buffer. */
3297 if (p - tmp_space + 5 + length > tmp_space_size)
3298 {
3299 /* Flush buffer before refilling or reallocating. */
3300 amt = p - tmp_space;
3301 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3302 return FALSE;
3303
3304 /* Reallocate if now empty buffer still too small. */
3305 if (5 + length > tmp_space_size)
3306 {
3307 /* See alloca above for discussion of new size. */
3308 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3309 tmp_space = alloca (tmp_space_size);
3310 }
3311
3312 /* Reset to beginning of the (possibly new) buffer space. */
3313 p = tmp_space;
3314 }
3315
3316 /* First element in a string table entry is the length of the
3317 string. This must always be 4 byte aligned. This is also
3318 an appropriate time to fill in the string index field in the
3319 symbol table entry. */
3320 bfd_put_32 (abfd, (bfd_vma) length, p);
3321 strings_size += 4;
3322 p += 4;
3323
3324 /* Next comes the string itself + a null terminator. */
3325 strcpy (p, syms[i]->name);
3326
3327 som_symbol_data (syms[i])->stringtab_offset = strings_size;
3328 p += length + 1;
3329 strings_size += length + 1;
3330
3331 /* Always align up to the next word boundary. */
3332 while (strings_size % 4)
3333 {
3334 bfd_put_8 (abfd, 0, p);
3335 strings_size++;
3336 p++;
3337 }
3338 }
3339
3340 /* Scribble out any partial block. */
3341 amt = p - tmp_space;
3342 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3343 return FALSE;
3344
3345 *string_sizep = strings_size;
3346 return TRUE;
3347 }
3348
3349 /* Compute variable information to be placed in the SOM headers,
3350 space/subspace dictionaries, relocation streams, etc. Begin
3351 writing parts of the object file. */
3352
3353 static bfd_boolean
3354 som_begin_writing (abfd)
3355 bfd *abfd;
3356 {
3357 unsigned long current_offset = 0;
3358 int strings_size = 0;
3359 unsigned long num_spaces, num_subspaces, i;
3360 asection *section;
3361 unsigned int total_subspaces = 0;
3362 struct som_exec_auxhdr *exec_header = NULL;
3363
3364 /* The file header will always be first in an object file,
3365 everything else can be in random locations. To keep things
3366 "simple" BFD will lay out the object file in the manner suggested
3367 by the PRO ABI for PA-RISC Systems. */
3368
3369 /* Before any output can really begin offsets for all the major
3370 portions of the object file must be computed. So, starting
3371 with the initial file header compute (and sometimes write)
3372 each portion of the object file. */
3373
3374 /* Make room for the file header, it's contents are not complete
3375 yet, so it can not be written at this time. */
3376 current_offset += sizeof (struct header);
3377
3378 /* Any auxiliary headers will follow the file header. Right now
3379 we support only the copyright and version headers. */
3380 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3381 obj_som_file_hdr (abfd)->aux_header_size = 0;
3382 if (abfd->flags & (EXEC_P | DYNAMIC))
3383 {
3384 /* Parts of the exec header will be filled in later, so
3385 delay writing the header itself. Fill in the defaults,
3386 and write it later. */
3387 current_offset += sizeof (struct som_exec_auxhdr);
3388 obj_som_file_hdr (abfd)->aux_header_size
3389 += sizeof (struct som_exec_auxhdr);
3390 exec_header = obj_som_exec_hdr (abfd);
3391 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3392 exec_header->som_auxhdr.length = 40;
3393 }
3394 if (obj_som_version_hdr (abfd) != NULL)
3395 {
3396 bfd_size_type len;
3397
3398 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3399 return FALSE;
3400
3401 /* Write the aux_id structure and the string length. */
3402 len = sizeof (struct aux_id) + sizeof (unsigned int);
3403 obj_som_file_hdr (abfd)->aux_header_size += len;
3404 current_offset += len;
3405 if (bfd_bwrite ((PTR) obj_som_version_hdr (abfd), len, abfd) != len)
3406 return FALSE;
3407
3408 /* Write the version string. */
3409 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3410 obj_som_file_hdr (abfd)->aux_header_size += len;
3411 current_offset += len;
3412 if (bfd_bwrite ((PTR) obj_som_version_hdr (abfd)->user_string, len, abfd)
3413 != len)
3414 return FALSE;
3415 }
3416
3417 if (obj_som_copyright_hdr (abfd) != NULL)
3418 {
3419 bfd_size_type len;
3420
3421 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3422 return FALSE;
3423
3424 /* Write the aux_id structure and the string length. */
3425 len = sizeof (struct aux_id) + sizeof (unsigned int);
3426 obj_som_file_hdr (abfd)->aux_header_size += len;
3427 current_offset += len;
3428 if (bfd_bwrite ((PTR) obj_som_copyright_hdr (abfd), len, abfd) != len)
3429 return FALSE;
3430
3431 /* Write the copyright string. */
3432 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3433 obj_som_file_hdr (abfd)->aux_header_size += len;
3434 current_offset += len;
3435 if (bfd_bwrite ((PTR) obj_som_copyright_hdr (abfd)->copyright, len, abfd)
3436 != len)
3437 return FALSE;
3438 }
3439
3440 /* Next comes the initialization pointers; we have no initialization
3441 pointers, so current offset does not change. */
3442 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3443 obj_som_file_hdr (abfd)->init_array_total = 0;
3444
3445 /* Next are the space records. These are fixed length records.
3446
3447 Count the number of spaces to determine how much room is needed
3448 in the object file for the space records.
3449
3450 The names of the spaces are stored in a separate string table,
3451 and the index for each space into the string table is computed
3452 below. Therefore, it is not possible to write the space headers
3453 at this time. */
3454 num_spaces = som_count_spaces (abfd);
3455 obj_som_file_hdr (abfd)->space_location = current_offset;
3456 obj_som_file_hdr (abfd)->space_total = num_spaces;
3457 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3458
3459 /* Next are the subspace records. These are fixed length records.
3460
3461 Count the number of subspaes to determine how much room is needed
3462 in the object file for the subspace records.
3463
3464 A variety if fields in the subspace record are still unknown at
3465 this time (index into string table, fixup stream location/size, etc). */
3466 num_subspaces = som_count_subspaces (abfd);
3467 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3468 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3469 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
3470
3471 /* Next is the string table for the space/subspace names. We will
3472 build and write the string table on the fly. At the same time
3473 we will fill in the space/subspace name index fields. */
3474
3475 /* The string table needs to be aligned on a word boundary. */
3476 if (current_offset % 4)
3477 current_offset += (4 - (current_offset % 4));
3478
3479 /* Mark the offset of the space/subspace string table in the
3480 file header. */
3481 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3482
3483 /* Scribble out the space strings. */
3484 if (! som_write_space_strings (abfd, current_offset, &strings_size))
3485 return FALSE;
3486
3487 /* Record total string table size in the header and update the
3488 current offset. */
3489 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3490 current_offset += strings_size;
3491
3492 /* Next is the compilation unit. */
3493 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3494 obj_som_file_hdr (abfd)->compiler_total = 0;
3495 if (obj_som_compilation_unit (abfd))
3496 {
3497 obj_som_file_hdr (abfd)->compiler_total = 1;
3498 current_offset += COMPUNITSZ;
3499 }
3500
3501 /* Now compute the file positions for the loadable subspaces, taking
3502 care to make sure everything stays properly aligned. */
3503
3504 section = abfd->sections;
3505 for (i = 0; i < num_spaces; i++)
3506 {
3507 asection *subsection;
3508 int first_subspace;
3509 unsigned int subspace_offset = 0;
3510
3511 /* Find a space. */
3512 while (!som_is_space (section))
3513 section = section->next;
3514
3515 first_subspace = 1;
3516 /* Now look for all its subspaces. */
3517 for (subsection = abfd->sections;
3518 subsection != NULL;
3519 subsection = subsection->next)
3520 {
3521
3522 if (!som_is_subspace (subsection)
3523 || !som_is_container (section, subsection)
3524 || (subsection->flags & SEC_ALLOC) == 0)
3525 continue;
3526
3527 /* If this is the first subspace in the space, and we are
3528 building an executable, then take care to make sure all
3529 the alignments are correct and update the exec header. */
3530 if (first_subspace
3531 && (abfd->flags & (EXEC_P | DYNAMIC)))
3532 {
3533 /* Demand paged executables have each space aligned to a
3534 page boundary. Sharable executables (write-protected
3535 text) have just the private (aka data & bss) space aligned
3536 to a page boundary. Ugh. Not true for HPUX.
3537
3538 The HPUX kernel requires the text to always be page aligned
3539 within the file regardless of the executable's type. */
3540 if (abfd->flags & (D_PAGED | DYNAMIC)
3541 || (subsection->flags & SEC_CODE)
3542 || ((abfd->flags & WP_TEXT)
3543 && (subsection->flags & SEC_DATA)))
3544 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3545
3546 /* Update the exec header. */
3547 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3548 {
3549 exec_header->exec_tmem = section->vma;
3550 exec_header->exec_tfile = current_offset;
3551 }
3552 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3553 {
3554 exec_header->exec_dmem = section->vma;
3555 exec_header->exec_dfile = current_offset;
3556 }
3557
3558 /* Keep track of exactly where we are within a particular
3559 space. This is necessary as the braindamaged HPUX
3560 loader will create holes between subspaces *and*
3561 subspace alignments are *NOT* preserved. What a crock. */
3562 subspace_offset = subsection->vma;
3563
3564 /* Only do this for the first subspace within each space. */
3565 first_subspace = 0;
3566 }
3567 else if (abfd->flags & (EXEC_P | DYNAMIC))
3568 {
3569 /* The braindamaged HPUX loader may have created a hole
3570 between two subspaces. It is *not* sufficient to use
3571 the alignment specifications within the subspaces to
3572 account for these holes -- I've run into at least one
3573 case where the loader left one code subspace unaligned
3574 in a final executable.
3575
3576 To combat this we keep a current offset within each space,
3577 and use the subspace vma fields to detect and preserve
3578 holes. What a crock!
3579
3580 ps. This is not necessary for unloadable space/subspaces. */
3581 current_offset += subsection->vma - subspace_offset;
3582 if (subsection->flags & SEC_CODE)
3583 exec_header->exec_tsize += subsection->vma - subspace_offset;
3584 else
3585 exec_header->exec_dsize += subsection->vma - subspace_offset;
3586 subspace_offset += subsection->vma - subspace_offset;
3587 }
3588
3589 subsection->target_index = total_subspaces++;
3590 /* This is real data to be loaded from the file. */
3591 if (subsection->flags & SEC_LOAD)
3592 {
3593 /* Update the size of the code & data. */
3594 if (abfd->flags & (EXEC_P | DYNAMIC)
3595 && subsection->flags & SEC_CODE)
3596 exec_header->exec_tsize += subsection->_cooked_size;
3597 else if (abfd->flags & (EXEC_P | DYNAMIC)
3598 && subsection->flags & SEC_DATA)
3599 exec_header->exec_dsize += subsection->_cooked_size;
3600 som_section_data (subsection)->subspace_dict->file_loc_init_value
3601 = current_offset;
3602 subsection->filepos = current_offset;
3603 current_offset += bfd_section_size (abfd, subsection);
3604 subspace_offset += bfd_section_size (abfd, subsection);
3605 }
3606 /* Looks like uninitialized data. */
3607 else
3608 {
3609 /* Update the size of the bss section. */
3610 if (abfd->flags & (EXEC_P | DYNAMIC))
3611 exec_header->exec_bsize += subsection->_cooked_size;
3612
3613 som_section_data (subsection)->subspace_dict->file_loc_init_value
3614 = 0;
3615 som_section_data (subsection)->subspace_dict->
3616 initialization_length = 0;
3617 }
3618 }
3619 /* Goto the next section. */
3620 section = section->next;
3621 }
3622
3623 /* Finally compute the file positions for unloadable subspaces.
3624 If building an executable, start the unloadable stuff on its
3625 own page. */
3626
3627 if (abfd->flags & (EXEC_P | DYNAMIC))
3628 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3629
3630 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3631 section = abfd->sections;
3632 for (i = 0; i < num_spaces; i++)
3633 {
3634 asection *subsection;
3635
3636 /* Find a space. */
3637 while (!som_is_space (section))
3638 section = section->next;
3639
3640 if (abfd->flags & (EXEC_P | DYNAMIC))
3641 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3642
3643 /* Now look for all its subspaces. */
3644 for (subsection = abfd->sections;
3645 subsection != NULL;
3646 subsection = subsection->next)
3647 {
3648
3649 if (!som_is_subspace (subsection)
3650 || !som_is_container (section, subsection)
3651 || (subsection->flags & SEC_ALLOC) != 0)
3652 continue;
3653
3654 subsection->target_index = total_subspaces++;
3655 /* This is real data to be loaded from the file. */
3656 if ((subsection->flags & SEC_LOAD) == 0)
3657 {
3658 som_section_data (subsection)->subspace_dict->file_loc_init_value
3659 = current_offset;
3660 subsection->filepos = current_offset;
3661 current_offset += bfd_section_size (abfd, subsection);
3662 }
3663 /* Looks like uninitialized data. */
3664 else
3665 {
3666 som_section_data (subsection)->subspace_dict->file_loc_init_value
3667 = 0;
3668 som_section_data (subsection)->subspace_dict->
3669 initialization_length = bfd_section_size (abfd, subsection);
3670 }
3671 }
3672 /* Goto the next section. */
3673 section = section->next;
3674 }
3675
3676 /* If building an executable, then make sure to seek to and write
3677 one byte at the end of the file to make sure any necessary
3678 zeros are filled in. Ugh. */
3679 if (abfd->flags & (EXEC_P | DYNAMIC))
3680 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3681 if (bfd_seek (abfd, (file_ptr) current_offset - 1, SEEK_SET) != 0)
3682 return FALSE;
3683 if (bfd_bwrite ((PTR) "", (bfd_size_type) 1, abfd) != 1)
3684 return FALSE;
3685
3686 obj_som_file_hdr (abfd)->unloadable_sp_size
3687 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3688
3689 /* Loader fixups are not supported in any way shape or form. */
3690 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3691 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3692
3693 /* Done. Store the total size of the SOM so far. */
3694 obj_som_file_hdr (abfd)->som_length = current_offset;
3695
3696 return TRUE;
3697 }
3698
3699 /* Finally, scribble out the various headers to the disk. */
3700
3701 static bfd_boolean
3702 som_finish_writing (abfd)
3703 bfd *abfd;
3704 {
3705 int num_spaces = som_count_spaces (abfd);
3706 asymbol **syms = bfd_get_outsymbols (abfd);
3707 int i, num_syms, strings_size;
3708 int subspace_index = 0;
3709 file_ptr location;
3710 asection *section;
3711 unsigned long current_offset;
3712 unsigned int total_reloc_size;
3713 bfd_size_type amt;
3714
3715 /* We must set up the version identifier here as objcopy/strip copy
3716 private BFD data too late for us to handle this in som_begin_writing. */
3717 if (obj_som_exec_data (abfd)
3718 && obj_som_exec_data (abfd)->version_id)
3719 obj_som_file_hdr (abfd)->version_id = obj_som_exec_data (abfd)->version_id;
3720 else
3721 obj_som_file_hdr (abfd)->version_id = NEW_VERSION_ID;
3722
3723 /* Next is the symbol table. These are fixed length records.
3724
3725 Count the number of symbols to determine how much room is needed
3726 in the object file for the symbol table.
3727
3728 The names of the symbols are stored in a separate string table,
3729 and the index for each symbol name into the string table is computed
3730 below. Therefore, it is not possible to write the symbol table
3731 at this time.
3732
3733 These used to be output before the subspace contents, but they
3734 were moved here to work around a stupid bug in the hpux linker
3735 (fixed in hpux10). */
3736 current_offset = obj_som_file_hdr (abfd)->som_length;
3737
3738 /* Make sure we're on a word boundary. */
3739 if (current_offset % 4)
3740 current_offset += (4 - (current_offset % 4));
3741
3742 num_syms = bfd_get_symcount (abfd);
3743 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3744 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3745 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3746
3747 /* Next are the symbol strings.
3748 Align them to a word boundary. */
3749 if (current_offset % 4)
3750 current_offset += (4 - (current_offset % 4));
3751 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3752
3753 /* Scribble out the symbol strings. */
3754 if (! som_write_symbol_strings (abfd, current_offset, syms,
3755 num_syms, &strings_size,
3756 obj_som_compilation_unit (abfd)))
3757 return FALSE;
3758
3759 /* Record total string table size in header and update the
3760 current offset. */
3761 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3762 current_offset += strings_size;
3763
3764 /* Do prep work before handling fixups. */
3765 som_prep_for_fixups (abfd,
3766 bfd_get_outsymbols (abfd),
3767 bfd_get_symcount (abfd));
3768
3769 /* At the end of the file is the fixup stream which starts on a
3770 word boundary. */
3771 if (current_offset % 4)
3772 current_offset += (4 - (current_offset % 4));
3773 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3774
3775 /* Write the fixups and update fields in subspace headers which
3776 relate to the fixup stream. */
3777 if (! som_write_fixups (abfd, current_offset, &total_reloc_size))
3778 return FALSE;
3779
3780 /* Record the total size of the fixup stream in the file header. */
3781 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3782
3783 /* Done. Store the total size of the SOM. */
3784 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
3785
3786 /* Now that the symbol table information is complete, build and
3787 write the symbol table. */
3788 if (! som_build_and_write_symbol_table (abfd))
3789 return FALSE;
3790
3791 /* Subspaces are written first so that we can set up information
3792 about them in their containing spaces as the subspace is written. */
3793
3794 /* Seek to the start of the subspace dictionary records. */
3795 location = obj_som_file_hdr (abfd)->subspace_location;
3796 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3797 return FALSE;
3798
3799 section = abfd->sections;
3800 /* Now for each loadable space write out records for its subspaces. */
3801 for (i = 0; i < num_spaces; i++)
3802 {
3803 asection *subsection;
3804
3805 /* Find a space. */
3806 while (!som_is_space (section))
3807 section = section->next;
3808
3809 /* Now look for all its subspaces. */
3810 for (subsection = abfd->sections;
3811 subsection != NULL;
3812 subsection = subsection->next)
3813 {
3814
3815 /* Skip any section which does not correspond to a space
3816 or subspace. Or does not have SEC_ALLOC set (and therefore
3817 has no real bits on the disk). */
3818 if (!som_is_subspace (subsection)
3819 || !som_is_container (section, subsection)
3820 || (subsection->flags & SEC_ALLOC) == 0)
3821 continue;
3822
3823 /* If this is the first subspace for this space, then save
3824 the index of the subspace in its containing space. Also
3825 set "is_loadable" in the containing space. */
3826
3827 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3828 {
3829 som_section_data (section)->space_dict->is_loadable = 1;
3830 som_section_data (section)->space_dict->subspace_index
3831 = subspace_index;
3832 }
3833
3834 /* Increment the number of subspaces seen and the number of
3835 subspaces contained within the current space. */
3836 subspace_index++;
3837 som_section_data (section)->space_dict->subspace_quantity++;
3838
3839 /* Mark the index of the current space within the subspace's
3840 dictionary record. */
3841 som_section_data (subsection)->subspace_dict->space_index = i;
3842
3843 /* Dump the current subspace header. */
3844 amt = sizeof (struct subspace_dictionary_record);
3845 if (bfd_bwrite ((PTR) som_section_data (subsection)->subspace_dict,
3846 amt, abfd) != amt)
3847 return FALSE;
3848 }
3849 /* Goto the next section. */
3850 section = section->next;
3851 }
3852
3853 /* Now repeat the process for unloadable subspaces. */
3854 section = abfd->sections;
3855 /* Now for each space write out records for its subspaces. */
3856 for (i = 0; i < num_spaces; i++)
3857 {
3858 asection *subsection;
3859
3860 /* Find a space. */
3861 while (!som_is_space (section))
3862 section = section->next;
3863
3864 /* Now look for all its subspaces. */
3865 for (subsection = abfd->sections;
3866 subsection != NULL;
3867 subsection = subsection->next)
3868 {
3869
3870 /* Skip any section which does not correspond to a space or
3871 subspace, or which SEC_ALLOC set (and therefore handled
3872 in the loadable spaces/subspaces code above). */
3873
3874 if (!som_is_subspace (subsection)
3875 || !som_is_container (section, subsection)
3876 || (subsection->flags & SEC_ALLOC) != 0)
3877 continue;
3878
3879 /* If this is the first subspace for this space, then save
3880 the index of the subspace in its containing space. Clear
3881 "is_loadable". */
3882
3883 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3884 {
3885 som_section_data (section)->space_dict->is_loadable = 0;
3886 som_section_data (section)->space_dict->subspace_index
3887 = subspace_index;
3888 }
3889
3890 /* Increment the number of subspaces seen and the number of
3891 subspaces contained within the current space. */
3892 som_section_data (section)->space_dict->subspace_quantity++;
3893 subspace_index++;
3894
3895 /* Mark the index of the current space within the subspace's
3896 dictionary record. */
3897 som_section_data (subsection)->subspace_dict->space_index = i;
3898
3899 /* Dump this subspace header. */
3900 amt = sizeof (struct subspace_dictionary_record);
3901 if (bfd_bwrite ((PTR) som_section_data (subsection)->subspace_dict,
3902 amt, abfd) != amt)
3903 return FALSE;
3904 }
3905 /* Goto the next section. */
3906 section = section->next;
3907 }
3908
3909 /* All the subspace dictionary records are written, and all the
3910 fields are set up in the space dictionary records.
3911
3912 Seek to the right location and start writing the space
3913 dictionary records. */
3914 location = obj_som_file_hdr (abfd)->space_location;
3915 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3916 return FALSE;
3917
3918 section = abfd->sections;
3919 for (i = 0; i < num_spaces; i++)
3920 {
3921 /* Find a space. */
3922 while (!som_is_space (section))
3923 section = section->next;
3924
3925 /* Dump its header. */
3926 amt = sizeof (struct space_dictionary_record);
3927 if (bfd_bwrite ((PTR) som_section_data (section)->space_dict,
3928 amt, abfd) != amt)
3929 return FALSE;
3930
3931 /* Goto the next section. */
3932 section = section->next;
3933 }
3934
3935 /* Write the compilation unit record if there is one. */
3936 if (obj_som_compilation_unit (abfd))
3937 {
3938 location = obj_som_file_hdr (abfd)->compiler_location;
3939 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3940 return FALSE;
3941
3942 amt = COMPUNITSZ;
3943 if (bfd_bwrite ((PTR) obj_som_compilation_unit (abfd), amt, abfd) != amt)
3944 return FALSE;
3945 }
3946
3947 /* Setting of the system_id has to happen very late now that copying of
3948 BFD private data happens *after* section contents are set. */
3949 if (abfd->flags & (EXEC_P | DYNAMIC))
3950 obj_som_file_hdr (abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3951 else if (bfd_get_mach (abfd) == pa20)
3952 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC2_0;
3953 else if (bfd_get_mach (abfd) == pa11)
3954 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_1;
3955 else
3956 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_0;
3957
3958 /* Compute the checksum for the file header just before writing
3959 the header to disk. */
3960 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3961
3962 /* Only thing left to do is write out the file header. It is always
3963 at location zero. Seek there and write it. */
3964 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
3965 return FALSE;
3966 amt = sizeof (struct header);
3967 if (bfd_bwrite ((PTR) obj_som_file_hdr (abfd), amt, abfd) != amt)
3968 return FALSE;
3969
3970 /* Now write the exec header. */
3971 if (abfd->flags & (EXEC_P | DYNAMIC))
3972 {
3973 long tmp, som_length;
3974 struct som_exec_auxhdr *exec_header;
3975
3976 exec_header = obj_som_exec_hdr (abfd);
3977 exec_header->exec_entry = bfd_get_start_address (abfd);
3978 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3979
3980 /* Oh joys. Ram some of the BSS data into the DATA section
3981 to be compatible with how the hp linker makes objects
3982 (saves memory space). */
3983 tmp = exec_header->exec_dsize;
3984 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3985 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3986 if (exec_header->exec_bsize < 0)
3987 exec_header->exec_bsize = 0;
3988 exec_header->exec_dsize = tmp;
3989
3990 /* Now perform some sanity checks. The idea is to catch bogons now and
3991 inform the user, instead of silently generating a bogus file. */
3992 som_length = obj_som_file_hdr (abfd)->som_length;
3993 if (exec_header->exec_tfile + exec_header->exec_tsize > som_length
3994 || exec_header->exec_dfile + exec_header->exec_dsize > som_length)
3995 {
3996 bfd_set_error (bfd_error_bad_value);
3997 return FALSE;
3998 }
3999
4000 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
4001 SEEK_SET) != 0)
4002 return FALSE;
4003
4004 amt = AUX_HDR_SIZE;
4005 if (bfd_bwrite ((PTR) exec_header, amt, abfd) != amt)
4006 return FALSE;
4007 }
4008 return TRUE;
4009 }
4010
4011 /* Compute and return the checksum for a SOM file header. */
4012
4013 static unsigned long
4014 som_compute_checksum (abfd)
4015 bfd *abfd;
4016 {
4017 unsigned long checksum, count, i;
4018 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
4019
4020 checksum = 0;
4021 count = sizeof (struct header) / sizeof (unsigned long);
4022 for (i = 0; i < count; i++)
4023 checksum ^= *(buffer + i);
4024
4025 return checksum;
4026 }
4027
4028 static void
4029 som_bfd_derive_misc_symbol_info (abfd, sym, info)
4030 bfd *abfd ATTRIBUTE_UNUSED;
4031 asymbol *sym;
4032 struct som_misc_symbol_info *info;
4033 {
4034 /* Initialize. */
4035 memset (info, 0, sizeof (struct som_misc_symbol_info));
4036
4037 /* The HP SOM linker requires detailed type information about
4038 all symbols (including undefined symbols!). Unfortunately,
4039 the type specified in an import/export statement does not
4040 always match what the linker wants. Severe braindamage. */
4041
4042 /* Section symbols will not have a SOM symbol type assigned to
4043 them yet. Assign all section symbols type ST_DATA. */
4044 if (sym->flags & BSF_SECTION_SYM)
4045 info->symbol_type = ST_DATA;
4046 else
4047 {
4048 /* Common symbols must have scope SS_UNSAT and type
4049 ST_STORAGE or the linker will choke. */
4050 if (bfd_is_com_section (sym->section))
4051 {
4052 info->symbol_scope = SS_UNSAT;
4053 info->symbol_type = ST_STORAGE;
4054 }
4055
4056 /* It is possible to have a symbol without an associated
4057 type. This happens if the user imported the symbol
4058 without a type and the symbol was never defined
4059 locally. If BSF_FUNCTION is set for this symbol, then
4060 assign it type ST_CODE (the HP linker requires undefined
4061 external functions to have type ST_CODE rather than ST_ENTRY). */
4062 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
4063 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
4064 && bfd_is_und_section (sym->section)
4065 && sym->flags & BSF_FUNCTION)
4066 info->symbol_type = ST_CODE;
4067
4068 /* Handle function symbols which were defined in this file.
4069 They should have type ST_ENTRY. Also retrieve the argument
4070 relocation bits from the SOM backend information. */
4071 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
4072 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
4073 && (sym->flags & BSF_FUNCTION))
4074 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
4075 && (sym->flags & BSF_FUNCTION)))
4076 {
4077 info->symbol_type = ST_ENTRY;
4078 info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc;
4079 info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level;
4080 }
4081
4082 /* For unknown symbols set the symbol's type based on the symbol's
4083 section (ST_DATA for DATA sections, ST_CODE for CODE sections). */
4084 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
4085 {
4086 if (sym->section->flags & SEC_CODE)
4087 info->symbol_type = ST_CODE;
4088 else
4089 info->symbol_type = ST_DATA;
4090 }
4091
4092 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
4093 info->symbol_type = ST_DATA;
4094
4095 /* From now on it's a very simple mapping. */
4096 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
4097 info->symbol_type = ST_ABSOLUTE;
4098 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
4099 info->symbol_type = ST_CODE;
4100 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
4101 info->symbol_type = ST_DATA;
4102 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
4103 info->symbol_type = ST_MILLICODE;
4104 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
4105 info->symbol_type = ST_PLABEL;
4106 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
4107 info->symbol_type = ST_PRI_PROG;
4108 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
4109 info->symbol_type = ST_SEC_PROG;
4110 }
4111
4112 /* Now handle the symbol's scope. Exported data which is not
4113 in the common section has scope SS_UNIVERSAL. Note scope
4114 of common symbols was handled earlier! */
4115 if (bfd_is_und_section (sym->section))
4116 info->symbol_scope = SS_UNSAT;
4117 else if (sym->flags & (BSF_EXPORT | BSF_WEAK)
4118 && ! bfd_is_com_section (sym->section))
4119 info->symbol_scope = SS_UNIVERSAL;
4120 /* Anything else which is not in the common section has scope
4121 SS_LOCAL. */
4122 else if (! bfd_is_com_section (sym->section))
4123 info->symbol_scope = SS_LOCAL;
4124
4125 /* Now set the symbol_info field. It has no real meaning
4126 for undefined or common symbols, but the HP linker will
4127 choke if it's not set to some "reasonable" value. We
4128 use zero as a reasonable value. */
4129 if (bfd_is_com_section (sym->section)
4130 || bfd_is_und_section (sym->section)
4131 || bfd_is_abs_section (sym->section))
4132 info->symbol_info = 0;
4133 /* For all other symbols, the symbol_info field contains the
4134 subspace index of the space this symbol is contained in. */
4135 else
4136 info->symbol_info = sym->section->target_index;
4137
4138 /* Set the symbol's value. */
4139 info->symbol_value = sym->value + sym->section->vma;
4140
4141 /* The secondary_def field is for weak symbols. */
4142 if (sym->flags & BSF_WEAK)
4143 info->secondary_def = TRUE;
4144 else
4145 info->secondary_def = FALSE;
4146
4147 }
4148
4149 /* Build and write, in one big chunk, the entire symbol table for
4150 this BFD. */
4151
4152 static bfd_boolean
4153 som_build_and_write_symbol_table (abfd)
4154 bfd *abfd;
4155 {
4156 unsigned int num_syms = bfd_get_symcount (abfd);
4157 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
4158 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
4159 struct symbol_dictionary_record *som_symtab = NULL;
4160 unsigned int i;
4161 bfd_size_type symtab_size;
4162
4163 /* Compute total symbol table size and allocate a chunk of memory
4164 to hold the symbol table as we build it. */
4165 symtab_size = num_syms;
4166 symtab_size *= sizeof (struct symbol_dictionary_record);
4167 som_symtab = (struct symbol_dictionary_record *) bfd_zmalloc (symtab_size);
4168 if (som_symtab == NULL && symtab_size != 0)
4169 goto error_return;
4170
4171 /* Walk over each symbol. */
4172 for (i = 0; i < num_syms; i++)
4173 {
4174 struct som_misc_symbol_info info;
4175
4176 /* This is really an index into the symbol strings table.
4177 By the time we get here, the index has already been
4178 computed and stored into the name field in the BFD symbol. */
4179 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
4180
4181 /* Derive SOM information from the BFD symbol. */
4182 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
4183
4184 /* Now use it. */
4185 som_symtab[i].symbol_type = info.symbol_type;
4186 som_symtab[i].symbol_scope = info.symbol_scope;
4187 som_symtab[i].arg_reloc = info.arg_reloc;
4188 som_symtab[i].symbol_info = info.symbol_info;
4189 som_symtab[i].xleast = 3;
4190 som_symtab[i].symbol_value = info.symbol_value | info.priv_level;
4191 som_symtab[i].secondary_def = info.secondary_def;
4192 }
4193
4194 /* Everything is ready, seek to the right location and
4195 scribble out the symbol table. */
4196 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
4197 return FALSE;
4198
4199 if (bfd_bwrite ((PTR) som_symtab, symtab_size, abfd) != symtab_size)
4200 goto error_return;
4201
4202 if (som_symtab != NULL)
4203 free (som_symtab);
4204 return TRUE;
4205 error_return:
4206 if (som_symtab != NULL)
4207 free (som_symtab);
4208 return FALSE;
4209 }
4210
4211 /* Write an object in SOM format. */
4212
4213 static bfd_boolean
4214 som_write_object_contents (abfd)
4215 bfd *abfd;
4216 {
4217 if (! abfd->output_has_begun)
4218 {
4219 /* Set up fixed parts of the file, space, and subspace headers.
4220 Notify the world that output has begun. */
4221 som_prep_headers (abfd);
4222 abfd->output_has_begun = TRUE;
4223 /* Start writing the object file. This include all the string
4224 tables, fixup streams, and other portions of the object file. */
4225 som_begin_writing (abfd);
4226 }
4227
4228 return (som_finish_writing (abfd));
4229 }
4230 \f
4231 /* Read and save the string table associated with the given BFD. */
4232
4233 static bfd_boolean
4234 som_slurp_string_table (abfd)
4235 bfd *abfd;
4236 {
4237 char *stringtab;
4238 bfd_size_type amt;
4239
4240 /* Use the saved version if its available. */
4241 if (obj_som_stringtab (abfd) != NULL)
4242 return TRUE;
4243
4244 /* I don't think this can currently happen, and I'm not sure it should
4245 really be an error, but it's better than getting unpredictable results
4246 from the host's malloc when passed a size of zero. */
4247 if (obj_som_stringtab_size (abfd) == 0)
4248 {
4249 bfd_set_error (bfd_error_no_symbols);
4250 return FALSE;
4251 }
4252
4253 /* Allocate and read in the string table. */
4254 amt = obj_som_stringtab_size (abfd);
4255 stringtab = bfd_zmalloc (amt);
4256 if (stringtab == NULL)
4257 return FALSE;
4258
4259 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) != 0)
4260 return FALSE;
4261
4262 if (bfd_bread (stringtab, amt, abfd) != amt)
4263 return FALSE;
4264
4265 /* Save our results and return success. */
4266 obj_som_stringtab (abfd) = stringtab;
4267 return TRUE;
4268 }
4269
4270 /* Return the amount of data (in bytes) required to hold the symbol
4271 table for this object. */
4272
4273 static long
4274 som_get_symtab_upper_bound (abfd)
4275 bfd *abfd;
4276 {
4277 if (!som_slurp_symbol_table (abfd))
4278 return -1;
4279
4280 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
4281 }
4282
4283 /* Convert from a SOM subspace index to a BFD section. */
4284
4285 static asection *
4286 bfd_section_from_som_symbol (abfd, symbol)
4287 bfd *abfd;
4288 struct symbol_dictionary_record *symbol;
4289 {
4290 asection *section;
4291
4292 /* The meaning of the symbol_info field changes for functions
4293 within executables. So only use the quick symbol_info mapping for
4294 incomplete objects and non-function symbols in executables. */
4295 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4296 || (symbol->symbol_type != ST_ENTRY
4297 && symbol->symbol_type != ST_PRI_PROG
4298 && symbol->symbol_type != ST_SEC_PROG
4299 && symbol->symbol_type != ST_MILLICODE))
4300 {
4301 unsigned int index = symbol->symbol_info;
4302 for (section = abfd->sections; section != NULL; section = section->next)
4303 if (section->target_index == index && som_is_subspace (section))
4304 return section;
4305
4306 /* Could be a symbol from an external library (such as an OMOS
4307 shared library). Don't abort. */
4308 return bfd_abs_section_ptr;
4309
4310 }
4311 else
4312 {
4313 unsigned int value = symbol->symbol_value;
4314
4315 /* For executables we will have to use the symbol's address and
4316 find out what section would contain that address. Yuk. */
4317 for (section = abfd->sections; section; section = section->next)
4318 {
4319 if (value >= section->vma
4320 && value <= section->vma + section->_cooked_size
4321 && som_is_subspace (section))
4322 return section;
4323 }
4324
4325 /* Could be a symbol from an external library (such as an OMOS
4326 shared library). Don't abort. */
4327 return bfd_abs_section_ptr;
4328
4329 }
4330 }
4331
4332 /* Read and save the symbol table associated with the given BFD. */
4333
4334 static unsigned int
4335 som_slurp_symbol_table (abfd)
4336 bfd *abfd;
4337 {
4338 int symbol_count = bfd_get_symcount (abfd);
4339 int symsize = sizeof (struct symbol_dictionary_record);
4340 char *stringtab;
4341 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
4342 som_symbol_type *sym, *symbase;
4343 bfd_size_type amt;
4344
4345 /* Return saved value if it exists. */
4346 if (obj_som_symtab (abfd) != NULL)
4347 goto successful_return;
4348
4349 /* Special case. This is *not* an error. */
4350 if (symbol_count == 0)
4351 goto successful_return;
4352
4353 if (!som_slurp_string_table (abfd))
4354 goto error_return;
4355
4356 stringtab = obj_som_stringtab (abfd);
4357
4358 amt = symbol_count;
4359 amt *= sizeof (som_symbol_type);
4360 symbase = (som_symbol_type *) bfd_zmalloc (amt);
4361 if (symbase == NULL)
4362 goto error_return;
4363
4364 /* Read in the external SOM representation. */
4365 amt = symbol_count;
4366 amt *= symsize;
4367 buf = bfd_malloc (amt);
4368 if (buf == NULL && amt != 0)
4369 goto error_return;
4370 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) != 0)
4371 goto error_return;
4372 if (bfd_bread (buf, amt, abfd) != amt)
4373 goto error_return;
4374
4375 /* Iterate over all the symbols and internalize them. */
4376 endbufp = buf + symbol_count;
4377 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
4378 {
4379
4380 /* I don't think we care about these. */
4381 if (bufp->symbol_type == ST_SYM_EXT
4382 || bufp->symbol_type == ST_ARG_EXT)
4383 continue;
4384
4385 /* Set some private data we care about. */
4386 if (bufp->symbol_type == ST_NULL)
4387 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4388 else if (bufp->symbol_type == ST_ABSOLUTE)
4389 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
4390 else if (bufp->symbol_type == ST_DATA)
4391 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
4392 else if (bufp->symbol_type == ST_CODE)
4393 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
4394 else if (bufp->symbol_type == ST_PRI_PROG)
4395 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
4396 else if (bufp->symbol_type == ST_SEC_PROG)
4397 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
4398 else if (bufp->symbol_type == ST_ENTRY)
4399 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
4400 else if (bufp->symbol_type == ST_MILLICODE)
4401 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
4402 else if (bufp->symbol_type == ST_PLABEL)
4403 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
4404 else
4405 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4406 som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc;
4407
4408 /* Some reasonable defaults. */
4409 sym->symbol.the_bfd = abfd;
4410 sym->symbol.name = bufp->name.n_strx + stringtab;
4411 sym->symbol.value = bufp->symbol_value;
4412 sym->symbol.section = 0;
4413 sym->symbol.flags = 0;
4414
4415 switch (bufp->symbol_type)
4416 {
4417 case ST_ENTRY:
4418 case ST_MILLICODE:
4419 sym->symbol.flags |= BSF_FUNCTION;
4420 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4421 sym->symbol.value & 0x3;
4422 sym->symbol.value &= ~0x3;
4423 break;
4424
4425 case ST_STUB:
4426 case ST_CODE:
4427 case ST_PRI_PROG:
4428 case ST_SEC_PROG:
4429 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4430 sym->symbol.value & 0x3;
4431 sym->symbol.value &= ~0x3;
4432 /* If the symbol's scope is SS_UNSAT, then these are
4433 undefined function symbols. */
4434 if (bufp->symbol_scope == SS_UNSAT)
4435 sym->symbol.flags |= BSF_FUNCTION;
4436
4437 default:
4438 break;
4439 }
4440
4441 /* Handle scoping and section information. */
4442 switch (bufp->symbol_scope)
4443 {
4444 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4445 so the section associated with this symbol can't be known. */
4446 case SS_EXTERNAL:
4447 if (bufp->symbol_type != ST_STORAGE)
4448 sym->symbol.section = bfd_und_section_ptr;
4449 else
4450 sym->symbol.section = bfd_com_section_ptr;
4451 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4452 break;
4453
4454 case SS_UNSAT:
4455 if (bufp->symbol_type != ST_STORAGE)
4456 sym->symbol.section = bfd_und_section_ptr;
4457 else
4458 sym->symbol.section = bfd_com_section_ptr;
4459 break;
4460
4461 case SS_UNIVERSAL:
4462 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4463 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4464 sym->symbol.value -= sym->symbol.section->vma;
4465 break;
4466
4467 #if 0
4468 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
4469 Sound dumb? It is. */
4470 case SS_GLOBAL:
4471 #endif
4472 case SS_LOCAL:
4473 sym->symbol.flags |= BSF_LOCAL;
4474 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4475 sym->symbol.value -= sym->symbol.section->vma;
4476 break;
4477 }
4478
4479 /* Check for a weak symbol. */
4480 if (bufp->secondary_def)
4481 sym->symbol.flags |= BSF_WEAK;
4482
4483 /* Mark section symbols and symbols used by the debugger.
4484 Note $START$ is a magic code symbol, NOT a section symbol. */
4485 if (sym->symbol.name[0] == '$'
4486 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4487 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4488 sym->symbol.flags |= BSF_SECTION_SYM;
4489 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
4490 {
4491 sym->symbol.flags |= BSF_SECTION_SYM;
4492 sym->symbol.name = sym->symbol.section->name;
4493 }
4494 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
4495 sym->symbol.flags |= BSF_DEBUGGING;
4496
4497 /* Note increment at bottom of loop, since we skip some symbols
4498 we can not include it as part of the for statement. */
4499 sym++;
4500 }
4501
4502 /* We modify the symbol count to record the number of BFD symbols we
4503 created. */
4504 bfd_get_symcount (abfd) = sym - symbase;
4505
4506 /* Save our results and return success. */
4507 obj_som_symtab (abfd) = symbase;
4508 successful_return:
4509 if (buf != NULL)
4510 free (buf);
4511 return (TRUE);
4512
4513 error_return:
4514 if (buf != NULL)
4515 free (buf);
4516 return FALSE;
4517 }
4518
4519 /* Canonicalize a SOM symbol table. Return the number of entries
4520 in the symbol table. */
4521
4522 static long
4523 som_canonicalize_symtab (abfd, location)
4524 bfd *abfd;
4525 asymbol **location;
4526 {
4527 int i;
4528 som_symbol_type *symbase;
4529
4530 if (!som_slurp_symbol_table (abfd))
4531 return -1;
4532
4533 i = bfd_get_symcount (abfd);
4534 symbase = obj_som_symtab (abfd);
4535
4536 for (; i > 0; i--, location++, symbase++)
4537 *location = &symbase->symbol;
4538
4539 /* Final null pointer. */
4540 *location = 0;
4541 return (bfd_get_symcount (abfd));
4542 }
4543
4544 /* Make a SOM symbol. There is nothing special to do here. */
4545
4546 static asymbol *
4547 som_make_empty_symbol (abfd)
4548 bfd *abfd;
4549 {
4550 bfd_size_type amt = sizeof (som_symbol_type);
4551 som_symbol_type *new = (som_symbol_type *) bfd_zalloc (abfd, amt);
4552 if (new == NULL)
4553 return 0;
4554 new->symbol.the_bfd = abfd;
4555
4556 return &new->symbol;
4557 }
4558
4559 /* Print symbol information. */
4560
4561 static void
4562 som_print_symbol (abfd, afile, symbol, how)
4563 bfd *abfd;
4564 PTR afile;
4565 asymbol *symbol;
4566 bfd_print_symbol_type how;
4567 {
4568 FILE *file = (FILE *) afile;
4569 switch (how)
4570 {
4571 case bfd_print_symbol_name:
4572 fprintf (file, "%s", symbol->name);
4573 break;
4574 case bfd_print_symbol_more:
4575 fprintf (file, "som ");
4576 fprintf_vma (file, symbol->value);
4577 fprintf (file, " %lx", (long) symbol->flags);
4578 break;
4579 case bfd_print_symbol_all:
4580 {
4581 const char *section_name;
4582 section_name = symbol->section ? symbol->section->name : "(*none*)";
4583 bfd_print_symbol_vandf (abfd, (PTR) file, symbol);
4584 fprintf (file, " %s\t%s", section_name, symbol->name);
4585 break;
4586 }
4587 }
4588 }
4589
4590 static bfd_boolean
4591 som_bfd_is_local_label_name (abfd, name)
4592 bfd *abfd ATTRIBUTE_UNUSED;
4593 const char *name;
4594 {
4595 return (name[0] == 'L' && name[1] == '$');
4596 }
4597
4598 /* Count or process variable-length SOM fixup records.
4599
4600 To avoid code duplication we use this code both to compute the number
4601 of relocations requested by a stream, and to internalize the stream.
4602
4603 When computing the number of relocations requested by a stream the
4604 variables rptr, section, and symbols have no meaning.
4605
4606 Return the number of relocations requested by the fixup stream. When
4607 not just counting
4608
4609 This needs at least two or three more passes to get it cleaned up. */
4610
4611 static unsigned int
4612 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
4613 unsigned char *fixup;
4614 unsigned int end;
4615 arelent *internal_relocs;
4616 asection *section;
4617 asymbol **symbols;
4618 bfd_boolean just_count;
4619 {
4620 unsigned int op, varname, deallocate_contents = 0;
4621 unsigned char *end_fixups = &fixup[end];
4622 const struct fixup_format *fp;
4623 const char *cp;
4624 unsigned char *save_fixup;
4625 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4626 const int *subop;
4627 arelent *rptr = internal_relocs;
4628 unsigned int offset = 0;
4629
4630 #define var(c) variables[(c) - 'A']
4631 #define push(v) (*sp++ = (v))
4632 #define pop() (*--sp)
4633 #define emptystack() (sp == stack)
4634
4635 som_initialize_reloc_queue (reloc_queue);
4636 memset (variables, 0, sizeof (variables));
4637 memset (stack, 0, sizeof (stack));
4638 count = 0;
4639 prev_fixup = 0;
4640 saved_unwind_bits = 0;
4641 sp = stack;
4642
4643 while (fixup < end_fixups)
4644 {
4645
4646 /* Save pointer to the start of this fixup. We'll use
4647 it later to determine if it is necessary to put this fixup
4648 on the queue. */
4649 save_fixup = fixup;
4650
4651 /* Get the fixup code and its associated format. */
4652 op = *fixup++;
4653 fp = &som_fixup_formats[op];
4654
4655 /* Handle a request for a previous fixup. */
4656 if (*fp->format == 'P')
4657 {
4658 /* Get pointer to the beginning of the prev fixup, move
4659 the repeated fixup to the head of the queue. */
4660 fixup = reloc_queue[fp->D].reloc;
4661 som_reloc_queue_fix (reloc_queue, fp->D);
4662 prev_fixup = 1;
4663
4664 /* Get the fixup code and its associated format. */
4665 op = *fixup++;
4666 fp = &som_fixup_formats[op];
4667 }
4668
4669 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4670 if (! just_count
4671 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4672 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4673 {
4674 rptr->address = offset;
4675 rptr->howto = &som_hppa_howto_table[op];
4676 rptr->addend = 0;
4677 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4678 }
4679
4680 /* Set default input length to 0. Get the opcode class index
4681 into D. */
4682 var ('L') = 0;
4683 var ('D') = fp->D;
4684 var ('U') = saved_unwind_bits;
4685
4686 /* Get the opcode format. */
4687 cp = fp->format;
4688
4689 /* Process the format string. Parsing happens in two phases,
4690 parse RHS, then assign to LHS. Repeat until no more
4691 characters in the format string. */
4692 while (*cp)
4693 {
4694 /* The variable this pass is going to compute a value for. */
4695 varname = *cp++;
4696
4697 /* Start processing RHS. Continue until a NULL or '=' is found. */
4698 do
4699 {
4700 c = *cp++;
4701
4702 /* If this is a variable, push it on the stack. */
4703 if (ISUPPER (c))
4704 push (var (c));
4705
4706 /* If this is a lower case letter, then it represents
4707 additional data from the fixup stream to be pushed onto
4708 the stack. */
4709 else if (ISLOWER (c))
4710 {
4711 int bits = (c - 'a') * 8;
4712 for (v = 0; c > 'a'; --c)
4713 v = (v << 8) | *fixup++;
4714 if (varname == 'V')
4715 v = sign_extend (v, bits);
4716 push (v);
4717 }
4718
4719 /* A decimal constant. Push it on the stack. */
4720 else if (ISDIGIT (c))
4721 {
4722 v = c - '0';
4723 while (ISDIGIT (*cp))
4724 v = (v * 10) + (*cp++ - '0');
4725 push (v);
4726 }
4727 else
4728 /* An operator. Pop two two values from the stack and
4729 use them as operands to the given operation. Push
4730 the result of the operation back on the stack. */
4731 switch (c)
4732 {
4733 case '+':
4734 v = pop ();
4735 v += pop ();
4736 push (v);
4737 break;
4738 case '*':
4739 v = pop ();
4740 v *= pop ();
4741 push (v);
4742 break;
4743 case '<':
4744 v = pop ();
4745 v = pop () << v;
4746 push (v);
4747 break;
4748 default:
4749 abort ();
4750 }
4751 }
4752 while (*cp && *cp != '=');
4753
4754 /* Move over the equal operator. */
4755 cp++;
4756
4757 /* Pop the RHS off the stack. */
4758 c = pop ();
4759
4760 /* Perform the assignment. */
4761 var (varname) = c;
4762
4763 /* Handle side effects. and special 'O' stack cases. */
4764 switch (varname)
4765 {
4766 /* Consume some bytes from the input space. */
4767 case 'L':
4768 offset += c;
4769 break;
4770 /* A symbol to use in the relocation. Make a note
4771 of this if we are not just counting. */
4772 case 'S':
4773 if (! just_count)
4774 rptr->sym_ptr_ptr = &symbols[c];
4775 break;
4776 /* Argument relocation bits for a function call. */
4777 case 'R':
4778 if (! just_count)
4779 {
4780 unsigned int tmp = var ('R');
4781 rptr->addend = 0;
4782
4783 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4784 && R_PCREL_CALL + 10 > op)
4785 || (som_hppa_howto_table[op].type == R_ABS_CALL
4786 && R_ABS_CALL + 10 > op))
4787 {
4788 /* Simple encoding. */
4789 if (tmp > 4)
4790 {
4791 tmp -= 5;
4792 rptr->addend |= 1;
4793 }
4794 if (tmp == 4)
4795 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4796 else if (tmp == 3)
4797 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4798 else if (tmp == 2)
4799 rptr->addend |= 1 << 8 | 1 << 6;
4800 else if (tmp == 1)
4801 rptr->addend |= 1 << 8;
4802 }
4803 else
4804 {
4805 unsigned int tmp1, tmp2;
4806
4807 /* First part is easy -- low order two bits are
4808 directly copied, then shifted away. */
4809 rptr->addend = tmp & 0x3;
4810 tmp >>= 2;
4811
4812 /* Diving the result by 10 gives us the second
4813 part. If it is 9, then the first two words
4814 are a double precision paramater, else it is
4815 3 * the first arg bits + the 2nd arg bits. */
4816 tmp1 = tmp / 10;
4817 tmp -= tmp1 * 10;
4818 if (tmp1 == 9)
4819 rptr->addend += (0xe << 6);
4820 else
4821 {
4822 /* Get the two pieces. */
4823 tmp2 = tmp1 / 3;
4824 tmp1 -= tmp2 * 3;
4825 /* Put them in the addend. */
4826 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4827 }
4828
4829 /* What's left is the third part. It's unpacked
4830 just like the second. */
4831 if (tmp == 9)
4832 rptr->addend += (0xe << 2);
4833 else
4834 {
4835 tmp2 = tmp / 3;
4836 tmp -= tmp2 * 3;
4837 rptr->addend += (tmp2 << 4) + (tmp << 2);
4838 }
4839 }
4840 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4841 }
4842 break;
4843 /* Handle the linker expression stack. */
4844 case 'O':
4845 switch (op)
4846 {
4847 case R_COMP1:
4848 subop = comp1_opcodes;
4849 break;
4850 case R_COMP2:
4851 subop = comp2_opcodes;
4852 break;
4853 case R_COMP3:
4854 subop = comp3_opcodes;
4855 break;
4856 default:
4857 abort ();
4858 }
4859 while (*subop <= (unsigned char) c)
4860 ++subop;
4861 --subop;
4862 break;
4863 /* The lower 32unwind bits must be persistent. */
4864 case 'U':
4865 saved_unwind_bits = var ('U');
4866 break;
4867
4868 default:
4869 break;
4870 }
4871 }
4872
4873 /* If we used a previous fixup, clean up after it. */
4874 if (prev_fixup)
4875 {
4876 fixup = save_fixup + 1;
4877 prev_fixup = 0;
4878 }
4879 /* Queue it. */
4880 else if (fixup > save_fixup + 1)
4881 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4882
4883 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4884 fixups to BFD. */
4885 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4886 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4887 {
4888 /* Done with a single reloction. Loop back to the top. */
4889 if (! just_count)
4890 {
4891 if (som_hppa_howto_table[op].type == R_ENTRY)
4892 rptr->addend = var ('T');
4893 else if (som_hppa_howto_table[op].type == R_EXIT)
4894 rptr->addend = var ('U');
4895 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4896 || som_hppa_howto_table[op].type == R_ABS_CALL)
4897 ;
4898 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4899 {
4900 /* Try what was specified in R_DATA_OVERRIDE first
4901 (if anything). Then the hard way using the
4902 section contents. */
4903 rptr->addend = var ('V');
4904
4905 if (rptr->addend == 0 && !section->contents)
4906 {
4907 /* Got to read the damn contents first. We don't
4908 bother saving the contents (yet). Add it one
4909 day if the need arises. */
4910 section->contents = bfd_malloc (section->_raw_size);
4911 if (section->contents == NULL)
4912 return (unsigned) -1;
4913
4914 deallocate_contents = 1;
4915 bfd_get_section_contents (section->owner,
4916 section,
4917 section->contents,
4918 (bfd_vma) 0,
4919 section->_raw_size);
4920 }
4921 else if (rptr->addend == 0)
4922 rptr->addend = bfd_get_32 (section->owner,
4923 (section->contents
4924 + offset - var ('L')));
4925
4926 }
4927 else
4928 rptr->addend = var ('V');
4929 rptr++;
4930 }
4931 count++;
4932 /* Now that we've handled a "full" relocation, reset
4933 some state. */
4934 memset (variables, 0, sizeof (variables));
4935 memset (stack, 0, sizeof (stack));
4936 }
4937 }
4938 if (deallocate_contents)
4939 free (section->contents);
4940
4941 return count;
4942
4943 #undef var
4944 #undef push
4945 #undef pop
4946 #undef emptystack
4947 }
4948
4949 /* Read in the relocs (aka fixups in SOM terms) for a section.
4950
4951 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4952 set to TRUE to indicate it only needs a count of the number
4953 of actual relocations. */
4954
4955 static bfd_boolean
4956 som_slurp_reloc_table (abfd, section, symbols, just_count)
4957 bfd *abfd;
4958 asection *section;
4959 asymbol **symbols;
4960 bfd_boolean just_count;
4961 {
4962 char *external_relocs;
4963 unsigned int fixup_stream_size;
4964 arelent *internal_relocs;
4965 unsigned int num_relocs;
4966 bfd_size_type amt;
4967
4968 fixup_stream_size = som_section_data (section)->reloc_size;
4969 /* If there were no relocations, then there is nothing to do. */
4970 if (section->reloc_count == 0)
4971 return TRUE;
4972
4973 /* If reloc_count is -1, then the relocation stream has not been
4974 parsed. We must do so now to know how many relocations exist. */
4975 if (section->reloc_count == (unsigned) -1)
4976 {
4977 amt = fixup_stream_size;
4978 external_relocs = (char *) bfd_malloc (amt);
4979 if (external_relocs == (char *) NULL)
4980 return FALSE;
4981 /* Read in the external forms. */
4982 if (bfd_seek (abfd,
4983 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4984 SEEK_SET)
4985 != 0)
4986 return FALSE;
4987 if (bfd_bread (external_relocs, amt, abfd) != amt)
4988 return FALSE;
4989
4990 /* Let callers know how many relocations found.
4991 also save the relocation stream as we will
4992 need it again. */
4993 section->reloc_count = som_set_reloc_info (external_relocs,
4994 fixup_stream_size,
4995 NULL, NULL, NULL, TRUE);
4996
4997 som_section_data (section)->reloc_stream = external_relocs;
4998 }
4999
5000 /* If the caller only wanted a count, then return now. */
5001 if (just_count)
5002 return TRUE;
5003
5004 num_relocs = section->reloc_count;
5005 external_relocs = som_section_data (section)->reloc_stream;
5006 /* Return saved information about the relocations if it is available. */
5007 if (section->relocation != (arelent *) NULL)
5008 return TRUE;
5009
5010 amt = num_relocs;
5011 amt *= sizeof (arelent);
5012 internal_relocs = (arelent *) bfd_zalloc (abfd, (amt));
5013 if (internal_relocs == (arelent *) NULL)
5014 return FALSE;
5015
5016 /* Process and internalize the relocations. */
5017 som_set_reloc_info (external_relocs, fixup_stream_size,
5018 internal_relocs, section, symbols, FALSE);
5019
5020 /* We're done with the external relocations. Free them. */
5021 free (external_relocs);
5022 som_section_data (section)->reloc_stream = NULL;
5023
5024 /* Save our results and return success. */
5025 section->relocation = internal_relocs;
5026 return TRUE;
5027 }
5028
5029 /* Return the number of bytes required to store the relocation
5030 information associated with the given section. */
5031
5032 static long
5033 som_get_reloc_upper_bound (abfd, asect)
5034 bfd *abfd;
5035 sec_ptr asect;
5036 {
5037 /* If section has relocations, then read in the relocation stream
5038 and parse it to determine how many relocations exist. */
5039 if (asect->flags & SEC_RELOC)
5040 {
5041 if (! som_slurp_reloc_table (abfd, asect, NULL, TRUE))
5042 return -1;
5043 return (asect->reloc_count + 1) * sizeof (arelent *);
5044 }
5045 /* There are no relocations. */
5046 return 0;
5047 }
5048
5049 /* Convert relocations from SOM (external) form into BFD internal
5050 form. Return the number of relocations. */
5051
5052 static long
5053 som_canonicalize_reloc (abfd, section, relptr, symbols)
5054 bfd *abfd;
5055 sec_ptr section;
5056 arelent **relptr;
5057 asymbol **symbols;
5058 {
5059 arelent *tblptr;
5060 int count;
5061
5062 if (! som_slurp_reloc_table (abfd, section, symbols, FALSE))
5063 return -1;
5064
5065 count = section->reloc_count;
5066 tblptr = section->relocation;
5067
5068 while (count--)
5069 *relptr++ = tblptr++;
5070
5071 *relptr = (arelent *) NULL;
5072 return section->reloc_count;
5073 }
5074
5075 extern const bfd_target som_vec;
5076
5077 /* A hook to set up object file dependent section information. */
5078
5079 static bfd_boolean
5080 som_new_section_hook (abfd, newsect)
5081 bfd *abfd;
5082 asection *newsect;
5083 {
5084 bfd_size_type amt = sizeof (struct som_section_data_struct);
5085 newsect->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
5086 if (!newsect->used_by_bfd)
5087 return FALSE;
5088 newsect->alignment_power = 3;
5089
5090 /* We allow more than three sections internally. */
5091 return TRUE;
5092 }
5093
5094 /* Copy any private info we understand from the input symbol
5095 to the output symbol. */
5096
5097 static bfd_boolean
5098 som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol)
5099 bfd *ibfd;
5100 asymbol *isymbol;
5101 bfd *obfd;
5102 asymbol *osymbol;
5103 {
5104 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
5105 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
5106
5107 /* One day we may try to grok other private data. */
5108 if (ibfd->xvec->flavour != bfd_target_som_flavour
5109 || obfd->xvec->flavour != bfd_target_som_flavour)
5110 return FALSE;
5111
5112 /* The only private information we need to copy is the argument relocation
5113 bits. */
5114 output_symbol->tc_data.ap.hppa_arg_reloc =
5115 input_symbol->tc_data.ap.hppa_arg_reloc;
5116
5117 return TRUE;
5118 }
5119
5120 /* Copy any private info we understand from the input section
5121 to the output section. */
5122
5123 static bfd_boolean
5124 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
5125 bfd *ibfd;
5126 asection *isection;
5127 bfd *obfd;
5128 asection *osection;
5129 {
5130 bfd_size_type amt;
5131
5132 /* One day we may try to grok other private data. */
5133 if (ibfd->xvec->flavour != bfd_target_som_flavour
5134 || obfd->xvec->flavour != bfd_target_som_flavour
5135 || (!som_is_space (isection) && !som_is_subspace (isection)))
5136 return TRUE;
5137
5138 amt = sizeof (struct som_copyable_section_data_struct);
5139 som_section_data (osection)->copy_data =
5140 (struct som_copyable_section_data_struct *) bfd_zalloc (obfd, amt);
5141 if (som_section_data (osection)->copy_data == NULL)
5142 return FALSE;
5143
5144 memcpy (som_section_data (osection)->copy_data,
5145 som_section_data (isection)->copy_data,
5146 sizeof (struct som_copyable_section_data_struct));
5147
5148 /* Reparent if necessary. */
5149 if (som_section_data (osection)->copy_data->container)
5150 som_section_data (osection)->copy_data->container =
5151 som_section_data (osection)->copy_data->container->output_section;
5152
5153 return TRUE;
5154 }
5155
5156 /* Copy any private info we understand from the input bfd
5157 to the output bfd. */
5158
5159 static bfd_boolean
5160 som_bfd_copy_private_bfd_data (ibfd, obfd)
5161 bfd *ibfd, *obfd;
5162 {
5163 /* One day we may try to grok other private data. */
5164 if (ibfd->xvec->flavour != bfd_target_som_flavour
5165 || obfd->xvec->flavour != bfd_target_som_flavour)
5166 return TRUE;
5167
5168 /* Allocate some memory to hold the data we need. */
5169 obj_som_exec_data (obfd) = (struct som_exec_data *)
5170 bfd_zalloc (obfd, (bfd_size_type) sizeof (struct som_exec_data));
5171 if (obj_som_exec_data (obfd) == NULL)
5172 return FALSE;
5173
5174 /* Now copy the data. */
5175 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
5176 sizeof (struct som_exec_data));
5177
5178 return TRUE;
5179 }
5180
5181 /* Set backend info for sections which can not be described
5182 in the BFD data structures. */
5183
5184 bfd_boolean
5185 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
5186 asection *section;
5187 int defined;
5188 int private;
5189 unsigned int sort_key;
5190 int spnum;
5191 {
5192 /* Allocate memory to hold the magic information. */
5193 if (som_section_data (section)->copy_data == NULL)
5194 {
5195 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5196 som_section_data (section)->copy_data =
5197 (struct som_copyable_section_data_struct *) bfd_zalloc (section->owner,
5198 amt);
5199 if (som_section_data (section)->copy_data == NULL)
5200 return FALSE;
5201 }
5202 som_section_data (section)->copy_data->sort_key = sort_key;
5203 som_section_data (section)->copy_data->is_defined = defined;
5204 som_section_data (section)->copy_data->is_private = private;
5205 som_section_data (section)->copy_data->container = section;
5206 som_section_data (section)->copy_data->space_number = spnum;
5207 return TRUE;
5208 }
5209
5210 /* Set backend info for subsections which can not be described
5211 in the BFD data structures. */
5212
5213 bfd_boolean
5214 bfd_som_set_subsection_attributes (section, container, access,
5215 sort_key, quadrant)
5216 asection *section;
5217 asection *container;
5218 int access;
5219 unsigned int sort_key;
5220 int quadrant;
5221 {
5222 /* Allocate memory to hold the magic information. */
5223 if (som_section_data (section)->copy_data == NULL)
5224 {
5225 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5226 som_section_data (section)->copy_data =
5227 (struct som_copyable_section_data_struct *) bfd_zalloc (section->owner,
5228 amt);
5229 if (som_section_data (section)->copy_data == NULL)
5230 return FALSE;
5231 }
5232 som_section_data (section)->copy_data->sort_key = sort_key;
5233 som_section_data (section)->copy_data->access_control_bits = access;
5234 som_section_data (section)->copy_data->quadrant = quadrant;
5235 som_section_data (section)->copy_data->container = container;
5236 return TRUE;
5237 }
5238
5239 /* Set the full SOM symbol type. SOM needs far more symbol information
5240 than any other object file format I'm aware of. It is mandatory
5241 to be able to know if a symbol is an entry point, millicode, data,
5242 code, absolute, storage request, or procedure label. If you get
5243 the symbol type wrong your program will not link. */
5244
5245 void
5246 bfd_som_set_symbol_type (symbol, type)
5247 asymbol *symbol;
5248 unsigned int type;
5249 {
5250 som_symbol_data (symbol)->som_type = type;
5251 }
5252
5253 /* Attach an auxiliary header to the BFD backend so that it may be
5254 written into the object file. */
5255
5256 bfd_boolean
5257 bfd_som_attach_aux_hdr (abfd, type, string)
5258 bfd *abfd;
5259 int type;
5260 char *string;
5261 {
5262 bfd_size_type amt;
5263
5264 if (type == VERSION_AUX_ID)
5265 {
5266 size_t len = strlen (string);
5267 int pad = 0;
5268
5269 if (len % 4)
5270 pad = (4 - (len % 4));
5271 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5272 obj_som_version_hdr (abfd) =
5273 (struct user_string_aux_hdr *) bfd_zalloc (abfd, amt);
5274 if (!obj_som_version_hdr (abfd))
5275 return FALSE;
5276 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
5277 obj_som_version_hdr (abfd)->header_id.length = len + pad;
5278 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
5279 obj_som_version_hdr (abfd)->string_length = len;
5280 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
5281 }
5282 else if (type == COPYRIGHT_AUX_ID)
5283 {
5284 int len = strlen (string);
5285 int pad = 0;
5286
5287 if (len % 4)
5288 pad = (4 - (len % 4));
5289 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5290 obj_som_copyright_hdr (abfd) =
5291 (struct copyright_aux_hdr *) bfd_zalloc (abfd, amt);
5292 if (!obj_som_copyright_hdr (abfd))
5293 return FALSE;
5294 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
5295 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
5296 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
5297 obj_som_copyright_hdr (abfd)->string_length = len;
5298 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
5299 }
5300 return TRUE;
5301 }
5302
5303 /* Attach a compilation unit header to the BFD backend so that it may be
5304 written into the object file. */
5305
5306 bfd_boolean
5307 bfd_som_attach_compilation_unit (abfd, name, language_name, product_id,
5308 version_id)
5309 bfd *abfd;
5310 const char *name;
5311 const char *language_name;
5312 const char *product_id;
5313 const char *version_id;
5314 {
5315 COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, (bfd_size_type) COMPUNITSZ);
5316 if (n == NULL)
5317 return FALSE;
5318
5319 #define STRDUP(f) \
5320 if (f != NULL) \
5321 { \
5322 n->f.n_name = bfd_alloc (abfd, (bfd_size_type) strlen (f) + 1); \
5323 if (n->f.n_name == NULL) \
5324 return FALSE; \
5325 strcpy (n->f.n_name, f); \
5326 }
5327
5328 STRDUP (name);
5329 STRDUP (language_name);
5330 STRDUP (product_id);
5331 STRDUP (version_id);
5332
5333 #undef STRDUP
5334
5335 obj_som_compilation_unit (abfd) = n;
5336
5337 return TRUE;
5338 }
5339
5340 static bfd_boolean
5341 som_get_section_contents (abfd, section, location, offset, count)
5342 bfd *abfd;
5343 sec_ptr section;
5344 PTR location;
5345 file_ptr offset;
5346 bfd_size_type count;
5347 {
5348 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5349 return TRUE;
5350 if ((bfd_size_type) (offset+count) > section->_raw_size
5351 || bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) != 0
5352 || bfd_bread (location, count, abfd) != count)
5353 return FALSE; /* On error. */
5354 return TRUE;
5355 }
5356
5357 static bfd_boolean
5358 som_set_section_contents (abfd, section, location, offset, count)
5359 bfd *abfd;
5360 sec_ptr section;
5361 PTR location;
5362 file_ptr offset;
5363 bfd_size_type count;
5364 {
5365 if (! abfd->output_has_begun)
5366 {
5367 /* Set up fixed parts of the file, space, and subspace headers.
5368 Notify the world that output has begun. */
5369 som_prep_headers (abfd);
5370 abfd->output_has_begun = TRUE;
5371 /* Start writing the object file. This include all the string
5372 tables, fixup streams, and other portions of the object file. */
5373 som_begin_writing (abfd);
5374 }
5375
5376 /* Only write subspaces which have "real" contents (eg. the contents
5377 are not generated at run time by the OS). */
5378 if (!som_is_subspace (section)
5379 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5380 return TRUE;
5381
5382 /* Seek to the proper offset within the object file and write the
5383 data. */
5384 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
5385 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
5386 return FALSE;
5387
5388 if (bfd_bwrite ((PTR) location, count, abfd) != count)
5389 return FALSE;
5390 return TRUE;
5391 }
5392
5393 static bfd_boolean
5394 som_set_arch_mach (abfd, arch, machine)
5395 bfd *abfd;
5396 enum bfd_architecture arch;
5397 unsigned long machine;
5398 {
5399 /* Allow any architecture to be supported by the SOM backend. */
5400 return bfd_default_set_arch_mach (abfd, arch, machine);
5401 }
5402
5403 static bfd_boolean
5404 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
5405 functionname_ptr, line_ptr)
5406 bfd *abfd ATTRIBUTE_UNUSED;
5407 asection *section ATTRIBUTE_UNUSED;
5408 asymbol **symbols ATTRIBUTE_UNUSED;
5409 bfd_vma offset ATTRIBUTE_UNUSED;
5410 const char **filename_ptr ATTRIBUTE_UNUSED;
5411 const char **functionname_ptr ATTRIBUTE_UNUSED;
5412 unsigned int *line_ptr ATTRIBUTE_UNUSED;
5413 {
5414 return FALSE;
5415 }
5416
5417 static int
5418 som_sizeof_headers (abfd, reloc)
5419 bfd *abfd ATTRIBUTE_UNUSED;
5420 bfd_boolean reloc ATTRIBUTE_UNUSED;
5421 {
5422 (*_bfd_error_handler) (_("som_sizeof_headers unimplemented"));
5423 fflush (stderr);
5424 abort ();
5425 return 0;
5426 }
5427
5428 /* Return the single-character symbol type corresponding to
5429 SOM section S, or '?' for an unknown SOM section. */
5430
5431 static char
5432 som_section_type (s)
5433 const char *s;
5434 {
5435 const struct section_to_type *t;
5436
5437 for (t = &stt[0]; t->section; t++)
5438 if (!strcmp (s, t->section))
5439 return t->type;
5440 return '?';
5441 }
5442
5443 static int
5444 som_decode_symclass (symbol)
5445 asymbol *symbol;
5446 {
5447 char c;
5448
5449 if (bfd_is_com_section (symbol->section))
5450 return 'C';
5451 if (bfd_is_und_section (symbol->section))
5452 return 'U';
5453 if (bfd_is_ind_section (symbol->section))
5454 return 'I';
5455 if (symbol->flags & BSF_WEAK)
5456 return 'W';
5457 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
5458 return '?';
5459
5460 if (bfd_is_abs_section (symbol->section)
5461 || (som_symbol_data (symbol) != NULL
5462 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5463 c = 'a';
5464 else if (symbol->section)
5465 c = som_section_type (symbol->section->name);
5466 else
5467 return '?';
5468 if (symbol->flags & BSF_GLOBAL)
5469 c = TOUPPER (c);
5470 return c;
5471 }
5472
5473 /* Return information about SOM symbol SYMBOL in RET. */
5474
5475 static void
5476 som_get_symbol_info (ignore_abfd, symbol, ret)
5477 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5478 asymbol *symbol;
5479 symbol_info *ret;
5480 {
5481 ret->type = som_decode_symclass (symbol);
5482 if (ret->type != 'U')
5483 ret->value = symbol->value + symbol->section->vma;
5484 else
5485 ret->value = 0;
5486 ret->name = symbol->name;
5487 }
5488
5489 /* Count the number of symbols in the archive symbol table. Necessary
5490 so that we can allocate space for all the carsyms at once. */
5491
5492 static bfd_boolean
5493 som_bfd_count_ar_symbols (abfd, lst_header, count)
5494 bfd *abfd;
5495 struct lst_header *lst_header;
5496 symindex *count;
5497 {
5498 unsigned int i;
5499 unsigned int *hash_table = NULL;
5500 bfd_size_type amt;
5501 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5502
5503 amt = lst_header->hash_size;
5504 amt *= sizeof (unsigned int);
5505 hash_table = (unsigned int *) bfd_malloc (amt);
5506 if (hash_table == NULL && lst_header->hash_size != 0)
5507 goto error_return;
5508
5509 /* Don't forget to initialize the counter! */
5510 *count = 0;
5511
5512 /* Read in the hash table. The has table is an array of 32bit file offsets
5513 which point to the hash chains. */
5514 if (bfd_bread ((PTR) hash_table, amt, abfd) != amt)
5515 goto error_return;
5516
5517 /* Walk each chain counting the number of symbols found on that particular
5518 chain. */
5519 for (i = 0; i < lst_header->hash_size; i++)
5520 {
5521 struct lst_symbol_record lst_symbol;
5522
5523 /* An empty chain has zero as it's file offset. */
5524 if (hash_table[i] == 0)
5525 continue;
5526
5527 /* Seek to the first symbol in this hash chain. */
5528 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5529 goto error_return;
5530
5531 /* Read in this symbol and update the counter. */
5532 amt = sizeof (lst_symbol);
5533 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5534 goto error_return;
5535
5536 (*count)++;
5537
5538 /* Now iterate through the rest of the symbols on this chain. */
5539 while (lst_symbol.next_entry)
5540 {
5541
5542 /* Seek to the next symbol. */
5543 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5544 != 0)
5545 goto error_return;
5546
5547 /* Read the symbol in and update the counter. */
5548 amt = sizeof (lst_symbol);
5549 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5550 goto error_return;
5551
5552 (*count)++;
5553 }
5554 }
5555 if (hash_table != NULL)
5556 free (hash_table);
5557 return TRUE;
5558
5559 error_return:
5560 if (hash_table != NULL)
5561 free (hash_table);
5562 return FALSE;
5563 }
5564
5565 /* Fill in the canonical archive symbols (SYMS) from the archive described
5566 by ABFD and LST_HEADER. */
5567
5568 static bfd_boolean
5569 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
5570 bfd *abfd;
5571 struct lst_header *lst_header;
5572 carsym **syms;
5573 {
5574 unsigned int i, len;
5575 carsym *set = syms[0];
5576 unsigned int *hash_table = NULL;
5577 struct som_entry *som_dict = NULL;
5578 bfd_size_type amt;
5579 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5580
5581 amt = lst_header->hash_size;
5582 amt *= sizeof (unsigned int);
5583 hash_table = (unsigned int *) bfd_malloc (amt);
5584 if (hash_table == NULL && lst_header->hash_size != 0)
5585 goto error_return;
5586
5587 /* Read in the hash table. The has table is an array of 32bit file offsets
5588 which point to the hash chains. */
5589 if (bfd_bread ((PTR) hash_table, amt, abfd) != amt)
5590 goto error_return;
5591
5592 /* Seek to and read in the SOM dictionary. We will need this to fill
5593 in the carsym's filepos field. */
5594 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) != 0)
5595 goto error_return;
5596
5597 amt = lst_header->module_count;
5598 amt *= sizeof (struct som_entry);
5599 som_dict = (struct som_entry *) bfd_malloc (amt);
5600 if (som_dict == NULL && lst_header->module_count != 0)
5601 goto error_return;
5602
5603 if (bfd_bread ((PTR) som_dict, amt, abfd) != amt)
5604 goto error_return;
5605
5606 /* Walk each chain filling in the carsyms as we go along. */
5607 for (i = 0; i < lst_header->hash_size; i++)
5608 {
5609 struct lst_symbol_record lst_symbol;
5610
5611 /* An empty chain has zero as it's file offset. */
5612 if (hash_table[i] == 0)
5613 continue;
5614
5615 /* Seek to and read the first symbol on the chain. */
5616 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5617 goto error_return;
5618
5619 amt = sizeof (lst_symbol);
5620 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5621 goto error_return;
5622
5623 /* Get the name of the symbol, first get the length which is stored
5624 as a 32bit integer just before the symbol.
5625
5626 One might ask why we don't just read in the entire string table
5627 and index into it. Well, according to the SOM ABI the string
5628 index can point *anywhere* in the archive to save space, so just
5629 using the string table would not be safe. */
5630 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5631 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5632 goto error_return;
5633
5634 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5635 goto error_return;
5636
5637 /* Allocate space for the name and null terminate it too. */
5638 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5639 if (!set->name)
5640 goto error_return;
5641 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5642 goto error_return;
5643
5644 set->name[len] = 0;
5645
5646 /* Fill in the file offset. Note that the "location" field points
5647 to the SOM itself, not the ar_hdr in front of it. */
5648 set->file_offset = som_dict[lst_symbol.som_index].location
5649 - sizeof (struct ar_hdr);
5650
5651 /* Go to the next symbol. */
5652 set++;
5653
5654 /* Iterate through the rest of the chain. */
5655 while (lst_symbol.next_entry)
5656 {
5657 /* Seek to the next symbol and read it in. */
5658 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5659 != 0)
5660 goto error_return;
5661
5662 amt = sizeof (lst_symbol);
5663 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5664 goto error_return;
5665
5666 /* Seek to the name length & string and read them in. */
5667 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5668 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5669 goto error_return;
5670
5671 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5672 goto error_return;
5673
5674 /* Allocate space for the name and null terminate it too. */
5675 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5676 if (!set->name)
5677 goto error_return;
5678
5679 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5680 goto error_return;
5681 set->name[len] = 0;
5682
5683 /* Fill in the file offset. Note that the "location" field points
5684 to the SOM itself, not the ar_hdr in front of it. */
5685 set->file_offset = som_dict[lst_symbol.som_index].location
5686 - sizeof (struct ar_hdr);
5687
5688 /* Go on to the next symbol. */
5689 set++;
5690 }
5691 }
5692 /* If we haven't died by now, then we successfully read the entire
5693 archive symbol table. */
5694 if (hash_table != NULL)
5695 free (hash_table);
5696 if (som_dict != NULL)
5697 free (som_dict);
5698 return TRUE;
5699
5700 error_return:
5701 if (hash_table != NULL)
5702 free (hash_table);
5703 if (som_dict != NULL)
5704 free (som_dict);
5705 return FALSE;
5706 }
5707
5708 /* Read in the LST from the archive. */
5709
5710 static bfd_boolean
5711 som_slurp_armap (abfd)
5712 bfd *abfd;
5713 {
5714 struct lst_header lst_header;
5715 struct ar_hdr ar_header;
5716 unsigned int parsed_size;
5717 struct artdata *ardata = bfd_ardata (abfd);
5718 char nextname[17];
5719 bfd_size_type amt = 16;
5720 int i = bfd_bread ((PTR) nextname, amt, abfd);
5721
5722 /* Special cases. */
5723 if (i == 0)
5724 return TRUE;
5725 if (i != 16)
5726 return FALSE;
5727
5728 if (bfd_seek (abfd, (file_ptr) -16, SEEK_CUR) != 0)
5729 return FALSE;
5730
5731 /* For archives without .o files there is no symbol table. */
5732 if (strncmp (nextname, "/ ", 16))
5733 {
5734 bfd_has_map (abfd) = FALSE;
5735 return TRUE;
5736 }
5737
5738 /* Read in and sanity check the archive header. */
5739 amt = sizeof (struct ar_hdr);
5740 if (bfd_bread ((PTR) &ar_header, amt, abfd) != amt)
5741 return FALSE;
5742
5743 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5744 {
5745 bfd_set_error (bfd_error_malformed_archive);
5746 return FALSE;
5747 }
5748
5749 /* How big is the archive symbol table entry? */
5750 errno = 0;
5751 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5752 if (errno != 0)
5753 {
5754 bfd_set_error (bfd_error_malformed_archive);
5755 return FALSE;
5756 }
5757
5758 /* Save off the file offset of the first real user data. */
5759 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5760
5761 /* Read in the library symbol table. We'll make heavy use of this
5762 in just a minute. */
5763 amt = sizeof (struct lst_header);
5764 if (bfd_bread ((PTR) &lst_header, amt, abfd) != amt)
5765 return FALSE;
5766
5767 /* Sanity check. */
5768 if (lst_header.a_magic != LIBMAGIC)
5769 {
5770 bfd_set_error (bfd_error_malformed_archive);
5771 return FALSE;
5772 }
5773
5774 /* Count the number of symbols in the library symbol table. */
5775 if (! som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count))
5776 return FALSE;
5777
5778 /* Get back to the start of the library symbol table. */
5779 if (bfd_seek (abfd, (ardata->first_file_filepos - parsed_size
5780 + sizeof (struct lst_header)), SEEK_SET) != 0)
5781 return FALSE;
5782
5783 /* Initialize the cache and allocate space for the library symbols. */
5784 ardata->cache = 0;
5785 amt = ardata->symdef_count;
5786 amt *= sizeof (carsym);
5787 ardata->symdefs = (carsym *) bfd_alloc (abfd, amt);
5788 if (!ardata->symdefs)
5789 return FALSE;
5790
5791 /* Now fill in the canonical archive symbols. */
5792 if (! som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs))
5793 return FALSE;
5794
5795 /* Seek back to the "first" file in the archive. Note the "first"
5796 file may be the extended name table. */
5797 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) != 0)
5798 return FALSE;
5799
5800 /* Notify the generic archive code that we have a symbol map. */
5801 bfd_has_map (abfd) = TRUE;
5802 return TRUE;
5803 }
5804
5805 /* Begin preparing to write a SOM library symbol table.
5806
5807 As part of the prep work we need to determine the number of symbols
5808 and the size of the associated string section. */
5809
5810 static bfd_boolean
5811 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5812 bfd *abfd;
5813 unsigned int *num_syms, *stringsize;
5814 {
5815 bfd *curr_bfd = abfd->archive_head;
5816
5817 /* Some initialization. */
5818 *num_syms = 0;
5819 *stringsize = 0;
5820
5821 /* Iterate over each BFD within this archive. */
5822 while (curr_bfd != NULL)
5823 {
5824 unsigned int curr_count, i;
5825 som_symbol_type *sym;
5826
5827 /* Don't bother for non-SOM objects. */
5828 if (curr_bfd->format != bfd_object
5829 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5830 {
5831 curr_bfd = curr_bfd->next;
5832 continue;
5833 }
5834
5835 /* Make sure the symbol table has been read, then snag a pointer
5836 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5837 but doing so avoids allocating lots of extra memory. */
5838 if (! som_slurp_symbol_table (curr_bfd))
5839 return FALSE;
5840
5841 sym = obj_som_symtab (curr_bfd);
5842 curr_count = bfd_get_symcount (curr_bfd);
5843
5844 /* Examine each symbol to determine if it belongs in the
5845 library symbol table. */
5846 for (i = 0; i < curr_count; i++, sym++)
5847 {
5848 struct som_misc_symbol_info info;
5849
5850 /* Derive SOM information from the BFD symbol. */
5851 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5852
5853 /* Should we include this symbol? */
5854 if (info.symbol_type == ST_NULL
5855 || info.symbol_type == ST_SYM_EXT
5856 || info.symbol_type == ST_ARG_EXT)
5857 continue;
5858
5859 /* Only global symbols and unsatisfied commons. */
5860 if (info.symbol_scope != SS_UNIVERSAL
5861 && info.symbol_type != ST_STORAGE)
5862 continue;
5863
5864 /* Do no include undefined symbols. */
5865 if (bfd_is_und_section (sym->symbol.section))
5866 continue;
5867
5868 /* Bump the various counters, being careful to honor
5869 alignment considerations in the string table. */
5870 (*num_syms)++;
5871 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5872 while (*stringsize % 4)
5873 (*stringsize)++;
5874 }
5875
5876 curr_bfd = curr_bfd->next;
5877 }
5878 return TRUE;
5879 }
5880
5881 /* Hash a symbol name based on the hashing algorithm presented in the
5882 SOM ABI. */
5883
5884 static unsigned int
5885 som_bfd_ar_symbol_hash (symbol)
5886 asymbol *symbol;
5887 {
5888 unsigned int len = strlen (symbol->name);
5889
5890 /* Names with length 1 are special. */
5891 if (len == 1)
5892 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5893
5894 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5895 | (symbol->name[len - 2] << 8) | symbol->name[len - 1];
5896 }
5897
5898 /* Do the bulk of the work required to write the SOM library
5899 symbol table. */
5900
5901 static bfd_boolean
5902 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst, elength)
5903 bfd *abfd;
5904 unsigned int nsyms, string_size;
5905 struct lst_header lst;
5906 unsigned elength;
5907 {
5908 file_ptr lst_filepos;
5909 char *strings = NULL, *p;
5910 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5911 bfd *curr_bfd;
5912 unsigned int *hash_table = NULL;
5913 struct som_entry *som_dict = NULL;
5914 struct lst_symbol_record **last_hash_entry = NULL;
5915 unsigned int curr_som_offset, som_index = 0;
5916 bfd_size_type amt;
5917
5918 amt = lst.hash_size;
5919 amt *= sizeof (unsigned int);
5920 hash_table = (unsigned int *) bfd_zmalloc (amt);
5921 if (hash_table == NULL && lst.hash_size != 0)
5922 goto error_return;
5923
5924 amt = lst.module_count;
5925 amt *= sizeof (struct som_entry);
5926 som_dict = (struct som_entry *) bfd_zmalloc (amt);
5927 if (som_dict == NULL && lst.module_count != 0)
5928 goto error_return;
5929
5930 amt = lst.hash_size;
5931 amt *= sizeof (struct lst_symbol_record *);
5932 last_hash_entry = ((struct lst_symbol_record **) bfd_zmalloc (amt));
5933 if (last_hash_entry == NULL && lst.hash_size != 0)
5934 goto error_return;
5935
5936 /* Lots of fields are file positions relative to the start
5937 of the lst record. So save its location. */
5938 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5939
5940 /* Symbols have som_index fields, so we have to keep track of the
5941 index of each SOM in the archive.
5942
5943 The SOM dictionary has (among other things) the absolute file
5944 position for the SOM which a particular dictionary entry
5945 describes. We have to compute that information as we iterate
5946 through the SOMs/symbols. */
5947 som_index = 0;
5948
5949 /* We add in the size of the archive header twice as the location
5950 in the SOM dictionary is the actual offset of the SOM, not the
5951 archive header before the SOM. */
5952 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5953
5954 /* Make room for the archive header and the contents of the
5955 extended string table. Note that elength includes the size
5956 of the archive header for the extended name table! */
5957 if (elength)
5958 curr_som_offset += elength;
5959
5960 /* Make sure we're properly aligned. */
5961 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5962
5963 /* FIXME should be done with buffers just like everything else... */
5964 amt = nsyms;
5965 amt *= sizeof (struct lst_symbol_record);
5966 lst_syms = bfd_malloc (amt);
5967 if (lst_syms == NULL && nsyms != 0)
5968 goto error_return;
5969 strings = bfd_malloc ((bfd_size_type) string_size);
5970 if (strings == NULL && string_size != 0)
5971 goto error_return;
5972
5973 p = strings;
5974 curr_lst_sym = lst_syms;
5975
5976 curr_bfd = abfd->archive_head;
5977 while (curr_bfd != NULL)
5978 {
5979 unsigned int curr_count, i;
5980 som_symbol_type *sym;
5981
5982 /* Don't bother for non-SOM objects. */
5983 if (curr_bfd->format != bfd_object
5984 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5985 {
5986 curr_bfd = curr_bfd->next;
5987 continue;
5988 }
5989
5990 /* Make sure the symbol table has been read, then snag a pointer
5991 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5992 but doing so avoids allocating lots of extra memory. */
5993 if (! som_slurp_symbol_table (curr_bfd))
5994 goto error_return;
5995
5996 sym = obj_som_symtab (curr_bfd);
5997 curr_count = bfd_get_symcount (curr_bfd);
5998
5999 for (i = 0; i < curr_count; i++, sym++)
6000 {
6001 struct som_misc_symbol_info info;
6002
6003 /* Derive SOM information from the BFD symbol. */
6004 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
6005
6006 /* Should we include this symbol? */
6007 if (info.symbol_type == ST_NULL
6008 || info.symbol_type == ST_SYM_EXT
6009 || info.symbol_type == ST_ARG_EXT)
6010 continue;
6011
6012 /* Only global symbols and unsatisfied commons. */
6013 if (info.symbol_scope != SS_UNIVERSAL
6014 && info.symbol_type != ST_STORAGE)
6015 continue;
6016
6017 /* Do no include undefined symbols. */
6018 if (bfd_is_und_section (sym->symbol.section))
6019 continue;
6020
6021 /* If this is the first symbol from this SOM, then update
6022 the SOM dictionary too. */
6023 if (som_dict[som_index].location == 0)
6024 {
6025 som_dict[som_index].location = curr_som_offset;
6026 som_dict[som_index].length = arelt_size (curr_bfd);
6027 }
6028
6029 /* Fill in the lst symbol record. */
6030 curr_lst_sym->hidden = 0;
6031 curr_lst_sym->secondary_def = info.secondary_def;
6032 curr_lst_sym->symbol_type = info.symbol_type;
6033 curr_lst_sym->symbol_scope = info.symbol_scope;
6034 curr_lst_sym->check_level = 0;
6035 curr_lst_sym->must_qualify = 0;
6036 curr_lst_sym->initially_frozen = 0;
6037 curr_lst_sym->memory_resident = 0;
6038 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
6039 curr_lst_sym->dup_common = 0;
6040 curr_lst_sym->xleast = 3;
6041 curr_lst_sym->arg_reloc = info.arg_reloc;
6042 curr_lst_sym->name.n_strx = p - strings + 4;
6043 curr_lst_sym->qualifier_name.n_strx = 0;
6044 curr_lst_sym->symbol_info = info.symbol_info;
6045 curr_lst_sym->symbol_value = info.symbol_value | info.priv_level;
6046 curr_lst_sym->symbol_descriptor = 0;
6047 curr_lst_sym->reserved = 0;
6048 curr_lst_sym->som_index = som_index;
6049 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
6050 curr_lst_sym->next_entry = 0;
6051
6052 /* Insert into the hash table. */
6053 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
6054 {
6055 struct lst_symbol_record *tmp;
6056
6057 /* There is already something at the head of this hash chain,
6058 so tack this symbol onto the end of the chain. */
6059 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
6060 tmp->next_entry
6061 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6062 + lst.hash_size * 4
6063 + lst.module_count * sizeof (struct som_entry)
6064 + sizeof (struct lst_header);
6065 }
6066 else
6067 {
6068 /* First entry in this hash chain. */
6069 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
6070 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6071 + lst.hash_size * 4
6072 + lst.module_count * sizeof (struct som_entry)
6073 + sizeof (struct lst_header);
6074 }
6075
6076 /* Keep track of the last symbol we added to this chain so we can
6077 easily update its next_entry pointer. */
6078 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
6079 = curr_lst_sym;
6080
6081 /* Update the string table. */
6082 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
6083 p += 4;
6084 strcpy (p, sym->symbol.name);
6085 p += strlen (sym->symbol.name) + 1;
6086 while ((int) p % 4)
6087 {
6088 bfd_put_8 (abfd, 0, p);
6089 p++;
6090 }
6091
6092 /* Head to the next symbol. */
6093 curr_lst_sym++;
6094 }
6095
6096 /* Keep track of where each SOM will finally reside; then look
6097 at the next BFD. */
6098 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
6099
6100 /* A particular object in the archive may have an odd length; the
6101 linker requires objects begin on an even boundary. So round
6102 up the current offset as necessary. */
6103 curr_som_offset = (curr_som_offset + 0x1) &~ (unsigned) 1;
6104 curr_bfd = curr_bfd->next;
6105 som_index++;
6106 }
6107
6108 /* Now scribble out the hash table. */
6109 amt = lst.hash_size * 4;
6110 if (bfd_bwrite ((PTR) hash_table, amt, abfd) != amt)
6111 goto error_return;
6112
6113 /* Then the SOM dictionary. */
6114 amt = lst.module_count * sizeof (struct som_entry);
6115 if (bfd_bwrite ((PTR) som_dict, amt, abfd) != amt)
6116 goto error_return;
6117
6118 /* The library symbols. */
6119 amt = nsyms * sizeof (struct lst_symbol_record);
6120 if (bfd_bwrite ((PTR) lst_syms, amt, abfd) != amt)
6121 goto error_return;
6122
6123 /* And finally the strings. */
6124 amt = string_size;
6125 if (bfd_bwrite ((PTR) strings, amt, abfd) != amt)
6126 goto error_return;
6127
6128 if (hash_table != NULL)
6129 free (hash_table);
6130 if (som_dict != NULL)
6131 free (som_dict);
6132 if (last_hash_entry != NULL)
6133 free (last_hash_entry);
6134 if (lst_syms != NULL)
6135 free (lst_syms);
6136 if (strings != NULL)
6137 free (strings);
6138 return TRUE;
6139
6140 error_return:
6141 if (hash_table != NULL)
6142 free (hash_table);
6143 if (som_dict != NULL)
6144 free (som_dict);
6145 if (last_hash_entry != NULL)
6146 free (last_hash_entry);
6147 if (lst_syms != NULL)
6148 free (lst_syms);
6149 if (strings != NULL)
6150 free (strings);
6151
6152 return FALSE;
6153 }
6154
6155 /* Write out the LST for the archive.
6156
6157 You'll never believe this is really how armaps are handled in SOM... */
6158
6159 static bfd_boolean
6160 som_write_armap (abfd, elength, map, orl_count, stridx)
6161 bfd *abfd;
6162 unsigned int elength;
6163 struct orl *map ATTRIBUTE_UNUSED;
6164 unsigned int orl_count ATTRIBUTE_UNUSED;
6165 int stridx ATTRIBUTE_UNUSED;
6166 {
6167 bfd *curr_bfd;
6168 struct stat statbuf;
6169 unsigned int i, lst_size, nsyms, stringsize;
6170 struct ar_hdr hdr;
6171 struct lst_header lst;
6172 int *p;
6173 bfd_size_type amt;
6174
6175 /* We'll use this for the archive's date and mode later. */
6176 if (stat (abfd->filename, &statbuf) != 0)
6177 {
6178 bfd_set_error (bfd_error_system_call);
6179 return FALSE;
6180 }
6181 /* Fudge factor. */
6182 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
6183
6184 /* Account for the lst header first. */
6185 lst_size = sizeof (struct lst_header);
6186
6187 /* Start building the LST header. */
6188 /* FIXME: Do we need to examine each element to determine the
6189 largest id number? */
6190 lst.system_id = CPU_PA_RISC1_0;
6191 lst.a_magic = LIBMAGIC;
6192 lst.version_id = VERSION_ID;
6193 lst.file_time.secs = 0;
6194 lst.file_time.nanosecs = 0;
6195
6196 lst.hash_loc = lst_size;
6197 lst.hash_size = SOM_LST_HASH_SIZE;
6198
6199 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
6200 lst_size += 4 * SOM_LST_HASH_SIZE;
6201
6202 /* We need to count the number of SOMs in this archive. */
6203 curr_bfd = abfd->archive_head;
6204 lst.module_count = 0;
6205 while (curr_bfd != NULL)
6206 {
6207 /* Only true SOM objects count. */
6208 if (curr_bfd->format == bfd_object
6209 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
6210 lst.module_count++;
6211 curr_bfd = curr_bfd->next;
6212 }
6213 lst.module_limit = lst.module_count;
6214 lst.dir_loc = lst_size;
6215 lst_size += sizeof (struct som_entry) * lst.module_count;
6216
6217 /* We don't support import/export tables, auxiliary headers,
6218 or free lists yet. Make the linker work a little harder
6219 to make our life easier. */
6220
6221 lst.export_loc = 0;
6222 lst.export_count = 0;
6223 lst.import_loc = 0;
6224 lst.aux_loc = 0;
6225 lst.aux_size = 0;
6226
6227 /* Count how many symbols we will have on the hash chains and the
6228 size of the associated string table. */
6229 if (! som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize))
6230 return FALSE;
6231
6232 lst_size += sizeof (struct lst_symbol_record) * nsyms;
6233
6234 /* For the string table. One day we might actually use this info
6235 to avoid small seeks/reads when reading archives. */
6236 lst.string_loc = lst_size;
6237 lst.string_size = stringsize;
6238 lst_size += stringsize;
6239
6240 /* SOM ABI says this must be zero. */
6241 lst.free_list = 0;
6242 lst.file_end = lst_size;
6243
6244 /* Compute the checksum. Must happen after the entire lst header
6245 has filled in. */
6246 p = (int *) &lst;
6247 lst.checksum = 0;
6248 for (i = 0; i < sizeof (struct lst_header) / sizeof (int) - 1; i++)
6249 lst.checksum ^= *p++;
6250
6251 sprintf (hdr.ar_name, "/ ");
6252 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
6253 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
6254 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
6255 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
6256 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
6257 hdr.ar_fmag[0] = '`';
6258 hdr.ar_fmag[1] = '\012';
6259
6260 /* Turn any nulls into spaces. */
6261 for (i = 0; i < sizeof (struct ar_hdr); i++)
6262 if (((char *) (&hdr))[i] == '\0')
6263 (((char *) (&hdr))[i]) = ' ';
6264
6265 /* Scribble out the ar header. */
6266 amt = sizeof (struct ar_hdr);
6267 if (bfd_bwrite ((PTR) &hdr, amt, abfd) != amt)
6268 return FALSE;
6269
6270 /* Now scribble out the lst header. */
6271 amt = sizeof (struct lst_header);
6272 if (bfd_bwrite ((PTR) &lst, amt, abfd) != amt)
6273 return FALSE;
6274
6275 /* Build and write the armap. */
6276 if (!som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength))
6277 return FALSE;
6278
6279 /* Done. */
6280 return TRUE;
6281 }
6282
6283 /* Free all information we have cached for this BFD. We can always
6284 read it again later if we need it. */
6285
6286 static bfd_boolean
6287 som_bfd_free_cached_info (abfd)
6288 bfd *abfd;
6289 {
6290 asection *o;
6291
6292 if (bfd_get_format (abfd) != bfd_object)
6293 return TRUE;
6294
6295 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
6296 /* Free the native string and symbol tables. */
6297 FREE (obj_som_symtab (abfd));
6298 FREE (obj_som_stringtab (abfd));
6299 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
6300 {
6301 /* Free the native relocations. */
6302 o->reloc_count = (unsigned) -1;
6303 FREE (som_section_data (o)->reloc_stream);
6304 /* Free the generic relocations. */
6305 FREE (o->relocation);
6306 }
6307 #undef FREE
6308
6309 return TRUE;
6310 }
6311
6312 /* End of miscellaneous support functions. */
6313
6314 /* Linker support functions. */
6315
6316 static bfd_boolean
6317 som_bfd_link_split_section (abfd, sec)
6318 bfd *abfd ATTRIBUTE_UNUSED;
6319 asection *sec;
6320 {
6321 return (som_is_subspace (sec) && sec->_raw_size > 240000);
6322 }
6323
6324 #define som_close_and_cleanup som_bfd_free_cached_info
6325
6326 #define som_read_ar_hdr _bfd_generic_read_ar_hdr
6327 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
6328 #define som_get_elt_at_index _bfd_generic_get_elt_at_index
6329 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
6330 #define som_truncate_arname bfd_bsd_truncate_arname
6331 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
6332 #define som_construct_extended_name_table \
6333 _bfd_archive_coff_construct_extended_name_table
6334 #define som_update_armap_timestamp bfd_true
6335 #define som_bfd_print_private_bfd_data _bfd_generic_bfd_print_private_bfd_data
6336
6337 #define som_get_lineno _bfd_nosymbols_get_lineno
6338 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
6339 #define som_read_minisymbols _bfd_generic_read_minisymbols
6340 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
6341 #define som_get_section_contents_in_window \
6342 _bfd_generic_get_section_contents_in_window
6343
6344 #define som_bfd_get_relocated_section_contents \
6345 bfd_generic_get_relocated_section_contents
6346 #define som_bfd_relax_section bfd_generic_relax_section
6347 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
6348 #define som_bfd_link_hash_table_free _bfd_generic_link_hash_table_free
6349 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
6350 #define som_bfd_link_just_syms _bfd_generic_link_just_syms
6351 #define som_bfd_final_link _bfd_generic_final_link
6352
6353 #define som_bfd_gc_sections bfd_generic_gc_sections
6354 #define som_bfd_merge_sections bfd_generic_merge_sections
6355 #define som_bfd_discard_group bfd_generic_discard_group
6356
6357 const bfd_target som_vec = {
6358 "som", /* name */
6359 bfd_target_som_flavour,
6360 BFD_ENDIAN_BIG, /* target byte order */
6361 BFD_ENDIAN_BIG, /* target headers byte order */
6362 (HAS_RELOC | EXEC_P | /* object flags */
6363 HAS_LINENO | HAS_DEBUG |
6364 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
6365 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
6366 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
6367
6368 /* leading_symbol_char: is the first char of a user symbol
6369 predictable, and if so what is it. */
6370 0,
6371 '/', /* ar_pad_char */
6372 14, /* ar_max_namelen */
6373 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6374 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6375 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
6376 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6377 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6378 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
6379 {_bfd_dummy_target,
6380 som_object_p, /* bfd_check_format */
6381 bfd_generic_archive_p,
6382 _bfd_dummy_target
6383 },
6384 {
6385 bfd_false,
6386 som_mkobject,
6387 _bfd_generic_mkarchive,
6388 bfd_false
6389 },
6390 {
6391 bfd_false,
6392 som_write_object_contents,
6393 _bfd_write_archive_contents,
6394 bfd_false,
6395 },
6396 #undef som
6397
6398 BFD_JUMP_TABLE_GENERIC (som),
6399 BFD_JUMP_TABLE_COPY (som),
6400 BFD_JUMP_TABLE_CORE (_bfd_nocore),
6401 BFD_JUMP_TABLE_ARCHIVE (som),
6402 BFD_JUMP_TABLE_SYMBOLS (som),
6403 BFD_JUMP_TABLE_RELOCS (som),
6404 BFD_JUMP_TABLE_WRITE (som),
6405 BFD_JUMP_TABLE_LINK (som),
6406 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6407
6408 NULL,
6409
6410 (PTR) 0
6411 };
6412
6413 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.196971 seconds and 4 git commands to generate.