* elf32-mips.c (elf_mips_howto_table): Add R_MIPS_JALR.
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 #include "bfd.h"
26 #include "sysdep.h"
27
28 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX)
29
30 #include "libbfd.h"
31 #include "som.h"
32
33 #include <sys/param.h>
34 #include <signal.h>
35 #include <machine/reg.h>
36 #include <sys/file.h>
37 #include <ctype.h>
38
39 /* Magic not defined in standard HP-UX header files until 8.0 */
40
41 #ifndef CPU_PA_RISC1_0
42 #define CPU_PA_RISC1_0 0x20B
43 #endif /* CPU_PA_RISC1_0 */
44
45 #ifndef CPU_PA_RISC1_1
46 #define CPU_PA_RISC1_1 0x210
47 #endif /* CPU_PA_RISC1_1 */
48
49 #ifndef CPU_PA_RISC2_0
50 #define CPU_PA_RISC2_0 0x214
51 #endif /* CPU_PA_RISC2_0 */
52
53 #ifndef _PA_RISC1_0_ID
54 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
55 #endif /* _PA_RISC1_0_ID */
56
57 #ifndef _PA_RISC1_1_ID
58 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
59 #endif /* _PA_RISC1_1_ID */
60
61 #ifndef _PA_RISC2_0_ID
62 #define _PA_RISC2_0_ID CPU_PA_RISC2_0
63 #endif /* _PA_RISC2_0_ID */
64
65 #ifndef _PA_RISC_MAXID
66 #define _PA_RISC_MAXID 0x2FF
67 #endif /* _PA_RISC_MAXID */
68
69 #ifndef _PA_RISC_ID
70 #define _PA_RISC_ID(__m_num) \
71 (((__m_num) == _PA_RISC1_0_ID) || \
72 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
73 #endif /* _PA_RISC_ID */
74
75
76 /* HIUX in it's infinite stupidity changed the names for several "well
77 known" constants. Work around such braindamage. Try the HPUX version
78 first, then the HIUX version, and finally provide a default. */
79 #ifdef HPUX_AUX_ID
80 #define EXEC_AUX_ID HPUX_AUX_ID
81 #endif
82
83 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
84 #define EXEC_AUX_ID HIUX_AUX_ID
85 #endif
86
87 #ifndef EXEC_AUX_ID
88 #define EXEC_AUX_ID 0
89 #endif
90
91 /* Size (in chars) of the temporary buffers used during fixup and string
92 table writes. */
93
94 #define SOM_TMP_BUFSIZE 8192
95
96 /* Size of the hash table in archives. */
97 #define SOM_LST_HASH_SIZE 31
98
99 /* Max number of SOMs to be found in an archive. */
100 #define SOM_LST_MODULE_LIMIT 1024
101
102 /* Generic alignment macro. */
103 #define SOM_ALIGN(val, alignment) \
104 (((val) + (alignment) - 1) & ~((alignment) - 1))
105
106 /* SOM allows any one of the four previous relocations to be reused
107 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
108 relocations are always a single byte, using a R_PREV_FIXUP instead
109 of some multi-byte relocation makes object files smaller.
110
111 Note one side effect of using a R_PREV_FIXUP is the relocation that
112 is being repeated moves to the front of the queue. */
113 struct reloc_queue
114 {
115 unsigned char *reloc;
116 unsigned int size;
117 } reloc_queue[4];
118
119 /* This fully describes the symbol types which may be attached to
120 an EXPORT or IMPORT directive. Only SOM uses this formation
121 (ELF has no need for it). */
122 typedef enum
123 {
124 SYMBOL_TYPE_UNKNOWN,
125 SYMBOL_TYPE_ABSOLUTE,
126 SYMBOL_TYPE_CODE,
127 SYMBOL_TYPE_DATA,
128 SYMBOL_TYPE_ENTRY,
129 SYMBOL_TYPE_MILLICODE,
130 SYMBOL_TYPE_PLABEL,
131 SYMBOL_TYPE_PRI_PROG,
132 SYMBOL_TYPE_SEC_PROG,
133 } pa_symbol_type;
134
135 struct section_to_type
136 {
137 char *section;
138 char type;
139 };
140
141 /* Assorted symbol information that needs to be derived from the BFD symbol
142 and/or the BFD backend private symbol data. */
143 struct som_misc_symbol_info
144 {
145 unsigned int symbol_type;
146 unsigned int symbol_scope;
147 unsigned int arg_reloc;
148 unsigned int symbol_info;
149 unsigned int symbol_value;
150 unsigned int priv_level;
151 };
152
153 /* Forward declarations */
154
155 static boolean som_mkobject PARAMS ((bfd *));
156 static const bfd_target * som_object_setup PARAMS ((bfd *,
157 struct header *,
158 struct som_exec_auxhdr *,
159 unsigned long));
160 static boolean setup_sections PARAMS ((bfd *, struct header *, unsigned long));
161 static const bfd_target * som_object_p PARAMS ((bfd *));
162 static boolean som_write_object_contents PARAMS ((bfd *));
163 static boolean som_slurp_string_table PARAMS ((bfd *));
164 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
165 static long som_get_symtab_upper_bound PARAMS ((bfd *));
166 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
167 arelent **, asymbol **));
168 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
169 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
170 arelent *, asection *,
171 asymbol **, boolean));
172 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
173 asymbol **, boolean));
174 static long som_get_symtab PARAMS ((bfd *, asymbol **));
175 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
176 static void som_print_symbol PARAMS ((bfd *, PTR,
177 asymbol *, bfd_print_symbol_type));
178 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
179 static boolean som_bfd_copy_private_symbol_data PARAMS ((bfd *, asymbol *,
180 bfd *, asymbol *));
181 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
182 bfd *, asection *));
183 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
184 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
185 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
186 static boolean som_bfd_is_local_label_name PARAMS ((bfd *, const char *));
187 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
188 file_ptr, bfd_size_type));
189 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
190 file_ptr, bfd_size_type));
191 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
192 unsigned long));
193 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
194 asymbol **, bfd_vma,
195 CONST char **,
196 CONST char **,
197 unsigned int *));
198 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
199 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
200 struct symbol_dictionary_record *));
201 static int log2 PARAMS ((unsigned int));
202 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
203 asymbol *, PTR,
204 asection *, bfd *,
205 char **));
206 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
207 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
208 struct reloc_queue *));
209 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
210 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
211 struct reloc_queue *));
212 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
213 unsigned int,
214 struct reloc_queue *));
215
216 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
217 unsigned char *, unsigned int *,
218 struct reloc_queue *));
219 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
220 unsigned int *,
221 struct reloc_queue *));
222 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
223 unsigned int *,
224 arelent *, int,
225 struct reloc_queue *));
226 static unsigned long som_count_spaces PARAMS ((bfd *));
227 static unsigned long som_count_subspaces PARAMS ((bfd *));
228 static int compare_syms PARAMS ((const void *, const void *));
229 static int compare_subspaces PARAMS ((const void *, const void *));
230 static unsigned long som_compute_checksum PARAMS ((bfd *));
231 static boolean som_prep_headers PARAMS ((bfd *));
232 static int som_sizeof_headers PARAMS ((bfd *, boolean));
233 static boolean som_finish_writing PARAMS ((bfd *));
234 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
235 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
236 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
237 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
238 unsigned int *));
239 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
240 asymbol **, unsigned int,
241 unsigned *,
242 COMPUNIT *));
243 static boolean som_begin_writing PARAMS ((bfd *));
244 static reloc_howto_type * som_bfd_reloc_type_lookup
245 PARAMS ((bfd *, bfd_reloc_code_real_type));
246 static char som_section_type PARAMS ((const char *));
247 static int som_decode_symclass PARAMS ((asymbol *));
248 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
249 symindex *));
250
251 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
252 carsym **syms));
253 static boolean som_slurp_armap PARAMS ((bfd *));
254 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
255 unsigned int, int));
256 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
257 struct som_misc_symbol_info *));
258 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
259 unsigned int *));
260 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
261 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
262 unsigned int,
263 struct lst_header,
264 unsigned int));
265 static boolean som_is_space PARAMS ((asection *));
266 static boolean som_is_subspace PARAMS ((asection *));
267 static boolean som_is_container PARAMS ((asection *, asection *));
268 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
269 static boolean som_bfd_link_split_section PARAMS ((bfd *, asection *));
270
271 /* Map SOM section names to POSIX/BSD single-character symbol types.
272
273 This table includes all the standard subspaces as defined in the
274 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
275 some reason was left out, and sections specific to embedded stabs. */
276
277 static const struct section_to_type stt[] = {
278 {"$TEXT$", 't'},
279 {"$SHLIB_INFO$", 't'},
280 {"$MILLICODE$", 't'},
281 {"$LIT$", 't'},
282 {"$CODE$", 't'},
283 {"$UNWIND_START$", 't'},
284 {"$UNWIND$", 't'},
285 {"$PRIVATE$", 'd'},
286 {"$PLT$", 'd'},
287 {"$SHLIB_DATA$", 'd'},
288 {"$DATA$", 'd'},
289 {"$SHORTDATA$", 'g'},
290 {"$DLT$", 'd'},
291 {"$GLOBAL$", 'g'},
292 {"$SHORTBSS$", 's'},
293 {"$BSS$", 'b'},
294 {"$GDB_STRINGS$", 'N'},
295 {"$GDB_SYMBOLS$", 'N'},
296 {0, 0}
297 };
298
299 /* About the relocation formatting table...
300
301 There are 256 entries in the table, one for each possible
302 relocation opcode available in SOM. We index the table by
303 the relocation opcode. The names and operations are those
304 defined by a.out_800 (4).
305
306 Right now this table is only used to count and perform minimal
307 processing on relocation streams so that they can be internalized
308 into BFD and symbolically printed by utilities. To make actual use
309 of them would be much more difficult, BFD's concept of relocations
310 is far too simple to handle SOM relocations. The basic assumption
311 that a relocation can be completely processed independent of other
312 relocations before an object file is written is invalid for SOM.
313
314 The SOM relocations are meant to be processed as a stream, they
315 specify copying of data from the input section to the output section
316 while possibly modifying the data in some manner. They also can
317 specify that a variable number of zeros or uninitialized data be
318 inserted on in the output segment at the current offset. Some
319 relocations specify that some previous relocation be re-applied at
320 the current location in the input/output sections. And finally a number
321 of relocations have effects on other sections (R_ENTRY, R_EXIT,
322 R_UNWIND_AUX and a variety of others). There isn't even enough room
323 in the BFD relocation data structure to store enough information to
324 perform all the relocations.
325
326 Each entry in the table has three fields.
327
328 The first entry is an index into this "class" of relocations. This
329 index can then be used as a variable within the relocation itself.
330
331 The second field is a format string which actually controls processing
332 of the relocation. It uses a simple postfix machine to do calculations
333 based on variables/constants found in the string and the relocation
334 stream.
335
336 The third field specifys whether or not this relocation may use
337 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
338 stored in the instruction.
339
340 Variables:
341
342 L = input space byte count
343 D = index into class of relocations
344 M = output space byte count
345 N = statement number (unused?)
346 O = stack operation
347 R = parameter relocation bits
348 S = symbol index
349 T = first 32 bits of stack unwind information
350 U = second 32 bits of stack unwind information
351 V = a literal constant (usually used in the next relocation)
352 P = a previous relocation
353
354 Lower case letters (starting with 'b') refer to following
355 bytes in the relocation stream. 'b' is the next 1 byte,
356 c is the next 2 bytes, d is the next 3 bytes, etc...
357 This is the variable part of the relocation entries that
358 makes our life a living hell.
359
360 numerical constants are also used in the format string. Note
361 the constants are represented in decimal.
362
363 '+', "*" and "=" represents the obvious postfix operators.
364 '<' represents a left shift.
365
366 Stack Operations:
367
368 Parameter Relocation Bits:
369
370 Unwind Entries:
371
372 Previous Relocations: The index field represents which in the queue
373 of 4 previous fixups should be re-applied.
374
375 Literal Constants: These are generally used to represent addend
376 parts of relocations when these constants are not stored in the
377 fields of the instructions themselves. For example the instruction
378 addil foo-$global$-0x1234 would use an override for "0x1234" rather
379 than storing it into the addil itself. */
380
381 struct fixup_format
382 {
383 int D;
384 char *format;
385 };
386
387 static const struct fixup_format som_fixup_formats[256] =
388 {
389 /* R_NO_RELOCATION */
390 0, "LD1+4*=", /* 0x00 */
391 1, "LD1+4*=", /* 0x01 */
392 2, "LD1+4*=", /* 0x02 */
393 3, "LD1+4*=", /* 0x03 */
394 4, "LD1+4*=", /* 0x04 */
395 5, "LD1+4*=", /* 0x05 */
396 6, "LD1+4*=", /* 0x06 */
397 7, "LD1+4*=", /* 0x07 */
398 8, "LD1+4*=", /* 0x08 */
399 9, "LD1+4*=", /* 0x09 */
400 10, "LD1+4*=", /* 0x0a */
401 11, "LD1+4*=", /* 0x0b */
402 12, "LD1+4*=", /* 0x0c */
403 13, "LD1+4*=", /* 0x0d */
404 14, "LD1+4*=", /* 0x0e */
405 15, "LD1+4*=", /* 0x0f */
406 16, "LD1+4*=", /* 0x10 */
407 17, "LD1+4*=", /* 0x11 */
408 18, "LD1+4*=", /* 0x12 */
409 19, "LD1+4*=", /* 0x13 */
410 20, "LD1+4*=", /* 0x14 */
411 21, "LD1+4*=", /* 0x15 */
412 22, "LD1+4*=", /* 0x16 */
413 23, "LD1+4*=", /* 0x17 */
414 0, "LD8<b+1+4*=", /* 0x18 */
415 1, "LD8<b+1+4*=", /* 0x19 */
416 2, "LD8<b+1+4*=", /* 0x1a */
417 3, "LD8<b+1+4*=", /* 0x1b */
418 0, "LD16<c+1+4*=", /* 0x1c */
419 1, "LD16<c+1+4*=", /* 0x1d */
420 2, "LD16<c+1+4*=", /* 0x1e */
421 0, "Ld1+=", /* 0x1f */
422 /* R_ZEROES */
423 0, "Lb1+4*=", /* 0x20 */
424 1, "Ld1+=", /* 0x21 */
425 /* R_UNINIT */
426 0, "Lb1+4*=", /* 0x22 */
427 1, "Ld1+=", /* 0x23 */
428 /* R_RELOCATION */
429 0, "L4=", /* 0x24 */
430 /* R_DATA_ONE_SYMBOL */
431 0, "L4=Sb=", /* 0x25 */
432 1, "L4=Sd=", /* 0x26 */
433 /* R_DATA_PLEBEL */
434 0, "L4=Sb=", /* 0x27 */
435 1, "L4=Sd=", /* 0x28 */
436 /* R_SPACE_REF */
437 0, "L4=", /* 0x29 */
438 /* R_REPEATED_INIT */
439 0, "L4=Mb1+4*=", /* 0x2a */
440 1, "Lb4*=Mb1+L*=", /* 0x2b */
441 2, "Lb4*=Md1+4*=", /* 0x2c */
442 3, "Ld1+=Me1+=", /* 0x2d */
443 0, "", /* 0x2e */
444 0, "", /* 0x2f */
445 /* R_PCREL_CALL */
446 0, "L4=RD=Sb=", /* 0x30 */
447 1, "L4=RD=Sb=", /* 0x31 */
448 2, "L4=RD=Sb=", /* 0x32 */
449 3, "L4=RD=Sb=", /* 0x33 */
450 4, "L4=RD=Sb=", /* 0x34 */
451 5, "L4=RD=Sb=", /* 0x35 */
452 6, "L4=RD=Sb=", /* 0x36 */
453 7, "L4=RD=Sb=", /* 0x37 */
454 8, "L4=RD=Sb=", /* 0x38 */
455 9, "L4=RD=Sb=", /* 0x39 */
456 0, "L4=RD8<b+=Sb=",/* 0x3a */
457 1, "L4=RD8<b+=Sb=",/* 0x3b */
458 0, "L4=RD8<b+=Sd=",/* 0x3c */
459 1, "L4=RD8<b+=Sd=",/* 0x3d */
460 /* R_SHORT_PCREL_MODE */
461 0, "", /* 0x3e */
462 /* R_LONG_PCREL_MODE */
463 0, "", /* 0x3f */
464 /* R_ABS_CALL */
465 0, "L4=RD=Sb=", /* 0x40 */
466 1, "L4=RD=Sb=", /* 0x41 */
467 2, "L4=RD=Sb=", /* 0x42 */
468 3, "L4=RD=Sb=", /* 0x43 */
469 4, "L4=RD=Sb=", /* 0x44 */
470 5, "L4=RD=Sb=", /* 0x45 */
471 6, "L4=RD=Sb=", /* 0x46 */
472 7, "L4=RD=Sb=", /* 0x47 */
473 8, "L4=RD=Sb=", /* 0x48 */
474 9, "L4=RD=Sb=", /* 0x49 */
475 0, "L4=RD8<b+=Sb=",/* 0x4a */
476 1, "L4=RD8<b+=Sb=",/* 0x4b */
477 0, "L4=RD8<b+=Sd=",/* 0x4c */
478 1, "L4=RD8<b+=Sd=",/* 0x4d */
479 /* R_RESERVED */
480 0, "", /* 0x4e */
481 0, "", /* 0x4f */
482 /* R_DP_RELATIVE */
483 0, "L4=SD=", /* 0x50 */
484 1, "L4=SD=", /* 0x51 */
485 2, "L4=SD=", /* 0x52 */
486 3, "L4=SD=", /* 0x53 */
487 4, "L4=SD=", /* 0x54 */
488 5, "L4=SD=", /* 0x55 */
489 6, "L4=SD=", /* 0x56 */
490 7, "L4=SD=", /* 0x57 */
491 8, "L4=SD=", /* 0x58 */
492 9, "L4=SD=", /* 0x59 */
493 10, "L4=SD=", /* 0x5a */
494 11, "L4=SD=", /* 0x5b */
495 12, "L4=SD=", /* 0x5c */
496 13, "L4=SD=", /* 0x5d */
497 14, "L4=SD=", /* 0x5e */
498 15, "L4=SD=", /* 0x5f */
499 16, "L4=SD=", /* 0x60 */
500 17, "L4=SD=", /* 0x61 */
501 18, "L4=SD=", /* 0x62 */
502 19, "L4=SD=", /* 0x63 */
503 20, "L4=SD=", /* 0x64 */
504 21, "L4=SD=", /* 0x65 */
505 22, "L4=SD=", /* 0x66 */
506 23, "L4=SD=", /* 0x67 */
507 24, "L4=SD=", /* 0x68 */
508 25, "L4=SD=", /* 0x69 */
509 26, "L4=SD=", /* 0x6a */
510 27, "L4=SD=", /* 0x6b */
511 28, "L4=SD=", /* 0x6c */
512 29, "L4=SD=", /* 0x6d */
513 30, "L4=SD=", /* 0x6e */
514 31, "L4=SD=", /* 0x6f */
515 32, "L4=Sb=", /* 0x70 */
516 33, "L4=Sd=", /* 0x71 */
517 /* R_RESERVED */
518 0, "", /* 0x72 */
519 0, "", /* 0x73 */
520 0, "", /* 0x74 */
521 0, "", /* 0x75 */
522 0, "", /* 0x76 */
523 0, "", /* 0x77 */
524 /* R_DLT_REL */
525 0, "L4=Sb=", /* 0x78 */
526 1, "L4=Sd=", /* 0x79 */
527 /* R_RESERVED */
528 0, "", /* 0x7a */
529 0, "", /* 0x7b */
530 0, "", /* 0x7c */
531 0, "", /* 0x7d */
532 0, "", /* 0x7e */
533 0, "", /* 0x7f */
534 /* R_CODE_ONE_SYMBOL */
535 0, "L4=SD=", /* 0x80 */
536 1, "L4=SD=", /* 0x81 */
537 2, "L4=SD=", /* 0x82 */
538 3, "L4=SD=", /* 0x83 */
539 4, "L4=SD=", /* 0x84 */
540 5, "L4=SD=", /* 0x85 */
541 6, "L4=SD=", /* 0x86 */
542 7, "L4=SD=", /* 0x87 */
543 8, "L4=SD=", /* 0x88 */
544 9, "L4=SD=", /* 0x89 */
545 10, "L4=SD=", /* 0x8q */
546 11, "L4=SD=", /* 0x8b */
547 12, "L4=SD=", /* 0x8c */
548 13, "L4=SD=", /* 0x8d */
549 14, "L4=SD=", /* 0x8e */
550 15, "L4=SD=", /* 0x8f */
551 16, "L4=SD=", /* 0x90 */
552 17, "L4=SD=", /* 0x91 */
553 18, "L4=SD=", /* 0x92 */
554 19, "L4=SD=", /* 0x93 */
555 20, "L4=SD=", /* 0x94 */
556 21, "L4=SD=", /* 0x95 */
557 22, "L4=SD=", /* 0x96 */
558 23, "L4=SD=", /* 0x97 */
559 24, "L4=SD=", /* 0x98 */
560 25, "L4=SD=", /* 0x99 */
561 26, "L4=SD=", /* 0x9a */
562 27, "L4=SD=", /* 0x9b */
563 28, "L4=SD=", /* 0x9c */
564 29, "L4=SD=", /* 0x9d */
565 30, "L4=SD=", /* 0x9e */
566 31, "L4=SD=", /* 0x9f */
567 32, "L4=Sb=", /* 0xa0 */
568 33, "L4=Sd=", /* 0xa1 */
569 /* R_RESERVED */
570 0, "", /* 0xa2 */
571 0, "", /* 0xa3 */
572 0, "", /* 0xa4 */
573 0, "", /* 0xa5 */
574 0, "", /* 0xa6 */
575 0, "", /* 0xa7 */
576 0, "", /* 0xa8 */
577 0, "", /* 0xa9 */
578 0, "", /* 0xaa */
579 0, "", /* 0xab */
580 0, "", /* 0xac */
581 0, "", /* 0xad */
582 /* R_MILLI_REL */
583 0, "L4=Sb=", /* 0xae */
584 1, "L4=Sd=", /* 0xaf */
585 /* R_CODE_PLABEL */
586 0, "L4=Sb=", /* 0xb0 */
587 1, "L4=Sd=", /* 0xb1 */
588 /* R_BREAKPOINT */
589 0, "L4=", /* 0xb2 */
590 /* R_ENTRY */
591 0, "Te=Ue=", /* 0xb3 */
592 1, "Uf=", /* 0xb4 */
593 /* R_ALT_ENTRY */
594 0, "", /* 0xb5 */
595 /* R_EXIT */
596 0, "", /* 0xb6 */
597 /* R_BEGIN_TRY */
598 0, "", /* 0xb7 */
599 /* R_END_TRY */
600 0, "R0=", /* 0xb8 */
601 1, "Rb4*=", /* 0xb9 */
602 2, "Rd4*=", /* 0xba */
603 /* R_BEGIN_BRTAB */
604 0, "", /* 0xbb */
605 /* R_END_BRTAB */
606 0, "", /* 0xbc */
607 /* R_STATEMENT */
608 0, "Nb=", /* 0xbd */
609 1, "Nc=", /* 0xbe */
610 2, "Nd=", /* 0xbf */
611 /* R_DATA_EXPR */
612 0, "L4=", /* 0xc0 */
613 /* R_CODE_EXPR */
614 0, "L4=", /* 0xc1 */
615 /* R_FSEL */
616 0, "", /* 0xc2 */
617 /* R_LSEL */
618 0, "", /* 0xc3 */
619 /* R_RSEL */
620 0, "", /* 0xc4 */
621 /* R_N_MODE */
622 0, "", /* 0xc5 */
623 /* R_S_MODE */
624 0, "", /* 0xc6 */
625 /* R_D_MODE */
626 0, "", /* 0xc7 */
627 /* R_R_MODE */
628 0, "", /* 0xc8 */
629 /* R_DATA_OVERRIDE */
630 0, "V0=", /* 0xc9 */
631 1, "Vb=", /* 0xca */
632 2, "Vc=", /* 0xcb */
633 3, "Vd=", /* 0xcc */
634 4, "Ve=", /* 0xcd */
635 /* R_TRANSLATED */
636 0, "", /* 0xce */
637 /* R_RESERVED */
638 0, "", /* 0xcf */
639 /* R_COMP1 */
640 0, "Ob=", /* 0xd0 */
641 /* R_COMP2 */
642 0, "Ob=Sd=", /* 0xd1 */
643 /* R_COMP3 */
644 0, "Ob=Ve=", /* 0xd2 */
645 /* R_PREV_FIXUP */
646 0, "P", /* 0xd3 */
647 1, "P", /* 0xd4 */
648 2, "P", /* 0xd5 */
649 3, "P", /* 0xd6 */
650 /* R_SEC_STMT */
651 0, "", /* 0xd7 */
652 /* R_N0SEL */
653 0, "", /* 0xd8 */
654 /* R_N1SEL */
655 0, "", /* 0xd9 */
656 /* R_LINETAB */
657 0, "", /* 0xda */
658 /* R_LINETAB_ESC */
659 0, "", /* 0xdb */
660 /* R_LTP_OVERRIDE */
661 0, "", /* 0xdc */
662 /* R_COMMENT */
663 0, "", /* 0xdd */
664 /* R_RESERVED */
665 0, "", /* 0xde */
666 0, "", /* 0xdf */
667 0, "", /* 0xe0 */
668 0, "", /* 0xe1 */
669 0, "", /* 0xe2 */
670 0, "", /* 0xe3 */
671 0, "", /* 0xe4 */
672 0, "", /* 0xe5 */
673 0, "", /* 0xe6 */
674 0, "", /* 0xe7 */
675 0, "", /* 0xe8 */
676 0, "", /* 0xe9 */
677 0, "", /* 0xea */
678 0, "", /* 0xeb */
679 0, "", /* 0xec */
680 0, "", /* 0xed */
681 0, "", /* 0xee */
682 0, "", /* 0xef */
683 0, "", /* 0xf0 */
684 0, "", /* 0xf1 */
685 0, "", /* 0xf2 */
686 0, "", /* 0xf3 */
687 0, "", /* 0xf4 */
688 0, "", /* 0xf5 */
689 0, "", /* 0xf6 */
690 0, "", /* 0xf7 */
691 0, "", /* 0xf8 */
692 0, "", /* 0xf9 */
693 0, "", /* 0xfa */
694 0, "", /* 0xfb */
695 0, "", /* 0xfc */
696 0, "", /* 0xfd */
697 0, "", /* 0xfe */
698 0, "", /* 0xff */
699 };
700
701 static const int comp1_opcodes[] =
702 {
703 0x00,
704 0x40,
705 0x41,
706 0x42,
707 0x43,
708 0x44,
709 0x45,
710 0x46,
711 0x47,
712 0x48,
713 0x49,
714 0x4a,
715 0x4b,
716 0x60,
717 0x80,
718 0xa0,
719 0xc0,
720 -1
721 };
722
723 static const int comp2_opcodes[] =
724 {
725 0x00,
726 0x80,
727 0x82,
728 0xc0,
729 -1
730 };
731
732 static const int comp3_opcodes[] =
733 {
734 0x00,
735 0x02,
736 -1
737 };
738
739 /* These apparently are not in older versions of hpux reloc.h (hpux7). */
740 #ifndef R_DLT_REL
741 #define R_DLT_REL 0x78
742 #endif
743
744 #ifndef R_AUX_UNWIND
745 #define R_AUX_UNWIND 0xcf
746 #endif
747
748 #ifndef R_SEC_STMT
749 #define R_SEC_STMT 0xd7
750 #endif
751
752 /* And these first appeared in hpux10. */
753 #ifndef R_SHORT_PCREL_MODE
754 #define R_SHORT_PCREL_MODE 0x3e
755 #endif
756
757 #ifndef R_LONG_PCREL_MODE
758 #define R_LONG_PCREL_MODE 0x3f
759 #endif
760
761 #ifndef R_N0SEL
762 #define R_N0SEL 0xd8
763 #endif
764
765 #ifndef R_N1SEL
766 #define R_N1SEL 0xd9
767 #endif
768
769 #ifndef R_LINETAB
770 #define R_LINETAB 0xda
771 #endif
772
773 #ifndef R_LINETAB_ESC
774 #define R_LINETAB_ESC 0xdb
775 #endif
776
777 #ifndef R_LTP_OVERRIDE
778 #define R_LTP_OVERRIDE 0xdc
779 #endif
780
781 #ifndef R_COMMENT
782 #define R_COMMENT 0xdd
783 #endif
784
785 static reloc_howto_type som_hppa_howto_table[] =
786 {
787 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
788 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
789 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
790 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
791 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
792 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
793 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
794 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
795 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
796 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
797 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
798 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
799 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
800 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
801 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
802 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
803 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
804 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
805 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
806 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
807 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
808 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
809 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
810 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
811 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
812 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
813 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
814 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
815 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
816 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
817 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
818 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
819 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
820 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
821 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
822 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
823 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
824 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
825 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
826 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
827 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
828 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
829 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
830 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
831 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
832 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
833 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
834 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
835 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
836 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
837 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
838 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
839 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
840 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
841 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
842 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
843 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
844 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
845 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
846 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
847 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
848 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
849 {R_SHORT_PCREL_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SHORT_PCREL_MODE"},
850 {R_LONG_PCREL_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LONG_PCREL_MODE"},
851 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
852 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
853 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
854 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
855 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
856 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
857 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
858 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
859 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
860 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
861 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
862 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
863 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
864 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
865 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
866 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
867 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
868 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
869 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
870 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
871 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
872 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
873 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
874 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
875 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
876 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
877 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
878 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
879 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
880 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
881 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
882 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
883 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
884 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
885 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
886 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
887 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
888 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
889 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
890 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
891 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
892 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
893 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
894 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
895 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
896 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
897 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
898 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
899 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
900 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
901 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
904 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
905 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
906 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
907 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
908 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
909 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
910 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
911 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
912 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
913 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
914 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
915 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
916 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
917 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
918 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
919 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
920 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
921 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
922 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
923 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
924 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
925 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
926 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
927 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
928 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
929 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
930 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
931 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
932 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
933 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
934 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
935 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
936 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
937 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
938 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
939 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
940 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
941 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
942 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
943 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
944 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
945 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
946 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
947 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
948 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
949 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
962 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
963 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
964 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
965 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
966 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
967 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
968 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
969 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
970 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
971 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
972 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
973 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
974 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
975 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
976 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
977 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
978 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
979 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
980 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
981 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
982 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
983 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
984 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
985 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
986 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
987 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
988 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
989 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
990 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
991 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
992 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
993 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
994 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
995 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
996 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
997 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
998 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
999 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
1000 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
1001 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
1002 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
1003 {R_N0SEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N0SEL"},
1004 {R_N1SEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N1SEL"},
1005 {R_LINETAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LINETAB"},
1006 {R_LINETAB_ESC, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LINETAB_ESC"},
1007 {R_LTP_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LTP_OVERRIDE"},
1008 {R_COMMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMMENT"},
1009 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1010 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1011 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1012 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1013 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1014 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1015 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1016 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1017 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1018 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1019 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1020 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1021 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1022 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1023 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1024 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1025 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1026 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1027 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1028 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1029 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1030 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1031 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1032 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1033 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1034 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1035 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1036 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1037 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1038 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1039 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1040 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1041 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1042 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
1043
1044 /* Initialize the SOM relocation queue. By definition the queue holds
1045 the last four multibyte fixups. */
1046
1047 static void
1048 som_initialize_reloc_queue (queue)
1049 struct reloc_queue *queue;
1050 {
1051 queue[0].reloc = NULL;
1052 queue[0].size = 0;
1053 queue[1].reloc = NULL;
1054 queue[1].size = 0;
1055 queue[2].reloc = NULL;
1056 queue[2].size = 0;
1057 queue[3].reloc = NULL;
1058 queue[3].size = 0;
1059 }
1060
1061 /* Insert a new relocation into the relocation queue. */
1062
1063 static void
1064 som_reloc_queue_insert (p, size, queue)
1065 unsigned char *p;
1066 unsigned int size;
1067 struct reloc_queue *queue;
1068 {
1069 queue[3].reloc = queue[2].reloc;
1070 queue[3].size = queue[2].size;
1071 queue[2].reloc = queue[1].reloc;
1072 queue[2].size = queue[1].size;
1073 queue[1].reloc = queue[0].reloc;
1074 queue[1].size = queue[0].size;
1075 queue[0].reloc = p;
1076 queue[0].size = size;
1077 }
1078
1079 /* When an entry in the relocation queue is reused, the entry moves
1080 to the front of the queue. */
1081
1082 static void
1083 som_reloc_queue_fix (queue, index)
1084 struct reloc_queue *queue;
1085 unsigned int index;
1086 {
1087 if (index == 0)
1088 return;
1089
1090 if (index == 1)
1091 {
1092 unsigned char *tmp1 = queue[0].reloc;
1093 unsigned int tmp2 = queue[0].size;
1094 queue[0].reloc = queue[1].reloc;
1095 queue[0].size = queue[1].size;
1096 queue[1].reloc = tmp1;
1097 queue[1].size = tmp2;
1098 return;
1099 }
1100
1101 if (index == 2)
1102 {
1103 unsigned char *tmp1 = queue[0].reloc;
1104 unsigned int tmp2 = queue[0].size;
1105 queue[0].reloc = queue[2].reloc;
1106 queue[0].size = queue[2].size;
1107 queue[2].reloc = queue[1].reloc;
1108 queue[2].size = queue[1].size;
1109 queue[1].reloc = tmp1;
1110 queue[1].size = tmp2;
1111 return;
1112 }
1113
1114 if (index == 3)
1115 {
1116 unsigned char *tmp1 = queue[0].reloc;
1117 unsigned int tmp2 = queue[0].size;
1118 queue[0].reloc = queue[3].reloc;
1119 queue[0].size = queue[3].size;
1120 queue[3].reloc = queue[2].reloc;
1121 queue[3].size = queue[2].size;
1122 queue[2].reloc = queue[1].reloc;
1123 queue[2].size = queue[1].size;
1124 queue[1].reloc = tmp1;
1125 queue[1].size = tmp2;
1126 return;
1127 }
1128 abort();
1129 }
1130
1131 /* Search for a particular relocation in the relocation queue. */
1132
1133 static int
1134 som_reloc_queue_find (p, size, queue)
1135 unsigned char *p;
1136 unsigned int size;
1137 struct reloc_queue *queue;
1138 {
1139 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1140 && size == queue[0].size)
1141 return 0;
1142 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1143 && size == queue[1].size)
1144 return 1;
1145 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1146 && size == queue[2].size)
1147 return 2;
1148 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1149 && size == queue[3].size)
1150 return 3;
1151 return -1;
1152 }
1153
1154 static unsigned char *
1155 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1156 bfd *abfd;
1157 int *subspace_reloc_sizep;
1158 unsigned char *p;
1159 unsigned int size;
1160 struct reloc_queue *queue;
1161 {
1162 int queue_index = som_reloc_queue_find (p, size, queue);
1163
1164 if (queue_index != -1)
1165 {
1166 /* Found this in a previous fixup. Undo the fixup we
1167 just built and use R_PREV_FIXUP instead. We saved
1168 a total of size - 1 bytes in the fixup stream. */
1169 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1170 p += 1;
1171 *subspace_reloc_sizep += 1;
1172 som_reloc_queue_fix (queue, queue_index);
1173 }
1174 else
1175 {
1176 som_reloc_queue_insert (p, size, queue);
1177 *subspace_reloc_sizep += size;
1178 p += size;
1179 }
1180 return p;
1181 }
1182
1183 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1184 bytes without any relocation. Update the size of the subspace
1185 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1186 current pointer into the relocation stream. */
1187
1188 static unsigned char *
1189 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1190 bfd *abfd;
1191 unsigned int skip;
1192 unsigned char *p;
1193 unsigned int *subspace_reloc_sizep;
1194 struct reloc_queue *queue;
1195 {
1196 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1197 then R_PREV_FIXUPs to get the difference down to a
1198 reasonable size. */
1199 if (skip >= 0x1000000)
1200 {
1201 skip -= 0x1000000;
1202 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1203 bfd_put_8 (abfd, 0xff, p + 1);
1204 bfd_put_16 (abfd, 0xffff, p + 2);
1205 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1206 while (skip >= 0x1000000)
1207 {
1208 skip -= 0x1000000;
1209 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1210 p++;
1211 *subspace_reloc_sizep += 1;
1212 /* No need to adjust queue here since we are repeating the
1213 most recent fixup. */
1214 }
1215 }
1216
1217 /* The difference must be less than 0x1000000. Use one
1218 more R_NO_RELOCATION entry to get to the right difference. */
1219 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1220 {
1221 /* Difference can be handled in a simple single-byte
1222 R_NO_RELOCATION entry. */
1223 if (skip <= 0x60)
1224 {
1225 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1226 *subspace_reloc_sizep += 1;
1227 p++;
1228 }
1229 /* Handle it with a two byte R_NO_RELOCATION entry. */
1230 else if (skip <= 0x1000)
1231 {
1232 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1233 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1234 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1235 }
1236 /* Handle it with a three byte R_NO_RELOCATION entry. */
1237 else
1238 {
1239 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1240 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1241 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1242 }
1243 }
1244 /* Ugh. Punt and use a 4 byte entry. */
1245 else if (skip > 0)
1246 {
1247 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1248 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1249 bfd_put_16 (abfd, skip - 1, p + 2);
1250 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1251 }
1252 return p;
1253 }
1254
1255 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1256 from a BFD relocation. Update the size of the subspace relocation
1257 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1258 into the relocation stream. */
1259
1260 static unsigned char *
1261 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1262 bfd *abfd;
1263 int addend;
1264 unsigned char *p;
1265 unsigned int *subspace_reloc_sizep;
1266 struct reloc_queue *queue;
1267 {
1268 if ((unsigned)(addend) + 0x80 < 0x100)
1269 {
1270 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1271 bfd_put_8 (abfd, addend, p + 1);
1272 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1273 }
1274 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1275 {
1276 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1277 bfd_put_16 (abfd, addend, p + 1);
1278 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1279 }
1280 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1281 {
1282 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1283 bfd_put_8 (abfd, addend >> 16, p + 1);
1284 bfd_put_16 (abfd, addend, p + 2);
1285 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1286 }
1287 else
1288 {
1289 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1290 bfd_put_32 (abfd, addend, p + 1);
1291 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1292 }
1293 return p;
1294 }
1295
1296 /* Handle a single function call relocation. */
1297
1298 static unsigned char *
1299 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1300 bfd *abfd;
1301 unsigned char *p;
1302 unsigned int *subspace_reloc_sizep;
1303 arelent *bfd_reloc;
1304 int sym_num;
1305 struct reloc_queue *queue;
1306 {
1307 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1308 int rtn_bits = arg_bits & 0x3;
1309 int type, done = 0;
1310
1311 /* You'll never believe all this is necessary to handle relocations
1312 for function calls. Having to compute and pack the argument
1313 relocation bits is the real nightmare.
1314
1315 If you're interested in how this works, just forget it. You really
1316 do not want to know about this braindamage. */
1317
1318 /* First see if this can be done with a "simple" relocation. Simple
1319 relocations have a symbol number < 0x100 and have simple encodings
1320 of argument relocations. */
1321
1322 if (sym_num < 0x100)
1323 {
1324 switch (arg_bits)
1325 {
1326 case 0:
1327 case 1:
1328 type = 0;
1329 break;
1330 case 1 << 8:
1331 case 1 << 8 | 1:
1332 type = 1;
1333 break;
1334 case 1 << 8 | 1 << 6:
1335 case 1 << 8 | 1 << 6 | 1:
1336 type = 2;
1337 break;
1338 case 1 << 8 | 1 << 6 | 1 << 4:
1339 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1340 type = 3;
1341 break;
1342 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1343 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1344 type = 4;
1345 break;
1346 default:
1347 /* Not one of the easy encodings. This will have to be
1348 handled by the more complex code below. */
1349 type = -1;
1350 break;
1351 }
1352 if (type != -1)
1353 {
1354 /* Account for the return value too. */
1355 if (rtn_bits)
1356 type += 5;
1357
1358 /* Emit a 2 byte relocation. Then see if it can be handled
1359 with a relocation which is already in the relocation queue. */
1360 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1361 bfd_put_8 (abfd, sym_num, p + 1);
1362 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1363 done = 1;
1364 }
1365 }
1366
1367 /* If this could not be handled with a simple relocation, then do a hard
1368 one. Hard relocations occur if the symbol number was too high or if
1369 the encoding of argument relocation bits is too complex. */
1370 if (! done)
1371 {
1372 /* Don't ask about these magic sequences. I took them straight
1373 from gas-1.36 which took them from the a.out man page. */
1374 type = rtn_bits;
1375 if ((arg_bits >> 6 & 0xf) == 0xe)
1376 type += 9 * 40;
1377 else
1378 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1379 if ((arg_bits >> 2 & 0xf) == 0xe)
1380 type += 9 * 4;
1381 else
1382 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1383
1384 /* Output the first two bytes of the relocation. These describe
1385 the length of the relocation and encoding style. */
1386 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1387 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1388 p);
1389 bfd_put_8 (abfd, type, p + 1);
1390
1391 /* Now output the symbol index and see if this bizarre relocation
1392 just happened to be in the relocation queue. */
1393 if (sym_num < 0x100)
1394 {
1395 bfd_put_8 (abfd, sym_num, p + 2);
1396 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1397 }
1398 else
1399 {
1400 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1401 bfd_put_16 (abfd, sym_num, p + 3);
1402 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1403 }
1404 }
1405 return p;
1406 }
1407
1408
1409 /* Return the logarithm of X, base 2, considering X unsigned.
1410 Abort -1 if X is not a power or two or is zero. */
1411
1412 static int
1413 log2 (x)
1414 unsigned int x;
1415 {
1416 int log = 0;
1417
1418 /* Test for 0 or a power of 2. */
1419 if (x == 0 || x != (x & -x))
1420 return -1;
1421
1422 while ((x >>= 1) != 0)
1423 log++;
1424 return log;
1425 }
1426
1427 static bfd_reloc_status_type
1428 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1429 input_section, output_bfd, error_message)
1430 bfd *abfd;
1431 arelent *reloc_entry;
1432 asymbol *symbol_in;
1433 PTR data;
1434 asection *input_section;
1435 bfd *output_bfd;
1436 char **error_message;
1437 {
1438 if (output_bfd)
1439 {
1440 reloc_entry->address += input_section->output_offset;
1441 return bfd_reloc_ok;
1442 }
1443 return bfd_reloc_ok;
1444 }
1445
1446 /* Given a generic HPPA relocation type, the instruction format,
1447 and a field selector, return one or more appropriate SOM relocations. */
1448
1449 int **
1450 hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff, sym)
1451 bfd *abfd;
1452 int base_type;
1453 int format;
1454 enum hppa_reloc_field_selector_type_alt field;
1455 int sym_diff;
1456 asymbol *sym;
1457 {
1458 int *final_type, **final_types;
1459
1460 final_types = (int **) bfd_alloc (abfd, sizeof (int *) * 6);
1461 final_type = (int *) bfd_alloc (abfd, sizeof (int));
1462 if (!final_types || !final_type)
1463 return NULL;
1464
1465 /* The field selector may require additional relocations to be
1466 generated. It's impossible to know at this moment if additional
1467 relocations will be needed, so we make them. The code to actually
1468 write the relocation/fixup stream is responsible for removing
1469 any redundant relocations. */
1470 switch (field)
1471 {
1472 case e_fsel:
1473 case e_psel:
1474 case e_lpsel:
1475 case e_rpsel:
1476 final_types[0] = final_type;
1477 final_types[1] = NULL;
1478 final_types[2] = NULL;
1479 *final_type = base_type;
1480 break;
1481
1482 case e_tsel:
1483 case e_ltsel:
1484 case e_rtsel:
1485 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1486 if (!final_types[0])
1487 return NULL;
1488 if (field == e_tsel)
1489 *final_types[0] = R_FSEL;
1490 else if (field == e_ltsel)
1491 *final_types[0] = R_LSEL;
1492 else
1493 *final_types[0] = R_RSEL;
1494 final_types[1] = final_type;
1495 final_types[2] = NULL;
1496 *final_type = base_type;
1497 break;
1498
1499 case e_lssel:
1500 case e_rssel:
1501 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1502 if (!final_types[0])
1503 return NULL;
1504 *final_types[0] = R_S_MODE;
1505 final_types[1] = final_type;
1506 final_types[2] = NULL;
1507 *final_type = base_type;
1508 break;
1509
1510 case e_lsel:
1511 case e_rsel:
1512 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1513 if (!final_types[0])
1514 return NULL;
1515 *final_types[0] = R_N_MODE;
1516 final_types[1] = final_type;
1517 final_types[2] = NULL;
1518 *final_type = base_type;
1519 break;
1520
1521 case e_ldsel:
1522 case e_rdsel:
1523 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1524 if (!final_types[0])
1525 return NULL;
1526 *final_types[0] = R_D_MODE;
1527 final_types[1] = final_type;
1528 final_types[2] = NULL;
1529 *final_type = base_type;
1530 break;
1531
1532 case e_lrsel:
1533 case e_rrsel:
1534 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1535 if (!final_types[0])
1536 return NULL;
1537 *final_types[0] = R_R_MODE;
1538 final_types[1] = final_type;
1539 final_types[2] = NULL;
1540 *final_type = base_type;
1541 break;
1542
1543 case e_nsel:
1544 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1545 if (!final_types[0])
1546 return NULL;
1547 *final_types[0] = R_N1SEL;
1548 final_types[1] = final_type;
1549 final_types[2] = NULL;
1550 *final_type = base_type;
1551 break;
1552
1553 case e_nlsel:
1554 case e_nlrsel:
1555 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1556 if (!final_types[0])
1557 return NULL;
1558 *final_types[0] = R_N0SEL;
1559 final_types[1] = (int *) bfd_alloc (abfd, sizeof (int));
1560 if (!final_types[1])
1561 return NULL;
1562 if (field == e_nlsel)
1563 *final_types[1] = R_N_MODE;
1564 else
1565 *final_types[1] = R_R_MODE;
1566 final_types[2] = final_type;
1567 final_types[3] = NULL;
1568 *final_type = base_type;
1569 break;
1570 }
1571
1572 switch (base_type)
1573 {
1574 case R_HPPA:
1575 /* The difference of two symbols needs *very* special handling. */
1576 if (sym_diff)
1577 {
1578 final_types[0] = (int *)bfd_alloc (abfd, sizeof (int));
1579 final_types[1] = (int *)bfd_alloc (abfd, sizeof (int));
1580 final_types[2] = (int *)bfd_alloc (abfd, sizeof (int));
1581 final_types[3] = (int *)bfd_alloc (abfd, sizeof (int));
1582 if (!final_types[0] || !final_types[1] || !final_types[2])
1583 return NULL;
1584 if (field == e_fsel)
1585 *final_types[0] = R_FSEL;
1586 else if (field == e_rsel)
1587 *final_types[0] = R_RSEL;
1588 else if (field == e_lsel)
1589 *final_types[0] = R_LSEL;
1590 *final_types[1] = R_COMP2;
1591 *final_types[2] = R_COMP2;
1592 *final_types[3] = R_COMP1;
1593 final_types[4] = final_type;
1594 if (format == 32)
1595 *final_types[4] = R_DATA_EXPR;
1596 else
1597 *final_types[4] = R_CODE_EXPR;
1598 final_types[5] = NULL;
1599 break;
1600 }
1601 /* PLABELs get their own relocation type. */
1602 else if (field == e_psel
1603 || field == e_lpsel
1604 || field == e_rpsel)
1605 {
1606 /* A PLABEL relocation that has a size of 32 bits must
1607 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1608 if (format == 32)
1609 *final_type = R_DATA_PLABEL;
1610 else
1611 *final_type = R_CODE_PLABEL;
1612 }
1613 /* PIC stuff. */
1614 else if (field == e_tsel
1615 || field == e_ltsel
1616 || field == e_rtsel)
1617 *final_type = R_DLT_REL;
1618 /* A relocation in the data space is always a full 32bits. */
1619 else if (format == 32)
1620 {
1621 *final_type = R_DATA_ONE_SYMBOL;
1622
1623 /* If there's no SOM symbol type associated with this BFD
1624 symbol, then set the symbol type to ST_DATA.
1625
1626 Only do this if the type is going to default later when
1627 we write the object file.
1628
1629 This is done so that the linker never encounters an
1630 R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
1631
1632 This allows the compiler to generate exception handling
1633 tables.
1634
1635 Note that one day we may need to also emit BEGIN_BRTAB and
1636 END_BRTAB to prevent the linker from optimizing away insns
1637 in exception handling regions. */
1638 if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
1639 && (sym->flags & BSF_SECTION_SYM) == 0
1640 && (sym->flags & BSF_FUNCTION) == 0
1641 && ! bfd_is_com_section (sym->section))
1642 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
1643 }
1644 break;
1645
1646
1647 case R_HPPA_GOTOFF:
1648 /* More PLABEL special cases. */
1649 if (field == e_psel
1650 || field == e_lpsel
1651 || field == e_rpsel)
1652 *final_type = R_DATA_PLABEL;
1653 break;
1654
1655 case R_HPPA_COMPLEX:
1656 /* The difference of two symbols needs *very* special handling. */
1657 if (sym_diff)
1658 {
1659 final_types[0] = (int *)bfd_alloc (abfd, sizeof (int));
1660 final_types[1] = (int *)bfd_alloc (abfd, sizeof (int));
1661 final_types[2] = (int *)bfd_alloc (abfd, sizeof (int));
1662 final_types[3] = (int *)bfd_alloc (abfd, sizeof (int));
1663 if (!final_types[0] || !final_types[1] || !final_types[2])
1664 return NULL;
1665 if (field == e_fsel)
1666 *final_types[0] = R_FSEL;
1667 else if (field == e_rsel)
1668 *final_types[0] = R_RSEL;
1669 else if (field == e_lsel)
1670 *final_types[0] = R_LSEL;
1671 *final_types[1] = R_COMP2;
1672 *final_types[2] = R_COMP2;
1673 *final_types[3] = R_COMP1;
1674 final_types[4] = final_type;
1675 if (format == 32)
1676 *final_types[4] = R_DATA_EXPR;
1677 else
1678 *final_types[4] = R_CODE_EXPR;
1679 final_types[5] = NULL;
1680 break;
1681 }
1682 else
1683 break;
1684
1685 case R_HPPA_NONE:
1686 case R_HPPA_ABS_CALL:
1687 case R_HPPA_PCREL_CALL:
1688 /* Right now we can default all these. */
1689 break;
1690 }
1691 return final_types;
1692 }
1693
1694 /* Return the address of the correct entry in the PA SOM relocation
1695 howto table. */
1696
1697 /*ARGSUSED*/
1698 static reloc_howto_type *
1699 som_bfd_reloc_type_lookup (abfd, code)
1700 bfd *abfd;
1701 bfd_reloc_code_real_type code;
1702 {
1703 if ((int) code < (int) R_NO_RELOCATION + 255)
1704 {
1705 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1706 return &som_hppa_howto_table[(int) code];
1707 }
1708
1709 return (reloc_howto_type *) 0;
1710 }
1711
1712 /* Perform some initialization for an object. Save results of this
1713 initialization in the BFD. */
1714
1715 static const bfd_target *
1716 som_object_setup (abfd, file_hdrp, aux_hdrp, current_offset)
1717 bfd *abfd;
1718 struct header *file_hdrp;
1719 struct som_exec_auxhdr *aux_hdrp;
1720 unsigned long current_offset;
1721 {
1722 asection *section;
1723 int found;
1724
1725 /* som_mkobject will set bfd_error if som_mkobject fails. */
1726 if (som_mkobject (abfd) != true)
1727 return 0;
1728
1729 /* Set BFD flags based on what information is available in the SOM. */
1730 abfd->flags = BFD_NO_FLAGS;
1731 if (file_hdrp->symbol_total)
1732 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1733
1734 switch (file_hdrp->a_magic)
1735 {
1736 case DEMAND_MAGIC:
1737 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1738 break;
1739 case SHARE_MAGIC:
1740 abfd->flags |= (WP_TEXT | EXEC_P);
1741 break;
1742 case EXEC_MAGIC:
1743 abfd->flags |= (EXEC_P);
1744 break;
1745 case RELOC_MAGIC:
1746 abfd->flags |= HAS_RELOC;
1747 break;
1748 #ifdef SHL_MAGIC
1749 case SHL_MAGIC:
1750 #endif
1751 #ifdef DL_MAGIC
1752 case DL_MAGIC:
1753 #endif
1754 abfd->flags |= DYNAMIC;
1755 break;
1756
1757 default:
1758 break;
1759 }
1760
1761 /* Allocate space to hold the saved exec header information. */
1762 obj_som_exec_data (abfd) = (struct som_exec_data *)
1763 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1764 if (obj_som_exec_data (abfd) == NULL)
1765 return NULL;
1766
1767 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1768
1769 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1770 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1771
1772 It's about time, OSF has used the new id since at least 1992;
1773 HPUX didn't start till nearly 1995!.
1774
1775 The new approach examines the entry field. If it's zero or not 4
1776 byte aligned then it's not a proper code address and we guess it's
1777 really the executable flags. */
1778 found = 0;
1779 for (section = abfd->sections; section; section = section->next)
1780 {
1781 if ((section->flags & SEC_CODE) == 0)
1782 continue;
1783 if (aux_hdrp->exec_entry >= section->vma
1784 && aux_hdrp->exec_entry < section->vma + section->_cooked_size)
1785 found = 1;
1786 }
1787 if (aux_hdrp->exec_entry == 0
1788 || (aux_hdrp->exec_entry & 0x3) != 0
1789 || ! found)
1790 {
1791 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1792 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1793 }
1794 else
1795 {
1796 bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset;
1797 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1798 }
1799
1800 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1801 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1802
1803 /* Initialize the saved symbol table and string table to NULL.
1804 Save important offsets and sizes from the SOM header into
1805 the BFD. */
1806 obj_som_stringtab (abfd) = (char *) NULL;
1807 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1808 obj_som_sorted_syms (abfd) = NULL;
1809 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1810 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset;
1811 obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location
1812 + current_offset);
1813 obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location
1814 + current_offset);
1815 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1816
1817 return abfd->xvec;
1818 }
1819
1820 /* Convert all of the space and subspace info into BFD sections. Each space
1821 contains a number of subspaces, which in turn describe the mapping between
1822 regions of the exec file, and the address space that the program runs in.
1823 BFD sections which correspond to spaces will overlap the sections for the
1824 associated subspaces. */
1825
1826 static boolean
1827 setup_sections (abfd, file_hdr, current_offset)
1828 bfd *abfd;
1829 struct header *file_hdr;
1830 unsigned long current_offset;
1831 {
1832 char *space_strings;
1833 unsigned int space_index, i;
1834 unsigned int total_subspaces = 0;
1835 asection **subspace_sections, *section;
1836
1837 /* First, read in space names */
1838
1839 space_strings = bfd_malloc (file_hdr->space_strings_size);
1840 if (!space_strings && file_hdr->space_strings_size != 0)
1841 goto error_return;
1842
1843 if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location,
1844 SEEK_SET) < 0)
1845 goto error_return;
1846 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1847 != file_hdr->space_strings_size)
1848 goto error_return;
1849
1850 /* Loop over all of the space dictionaries, building up sections */
1851 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1852 {
1853 struct space_dictionary_record space;
1854 struct subspace_dictionary_record subspace, save_subspace;
1855 int subspace_index;
1856 asection *space_asect;
1857 char *newname;
1858
1859 /* Read the space dictionary element */
1860 if (bfd_seek (abfd,
1861 (current_offset + file_hdr->space_location
1862 + space_index * sizeof space),
1863 SEEK_SET) < 0)
1864 goto error_return;
1865 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1866 goto error_return;
1867
1868 /* Setup the space name string */
1869 space.name.n_name = space.name.n_strx + space_strings;
1870
1871 /* Make a section out of it */
1872 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1873 if (!newname)
1874 goto error_return;
1875 strcpy (newname, space.name.n_name);
1876
1877 space_asect = bfd_make_section_anyway (abfd, newname);
1878 if (!space_asect)
1879 goto error_return;
1880
1881 if (space.is_loadable == 0)
1882 space_asect->flags |= SEC_DEBUGGING;
1883
1884 /* Set up all the attributes for the space. */
1885 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1886 space.is_private, space.sort_key,
1887 space.space_number) == false)
1888 goto error_return;
1889
1890 /* If the space has no subspaces, then we're done. */
1891 if (space.subspace_quantity == 0)
1892 continue;
1893
1894 /* Now, read in the first subspace for this space */
1895 if (bfd_seek (abfd,
1896 (current_offset + file_hdr->subspace_location
1897 + space.subspace_index * sizeof subspace),
1898 SEEK_SET) < 0)
1899 goto error_return;
1900 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1901 goto error_return;
1902 /* Seek back to the start of the subspaces for loop below */
1903 if (bfd_seek (abfd,
1904 (current_offset + file_hdr->subspace_location
1905 + space.subspace_index * sizeof subspace),
1906 SEEK_SET) < 0)
1907 goto error_return;
1908
1909 /* Setup the start address and file loc from the first subspace record */
1910 space_asect->vma = subspace.subspace_start;
1911 space_asect->filepos = subspace.file_loc_init_value + current_offset;
1912 space_asect->alignment_power = log2 (subspace.alignment);
1913 if (space_asect->alignment_power == -1)
1914 goto error_return;
1915
1916 /* Initialize save_subspace so we can reliably determine if this
1917 loop placed any useful values into it. */
1918 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1919
1920 /* Loop over the rest of the subspaces, building up more sections */
1921 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1922 subspace_index++)
1923 {
1924 asection *subspace_asect;
1925
1926 /* Read in the next subspace */
1927 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1928 != sizeof subspace)
1929 goto error_return;
1930
1931 /* Setup the subspace name string */
1932 subspace.name.n_name = subspace.name.n_strx + space_strings;
1933
1934 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1935 if (!newname)
1936 goto error_return;
1937 strcpy (newname, subspace.name.n_name);
1938
1939 /* Make a section out of this subspace */
1940 subspace_asect = bfd_make_section_anyway (abfd, newname);
1941 if (!subspace_asect)
1942 goto error_return;
1943
1944 /* Store private information about the section. */
1945 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1946 subspace.access_control_bits,
1947 subspace.sort_key,
1948 subspace.quadrant) == false)
1949 goto error_return;
1950
1951 /* Keep an easy mapping between subspaces and sections.
1952 Note we do not necessarily read the subspaces in the
1953 same order in which they appear in the object file.
1954
1955 So to make the target index come out correctly, we
1956 store the location of the subspace header in target
1957 index, then sort using the location of the subspace
1958 header as the key. Then we can assign correct
1959 subspace indices. */
1960 total_subspaces++;
1961 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
1962
1963 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1964 by the access_control_bits in the subspace header. */
1965 switch (subspace.access_control_bits >> 4)
1966 {
1967 /* Readonly data. */
1968 case 0x0:
1969 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1970 break;
1971
1972 /* Normal data. */
1973 case 0x1:
1974 subspace_asect->flags |= SEC_DATA;
1975 break;
1976
1977 /* Readonly code and the gateways.
1978 Gateways have other attributes which do not map
1979 into anything BFD knows about. */
1980 case 0x2:
1981 case 0x4:
1982 case 0x5:
1983 case 0x6:
1984 case 0x7:
1985 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1986 break;
1987
1988 /* dynamic (writable) code. */
1989 case 0x3:
1990 subspace_asect->flags |= SEC_CODE;
1991 break;
1992 }
1993
1994 if (subspace.dup_common || subspace.is_common)
1995 subspace_asect->flags |= SEC_IS_COMMON;
1996 else if (subspace.subspace_length > 0)
1997 subspace_asect->flags |= SEC_HAS_CONTENTS;
1998
1999 if (subspace.is_loadable)
2000 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
2001 else
2002 subspace_asect->flags |= SEC_DEBUGGING;
2003
2004 if (subspace.code_only)
2005 subspace_asect->flags |= SEC_CODE;
2006
2007 /* Both file_loc_init_value and initialization_length will
2008 be zero for a BSS like subspace. */
2009 if (subspace.file_loc_init_value == 0
2010 && subspace.initialization_length == 0)
2011 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
2012
2013 /* This subspace has relocations.
2014 The fixup_request_quantity is a byte count for the number of
2015 entries in the relocation stream; it is not the actual number
2016 of relocations in the subspace. */
2017 if (subspace.fixup_request_quantity != 0)
2018 {
2019 subspace_asect->flags |= SEC_RELOC;
2020 subspace_asect->rel_filepos = subspace.fixup_request_index;
2021 som_section_data (subspace_asect)->reloc_size
2022 = subspace.fixup_request_quantity;
2023 /* We can not determine this yet. When we read in the
2024 relocation table the correct value will be filled in. */
2025 subspace_asect->reloc_count = -1;
2026 }
2027
2028 /* Update save_subspace if appropriate. */
2029 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
2030 save_subspace = subspace;
2031
2032 subspace_asect->vma = subspace.subspace_start;
2033 subspace_asect->_cooked_size = subspace.subspace_length;
2034 subspace_asect->_raw_size = subspace.subspace_length;
2035 subspace_asect->filepos = (subspace.file_loc_init_value
2036 + current_offset);
2037 subspace_asect->alignment_power = log2 (subspace.alignment);
2038 if (subspace_asect->alignment_power == -1)
2039 goto error_return;
2040 }
2041
2042 /* This can happen for a .o which defines symbols in otherwise
2043 empty subspaces. */
2044 if (!save_subspace.file_loc_init_value)
2045 {
2046 space_asect->_cooked_size = 0;
2047 space_asect->_raw_size = 0;
2048 }
2049 else
2050 {
2051 /* Setup the sizes for the space section based upon the info in the
2052 last subspace of the space. */
2053 space_asect->_cooked_size = (save_subspace.subspace_start
2054 - space_asect->vma
2055 + save_subspace.subspace_length);
2056 space_asect->_raw_size = (save_subspace.file_loc_init_value
2057 - space_asect->filepos
2058 + save_subspace.initialization_length);
2059 }
2060 }
2061 /* Now that we've read in all the subspace records, we need to assign
2062 a target index to each subspace. */
2063 subspace_sections = (asection **) bfd_malloc (total_subspaces
2064 * sizeof (asection *));
2065 if (subspace_sections == NULL)
2066 goto error_return;
2067
2068 for (i = 0, section = abfd->sections; section; section = section->next)
2069 {
2070 if (!som_is_subspace (section))
2071 continue;
2072
2073 subspace_sections[i] = section;
2074 i++;
2075 }
2076 qsort (subspace_sections, total_subspaces,
2077 sizeof (asection *), compare_subspaces);
2078
2079 /* subspace_sections is now sorted in the order in which the subspaces
2080 appear in the object file. Assign an index to each one now. */
2081 for (i = 0; i < total_subspaces; i++)
2082 subspace_sections[i]->target_index = i;
2083
2084 if (space_strings != NULL)
2085 free (space_strings);
2086
2087 if (subspace_sections != NULL)
2088 free (subspace_sections);
2089
2090 return true;
2091
2092 error_return:
2093 if (space_strings != NULL)
2094 free (space_strings);
2095
2096 if (subspace_sections != NULL)
2097 free (subspace_sections);
2098 return false;
2099 }
2100
2101 /* Read in a SOM object and make it into a BFD. */
2102
2103 static const bfd_target *
2104 som_object_p (abfd)
2105 bfd *abfd;
2106 {
2107 struct header file_hdr;
2108 struct som_exec_auxhdr aux_hdr;
2109 unsigned long current_offset = 0;
2110 struct lst_header lst_header;
2111 struct som_entry som_entry;
2112 #define ENTRY_SIZE sizeof(struct som_entry)
2113
2114 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
2115 {
2116 if (bfd_get_error () != bfd_error_system_call)
2117 bfd_set_error (bfd_error_wrong_format);
2118 return 0;
2119 }
2120
2121 if (!_PA_RISC_ID (file_hdr.system_id))
2122 {
2123 bfd_set_error (bfd_error_wrong_format);
2124 return 0;
2125 }
2126
2127 switch (file_hdr.a_magic)
2128 {
2129 case RELOC_MAGIC:
2130 case EXEC_MAGIC:
2131 case SHARE_MAGIC:
2132 case DEMAND_MAGIC:
2133 #ifdef DL_MAGIC
2134 case DL_MAGIC:
2135 #endif
2136 #ifdef SHL_MAGIC
2137 case SHL_MAGIC:
2138 #endif
2139 #ifdef SHARED_MAGIC_CNX
2140 case SHARED_MAGIC_CNX:
2141 #endif
2142 break;
2143
2144 #ifdef EXECLIBMAGIC
2145 case EXECLIBMAGIC:
2146 /* Read the lst header and determine where the SOM directory begins */
2147
2148 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
2149 {
2150 if (bfd_get_error () != bfd_error_system_call)
2151 bfd_set_error (bfd_error_wrong_format);
2152 return 0;
2153 }
2154
2155 if (bfd_read ((PTR) & lst_header, 1, SLSTHDR, abfd) != SLSTHDR)
2156 {
2157 if (bfd_get_error () != bfd_error_system_call)
2158 bfd_set_error (bfd_error_wrong_format);
2159 return 0;
2160 }
2161
2162 /* Position to and read the first directory entry */
2163
2164 if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) < 0)
2165 {
2166 if (bfd_get_error () != bfd_error_system_call)
2167 bfd_set_error (bfd_error_wrong_format);
2168 return 0;
2169 }
2170
2171 if (bfd_read ((PTR) & som_entry, 1, ENTRY_SIZE, abfd) != ENTRY_SIZE)
2172 {
2173 if (bfd_get_error () != bfd_error_system_call)
2174 bfd_set_error (bfd_error_wrong_format);
2175 return 0;
2176 }
2177
2178 /* Now position to the first SOM */
2179
2180 if (bfd_seek (abfd, som_entry.location, SEEK_SET) < 0)
2181 {
2182 if (bfd_get_error () != bfd_error_system_call)
2183 bfd_set_error (bfd_error_wrong_format);
2184 return 0;
2185 }
2186
2187 current_offset = som_entry.location;
2188
2189 /* And finally, re-read the som header */
2190
2191 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
2192 {
2193 if (bfd_get_error () != bfd_error_system_call)
2194 bfd_set_error (bfd_error_wrong_format);
2195 return 0;
2196 }
2197
2198 break;
2199 #endif
2200
2201 default:
2202 bfd_set_error (bfd_error_wrong_format);
2203 return 0;
2204 }
2205
2206 if (file_hdr.version_id != VERSION_ID
2207 && file_hdr.version_id != NEW_VERSION_ID)
2208 {
2209 bfd_set_error (bfd_error_wrong_format);
2210 return 0;
2211 }
2212
2213 /* If the aux_header_size field in the file header is zero, then this
2214 object is an incomplete executable (a .o file). Do not try to read
2215 a non-existant auxiliary header. */
2216 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
2217 if (file_hdr.aux_header_size != 0)
2218 {
2219 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
2220 {
2221 if (bfd_get_error () != bfd_error_system_call)
2222 bfd_set_error (bfd_error_wrong_format);
2223 return 0;
2224 }
2225 }
2226
2227 if (!setup_sections (abfd, &file_hdr, current_offset))
2228 {
2229 /* setup_sections does not bubble up a bfd error code. */
2230 bfd_set_error (bfd_error_bad_value);
2231 return 0;
2232 }
2233
2234 /* This appears to be a valid SOM object. Do some initialization. */
2235 return som_object_setup (abfd, &file_hdr, &aux_hdr, current_offset);
2236 }
2237
2238 /* Create a SOM object. */
2239
2240 static boolean
2241 som_mkobject (abfd)
2242 bfd *abfd;
2243 {
2244 /* Allocate memory to hold backend information. */
2245 abfd->tdata.som_data = (struct som_data_struct *)
2246 bfd_zalloc (abfd, sizeof (struct som_data_struct));
2247 if (abfd->tdata.som_data == NULL)
2248 return false;
2249 return true;
2250 }
2251
2252 /* Initialize some information in the file header. This routine makes
2253 not attempt at doing the right thing for a full executable; it
2254 is only meant to handle relocatable objects. */
2255
2256 static boolean
2257 som_prep_headers (abfd)
2258 bfd *abfd;
2259 {
2260 struct header *file_hdr;
2261 asection *section;
2262
2263 /* Make and attach a file header to the BFD. */
2264 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
2265 if (file_hdr == NULL)
2266 return false;
2267 obj_som_file_hdr (abfd) = file_hdr;
2268
2269 if (abfd->flags & (EXEC_P | DYNAMIC))
2270 {
2271
2272 /* Make and attach an exec header to the BFD. */
2273 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
2274 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
2275 if (obj_som_exec_hdr (abfd) == NULL)
2276 return false;
2277
2278 if (abfd->flags & D_PAGED)
2279 file_hdr->a_magic = DEMAND_MAGIC;
2280 else if (abfd->flags & WP_TEXT)
2281 file_hdr->a_magic = SHARE_MAGIC;
2282 #ifdef SHL_MAGIC
2283 else if (abfd->flags & DYNAMIC)
2284 file_hdr->a_magic = SHL_MAGIC;
2285 #endif
2286 else
2287 file_hdr->a_magic = EXEC_MAGIC;
2288 }
2289 else
2290 file_hdr->a_magic = RELOC_MAGIC;
2291
2292 /* Only new format SOM is supported. */
2293 file_hdr->version_id = NEW_VERSION_ID;
2294
2295 /* These fields are optional, and embedding timestamps is not always
2296 a wise thing to do, it makes comparing objects during a multi-stage
2297 bootstrap difficult. */
2298 file_hdr->file_time.secs = 0;
2299 file_hdr->file_time.nanosecs = 0;
2300
2301 file_hdr->entry_space = 0;
2302 file_hdr->entry_subspace = 0;
2303 file_hdr->entry_offset = 0;
2304 file_hdr->presumed_dp = 0;
2305
2306 /* Now iterate over the sections translating information from
2307 BFD sections to SOM spaces/subspaces. */
2308
2309 for (section = abfd->sections; section != NULL; section = section->next)
2310 {
2311 /* Ignore anything which has not been marked as a space or
2312 subspace. */
2313 if (!som_is_space (section) && !som_is_subspace (section))
2314 continue;
2315
2316 if (som_is_space (section))
2317 {
2318 /* Allocate space for the space dictionary. */
2319 som_section_data (section)->space_dict
2320 = (struct space_dictionary_record *)
2321 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2322 if (som_section_data (section)->space_dict == NULL)
2323 return false;
2324 /* Set space attributes. Note most attributes of SOM spaces
2325 are set based on the subspaces it contains. */
2326 som_section_data (section)->space_dict->loader_fix_index = -1;
2327 som_section_data (section)->space_dict->init_pointer_index = -1;
2328
2329 /* Set more attributes that were stuffed away in private data. */
2330 som_section_data (section)->space_dict->sort_key =
2331 som_section_data (section)->copy_data->sort_key;
2332 som_section_data (section)->space_dict->is_defined =
2333 som_section_data (section)->copy_data->is_defined;
2334 som_section_data (section)->space_dict->is_private =
2335 som_section_data (section)->copy_data->is_private;
2336 som_section_data (section)->space_dict->space_number =
2337 som_section_data (section)->copy_data->space_number;
2338 }
2339 else
2340 {
2341 /* Allocate space for the subspace dictionary. */
2342 som_section_data (section)->subspace_dict
2343 = (struct subspace_dictionary_record *)
2344 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2345 if (som_section_data (section)->subspace_dict == NULL)
2346 return false;
2347
2348 /* Set subspace attributes. Basic stuff is done here, additional
2349 attributes are filled in later as more information becomes
2350 available. */
2351 if (section->flags & SEC_IS_COMMON)
2352 {
2353 som_section_data (section)->subspace_dict->dup_common = 1;
2354 som_section_data (section)->subspace_dict->is_common = 1;
2355 }
2356
2357 if (section->flags & SEC_ALLOC)
2358 som_section_data (section)->subspace_dict->is_loadable = 1;
2359
2360 if (section->flags & SEC_CODE)
2361 som_section_data (section)->subspace_dict->code_only = 1;
2362
2363 som_section_data (section)->subspace_dict->subspace_start =
2364 section->vma;
2365 som_section_data (section)->subspace_dict->subspace_length =
2366 bfd_section_size (abfd, section);
2367 som_section_data (section)->subspace_dict->initialization_length =
2368 bfd_section_size (abfd, section);
2369 som_section_data (section)->subspace_dict->alignment =
2370 1 << section->alignment_power;
2371
2372 /* Set more attributes that were stuffed away in private data. */
2373 som_section_data (section)->subspace_dict->sort_key =
2374 som_section_data (section)->copy_data->sort_key;
2375 som_section_data (section)->subspace_dict->access_control_bits =
2376 som_section_data (section)->copy_data->access_control_bits;
2377 som_section_data (section)->subspace_dict->quadrant =
2378 som_section_data (section)->copy_data->quadrant;
2379 }
2380 }
2381 return true;
2382 }
2383
2384 /* Return true if the given section is a SOM space, false otherwise. */
2385
2386 static boolean
2387 som_is_space (section)
2388 asection *section;
2389 {
2390 /* If no copy data is available, then it's neither a space nor a
2391 subspace. */
2392 if (som_section_data (section)->copy_data == NULL)
2393 return false;
2394
2395 /* If the containing space isn't the same as the given section,
2396 then this isn't a space. */
2397 if (som_section_data (section)->copy_data->container != section
2398 && (som_section_data (section)->copy_data->container->output_section
2399 != section))
2400 return false;
2401
2402 /* OK. Must be a space. */
2403 return true;
2404 }
2405
2406 /* Return true if the given section is a SOM subspace, false otherwise. */
2407
2408 static boolean
2409 som_is_subspace (section)
2410 asection *section;
2411 {
2412 /* If no copy data is available, then it's neither a space nor a
2413 subspace. */
2414 if (som_section_data (section)->copy_data == NULL)
2415 return false;
2416
2417 /* If the containing space is the same as the given section,
2418 then this isn't a subspace. */
2419 if (som_section_data (section)->copy_data->container == section
2420 || (som_section_data (section)->copy_data->container->output_section
2421 == section))
2422 return false;
2423
2424 /* OK. Must be a subspace. */
2425 return true;
2426 }
2427
2428 /* Return true if the given space containins the given subspace. It
2429 is safe to assume space really is a space, and subspace really
2430 is a subspace. */
2431
2432 static boolean
2433 som_is_container (space, subspace)
2434 asection *space, *subspace;
2435 {
2436 return (som_section_data (subspace)->copy_data->container == space
2437 || (som_section_data (subspace)->copy_data->container->output_section
2438 == space));
2439 }
2440
2441 /* Count and return the number of spaces attached to the given BFD. */
2442
2443 static unsigned long
2444 som_count_spaces (abfd)
2445 bfd *abfd;
2446 {
2447 int count = 0;
2448 asection *section;
2449
2450 for (section = abfd->sections; section != NULL; section = section->next)
2451 count += som_is_space (section);
2452
2453 return count;
2454 }
2455
2456 /* Count the number of subspaces attached to the given BFD. */
2457
2458 static unsigned long
2459 som_count_subspaces (abfd)
2460 bfd *abfd;
2461 {
2462 int count = 0;
2463 asection *section;
2464
2465 for (section = abfd->sections; section != NULL; section = section->next)
2466 count += som_is_subspace (section);
2467
2468 return count;
2469 }
2470
2471 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2472
2473 We desire symbols to be ordered starting with the symbol with the
2474 highest relocation count down to the symbol with the lowest relocation
2475 count. Doing so compacts the relocation stream. */
2476
2477 static int
2478 compare_syms (arg1, arg2)
2479 const PTR arg1;
2480 const PTR arg2;
2481
2482 {
2483 asymbol **sym1 = (asymbol **) arg1;
2484 asymbol **sym2 = (asymbol **) arg2;
2485 unsigned int count1, count2;
2486
2487 /* Get relocation count for each symbol. Note that the count
2488 is stored in the udata pointer for section symbols! */
2489 if ((*sym1)->flags & BSF_SECTION_SYM)
2490 count1 = (*sym1)->udata.i;
2491 else
2492 count1 = som_symbol_data (*sym1)->reloc_count;
2493
2494 if ((*sym2)->flags & BSF_SECTION_SYM)
2495 count2 = (*sym2)->udata.i;
2496 else
2497 count2 = som_symbol_data (*sym2)->reloc_count;
2498
2499 /* Return the appropriate value. */
2500 if (count1 < count2)
2501 return 1;
2502 else if (count1 > count2)
2503 return -1;
2504 return 0;
2505 }
2506
2507 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2508 and subspace. */
2509
2510 static int
2511 compare_subspaces (arg1, arg2)
2512 const PTR arg1;
2513 const PTR arg2;
2514
2515 {
2516 asection **subspace1 = (asection **) arg1;
2517 asection **subspace2 = (asection **) arg2;
2518 unsigned int count1, count2;
2519
2520 if ((*subspace1)->target_index < (*subspace2)->target_index)
2521 return -1;
2522 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2523 return 1;
2524 else
2525 return 0;
2526 }
2527
2528 /* Perform various work in preparation for emitting the fixup stream. */
2529
2530 static void
2531 som_prep_for_fixups (abfd, syms, num_syms)
2532 bfd *abfd;
2533 asymbol **syms;
2534 unsigned long num_syms;
2535 {
2536 int i;
2537 asection *section;
2538 asymbol **sorted_syms;
2539
2540 /* Most SOM relocations involving a symbol have a length which is
2541 dependent on the index of the symbol. So symbols which are
2542 used often in relocations should have a small index. */
2543
2544 /* First initialize the counters for each symbol. */
2545 for (i = 0; i < num_syms; i++)
2546 {
2547 /* Handle a section symbol; these have no pointers back to the
2548 SOM symbol info. So we just use the udata field to hold the
2549 relocation count. */
2550 if (som_symbol_data (syms[i]) == NULL
2551 || syms[i]->flags & BSF_SECTION_SYM)
2552 {
2553 syms[i]->flags |= BSF_SECTION_SYM;
2554 syms[i]->udata.i = 0;
2555 }
2556 else
2557 som_symbol_data (syms[i])->reloc_count = 0;
2558 }
2559
2560 /* Now that the counters are initialized, make a weighted count
2561 of how often a given symbol is used in a relocation. */
2562 for (section = abfd->sections; section != NULL; section = section->next)
2563 {
2564 int i;
2565
2566 /* Does this section have any relocations? */
2567 if (section->reloc_count <= 0)
2568 continue;
2569
2570 /* Walk through each relocation for this section. */
2571 for (i = 1; i < section->reloc_count; i++)
2572 {
2573 arelent *reloc = section->orelocation[i];
2574 int scale;
2575
2576 /* A relocation against a symbol in the *ABS* section really
2577 does not have a symbol. Likewise if the symbol isn't associated
2578 with any section. */
2579 if (reloc->sym_ptr_ptr == NULL
2580 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2581 continue;
2582
2583 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2584 and R_CODE_ONE_SYMBOL relocations to come first. These
2585 two relocations have single byte versions if the symbol
2586 index is very small. */
2587 if (reloc->howto->type == R_DP_RELATIVE
2588 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2589 scale = 2;
2590 else
2591 scale = 1;
2592
2593 /* Handle section symbols by storing the count in the udata
2594 field. It will not be used and the count is very important
2595 for these symbols. */
2596 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2597 {
2598 (*reloc->sym_ptr_ptr)->udata.i =
2599 (*reloc->sym_ptr_ptr)->udata.i + scale;
2600 continue;
2601 }
2602
2603 /* A normal symbol. Increment the count. */
2604 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2605 }
2606 }
2607
2608 /* Sort a copy of the symbol table, rather than the canonical
2609 output symbol table. */
2610 sorted_syms = (asymbol **) bfd_zalloc (abfd, num_syms * sizeof (asymbol *));
2611 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2612 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2613 obj_som_sorted_syms (abfd) = sorted_syms;
2614
2615 /* Compute the symbol indexes, they will be needed by the relocation
2616 code. */
2617 for (i = 0; i < num_syms; i++)
2618 {
2619 /* A section symbol. Again, there is no pointer to backend symbol
2620 information, so we reuse the udata field again. */
2621 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2622 sorted_syms[i]->udata.i = i;
2623 else
2624 som_symbol_data (sorted_syms[i])->index = i;
2625 }
2626 }
2627
2628 static boolean
2629 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2630 bfd *abfd;
2631 unsigned long current_offset;
2632 unsigned int *total_reloc_sizep;
2633 {
2634 unsigned int i, j;
2635 /* Chunk of memory that we can use as buffer space, then throw
2636 away. */
2637 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2638 unsigned char *p;
2639 unsigned int total_reloc_size = 0;
2640 unsigned int subspace_reloc_size = 0;
2641 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2642 asection *section = abfd->sections;
2643
2644 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2645 p = tmp_space;
2646
2647 /* All the fixups for a particular subspace are emitted in a single
2648 stream. All the subspaces for a particular space are emitted
2649 as a single stream.
2650
2651 So, to get all the locations correct one must iterate through all the
2652 spaces, for each space iterate through its subspaces and output a
2653 fixups stream. */
2654 for (i = 0; i < num_spaces; i++)
2655 {
2656 asection *subsection;
2657
2658 /* Find a space. */
2659 while (!som_is_space (section))
2660 section = section->next;
2661
2662 /* Now iterate through each of its subspaces. */
2663 for (subsection = abfd->sections;
2664 subsection != NULL;
2665 subsection = subsection->next)
2666 {
2667 int reloc_offset, current_rounding_mode;
2668
2669 /* Find a subspace of this space. */
2670 if (!som_is_subspace (subsection)
2671 || !som_is_container (section, subsection))
2672 continue;
2673
2674 /* If this subspace does not have real data, then we are
2675 finised with it. */
2676 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2677 {
2678 som_section_data (subsection)->subspace_dict->fixup_request_index
2679 = -1;
2680 continue;
2681 }
2682
2683 /* This subspace has some relocations. Put the relocation stream
2684 index into the subspace record. */
2685 som_section_data (subsection)->subspace_dict->fixup_request_index
2686 = total_reloc_size;
2687
2688 /* To make life easier start over with a clean slate for
2689 each subspace. Seek to the start of the relocation stream
2690 for this subspace in preparation for writing out its fixup
2691 stream. */
2692 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2693 return false;
2694
2695 /* Buffer space has already been allocated. Just perform some
2696 initialization here. */
2697 p = tmp_space;
2698 subspace_reloc_size = 0;
2699 reloc_offset = 0;
2700 som_initialize_reloc_queue (reloc_queue);
2701 current_rounding_mode = R_N_MODE;
2702
2703 /* Translate each BFD relocation into one or more SOM
2704 relocations. */
2705 for (j = 0; j < subsection->reloc_count; j++)
2706 {
2707 arelent *bfd_reloc = subsection->orelocation[j];
2708 unsigned int skip;
2709 int sym_num;
2710
2711 /* Get the symbol number. Remember it's stored in a
2712 special place for section symbols. */
2713 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2714 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2715 else
2716 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2717
2718 /* If there is not enough room for the next couple relocations,
2719 then dump the current buffer contents now. Also reinitialize
2720 the relocation queue.
2721
2722 No single BFD relocation could ever translate into more
2723 than 100 bytes of SOM relocations (20bytes is probably the
2724 upper limit, but leave lots of space for growth). */
2725 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2726 {
2727 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2728 != p - tmp_space)
2729 return false;
2730
2731 p = tmp_space;
2732 som_initialize_reloc_queue (reloc_queue);
2733 }
2734
2735 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2736 skipped. */
2737 skip = bfd_reloc->address - reloc_offset;
2738 p = som_reloc_skip (abfd, skip, p,
2739 &subspace_reloc_size, reloc_queue);
2740
2741 /* Update reloc_offset for the next iteration.
2742
2743 Many relocations do not consume input bytes. They
2744 are markers, or set state necessary to perform some
2745 later relocation. */
2746 switch (bfd_reloc->howto->type)
2747 {
2748 case R_ENTRY:
2749 case R_ALT_ENTRY:
2750 case R_EXIT:
2751 case R_N_MODE:
2752 case R_S_MODE:
2753 case R_D_MODE:
2754 case R_R_MODE:
2755 case R_FSEL:
2756 case R_LSEL:
2757 case R_RSEL:
2758 case R_COMP1:
2759 case R_COMP2:
2760 case R_BEGIN_BRTAB:
2761 case R_END_BRTAB:
2762 case R_BEGIN_TRY:
2763 case R_END_TRY:
2764 case R_N0SEL:
2765 case R_N1SEL:
2766 reloc_offset = bfd_reloc->address;
2767 break;
2768
2769 default:
2770 reloc_offset = bfd_reloc->address + 4;
2771 break;
2772 }
2773
2774 /* Now the actual relocation we care about. */
2775 switch (bfd_reloc->howto->type)
2776 {
2777 case R_PCREL_CALL:
2778 case R_ABS_CALL:
2779 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2780 bfd_reloc, sym_num, reloc_queue);
2781 break;
2782
2783 case R_CODE_ONE_SYMBOL:
2784 case R_DP_RELATIVE:
2785 /* Account for any addend. */
2786 if (bfd_reloc->addend)
2787 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2788 &subspace_reloc_size, reloc_queue);
2789
2790 if (sym_num < 0x20)
2791 {
2792 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2793 subspace_reloc_size += 1;
2794 p += 1;
2795 }
2796 else if (sym_num < 0x100)
2797 {
2798 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2799 bfd_put_8 (abfd, sym_num, p + 1);
2800 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2801 2, reloc_queue);
2802 }
2803 else if (sym_num < 0x10000000)
2804 {
2805 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2806 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2807 bfd_put_16 (abfd, sym_num, p + 2);
2808 p = try_prev_fixup (abfd, &subspace_reloc_size,
2809 p, 4, reloc_queue);
2810 }
2811 else
2812 abort ();
2813 break;
2814
2815 case R_DATA_ONE_SYMBOL:
2816 case R_DATA_PLABEL:
2817 case R_CODE_PLABEL:
2818 case R_DLT_REL:
2819 /* Account for any addend using R_DATA_OVERRIDE. */
2820 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2821 && bfd_reloc->addend)
2822 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2823 &subspace_reloc_size, reloc_queue);
2824
2825 if (sym_num < 0x100)
2826 {
2827 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2828 bfd_put_8 (abfd, sym_num, p + 1);
2829 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2830 2, reloc_queue);
2831 }
2832 else if (sym_num < 0x10000000)
2833 {
2834 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2835 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2836 bfd_put_16 (abfd, sym_num, p + 2);
2837 p = try_prev_fixup (abfd, &subspace_reloc_size,
2838 p, 4, reloc_queue);
2839 }
2840 else
2841 abort ();
2842 break;
2843
2844 case R_ENTRY:
2845 {
2846 int tmp;
2847 arelent *tmp_reloc = NULL;
2848 bfd_put_8 (abfd, R_ENTRY, p);
2849
2850 /* R_ENTRY relocations have 64 bits of associated
2851 data. Unfortunately the addend field of a bfd
2852 relocation is only 32 bits. So, we split up
2853 the 64bit unwind information and store part in
2854 the R_ENTRY relocation, and the rest in the R_EXIT
2855 relocation. */
2856 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2857
2858 /* Find the next R_EXIT relocation. */
2859 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2860 {
2861 tmp_reloc = subsection->orelocation[tmp];
2862 if (tmp_reloc->howto->type == R_EXIT)
2863 break;
2864 }
2865
2866 if (tmp == subsection->reloc_count)
2867 abort ();
2868
2869 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2870 p = try_prev_fixup (abfd, &subspace_reloc_size,
2871 p, 9, reloc_queue);
2872 break;
2873 }
2874
2875 case R_N_MODE:
2876 case R_S_MODE:
2877 case R_D_MODE:
2878 case R_R_MODE:
2879 /* If this relocation requests the current rounding
2880 mode, then it is redundant. */
2881 if (bfd_reloc->howto->type != current_rounding_mode)
2882 {
2883 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2884 subspace_reloc_size += 1;
2885 p += 1;
2886 current_rounding_mode = bfd_reloc->howto->type;
2887 }
2888 break;
2889
2890 case R_EXIT:
2891 case R_ALT_ENTRY:
2892 case R_FSEL:
2893 case R_LSEL:
2894 case R_RSEL:
2895 case R_BEGIN_BRTAB:
2896 case R_END_BRTAB:
2897 case R_BEGIN_TRY:
2898 case R_N0SEL:
2899 case R_N1SEL:
2900 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2901 subspace_reloc_size += 1;
2902 p += 1;
2903 break;
2904
2905 case R_END_TRY:
2906 /* The end of a exception handling region. The reloc's
2907 addend contains the offset of the exception handling
2908 code. */
2909 if (bfd_reloc->addend == 0)
2910 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2911 else if (bfd_reloc->addend < 1024)
2912 {
2913 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2914 bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
2915 p = try_prev_fixup (abfd, &subspace_reloc_size,
2916 p, 2, reloc_queue);
2917 }
2918 else
2919 {
2920 bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
2921 bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
2922 bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
2923 p = try_prev_fixup (abfd, &subspace_reloc_size,
2924 p, 4, reloc_queue);
2925 }
2926 break;
2927
2928 case R_COMP1:
2929 /* The only time we generate R_COMP1, R_COMP2 and
2930 R_CODE_EXPR relocs is for the difference of two
2931 symbols. Hence we can cheat here. */
2932 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2933 bfd_put_8 (abfd, 0x44, p + 1);
2934 p = try_prev_fixup (abfd, &subspace_reloc_size,
2935 p, 2, reloc_queue);
2936 break;
2937
2938 case R_COMP2:
2939 /* The only time we generate R_COMP1, R_COMP2 and
2940 R_CODE_EXPR relocs is for the difference of two
2941 symbols. Hence we can cheat here. */
2942 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2943 bfd_put_8 (abfd, 0x80, p + 1);
2944 bfd_put_8 (abfd, sym_num >> 16, p + 2);
2945 bfd_put_16 (abfd, sym_num, p + 3);
2946 p = try_prev_fixup (abfd, &subspace_reloc_size,
2947 p, 5, reloc_queue);
2948 break;
2949
2950 case R_CODE_EXPR:
2951 case R_DATA_EXPR:
2952 /* The only time we generate R_COMP1, R_COMP2 and
2953 R_CODE_EXPR relocs is for the difference of two
2954 symbols. Hence we can cheat here. */
2955 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2956 subspace_reloc_size += 1;
2957 p += 1;
2958 break;
2959
2960 /* Put a "R_RESERVED" relocation in the stream if
2961 we hit something we do not understand. The linker
2962 will complain loudly if this ever happens. */
2963 default:
2964 bfd_put_8 (abfd, 0xff, p);
2965 subspace_reloc_size += 1;
2966 p += 1;
2967 break;
2968 }
2969 }
2970
2971 /* Last BFD relocation for a subspace has been processed.
2972 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2973 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2974 - reloc_offset,
2975 p, &subspace_reloc_size, reloc_queue);
2976
2977 /* Scribble out the relocations. */
2978 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2979 != p - tmp_space)
2980 return false;
2981 p = tmp_space;
2982
2983 total_reloc_size += subspace_reloc_size;
2984 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2985 = subspace_reloc_size;
2986 }
2987 section = section->next;
2988 }
2989 *total_reloc_sizep = total_reloc_size;
2990 return true;
2991 }
2992
2993 /* Write out the space/subspace string table. */
2994
2995 static boolean
2996 som_write_space_strings (abfd, current_offset, string_sizep)
2997 bfd *abfd;
2998 unsigned long current_offset;
2999 unsigned int *string_sizep;
3000 {
3001 /* Chunk of memory that we can use as buffer space, then throw
3002 away. */
3003 unsigned char tmp_space[SOM_TMP_BUFSIZE];
3004 unsigned char *p;
3005 unsigned int strings_size = 0;
3006 asection *section;
3007
3008 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
3009 p = tmp_space;
3010
3011 /* Seek to the start of the space strings in preparation for writing
3012 them out. */
3013 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3014 return false;
3015
3016 /* Walk through all the spaces and subspaces (order is not important)
3017 building up and writing string table entries for their names. */
3018 for (section = abfd->sections; section != NULL; section = section->next)
3019 {
3020 int length;
3021
3022 /* Only work with space/subspaces; avoid any other sections
3023 which might have been made (.text for example). */
3024 if (!som_is_space (section) && !som_is_subspace (section))
3025 continue;
3026
3027 /* Get the length of the space/subspace name. */
3028 length = strlen (section->name);
3029
3030 /* If there is not enough room for the next entry, then dump the
3031 current buffer contents now. Each entry will take 4 bytes to
3032 hold the string length + the string itself + null terminator. */
3033 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
3034 {
3035 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
3036 != p - tmp_space)
3037 return false;
3038 /* Reset to beginning of the buffer space. */
3039 p = tmp_space;
3040 }
3041
3042 /* First element in a string table entry is the length of the
3043 string. Alignment issues are already handled. */
3044 bfd_put_32 (abfd, length, p);
3045 p += 4;
3046 strings_size += 4;
3047
3048 /* Record the index in the space/subspace records. */
3049 if (som_is_space (section))
3050 som_section_data (section)->space_dict->name.n_strx = strings_size;
3051 else
3052 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
3053
3054 /* Next comes the string itself + a null terminator. */
3055 strcpy (p, section->name);
3056 p += length + 1;
3057 strings_size += length + 1;
3058
3059 /* Always align up to the next word boundary. */
3060 while (strings_size % 4)
3061 {
3062 bfd_put_8 (abfd, 0, p);
3063 p++;
3064 strings_size++;
3065 }
3066 }
3067
3068 /* Done with the space/subspace strings. Write out any information
3069 contained in a partial block. */
3070 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
3071 return false;
3072 *string_sizep = strings_size;
3073 return true;
3074 }
3075
3076 /* Write out the symbol string table. */
3077
3078 static boolean
3079 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep,
3080 compilation_unit)
3081 bfd *abfd;
3082 unsigned long current_offset;
3083 asymbol **syms;
3084 unsigned int num_syms;
3085 unsigned int *string_sizep;
3086 COMPUNIT *compilation_unit;
3087 {
3088 unsigned int i;
3089
3090 /* Chunk of memory that we can use as buffer space, then throw
3091 away. */
3092 unsigned char tmp_space[SOM_TMP_BUFSIZE];
3093 unsigned char *p;
3094 unsigned int strings_size = 0;
3095 unsigned char *comp[4];
3096
3097 /* This gets a bit gruesome because of the compilation unit. The
3098 strings within the compilation unit are part of the symbol
3099 strings, but don't have symbol_dictionary entries. So, manually
3100 write them and update the compliation unit header. On input, the
3101 compilation unit header contains local copies of the strings.
3102 Move them aside. */
3103 if (compilation_unit)
3104 {
3105 comp[0] = compilation_unit->name.n_name;
3106 comp[1] = compilation_unit->language_name.n_name;
3107 comp[2] = compilation_unit->product_id.n_name;
3108 comp[3] = compilation_unit->version_id.n_name;
3109 }
3110
3111 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
3112 p = tmp_space;
3113
3114 /* Seek to the start of the space strings in preparation for writing
3115 them out. */
3116 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3117 return false;
3118
3119 if (compilation_unit)
3120 {
3121 for (i = 0; i < 4; i++)
3122 {
3123 int length = strlen (comp[i]);
3124
3125 /* If there is not enough room for the next entry, then dump
3126 the current buffer contents now. */
3127 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
3128 {
3129 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
3130 != p - tmp_space)
3131 return false;
3132 /* Reset to beginning of the buffer space. */
3133 p = tmp_space;
3134 }
3135
3136 /* First element in a string table entry is the length of
3137 the string. This must always be 4 byte aligned. This is
3138 also an appropriate time to fill in the string index
3139 field in the symbol table entry. */
3140 bfd_put_32 (abfd, length, p);
3141 strings_size += 4;
3142 p += 4;
3143
3144 /* Next comes the string itself + a null terminator. */
3145 strcpy (p, comp[i]);
3146
3147 switch (i)
3148 {
3149 case 0:
3150 obj_som_compilation_unit (abfd)->name.n_strx = strings_size;
3151 break;
3152 case 1:
3153 obj_som_compilation_unit (abfd)->language_name.n_strx =
3154 strings_size;
3155 break;
3156 case 2:
3157 obj_som_compilation_unit (abfd)->product_id.n_strx =
3158 strings_size;
3159 break;
3160 case 3:
3161 obj_som_compilation_unit (abfd)->version_id.n_strx =
3162 strings_size;
3163 break;
3164 }
3165
3166 p += length + 1;
3167 strings_size += length + 1;
3168
3169 /* Always align up to the next word boundary. */
3170 while (strings_size % 4)
3171 {
3172 bfd_put_8 (abfd, 0, p);
3173 strings_size++;
3174 p++;
3175 }
3176 }
3177 }
3178
3179 for (i = 0; i < num_syms; i++)
3180 {
3181 int length = strlen (syms[i]->name);
3182
3183 /* If there is not enough room for the next entry, then dump the
3184 current buffer contents now. */
3185 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
3186 {
3187 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
3188 != p - tmp_space)
3189 return false;
3190 /* Reset to beginning of the buffer space. */
3191 p = tmp_space;
3192 }
3193
3194 /* First element in a string table entry is the length of the
3195 string. This must always be 4 byte aligned. This is also
3196 an appropriate time to fill in the string index field in the
3197 symbol table entry. */
3198 bfd_put_32 (abfd, length, p);
3199 strings_size += 4;
3200 p += 4;
3201
3202 /* Next comes the string itself + a null terminator. */
3203 strcpy (p, syms[i]->name);
3204
3205 som_symbol_data(syms[i])->stringtab_offset = strings_size;
3206 p += length + 1;
3207 strings_size += length + 1;
3208
3209 /* Always align up to the next word boundary. */
3210 while (strings_size % 4)
3211 {
3212 bfd_put_8 (abfd, 0, p);
3213 strings_size++;
3214 p++;
3215 }
3216 }
3217
3218 /* Scribble out any partial block. */
3219 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
3220 return false;
3221
3222 *string_sizep = strings_size;
3223 return true;
3224 }
3225
3226 /* Compute variable information to be placed in the SOM headers,
3227 space/subspace dictionaries, relocation streams, etc. Begin
3228 writing parts of the object file. */
3229
3230 static boolean
3231 som_begin_writing (abfd)
3232 bfd *abfd;
3233 {
3234 unsigned long current_offset = 0;
3235 int strings_size = 0;
3236 unsigned int total_reloc_size = 0;
3237 unsigned long num_spaces, num_subspaces, i;
3238 asection *section;
3239 unsigned int total_subspaces = 0;
3240 struct som_exec_auxhdr *exec_header = NULL;
3241
3242 /* The file header will always be first in an object file,
3243 everything else can be in random locations. To keep things
3244 "simple" BFD will lay out the object file in the manner suggested
3245 by the PRO ABI for PA-RISC Systems. */
3246
3247 /* Before any output can really begin offsets for all the major
3248 portions of the object file must be computed. So, starting
3249 with the initial file header compute (and sometimes write)
3250 each portion of the object file. */
3251
3252 /* Make room for the file header, it's contents are not complete
3253 yet, so it can not be written at this time. */
3254 current_offset += sizeof (struct header);
3255
3256 /* Any auxiliary headers will follow the file header. Right now
3257 we support only the copyright and version headers. */
3258 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3259 obj_som_file_hdr (abfd)->aux_header_size = 0;
3260 if (abfd->flags & (EXEC_P | DYNAMIC))
3261 {
3262 /* Parts of the exec header will be filled in later, so
3263 delay writing the header itself. Fill in the defaults,
3264 and write it later. */
3265 current_offset += sizeof (struct som_exec_auxhdr);
3266 obj_som_file_hdr (abfd)->aux_header_size
3267 += sizeof (struct som_exec_auxhdr);
3268 exec_header = obj_som_exec_hdr (abfd);
3269 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3270 exec_header->som_auxhdr.length = 40;
3271 }
3272 if (obj_som_version_hdr (abfd) != NULL)
3273 {
3274 unsigned int len;
3275
3276 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3277 return false;
3278
3279 /* Write the aux_id structure and the string length. */
3280 len = sizeof (struct aux_id) + sizeof (unsigned int);
3281 obj_som_file_hdr (abfd)->aux_header_size += len;
3282 current_offset += len;
3283 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
3284 return false;
3285
3286 /* Write the version string. */
3287 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3288 obj_som_file_hdr (abfd)->aux_header_size += len;
3289 current_offset += len;
3290 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
3291 len, 1, abfd) != len)
3292 return false;
3293 }
3294
3295 if (obj_som_copyright_hdr (abfd) != NULL)
3296 {
3297 unsigned int len;
3298
3299 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3300 return false;
3301
3302 /* Write the aux_id structure and the string length. */
3303 len = sizeof (struct aux_id) + sizeof (unsigned int);
3304 obj_som_file_hdr (abfd)->aux_header_size += len;
3305 current_offset += len;
3306 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
3307 return false;
3308
3309 /* Write the copyright string. */
3310 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3311 obj_som_file_hdr (abfd)->aux_header_size += len;
3312 current_offset += len;
3313 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
3314 len, 1, abfd) != len)
3315 return false;
3316 }
3317
3318 /* Next comes the initialization pointers; we have no initialization
3319 pointers, so current offset does not change. */
3320 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3321 obj_som_file_hdr (abfd)->init_array_total = 0;
3322
3323 /* Next are the space records. These are fixed length records.
3324
3325 Count the number of spaces to determine how much room is needed
3326 in the object file for the space records.
3327
3328 The names of the spaces are stored in a separate string table,
3329 and the index for each space into the string table is computed
3330 below. Therefore, it is not possible to write the space headers
3331 at this time. */
3332 num_spaces = som_count_spaces (abfd);
3333 obj_som_file_hdr (abfd)->space_location = current_offset;
3334 obj_som_file_hdr (abfd)->space_total = num_spaces;
3335 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3336
3337 /* Next are the subspace records. These are fixed length records.
3338
3339 Count the number of subspaes to determine how much room is needed
3340 in the object file for the subspace records.
3341
3342 A variety if fields in the subspace record are still unknown at
3343 this time (index into string table, fixup stream location/size, etc). */
3344 num_subspaces = som_count_subspaces (abfd);
3345 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3346 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3347 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
3348
3349 /* Next is the string table for the space/subspace names. We will
3350 build and write the string table on the fly. At the same time
3351 we will fill in the space/subspace name index fields. */
3352
3353 /* The string table needs to be aligned on a word boundary. */
3354 if (current_offset % 4)
3355 current_offset += (4 - (current_offset % 4));
3356
3357 /* Mark the offset of the space/subspace string table in the
3358 file header. */
3359 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3360
3361 /* Scribble out the space strings. */
3362 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
3363 return false;
3364
3365 /* Record total string table size in the header and update the
3366 current offset. */
3367 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3368 current_offset += strings_size;
3369
3370 /* Next is the compilation unit. */
3371 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3372 obj_som_file_hdr (abfd)->compiler_total = 0;
3373 if (obj_som_compilation_unit (abfd))
3374 {
3375 obj_som_file_hdr (abfd)->compiler_total = 1;
3376 current_offset += COMPUNITSZ;
3377 }
3378
3379 /* Now compute the file positions for the loadable subspaces, taking
3380 care to make sure everything stays properly aligned. */
3381
3382 section = abfd->sections;
3383 for (i = 0; i < num_spaces; i++)
3384 {
3385 asection *subsection;
3386 int first_subspace;
3387 unsigned int subspace_offset = 0;
3388
3389 /* Find a space. */
3390 while (!som_is_space (section))
3391 section = section->next;
3392
3393 first_subspace = 1;
3394 /* Now look for all its subspaces. */
3395 for (subsection = abfd->sections;
3396 subsection != NULL;
3397 subsection = subsection->next)
3398 {
3399
3400 if (!som_is_subspace (subsection)
3401 || !som_is_container (section, subsection)
3402 || (subsection->flags & SEC_ALLOC) == 0)
3403 continue;
3404
3405 /* If this is the first subspace in the space, and we are
3406 building an executable, then take care to make sure all
3407 the alignments are correct and update the exec header. */
3408 if (first_subspace
3409 && (abfd->flags & (EXEC_P | DYNAMIC)))
3410 {
3411 /* Demand paged executables have each space aligned to a
3412 page boundary. Sharable executables (write-protected
3413 text) have just the private (aka data & bss) space aligned
3414 to a page boundary. Ugh. Not true for HPUX.
3415
3416 The HPUX kernel requires the text to always be page aligned
3417 within the file regardless of the executable's type. */
3418 if (abfd->flags & (D_PAGED | DYNAMIC)
3419 || (subsection->flags & SEC_CODE)
3420 || ((abfd->flags & WP_TEXT)
3421 && (subsection->flags & SEC_DATA)))
3422 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3423
3424 /* Update the exec header. */
3425 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3426 {
3427 exec_header->exec_tmem = section->vma;
3428 exec_header->exec_tfile = current_offset;
3429 }
3430 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3431 {
3432 exec_header->exec_dmem = section->vma;
3433 exec_header->exec_dfile = current_offset;
3434 }
3435
3436 /* Keep track of exactly where we are within a particular
3437 space. This is necessary as the braindamaged HPUX
3438 loader will create holes between subspaces *and*
3439 subspace alignments are *NOT* preserved. What a crock. */
3440 subspace_offset = subsection->vma;
3441
3442 /* Only do this for the first subspace within each space. */
3443 first_subspace = 0;
3444 }
3445 else if (abfd->flags & (EXEC_P | DYNAMIC))
3446 {
3447 /* The braindamaged HPUX loader may have created a hole
3448 between two subspaces. It is *not* sufficient to use
3449 the alignment specifications within the subspaces to
3450 account for these holes -- I've run into at least one
3451 case where the loader left one code subspace unaligned
3452 in a final executable.
3453
3454 To combat this we keep a current offset within each space,
3455 and use the subspace vma fields to detect and preserve
3456 holes. What a crock!
3457
3458 ps. This is not necessary for unloadable space/subspaces. */
3459 current_offset += subsection->vma - subspace_offset;
3460 if (subsection->flags & SEC_CODE)
3461 exec_header->exec_tsize += subsection->vma - subspace_offset;
3462 else
3463 exec_header->exec_dsize += subsection->vma - subspace_offset;
3464 subspace_offset += subsection->vma - subspace_offset;
3465 }
3466
3467
3468 subsection->target_index = total_subspaces++;
3469 /* This is real data to be loaded from the file. */
3470 if (subsection->flags & SEC_LOAD)
3471 {
3472 /* Update the size of the code & data. */
3473 if (abfd->flags & (EXEC_P | DYNAMIC)
3474 && subsection->flags & SEC_CODE)
3475 exec_header->exec_tsize += subsection->_cooked_size;
3476 else if (abfd->flags & (EXEC_P | DYNAMIC)
3477 && subsection->flags & SEC_DATA)
3478 exec_header->exec_dsize += subsection->_cooked_size;
3479 som_section_data (subsection)->subspace_dict->file_loc_init_value
3480 = current_offset;
3481 subsection->filepos = current_offset;
3482 current_offset += bfd_section_size (abfd, subsection);
3483 subspace_offset += bfd_section_size (abfd, subsection);
3484 }
3485 /* Looks like uninitialized data. */
3486 else
3487 {
3488 /* Update the size of the bss section. */
3489 if (abfd->flags & (EXEC_P | DYNAMIC))
3490 exec_header->exec_bsize += subsection->_cooked_size;
3491
3492 som_section_data (subsection)->subspace_dict->file_loc_init_value
3493 = 0;
3494 som_section_data (subsection)->subspace_dict->
3495 initialization_length = 0;
3496 }
3497 }
3498 /* Goto the next section. */
3499 section = section->next;
3500 }
3501
3502 /* Finally compute the file positions for unloadable subspaces.
3503 If building an executable, start the unloadable stuff on its
3504 own page. */
3505
3506 if (abfd->flags & (EXEC_P | DYNAMIC))
3507 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3508
3509 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3510 section = abfd->sections;
3511 for (i = 0; i < num_spaces; i++)
3512 {
3513 asection *subsection;
3514
3515 /* Find a space. */
3516 while (!som_is_space (section))
3517 section = section->next;
3518
3519 if (abfd->flags & (EXEC_P | DYNAMIC))
3520 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3521
3522 /* Now look for all its subspaces. */
3523 for (subsection = abfd->sections;
3524 subsection != NULL;
3525 subsection = subsection->next)
3526 {
3527
3528 if (!som_is_subspace (subsection)
3529 || !som_is_container (section, subsection)
3530 || (subsection->flags & SEC_ALLOC) != 0)
3531 continue;
3532
3533 subsection->target_index = total_subspaces++;
3534 /* This is real data to be loaded from the file. */
3535 if ((subsection->flags & SEC_LOAD) == 0)
3536 {
3537 som_section_data (subsection)->subspace_dict->file_loc_init_value
3538 = current_offset;
3539 subsection->filepos = current_offset;
3540 current_offset += bfd_section_size (abfd, subsection);
3541 }
3542 /* Looks like uninitialized data. */
3543 else
3544 {
3545 som_section_data (subsection)->subspace_dict->file_loc_init_value
3546 = 0;
3547 som_section_data (subsection)->subspace_dict->
3548 initialization_length = bfd_section_size (abfd, subsection);
3549 }
3550 }
3551 /* Goto the next section. */
3552 section = section->next;
3553 }
3554
3555 /* If building an executable, then make sure to seek to and write
3556 one byte at the end of the file to make sure any necessary
3557 zeros are filled in. Ugh. */
3558 if (abfd->flags & (EXEC_P | DYNAMIC))
3559 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3560 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3561 return false;
3562 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3563 return false;
3564
3565 obj_som_file_hdr (abfd)->unloadable_sp_size
3566 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3567
3568 /* Loader fixups are not supported in any way shape or form. */
3569 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3570 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3571
3572 /* Done. Store the total size of the SOM so far. */
3573 obj_som_file_hdr (abfd)->som_length = current_offset;
3574
3575 return true;
3576 }
3577
3578 /* Finally, scribble out the various headers to the disk. */
3579
3580 static boolean
3581 som_finish_writing (abfd)
3582 bfd *abfd;
3583 {
3584 int num_spaces = som_count_spaces (abfd);
3585 asymbol **syms = bfd_get_outsymbols (abfd);
3586 int i, num_syms, strings_size;
3587 int subspace_index = 0;
3588 file_ptr location;
3589 asection *section;
3590 unsigned long current_offset;
3591 unsigned int total_reloc_size;
3592
3593 /* Next is the symbol table. These are fixed length records.
3594
3595 Count the number of symbols to determine how much room is needed
3596 in the object file for the symbol table.
3597
3598 The names of the symbols are stored in a separate string table,
3599 and the index for each symbol name into the string table is computed
3600 below. Therefore, it is not possible to write the symbol table
3601 at this time.
3602
3603 These used to be output before the subspace contents, but they
3604 were moved here to work around a stupid bug in the hpux linker
3605 (fixed in hpux10). */
3606 current_offset = obj_som_file_hdr (abfd)->som_length;
3607
3608 /* Make sure we're on a word boundary. */
3609 if (current_offset % 4)
3610 current_offset += (4 - (current_offset % 4));
3611
3612 num_syms = bfd_get_symcount (abfd);
3613 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3614 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3615 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3616
3617 /* Next are the symbol strings.
3618 Align them to a word boundary. */
3619 if (current_offset % 4)
3620 current_offset += (4 - (current_offset % 4));
3621 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3622
3623 /* Scribble out the symbol strings. */
3624 if (som_write_symbol_strings (abfd, current_offset, syms,
3625 num_syms, &strings_size,
3626 obj_som_compilation_unit (abfd))
3627 == false)
3628 return false;
3629
3630 /* Record total string table size in header and update the
3631 current offset. */
3632 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3633 current_offset += strings_size;
3634
3635 /* Do prep work before handling fixups. */
3636 som_prep_for_fixups (abfd,
3637 bfd_get_outsymbols (abfd),
3638 bfd_get_symcount (abfd));
3639
3640 /* At the end of the file is the fixup stream which starts on a
3641 word boundary. */
3642 if (current_offset % 4)
3643 current_offset += (4 - (current_offset % 4));
3644 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3645
3646 /* Write the fixups and update fields in subspace headers which
3647 relate to the fixup stream. */
3648 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
3649 return false;
3650
3651 /* Record the total size of the fixup stream in the file header. */
3652 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3653
3654 /* Done. Store the total size of the SOM. */
3655 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
3656
3657 /* Now that the symbol table information is complete, build and
3658 write the symbol table. */
3659 if (som_build_and_write_symbol_table (abfd) == false)
3660 return false;
3661
3662 /* Subspaces are written first so that we can set up information
3663 about them in their containing spaces as the subspace is written. */
3664
3665 /* Seek to the start of the subspace dictionary records. */
3666 location = obj_som_file_hdr (abfd)->subspace_location;
3667 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3668 return false;
3669
3670 section = abfd->sections;
3671 /* Now for each loadable space write out records for its subspaces. */
3672 for (i = 0; i < num_spaces; i++)
3673 {
3674 asection *subsection;
3675
3676 /* Find a space. */
3677 while (!som_is_space (section))
3678 section = section->next;
3679
3680 /* Now look for all its subspaces. */
3681 for (subsection = abfd->sections;
3682 subsection != NULL;
3683 subsection = subsection->next)
3684 {
3685
3686 /* Skip any section which does not correspond to a space
3687 or subspace. Or does not have SEC_ALLOC set (and therefore
3688 has no real bits on the disk). */
3689 if (!som_is_subspace (subsection)
3690 || !som_is_container (section, subsection)
3691 || (subsection->flags & SEC_ALLOC) == 0)
3692 continue;
3693
3694 /* If this is the first subspace for this space, then save
3695 the index of the subspace in its containing space. Also
3696 set "is_loadable" in the containing space. */
3697
3698 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3699 {
3700 som_section_data (section)->space_dict->is_loadable = 1;
3701 som_section_data (section)->space_dict->subspace_index
3702 = subspace_index;
3703 }
3704
3705 /* Increment the number of subspaces seen and the number of
3706 subspaces contained within the current space. */
3707 subspace_index++;
3708 som_section_data (section)->space_dict->subspace_quantity++;
3709
3710 /* Mark the index of the current space within the subspace's
3711 dictionary record. */
3712 som_section_data (subsection)->subspace_dict->space_index = i;
3713
3714 /* Dump the current subspace header. */
3715 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3716 sizeof (struct subspace_dictionary_record), 1, abfd)
3717 != sizeof (struct subspace_dictionary_record))
3718 return false;
3719 }
3720 /* Goto the next section. */
3721 section = section->next;
3722 }
3723
3724 /* Now repeat the process for unloadable subspaces. */
3725 section = abfd->sections;
3726 /* Now for each space write out records for its subspaces. */
3727 for (i = 0; i < num_spaces; i++)
3728 {
3729 asection *subsection;
3730
3731 /* Find a space. */
3732 while (!som_is_space (section))
3733 section = section->next;
3734
3735 /* Now look for all its subspaces. */
3736 for (subsection = abfd->sections;
3737 subsection != NULL;
3738 subsection = subsection->next)
3739 {
3740
3741 /* Skip any section which does not correspond to a space or
3742 subspace, or which SEC_ALLOC set (and therefore handled
3743 in the loadable spaces/subspaces code above). */
3744
3745 if (!som_is_subspace (subsection)
3746 || !som_is_container (section, subsection)
3747 || (subsection->flags & SEC_ALLOC) != 0)
3748 continue;
3749
3750 /* If this is the first subspace for this space, then save
3751 the index of the subspace in its containing space. Clear
3752 "is_loadable". */
3753
3754 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3755 {
3756 som_section_data (section)->space_dict->is_loadable = 0;
3757 som_section_data (section)->space_dict->subspace_index
3758 = subspace_index;
3759 }
3760
3761 /* Increment the number of subspaces seen and the number of
3762 subspaces contained within the current space. */
3763 som_section_data (section)->space_dict->subspace_quantity++;
3764 subspace_index++;
3765
3766 /* Mark the index of the current space within the subspace's
3767 dictionary record. */
3768 som_section_data (subsection)->subspace_dict->space_index = i;
3769
3770 /* Dump this subspace header. */
3771 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3772 sizeof (struct subspace_dictionary_record), 1, abfd)
3773 != sizeof (struct subspace_dictionary_record))
3774 return false;
3775 }
3776 /* Goto the next section. */
3777 section = section->next;
3778 }
3779
3780 /* All the subspace dictiondary records are written, and all the
3781 fields are set up in the space dictionary records.
3782
3783 Seek to the right location and start writing the space
3784 dictionary records. */
3785 location = obj_som_file_hdr (abfd)->space_location;
3786 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3787 return false;
3788
3789 section = abfd->sections;
3790 for (i = 0; i < num_spaces; i++)
3791 {
3792
3793 /* Find a space. */
3794 while (!som_is_space (section))
3795 section = section->next;
3796
3797 /* Dump its header */
3798 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3799 sizeof (struct space_dictionary_record), 1, abfd)
3800 != sizeof (struct space_dictionary_record))
3801 return false;
3802
3803 /* Goto the next section. */
3804 section = section->next;
3805 }
3806
3807 /* Write the compilation unit record if there is one. */
3808 if (obj_som_compilation_unit (abfd))
3809 {
3810 location = obj_som_file_hdr (abfd)->compiler_location;
3811 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3812 return false;
3813
3814 if (bfd_write ((PTR) obj_som_compilation_unit (abfd),
3815 COMPUNITSZ, 1, abfd) != COMPUNITSZ)
3816 return false;
3817 }
3818
3819 /* Setting of the system_id has to happen very late now that copying of
3820 BFD private data happens *after* section contents are set. */
3821 if (abfd->flags & (EXEC_P | DYNAMIC))
3822 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3823 else if (bfd_get_mach (abfd) == pa20)
3824 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC2_0;
3825 else if (bfd_get_mach (abfd) == pa11)
3826 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_1;
3827 else
3828 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3829
3830 /* Compute the checksum for the file header just before writing
3831 the header to disk. */
3832 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3833
3834 /* Only thing left to do is write out the file header. It is always
3835 at location zero. Seek there and write it. */
3836 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3837 return false;
3838 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3839 sizeof (struct header), 1, abfd)
3840 != sizeof (struct header))
3841 return false;
3842
3843 /* Now write the exec header. */
3844 if (abfd->flags & (EXEC_P | DYNAMIC))
3845 {
3846 long tmp, som_length;
3847 struct som_exec_auxhdr *exec_header;
3848
3849 exec_header = obj_som_exec_hdr (abfd);
3850 exec_header->exec_entry = bfd_get_start_address (abfd);
3851 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3852
3853 /* Oh joys. Ram some of the BSS data into the DATA section
3854 to be compatable with how the hp linker makes objects
3855 (saves memory space). */
3856 tmp = exec_header->exec_dsize;
3857 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3858 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3859 if (exec_header->exec_bsize < 0)
3860 exec_header->exec_bsize = 0;
3861 exec_header->exec_dsize = tmp;
3862
3863 /* Now perform some sanity checks. The idea is to catch bogons now and
3864 inform the user, instead of silently generating a bogus file. */
3865 som_length = obj_som_file_hdr (abfd)->som_length;
3866 if (exec_header->exec_tfile + exec_header->exec_tsize > som_length
3867 || exec_header->exec_dfile + exec_header->exec_dsize > som_length)
3868 {
3869 bfd_set_error (bfd_error_bad_value);
3870 return false;
3871 }
3872
3873 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3874 SEEK_SET) < 0)
3875 return false;
3876
3877 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3878 != AUX_HDR_SIZE)
3879 return false;
3880 }
3881 return true;
3882 }
3883
3884 /* Compute and return the checksum for a SOM file header. */
3885
3886 static unsigned long
3887 som_compute_checksum (abfd)
3888 bfd *abfd;
3889 {
3890 unsigned long checksum, count, i;
3891 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3892
3893 checksum = 0;
3894 count = sizeof (struct header) / sizeof (unsigned long);
3895 for (i = 0; i < count; i++)
3896 checksum ^= *(buffer + i);
3897
3898 return checksum;
3899 }
3900
3901 static void
3902 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3903 bfd *abfd;
3904 asymbol *sym;
3905 struct som_misc_symbol_info *info;
3906 {
3907 /* Initialize. */
3908 memset (info, 0, sizeof (struct som_misc_symbol_info));
3909
3910 /* The HP SOM linker requires detailed type information about
3911 all symbols (including undefined symbols!). Unfortunately,
3912 the type specified in an import/export statement does not
3913 always match what the linker wants. Severe braindamage. */
3914
3915 /* Section symbols will not have a SOM symbol type assigned to
3916 them yet. Assign all section symbols type ST_DATA. */
3917 if (sym->flags & BSF_SECTION_SYM)
3918 info->symbol_type = ST_DATA;
3919 else
3920 {
3921 /* Common symbols must have scope SS_UNSAT and type
3922 ST_STORAGE or the linker will choke. */
3923 if (bfd_is_com_section (sym->section))
3924 {
3925 info->symbol_scope = SS_UNSAT;
3926 info->symbol_type = ST_STORAGE;
3927 }
3928
3929 /* It is possible to have a symbol without an associated
3930 type. This happens if the user imported the symbol
3931 without a type and the symbol was never defined
3932 locally. If BSF_FUNCTION is set for this symbol, then
3933 assign it type ST_CODE (the HP linker requires undefined
3934 external functions to have type ST_CODE rather than ST_ENTRY). */
3935 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3936 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3937 && bfd_is_und_section (sym->section)
3938 && sym->flags & BSF_FUNCTION)
3939 info->symbol_type = ST_CODE;
3940
3941 /* Handle function symbols which were defined in this file.
3942 They should have type ST_ENTRY. Also retrieve the argument
3943 relocation bits from the SOM backend information. */
3944 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3945 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3946 && (sym->flags & BSF_FUNCTION))
3947 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3948 && (sym->flags & BSF_FUNCTION)))
3949 {
3950 info->symbol_type = ST_ENTRY;
3951 info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc;
3952 info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level;
3953 }
3954
3955 /* For unknown symbols set the symbol's type based on the symbol's
3956 section (ST_DATA for DATA sections, ST_CODE for CODE sections). */
3957 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3958 {
3959 if (sym->section->flags & SEC_CODE)
3960 info->symbol_type = ST_CODE;
3961 else
3962 info->symbol_type = ST_DATA;
3963 }
3964
3965 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3966 info->symbol_type = ST_DATA;
3967
3968 /* From now on it's a very simple mapping. */
3969 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3970 info->symbol_type = ST_ABSOLUTE;
3971 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3972 info->symbol_type = ST_CODE;
3973 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3974 info->symbol_type = ST_DATA;
3975 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3976 info->symbol_type = ST_MILLICODE;
3977 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3978 info->symbol_type = ST_PLABEL;
3979 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3980 info->symbol_type = ST_PRI_PROG;
3981 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3982 info->symbol_type = ST_SEC_PROG;
3983 }
3984
3985 /* Now handle the symbol's scope. Exported data which is not
3986 in the common section has scope SS_UNIVERSAL. Note scope
3987 of common symbols was handled earlier! */
3988 if (bfd_is_und_section (sym->section))
3989 info->symbol_scope = SS_UNSAT;
3990 else if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3991 info->symbol_scope = SS_UNIVERSAL;
3992 /* Anything else which is not in the common section has scope
3993 SS_LOCAL. */
3994 else if (! bfd_is_com_section (sym->section))
3995 info->symbol_scope = SS_LOCAL;
3996
3997 /* Now set the symbol_info field. It has no real meaning
3998 for undefined or common symbols, but the HP linker will
3999 choke if it's not set to some "reasonable" value. We
4000 use zero as a reasonable value. */
4001 if (bfd_is_com_section (sym->section)
4002 || bfd_is_und_section (sym->section)
4003 || bfd_is_abs_section (sym->section))
4004 info->symbol_info = 0;
4005 /* For all other symbols, the symbol_info field contains the
4006 subspace index of the space this symbol is contained in. */
4007 else
4008 info->symbol_info = sym->section->target_index;
4009
4010 /* Set the symbol's value. */
4011 info->symbol_value = sym->value + sym->section->vma;
4012 }
4013
4014 /* Build and write, in one big chunk, the entire symbol table for
4015 this BFD. */
4016
4017 static boolean
4018 som_build_and_write_symbol_table (abfd)
4019 bfd *abfd;
4020 {
4021 unsigned int num_syms = bfd_get_symcount (abfd);
4022 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
4023 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
4024 struct symbol_dictionary_record *som_symtab = NULL;
4025 int i, symtab_size;
4026
4027 /* Compute total symbol table size and allocate a chunk of memory
4028 to hold the symbol table as we build it. */
4029 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
4030 som_symtab = (struct symbol_dictionary_record *) bfd_malloc (symtab_size);
4031 if (som_symtab == NULL && symtab_size != 0)
4032 goto error_return;
4033 memset (som_symtab, 0, symtab_size);
4034
4035 /* Walk over each symbol. */
4036 for (i = 0; i < num_syms; i++)
4037 {
4038 struct som_misc_symbol_info info;
4039
4040 /* This is really an index into the symbol strings table.
4041 By the time we get here, the index has already been
4042 computed and stored into the name field in the BFD symbol. */
4043 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
4044
4045 /* Derive SOM information from the BFD symbol. */
4046 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
4047
4048 /* Now use it. */
4049 som_symtab[i].symbol_type = info.symbol_type;
4050 som_symtab[i].symbol_scope = info.symbol_scope;
4051 som_symtab[i].arg_reloc = info.arg_reloc;
4052 som_symtab[i].symbol_info = info.symbol_info;
4053 som_symtab[i].xleast = 3;
4054 som_symtab[i].symbol_value = info.symbol_value | info.priv_level;
4055 }
4056
4057 /* Everything is ready, seek to the right location and
4058 scribble out the symbol table. */
4059 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
4060 return false;
4061
4062 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
4063 goto error_return;
4064
4065 if (som_symtab != NULL)
4066 free (som_symtab);
4067 return true;
4068 error_return:
4069 if (som_symtab != NULL)
4070 free (som_symtab);
4071 return false;
4072 }
4073
4074 /* Write an object in SOM format. */
4075
4076 static boolean
4077 som_write_object_contents (abfd)
4078 bfd *abfd;
4079 {
4080 if (abfd->output_has_begun == false)
4081 {
4082 /* Set up fixed parts of the file, space, and subspace headers.
4083 Notify the world that output has begun. */
4084 som_prep_headers (abfd);
4085 abfd->output_has_begun = true;
4086 /* Start writing the object file. This include all the string
4087 tables, fixup streams, and other portions of the object file. */
4088 som_begin_writing (abfd);
4089 }
4090
4091 return (som_finish_writing (abfd));
4092 }
4093
4094 \f
4095 /* Read and save the string table associated with the given BFD. */
4096
4097 static boolean
4098 som_slurp_string_table (abfd)
4099 bfd *abfd;
4100 {
4101 char *stringtab;
4102
4103 /* Use the saved version if its available. */
4104 if (obj_som_stringtab (abfd) != NULL)
4105 return true;
4106
4107 /* I don't think this can currently happen, and I'm not sure it should
4108 really be an error, but it's better than getting unpredictable results
4109 from the host's malloc when passed a size of zero. */
4110 if (obj_som_stringtab_size (abfd) == 0)
4111 {
4112 bfd_set_error (bfd_error_no_symbols);
4113 return false;
4114 }
4115
4116 /* Allocate and read in the string table. */
4117 stringtab = bfd_malloc (obj_som_stringtab_size (abfd));
4118 if (stringtab == NULL)
4119 return false;
4120 memset (stringtab, 0, obj_som_stringtab_size (abfd));
4121
4122 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
4123 return false;
4124
4125 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
4126 != obj_som_stringtab_size (abfd))
4127 return false;
4128
4129 /* Save our results and return success. */
4130 obj_som_stringtab (abfd) = stringtab;
4131 return true;
4132 }
4133
4134 /* Return the amount of data (in bytes) required to hold the symbol
4135 table for this object. */
4136
4137 static long
4138 som_get_symtab_upper_bound (abfd)
4139 bfd *abfd;
4140 {
4141 if (!som_slurp_symbol_table (abfd))
4142 return -1;
4143
4144 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
4145 }
4146
4147 /* Convert from a SOM subspace index to a BFD section. */
4148
4149 static asection *
4150 bfd_section_from_som_symbol (abfd, symbol)
4151 bfd *abfd;
4152 struct symbol_dictionary_record *symbol;
4153 {
4154 asection *section;
4155
4156 /* The meaning of the symbol_info field changes for functions
4157 within executables. So only use the quick symbol_info mapping for
4158 incomplete objects and non-function symbols in executables. */
4159 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4160 || (symbol->symbol_type != ST_ENTRY
4161 && symbol->symbol_type != ST_PRI_PROG
4162 && symbol->symbol_type != ST_SEC_PROG
4163 && symbol->symbol_type != ST_MILLICODE))
4164 {
4165 unsigned int index = symbol->symbol_info;
4166 for (section = abfd->sections; section != NULL; section = section->next)
4167 if (section->target_index == index && som_is_subspace (section))
4168 return section;
4169
4170 /* Could be a symbol from an external library (such as an OMOS
4171 shared library). Don't abort. */
4172 return bfd_abs_section_ptr;
4173
4174 }
4175 else
4176 {
4177 unsigned int value = symbol->symbol_value;
4178
4179 /* For executables we will have to use the symbol's address and
4180 find out what section would contain that address. Yuk. */
4181 for (section = abfd->sections; section; section = section->next)
4182 {
4183 if (value >= section->vma
4184 && value <= section->vma + section->_cooked_size
4185 && som_is_subspace (section))
4186 return section;
4187 }
4188
4189 /* Could be a symbol from an external library (such as an OMOS
4190 shared library). Don't abort. */
4191 return bfd_abs_section_ptr;
4192
4193 }
4194 }
4195
4196 /* Read and save the symbol table associated with the given BFD. */
4197
4198 static unsigned int
4199 som_slurp_symbol_table (abfd)
4200 bfd *abfd;
4201 {
4202 int symbol_count = bfd_get_symcount (abfd);
4203 int symsize = sizeof (struct symbol_dictionary_record);
4204 char *stringtab;
4205 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
4206 som_symbol_type *sym, *symbase;
4207
4208 /* Return saved value if it exists. */
4209 if (obj_som_symtab (abfd) != NULL)
4210 goto successful_return;
4211
4212 /* Special case. This is *not* an error. */
4213 if (symbol_count == 0)
4214 goto successful_return;
4215
4216 if (!som_slurp_string_table (abfd))
4217 goto error_return;
4218
4219 stringtab = obj_som_stringtab (abfd);
4220
4221 symbase = ((som_symbol_type *)
4222 bfd_malloc (symbol_count * sizeof (som_symbol_type)));
4223 if (symbase == NULL)
4224 goto error_return;
4225 memset (symbase, 0, symbol_count * sizeof (som_symbol_type));
4226
4227 /* Read in the external SOM representation. */
4228 buf = bfd_malloc (symbol_count * symsize);
4229 if (buf == NULL && symbol_count * symsize != 0)
4230 goto error_return;
4231 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
4232 goto error_return;
4233 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
4234 != symbol_count * symsize)
4235 goto error_return;
4236
4237 /* Iterate over all the symbols and internalize them. */
4238 endbufp = buf + symbol_count;
4239 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
4240 {
4241
4242 /* I don't think we care about these. */
4243 if (bufp->symbol_type == ST_SYM_EXT
4244 || bufp->symbol_type == ST_ARG_EXT)
4245 continue;
4246
4247 /* Set some private data we care about. */
4248 if (bufp->symbol_type == ST_NULL)
4249 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4250 else if (bufp->symbol_type == ST_ABSOLUTE)
4251 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
4252 else if (bufp->symbol_type == ST_DATA)
4253 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
4254 else if (bufp->symbol_type == ST_CODE)
4255 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
4256 else if (bufp->symbol_type == ST_PRI_PROG)
4257 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
4258 else if (bufp->symbol_type == ST_SEC_PROG)
4259 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
4260 else if (bufp->symbol_type == ST_ENTRY)
4261 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
4262 else if (bufp->symbol_type == ST_MILLICODE)
4263 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
4264 else if (bufp->symbol_type == ST_PLABEL)
4265 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
4266 else
4267 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4268 som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc;
4269
4270 /* Some reasonable defaults. */
4271 sym->symbol.the_bfd = abfd;
4272 sym->symbol.name = bufp->name.n_strx + stringtab;
4273 sym->symbol.value = bufp->symbol_value;
4274 sym->symbol.section = 0;
4275 sym->symbol.flags = 0;
4276
4277 switch (bufp->symbol_type)
4278 {
4279 case ST_ENTRY:
4280 case ST_MILLICODE:
4281 sym->symbol.flags |= BSF_FUNCTION;
4282 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4283 sym->symbol.value & 0x3;
4284 sym->symbol.value &= ~0x3;
4285 break;
4286
4287 case ST_STUB:
4288 case ST_CODE:
4289 case ST_PRI_PROG:
4290 case ST_SEC_PROG:
4291 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4292 sym->symbol.value & 0x3;
4293 sym->symbol.value &= ~0x3;
4294 /* If the symbol's scope is ST_UNSAT, then these are
4295 undefined function symbols. */
4296 if (bufp->symbol_scope == SS_UNSAT)
4297 sym->symbol.flags |= BSF_FUNCTION;
4298
4299
4300 default:
4301 break;
4302 }
4303
4304 /* Handle scoping and section information. */
4305 switch (bufp->symbol_scope)
4306 {
4307 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4308 so the section associated with this symbol can't be known. */
4309 case SS_EXTERNAL:
4310 if (bufp->symbol_type != ST_STORAGE)
4311 sym->symbol.section = bfd_und_section_ptr;
4312 else
4313 sym->symbol.section = bfd_com_section_ptr;
4314 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4315 break;
4316
4317 case SS_UNSAT:
4318 if (bufp->symbol_type != ST_STORAGE)
4319 sym->symbol.section = bfd_und_section_ptr;
4320 else
4321 sym->symbol.section = bfd_com_section_ptr;
4322 break;
4323
4324 case SS_UNIVERSAL:
4325 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4326 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4327 sym->symbol.value -= sym->symbol.section->vma;
4328 break;
4329
4330 #if 0
4331 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
4332 Sound dumb? It is. */
4333 case SS_GLOBAL:
4334 #endif
4335 case SS_LOCAL:
4336 sym->symbol.flags |= BSF_LOCAL;
4337 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4338 sym->symbol.value -= sym->symbol.section->vma;
4339 break;
4340 }
4341
4342 /* Mark section symbols and symbols used by the debugger.
4343 Note $START$ is a magic code symbol, NOT a section symbol. */
4344 if (sym->symbol.name[0] == '$'
4345 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4346 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4347 sym->symbol.flags |= BSF_SECTION_SYM;
4348 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
4349 {
4350 sym->symbol.flags |= BSF_SECTION_SYM;
4351 sym->symbol.name = sym->symbol.section->name;
4352 }
4353 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
4354 sym->symbol.flags |= BSF_DEBUGGING;
4355
4356 /* Note increment at bottom of loop, since we skip some symbols
4357 we can not include it as part of the for statement. */
4358 sym++;
4359 }
4360
4361 /* We modify the symbol count to record the number of BFD symbols we
4362 created. */
4363 bfd_get_symcount (abfd) = sym - symbase;
4364
4365 /* Save our results and return success. */
4366 obj_som_symtab (abfd) = symbase;
4367 successful_return:
4368 if (buf != NULL)
4369 free (buf);
4370 return (true);
4371
4372 error_return:
4373 if (buf != NULL)
4374 free (buf);
4375 return false;
4376 }
4377
4378 /* Canonicalize a SOM symbol table. Return the number of entries
4379 in the symbol table. */
4380
4381 static long
4382 som_get_symtab (abfd, location)
4383 bfd *abfd;
4384 asymbol **location;
4385 {
4386 int i;
4387 som_symbol_type *symbase;
4388
4389 if (!som_slurp_symbol_table (abfd))
4390 return -1;
4391
4392 i = bfd_get_symcount (abfd);
4393 symbase = obj_som_symtab (abfd);
4394
4395 for (; i > 0; i--, location++, symbase++)
4396 *location = &symbase->symbol;
4397
4398 /* Final null pointer. */
4399 *location = 0;
4400 return (bfd_get_symcount (abfd));
4401 }
4402
4403 /* Make a SOM symbol. There is nothing special to do here. */
4404
4405 static asymbol *
4406 som_make_empty_symbol (abfd)
4407 bfd *abfd;
4408 {
4409 som_symbol_type *new =
4410 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
4411 if (new == NULL)
4412 return 0;
4413 new->symbol.the_bfd = abfd;
4414
4415 return &new->symbol;
4416 }
4417
4418 /* Print symbol information. */
4419
4420 static void
4421 som_print_symbol (ignore_abfd, afile, symbol, how)
4422 bfd *ignore_abfd;
4423 PTR afile;
4424 asymbol *symbol;
4425 bfd_print_symbol_type how;
4426 {
4427 FILE *file = (FILE *) afile;
4428 switch (how)
4429 {
4430 case bfd_print_symbol_name:
4431 fprintf (file, "%s", symbol->name);
4432 break;
4433 case bfd_print_symbol_more:
4434 fprintf (file, "som ");
4435 fprintf_vma (file, symbol->value);
4436 fprintf (file, " %lx", (long) symbol->flags);
4437 break;
4438 case bfd_print_symbol_all:
4439 {
4440 CONST char *section_name;
4441 section_name = symbol->section ? symbol->section->name : "(*none*)";
4442 bfd_print_symbol_vandf ((PTR) file, symbol);
4443 fprintf (file, " %s\t%s", section_name, symbol->name);
4444 break;
4445 }
4446 }
4447 }
4448
4449 static boolean
4450 som_bfd_is_local_label_name (abfd, name)
4451 bfd *abfd;
4452 const char *name;
4453 {
4454 return (name[0] == 'L' && name[1] == '$');
4455 }
4456
4457 /* Count or process variable-length SOM fixup records.
4458
4459 To avoid code duplication we use this code both to compute the number
4460 of relocations requested by a stream, and to internalize the stream.
4461
4462 When computing the number of relocations requested by a stream the
4463 variables rptr, section, and symbols have no meaning.
4464
4465 Return the number of relocations requested by the fixup stream. When
4466 not just counting
4467
4468 This needs at least two or three more passes to get it cleaned up. */
4469
4470 static unsigned int
4471 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
4472 unsigned char *fixup;
4473 unsigned int end;
4474 arelent *internal_relocs;
4475 asection *section;
4476 asymbol **symbols;
4477 boolean just_count;
4478 {
4479 unsigned int op, varname, deallocate_contents = 0;
4480 unsigned char *end_fixups = &fixup[end];
4481 const struct fixup_format *fp;
4482 char *cp;
4483 unsigned char *save_fixup;
4484 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4485 const int *subop;
4486 arelent *rptr= internal_relocs;
4487 unsigned int offset = 0;
4488
4489 #define var(c) variables[(c) - 'A']
4490 #define push(v) (*sp++ = (v))
4491 #define pop() (*--sp)
4492 #define emptystack() (sp == stack)
4493
4494 som_initialize_reloc_queue (reloc_queue);
4495 memset (variables, 0, sizeof (variables));
4496 memset (stack, 0, sizeof (stack));
4497 count = 0;
4498 prev_fixup = 0;
4499 saved_unwind_bits = 0;
4500 sp = stack;
4501
4502 while (fixup < end_fixups)
4503 {
4504
4505 /* Save pointer to the start of this fixup. We'll use
4506 it later to determine if it is necessary to put this fixup
4507 on the queue. */
4508 save_fixup = fixup;
4509
4510 /* Get the fixup code and its associated format. */
4511 op = *fixup++;
4512 fp = &som_fixup_formats[op];
4513
4514 /* Handle a request for a previous fixup. */
4515 if (*fp->format == 'P')
4516 {
4517 /* Get pointer to the beginning of the prev fixup, move
4518 the repeated fixup to the head of the queue. */
4519 fixup = reloc_queue[fp->D].reloc;
4520 som_reloc_queue_fix (reloc_queue, fp->D);
4521 prev_fixup = 1;
4522
4523 /* Get the fixup code and its associated format. */
4524 op = *fixup++;
4525 fp = &som_fixup_formats[op];
4526 }
4527
4528 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4529 if (! just_count
4530 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4531 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4532 {
4533 rptr->address = offset;
4534 rptr->howto = &som_hppa_howto_table[op];
4535 rptr->addend = 0;
4536 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4537 }
4538
4539 /* Set default input length to 0. Get the opcode class index
4540 into D. */
4541 var ('L') = 0;
4542 var ('D') = fp->D;
4543 var ('U') = saved_unwind_bits;
4544
4545 /* Get the opcode format. */
4546 cp = fp->format;
4547
4548 /* Process the format string. Parsing happens in two phases,
4549 parse RHS, then assign to LHS. Repeat until no more
4550 characters in the format string. */
4551 while (*cp)
4552 {
4553 /* The variable this pass is going to compute a value for. */
4554 varname = *cp++;
4555
4556 /* Start processing RHS. Continue until a NULL or '=' is found. */
4557 do
4558 {
4559 c = *cp++;
4560
4561 /* If this is a variable, push it on the stack. */
4562 if (isupper (c))
4563 push (var (c));
4564
4565 /* If this is a lower case letter, then it represents
4566 additional data from the fixup stream to be pushed onto
4567 the stack. */
4568 else if (islower (c))
4569 {
4570 int bits = (c - 'a') * 8;
4571 for (v = 0; c > 'a'; --c)
4572 v = (v << 8) | *fixup++;
4573 if (varname == 'V')
4574 v = sign_extend (v, bits);
4575 push (v);
4576 }
4577
4578 /* A decimal constant. Push it on the stack. */
4579 else if (isdigit (c))
4580 {
4581 v = c - '0';
4582 while (isdigit (*cp))
4583 v = (v * 10) + (*cp++ - '0');
4584 push (v);
4585 }
4586 else
4587
4588 /* An operator. Pop two two values from the stack and
4589 use them as operands to the given operation. Push
4590 the result of the operation back on the stack. */
4591 switch (c)
4592 {
4593 case '+':
4594 v = pop ();
4595 v += pop ();
4596 push (v);
4597 break;
4598 case '*':
4599 v = pop ();
4600 v *= pop ();
4601 push (v);
4602 break;
4603 case '<':
4604 v = pop ();
4605 v = pop () << v;
4606 push (v);
4607 break;
4608 default:
4609 abort ();
4610 }
4611 }
4612 while (*cp && *cp != '=');
4613
4614 /* Move over the equal operator. */
4615 cp++;
4616
4617 /* Pop the RHS off the stack. */
4618 c = pop ();
4619
4620 /* Perform the assignment. */
4621 var (varname) = c;
4622
4623 /* Handle side effects. and special 'O' stack cases. */
4624 switch (varname)
4625 {
4626 /* Consume some bytes from the input space. */
4627 case 'L':
4628 offset += c;
4629 break;
4630 /* A symbol to use in the relocation. Make a note
4631 of this if we are not just counting. */
4632 case 'S':
4633 if (! just_count)
4634 rptr->sym_ptr_ptr = &symbols[c];
4635 break;
4636 /* Argument relocation bits for a function call. */
4637 case 'R':
4638 if (! just_count)
4639 {
4640 unsigned int tmp = var ('R');
4641 rptr->addend = 0;
4642
4643 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4644 && R_PCREL_CALL + 10 > op)
4645 || (som_hppa_howto_table[op].type == R_ABS_CALL
4646 && R_ABS_CALL + 10 > op))
4647 {
4648 /* Simple encoding. */
4649 if (tmp > 4)
4650 {
4651 tmp -= 5;
4652 rptr->addend |= 1;
4653 }
4654 if (tmp == 4)
4655 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4656 else if (tmp == 3)
4657 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4658 else if (tmp == 2)
4659 rptr->addend |= 1 << 8 | 1 << 6;
4660 else if (tmp == 1)
4661 rptr->addend |= 1 << 8;
4662 }
4663 else
4664 {
4665 unsigned int tmp1, tmp2;
4666
4667 /* First part is easy -- low order two bits are
4668 directly copied, then shifted away. */
4669 rptr->addend = tmp & 0x3;
4670 tmp >>= 2;
4671
4672 /* Diving the result by 10 gives us the second
4673 part. If it is 9, then the first two words
4674 are a double precision paramater, else it is
4675 3 * the first arg bits + the 2nd arg bits. */
4676 tmp1 = tmp / 10;
4677 tmp -= tmp1 * 10;
4678 if (tmp1 == 9)
4679 rptr->addend += (0xe << 6);
4680 else
4681 {
4682 /* Get the two pieces. */
4683 tmp2 = tmp1 / 3;
4684 tmp1 -= tmp2 * 3;
4685 /* Put them in the addend. */
4686 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4687 }
4688
4689 /* What's left is the third part. It's unpacked
4690 just like the second. */
4691 if (tmp == 9)
4692 rptr->addend += (0xe << 2);
4693 else
4694 {
4695 tmp2 = tmp / 3;
4696 tmp -= tmp2 * 3;
4697 rptr->addend += (tmp2 << 4) + (tmp << 2);
4698 }
4699 }
4700 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4701 }
4702 break;
4703 /* Handle the linker expression stack. */
4704 case 'O':
4705 switch (op)
4706 {
4707 case R_COMP1:
4708 subop = comp1_opcodes;
4709 break;
4710 case R_COMP2:
4711 subop = comp2_opcodes;
4712 break;
4713 case R_COMP3:
4714 subop = comp3_opcodes;
4715 break;
4716 default:
4717 abort ();
4718 }
4719 while (*subop <= (unsigned char) c)
4720 ++subop;
4721 --subop;
4722 break;
4723 /* The lower 32unwind bits must be persistent. */
4724 case 'U':
4725 saved_unwind_bits = var ('U');
4726 break;
4727
4728 default:
4729 break;
4730 }
4731 }
4732
4733 /* If we used a previous fixup, clean up after it. */
4734 if (prev_fixup)
4735 {
4736 fixup = save_fixup + 1;
4737 prev_fixup = 0;
4738 }
4739 /* Queue it. */
4740 else if (fixup > save_fixup + 1)
4741 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4742
4743 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4744 fixups to BFD. */
4745 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4746 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4747 {
4748 /* Done with a single reloction. Loop back to the top. */
4749 if (! just_count)
4750 {
4751 if (som_hppa_howto_table[op].type == R_ENTRY)
4752 rptr->addend = var ('T');
4753 else if (som_hppa_howto_table[op].type == R_EXIT)
4754 rptr->addend = var ('U');
4755 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4756 || som_hppa_howto_table[op].type == R_ABS_CALL)
4757 ;
4758 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4759 {
4760 unsigned addend = var ('V');
4761
4762 /* Try what was specified in R_DATA_OVERRIDE first
4763 (if anything). Then the hard way using the
4764 section contents. */
4765 rptr->addend = var ('V');
4766
4767 if (rptr->addend == 0 && !section->contents)
4768 {
4769 /* Got to read the damn contents first. We don't
4770 bother saving the contents (yet). Add it one
4771 day if the need arises. */
4772 section->contents = bfd_malloc (section->_raw_size);
4773 if (section->contents == NULL)
4774 return -1;
4775
4776 deallocate_contents = 1;
4777 bfd_get_section_contents (section->owner,
4778 section,
4779 section->contents,
4780 0,
4781 section->_raw_size);
4782 }
4783 else if (rptr->addend == 0)
4784 rptr->addend = bfd_get_32 (section->owner,
4785 (section->contents
4786 + offset - var ('L')));
4787
4788 }
4789 else
4790 rptr->addend = var ('V');
4791 rptr++;
4792 }
4793 count++;
4794 /* Now that we've handled a "full" relocation, reset
4795 some state. */
4796 memset (variables, 0, sizeof (variables));
4797 memset (stack, 0, sizeof (stack));
4798 }
4799 }
4800 if (deallocate_contents)
4801 free (section->contents);
4802
4803 return count;
4804
4805 #undef var
4806 #undef push
4807 #undef pop
4808 #undef emptystack
4809 }
4810
4811 /* Read in the relocs (aka fixups in SOM terms) for a section.
4812
4813 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4814 set to true to indicate it only needs a count of the number
4815 of actual relocations. */
4816
4817 static boolean
4818 som_slurp_reloc_table (abfd, section, symbols, just_count)
4819 bfd *abfd;
4820 asection *section;
4821 asymbol **symbols;
4822 boolean just_count;
4823 {
4824 char *external_relocs;
4825 unsigned int fixup_stream_size;
4826 arelent *internal_relocs;
4827 unsigned int num_relocs;
4828
4829 fixup_stream_size = som_section_data (section)->reloc_size;
4830 /* If there were no relocations, then there is nothing to do. */
4831 if (section->reloc_count == 0)
4832 return true;
4833
4834 /* If reloc_count is -1, then the relocation stream has not been
4835 parsed. We must do so now to know how many relocations exist. */
4836 if (section->reloc_count == -1)
4837 {
4838 external_relocs = (char *) bfd_malloc (fixup_stream_size);
4839 if (external_relocs == (char *) NULL)
4840 return false;
4841 /* Read in the external forms. */
4842 if (bfd_seek (abfd,
4843 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4844 SEEK_SET)
4845 != 0)
4846 return false;
4847 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4848 != fixup_stream_size)
4849 return false;
4850
4851 /* Let callers know how many relocations found.
4852 also save the relocation stream as we will
4853 need it again. */
4854 section->reloc_count = som_set_reloc_info (external_relocs,
4855 fixup_stream_size,
4856 NULL, NULL, NULL, true);
4857
4858 som_section_data (section)->reloc_stream = external_relocs;
4859 }
4860
4861 /* If the caller only wanted a count, then return now. */
4862 if (just_count)
4863 return true;
4864
4865 num_relocs = section->reloc_count;
4866 external_relocs = som_section_data (section)->reloc_stream;
4867 /* Return saved information about the relocations if it is available. */
4868 if (section->relocation != (arelent *) NULL)
4869 return true;
4870
4871 internal_relocs = (arelent *)
4872 bfd_zalloc (abfd, (num_relocs * sizeof (arelent)));
4873 if (internal_relocs == (arelent *) NULL)
4874 return false;
4875
4876 /* Process and internalize the relocations. */
4877 som_set_reloc_info (external_relocs, fixup_stream_size,
4878 internal_relocs, section, symbols, false);
4879
4880 /* We're done with the external relocations. Free them. */
4881 free (external_relocs);
4882 som_section_data (section)->reloc_stream = NULL;
4883
4884 /* Save our results and return success. */
4885 section->relocation = internal_relocs;
4886 return (true);
4887 }
4888
4889 /* Return the number of bytes required to store the relocation
4890 information associated with the given section. */
4891
4892 static long
4893 som_get_reloc_upper_bound (abfd, asect)
4894 bfd *abfd;
4895 sec_ptr asect;
4896 {
4897 /* If section has relocations, then read in the relocation stream
4898 and parse it to determine how many relocations exist. */
4899 if (asect->flags & SEC_RELOC)
4900 {
4901 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4902 return -1;
4903 return (asect->reloc_count + 1) * sizeof (arelent *);
4904 }
4905 /* There are no relocations. */
4906 return 0;
4907 }
4908
4909 /* Convert relocations from SOM (external) form into BFD internal
4910 form. Return the number of relocations. */
4911
4912 static long
4913 som_canonicalize_reloc (abfd, section, relptr, symbols)
4914 bfd *abfd;
4915 sec_ptr section;
4916 arelent **relptr;
4917 asymbol **symbols;
4918 {
4919 arelent *tblptr;
4920 int count;
4921
4922 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4923 return -1;
4924
4925 count = section->reloc_count;
4926 tblptr = section->relocation;
4927
4928 while (count--)
4929 *relptr++ = tblptr++;
4930
4931 *relptr = (arelent *) NULL;
4932 return section->reloc_count;
4933 }
4934
4935 extern const bfd_target som_vec;
4936
4937 /* A hook to set up object file dependent section information. */
4938
4939 static boolean
4940 som_new_section_hook (abfd, newsect)
4941 bfd *abfd;
4942 asection *newsect;
4943 {
4944 newsect->used_by_bfd =
4945 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4946 if (!newsect->used_by_bfd)
4947 return false;
4948 newsect->alignment_power = 3;
4949
4950 /* We allow more than three sections internally */
4951 return true;
4952 }
4953
4954 /* Copy any private info we understand from the input symbol
4955 to the output symbol. */
4956
4957 static boolean
4958 som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol)
4959 bfd *ibfd;
4960 asymbol *isymbol;
4961 bfd *obfd;
4962 asymbol *osymbol;
4963 {
4964 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
4965 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
4966
4967 /* One day we may try to grok other private data. */
4968 if (ibfd->xvec->flavour != bfd_target_som_flavour
4969 || obfd->xvec->flavour != bfd_target_som_flavour)
4970 return false;
4971
4972 /* The only private information we need to copy is the argument relocation
4973 bits. */
4974 output_symbol->tc_data.ap.hppa_arg_reloc =
4975 input_symbol->tc_data.ap.hppa_arg_reloc;
4976
4977 return true;
4978 }
4979
4980 /* Copy any private info we understand from the input section
4981 to the output section. */
4982 static boolean
4983 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4984 bfd *ibfd;
4985 asection *isection;
4986 bfd *obfd;
4987 asection *osection;
4988 {
4989 /* One day we may try to grok other private data. */
4990 if (ibfd->xvec->flavour != bfd_target_som_flavour
4991 || obfd->xvec->flavour != bfd_target_som_flavour
4992 || (!som_is_space (isection) && !som_is_subspace (isection)))
4993 return true;
4994
4995 som_section_data (osection)->copy_data
4996 = (struct som_copyable_section_data_struct *)
4997 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4998 if (som_section_data (osection)->copy_data == NULL)
4999 return false;
5000
5001 memcpy (som_section_data (osection)->copy_data,
5002 som_section_data (isection)->copy_data,
5003 sizeof (struct som_copyable_section_data_struct));
5004
5005 /* Reparent if necessary. */
5006 if (som_section_data (osection)->copy_data->container)
5007 som_section_data (osection)->copy_data->container =
5008 som_section_data (osection)->copy_data->container->output_section;
5009
5010 return true;
5011 }
5012
5013 /* Copy any private info we understand from the input bfd
5014 to the output bfd. */
5015
5016 static boolean
5017 som_bfd_copy_private_bfd_data (ibfd, obfd)
5018 bfd *ibfd, *obfd;
5019 {
5020 /* One day we may try to grok other private data. */
5021 if (ibfd->xvec->flavour != bfd_target_som_flavour
5022 || obfd->xvec->flavour != bfd_target_som_flavour)
5023 return true;
5024
5025 /* Allocate some memory to hold the data we need. */
5026 obj_som_exec_data (obfd) = (struct som_exec_data *)
5027 bfd_zalloc (obfd, sizeof (struct som_exec_data));
5028 if (obj_som_exec_data (obfd) == NULL)
5029 return false;
5030
5031 /* Now copy the data. */
5032 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
5033 sizeof (struct som_exec_data));
5034
5035 return true;
5036 }
5037
5038 /* Set backend info for sections which can not be described
5039 in the BFD data structures. */
5040
5041 boolean
5042 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
5043 asection *section;
5044 int defined;
5045 int private;
5046 unsigned int sort_key;
5047 int spnum;
5048 {
5049 /* Allocate memory to hold the magic information. */
5050 if (som_section_data (section)->copy_data == NULL)
5051 {
5052 som_section_data (section)->copy_data
5053 = (struct som_copyable_section_data_struct *)
5054 bfd_zalloc (section->owner,
5055 sizeof (struct som_copyable_section_data_struct));
5056 if (som_section_data (section)->copy_data == NULL)
5057 return false;
5058 }
5059 som_section_data (section)->copy_data->sort_key = sort_key;
5060 som_section_data (section)->copy_data->is_defined = defined;
5061 som_section_data (section)->copy_data->is_private = private;
5062 som_section_data (section)->copy_data->container = section;
5063 som_section_data (section)->copy_data->space_number = spnum;
5064 return true;
5065 }
5066
5067 /* Set backend info for subsections which can not be described
5068 in the BFD data structures. */
5069
5070 boolean
5071 bfd_som_set_subsection_attributes (section, container, access,
5072 sort_key, quadrant)
5073 asection *section;
5074 asection *container;
5075 int access;
5076 unsigned int sort_key;
5077 int quadrant;
5078 {
5079 /* Allocate memory to hold the magic information. */
5080 if (som_section_data (section)->copy_data == NULL)
5081 {
5082 som_section_data (section)->copy_data
5083 = (struct som_copyable_section_data_struct *)
5084 bfd_zalloc (section->owner,
5085 sizeof (struct som_copyable_section_data_struct));
5086 if (som_section_data (section)->copy_data == NULL)
5087 return false;
5088 }
5089 som_section_data (section)->copy_data->sort_key = sort_key;
5090 som_section_data (section)->copy_data->access_control_bits = access;
5091 som_section_data (section)->copy_data->quadrant = quadrant;
5092 som_section_data (section)->copy_data->container = container;
5093 return true;
5094 }
5095
5096 /* Set the full SOM symbol type. SOM needs far more symbol information
5097 than any other object file format I'm aware of. It is mandatory
5098 to be able to know if a symbol is an entry point, millicode, data,
5099 code, absolute, storage request, or procedure label. If you get
5100 the symbol type wrong your program will not link. */
5101
5102 void
5103 bfd_som_set_symbol_type (symbol, type)
5104 asymbol *symbol;
5105 unsigned int type;
5106 {
5107 som_symbol_data (symbol)->som_type = type;
5108 }
5109
5110 /* Attach an auxiliary header to the BFD backend so that it may be
5111 written into the object file. */
5112 boolean
5113 bfd_som_attach_aux_hdr (abfd, type, string)
5114 bfd *abfd;
5115 int type;
5116 char *string;
5117 {
5118 if (type == VERSION_AUX_ID)
5119 {
5120 int len = strlen (string);
5121 int pad = 0;
5122
5123 if (len % 4)
5124 pad = (4 - (len % 4));
5125 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
5126 bfd_zalloc (abfd, sizeof (struct aux_id)
5127 + sizeof (unsigned int) + len + pad);
5128 if (!obj_som_version_hdr (abfd))
5129 return false;
5130 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
5131 obj_som_version_hdr (abfd)->header_id.length = len + pad;
5132 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
5133 obj_som_version_hdr (abfd)->string_length = len;
5134 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
5135 }
5136 else if (type == COPYRIGHT_AUX_ID)
5137 {
5138 int len = strlen (string);
5139 int pad = 0;
5140
5141 if (len % 4)
5142 pad = (4 - (len % 4));
5143 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
5144 bfd_zalloc (abfd, sizeof (struct aux_id)
5145 + sizeof (unsigned int) + len + pad);
5146 if (!obj_som_copyright_hdr (abfd))
5147 return false;
5148 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
5149 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
5150 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
5151 obj_som_copyright_hdr (abfd)->string_length = len;
5152 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
5153 }
5154 return true;
5155 }
5156
5157 /* Attach an compilation unit header to the BFD backend so that it may be
5158 written into the object file. */
5159
5160 boolean
5161 bfd_som_attach_compilation_unit (abfd, name, language_name, product_id,
5162 version_id)
5163 bfd *abfd;
5164 const char *name;
5165 const char *language_name;
5166 const char *product_id;
5167 const char *version_id;
5168 {
5169 COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, COMPUNITSZ);
5170 if (n == NULL)
5171 return false;
5172
5173 #define STRDUP(f) \
5174 if (f != NULL) \
5175 { \
5176 n->f.n_name = bfd_alloc (abfd, strlen (f) + 1); \
5177 if (n->f.n_name == NULL) \
5178 return false; \
5179 strcpy (n->f.n_name, f); \
5180 }
5181
5182 STRDUP (name);
5183 STRDUP (language_name);
5184 STRDUP (product_id);
5185 STRDUP (version_id);
5186
5187 #undef STRDUP
5188
5189 obj_som_compilation_unit (abfd) = n;
5190
5191 return true;
5192 }
5193
5194 static boolean
5195 som_get_section_contents (abfd, section, location, offset, count)
5196 bfd *abfd;
5197 sec_ptr section;
5198 PTR location;
5199 file_ptr offset;
5200 bfd_size_type count;
5201 {
5202 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5203 return true;
5204 if ((bfd_size_type)(offset+count) > section->_raw_size
5205 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
5206 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
5207 return (false); /* on error */
5208 return (true);
5209 }
5210
5211 static boolean
5212 som_set_section_contents (abfd, section, location, offset, count)
5213 bfd *abfd;
5214 sec_ptr section;
5215 PTR location;
5216 file_ptr offset;
5217 bfd_size_type count;
5218 {
5219 if (abfd->output_has_begun == false)
5220 {
5221 /* Set up fixed parts of the file, space, and subspace headers.
5222 Notify the world that output has begun. */
5223 som_prep_headers (abfd);
5224 abfd->output_has_begun = true;
5225 /* Start writing the object file. This include all the string
5226 tables, fixup streams, and other portions of the object file. */
5227 som_begin_writing (abfd);
5228 }
5229
5230 /* Only write subspaces which have "real" contents (eg. the contents
5231 are not generated at run time by the OS). */
5232 if (!som_is_subspace (section)
5233 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5234 return true;
5235
5236 /* Seek to the proper offset within the object file and write the
5237 data. */
5238 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
5239 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
5240 return false;
5241
5242 if (bfd_write ((PTR) location, 1, count, abfd) != count)
5243 return false;
5244 return true;
5245 }
5246
5247 static boolean
5248 som_set_arch_mach (abfd, arch, machine)
5249 bfd *abfd;
5250 enum bfd_architecture arch;
5251 unsigned long machine;
5252 {
5253 /* Allow any architecture to be supported by the SOM backend */
5254 return bfd_default_set_arch_mach (abfd, arch, machine);
5255 }
5256
5257 static boolean
5258 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
5259 functionname_ptr, line_ptr)
5260 bfd *abfd;
5261 asection *section;
5262 asymbol **symbols;
5263 bfd_vma offset;
5264 CONST char **filename_ptr;
5265 CONST char **functionname_ptr;
5266 unsigned int *line_ptr;
5267 {
5268 return (false);
5269 }
5270
5271 static int
5272 som_sizeof_headers (abfd, reloc)
5273 bfd *abfd;
5274 boolean reloc;
5275 {
5276 (*_bfd_error_handler) (_("som_sizeof_headers unimplemented"));
5277 fflush (stderr);
5278 abort ();
5279 return (0);
5280 }
5281
5282 /* Return the single-character symbol type corresponding to
5283 SOM section S, or '?' for an unknown SOM section. */
5284
5285 static char
5286 som_section_type (s)
5287 const char *s;
5288 {
5289 const struct section_to_type *t;
5290
5291 for (t = &stt[0]; t->section; t++)
5292 if (!strcmp (s, t->section))
5293 return t->type;
5294 return '?';
5295 }
5296
5297 static int
5298 som_decode_symclass (symbol)
5299 asymbol *symbol;
5300 {
5301 char c;
5302
5303 if (bfd_is_com_section (symbol->section))
5304 return 'C';
5305 if (bfd_is_und_section (symbol->section))
5306 return 'U';
5307 if (bfd_is_ind_section (symbol->section))
5308 return 'I';
5309 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
5310 return '?';
5311
5312 if (bfd_is_abs_section (symbol->section)
5313 || (som_symbol_data (symbol) != NULL
5314 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5315 c = 'a';
5316 else if (symbol->section)
5317 c = som_section_type (symbol->section->name);
5318 else
5319 return '?';
5320 if (symbol->flags & BSF_GLOBAL)
5321 c = toupper (c);
5322 return c;
5323 }
5324
5325 /* Return information about SOM symbol SYMBOL in RET. */
5326
5327 static void
5328 som_get_symbol_info (ignore_abfd, symbol, ret)
5329 bfd *ignore_abfd;
5330 asymbol *symbol;
5331 symbol_info *ret;
5332 {
5333 ret->type = som_decode_symclass (symbol);
5334 if (ret->type != 'U')
5335 ret->value = symbol->value+symbol->section->vma;
5336 else
5337 ret->value = 0;
5338 ret->name = symbol->name;
5339 }
5340
5341 /* Count the number of symbols in the archive symbol table. Necessary
5342 so that we can allocate space for all the carsyms at once. */
5343
5344 static boolean
5345 som_bfd_count_ar_symbols (abfd, lst_header, count)
5346 bfd *abfd;
5347 struct lst_header *lst_header;
5348 symindex *count;
5349 {
5350 unsigned int i;
5351 unsigned int *hash_table = NULL;
5352 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5353
5354 hash_table =
5355 (unsigned int *) bfd_malloc (lst_header->hash_size
5356 * sizeof (unsigned int));
5357 if (hash_table == NULL && lst_header->hash_size != 0)
5358 goto error_return;
5359
5360 /* Don't forget to initialize the counter! */
5361 *count = 0;
5362
5363 /* Read in the hash table. The has table is an array of 32bit file offsets
5364 which point to the hash chains. */
5365 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5366 != lst_header->hash_size * 4)
5367 goto error_return;
5368
5369 /* Walk each chain counting the number of symbols found on that particular
5370 chain. */
5371 for (i = 0; i < lst_header->hash_size; i++)
5372 {
5373 struct lst_symbol_record lst_symbol;
5374
5375 /* An empty chain has zero as it's file offset. */
5376 if (hash_table[i] == 0)
5377 continue;
5378
5379 /* Seek to the first symbol in this hash chain. */
5380 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5381 goto error_return;
5382
5383 /* Read in this symbol and update the counter. */
5384 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5385 != sizeof (lst_symbol))
5386 goto error_return;
5387
5388 (*count)++;
5389
5390 /* Now iterate through the rest of the symbols on this chain. */
5391 while (lst_symbol.next_entry)
5392 {
5393
5394 /* Seek to the next symbol. */
5395 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5396 < 0)
5397 goto error_return;
5398
5399 /* Read the symbol in and update the counter. */
5400 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5401 != sizeof (lst_symbol))
5402 goto error_return;
5403
5404 (*count)++;
5405 }
5406 }
5407 if (hash_table != NULL)
5408 free (hash_table);
5409 return true;
5410
5411 error_return:
5412 if (hash_table != NULL)
5413 free (hash_table);
5414 return false;
5415 }
5416
5417 /* Fill in the canonical archive symbols (SYMS) from the archive described
5418 by ABFD and LST_HEADER. */
5419
5420 static boolean
5421 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
5422 bfd *abfd;
5423 struct lst_header *lst_header;
5424 carsym **syms;
5425 {
5426 unsigned int i, len;
5427 carsym *set = syms[0];
5428 unsigned int *hash_table = NULL;
5429 struct som_entry *som_dict = NULL;
5430 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5431
5432 hash_table =
5433 (unsigned int *) bfd_malloc (lst_header->hash_size
5434 * sizeof (unsigned int));
5435 if (hash_table == NULL && lst_header->hash_size != 0)
5436 goto error_return;
5437
5438 som_dict =
5439 (struct som_entry *) bfd_malloc (lst_header->module_count
5440 * sizeof (struct som_entry));
5441 if (som_dict == NULL && lst_header->module_count != 0)
5442 goto error_return;
5443
5444 /* Read in the hash table. The has table is an array of 32bit file offsets
5445 which point to the hash chains. */
5446 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5447 != lst_header->hash_size * 4)
5448 goto error_return;
5449
5450 /* Seek to and read in the SOM dictionary. We will need this to fill
5451 in the carsym's filepos field. */
5452 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
5453 goto error_return;
5454
5455 if (bfd_read ((PTR) som_dict, lst_header->module_count,
5456 sizeof (struct som_entry), abfd)
5457 != lst_header->module_count * sizeof (struct som_entry))
5458 goto error_return;
5459
5460 /* Walk each chain filling in the carsyms as we go along. */
5461 for (i = 0; i < lst_header->hash_size; i++)
5462 {
5463 struct lst_symbol_record lst_symbol;
5464
5465 /* An empty chain has zero as it's file offset. */
5466 if (hash_table[i] == 0)
5467 continue;
5468
5469 /* Seek to and read the first symbol on the chain. */
5470 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5471 goto error_return;
5472
5473 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5474 != sizeof (lst_symbol))
5475 goto error_return;
5476
5477 /* Get the name of the symbol, first get the length which is stored
5478 as a 32bit integer just before the symbol.
5479
5480 One might ask why we don't just read in the entire string table
5481 and index into it. Well, according to the SOM ABI the string
5482 index can point *anywhere* in the archive to save space, so just
5483 using the string table would not be safe. */
5484 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5485 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5486 goto error_return;
5487
5488 if (bfd_read (&len, 1, 4, abfd) != 4)
5489 goto error_return;
5490
5491 /* Allocate space for the name and null terminate it too. */
5492 set->name = bfd_zalloc (abfd, len + 1);
5493 if (!set->name)
5494 goto error_return;
5495 if (bfd_read (set->name, 1, len, abfd) != len)
5496 goto error_return;
5497
5498 set->name[len] = 0;
5499
5500 /* Fill in the file offset. Note that the "location" field points
5501 to the SOM itself, not the ar_hdr in front of it. */
5502 set->file_offset = som_dict[lst_symbol.som_index].location
5503 - sizeof (struct ar_hdr);
5504
5505 /* Go to the next symbol. */
5506 set++;
5507
5508 /* Iterate through the rest of the chain. */
5509 while (lst_symbol.next_entry)
5510 {
5511 /* Seek to the next symbol and read it in. */
5512 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
5513 goto error_return;
5514
5515 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5516 != sizeof (lst_symbol))
5517 goto error_return;
5518
5519 /* Seek to the name length & string and read them in. */
5520 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5521 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5522 goto error_return;
5523
5524 if (bfd_read (&len, 1, 4, abfd) != 4)
5525 goto error_return;
5526
5527 /* Allocate space for the name and null terminate it too. */
5528 set->name = bfd_zalloc (abfd, len + 1);
5529 if (!set->name)
5530 goto error_return;
5531
5532 if (bfd_read (set->name, 1, len, abfd) != len)
5533 goto error_return;
5534 set->name[len] = 0;
5535
5536 /* Fill in the file offset. Note that the "location" field points
5537 to the SOM itself, not the ar_hdr in front of it. */
5538 set->file_offset = som_dict[lst_symbol.som_index].location
5539 - sizeof (struct ar_hdr);
5540
5541 /* Go on to the next symbol. */
5542 set++;
5543 }
5544 }
5545 /* If we haven't died by now, then we successfully read the entire
5546 archive symbol table. */
5547 if (hash_table != NULL)
5548 free (hash_table);
5549 if (som_dict != NULL)
5550 free (som_dict);
5551 return true;
5552
5553 error_return:
5554 if (hash_table != NULL)
5555 free (hash_table);
5556 if (som_dict != NULL)
5557 free (som_dict);
5558 return false;
5559 }
5560
5561 /* Read in the LST from the archive. */
5562 static boolean
5563 som_slurp_armap (abfd)
5564 bfd *abfd;
5565 {
5566 struct lst_header lst_header;
5567 struct ar_hdr ar_header;
5568 unsigned int parsed_size;
5569 struct artdata *ardata = bfd_ardata (abfd);
5570 char nextname[17];
5571 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
5572
5573 /* Special cases. */
5574 if (i == 0)
5575 return true;
5576 if (i != 16)
5577 return false;
5578
5579 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
5580 return false;
5581
5582 /* For archives without .o files there is no symbol table. */
5583 if (strncmp (nextname, "/ ", 16))
5584 {
5585 bfd_has_map (abfd) = false;
5586 return true;
5587 }
5588
5589 /* Read in and sanity check the archive header. */
5590 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
5591 != sizeof (struct ar_hdr))
5592 return false;
5593
5594 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5595 {
5596 bfd_set_error (bfd_error_malformed_archive);
5597 return false;
5598 }
5599
5600 /* How big is the archive symbol table entry? */
5601 errno = 0;
5602 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5603 if (errno != 0)
5604 {
5605 bfd_set_error (bfd_error_malformed_archive);
5606 return false;
5607 }
5608
5609 /* Save off the file offset of the first real user data. */
5610 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5611
5612 /* Read in the library symbol table. We'll make heavy use of this
5613 in just a minute. */
5614 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
5615 != sizeof (struct lst_header))
5616 return false;
5617
5618 /* Sanity check. */
5619 if (lst_header.a_magic != LIBMAGIC)
5620 {
5621 bfd_set_error (bfd_error_malformed_archive);
5622 return false;
5623 }
5624
5625 /* Count the number of symbols in the library symbol table. */
5626 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
5627 == false)
5628 return false;
5629
5630 /* Get back to the start of the library symbol table. */
5631 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
5632 + sizeof (struct lst_header), SEEK_SET) < 0)
5633 return false;
5634
5635 /* Initializae the cache and allocate space for the library symbols. */
5636 ardata->cache = 0;
5637 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5638 (ardata->symdef_count
5639 * sizeof (carsym)));
5640 if (!ardata->symdefs)
5641 return false;
5642
5643 /* Now fill in the canonical archive symbols. */
5644 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5645 == false)
5646 return false;
5647
5648 /* Seek back to the "first" file in the archive. Note the "first"
5649 file may be the extended name table. */
5650 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5651 return false;
5652
5653 /* Notify the generic archive code that we have a symbol map. */
5654 bfd_has_map (abfd) = true;
5655 return true;
5656 }
5657
5658 /* Begin preparing to write a SOM library symbol table.
5659
5660 As part of the prep work we need to determine the number of symbols
5661 and the size of the associated string section. */
5662
5663 static boolean
5664 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5665 bfd *abfd;
5666 unsigned int *num_syms, *stringsize;
5667 {
5668 bfd *curr_bfd = abfd->archive_head;
5669
5670 /* Some initialization. */
5671 *num_syms = 0;
5672 *stringsize = 0;
5673
5674 /* Iterate over each BFD within this archive. */
5675 while (curr_bfd != NULL)
5676 {
5677 unsigned int curr_count, i;
5678 som_symbol_type *sym;
5679
5680 /* Don't bother for non-SOM objects. */
5681 if (curr_bfd->format != bfd_object
5682 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5683 {
5684 curr_bfd = curr_bfd->next;
5685 continue;
5686 }
5687
5688 /* Make sure the symbol table has been read, then snag a pointer
5689 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5690 but doing so avoids allocating lots of extra memory. */
5691 if (som_slurp_symbol_table (curr_bfd) == false)
5692 return false;
5693
5694 sym = obj_som_symtab (curr_bfd);
5695 curr_count = bfd_get_symcount (curr_bfd);
5696
5697 /* Examine each symbol to determine if it belongs in the
5698 library symbol table. */
5699 for (i = 0; i < curr_count; i++, sym++)
5700 {
5701 struct som_misc_symbol_info info;
5702
5703 /* Derive SOM information from the BFD symbol. */
5704 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5705
5706 /* Should we include this symbol? */
5707 if (info.symbol_type == ST_NULL
5708 || info.symbol_type == ST_SYM_EXT
5709 || info.symbol_type == ST_ARG_EXT)
5710 continue;
5711
5712 /* Only global symbols and unsatisfied commons. */
5713 if (info.symbol_scope != SS_UNIVERSAL
5714 && info.symbol_type != ST_STORAGE)
5715 continue;
5716
5717 /* Do no include undefined symbols. */
5718 if (bfd_is_und_section (sym->symbol.section))
5719 continue;
5720
5721 /* Bump the various counters, being careful to honor
5722 alignment considerations in the string table. */
5723 (*num_syms)++;
5724 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5725 while (*stringsize % 4)
5726 (*stringsize)++;
5727 }
5728
5729 curr_bfd = curr_bfd->next;
5730 }
5731 return true;
5732 }
5733
5734 /* Hash a symbol name based on the hashing algorithm presented in the
5735 SOM ABI. */
5736 static unsigned int
5737 som_bfd_ar_symbol_hash (symbol)
5738 asymbol *symbol;
5739 {
5740 unsigned int len = strlen (symbol->name);
5741
5742 /* Names with length 1 are special. */
5743 if (len == 1)
5744 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5745
5746 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5747 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5748 }
5749
5750 /* Do the bulk of the work required to write the SOM library
5751 symbol table. */
5752
5753 static boolean
5754 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst, elength)
5755 bfd *abfd;
5756 unsigned int nsyms, string_size;
5757 struct lst_header lst;
5758 unsigned elength;
5759 {
5760 file_ptr lst_filepos;
5761 char *strings = NULL, *p;
5762 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5763 bfd *curr_bfd;
5764 unsigned int *hash_table = NULL;
5765 struct som_entry *som_dict = NULL;
5766 struct lst_symbol_record **last_hash_entry = NULL;
5767 unsigned int curr_som_offset, som_index = 0;
5768
5769 hash_table =
5770 (unsigned int *) bfd_malloc (lst.hash_size * sizeof (unsigned int));
5771 if (hash_table == NULL && lst.hash_size != 0)
5772 goto error_return;
5773 som_dict =
5774 (struct som_entry *) bfd_malloc (lst.module_count
5775 * sizeof (struct som_entry));
5776 if (som_dict == NULL && lst.module_count != 0)
5777 goto error_return;
5778
5779 last_hash_entry =
5780 ((struct lst_symbol_record **)
5781 bfd_malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5782 if (last_hash_entry == NULL && lst.hash_size != 0)
5783 goto error_return;
5784
5785 /* Lots of fields are file positions relative to the start
5786 of the lst record. So save its location. */
5787 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5788
5789 /* Some initialization. */
5790 memset (hash_table, 0, 4 * lst.hash_size);
5791 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5792 memset (last_hash_entry, 0,
5793 lst.hash_size * sizeof (struct lst_symbol_record *));
5794
5795 /* Symbols have som_index fields, so we have to keep track of the
5796 index of each SOM in the archive.
5797
5798 The SOM dictionary has (among other things) the absolute file
5799 position for the SOM which a particular dictionary entry
5800 describes. We have to compute that information as we iterate
5801 through the SOMs/symbols. */
5802 som_index = 0;
5803
5804 /* We add in the size of the archive header twice as the location
5805 in the SOM dictionary is the actual offset of the SOM, not the
5806 archive header before the SOM. */
5807 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5808
5809 /* Make room for the archive header and the contents of the
5810 extended string table. Note that elength includes the size
5811 of the archive header for the extended name table! */
5812 if (elength)
5813 curr_som_offset += elength;
5814
5815 /* Make sure we're properly aligned. */
5816 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5817
5818 /* FIXME should be done with buffers just like everything else... */
5819 lst_syms = bfd_malloc (nsyms * sizeof (struct lst_symbol_record));
5820 if (lst_syms == NULL && nsyms != 0)
5821 goto error_return;
5822 strings = bfd_malloc (string_size);
5823 if (strings == NULL && string_size != 0)
5824 goto error_return;
5825
5826 p = strings;
5827 curr_lst_sym = lst_syms;
5828
5829 curr_bfd = abfd->archive_head;
5830 while (curr_bfd != NULL)
5831 {
5832 unsigned int curr_count, i;
5833 som_symbol_type *sym;
5834
5835 /* Don't bother for non-SOM objects. */
5836 if (curr_bfd->format != bfd_object
5837 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5838 {
5839 curr_bfd = curr_bfd->next;
5840 continue;
5841 }
5842
5843 /* Make sure the symbol table has been read, then snag a pointer
5844 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5845 but doing so avoids allocating lots of extra memory. */
5846 if (som_slurp_symbol_table (curr_bfd) == false)
5847 goto error_return;
5848
5849 sym = obj_som_symtab (curr_bfd);
5850 curr_count = bfd_get_symcount (curr_bfd);
5851
5852 for (i = 0; i < curr_count; i++, sym++)
5853 {
5854 struct som_misc_symbol_info info;
5855
5856 /* Derive SOM information from the BFD symbol. */
5857 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5858
5859 /* Should we include this symbol? */
5860 if (info.symbol_type == ST_NULL
5861 || info.symbol_type == ST_SYM_EXT
5862 || info.symbol_type == ST_ARG_EXT)
5863 continue;
5864
5865 /* Only global symbols and unsatisfied commons. */
5866 if (info.symbol_scope != SS_UNIVERSAL
5867 && info.symbol_type != ST_STORAGE)
5868 continue;
5869
5870 /* Do no include undefined symbols. */
5871 if (bfd_is_und_section (sym->symbol.section))
5872 continue;
5873
5874 /* If this is the first symbol from this SOM, then update
5875 the SOM dictionary too. */
5876 if (som_dict[som_index].location == 0)
5877 {
5878 som_dict[som_index].location = curr_som_offset;
5879 som_dict[som_index].length = arelt_size (curr_bfd);
5880 }
5881
5882 /* Fill in the lst symbol record. */
5883 curr_lst_sym->hidden = 0;
5884 curr_lst_sym->secondary_def = 0;
5885 curr_lst_sym->symbol_type = info.symbol_type;
5886 curr_lst_sym->symbol_scope = info.symbol_scope;
5887 curr_lst_sym->check_level = 0;
5888 curr_lst_sym->must_qualify = 0;
5889 curr_lst_sym->initially_frozen = 0;
5890 curr_lst_sym->memory_resident = 0;
5891 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5892 curr_lst_sym->dup_common = 0;
5893 curr_lst_sym->xleast = 3;
5894 curr_lst_sym->arg_reloc = info.arg_reloc;
5895 curr_lst_sym->name.n_strx = p - strings + 4;
5896 curr_lst_sym->qualifier_name.n_strx = 0;
5897 curr_lst_sym->symbol_info = info.symbol_info;
5898 curr_lst_sym->symbol_value = info.symbol_value | info.priv_level;
5899 curr_lst_sym->symbol_descriptor = 0;
5900 curr_lst_sym->reserved = 0;
5901 curr_lst_sym->som_index = som_index;
5902 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5903 curr_lst_sym->next_entry = 0;
5904
5905 /* Insert into the hash table. */
5906 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5907 {
5908 struct lst_symbol_record *tmp;
5909
5910 /* There is already something at the head of this hash chain,
5911 so tack this symbol onto the end of the chain. */
5912 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5913 tmp->next_entry
5914 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5915 + lst.hash_size * 4
5916 + lst.module_count * sizeof (struct som_entry)
5917 + sizeof (struct lst_header);
5918 }
5919 else
5920 {
5921 /* First entry in this hash chain. */
5922 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5923 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5924 + lst.hash_size * 4
5925 + lst.module_count * sizeof (struct som_entry)
5926 + sizeof (struct lst_header);
5927 }
5928
5929 /* Keep track of the last symbol we added to this chain so we can
5930 easily update its next_entry pointer. */
5931 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5932 = curr_lst_sym;
5933
5934
5935 /* Update the string table. */
5936 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5937 p += 4;
5938 strcpy (p, sym->symbol.name);
5939 p += strlen (sym->symbol.name) + 1;
5940 while ((int)p % 4)
5941 {
5942 bfd_put_8 (abfd, 0, p);
5943 p++;
5944 }
5945
5946 /* Head to the next symbol. */
5947 curr_lst_sym++;
5948 }
5949
5950 /* Keep track of where each SOM will finally reside; then look
5951 at the next BFD. */
5952 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5953
5954 /* A particular object in the archive may have an odd length; the
5955 linker requires objects begin on an even boundary. So round
5956 up the current offset as necessary. */
5957 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5958 curr_bfd = curr_bfd->next;
5959 som_index++;
5960 }
5961
5962 /* Now scribble out the hash table. */
5963 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5964 != lst.hash_size * 4)
5965 goto error_return;
5966
5967 /* Then the SOM dictionary. */
5968 if (bfd_write ((PTR) som_dict, lst.module_count,
5969 sizeof (struct som_entry), abfd)
5970 != lst.module_count * sizeof (struct som_entry))
5971 goto error_return;
5972
5973 /* The library symbols. */
5974 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5975 != nsyms * sizeof (struct lst_symbol_record))
5976 goto error_return;
5977
5978 /* And finally the strings. */
5979 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5980 goto error_return;
5981
5982 if (hash_table != NULL)
5983 free (hash_table);
5984 if (som_dict != NULL)
5985 free (som_dict);
5986 if (last_hash_entry != NULL)
5987 free (last_hash_entry);
5988 if (lst_syms != NULL)
5989 free (lst_syms);
5990 if (strings != NULL)
5991 free (strings);
5992 return true;
5993
5994 error_return:
5995 if (hash_table != NULL)
5996 free (hash_table);
5997 if (som_dict != NULL)
5998 free (som_dict);
5999 if (last_hash_entry != NULL)
6000 free (last_hash_entry);
6001 if (lst_syms != NULL)
6002 free (lst_syms);
6003 if (strings != NULL)
6004 free (strings);
6005
6006 return false;
6007 }
6008
6009 /* Write out the LST for the archive.
6010
6011 You'll never believe this is really how armaps are handled in SOM... */
6012
6013 /*ARGSUSED*/
6014 static boolean
6015 som_write_armap (abfd, elength, map, orl_count, stridx)
6016 bfd *abfd;
6017 unsigned int elength;
6018 struct orl *map;
6019 unsigned int orl_count;
6020 int stridx;
6021 {
6022 bfd *curr_bfd;
6023 struct stat statbuf;
6024 unsigned int i, lst_size, nsyms, stringsize;
6025 struct ar_hdr hdr;
6026 struct lst_header lst;
6027 int *p;
6028
6029 /* We'll use this for the archive's date and mode later. */
6030 if (stat (abfd->filename, &statbuf) != 0)
6031 {
6032 bfd_set_error (bfd_error_system_call);
6033 return false;
6034 }
6035 /* Fudge factor. */
6036 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
6037
6038 /* Account for the lst header first. */
6039 lst_size = sizeof (struct lst_header);
6040
6041 /* Start building the LST header. */
6042 /* FIXME: Do we need to examine each element to determine the
6043 largest id number? */
6044 lst.system_id = CPU_PA_RISC1_0;
6045 lst.a_magic = LIBMAGIC;
6046 lst.version_id = VERSION_ID;
6047 lst.file_time.secs = 0;
6048 lst.file_time.nanosecs = 0;
6049
6050 lst.hash_loc = lst_size;
6051 lst.hash_size = SOM_LST_HASH_SIZE;
6052
6053 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
6054 lst_size += 4 * SOM_LST_HASH_SIZE;
6055
6056 /* We need to count the number of SOMs in this archive. */
6057 curr_bfd = abfd->archive_head;
6058 lst.module_count = 0;
6059 while (curr_bfd != NULL)
6060 {
6061 /* Only true SOM objects count. */
6062 if (curr_bfd->format == bfd_object
6063 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
6064 lst.module_count++;
6065 curr_bfd = curr_bfd->next;
6066 }
6067 lst.module_limit = lst.module_count;
6068 lst.dir_loc = lst_size;
6069 lst_size += sizeof (struct som_entry) * lst.module_count;
6070
6071 /* We don't support import/export tables, auxiliary headers,
6072 or free lists yet. Make the linker work a little harder
6073 to make our life easier. */
6074
6075 lst.export_loc = 0;
6076 lst.export_count = 0;
6077 lst.import_loc = 0;
6078 lst.aux_loc = 0;
6079 lst.aux_size = 0;
6080
6081 /* Count how many symbols we will have on the hash chains and the
6082 size of the associated string table. */
6083 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
6084 return false;
6085
6086 lst_size += sizeof (struct lst_symbol_record) * nsyms;
6087
6088 /* For the string table. One day we might actually use this info
6089 to avoid small seeks/reads when reading archives. */
6090 lst.string_loc = lst_size;
6091 lst.string_size = stringsize;
6092 lst_size += stringsize;
6093
6094 /* SOM ABI says this must be zero. */
6095 lst.free_list = 0;
6096 lst.file_end = lst_size;
6097
6098 /* Compute the checksum. Must happen after the entire lst header
6099 has filled in. */
6100 p = (int *)&lst;
6101 lst.checksum = 0;
6102 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
6103 lst.checksum ^= *p++;
6104
6105 sprintf (hdr.ar_name, "/ ");
6106 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
6107 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
6108 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
6109 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
6110 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
6111 hdr.ar_fmag[0] = '`';
6112 hdr.ar_fmag[1] = '\012';
6113
6114 /* Turn any nulls into spaces. */
6115 for (i = 0; i < sizeof (struct ar_hdr); i++)
6116 if (((char *) (&hdr))[i] == '\0')
6117 (((char *) (&hdr))[i]) = ' ';
6118
6119 /* Scribble out the ar header. */
6120 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
6121 != sizeof (struct ar_hdr))
6122 return false;
6123
6124 /* Now scribble out the lst header. */
6125 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
6126 != sizeof (struct lst_header))
6127 return false;
6128
6129 /* Build and write the armap. */
6130 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength)
6131 == false)
6132 return false;
6133
6134 /* Done. */
6135 return true;
6136 }
6137
6138 /* Free all information we have cached for this BFD. We can always
6139 read it again later if we need it. */
6140
6141 static boolean
6142 som_bfd_free_cached_info (abfd)
6143 bfd *abfd;
6144 {
6145 asection *o;
6146
6147 if (bfd_get_format (abfd) != bfd_object)
6148 return true;
6149
6150 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
6151 /* Free the native string and symbol tables. */
6152 FREE (obj_som_symtab (abfd));
6153 FREE (obj_som_stringtab (abfd));
6154 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
6155 {
6156 /* Free the native relocations. */
6157 o->reloc_count = -1;
6158 FREE (som_section_data (o)->reloc_stream);
6159 /* Free the generic relocations. */
6160 FREE (o->relocation);
6161 }
6162 #undef FREE
6163
6164 return true;
6165 }
6166
6167 /* End of miscellaneous support functions. */
6168
6169 /* Linker support functions. */
6170 static boolean
6171 som_bfd_link_split_section (abfd, sec)
6172 bfd *abfd;
6173 asection *sec;
6174 {
6175 return (som_is_subspace (sec) && sec->_raw_size > 240000);
6176 }
6177
6178 #define som_close_and_cleanup som_bfd_free_cached_info
6179
6180 #define som_read_ar_hdr _bfd_generic_read_ar_hdr
6181 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
6182 #define som_get_elt_at_index _bfd_generic_get_elt_at_index
6183 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
6184 #define som_truncate_arname bfd_bsd_truncate_arname
6185 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
6186 #define som_construct_extended_name_table \
6187 _bfd_archive_coff_construct_extended_name_table
6188 #define som_update_armap_timestamp bfd_true
6189 #define som_bfd_print_private_bfd_data _bfd_generic_bfd_print_private_bfd_data
6190
6191 #define som_get_lineno _bfd_nosymbols_get_lineno
6192 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
6193 #define som_read_minisymbols _bfd_generic_read_minisymbols
6194 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
6195 #define som_get_section_contents_in_window \
6196 _bfd_generic_get_section_contents_in_window
6197
6198 #define som_bfd_get_relocated_section_contents \
6199 bfd_generic_get_relocated_section_contents
6200 #define som_bfd_relax_section bfd_generic_relax_section
6201 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
6202 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
6203 #define som_bfd_final_link _bfd_generic_final_link
6204
6205 #define som_bfd_gc_sections bfd_generic_gc_sections
6206
6207
6208 const bfd_target som_vec =
6209 {
6210 "som", /* name */
6211 bfd_target_som_flavour,
6212 BFD_ENDIAN_BIG, /* target byte order */
6213 BFD_ENDIAN_BIG, /* target headers byte order */
6214 (HAS_RELOC | EXEC_P | /* object flags */
6215 HAS_LINENO | HAS_DEBUG |
6216 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
6217 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
6218 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
6219
6220 /* leading_symbol_char: is the first char of a user symbol
6221 predictable, and if so what is it */
6222 0,
6223 '/', /* ar_pad_char */
6224 14, /* ar_max_namelen */
6225 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6226 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6227 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
6228 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6229 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6230 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
6231 {_bfd_dummy_target,
6232 som_object_p, /* bfd_check_format */
6233 bfd_generic_archive_p,
6234 _bfd_dummy_target
6235 },
6236 {
6237 bfd_false,
6238 som_mkobject,
6239 _bfd_generic_mkarchive,
6240 bfd_false
6241 },
6242 {
6243 bfd_false,
6244 som_write_object_contents,
6245 _bfd_write_archive_contents,
6246 bfd_false,
6247 },
6248 #undef som
6249
6250 BFD_JUMP_TABLE_GENERIC (som),
6251 BFD_JUMP_TABLE_COPY (som),
6252 BFD_JUMP_TABLE_CORE (_bfd_nocore),
6253 BFD_JUMP_TABLE_ARCHIVE (som),
6254 BFD_JUMP_TABLE_SYMBOLS (som),
6255 BFD_JUMP_TABLE_RELOCS (som),
6256 BFD_JUMP_TABLE_WRITE (som),
6257 BFD_JUMP_TABLE_LINK (som),
6258 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6259
6260 (PTR) 0
6261 };
6262
6263 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.167899 seconds and 4 git commands to generate.