* libbfd.c (real_read): don't call fread for zero bytes. This
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 #include "bfd.h"
26 #include "sysdep.h"
27
28 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
29
30 #include "libbfd.h"
31 #include "som.h"
32
33 #include <sys/param.h>
34 #include <signal.h>
35 #include <machine/reg.h>
36 #include <sys/file.h>
37 #include <ctype.h>
38
39 /* Magic not defined in standard HP-UX header files until 8.0 */
40
41 #ifndef CPU_PA_RISC1_0
42 #define CPU_PA_RISC1_0 0x20B
43 #endif /* CPU_PA_RISC1_0 */
44
45 #ifndef CPU_PA_RISC1_1
46 #define CPU_PA_RISC1_1 0x210
47 #endif /* CPU_PA_RISC1_1 */
48
49 #ifndef CPU_PA_RISC2_0
50 #define CPU_PA_RISC2_0 0x214
51 #endif /* CPU_PA_RISC2_0 */
52
53 #ifndef _PA_RISC1_0_ID
54 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
55 #endif /* _PA_RISC1_0_ID */
56
57 #ifndef _PA_RISC1_1_ID
58 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
59 #endif /* _PA_RISC1_1_ID */
60
61 #ifndef _PA_RISC2_0_ID
62 #define _PA_RISC2_0_ID CPU_PA_RISC2_0
63 #endif /* _PA_RISC2_0_ID */
64
65 #ifndef _PA_RISC_MAXID
66 #define _PA_RISC_MAXID 0x2FF
67 #endif /* _PA_RISC_MAXID */
68
69 #ifndef _PA_RISC_ID
70 #define _PA_RISC_ID(__m_num) \
71 (((__m_num) == _PA_RISC1_0_ID) || \
72 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
73 #endif /* _PA_RISC_ID */
74
75
76 /* HIUX in it's infinite stupidity changed the names for several "well
77 known" constants. Work around such braindamage. Try the HPUX version
78 first, then the HIUX version, and finally provide a default. */
79 #ifdef HPUX_AUX_ID
80 #define EXEC_AUX_ID HPUX_AUX_ID
81 #endif
82
83 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
84 #define EXEC_AUX_ID HIUX_AUX_ID
85 #endif
86
87 #ifndef EXEC_AUX_ID
88 #define EXEC_AUX_ID 0
89 #endif
90
91 /* Size (in chars) of the temporary buffers used during fixup and string
92 table writes. */
93
94 #define SOM_TMP_BUFSIZE 8192
95
96 /* Size of the hash table in archives. */
97 #define SOM_LST_HASH_SIZE 31
98
99 /* Max number of SOMs to be found in an archive. */
100 #define SOM_LST_MODULE_LIMIT 1024
101
102 /* Generic alignment macro. */
103 #define SOM_ALIGN(val, alignment) \
104 (((val) + (alignment) - 1) & ~((alignment) - 1))
105
106 /* SOM allows any one of the four previous relocations to be reused
107 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
108 relocations are always a single byte, using a R_PREV_FIXUP instead
109 of some multi-byte relocation makes object files smaller.
110
111 Note one side effect of using a R_PREV_FIXUP is the relocation that
112 is being repeated moves to the front of the queue. */
113 struct reloc_queue
114 {
115 unsigned char *reloc;
116 unsigned int size;
117 } reloc_queue[4];
118
119 /* This fully describes the symbol types which may be attached to
120 an EXPORT or IMPORT directive. Only SOM uses this formation
121 (ELF has no need for it). */
122 typedef enum
123 {
124 SYMBOL_TYPE_UNKNOWN,
125 SYMBOL_TYPE_ABSOLUTE,
126 SYMBOL_TYPE_CODE,
127 SYMBOL_TYPE_DATA,
128 SYMBOL_TYPE_ENTRY,
129 SYMBOL_TYPE_MILLICODE,
130 SYMBOL_TYPE_PLABEL,
131 SYMBOL_TYPE_PRI_PROG,
132 SYMBOL_TYPE_SEC_PROG,
133 } pa_symbol_type;
134
135 struct section_to_type
136 {
137 char *section;
138 char type;
139 };
140
141 /* Assorted symbol information that needs to be derived from the BFD symbol
142 and/or the BFD backend private symbol data. */
143 struct som_misc_symbol_info
144 {
145 unsigned int symbol_type;
146 unsigned int symbol_scope;
147 unsigned int arg_reloc;
148 unsigned int symbol_info;
149 unsigned int symbol_value;
150 };
151
152 /* Forward declarations */
153
154 static boolean som_mkobject PARAMS ((bfd *));
155 static const bfd_target * som_object_setup PARAMS ((bfd *,
156 struct header *,
157 struct som_exec_auxhdr *));
158 static boolean setup_sections PARAMS ((bfd *, struct header *));
159 static const bfd_target * som_object_p PARAMS ((bfd *));
160 static boolean som_write_object_contents PARAMS ((bfd *));
161 static boolean som_slurp_string_table PARAMS ((bfd *));
162 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
163 static long som_get_symtab_upper_bound PARAMS ((bfd *));
164 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
165 arelent **, asymbol **));
166 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
167 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
168 arelent *, asection *,
169 asymbol **, boolean));
170 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
171 asymbol **, boolean));
172 static long som_get_symtab PARAMS ((bfd *, asymbol **));
173 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
174 static void som_print_symbol PARAMS ((bfd *, PTR,
175 asymbol *, bfd_print_symbol_type));
176 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
177 static boolean som_bfd_copy_private_symbol_data PARAMS ((bfd *, asymbol *,
178 bfd *, asymbol *));
179 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
180 bfd *, asection *));
181 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
182 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
183 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
184 static boolean som_bfd_is_local_label_name PARAMS ((bfd *, const char *));
185 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
186 file_ptr, bfd_size_type));
187 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
188 file_ptr, bfd_size_type));
189 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
190 unsigned long));
191 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
192 asymbol **, bfd_vma,
193 CONST char **,
194 CONST char **,
195 unsigned int *));
196 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
197 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
198 struct symbol_dictionary_record *));
199 static int log2 PARAMS ((unsigned int));
200 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
201 asymbol *, PTR,
202 asection *, bfd *,
203 char **));
204 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
205 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
206 struct reloc_queue *));
207 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
208 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
209 struct reloc_queue *));
210 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
211 unsigned int,
212 struct reloc_queue *));
213
214 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
215 unsigned char *, unsigned int *,
216 struct reloc_queue *));
217 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
218 unsigned int *,
219 struct reloc_queue *));
220 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
221 unsigned int *,
222 arelent *, int,
223 struct reloc_queue *));
224 static unsigned long som_count_spaces PARAMS ((bfd *));
225 static unsigned long som_count_subspaces PARAMS ((bfd *));
226 static int compare_syms PARAMS ((const void *, const void *));
227 static int compare_subspaces PARAMS ((const void *, const void *));
228 static unsigned long som_compute_checksum PARAMS ((bfd *));
229 static boolean som_prep_headers PARAMS ((bfd *));
230 static int som_sizeof_headers PARAMS ((bfd *, boolean));
231 static boolean som_finish_writing PARAMS ((bfd *));
232 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
233 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
234 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
235 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
236 unsigned int *));
237 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
238 asymbol **, unsigned int,
239 unsigned *));
240 static boolean som_begin_writing PARAMS ((bfd *));
241 static reloc_howto_type * som_bfd_reloc_type_lookup
242 PARAMS ((bfd *, bfd_reloc_code_real_type));
243 static char som_section_type PARAMS ((const char *));
244 static int som_decode_symclass PARAMS ((asymbol *));
245 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
246 symindex *));
247
248 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
249 carsym **syms));
250 static boolean som_slurp_armap PARAMS ((bfd *));
251 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
252 unsigned int, int));
253 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
254 struct som_misc_symbol_info *));
255 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
256 unsigned int *));
257 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
258 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
259 unsigned int,
260 struct lst_header,
261 unsigned int));
262 static boolean som_is_space PARAMS ((asection *));
263 static boolean som_is_subspace PARAMS ((asection *));
264 static boolean som_is_container PARAMS ((asection *, asection *));
265 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
266 static boolean som_bfd_link_split_section PARAMS ((bfd *, asection *));
267
268 /* Map SOM section names to POSIX/BSD single-character symbol types.
269
270 This table includes all the standard subspaces as defined in the
271 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
272 some reason was left out, and sections specific to embedded stabs. */
273
274 static const struct section_to_type stt[] = {
275 {"$TEXT$", 't'},
276 {"$SHLIB_INFO$", 't'},
277 {"$MILLICODE$", 't'},
278 {"$LIT$", 't'},
279 {"$CODE$", 't'},
280 {"$UNWIND_START$", 't'},
281 {"$UNWIND$", 't'},
282 {"$PRIVATE$", 'd'},
283 {"$PLT$", 'd'},
284 {"$SHLIB_DATA$", 'd'},
285 {"$DATA$", 'd'},
286 {"$SHORTDATA$", 'g'},
287 {"$DLT$", 'd'},
288 {"$GLOBAL$", 'g'},
289 {"$SHORTBSS$", 's'},
290 {"$BSS$", 'b'},
291 {"$GDB_STRINGS$", 'N'},
292 {"$GDB_SYMBOLS$", 'N'},
293 {0, 0}
294 };
295
296 /* About the relocation formatting table...
297
298 There are 256 entries in the table, one for each possible
299 relocation opcode available in SOM. We index the table by
300 the relocation opcode. The names and operations are those
301 defined by a.out_800 (4).
302
303 Right now this table is only used to count and perform minimal
304 processing on relocation streams so that they can be internalized
305 into BFD and symbolically printed by utilities. To make actual use
306 of them would be much more difficult, BFD's concept of relocations
307 is far too simple to handle SOM relocations. The basic assumption
308 that a relocation can be completely processed independent of other
309 relocations before an object file is written is invalid for SOM.
310
311 The SOM relocations are meant to be processed as a stream, they
312 specify copying of data from the input section to the output section
313 while possibly modifying the data in some manner. They also can
314 specify that a variable number of zeros or uninitialized data be
315 inserted on in the output segment at the current offset. Some
316 relocations specify that some previous relocation be re-applied at
317 the current location in the input/output sections. And finally a number
318 of relocations have effects on other sections (R_ENTRY, R_EXIT,
319 R_UNWIND_AUX and a variety of others). There isn't even enough room
320 in the BFD relocation data structure to store enough information to
321 perform all the relocations.
322
323 Each entry in the table has three fields.
324
325 The first entry is an index into this "class" of relocations. This
326 index can then be used as a variable within the relocation itself.
327
328 The second field is a format string which actually controls processing
329 of the relocation. It uses a simple postfix machine to do calculations
330 based on variables/constants found in the string and the relocation
331 stream.
332
333 The third field specifys whether or not this relocation may use
334 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
335 stored in the instruction.
336
337 Variables:
338
339 L = input space byte count
340 D = index into class of relocations
341 M = output space byte count
342 N = statement number (unused?)
343 O = stack operation
344 R = parameter relocation bits
345 S = symbol index
346 T = first 32 bits of stack unwind information
347 U = second 32 bits of stack unwind information
348 V = a literal constant (usually used in the next relocation)
349 P = a previous relocation
350
351 Lower case letters (starting with 'b') refer to following
352 bytes in the relocation stream. 'b' is the next 1 byte,
353 c is the next 2 bytes, d is the next 3 bytes, etc...
354 This is the variable part of the relocation entries that
355 makes our life a living hell.
356
357 numerical constants are also used in the format string. Note
358 the constants are represented in decimal.
359
360 '+', "*" and "=" represents the obvious postfix operators.
361 '<' represents a left shift.
362
363 Stack Operations:
364
365 Parameter Relocation Bits:
366
367 Unwind Entries:
368
369 Previous Relocations: The index field represents which in the queue
370 of 4 previous fixups should be re-applied.
371
372 Literal Constants: These are generally used to represent addend
373 parts of relocations when these constants are not stored in the
374 fields of the instructions themselves. For example the instruction
375 addil foo-$global$-0x1234 would use an override for "0x1234" rather
376 than storing it into the addil itself. */
377
378 struct fixup_format
379 {
380 int D;
381 char *format;
382 };
383
384 static const struct fixup_format som_fixup_formats[256] =
385 {
386 /* R_NO_RELOCATION */
387 0, "LD1+4*=", /* 0x00 */
388 1, "LD1+4*=", /* 0x01 */
389 2, "LD1+4*=", /* 0x02 */
390 3, "LD1+4*=", /* 0x03 */
391 4, "LD1+4*=", /* 0x04 */
392 5, "LD1+4*=", /* 0x05 */
393 6, "LD1+4*=", /* 0x06 */
394 7, "LD1+4*=", /* 0x07 */
395 8, "LD1+4*=", /* 0x08 */
396 9, "LD1+4*=", /* 0x09 */
397 10, "LD1+4*=", /* 0x0a */
398 11, "LD1+4*=", /* 0x0b */
399 12, "LD1+4*=", /* 0x0c */
400 13, "LD1+4*=", /* 0x0d */
401 14, "LD1+4*=", /* 0x0e */
402 15, "LD1+4*=", /* 0x0f */
403 16, "LD1+4*=", /* 0x10 */
404 17, "LD1+4*=", /* 0x11 */
405 18, "LD1+4*=", /* 0x12 */
406 19, "LD1+4*=", /* 0x13 */
407 20, "LD1+4*=", /* 0x14 */
408 21, "LD1+4*=", /* 0x15 */
409 22, "LD1+4*=", /* 0x16 */
410 23, "LD1+4*=", /* 0x17 */
411 0, "LD8<b+1+4*=", /* 0x18 */
412 1, "LD8<b+1+4*=", /* 0x19 */
413 2, "LD8<b+1+4*=", /* 0x1a */
414 3, "LD8<b+1+4*=", /* 0x1b */
415 0, "LD16<c+1+4*=", /* 0x1c */
416 1, "LD16<c+1+4*=", /* 0x1d */
417 2, "LD16<c+1+4*=", /* 0x1e */
418 0, "Ld1+=", /* 0x1f */
419 /* R_ZEROES */
420 0, "Lb1+4*=", /* 0x20 */
421 1, "Ld1+=", /* 0x21 */
422 /* R_UNINIT */
423 0, "Lb1+4*=", /* 0x22 */
424 1, "Ld1+=", /* 0x23 */
425 /* R_RELOCATION */
426 0, "L4=", /* 0x24 */
427 /* R_DATA_ONE_SYMBOL */
428 0, "L4=Sb=", /* 0x25 */
429 1, "L4=Sd=", /* 0x26 */
430 /* R_DATA_PLEBEL */
431 0, "L4=Sb=", /* 0x27 */
432 1, "L4=Sd=", /* 0x28 */
433 /* R_SPACE_REF */
434 0, "L4=", /* 0x29 */
435 /* R_REPEATED_INIT */
436 0, "L4=Mb1+4*=", /* 0x2a */
437 1, "Lb4*=Mb1+L*=", /* 0x2b */
438 2, "Lb4*=Md1+4*=", /* 0x2c */
439 3, "Ld1+=Me1+=", /* 0x2d */
440 /* R_SHORT_PCREL_MODE */
441 0, "", /* 0x2e */
442 /* R_LONG_PCREL_MODE */
443 0, "", /* 0x2f */
444 /* R_PCREL_CALL */
445 0, "L4=RD=Sb=", /* 0x30 */
446 1, "L4=RD=Sb=", /* 0x31 */
447 2, "L4=RD=Sb=", /* 0x32 */
448 3, "L4=RD=Sb=", /* 0x33 */
449 4, "L4=RD=Sb=", /* 0x34 */
450 5, "L4=RD=Sb=", /* 0x35 */
451 6, "L4=RD=Sb=", /* 0x36 */
452 7, "L4=RD=Sb=", /* 0x37 */
453 8, "L4=RD=Sb=", /* 0x38 */
454 9, "L4=RD=Sb=", /* 0x39 */
455 0, "L4=RD8<b+=Sb=",/* 0x3a */
456 1, "L4=RD8<b+=Sb=",/* 0x3b */
457 0, "L4=RD8<b+=Sd=",/* 0x3c */
458 1, "L4=RD8<b+=Sd=",/* 0x3d */
459 /* R_RESERVED */
460 0, "", /* 0x3e */
461 0, "", /* 0x3f */
462 /* R_ABS_CALL */
463 0, "L4=RD=Sb=", /* 0x40 */
464 1, "L4=RD=Sb=", /* 0x41 */
465 2, "L4=RD=Sb=", /* 0x42 */
466 3, "L4=RD=Sb=", /* 0x43 */
467 4, "L4=RD=Sb=", /* 0x44 */
468 5, "L4=RD=Sb=", /* 0x45 */
469 6, "L4=RD=Sb=", /* 0x46 */
470 7, "L4=RD=Sb=", /* 0x47 */
471 8, "L4=RD=Sb=", /* 0x48 */
472 9, "L4=RD=Sb=", /* 0x49 */
473 0, "L4=RD8<b+=Sb=",/* 0x4a */
474 1, "L4=RD8<b+=Sb=",/* 0x4b */
475 0, "L4=RD8<b+=Sd=",/* 0x4c */
476 1, "L4=RD8<b+=Sd=",/* 0x4d */
477 /* R_RESERVED */
478 0, "", /* 0x4e */
479 0, "", /* 0x4f */
480 /* R_DP_RELATIVE */
481 0, "L4=SD=", /* 0x50 */
482 1, "L4=SD=", /* 0x51 */
483 2, "L4=SD=", /* 0x52 */
484 3, "L4=SD=", /* 0x53 */
485 4, "L4=SD=", /* 0x54 */
486 5, "L4=SD=", /* 0x55 */
487 6, "L4=SD=", /* 0x56 */
488 7, "L4=SD=", /* 0x57 */
489 8, "L4=SD=", /* 0x58 */
490 9, "L4=SD=", /* 0x59 */
491 10, "L4=SD=", /* 0x5a */
492 11, "L4=SD=", /* 0x5b */
493 12, "L4=SD=", /* 0x5c */
494 13, "L4=SD=", /* 0x5d */
495 14, "L4=SD=", /* 0x5e */
496 15, "L4=SD=", /* 0x5f */
497 16, "L4=SD=", /* 0x60 */
498 17, "L4=SD=", /* 0x61 */
499 18, "L4=SD=", /* 0x62 */
500 19, "L4=SD=", /* 0x63 */
501 20, "L4=SD=", /* 0x64 */
502 21, "L4=SD=", /* 0x65 */
503 22, "L4=SD=", /* 0x66 */
504 23, "L4=SD=", /* 0x67 */
505 24, "L4=SD=", /* 0x68 */
506 25, "L4=SD=", /* 0x69 */
507 26, "L4=SD=", /* 0x6a */
508 27, "L4=SD=", /* 0x6b */
509 28, "L4=SD=", /* 0x6c */
510 29, "L4=SD=", /* 0x6d */
511 30, "L4=SD=", /* 0x6e */
512 31, "L4=SD=", /* 0x6f */
513 32, "L4=Sb=", /* 0x70 */
514 33, "L4=Sd=", /* 0x71 */
515 /* R_RESERVED */
516 0, "", /* 0x72 */
517 0, "", /* 0x73 */
518 0, "", /* 0x74 */
519 0, "", /* 0x75 */
520 0, "", /* 0x76 */
521 0, "", /* 0x77 */
522 /* R_DLT_REL */
523 0, "L4=Sb=", /* 0x78 */
524 1, "L4=Sd=", /* 0x79 */
525 /* R_RESERVED */
526 0, "", /* 0x7a */
527 0, "", /* 0x7b */
528 0, "", /* 0x7c */
529 0, "", /* 0x7d */
530 0, "", /* 0x7e */
531 0, "", /* 0x7f */
532 /* R_CODE_ONE_SYMBOL */
533 0, "L4=SD=", /* 0x80 */
534 1, "L4=SD=", /* 0x81 */
535 2, "L4=SD=", /* 0x82 */
536 3, "L4=SD=", /* 0x83 */
537 4, "L4=SD=", /* 0x84 */
538 5, "L4=SD=", /* 0x85 */
539 6, "L4=SD=", /* 0x86 */
540 7, "L4=SD=", /* 0x87 */
541 8, "L4=SD=", /* 0x88 */
542 9, "L4=SD=", /* 0x89 */
543 10, "L4=SD=", /* 0x8q */
544 11, "L4=SD=", /* 0x8b */
545 12, "L4=SD=", /* 0x8c */
546 13, "L4=SD=", /* 0x8d */
547 14, "L4=SD=", /* 0x8e */
548 15, "L4=SD=", /* 0x8f */
549 16, "L4=SD=", /* 0x90 */
550 17, "L4=SD=", /* 0x91 */
551 18, "L4=SD=", /* 0x92 */
552 19, "L4=SD=", /* 0x93 */
553 20, "L4=SD=", /* 0x94 */
554 21, "L4=SD=", /* 0x95 */
555 22, "L4=SD=", /* 0x96 */
556 23, "L4=SD=", /* 0x97 */
557 24, "L4=SD=", /* 0x98 */
558 25, "L4=SD=", /* 0x99 */
559 26, "L4=SD=", /* 0x9a */
560 27, "L4=SD=", /* 0x9b */
561 28, "L4=SD=", /* 0x9c */
562 29, "L4=SD=", /* 0x9d */
563 30, "L4=SD=", /* 0x9e */
564 31, "L4=SD=", /* 0x9f */
565 32, "L4=Sb=", /* 0xa0 */
566 33, "L4=Sd=", /* 0xa1 */
567 /* R_RESERVED */
568 0, "", /* 0xa2 */
569 0, "", /* 0xa3 */
570 0, "", /* 0xa4 */
571 0, "", /* 0xa5 */
572 0, "", /* 0xa6 */
573 0, "", /* 0xa7 */
574 0, "", /* 0xa8 */
575 0, "", /* 0xa9 */
576 0, "", /* 0xaa */
577 0, "", /* 0xab */
578 0, "", /* 0xac */
579 0, "", /* 0xad */
580 /* R_MILLI_REL */
581 0, "L4=Sb=", /* 0xae */
582 1, "L4=Sd=", /* 0xaf */
583 /* R_CODE_PLABEL */
584 0, "L4=Sb=", /* 0xb0 */
585 1, "L4=Sd=", /* 0xb1 */
586 /* R_BREAKPOINT */
587 0, "L4=", /* 0xb2 */
588 /* R_ENTRY */
589 0, "Te=Ue=", /* 0xb3 */
590 1, "Uf=", /* 0xb4 */
591 /* R_ALT_ENTRY */
592 0, "", /* 0xb5 */
593 /* R_EXIT */
594 0, "", /* 0xb6 */
595 /* R_BEGIN_TRY */
596 0, "", /* 0xb7 */
597 /* R_END_TRY */
598 0, "R0=", /* 0xb8 */
599 1, "Rb4*=", /* 0xb9 */
600 2, "Rd4*=", /* 0xba */
601 /* R_BEGIN_BRTAB */
602 0, "", /* 0xbb */
603 /* R_END_BRTAB */
604 0, "", /* 0xbc */
605 /* R_STATEMENT */
606 0, "Nb=", /* 0xbd */
607 1, "Nc=", /* 0xbe */
608 2, "Nd=", /* 0xbf */
609 /* R_DATA_EXPR */
610 0, "L4=", /* 0xc0 */
611 /* R_CODE_EXPR */
612 0, "L4=", /* 0xc1 */
613 /* R_FSEL */
614 0, "", /* 0xc2 */
615 /* R_LSEL */
616 0, "", /* 0xc3 */
617 /* R_RSEL */
618 0, "", /* 0xc4 */
619 /* R_N_MODE */
620 0, "", /* 0xc5 */
621 /* R_S_MODE */
622 0, "", /* 0xc6 */
623 /* R_D_MODE */
624 0, "", /* 0xc7 */
625 /* R_R_MODE */
626 0, "", /* 0xc8 */
627 /* R_DATA_OVERRIDE */
628 0, "V0=", /* 0xc9 */
629 1, "Vb=", /* 0xca */
630 2, "Vc=", /* 0xcb */
631 3, "Vd=", /* 0xcc */
632 4, "Ve=", /* 0xcd */
633 /* R_TRANSLATED */
634 0, "", /* 0xce */
635 /* R_RESERVED */
636 0, "", /* 0xcf */
637 /* R_COMP1 */
638 0, "Ob=", /* 0xd0 */
639 /* R_COMP2 */
640 0, "Ob=Sd=", /* 0xd1 */
641 /* R_COMP3 */
642 0, "Ob=Ve=", /* 0xd2 */
643 /* R_PREV_FIXUP */
644 0, "P", /* 0xd3 */
645 1, "P", /* 0xd4 */
646 2, "P", /* 0xd5 */
647 3, "P", /* 0xd6 */
648 /* R_SEC_STMT */
649 0, "", /* 0xd7 */
650 /* R_N0SEL */
651 0, "", /* 0xd8 */
652 /* R_N1SEL */
653 0, "", /* 0xd9 */
654 /* R_LINETAB */
655 0, "", /* 0xda */
656 /* R_LINETAB_ESC */
657 0, "", /* 0xdb */
658 /* R_LTP_OVERRIDE */
659 0, "", /* 0xdc */
660 /* R_COMMENT */
661 0, "", /* 0xdd */
662 /* R_RESERVED */
663 0, "", /* 0xde */
664 0, "", /* 0xdf */
665 0, "", /* 0xe0 */
666 0, "", /* 0xe1 */
667 0, "", /* 0xe2 */
668 0, "", /* 0xe3 */
669 0, "", /* 0xe4 */
670 0, "", /* 0xe5 */
671 0, "", /* 0xe6 */
672 0, "", /* 0xe7 */
673 0, "", /* 0xe8 */
674 0, "", /* 0xe9 */
675 0, "", /* 0xea */
676 0, "", /* 0xeb */
677 0, "", /* 0xec */
678 0, "", /* 0xed */
679 0, "", /* 0xee */
680 0, "", /* 0xef */
681 0, "", /* 0xf0 */
682 0, "", /* 0xf1 */
683 0, "", /* 0xf2 */
684 0, "", /* 0xf3 */
685 0, "", /* 0xf4 */
686 0, "", /* 0xf5 */
687 0, "", /* 0xf6 */
688 0, "", /* 0xf7 */
689 0, "", /* 0xf8 */
690 0, "", /* 0xf9 */
691 0, "", /* 0xfa */
692 0, "", /* 0xfb */
693 0, "", /* 0xfc */
694 0, "", /* 0xfd */
695 0, "", /* 0xfe */
696 0, "", /* 0xff */
697 };
698
699 static const int comp1_opcodes[] =
700 {
701 0x00,
702 0x40,
703 0x41,
704 0x42,
705 0x43,
706 0x44,
707 0x45,
708 0x46,
709 0x47,
710 0x48,
711 0x49,
712 0x4a,
713 0x4b,
714 0x60,
715 0x80,
716 0xa0,
717 0xc0,
718 -1
719 };
720
721 static const int comp2_opcodes[] =
722 {
723 0x00,
724 0x80,
725 0x82,
726 0xc0,
727 -1
728 };
729
730 static const int comp3_opcodes[] =
731 {
732 0x00,
733 0x02,
734 -1
735 };
736
737 /* These apparently are not in older versions of hpux reloc.h (hpux7). */
738 #ifndef R_DLT_REL
739 #define R_DLT_REL 0x78
740 #endif
741
742 #ifndef R_AUX_UNWIND
743 #define R_AUX_UNWIND 0xcf
744 #endif
745
746 #ifndef R_SEC_STMT
747 #define R_SEC_STMT 0xd7
748 #endif
749
750 /* And these first appeared in hpux10. */
751 #ifndef R_SHORT_PCREL_MODE
752 #define R_SHORT_PCREL_MODE 0x3e
753 #endif
754
755 #ifndef R_LONG_PCREL_MODE
756 #define R_LONG_PCREL_MODE 0x3f
757 #endif
758
759 #ifndef R_N0SEL
760 #define R_N0SEL 0xd8
761 #endif
762
763 #ifndef R_N1SEL
764 #define R_N1SEL 0xd9
765 #endif
766
767 #ifndef R_LINETAB
768 #define R_LINETAB 0xda
769 #endif
770
771 #ifndef R_LINETAB_ESC
772 #define R_LINETAB_ESC 0xdb
773 #endif
774
775 #ifndef R_LTP_OVERRIDE
776 #define R_LTP_OVERRIDE 0xdc
777 #endif
778
779 #ifndef R_COMMENT
780 #define R_COMMENT 0xdd
781 #endif
782
783 static reloc_howto_type som_hppa_howto_table[] =
784 {
785 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
786 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
787 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
788 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
789 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
790 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
791 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
792 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
793 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
794 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
795 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
796 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
797 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
798 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
799 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
800 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
801 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
802 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
803 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
804 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
805 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
806 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
807 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
808 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
809 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
810 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
811 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
812 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
813 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
814 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
815 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
816 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
817 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
818 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
819 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
820 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
821 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
822 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
823 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
824 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
825 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
826 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
827 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
828 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
829 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
830 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
831 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
832 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
833 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
834 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
835 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
836 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
837 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
838 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
839 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
840 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
841 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
842 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
843 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
844 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
845 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
846 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
847 {R_SHORT_PCREL_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SHORT_PCREL_MODE"},
848 {R_LONG_PCREL_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LONG_PCREL_MODE"},
849 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
850 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
851 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
852 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
853 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
854 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
855 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
856 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
857 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
858 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
859 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
860 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
861 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
862 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
863 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
864 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
865 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
866 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
867 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
868 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
869 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
870 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
871 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
872 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
873 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
874 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
875 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
876 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
877 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
878 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
879 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
880 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
881 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
882 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
883 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
884 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
885 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
886 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
887 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
888 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
889 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
890 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
891 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
892 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
893 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
894 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
895 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
896 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
897 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
898 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
899 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
904 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
905 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
906 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
907 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
908 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
909 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
910 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
911 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
912 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
913 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
914 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
915 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
916 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
917 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
918 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
919 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
920 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
921 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
922 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
923 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
924 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
925 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
926 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
927 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
928 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
929 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
930 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
931 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
932 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
933 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
934 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
935 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
936 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
937 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
938 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
939 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
940 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
941 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
942 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
943 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
944 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
945 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
946 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
947 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
960 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
961 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
962 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
963 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
964 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
965 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
966 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
967 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
968 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
969 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
970 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
971 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
972 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
973 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
974 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
975 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
976 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
977 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
978 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
979 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
980 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
981 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
982 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
983 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
984 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
985 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
986 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
987 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
988 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
989 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
990 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
991 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
992 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
993 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
994 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
995 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
996 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
997 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
998 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
999 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
1000 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
1001 {R_N0SEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N0SEL"},
1002 {R_N1SEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N1SEL"},
1003 {R_LINETAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LINETAB"},
1004 {R_LINETAB_ESC, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LINETAB_ESC"},
1005 {R_LTP_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LTP_OVERRIDE"},
1006 {R_COMMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMMENT"},
1007 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1008 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1009 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1010 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1011 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1012 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1013 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1014 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1015 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1016 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1017 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1018 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1019 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1020 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1021 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1022 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1023 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1024 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1025 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1026 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1027 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1028 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1029 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1030 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1031 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1032 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1033 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1034 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1035 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1036 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1037 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1038 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1039 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
1040 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
1041
1042 /* Initialize the SOM relocation queue. By definition the queue holds
1043 the last four multibyte fixups. */
1044
1045 static void
1046 som_initialize_reloc_queue (queue)
1047 struct reloc_queue *queue;
1048 {
1049 queue[0].reloc = NULL;
1050 queue[0].size = 0;
1051 queue[1].reloc = NULL;
1052 queue[1].size = 0;
1053 queue[2].reloc = NULL;
1054 queue[2].size = 0;
1055 queue[3].reloc = NULL;
1056 queue[3].size = 0;
1057 }
1058
1059 /* Insert a new relocation into the relocation queue. */
1060
1061 static void
1062 som_reloc_queue_insert (p, size, queue)
1063 unsigned char *p;
1064 unsigned int size;
1065 struct reloc_queue *queue;
1066 {
1067 queue[3].reloc = queue[2].reloc;
1068 queue[3].size = queue[2].size;
1069 queue[2].reloc = queue[1].reloc;
1070 queue[2].size = queue[1].size;
1071 queue[1].reloc = queue[0].reloc;
1072 queue[1].size = queue[0].size;
1073 queue[0].reloc = p;
1074 queue[0].size = size;
1075 }
1076
1077 /* When an entry in the relocation queue is reused, the entry moves
1078 to the front of the queue. */
1079
1080 static void
1081 som_reloc_queue_fix (queue, index)
1082 struct reloc_queue *queue;
1083 unsigned int index;
1084 {
1085 if (index == 0)
1086 return;
1087
1088 if (index == 1)
1089 {
1090 unsigned char *tmp1 = queue[0].reloc;
1091 unsigned int tmp2 = queue[0].size;
1092 queue[0].reloc = queue[1].reloc;
1093 queue[0].size = queue[1].size;
1094 queue[1].reloc = tmp1;
1095 queue[1].size = tmp2;
1096 return;
1097 }
1098
1099 if (index == 2)
1100 {
1101 unsigned char *tmp1 = queue[0].reloc;
1102 unsigned int tmp2 = queue[0].size;
1103 queue[0].reloc = queue[2].reloc;
1104 queue[0].size = queue[2].size;
1105 queue[2].reloc = queue[1].reloc;
1106 queue[2].size = queue[1].size;
1107 queue[1].reloc = tmp1;
1108 queue[1].size = tmp2;
1109 return;
1110 }
1111
1112 if (index == 3)
1113 {
1114 unsigned char *tmp1 = queue[0].reloc;
1115 unsigned int tmp2 = queue[0].size;
1116 queue[0].reloc = queue[3].reloc;
1117 queue[0].size = queue[3].size;
1118 queue[3].reloc = queue[2].reloc;
1119 queue[3].size = queue[2].size;
1120 queue[2].reloc = queue[1].reloc;
1121 queue[2].size = queue[1].size;
1122 queue[1].reloc = tmp1;
1123 queue[1].size = tmp2;
1124 return;
1125 }
1126 abort();
1127 }
1128
1129 /* Search for a particular relocation in the relocation queue. */
1130
1131 static int
1132 som_reloc_queue_find (p, size, queue)
1133 unsigned char *p;
1134 unsigned int size;
1135 struct reloc_queue *queue;
1136 {
1137 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1138 && size == queue[0].size)
1139 return 0;
1140 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1141 && size == queue[1].size)
1142 return 1;
1143 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1144 && size == queue[2].size)
1145 return 2;
1146 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1147 && size == queue[3].size)
1148 return 3;
1149 return -1;
1150 }
1151
1152 static unsigned char *
1153 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1154 bfd *abfd;
1155 int *subspace_reloc_sizep;
1156 unsigned char *p;
1157 unsigned int size;
1158 struct reloc_queue *queue;
1159 {
1160 int queue_index = som_reloc_queue_find (p, size, queue);
1161
1162 if (queue_index != -1)
1163 {
1164 /* Found this in a previous fixup. Undo the fixup we
1165 just built and use R_PREV_FIXUP instead. We saved
1166 a total of size - 1 bytes in the fixup stream. */
1167 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1168 p += 1;
1169 *subspace_reloc_sizep += 1;
1170 som_reloc_queue_fix (queue, queue_index);
1171 }
1172 else
1173 {
1174 som_reloc_queue_insert (p, size, queue);
1175 *subspace_reloc_sizep += size;
1176 p += size;
1177 }
1178 return p;
1179 }
1180
1181 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1182 bytes without any relocation. Update the size of the subspace
1183 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1184 current pointer into the relocation stream. */
1185
1186 static unsigned char *
1187 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1188 bfd *abfd;
1189 unsigned int skip;
1190 unsigned char *p;
1191 unsigned int *subspace_reloc_sizep;
1192 struct reloc_queue *queue;
1193 {
1194 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1195 then R_PREV_FIXUPs to get the difference down to a
1196 reasonable size. */
1197 if (skip >= 0x1000000)
1198 {
1199 skip -= 0x1000000;
1200 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1201 bfd_put_8 (abfd, 0xff, p + 1);
1202 bfd_put_16 (abfd, 0xffff, p + 2);
1203 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1204 while (skip >= 0x1000000)
1205 {
1206 skip -= 0x1000000;
1207 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1208 p++;
1209 *subspace_reloc_sizep += 1;
1210 /* No need to adjust queue here since we are repeating the
1211 most recent fixup. */
1212 }
1213 }
1214
1215 /* The difference must be less than 0x1000000. Use one
1216 more R_NO_RELOCATION entry to get to the right difference. */
1217 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1218 {
1219 /* Difference can be handled in a simple single-byte
1220 R_NO_RELOCATION entry. */
1221 if (skip <= 0x60)
1222 {
1223 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1224 *subspace_reloc_sizep += 1;
1225 p++;
1226 }
1227 /* Handle it with a two byte R_NO_RELOCATION entry. */
1228 else if (skip <= 0x1000)
1229 {
1230 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1231 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1232 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1233 }
1234 /* Handle it with a three byte R_NO_RELOCATION entry. */
1235 else
1236 {
1237 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1238 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1239 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1240 }
1241 }
1242 /* Ugh. Punt and use a 4 byte entry. */
1243 else if (skip > 0)
1244 {
1245 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1246 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1247 bfd_put_16 (abfd, skip - 1, p + 2);
1248 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1249 }
1250 return p;
1251 }
1252
1253 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1254 from a BFD relocation. Update the size of the subspace relocation
1255 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1256 into the relocation stream. */
1257
1258 static unsigned char *
1259 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1260 bfd *abfd;
1261 int addend;
1262 unsigned char *p;
1263 unsigned int *subspace_reloc_sizep;
1264 struct reloc_queue *queue;
1265 {
1266 if ((unsigned)(addend) + 0x80 < 0x100)
1267 {
1268 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1269 bfd_put_8 (abfd, addend, p + 1);
1270 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1271 }
1272 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1273 {
1274 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1275 bfd_put_16 (abfd, addend, p + 1);
1276 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1277 }
1278 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1279 {
1280 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1281 bfd_put_8 (abfd, addend >> 16, p + 1);
1282 bfd_put_16 (abfd, addend, p + 2);
1283 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1284 }
1285 else
1286 {
1287 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1288 bfd_put_32 (abfd, addend, p + 1);
1289 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1290 }
1291 return p;
1292 }
1293
1294 /* Handle a single function call relocation. */
1295
1296 static unsigned char *
1297 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1298 bfd *abfd;
1299 unsigned char *p;
1300 unsigned int *subspace_reloc_sizep;
1301 arelent *bfd_reloc;
1302 int sym_num;
1303 struct reloc_queue *queue;
1304 {
1305 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1306 int rtn_bits = arg_bits & 0x3;
1307 int type, done = 0;
1308
1309 /* You'll never believe all this is necessary to handle relocations
1310 for function calls. Having to compute and pack the argument
1311 relocation bits is the real nightmare.
1312
1313 If you're interested in how this works, just forget it. You really
1314 do not want to know about this braindamage. */
1315
1316 /* First see if this can be done with a "simple" relocation. Simple
1317 relocations have a symbol number < 0x100 and have simple encodings
1318 of argument relocations. */
1319
1320 if (sym_num < 0x100)
1321 {
1322 switch (arg_bits)
1323 {
1324 case 0:
1325 case 1:
1326 type = 0;
1327 break;
1328 case 1 << 8:
1329 case 1 << 8 | 1:
1330 type = 1;
1331 break;
1332 case 1 << 8 | 1 << 6:
1333 case 1 << 8 | 1 << 6 | 1:
1334 type = 2;
1335 break;
1336 case 1 << 8 | 1 << 6 | 1 << 4:
1337 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1338 type = 3;
1339 break;
1340 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1341 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1342 type = 4;
1343 break;
1344 default:
1345 /* Not one of the easy encodings. This will have to be
1346 handled by the more complex code below. */
1347 type = -1;
1348 break;
1349 }
1350 if (type != -1)
1351 {
1352 /* Account for the return value too. */
1353 if (rtn_bits)
1354 type += 5;
1355
1356 /* Emit a 2 byte relocation. Then see if it can be handled
1357 with a relocation which is already in the relocation queue. */
1358 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1359 bfd_put_8 (abfd, sym_num, p + 1);
1360 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1361 done = 1;
1362 }
1363 }
1364
1365 /* If this could not be handled with a simple relocation, then do a hard
1366 one. Hard relocations occur if the symbol number was too high or if
1367 the encoding of argument relocation bits is too complex. */
1368 if (! done)
1369 {
1370 /* Don't ask about these magic sequences. I took them straight
1371 from gas-1.36 which took them from the a.out man page. */
1372 type = rtn_bits;
1373 if ((arg_bits >> 6 & 0xf) == 0xe)
1374 type += 9 * 40;
1375 else
1376 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1377 if ((arg_bits >> 2 & 0xf) == 0xe)
1378 type += 9 * 4;
1379 else
1380 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1381
1382 /* Output the first two bytes of the relocation. These describe
1383 the length of the relocation and encoding style. */
1384 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1385 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1386 p);
1387 bfd_put_8 (abfd, type, p + 1);
1388
1389 /* Now output the symbol index and see if this bizarre relocation
1390 just happened to be in the relocation queue. */
1391 if (sym_num < 0x100)
1392 {
1393 bfd_put_8 (abfd, sym_num, p + 2);
1394 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1395 }
1396 else
1397 {
1398 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1399 bfd_put_16 (abfd, sym_num, p + 3);
1400 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1401 }
1402 }
1403 return p;
1404 }
1405
1406
1407 /* Return the logarithm of X, base 2, considering X unsigned.
1408 Abort -1 if X is not a power or two or is zero. */
1409
1410 static int
1411 log2 (x)
1412 unsigned int x;
1413 {
1414 int log = 0;
1415
1416 /* Test for 0 or a power of 2. */
1417 if (x == 0 || x != (x & -x))
1418 return -1;
1419
1420 while ((x >>= 1) != 0)
1421 log++;
1422 return log;
1423 }
1424
1425 static bfd_reloc_status_type
1426 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1427 input_section, output_bfd, error_message)
1428 bfd *abfd;
1429 arelent *reloc_entry;
1430 asymbol *symbol_in;
1431 PTR data;
1432 asection *input_section;
1433 bfd *output_bfd;
1434 char **error_message;
1435 {
1436 if (output_bfd)
1437 {
1438 reloc_entry->address += input_section->output_offset;
1439 return bfd_reloc_ok;
1440 }
1441 return bfd_reloc_ok;
1442 }
1443
1444 /* Given a generic HPPA relocation type, the instruction format,
1445 and a field selector, return one or more appropriate SOM relocations. */
1446
1447 int **
1448 hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff, sym)
1449 bfd *abfd;
1450 int base_type;
1451 int format;
1452 enum hppa_reloc_field_selector_type_alt field;
1453 int sym_diff;
1454 asymbol *sym;
1455 {
1456 int *final_type, **final_types;
1457
1458 final_types = (int **) bfd_alloc (abfd, sizeof (int *) * 6);
1459 final_type = (int *) bfd_alloc (abfd, sizeof (int));
1460 if (!final_types || !final_type)
1461 return NULL;
1462
1463 /* The field selector may require additional relocations to be
1464 generated. It's impossible to know at this moment if additional
1465 relocations will be needed, so we make them. The code to actually
1466 write the relocation/fixup stream is responsible for removing
1467 any redundant relocations. */
1468 switch (field)
1469 {
1470 case e_fsel:
1471 case e_psel:
1472 case e_lpsel:
1473 case e_rpsel:
1474 final_types[0] = final_type;
1475 final_types[1] = NULL;
1476 final_types[2] = NULL;
1477 *final_type = base_type;
1478 break;
1479
1480 case e_tsel:
1481 case e_ltsel:
1482 case e_rtsel:
1483 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1484 if (!final_types[0])
1485 return NULL;
1486 if (field == e_tsel)
1487 *final_types[0] = R_FSEL;
1488 else if (field == e_ltsel)
1489 *final_types[0] = R_LSEL;
1490 else
1491 *final_types[0] = R_RSEL;
1492 final_types[1] = final_type;
1493 final_types[2] = NULL;
1494 *final_type = base_type;
1495 break;
1496
1497 case e_lssel:
1498 case e_rssel:
1499 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1500 if (!final_types[0])
1501 return NULL;
1502 *final_types[0] = R_S_MODE;
1503 final_types[1] = final_type;
1504 final_types[2] = NULL;
1505 *final_type = base_type;
1506 break;
1507
1508 case e_lsel:
1509 case e_rsel:
1510 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1511 if (!final_types[0])
1512 return NULL;
1513 *final_types[0] = R_N_MODE;
1514 final_types[1] = final_type;
1515 final_types[2] = NULL;
1516 *final_type = base_type;
1517 break;
1518
1519 case e_ldsel:
1520 case e_rdsel:
1521 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1522 if (!final_types[0])
1523 return NULL;
1524 *final_types[0] = R_D_MODE;
1525 final_types[1] = final_type;
1526 final_types[2] = NULL;
1527 *final_type = base_type;
1528 break;
1529
1530 case e_lrsel:
1531 case e_rrsel:
1532 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1533 if (!final_types[0])
1534 return NULL;
1535 *final_types[0] = R_R_MODE;
1536 final_types[1] = final_type;
1537 final_types[2] = NULL;
1538 *final_type = base_type;
1539 break;
1540
1541 case e_nsel:
1542 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1543 if (!final_types[0])
1544 return NULL;
1545 *final_types[0] = R_N1SEL;
1546 final_types[1] = final_type;
1547 final_types[2] = NULL;
1548 *final_type = base_type;
1549 break;
1550
1551 case e_nlsel:
1552 case e_nlrsel:
1553 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int));
1554 if (!final_types[0])
1555 return NULL;
1556 *final_types[0] = R_N0SEL;
1557 final_types[1] = (int *) bfd_alloc (abfd, sizeof (int));
1558 if (!final_types[1])
1559 return NULL;
1560 if (field == e_nlsel)
1561 *final_types[1] = R_N_MODE;
1562 else
1563 *final_types[1] = R_R_MODE;
1564 final_types[2] = final_type;
1565 final_types[3] = NULL;
1566 *final_type = base_type;
1567 break;
1568 }
1569
1570 switch (base_type)
1571 {
1572 case R_HPPA:
1573 /* The difference of two symbols needs *very* special handling. */
1574 if (sym_diff)
1575 {
1576 final_types[0] = (int *)bfd_alloc (abfd, sizeof (int));
1577 final_types[1] = (int *)bfd_alloc (abfd, sizeof (int));
1578 final_types[2] = (int *)bfd_alloc (abfd, sizeof (int));
1579 final_types[3] = (int *)bfd_alloc (abfd, sizeof (int));
1580 if (!final_types[0] || !final_types[1] || !final_types[2])
1581 return NULL;
1582 if (field == e_fsel)
1583 *final_types[0] = R_FSEL;
1584 else if (field == e_rsel)
1585 *final_types[0] = R_RSEL;
1586 else if (field == e_lsel)
1587 *final_types[0] = R_LSEL;
1588 *final_types[1] = R_COMP2;
1589 *final_types[2] = R_COMP2;
1590 *final_types[3] = R_COMP1;
1591 final_types[4] = final_type;
1592 if (format == 32)
1593 *final_types[4] = R_DATA_EXPR;
1594 else
1595 *final_types[4] = R_CODE_EXPR;
1596 final_types[5] = NULL;
1597 break;
1598 }
1599 /* PLABELs get their own relocation type. */
1600 else if (field == e_psel
1601 || field == e_lpsel
1602 || field == e_rpsel)
1603 {
1604 /* A PLABEL relocation that has a size of 32 bits must
1605 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1606 if (format == 32)
1607 *final_type = R_DATA_PLABEL;
1608 else
1609 *final_type = R_CODE_PLABEL;
1610 }
1611 /* PIC stuff. */
1612 else if (field == e_tsel
1613 || field == e_ltsel
1614 || field == e_rtsel)
1615 *final_type = R_DLT_REL;
1616 /* A relocation in the data space is always a full 32bits. */
1617 else if (format == 32)
1618 {
1619 *final_type = R_DATA_ONE_SYMBOL;
1620
1621 /* If there's no SOM symbol type associated with this BFD
1622 symbol, then set the symbol type to ST_DATA.
1623
1624 Only do this if the type is going to default later when
1625 we write the object file.
1626
1627 This is done so that the linker never encounters an
1628 R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
1629
1630 This allows the compiler to generate exception handling
1631 tables.
1632
1633 Note that one day we may need to also emit BEGIN_BRTAB and
1634 END_BRTAB to prevent the linker from optimizing away insns
1635 in exception handling regions. */
1636 if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
1637 && (sym->flags & BSF_SECTION_SYM) == 0
1638 && (sym->flags & BSF_FUNCTION) == 0
1639 && ! bfd_is_com_section (sym->section))
1640 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
1641 }
1642 break;
1643
1644
1645 case R_HPPA_GOTOFF:
1646 /* More PLABEL special cases. */
1647 if (field == e_psel
1648 || field == e_lpsel
1649 || field == e_rpsel)
1650 *final_type = R_DATA_PLABEL;
1651 break;
1652
1653 case R_HPPA_COMPLEX:
1654 /* The difference of two symbols needs *very* special handling. */
1655 if (sym_diff)
1656 {
1657 final_types[0] = (int *)bfd_alloc (abfd, sizeof (int));
1658 final_types[1] = (int *)bfd_alloc (abfd, sizeof (int));
1659 final_types[2] = (int *)bfd_alloc (abfd, sizeof (int));
1660 final_types[3] = (int *)bfd_alloc (abfd, sizeof (int));
1661 if (!final_types[0] || !final_types[1] || !final_types[2])
1662 return NULL;
1663 if (field == e_fsel)
1664 *final_types[0] = R_FSEL;
1665 else if (field == e_rsel)
1666 *final_types[0] = R_RSEL;
1667 else if (field == e_lsel)
1668 *final_types[0] = R_LSEL;
1669 *final_types[1] = R_COMP2;
1670 *final_types[2] = R_COMP2;
1671 *final_types[3] = R_COMP1;
1672 final_types[4] = final_type;
1673 if (format == 32)
1674 *final_types[4] = R_DATA_EXPR;
1675 else
1676 *final_types[4] = R_CODE_EXPR;
1677 final_types[5] = NULL;
1678 break;
1679 }
1680 else
1681 break;
1682
1683 case R_HPPA_NONE:
1684 case R_HPPA_ABS_CALL:
1685 case R_HPPA_PCREL_CALL:
1686 /* Right now we can default all these. */
1687 break;
1688 }
1689 return final_types;
1690 }
1691
1692 /* Return the address of the correct entry in the PA SOM relocation
1693 howto table. */
1694
1695 /*ARGSUSED*/
1696 static reloc_howto_type *
1697 som_bfd_reloc_type_lookup (abfd, code)
1698 bfd *abfd;
1699 bfd_reloc_code_real_type code;
1700 {
1701 if ((int) code < (int) R_NO_RELOCATION + 255)
1702 {
1703 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1704 return &som_hppa_howto_table[(int) code];
1705 }
1706
1707 return (reloc_howto_type *) 0;
1708 }
1709
1710 /* Perform some initialization for an object. Save results of this
1711 initialization in the BFD. */
1712
1713 static const bfd_target *
1714 som_object_setup (abfd, file_hdrp, aux_hdrp)
1715 bfd *abfd;
1716 struct header *file_hdrp;
1717 struct som_exec_auxhdr *aux_hdrp;
1718 {
1719 asection *section;
1720 int found;
1721
1722 /* som_mkobject will set bfd_error if som_mkobject fails. */
1723 if (som_mkobject (abfd) != true)
1724 return 0;
1725
1726 /* Set BFD flags based on what information is available in the SOM. */
1727 abfd->flags = BFD_NO_FLAGS;
1728 if (file_hdrp->symbol_total)
1729 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1730
1731 switch (file_hdrp->a_magic)
1732 {
1733 case DEMAND_MAGIC:
1734 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1735 break;
1736 case SHARE_MAGIC:
1737 abfd->flags |= (WP_TEXT | EXEC_P);
1738 break;
1739 case EXEC_MAGIC:
1740 abfd->flags |= (EXEC_P);
1741 break;
1742 case RELOC_MAGIC:
1743 abfd->flags |= HAS_RELOC;
1744 break;
1745 #ifdef SHL_MAGIC
1746 case SHL_MAGIC:
1747 #endif
1748 #ifdef DL_MAGIC
1749 case DL_MAGIC:
1750 #endif
1751 abfd->flags |= DYNAMIC;
1752 break;
1753
1754 default:
1755 break;
1756 }
1757
1758 /* Allocate space to hold the saved exec header information. */
1759 obj_som_exec_data (abfd) = (struct som_exec_data *)
1760 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1761 if (obj_som_exec_data (abfd) == NULL)
1762 return NULL;
1763
1764 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1765
1766 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1767 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1768
1769 It's about time, OSF has used the new id since at least 1992;
1770 HPUX didn't start till nearly 1995!.
1771
1772 The new approach examines the entry field. If it's zero or not 4
1773 byte aligned then it's not a proper code address and we guess it's
1774 really the executable flags. */
1775 found = 0;
1776 for (section = abfd->sections; section; section = section->next)
1777 {
1778 if ((section->flags & SEC_CODE) == 0)
1779 continue;
1780 if (aux_hdrp->exec_entry >= section->vma
1781 && aux_hdrp->exec_entry < section->vma + section->_cooked_size)
1782 found = 1;
1783 }
1784 if (aux_hdrp->exec_entry == 0
1785 || (aux_hdrp->exec_entry & 0x3) != 0
1786 || ! found)
1787 {
1788 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1789 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1790 }
1791 else
1792 {
1793 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1794 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1795 }
1796
1797 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1798 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1799
1800 /* Initialize the saved symbol table and string table to NULL.
1801 Save important offsets and sizes from the SOM header into
1802 the BFD. */
1803 obj_som_stringtab (abfd) = (char *) NULL;
1804 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1805 obj_som_sorted_syms (abfd) = NULL;
1806 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1807 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1808 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1809 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1810 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1811
1812 return abfd->xvec;
1813 }
1814
1815 /* Convert all of the space and subspace info into BFD sections. Each space
1816 contains a number of subspaces, which in turn describe the mapping between
1817 regions of the exec file, and the address space that the program runs in.
1818 BFD sections which correspond to spaces will overlap the sections for the
1819 associated subspaces. */
1820
1821 static boolean
1822 setup_sections (abfd, file_hdr)
1823 bfd *abfd;
1824 struct header *file_hdr;
1825 {
1826 char *space_strings;
1827 unsigned int space_index, i;
1828 unsigned int total_subspaces = 0;
1829 asection **subspace_sections, *section;
1830
1831 /* First, read in space names */
1832
1833 space_strings = bfd_malloc (file_hdr->space_strings_size);
1834 if (!space_strings && file_hdr->space_strings_size != 0)
1835 goto error_return;
1836
1837 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1838 goto error_return;
1839 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1840 != file_hdr->space_strings_size)
1841 goto error_return;
1842
1843 /* Loop over all of the space dictionaries, building up sections */
1844 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1845 {
1846 struct space_dictionary_record space;
1847 struct subspace_dictionary_record subspace, save_subspace;
1848 int subspace_index;
1849 asection *space_asect;
1850 char *newname;
1851
1852 /* Read the space dictionary element */
1853 if (bfd_seek (abfd, file_hdr->space_location
1854 + space_index * sizeof space, SEEK_SET) < 0)
1855 goto error_return;
1856 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1857 goto error_return;
1858
1859 /* Setup the space name string */
1860 space.name.n_name = space.name.n_strx + space_strings;
1861
1862 /* Make a section out of it */
1863 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1864 if (!newname)
1865 goto error_return;
1866 strcpy (newname, space.name.n_name);
1867
1868 space_asect = bfd_make_section_anyway (abfd, newname);
1869 if (!space_asect)
1870 goto error_return;
1871
1872 if (space.is_loadable == 0)
1873 space_asect->flags |= SEC_DEBUGGING;
1874
1875 /* Set up all the attributes for the space. */
1876 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1877 space.is_private, space.sort_key,
1878 space.space_number) == false)
1879 goto error_return;
1880
1881 /* If the space has no subspaces, then we're done. */
1882 if (space.subspace_quantity == 0)
1883 continue;
1884
1885 /* Now, read in the first subspace for this space */
1886 if (bfd_seek (abfd, file_hdr->subspace_location
1887 + space.subspace_index * sizeof subspace,
1888 SEEK_SET) < 0)
1889 goto error_return;
1890 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1891 goto error_return;
1892 /* Seek back to the start of the subspaces for loop below */
1893 if (bfd_seek (abfd, file_hdr->subspace_location
1894 + space.subspace_index * sizeof subspace,
1895 SEEK_SET) < 0)
1896 goto error_return;
1897
1898 /* Setup the start address and file loc from the first subspace record */
1899 space_asect->vma = subspace.subspace_start;
1900 space_asect->filepos = subspace.file_loc_init_value;
1901 space_asect->alignment_power = log2 (subspace.alignment);
1902 if (space_asect->alignment_power == -1)
1903 goto error_return;
1904
1905 /* Initialize save_subspace so we can reliably determine if this
1906 loop placed any useful values into it. */
1907 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1908
1909 /* Loop over the rest of the subspaces, building up more sections */
1910 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1911 subspace_index++)
1912 {
1913 asection *subspace_asect;
1914
1915 /* Read in the next subspace */
1916 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1917 != sizeof subspace)
1918 goto error_return;
1919
1920 /* Setup the subspace name string */
1921 subspace.name.n_name = subspace.name.n_strx + space_strings;
1922
1923 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1924 if (!newname)
1925 goto error_return;
1926 strcpy (newname, subspace.name.n_name);
1927
1928 /* Make a section out of this subspace */
1929 subspace_asect = bfd_make_section_anyway (abfd, newname);
1930 if (!subspace_asect)
1931 goto error_return;
1932
1933 /* Store private information about the section. */
1934 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1935 subspace.access_control_bits,
1936 subspace.sort_key,
1937 subspace.quadrant) == false)
1938 goto error_return;
1939
1940 /* Keep an easy mapping between subspaces and sections.
1941 Note we do not necessarily read the subspaces in the
1942 same order in which they appear in the object file.
1943
1944 So to make the target index come out correctly, we
1945 store the location of the subspace header in target
1946 index, then sort using the location of the subspace
1947 header as the key. Then we can assign correct
1948 subspace indices. */
1949 total_subspaces++;
1950 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
1951
1952 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1953 by the access_control_bits in the subspace header. */
1954 switch (subspace.access_control_bits >> 4)
1955 {
1956 /* Readonly data. */
1957 case 0x0:
1958 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1959 break;
1960
1961 /* Normal data. */
1962 case 0x1:
1963 subspace_asect->flags |= SEC_DATA;
1964 break;
1965
1966 /* Readonly code and the gateways.
1967 Gateways have other attributes which do not map
1968 into anything BFD knows about. */
1969 case 0x2:
1970 case 0x4:
1971 case 0x5:
1972 case 0x6:
1973 case 0x7:
1974 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1975 break;
1976
1977 /* dynamic (writable) code. */
1978 case 0x3:
1979 subspace_asect->flags |= SEC_CODE;
1980 break;
1981 }
1982
1983 if (subspace.dup_common || subspace.is_common)
1984 subspace_asect->flags |= SEC_IS_COMMON;
1985 else if (subspace.subspace_length > 0)
1986 subspace_asect->flags |= SEC_HAS_CONTENTS;
1987
1988 if (subspace.is_loadable)
1989 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1990 else
1991 subspace_asect->flags |= SEC_DEBUGGING;
1992
1993 if (subspace.code_only)
1994 subspace_asect->flags |= SEC_CODE;
1995
1996 /* Both file_loc_init_value and initialization_length will
1997 be zero for a BSS like subspace. */
1998 if (subspace.file_loc_init_value == 0
1999 && subspace.initialization_length == 0)
2000 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
2001
2002 /* This subspace has relocations.
2003 The fixup_request_quantity is a byte count for the number of
2004 entries in the relocation stream; it is not the actual number
2005 of relocations in the subspace. */
2006 if (subspace.fixup_request_quantity != 0)
2007 {
2008 subspace_asect->flags |= SEC_RELOC;
2009 subspace_asect->rel_filepos = subspace.fixup_request_index;
2010 som_section_data (subspace_asect)->reloc_size
2011 = subspace.fixup_request_quantity;
2012 /* We can not determine this yet. When we read in the
2013 relocation table the correct value will be filled in. */
2014 subspace_asect->reloc_count = -1;
2015 }
2016
2017 /* Update save_subspace if appropriate. */
2018 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
2019 save_subspace = subspace;
2020
2021 subspace_asect->vma = subspace.subspace_start;
2022 subspace_asect->_cooked_size = subspace.subspace_length;
2023 subspace_asect->_raw_size = subspace.subspace_length;
2024 subspace_asect->filepos = subspace.file_loc_init_value;
2025 subspace_asect->alignment_power = log2 (subspace.alignment);
2026 if (subspace_asect->alignment_power == -1)
2027 goto error_return;
2028 }
2029
2030 /* This can happen for a .o which defines symbols in otherwise
2031 empty subspaces. */
2032 if (!save_subspace.file_loc_init_value)
2033 {
2034 space_asect->_cooked_size = 0;
2035 space_asect->_raw_size = 0;
2036 }
2037 else
2038 {
2039 /* Setup the sizes for the space section based upon the info in the
2040 last subspace of the space. */
2041 space_asect->_cooked_size = (save_subspace.subspace_start
2042 - space_asect->vma
2043 + save_subspace.subspace_length);
2044 space_asect->_raw_size = (save_subspace.file_loc_init_value
2045 - space_asect->filepos
2046 + save_subspace.initialization_length);
2047 }
2048 }
2049 /* Now that we've read in all the subspace records, we need to assign
2050 a target index to each subspace. */
2051 subspace_sections = (asection **) bfd_malloc (total_subspaces
2052 * sizeof (asection *));
2053 if (subspace_sections == NULL)
2054 goto error_return;
2055
2056 for (i = 0, section = abfd->sections; section; section = section->next)
2057 {
2058 if (!som_is_subspace (section))
2059 continue;
2060
2061 subspace_sections[i] = section;
2062 i++;
2063 }
2064 qsort (subspace_sections, total_subspaces,
2065 sizeof (asection *), compare_subspaces);
2066
2067 /* subspace_sections is now sorted in the order in which the subspaces
2068 appear in the object file. Assign an index to each one now. */
2069 for (i = 0; i < total_subspaces; i++)
2070 subspace_sections[i]->target_index = i;
2071
2072 if (space_strings != NULL)
2073 free (space_strings);
2074
2075 if (subspace_sections != NULL)
2076 free (subspace_sections);
2077
2078 return true;
2079
2080 error_return:
2081 if (space_strings != NULL)
2082 free (space_strings);
2083
2084 if (subspace_sections != NULL)
2085 free (subspace_sections);
2086 return false;
2087 }
2088
2089 /* Read in a SOM object and make it into a BFD. */
2090
2091 static const bfd_target *
2092 som_object_p (abfd)
2093 bfd *abfd;
2094 {
2095 struct header file_hdr;
2096 struct som_exec_auxhdr aux_hdr;
2097
2098 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
2099 {
2100 if (bfd_get_error () != bfd_error_system_call)
2101 bfd_set_error (bfd_error_wrong_format);
2102 return 0;
2103 }
2104
2105 if (!_PA_RISC_ID (file_hdr.system_id))
2106 {
2107 bfd_set_error (bfd_error_wrong_format);
2108 return 0;
2109 }
2110
2111 switch (file_hdr.a_magic)
2112 {
2113 case RELOC_MAGIC:
2114 case EXEC_MAGIC:
2115 case SHARE_MAGIC:
2116 case DEMAND_MAGIC:
2117 #ifdef DL_MAGIC
2118 case DL_MAGIC:
2119 #endif
2120 #ifdef SHL_MAGIC
2121 case SHL_MAGIC:
2122 #endif
2123 #ifdef EXECLIBMAGIC
2124 case EXECLIBMAGIC:
2125 #endif
2126 #ifdef SHARED_MAGIC_CNX
2127 case SHARED_MAGIC_CNX:
2128 #endif
2129 break;
2130 default:
2131 bfd_set_error (bfd_error_wrong_format);
2132 return 0;
2133 }
2134
2135 if (file_hdr.version_id != VERSION_ID
2136 && file_hdr.version_id != NEW_VERSION_ID)
2137 {
2138 bfd_set_error (bfd_error_wrong_format);
2139 return 0;
2140 }
2141
2142 /* If the aux_header_size field in the file header is zero, then this
2143 object is an incomplete executable (a .o file). Do not try to read
2144 a non-existant auxiliary header. */
2145 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
2146 if (file_hdr.aux_header_size != 0)
2147 {
2148 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
2149 {
2150 if (bfd_get_error () != bfd_error_system_call)
2151 bfd_set_error (bfd_error_wrong_format);
2152 return 0;
2153 }
2154 }
2155
2156 if (!setup_sections (abfd, &file_hdr))
2157 {
2158 /* setup_sections does not bubble up a bfd error code. */
2159 bfd_set_error (bfd_error_bad_value);
2160 return 0;
2161 }
2162
2163 /* This appears to be a valid SOM object. Do some initialization. */
2164 return som_object_setup (abfd, &file_hdr, &aux_hdr);
2165 }
2166
2167 /* Create a SOM object. */
2168
2169 static boolean
2170 som_mkobject (abfd)
2171 bfd *abfd;
2172 {
2173 /* Allocate memory to hold backend information. */
2174 abfd->tdata.som_data = (struct som_data_struct *)
2175 bfd_zalloc (abfd, sizeof (struct som_data_struct));
2176 if (abfd->tdata.som_data == NULL)
2177 return false;
2178 return true;
2179 }
2180
2181 /* Initialize some information in the file header. This routine makes
2182 not attempt at doing the right thing for a full executable; it
2183 is only meant to handle relocatable objects. */
2184
2185 static boolean
2186 som_prep_headers (abfd)
2187 bfd *abfd;
2188 {
2189 struct header *file_hdr;
2190 asection *section;
2191
2192 /* Make and attach a file header to the BFD. */
2193 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
2194 if (file_hdr == NULL)
2195 return false;
2196 obj_som_file_hdr (abfd) = file_hdr;
2197
2198 if (abfd->flags & (EXEC_P | DYNAMIC))
2199 {
2200
2201 /* Make and attach an exec header to the BFD. */
2202 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
2203 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
2204 if (obj_som_exec_hdr (abfd) == NULL)
2205 return false;
2206
2207 if (abfd->flags & D_PAGED)
2208 file_hdr->a_magic = DEMAND_MAGIC;
2209 else if (abfd->flags & WP_TEXT)
2210 file_hdr->a_magic = SHARE_MAGIC;
2211 #ifdef SHL_MAGIC
2212 else if (abfd->flags & DYNAMIC)
2213 file_hdr->a_magic = SHL_MAGIC;
2214 #endif
2215 else
2216 file_hdr->a_magic = EXEC_MAGIC;
2217 }
2218 else
2219 file_hdr->a_magic = RELOC_MAGIC;
2220
2221 /* Only new format SOM is supported. */
2222 file_hdr->version_id = NEW_VERSION_ID;
2223
2224 /* These fields are optional, and embedding timestamps is not always
2225 a wise thing to do, it makes comparing objects during a multi-stage
2226 bootstrap difficult. */
2227 file_hdr->file_time.secs = 0;
2228 file_hdr->file_time.nanosecs = 0;
2229
2230 file_hdr->entry_space = 0;
2231 file_hdr->entry_subspace = 0;
2232 file_hdr->entry_offset = 0;
2233 file_hdr->presumed_dp = 0;
2234
2235 /* Now iterate over the sections translating information from
2236 BFD sections to SOM spaces/subspaces. */
2237
2238 for (section = abfd->sections; section != NULL; section = section->next)
2239 {
2240 /* Ignore anything which has not been marked as a space or
2241 subspace. */
2242 if (!som_is_space (section) && !som_is_subspace (section))
2243 continue;
2244
2245 if (som_is_space (section))
2246 {
2247 /* Allocate space for the space dictionary. */
2248 som_section_data (section)->space_dict
2249 = (struct space_dictionary_record *)
2250 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2251 if (som_section_data (section)->space_dict == NULL)
2252 return false;
2253 /* Set space attributes. Note most attributes of SOM spaces
2254 are set based on the subspaces it contains. */
2255 som_section_data (section)->space_dict->loader_fix_index = -1;
2256 som_section_data (section)->space_dict->init_pointer_index = -1;
2257
2258 /* Set more attributes that were stuffed away in private data. */
2259 som_section_data (section)->space_dict->sort_key =
2260 som_section_data (section)->copy_data->sort_key;
2261 som_section_data (section)->space_dict->is_defined =
2262 som_section_data (section)->copy_data->is_defined;
2263 som_section_data (section)->space_dict->is_private =
2264 som_section_data (section)->copy_data->is_private;
2265 som_section_data (section)->space_dict->space_number =
2266 som_section_data (section)->copy_data->space_number;
2267 }
2268 else
2269 {
2270 /* Allocate space for the subspace dictionary. */
2271 som_section_data (section)->subspace_dict
2272 = (struct subspace_dictionary_record *)
2273 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2274 if (som_section_data (section)->subspace_dict == NULL)
2275 return false;
2276
2277 /* Set subspace attributes. Basic stuff is done here, additional
2278 attributes are filled in later as more information becomes
2279 available. */
2280 if (section->flags & SEC_IS_COMMON)
2281 {
2282 som_section_data (section)->subspace_dict->dup_common = 1;
2283 som_section_data (section)->subspace_dict->is_common = 1;
2284 }
2285
2286 if (section->flags & SEC_ALLOC)
2287 som_section_data (section)->subspace_dict->is_loadable = 1;
2288
2289 if (section->flags & SEC_CODE)
2290 som_section_data (section)->subspace_dict->code_only = 1;
2291
2292 som_section_data (section)->subspace_dict->subspace_start =
2293 section->vma;
2294 som_section_data (section)->subspace_dict->subspace_length =
2295 bfd_section_size (abfd, section);
2296 som_section_data (section)->subspace_dict->initialization_length =
2297 bfd_section_size (abfd, section);
2298 som_section_data (section)->subspace_dict->alignment =
2299 1 << section->alignment_power;
2300
2301 /* Set more attributes that were stuffed away in private data. */
2302 som_section_data (section)->subspace_dict->sort_key =
2303 som_section_data (section)->copy_data->sort_key;
2304 som_section_data (section)->subspace_dict->access_control_bits =
2305 som_section_data (section)->copy_data->access_control_bits;
2306 som_section_data (section)->subspace_dict->quadrant =
2307 som_section_data (section)->copy_data->quadrant;
2308 }
2309 }
2310 return true;
2311 }
2312
2313 /* Return true if the given section is a SOM space, false otherwise. */
2314
2315 static boolean
2316 som_is_space (section)
2317 asection *section;
2318 {
2319 /* If no copy data is available, then it's neither a space nor a
2320 subspace. */
2321 if (som_section_data (section)->copy_data == NULL)
2322 return false;
2323
2324 /* If the containing space isn't the same as the given section,
2325 then this isn't a space. */
2326 if (som_section_data (section)->copy_data->container != section
2327 && (som_section_data (section)->copy_data->container->output_section
2328 != section))
2329 return false;
2330
2331 /* OK. Must be a space. */
2332 return true;
2333 }
2334
2335 /* Return true if the given section is a SOM subspace, false otherwise. */
2336
2337 static boolean
2338 som_is_subspace (section)
2339 asection *section;
2340 {
2341 /* If no copy data is available, then it's neither a space nor a
2342 subspace. */
2343 if (som_section_data (section)->copy_data == NULL)
2344 return false;
2345
2346 /* If the containing space is the same as the given section,
2347 then this isn't a subspace. */
2348 if (som_section_data (section)->copy_data->container == section
2349 || (som_section_data (section)->copy_data->container->output_section
2350 == section))
2351 return false;
2352
2353 /* OK. Must be a subspace. */
2354 return true;
2355 }
2356
2357 /* Return true if the given space containins the given subspace. It
2358 is safe to assume space really is a space, and subspace really
2359 is a subspace. */
2360
2361 static boolean
2362 som_is_container (space, subspace)
2363 asection *space, *subspace;
2364 {
2365 return (som_section_data (subspace)->copy_data->container == space
2366 || (som_section_data (subspace)->copy_data->container->output_section
2367 == space));
2368 }
2369
2370 /* Count and return the number of spaces attached to the given BFD. */
2371
2372 static unsigned long
2373 som_count_spaces (abfd)
2374 bfd *abfd;
2375 {
2376 int count = 0;
2377 asection *section;
2378
2379 for (section = abfd->sections; section != NULL; section = section->next)
2380 count += som_is_space (section);
2381
2382 return count;
2383 }
2384
2385 /* Count the number of subspaces attached to the given BFD. */
2386
2387 static unsigned long
2388 som_count_subspaces (abfd)
2389 bfd *abfd;
2390 {
2391 int count = 0;
2392 asection *section;
2393
2394 for (section = abfd->sections; section != NULL; section = section->next)
2395 count += som_is_subspace (section);
2396
2397 return count;
2398 }
2399
2400 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2401
2402 We desire symbols to be ordered starting with the symbol with the
2403 highest relocation count down to the symbol with the lowest relocation
2404 count. Doing so compacts the relocation stream. */
2405
2406 static int
2407 compare_syms (arg1, arg2)
2408 const PTR arg1;
2409 const PTR arg2;
2410
2411 {
2412 asymbol **sym1 = (asymbol **) arg1;
2413 asymbol **sym2 = (asymbol **) arg2;
2414 unsigned int count1, count2;
2415
2416 /* Get relocation count for each symbol. Note that the count
2417 is stored in the udata pointer for section symbols! */
2418 if ((*sym1)->flags & BSF_SECTION_SYM)
2419 count1 = (*sym1)->udata.i;
2420 else
2421 count1 = som_symbol_data (*sym1)->reloc_count;
2422
2423 if ((*sym2)->flags & BSF_SECTION_SYM)
2424 count2 = (*sym2)->udata.i;
2425 else
2426 count2 = som_symbol_data (*sym2)->reloc_count;
2427
2428 /* Return the appropriate value. */
2429 if (count1 < count2)
2430 return 1;
2431 else if (count1 > count2)
2432 return -1;
2433 return 0;
2434 }
2435
2436 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2437 and subspace. */
2438
2439 static int
2440 compare_subspaces (arg1, arg2)
2441 const PTR arg1;
2442 const PTR arg2;
2443
2444 {
2445 asection **subspace1 = (asection **) arg1;
2446 asection **subspace2 = (asection **) arg2;
2447 unsigned int count1, count2;
2448
2449 if ((*subspace1)->target_index < (*subspace2)->target_index)
2450 return -1;
2451 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2452 return 1;
2453 else
2454 return 0;
2455 }
2456
2457 /* Perform various work in preparation for emitting the fixup stream. */
2458
2459 static void
2460 som_prep_for_fixups (abfd, syms, num_syms)
2461 bfd *abfd;
2462 asymbol **syms;
2463 unsigned long num_syms;
2464 {
2465 int i;
2466 asection *section;
2467 asymbol **sorted_syms;
2468
2469 /* Most SOM relocations involving a symbol have a length which is
2470 dependent on the index of the symbol. So symbols which are
2471 used often in relocations should have a small index. */
2472
2473 /* First initialize the counters for each symbol. */
2474 for (i = 0; i < num_syms; i++)
2475 {
2476 /* Handle a section symbol; these have no pointers back to the
2477 SOM symbol info. So we just use the udata field to hold the
2478 relocation count. */
2479 if (som_symbol_data (syms[i]) == NULL
2480 || syms[i]->flags & BSF_SECTION_SYM)
2481 {
2482 syms[i]->flags |= BSF_SECTION_SYM;
2483 syms[i]->udata.i = 0;
2484 }
2485 else
2486 som_symbol_data (syms[i])->reloc_count = 0;
2487 }
2488
2489 /* Now that the counters are initialized, make a weighted count
2490 of how often a given symbol is used in a relocation. */
2491 for (section = abfd->sections; section != NULL; section = section->next)
2492 {
2493 int i;
2494
2495 /* Does this section have any relocations? */
2496 if (section->reloc_count <= 0)
2497 continue;
2498
2499 /* Walk through each relocation for this section. */
2500 for (i = 1; i < section->reloc_count; i++)
2501 {
2502 arelent *reloc = section->orelocation[i];
2503 int scale;
2504
2505 /* A relocation against a symbol in the *ABS* section really
2506 does not have a symbol. Likewise if the symbol isn't associated
2507 with any section. */
2508 if (reloc->sym_ptr_ptr == NULL
2509 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2510 continue;
2511
2512 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2513 and R_CODE_ONE_SYMBOL relocations to come first. These
2514 two relocations have single byte versions if the symbol
2515 index is very small. */
2516 if (reloc->howto->type == R_DP_RELATIVE
2517 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2518 scale = 2;
2519 else
2520 scale = 1;
2521
2522 /* Handle section symbols by storing the count in the udata
2523 field. It will not be used and the count is very important
2524 for these symbols. */
2525 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2526 {
2527 (*reloc->sym_ptr_ptr)->udata.i =
2528 (*reloc->sym_ptr_ptr)->udata.i + scale;
2529 continue;
2530 }
2531
2532 /* A normal symbol. Increment the count. */
2533 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2534 }
2535 }
2536
2537 /* Sort a copy of the symbol table, rather than the canonical
2538 output symbol table. */
2539 sorted_syms = (asymbol **) bfd_zalloc (abfd, num_syms * sizeof (asymbol *));
2540 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2541 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2542 obj_som_sorted_syms (abfd) = sorted_syms;
2543
2544 /* Compute the symbol indexes, they will be needed by the relocation
2545 code. */
2546 for (i = 0; i < num_syms; i++)
2547 {
2548 /* A section symbol. Again, there is no pointer to backend symbol
2549 information, so we reuse the udata field again. */
2550 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2551 sorted_syms[i]->udata.i = i;
2552 else
2553 som_symbol_data (sorted_syms[i])->index = i;
2554 }
2555 }
2556
2557 static boolean
2558 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2559 bfd *abfd;
2560 unsigned long current_offset;
2561 unsigned int *total_reloc_sizep;
2562 {
2563 unsigned int i, j;
2564 /* Chunk of memory that we can use as buffer space, then throw
2565 away. */
2566 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2567 unsigned char *p;
2568 unsigned int total_reloc_size = 0;
2569 unsigned int subspace_reloc_size = 0;
2570 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2571 asection *section = abfd->sections;
2572
2573 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2574 p = tmp_space;
2575
2576 /* All the fixups for a particular subspace are emitted in a single
2577 stream. All the subspaces for a particular space are emitted
2578 as a single stream.
2579
2580 So, to get all the locations correct one must iterate through all the
2581 spaces, for each space iterate through its subspaces and output a
2582 fixups stream. */
2583 for (i = 0; i < num_spaces; i++)
2584 {
2585 asection *subsection;
2586
2587 /* Find a space. */
2588 while (!som_is_space (section))
2589 section = section->next;
2590
2591 /* Now iterate through each of its subspaces. */
2592 for (subsection = abfd->sections;
2593 subsection != NULL;
2594 subsection = subsection->next)
2595 {
2596 int reloc_offset, current_rounding_mode;
2597
2598 /* Find a subspace of this space. */
2599 if (!som_is_subspace (subsection)
2600 || !som_is_container (section, subsection))
2601 continue;
2602
2603 /* If this subspace does not have real data, then we are
2604 finised with it. */
2605 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2606 {
2607 som_section_data (subsection)->subspace_dict->fixup_request_index
2608 = -1;
2609 continue;
2610 }
2611
2612 /* This subspace has some relocations. Put the relocation stream
2613 index into the subspace record. */
2614 som_section_data (subsection)->subspace_dict->fixup_request_index
2615 = total_reloc_size;
2616
2617 /* To make life easier start over with a clean slate for
2618 each subspace. Seek to the start of the relocation stream
2619 for this subspace in preparation for writing out its fixup
2620 stream. */
2621 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2622 return false;
2623
2624 /* Buffer space has already been allocated. Just perform some
2625 initialization here. */
2626 p = tmp_space;
2627 subspace_reloc_size = 0;
2628 reloc_offset = 0;
2629 som_initialize_reloc_queue (reloc_queue);
2630 current_rounding_mode = R_N_MODE;
2631
2632 /* Translate each BFD relocation into one or more SOM
2633 relocations. */
2634 for (j = 0; j < subsection->reloc_count; j++)
2635 {
2636 arelent *bfd_reloc = subsection->orelocation[j];
2637 unsigned int skip;
2638 int sym_num;
2639
2640 /* Get the symbol number. Remember it's stored in a
2641 special place for section symbols. */
2642 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2643 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2644 else
2645 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2646
2647 /* If there is not enough room for the next couple relocations,
2648 then dump the current buffer contents now. Also reinitialize
2649 the relocation queue.
2650
2651 No single BFD relocation could ever translate into more
2652 than 100 bytes of SOM relocations (20bytes is probably the
2653 upper limit, but leave lots of space for growth). */
2654 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2655 {
2656 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2657 != p - tmp_space)
2658 return false;
2659
2660 p = tmp_space;
2661 som_initialize_reloc_queue (reloc_queue);
2662 }
2663
2664 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2665 skipped. */
2666 skip = bfd_reloc->address - reloc_offset;
2667 p = som_reloc_skip (abfd, skip, p,
2668 &subspace_reloc_size, reloc_queue);
2669
2670 /* Update reloc_offset for the next iteration.
2671
2672 Many relocations do not consume input bytes. They
2673 are markers, or set state necessary to perform some
2674 later relocation. */
2675 switch (bfd_reloc->howto->type)
2676 {
2677 case R_ENTRY:
2678 case R_ALT_ENTRY:
2679 case R_EXIT:
2680 case R_N_MODE:
2681 case R_S_MODE:
2682 case R_D_MODE:
2683 case R_R_MODE:
2684 case R_FSEL:
2685 case R_LSEL:
2686 case R_RSEL:
2687 case R_COMP1:
2688 case R_COMP2:
2689 case R_BEGIN_BRTAB:
2690 case R_END_BRTAB:
2691 case R_BEGIN_TRY:
2692 case R_END_TRY:
2693 case R_N0SEL:
2694 case R_N1SEL:
2695 reloc_offset = bfd_reloc->address;
2696 break;
2697
2698 default:
2699 reloc_offset = bfd_reloc->address + 4;
2700 break;
2701 }
2702
2703 /* Now the actual relocation we care about. */
2704 switch (bfd_reloc->howto->type)
2705 {
2706 case R_PCREL_CALL:
2707 case R_ABS_CALL:
2708 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2709 bfd_reloc, sym_num, reloc_queue);
2710 break;
2711
2712 case R_CODE_ONE_SYMBOL:
2713 case R_DP_RELATIVE:
2714 /* Account for any addend. */
2715 if (bfd_reloc->addend)
2716 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2717 &subspace_reloc_size, reloc_queue);
2718
2719 if (sym_num < 0x20)
2720 {
2721 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2722 subspace_reloc_size += 1;
2723 p += 1;
2724 }
2725 else if (sym_num < 0x100)
2726 {
2727 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2728 bfd_put_8 (abfd, sym_num, p + 1);
2729 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2730 2, reloc_queue);
2731 }
2732 else if (sym_num < 0x10000000)
2733 {
2734 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2735 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2736 bfd_put_16 (abfd, sym_num, p + 2);
2737 p = try_prev_fixup (abfd, &subspace_reloc_size,
2738 p, 4, reloc_queue);
2739 }
2740 else
2741 abort ();
2742 break;
2743
2744 case R_DATA_ONE_SYMBOL:
2745 case R_DATA_PLABEL:
2746 case R_CODE_PLABEL:
2747 case R_DLT_REL:
2748 /* Account for any addend using R_DATA_OVERRIDE. */
2749 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2750 && bfd_reloc->addend)
2751 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2752 &subspace_reloc_size, reloc_queue);
2753
2754 if (sym_num < 0x100)
2755 {
2756 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2757 bfd_put_8 (abfd, sym_num, p + 1);
2758 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2759 2, reloc_queue);
2760 }
2761 else if (sym_num < 0x10000000)
2762 {
2763 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2764 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2765 bfd_put_16 (abfd, sym_num, p + 2);
2766 p = try_prev_fixup (abfd, &subspace_reloc_size,
2767 p, 4, reloc_queue);
2768 }
2769 else
2770 abort ();
2771 break;
2772
2773 case R_ENTRY:
2774 {
2775 int tmp;
2776 arelent *tmp_reloc = NULL;
2777 bfd_put_8 (abfd, R_ENTRY, p);
2778
2779 /* R_ENTRY relocations have 64 bits of associated
2780 data. Unfortunately the addend field of a bfd
2781 relocation is only 32 bits. So, we split up
2782 the 64bit unwind information and store part in
2783 the R_ENTRY relocation, and the rest in the R_EXIT
2784 relocation. */
2785 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2786
2787 /* Find the next R_EXIT relocation. */
2788 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2789 {
2790 tmp_reloc = subsection->orelocation[tmp];
2791 if (tmp_reloc->howto->type == R_EXIT)
2792 break;
2793 }
2794
2795 if (tmp == subsection->reloc_count)
2796 abort ();
2797
2798 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2799 p = try_prev_fixup (abfd, &subspace_reloc_size,
2800 p, 9, reloc_queue);
2801 break;
2802 }
2803
2804 case R_N_MODE:
2805 case R_S_MODE:
2806 case R_D_MODE:
2807 case R_R_MODE:
2808 /* If this relocation requests the current rounding
2809 mode, then it is redundant. */
2810 if (bfd_reloc->howto->type != current_rounding_mode)
2811 {
2812 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2813 subspace_reloc_size += 1;
2814 p += 1;
2815 current_rounding_mode = bfd_reloc->howto->type;
2816 }
2817 break;
2818
2819 case R_EXIT:
2820 case R_ALT_ENTRY:
2821 case R_FSEL:
2822 case R_LSEL:
2823 case R_RSEL:
2824 case R_BEGIN_BRTAB:
2825 case R_END_BRTAB:
2826 case R_BEGIN_TRY:
2827 case R_N0SEL:
2828 case R_N1SEL:
2829 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2830 subspace_reloc_size += 1;
2831 p += 1;
2832 break;
2833
2834 case R_END_TRY:
2835 /* The end of a exception handling region. The reloc's
2836 addend contains the offset of the exception handling
2837 code. */
2838 if (bfd_reloc->addend == 0)
2839 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2840 else if (bfd_reloc->addend < 1024)
2841 {
2842 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2843 bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
2844 p = try_prev_fixup (abfd, &subspace_reloc_size,
2845 p, 2, reloc_queue);
2846 }
2847 else
2848 {
2849 bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
2850 bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
2851 bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
2852 p = try_prev_fixup (abfd, &subspace_reloc_size,
2853 p, 4, reloc_queue);
2854 }
2855 break;
2856
2857 case R_COMP1:
2858 /* The only time we generate R_COMP1, R_COMP2 and
2859 R_CODE_EXPR relocs is for the difference of two
2860 symbols. Hence we can cheat here. */
2861 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2862 bfd_put_8 (abfd, 0x44, p + 1);
2863 p = try_prev_fixup (abfd, &subspace_reloc_size,
2864 p, 2, reloc_queue);
2865 break;
2866
2867 case R_COMP2:
2868 /* The only time we generate R_COMP1, R_COMP2 and
2869 R_CODE_EXPR relocs is for the difference of two
2870 symbols. Hence we can cheat here. */
2871 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2872 bfd_put_8 (abfd, 0x80, p + 1);
2873 bfd_put_8 (abfd, sym_num >> 16, p + 2);
2874 bfd_put_16 (abfd, sym_num, p + 3);
2875 p = try_prev_fixup (abfd, &subspace_reloc_size,
2876 p, 5, reloc_queue);
2877 break;
2878
2879 case R_CODE_EXPR:
2880 case R_DATA_EXPR:
2881 /* The only time we generate R_COMP1, R_COMP2 and
2882 R_CODE_EXPR relocs is for the difference of two
2883 symbols. Hence we can cheat here. */
2884 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2885 subspace_reloc_size += 1;
2886 p += 1;
2887 break;
2888
2889 /* Put a "R_RESERVED" relocation in the stream if
2890 we hit something we do not understand. The linker
2891 will complain loudly if this ever happens. */
2892 default:
2893 bfd_put_8 (abfd, 0xff, p);
2894 subspace_reloc_size += 1;
2895 p += 1;
2896 break;
2897 }
2898 }
2899
2900 /* Last BFD relocation for a subspace has been processed.
2901 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2902 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2903 - reloc_offset,
2904 p, &subspace_reloc_size, reloc_queue);
2905
2906 /* Scribble out the relocations. */
2907 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2908 != p - tmp_space)
2909 return false;
2910 p = tmp_space;
2911
2912 total_reloc_size += subspace_reloc_size;
2913 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2914 = subspace_reloc_size;
2915 }
2916 section = section->next;
2917 }
2918 *total_reloc_sizep = total_reloc_size;
2919 return true;
2920 }
2921
2922 /* Write out the space/subspace string table. */
2923
2924 static boolean
2925 som_write_space_strings (abfd, current_offset, string_sizep)
2926 bfd *abfd;
2927 unsigned long current_offset;
2928 unsigned int *string_sizep;
2929 {
2930 /* Chunk of memory that we can use as buffer space, then throw
2931 away. */
2932 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2933 unsigned char *p;
2934 unsigned int strings_size = 0;
2935 asection *section;
2936
2937 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2938 p = tmp_space;
2939
2940 /* Seek to the start of the space strings in preparation for writing
2941 them out. */
2942 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2943 return false;
2944
2945 /* Walk through all the spaces and subspaces (order is not important)
2946 building up and writing string table entries for their names. */
2947 for (section = abfd->sections; section != NULL; section = section->next)
2948 {
2949 int length;
2950
2951 /* Only work with space/subspaces; avoid any other sections
2952 which might have been made (.text for example). */
2953 if (!som_is_space (section) && !som_is_subspace (section))
2954 continue;
2955
2956 /* Get the length of the space/subspace name. */
2957 length = strlen (section->name);
2958
2959 /* If there is not enough room for the next entry, then dump the
2960 current buffer contents now. Each entry will take 4 bytes to
2961 hold the string length + the string itself + null terminator. */
2962 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2963 {
2964 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2965 != p - tmp_space)
2966 return false;
2967 /* Reset to beginning of the buffer space. */
2968 p = tmp_space;
2969 }
2970
2971 /* First element in a string table entry is the length of the
2972 string. Alignment issues are already handled. */
2973 bfd_put_32 (abfd, length, p);
2974 p += 4;
2975 strings_size += 4;
2976
2977 /* Record the index in the space/subspace records. */
2978 if (som_is_space (section))
2979 som_section_data (section)->space_dict->name.n_strx = strings_size;
2980 else
2981 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2982
2983 /* Next comes the string itself + a null terminator. */
2984 strcpy (p, section->name);
2985 p += length + 1;
2986 strings_size += length + 1;
2987
2988 /* Always align up to the next word boundary. */
2989 while (strings_size % 4)
2990 {
2991 bfd_put_8 (abfd, 0, p);
2992 p++;
2993 strings_size++;
2994 }
2995 }
2996
2997 /* Done with the space/subspace strings. Write out any information
2998 contained in a partial block. */
2999 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
3000 return false;
3001 *string_sizep = strings_size;
3002 return true;
3003 }
3004
3005 /* Write out the symbol string table. */
3006
3007 static boolean
3008 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
3009 bfd *abfd;
3010 unsigned long current_offset;
3011 asymbol **syms;
3012 unsigned int num_syms;
3013 unsigned int *string_sizep;
3014 {
3015 unsigned int i;
3016
3017 /* Chunk of memory that we can use as buffer space, then throw
3018 away. */
3019 unsigned char tmp_space[SOM_TMP_BUFSIZE];
3020 unsigned char *p;
3021 unsigned int strings_size = 0;
3022
3023 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
3024 p = tmp_space;
3025
3026 /* Seek to the start of the space strings in preparation for writing
3027 them out. */
3028 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3029 return false;
3030
3031 for (i = 0; i < num_syms; i++)
3032 {
3033 int length = strlen (syms[i]->name);
3034
3035 /* If there is not enough room for the next entry, then dump the
3036 current buffer contents now. */
3037 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
3038 {
3039 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
3040 != p - tmp_space)
3041 return false;
3042 /* Reset to beginning of the buffer space. */
3043 p = tmp_space;
3044 }
3045
3046 /* First element in a string table entry is the length of the
3047 string. This must always be 4 byte aligned. This is also
3048 an appropriate time to fill in the string index field in the
3049 symbol table entry. */
3050 bfd_put_32 (abfd, length, p);
3051 strings_size += 4;
3052 p += 4;
3053
3054 /* Next comes the string itself + a null terminator. */
3055 strcpy (p, syms[i]->name);
3056
3057 som_symbol_data(syms[i])->stringtab_offset = strings_size;
3058 p += length + 1;
3059 strings_size += length + 1;
3060
3061 /* Always align up to the next word boundary. */
3062 while (strings_size % 4)
3063 {
3064 bfd_put_8 (abfd, 0, p);
3065 strings_size++;
3066 p++;
3067 }
3068 }
3069
3070 /* Scribble out any partial block. */
3071 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
3072 return false;
3073
3074 *string_sizep = strings_size;
3075 return true;
3076 }
3077
3078 /* Compute variable information to be placed in the SOM headers,
3079 space/subspace dictionaries, relocation streams, etc. Begin
3080 writing parts of the object file. */
3081
3082 static boolean
3083 som_begin_writing (abfd)
3084 bfd *abfd;
3085 {
3086 unsigned long current_offset = 0;
3087 int strings_size = 0;
3088 unsigned int total_reloc_size = 0;
3089 unsigned long num_spaces, num_subspaces, i;
3090 asection *section;
3091 unsigned int total_subspaces = 0;
3092 struct som_exec_auxhdr *exec_header = NULL;
3093
3094 /* The file header will always be first in an object file,
3095 everything else can be in random locations. To keep things
3096 "simple" BFD will lay out the object file in the manner suggested
3097 by the PRO ABI for PA-RISC Systems. */
3098
3099 /* Before any output can really begin offsets for all the major
3100 portions of the object file must be computed. So, starting
3101 with the initial file header compute (and sometimes write)
3102 each portion of the object file. */
3103
3104 /* Make room for the file header, it's contents are not complete
3105 yet, so it can not be written at this time. */
3106 current_offset += sizeof (struct header);
3107
3108 /* Any auxiliary headers will follow the file header. Right now
3109 we support only the copyright and version headers. */
3110 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3111 obj_som_file_hdr (abfd)->aux_header_size = 0;
3112 if (abfd->flags & (EXEC_P | DYNAMIC))
3113 {
3114 /* Parts of the exec header will be filled in later, so
3115 delay writing the header itself. Fill in the defaults,
3116 and write it later. */
3117 current_offset += sizeof (struct som_exec_auxhdr);
3118 obj_som_file_hdr (abfd)->aux_header_size
3119 += sizeof (struct som_exec_auxhdr);
3120 exec_header = obj_som_exec_hdr (abfd);
3121 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3122 exec_header->som_auxhdr.length = 40;
3123 }
3124 if (obj_som_version_hdr (abfd) != NULL)
3125 {
3126 unsigned int len;
3127
3128 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3129 return false;
3130
3131 /* Write the aux_id structure and the string length. */
3132 len = sizeof (struct aux_id) + sizeof (unsigned int);
3133 obj_som_file_hdr (abfd)->aux_header_size += len;
3134 current_offset += len;
3135 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
3136 return false;
3137
3138 /* Write the version string. */
3139 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3140 obj_som_file_hdr (abfd)->aux_header_size += len;
3141 current_offset += len;
3142 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
3143 len, 1, abfd) != len)
3144 return false;
3145 }
3146
3147 if (obj_som_copyright_hdr (abfd) != NULL)
3148 {
3149 unsigned int len;
3150
3151 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3152 return false;
3153
3154 /* Write the aux_id structure and the string length. */
3155 len = sizeof (struct aux_id) + sizeof (unsigned int);
3156 obj_som_file_hdr (abfd)->aux_header_size += len;
3157 current_offset += len;
3158 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
3159 return false;
3160
3161 /* Write the copyright string. */
3162 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3163 obj_som_file_hdr (abfd)->aux_header_size += len;
3164 current_offset += len;
3165 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
3166 len, 1, abfd) != len)
3167 return false;
3168 }
3169
3170 /* Next comes the initialization pointers; we have no initialization
3171 pointers, so current offset does not change. */
3172 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3173 obj_som_file_hdr (abfd)->init_array_total = 0;
3174
3175 /* Next are the space records. These are fixed length records.
3176
3177 Count the number of spaces to determine how much room is needed
3178 in the object file for the space records.
3179
3180 The names of the spaces are stored in a separate string table,
3181 and the index for each space into the string table is computed
3182 below. Therefore, it is not possible to write the space headers
3183 at this time. */
3184 num_spaces = som_count_spaces (abfd);
3185 obj_som_file_hdr (abfd)->space_location = current_offset;
3186 obj_som_file_hdr (abfd)->space_total = num_spaces;
3187 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3188
3189 /* Next are the subspace records. These are fixed length records.
3190
3191 Count the number of subspaes to determine how much room is needed
3192 in the object file for the subspace records.
3193
3194 A variety if fields in the subspace record are still unknown at
3195 this time (index into string table, fixup stream location/size, etc). */
3196 num_subspaces = som_count_subspaces (abfd);
3197 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3198 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3199 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
3200
3201 /* Next is the string table for the space/subspace names. We will
3202 build and write the string table on the fly. At the same time
3203 we will fill in the space/subspace name index fields. */
3204
3205 /* The string table needs to be aligned on a word boundary. */
3206 if (current_offset % 4)
3207 current_offset += (4 - (current_offset % 4));
3208
3209 /* Mark the offset of the space/subspace string table in the
3210 file header. */
3211 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3212
3213 /* Scribble out the space strings. */
3214 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
3215 return false;
3216
3217 /* Record total string table size in the header and update the
3218 current offset. */
3219 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3220 current_offset += strings_size;
3221
3222 /* Next is the compiler records. We do not use these. */
3223 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3224 obj_som_file_hdr (abfd)->compiler_total = 0;
3225
3226 /* Now compute the file positions for the loadable subspaces, taking
3227 care to make sure everything stays properly aligned. */
3228
3229 section = abfd->sections;
3230 for (i = 0; i < num_spaces; i++)
3231 {
3232 asection *subsection;
3233 int first_subspace;
3234 unsigned int subspace_offset = 0;
3235
3236 /* Find a space. */
3237 while (!som_is_space (section))
3238 section = section->next;
3239
3240 first_subspace = 1;
3241 /* Now look for all its subspaces. */
3242 for (subsection = abfd->sections;
3243 subsection != NULL;
3244 subsection = subsection->next)
3245 {
3246
3247 if (!som_is_subspace (subsection)
3248 || !som_is_container (section, subsection)
3249 || (subsection->flags & SEC_ALLOC) == 0)
3250 continue;
3251
3252 /* If this is the first subspace in the space, and we are
3253 building an executable, then take care to make sure all
3254 the alignments are correct and update the exec header. */
3255 if (first_subspace
3256 && (abfd->flags & (EXEC_P | DYNAMIC)))
3257 {
3258 /* Demand paged executables have each space aligned to a
3259 page boundary. Sharable executables (write-protected
3260 text) have just the private (aka data & bss) space aligned
3261 to a page boundary. Ugh. Not true for HPUX.
3262
3263 The HPUX kernel requires the text to always be page aligned
3264 within the file regardless of the executable's type. */
3265 if (abfd->flags & (D_PAGED | DYNAMIC)
3266 || (subsection->flags & SEC_CODE)
3267 || ((abfd->flags & WP_TEXT)
3268 && (subsection->flags & SEC_DATA)))
3269 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3270
3271 /* Update the exec header. */
3272 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3273 {
3274 exec_header->exec_tmem = section->vma;
3275 exec_header->exec_tfile = current_offset;
3276 }
3277 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3278 {
3279 exec_header->exec_dmem = section->vma;
3280 exec_header->exec_dfile = current_offset;
3281 }
3282
3283 /* Keep track of exactly where we are within a particular
3284 space. This is necessary as the braindamaged HPUX
3285 loader will create holes between subspaces *and*
3286 subspace alignments are *NOT* preserved. What a crock. */
3287 subspace_offset = subsection->vma;
3288
3289 /* Only do this for the first subspace within each space. */
3290 first_subspace = 0;
3291 }
3292 else if (abfd->flags & (EXEC_P | DYNAMIC))
3293 {
3294 /* The braindamaged HPUX loader may have created a hole
3295 between two subspaces. It is *not* sufficient to use
3296 the alignment specifications within the subspaces to
3297 account for these holes -- I've run into at least one
3298 case where the loader left one code subspace unaligned
3299 in a final executable.
3300
3301 To combat this we keep a current offset within each space,
3302 and use the subspace vma fields to detect and preserve
3303 holes. What a crock!
3304
3305 ps. This is not necessary for unloadable space/subspaces. */
3306 current_offset += subsection->vma - subspace_offset;
3307 if (subsection->flags & SEC_CODE)
3308 exec_header->exec_tsize += subsection->vma - subspace_offset;
3309 else
3310 exec_header->exec_dsize += subsection->vma - subspace_offset;
3311 subspace_offset += subsection->vma - subspace_offset;
3312 }
3313
3314
3315 subsection->target_index = total_subspaces++;
3316 /* This is real data to be loaded from the file. */
3317 if (subsection->flags & SEC_LOAD)
3318 {
3319 /* Update the size of the code & data. */
3320 if (abfd->flags & (EXEC_P | DYNAMIC)
3321 && subsection->flags & SEC_CODE)
3322 exec_header->exec_tsize += subsection->_cooked_size;
3323 else if (abfd->flags & (EXEC_P | DYNAMIC)
3324 && subsection->flags & SEC_DATA)
3325 exec_header->exec_dsize += subsection->_cooked_size;
3326 som_section_data (subsection)->subspace_dict->file_loc_init_value
3327 = current_offset;
3328 subsection->filepos = current_offset;
3329 current_offset += bfd_section_size (abfd, subsection);
3330 subspace_offset += bfd_section_size (abfd, subsection);
3331 }
3332 /* Looks like uninitialized data. */
3333 else
3334 {
3335 /* Update the size of the bss section. */
3336 if (abfd->flags & (EXEC_P | DYNAMIC))
3337 exec_header->exec_bsize += subsection->_cooked_size;
3338
3339 som_section_data (subsection)->subspace_dict->file_loc_init_value
3340 = 0;
3341 som_section_data (subsection)->subspace_dict->
3342 initialization_length = 0;
3343 }
3344 }
3345 /* Goto the next section. */
3346 section = section->next;
3347 }
3348
3349 /* Finally compute the file positions for unloadable subspaces.
3350 If building an executable, start the unloadable stuff on its
3351 own page. */
3352
3353 if (abfd->flags & (EXEC_P | DYNAMIC))
3354 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3355
3356 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3357 section = abfd->sections;
3358 for (i = 0; i < num_spaces; i++)
3359 {
3360 asection *subsection;
3361
3362 /* Find a space. */
3363 while (!som_is_space (section))
3364 section = section->next;
3365
3366 if (abfd->flags & (EXEC_P | DYNAMIC))
3367 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3368
3369 /* Now look for all its subspaces. */
3370 for (subsection = abfd->sections;
3371 subsection != NULL;
3372 subsection = subsection->next)
3373 {
3374
3375 if (!som_is_subspace (subsection)
3376 || !som_is_container (section, subsection)
3377 || (subsection->flags & SEC_ALLOC) != 0)
3378 continue;
3379
3380 subsection->target_index = total_subspaces++;
3381 /* This is real data to be loaded from the file. */
3382 if ((subsection->flags & SEC_LOAD) == 0)
3383 {
3384 som_section_data (subsection)->subspace_dict->file_loc_init_value
3385 = current_offset;
3386 subsection->filepos = current_offset;
3387 current_offset += bfd_section_size (abfd, subsection);
3388 }
3389 /* Looks like uninitialized data. */
3390 else
3391 {
3392 som_section_data (subsection)->subspace_dict->file_loc_init_value
3393 = 0;
3394 som_section_data (subsection)->subspace_dict->
3395 initialization_length = bfd_section_size (abfd, subsection);
3396 }
3397 }
3398 /* Goto the next section. */
3399 section = section->next;
3400 }
3401
3402 /* If building an executable, then make sure to seek to and write
3403 one byte at the end of the file to make sure any necessary
3404 zeros are filled in. Ugh. */
3405 if (abfd->flags & (EXEC_P | DYNAMIC))
3406 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3407 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3408 return false;
3409 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3410 return false;
3411
3412 obj_som_file_hdr (abfd)->unloadable_sp_size
3413 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3414
3415 /* Loader fixups are not supported in any way shape or form. */
3416 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3417 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3418
3419 /* Done. Store the total size of the SOM so far. */
3420 obj_som_file_hdr (abfd)->som_length = current_offset;
3421
3422 return true;
3423 }
3424
3425 /* Finally, scribble out the various headers to the disk. */
3426
3427 static boolean
3428 som_finish_writing (abfd)
3429 bfd *abfd;
3430 {
3431 int num_spaces = som_count_spaces (abfd);
3432 asymbol **syms = bfd_get_outsymbols (abfd);
3433 int i, num_syms, strings_size;
3434 int subspace_index = 0;
3435 file_ptr location;
3436 asection *section;
3437 unsigned long current_offset;
3438 unsigned int total_reloc_size;
3439
3440 /* Next is the symbol table. These are fixed length records.
3441
3442 Count the number of symbols to determine how much room is needed
3443 in the object file for the symbol table.
3444
3445 The names of the symbols are stored in a separate string table,
3446 and the index for each symbol name into the string table is computed
3447 below. Therefore, it is not possible to write the symbol table
3448 at this time.
3449
3450 These used to be output before the subspace contents, but they
3451 were moved here to work around a stupid bug in the hpux linker
3452 (fixed in hpux10). */
3453 current_offset = obj_som_file_hdr (abfd)->som_length;
3454
3455 /* Make sure we're on a word boundary. */
3456 if (current_offset % 4)
3457 current_offset += (4 - (current_offset % 4));
3458
3459 num_syms = bfd_get_symcount (abfd);
3460 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3461 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3462 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3463
3464 /* Next are the symbol strings.
3465 Align them to a word boundary. */
3466 if (current_offset % 4)
3467 current_offset += (4 - (current_offset % 4));
3468 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3469
3470 /* Scribble out the symbol strings. */
3471 if (som_write_symbol_strings (abfd, current_offset, syms,
3472 num_syms, &strings_size)
3473 == false)
3474 return false;
3475
3476 /* Record total string table size in header and update the
3477 current offset. */
3478 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3479 current_offset += strings_size;
3480
3481 /* Do prep work before handling fixups. */
3482 som_prep_for_fixups (abfd,
3483 bfd_get_outsymbols (abfd),
3484 bfd_get_symcount (abfd));
3485
3486 /* At the end of the file is the fixup stream which starts on a
3487 word boundary. */
3488 if (current_offset % 4)
3489 current_offset += (4 - (current_offset % 4));
3490 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3491
3492 /* Write the fixups and update fields in subspace headers which
3493 relate to the fixup stream. */
3494 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
3495 return false;
3496
3497 /* Record the total size of the fixup stream in the file header. */
3498 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3499
3500 /* Done. Store the total size of the SOM. */
3501 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
3502
3503 /* Now that the symbol table information is complete, build and
3504 write the symbol table. */
3505 if (som_build_and_write_symbol_table (abfd) == false)
3506 return false;
3507
3508 /* Subspaces are written first so that we can set up information
3509 about them in their containing spaces as the subspace is written. */
3510
3511 /* Seek to the start of the subspace dictionary records. */
3512 location = obj_som_file_hdr (abfd)->subspace_location;
3513 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3514 return false;
3515
3516 section = abfd->sections;
3517 /* Now for each loadable space write out records for its subspaces. */
3518 for (i = 0; i < num_spaces; i++)
3519 {
3520 asection *subsection;
3521
3522 /* Find a space. */
3523 while (!som_is_space (section))
3524 section = section->next;
3525
3526 /* Now look for all its subspaces. */
3527 for (subsection = abfd->sections;
3528 subsection != NULL;
3529 subsection = subsection->next)
3530 {
3531
3532 /* Skip any section which does not correspond to a space
3533 or subspace. Or does not have SEC_ALLOC set (and therefore
3534 has no real bits on the disk). */
3535 if (!som_is_subspace (subsection)
3536 || !som_is_container (section, subsection)
3537 || (subsection->flags & SEC_ALLOC) == 0)
3538 continue;
3539
3540 /* If this is the first subspace for this space, then save
3541 the index of the subspace in its containing space. Also
3542 set "is_loadable" in the containing space. */
3543
3544 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3545 {
3546 som_section_data (section)->space_dict->is_loadable = 1;
3547 som_section_data (section)->space_dict->subspace_index
3548 = subspace_index;
3549 }
3550
3551 /* Increment the number of subspaces seen and the number of
3552 subspaces contained within the current space. */
3553 subspace_index++;
3554 som_section_data (section)->space_dict->subspace_quantity++;
3555
3556 /* Mark the index of the current space within the subspace's
3557 dictionary record. */
3558 som_section_data (subsection)->subspace_dict->space_index = i;
3559
3560 /* Dump the current subspace header. */
3561 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3562 sizeof (struct subspace_dictionary_record), 1, abfd)
3563 != sizeof (struct subspace_dictionary_record))
3564 return false;
3565 }
3566 /* Goto the next section. */
3567 section = section->next;
3568 }
3569
3570 /* Now repeat the process for unloadable subspaces. */
3571 section = abfd->sections;
3572 /* Now for each space write out records for its subspaces. */
3573 for (i = 0; i < num_spaces; i++)
3574 {
3575 asection *subsection;
3576
3577 /* Find a space. */
3578 while (!som_is_space (section))
3579 section = section->next;
3580
3581 /* Now look for all its subspaces. */
3582 for (subsection = abfd->sections;
3583 subsection != NULL;
3584 subsection = subsection->next)
3585 {
3586
3587 /* Skip any section which does not correspond to a space or
3588 subspace, or which SEC_ALLOC set (and therefore handled
3589 in the loadable spaces/subspaces code above). */
3590
3591 if (!som_is_subspace (subsection)
3592 || !som_is_container (section, subsection)
3593 || (subsection->flags & SEC_ALLOC) != 0)
3594 continue;
3595
3596 /* If this is the first subspace for this space, then save
3597 the index of the subspace in its containing space. Clear
3598 "is_loadable". */
3599
3600 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3601 {
3602 som_section_data (section)->space_dict->is_loadable = 0;
3603 som_section_data (section)->space_dict->subspace_index
3604 = subspace_index;
3605 }
3606
3607 /* Increment the number of subspaces seen and the number of
3608 subspaces contained within the current space. */
3609 som_section_data (section)->space_dict->subspace_quantity++;
3610 subspace_index++;
3611
3612 /* Mark the index of the current space within the subspace's
3613 dictionary record. */
3614 som_section_data (subsection)->subspace_dict->space_index = i;
3615
3616 /* Dump this subspace header. */
3617 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3618 sizeof (struct subspace_dictionary_record), 1, abfd)
3619 != sizeof (struct subspace_dictionary_record))
3620 return false;
3621 }
3622 /* Goto the next section. */
3623 section = section->next;
3624 }
3625
3626 /* All the subspace dictiondary records are written, and all the
3627 fields are set up in the space dictionary records.
3628
3629 Seek to the right location and start writing the space
3630 dictionary records. */
3631 location = obj_som_file_hdr (abfd)->space_location;
3632 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3633 return false;
3634
3635 section = abfd->sections;
3636 for (i = 0; i < num_spaces; i++)
3637 {
3638
3639 /* Find a space. */
3640 while (!som_is_space (section))
3641 section = section->next;
3642
3643 /* Dump its header */
3644 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3645 sizeof (struct space_dictionary_record), 1, abfd)
3646 != sizeof (struct space_dictionary_record))
3647 return false;
3648
3649 /* Goto the next section. */
3650 section = section->next;
3651 }
3652
3653 /* Setting of the system_id has to happen very late now that copying of
3654 BFD private data happens *after* section contents are set. */
3655 if (abfd->flags & (EXEC_P | DYNAMIC))
3656 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3657 else if (bfd_get_mach (abfd) == pa20)
3658 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC2_0;
3659 else if (bfd_get_mach (abfd) == pa11)
3660 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_1;
3661 else
3662 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3663
3664 /* Compute the checksum for the file header just before writing
3665 the header to disk. */
3666 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3667
3668 /* Only thing left to do is write out the file header. It is always
3669 at location zero. Seek there and write it. */
3670 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3671 return false;
3672 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3673 sizeof (struct header), 1, abfd)
3674 != sizeof (struct header))
3675 return false;
3676
3677 /* Now write the exec header. */
3678 if (abfd->flags & (EXEC_P | DYNAMIC))
3679 {
3680 long tmp;
3681 struct som_exec_auxhdr *exec_header;
3682
3683 exec_header = obj_som_exec_hdr (abfd);
3684 exec_header->exec_entry = bfd_get_start_address (abfd);
3685 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3686
3687 /* Oh joys. Ram some of the BSS data into the DATA section
3688 to be compatable with how the hp linker makes objects
3689 (saves memory space). */
3690 tmp = exec_header->exec_dsize;
3691 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3692 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3693 if (exec_header->exec_bsize < 0)
3694 exec_header->exec_bsize = 0;
3695 exec_header->exec_dsize = tmp;
3696
3697 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3698 SEEK_SET) < 0)
3699 return false;
3700
3701 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3702 != AUX_HDR_SIZE)
3703 return false;
3704 }
3705 return true;
3706 }
3707
3708 /* Compute and return the checksum for a SOM file header. */
3709
3710 static unsigned long
3711 som_compute_checksum (abfd)
3712 bfd *abfd;
3713 {
3714 unsigned long checksum, count, i;
3715 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3716
3717 checksum = 0;
3718 count = sizeof (struct header) / sizeof (unsigned long);
3719 for (i = 0; i < count; i++)
3720 checksum ^= *(buffer + i);
3721
3722 return checksum;
3723 }
3724
3725 static void
3726 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3727 bfd *abfd;
3728 asymbol *sym;
3729 struct som_misc_symbol_info *info;
3730 {
3731 /* Initialize. */
3732 memset (info, 0, sizeof (struct som_misc_symbol_info));
3733
3734 /* The HP SOM linker requires detailed type information about
3735 all symbols (including undefined symbols!). Unfortunately,
3736 the type specified in an import/export statement does not
3737 always match what the linker wants. Severe braindamage. */
3738
3739 /* Section symbols will not have a SOM symbol type assigned to
3740 them yet. Assign all section symbols type ST_DATA. */
3741 if (sym->flags & BSF_SECTION_SYM)
3742 info->symbol_type = ST_DATA;
3743 else
3744 {
3745 /* Common symbols must have scope SS_UNSAT and type
3746 ST_STORAGE or the linker will choke. */
3747 if (bfd_is_com_section (sym->section))
3748 {
3749 info->symbol_scope = SS_UNSAT;
3750 info->symbol_type = ST_STORAGE;
3751 }
3752
3753 /* It is possible to have a symbol without an associated
3754 type. This happens if the user imported the symbol
3755 without a type and the symbol was never defined
3756 locally. If BSF_FUNCTION is set for this symbol, then
3757 assign it type ST_CODE (the HP linker requires undefined
3758 external functions to have type ST_CODE rather than ST_ENTRY). */
3759 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3760 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3761 && bfd_is_und_section (sym->section)
3762 && sym->flags & BSF_FUNCTION)
3763 info->symbol_type = ST_CODE;
3764
3765 /* Handle function symbols which were defined in this file.
3766 They should have type ST_ENTRY. Also retrieve the argument
3767 relocation bits from the SOM backend information. */
3768 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3769 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3770 && (sym->flags & BSF_FUNCTION))
3771 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3772 && (sym->flags & BSF_FUNCTION)))
3773 {
3774 info->symbol_type = ST_ENTRY;
3775 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3776 }
3777
3778 /* For unknown symbols set the symbol's type based on the symbol's
3779 section (ST_DATA for DATA sections, ST_CODE for CODE sections). */
3780 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3781 {
3782 if (sym->section->flags & SEC_CODE)
3783 info->symbol_type = ST_CODE;
3784 else
3785 info->symbol_type = ST_DATA;
3786 }
3787
3788 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3789 info->symbol_type = ST_DATA;
3790
3791 /* From now on it's a very simple mapping. */
3792 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3793 info->symbol_type = ST_ABSOLUTE;
3794 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3795 info->symbol_type = ST_CODE;
3796 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3797 info->symbol_type = ST_DATA;
3798 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3799 info->symbol_type = ST_MILLICODE;
3800 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3801 info->symbol_type = ST_PLABEL;
3802 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3803 info->symbol_type = ST_PRI_PROG;
3804 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3805 info->symbol_type = ST_SEC_PROG;
3806 }
3807
3808 /* Now handle the symbol's scope. Exported data which is not
3809 in the common section has scope SS_UNIVERSAL. Note scope
3810 of common symbols was handled earlier! */
3811 if (bfd_is_und_section (sym->section))
3812 info->symbol_scope = SS_UNSAT;
3813 else if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3814 info->symbol_scope = SS_UNIVERSAL;
3815 /* Anything else which is not in the common section has scope
3816 SS_LOCAL. */
3817 else if (! bfd_is_com_section (sym->section))
3818 info->symbol_scope = SS_LOCAL;
3819
3820 /* Now set the symbol_info field. It has no real meaning
3821 for undefined or common symbols, but the HP linker will
3822 choke if it's not set to some "reasonable" value. We
3823 use zero as a reasonable value. */
3824 if (bfd_is_com_section (sym->section)
3825 || bfd_is_und_section (sym->section)
3826 || bfd_is_abs_section (sym->section))
3827 info->symbol_info = 0;
3828 /* For all other symbols, the symbol_info field contains the
3829 subspace index of the space this symbol is contained in. */
3830 else
3831 info->symbol_info = sym->section->target_index;
3832
3833 /* Set the symbol's value. */
3834 info->symbol_value = sym->value + sym->section->vma;
3835 }
3836
3837 /* Build and write, in one big chunk, the entire symbol table for
3838 this BFD. */
3839
3840 static boolean
3841 som_build_and_write_symbol_table (abfd)
3842 bfd *abfd;
3843 {
3844 unsigned int num_syms = bfd_get_symcount (abfd);
3845 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3846 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
3847 struct symbol_dictionary_record *som_symtab = NULL;
3848 int i, symtab_size;
3849
3850 /* Compute total symbol table size and allocate a chunk of memory
3851 to hold the symbol table as we build it. */
3852 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3853 som_symtab = (struct symbol_dictionary_record *) bfd_malloc (symtab_size);
3854 if (som_symtab == NULL && symtab_size != 0)
3855 goto error_return;
3856 memset (som_symtab, 0, symtab_size);
3857
3858 /* Walk over each symbol. */
3859 for (i = 0; i < num_syms; i++)
3860 {
3861 struct som_misc_symbol_info info;
3862
3863 /* This is really an index into the symbol strings table.
3864 By the time we get here, the index has already been
3865 computed and stored into the name field in the BFD symbol. */
3866 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
3867
3868 /* Derive SOM information from the BFD symbol. */
3869 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3870
3871 /* Now use it. */
3872 som_symtab[i].symbol_type = info.symbol_type;
3873 som_symtab[i].symbol_scope = info.symbol_scope;
3874 som_symtab[i].arg_reloc = info.arg_reloc;
3875 som_symtab[i].symbol_info = info.symbol_info;
3876 som_symtab[i].symbol_value = info.symbol_value;
3877 }
3878
3879 /* Everything is ready, seek to the right location and
3880 scribble out the symbol table. */
3881 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3882 return false;
3883
3884 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3885 goto error_return;
3886
3887 if (som_symtab != NULL)
3888 free (som_symtab);
3889 return true;
3890 error_return:
3891 if (som_symtab != NULL)
3892 free (som_symtab);
3893 return false;
3894 }
3895
3896 /* Write an object in SOM format. */
3897
3898 static boolean
3899 som_write_object_contents (abfd)
3900 bfd *abfd;
3901 {
3902 if (abfd->output_has_begun == false)
3903 {
3904 /* Set up fixed parts of the file, space, and subspace headers.
3905 Notify the world that output has begun. */
3906 som_prep_headers (abfd);
3907 abfd->output_has_begun = true;
3908 /* Start writing the object file. This include all the string
3909 tables, fixup streams, and other portions of the object file. */
3910 som_begin_writing (abfd);
3911 }
3912
3913 return (som_finish_writing (abfd));
3914 }
3915
3916 \f
3917 /* Read and save the string table associated with the given BFD. */
3918
3919 static boolean
3920 som_slurp_string_table (abfd)
3921 bfd *abfd;
3922 {
3923 char *stringtab;
3924
3925 /* Use the saved version if its available. */
3926 if (obj_som_stringtab (abfd) != NULL)
3927 return true;
3928
3929 /* I don't think this can currently happen, and I'm not sure it should
3930 really be an error, but it's better than getting unpredictable results
3931 from the host's malloc when passed a size of zero. */
3932 if (obj_som_stringtab_size (abfd) == 0)
3933 {
3934 bfd_set_error (bfd_error_no_symbols);
3935 return false;
3936 }
3937
3938 /* Allocate and read in the string table. */
3939 stringtab = bfd_malloc (obj_som_stringtab_size (abfd));
3940 if (stringtab == NULL)
3941 return false;
3942 memset (stringtab, 0, obj_som_stringtab_size (abfd));
3943
3944 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3945 return false;
3946
3947 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3948 != obj_som_stringtab_size (abfd))
3949 return false;
3950
3951 /* Save our results and return success. */
3952 obj_som_stringtab (abfd) = stringtab;
3953 return true;
3954 }
3955
3956 /* Return the amount of data (in bytes) required to hold the symbol
3957 table for this object. */
3958
3959 static long
3960 som_get_symtab_upper_bound (abfd)
3961 bfd *abfd;
3962 {
3963 if (!som_slurp_symbol_table (abfd))
3964 return -1;
3965
3966 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3967 }
3968
3969 /* Convert from a SOM subspace index to a BFD section. */
3970
3971 static asection *
3972 bfd_section_from_som_symbol (abfd, symbol)
3973 bfd *abfd;
3974 struct symbol_dictionary_record *symbol;
3975 {
3976 asection *section;
3977
3978 /* The meaning of the symbol_info field changes for functions
3979 within executables. So only use the quick symbol_info mapping for
3980 incomplete objects and non-function symbols in executables. */
3981 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3982 || (symbol->symbol_type != ST_ENTRY
3983 && symbol->symbol_type != ST_PRI_PROG
3984 && symbol->symbol_type != ST_SEC_PROG
3985 && symbol->symbol_type != ST_MILLICODE))
3986 {
3987 unsigned int index = symbol->symbol_info;
3988 for (section = abfd->sections; section != NULL; section = section->next)
3989 if (section->target_index == index && som_is_subspace (section))
3990 return section;
3991
3992 /* Could be a symbol from an external library (such as an OMOS
3993 shared library). Don't abort. */
3994 return bfd_abs_section_ptr;
3995
3996 }
3997 else
3998 {
3999 unsigned int value = symbol->symbol_value;
4000
4001 /* For executables we will have to use the symbol's address and
4002 find out what section would contain that address. Yuk. */
4003 for (section = abfd->sections; section; section = section->next)
4004 {
4005 if (value >= section->vma
4006 && value <= section->vma + section->_cooked_size
4007 && som_is_subspace (section))
4008 return section;
4009 }
4010
4011 /* Could be a symbol from an external library (such as an OMOS
4012 shared library). Don't abort. */
4013 return bfd_abs_section_ptr;
4014
4015 }
4016 }
4017
4018 /* Read and save the symbol table associated with the given BFD. */
4019
4020 static unsigned int
4021 som_slurp_symbol_table (abfd)
4022 bfd *abfd;
4023 {
4024 int symbol_count = bfd_get_symcount (abfd);
4025 int symsize = sizeof (struct symbol_dictionary_record);
4026 char *stringtab;
4027 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
4028 som_symbol_type *sym, *symbase;
4029
4030 /* Return saved value if it exists. */
4031 if (obj_som_symtab (abfd) != NULL)
4032 goto successful_return;
4033
4034 /* Special case. This is *not* an error. */
4035 if (symbol_count == 0)
4036 goto successful_return;
4037
4038 if (!som_slurp_string_table (abfd))
4039 goto error_return;
4040
4041 stringtab = obj_som_stringtab (abfd);
4042
4043 symbase = ((som_symbol_type *)
4044 bfd_malloc (symbol_count * sizeof (som_symbol_type)));
4045 if (symbase == NULL)
4046 goto error_return;
4047 memset (symbase, 0, symbol_count * sizeof (som_symbol_type));
4048
4049 /* Read in the external SOM representation. */
4050 buf = bfd_malloc (symbol_count * symsize);
4051 if (buf == NULL && symbol_count * symsize != 0)
4052 goto error_return;
4053 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
4054 goto error_return;
4055 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
4056 != symbol_count * symsize)
4057 goto error_return;
4058
4059 /* Iterate over all the symbols and internalize them. */
4060 endbufp = buf + symbol_count;
4061 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
4062 {
4063
4064 /* I don't think we care about these. */
4065 if (bufp->symbol_type == ST_SYM_EXT
4066 || bufp->symbol_type == ST_ARG_EXT)
4067 continue;
4068
4069 /* Set some private data we care about. */
4070 if (bufp->symbol_type == ST_NULL)
4071 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4072 else if (bufp->symbol_type == ST_ABSOLUTE)
4073 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
4074 else if (bufp->symbol_type == ST_DATA)
4075 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
4076 else if (bufp->symbol_type == ST_CODE)
4077 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
4078 else if (bufp->symbol_type == ST_PRI_PROG)
4079 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
4080 else if (bufp->symbol_type == ST_SEC_PROG)
4081 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
4082 else if (bufp->symbol_type == ST_ENTRY)
4083 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
4084 else if (bufp->symbol_type == ST_MILLICODE)
4085 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
4086 else if (bufp->symbol_type == ST_PLABEL)
4087 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
4088 else
4089 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4090 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
4091
4092 /* Some reasonable defaults. */
4093 sym->symbol.the_bfd = abfd;
4094 sym->symbol.name = bufp->name.n_strx + stringtab;
4095 sym->symbol.value = bufp->symbol_value;
4096 sym->symbol.section = 0;
4097 sym->symbol.flags = 0;
4098
4099 switch (bufp->symbol_type)
4100 {
4101 case ST_ENTRY:
4102 case ST_MILLICODE:
4103 sym->symbol.flags |= BSF_FUNCTION;
4104 sym->symbol.value &= ~0x3;
4105 break;
4106
4107 case ST_STUB:
4108 case ST_CODE:
4109 case ST_PRI_PROG:
4110 case ST_SEC_PROG:
4111 sym->symbol.value &= ~0x3;
4112 /* If the symbol's scope is ST_UNSAT, then these are
4113 undefined function symbols. */
4114 if (bufp->symbol_scope == SS_UNSAT)
4115 sym->symbol.flags |= BSF_FUNCTION;
4116
4117
4118 default:
4119 break;
4120 }
4121
4122 /* Handle scoping and section information. */
4123 switch (bufp->symbol_scope)
4124 {
4125 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4126 so the section associated with this symbol can't be known. */
4127 case SS_EXTERNAL:
4128 if (bufp->symbol_type != ST_STORAGE)
4129 sym->symbol.section = bfd_und_section_ptr;
4130 else
4131 sym->symbol.section = bfd_com_section_ptr;
4132 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4133 break;
4134
4135 case SS_UNSAT:
4136 if (bufp->symbol_type != ST_STORAGE)
4137 sym->symbol.section = bfd_und_section_ptr;
4138 else
4139 sym->symbol.section = bfd_com_section_ptr;
4140 break;
4141
4142 case SS_UNIVERSAL:
4143 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4144 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4145 sym->symbol.value -= sym->symbol.section->vma;
4146 break;
4147
4148 #if 0
4149 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
4150 Sound dumb? It is. */
4151 case SS_GLOBAL:
4152 #endif
4153 case SS_LOCAL:
4154 sym->symbol.flags |= BSF_LOCAL;
4155 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4156 sym->symbol.value -= sym->symbol.section->vma;
4157 break;
4158 }
4159
4160 /* Mark section symbols and symbols used by the debugger.
4161 Note $START$ is a magic code symbol, NOT a section symbol. */
4162 if (sym->symbol.name[0] == '$'
4163 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4164 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4165 sym->symbol.flags |= BSF_SECTION_SYM;
4166 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
4167 {
4168 sym->symbol.flags |= BSF_SECTION_SYM;
4169 sym->symbol.name = sym->symbol.section->name;
4170 }
4171 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
4172 sym->symbol.flags |= BSF_DEBUGGING;
4173
4174 /* Note increment at bottom of loop, since we skip some symbols
4175 we can not include it as part of the for statement. */
4176 sym++;
4177 }
4178
4179 /* We modify the symbol count to record the number of BFD symbols we
4180 created. */
4181 bfd_get_symcount (abfd) = sym - symbase;
4182
4183 /* Save our results and return success. */
4184 obj_som_symtab (abfd) = symbase;
4185 successful_return:
4186 if (buf != NULL)
4187 free (buf);
4188 return (true);
4189
4190 error_return:
4191 if (buf != NULL)
4192 free (buf);
4193 return false;
4194 }
4195
4196 /* Canonicalize a SOM symbol table. Return the number of entries
4197 in the symbol table. */
4198
4199 static long
4200 som_get_symtab (abfd, location)
4201 bfd *abfd;
4202 asymbol **location;
4203 {
4204 int i;
4205 som_symbol_type *symbase;
4206
4207 if (!som_slurp_symbol_table (abfd))
4208 return -1;
4209
4210 i = bfd_get_symcount (abfd);
4211 symbase = obj_som_symtab (abfd);
4212
4213 for (; i > 0; i--, location++, symbase++)
4214 *location = &symbase->symbol;
4215
4216 /* Final null pointer. */
4217 *location = 0;
4218 return (bfd_get_symcount (abfd));
4219 }
4220
4221 /* Make a SOM symbol. There is nothing special to do here. */
4222
4223 static asymbol *
4224 som_make_empty_symbol (abfd)
4225 bfd *abfd;
4226 {
4227 som_symbol_type *new =
4228 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
4229 if (new == NULL)
4230 return 0;
4231 new->symbol.the_bfd = abfd;
4232
4233 return &new->symbol;
4234 }
4235
4236 /* Print symbol information. */
4237
4238 static void
4239 som_print_symbol (ignore_abfd, afile, symbol, how)
4240 bfd *ignore_abfd;
4241 PTR afile;
4242 asymbol *symbol;
4243 bfd_print_symbol_type how;
4244 {
4245 FILE *file = (FILE *) afile;
4246 switch (how)
4247 {
4248 case bfd_print_symbol_name:
4249 fprintf (file, "%s", symbol->name);
4250 break;
4251 case bfd_print_symbol_more:
4252 fprintf (file, "som ");
4253 fprintf_vma (file, symbol->value);
4254 fprintf (file, " %lx", (long) symbol->flags);
4255 break;
4256 case bfd_print_symbol_all:
4257 {
4258 CONST char *section_name;
4259 section_name = symbol->section ? symbol->section->name : "(*none*)";
4260 bfd_print_symbol_vandf ((PTR) file, symbol);
4261 fprintf (file, " %s\t%s", section_name, symbol->name);
4262 break;
4263 }
4264 }
4265 }
4266
4267 static boolean
4268 som_bfd_is_local_label_name (abfd, name)
4269 bfd *abfd;
4270 const char *name;
4271 {
4272 return (name[0] == 'L' && name[1] == '$');
4273 }
4274
4275 /* Count or process variable-length SOM fixup records.
4276
4277 To avoid code duplication we use this code both to compute the number
4278 of relocations requested by a stream, and to internalize the stream.
4279
4280 When computing the number of relocations requested by a stream the
4281 variables rptr, section, and symbols have no meaning.
4282
4283 Return the number of relocations requested by the fixup stream. When
4284 not just counting
4285
4286 This needs at least two or three more passes to get it cleaned up. */
4287
4288 static unsigned int
4289 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
4290 unsigned char *fixup;
4291 unsigned int end;
4292 arelent *internal_relocs;
4293 asection *section;
4294 asymbol **symbols;
4295 boolean just_count;
4296 {
4297 unsigned int op, varname, deallocate_contents = 0;
4298 unsigned char *end_fixups = &fixup[end];
4299 const struct fixup_format *fp;
4300 char *cp;
4301 unsigned char *save_fixup;
4302 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4303 const int *subop;
4304 arelent *rptr= internal_relocs;
4305 unsigned int offset = 0;
4306
4307 #define var(c) variables[(c) - 'A']
4308 #define push(v) (*sp++ = (v))
4309 #define pop() (*--sp)
4310 #define emptystack() (sp == stack)
4311
4312 som_initialize_reloc_queue (reloc_queue);
4313 memset (variables, 0, sizeof (variables));
4314 memset (stack, 0, sizeof (stack));
4315 count = 0;
4316 prev_fixup = 0;
4317 saved_unwind_bits = 0;
4318 sp = stack;
4319
4320 while (fixup < end_fixups)
4321 {
4322
4323 /* Save pointer to the start of this fixup. We'll use
4324 it later to determine if it is necessary to put this fixup
4325 on the queue. */
4326 save_fixup = fixup;
4327
4328 /* Get the fixup code and its associated format. */
4329 op = *fixup++;
4330 fp = &som_fixup_formats[op];
4331
4332 /* Handle a request for a previous fixup. */
4333 if (*fp->format == 'P')
4334 {
4335 /* Get pointer to the beginning of the prev fixup, move
4336 the repeated fixup to the head of the queue. */
4337 fixup = reloc_queue[fp->D].reloc;
4338 som_reloc_queue_fix (reloc_queue, fp->D);
4339 prev_fixup = 1;
4340
4341 /* Get the fixup code and its associated format. */
4342 op = *fixup++;
4343 fp = &som_fixup_formats[op];
4344 }
4345
4346 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4347 if (! just_count
4348 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4349 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4350 {
4351 rptr->address = offset;
4352 rptr->howto = &som_hppa_howto_table[op];
4353 rptr->addend = 0;
4354 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4355 }
4356
4357 /* Set default input length to 0. Get the opcode class index
4358 into D. */
4359 var ('L') = 0;
4360 var ('D') = fp->D;
4361 var ('U') = saved_unwind_bits;
4362
4363 /* Get the opcode format. */
4364 cp = fp->format;
4365
4366 /* Process the format string. Parsing happens in two phases,
4367 parse RHS, then assign to LHS. Repeat until no more
4368 characters in the format string. */
4369 while (*cp)
4370 {
4371 /* The variable this pass is going to compute a value for. */
4372 varname = *cp++;
4373
4374 /* Start processing RHS. Continue until a NULL or '=' is found. */
4375 do
4376 {
4377 c = *cp++;
4378
4379 /* If this is a variable, push it on the stack. */
4380 if (isupper (c))
4381 push (var (c));
4382
4383 /* If this is a lower case letter, then it represents
4384 additional data from the fixup stream to be pushed onto
4385 the stack. */
4386 else if (islower (c))
4387 {
4388 int bits = (c - 'a') * 8;
4389 for (v = 0; c > 'a'; --c)
4390 v = (v << 8) | *fixup++;
4391 if (varname == 'V')
4392 v = sign_extend (v, bits);
4393 push (v);
4394 }
4395
4396 /* A decimal constant. Push it on the stack. */
4397 else if (isdigit (c))
4398 {
4399 v = c - '0';
4400 while (isdigit (*cp))
4401 v = (v * 10) + (*cp++ - '0');
4402 push (v);
4403 }
4404 else
4405
4406 /* An operator. Pop two two values from the stack and
4407 use them as operands to the given operation. Push
4408 the result of the operation back on the stack. */
4409 switch (c)
4410 {
4411 case '+':
4412 v = pop ();
4413 v += pop ();
4414 push (v);
4415 break;
4416 case '*':
4417 v = pop ();
4418 v *= pop ();
4419 push (v);
4420 break;
4421 case '<':
4422 v = pop ();
4423 v = pop () << v;
4424 push (v);
4425 break;
4426 default:
4427 abort ();
4428 }
4429 }
4430 while (*cp && *cp != '=');
4431
4432 /* Move over the equal operator. */
4433 cp++;
4434
4435 /* Pop the RHS off the stack. */
4436 c = pop ();
4437
4438 /* Perform the assignment. */
4439 var (varname) = c;
4440
4441 /* Handle side effects. and special 'O' stack cases. */
4442 switch (varname)
4443 {
4444 /* Consume some bytes from the input space. */
4445 case 'L':
4446 offset += c;
4447 break;
4448 /* A symbol to use in the relocation. Make a note
4449 of this if we are not just counting. */
4450 case 'S':
4451 if (! just_count)
4452 rptr->sym_ptr_ptr = &symbols[c];
4453 break;
4454 /* Argument relocation bits for a function call. */
4455 case 'R':
4456 if (! just_count)
4457 {
4458 unsigned int tmp = var ('R');
4459 rptr->addend = 0;
4460
4461 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4462 && R_PCREL_CALL + 10 > op)
4463 || (som_hppa_howto_table[op].type == R_ABS_CALL
4464 && R_ABS_CALL + 10 > op))
4465 {
4466 /* Simple encoding. */
4467 if (tmp > 4)
4468 {
4469 tmp -= 5;
4470 rptr->addend |= 1;
4471 }
4472 if (tmp == 4)
4473 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4474 else if (tmp == 3)
4475 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4476 else if (tmp == 2)
4477 rptr->addend |= 1 << 8 | 1 << 6;
4478 else if (tmp == 1)
4479 rptr->addend |= 1 << 8;
4480 }
4481 else
4482 {
4483 unsigned int tmp1, tmp2;
4484
4485 /* First part is easy -- low order two bits are
4486 directly copied, then shifted away. */
4487 rptr->addend = tmp & 0x3;
4488 tmp >>= 2;
4489
4490 /* Diving the result by 10 gives us the second
4491 part. If it is 9, then the first two words
4492 are a double precision paramater, else it is
4493 3 * the first arg bits + the 2nd arg bits. */
4494 tmp1 = tmp / 10;
4495 tmp -= tmp1 * 10;
4496 if (tmp1 == 9)
4497 rptr->addend += (0xe << 6);
4498 else
4499 {
4500 /* Get the two pieces. */
4501 tmp2 = tmp1 / 3;
4502 tmp1 -= tmp2 * 3;
4503 /* Put them in the addend. */
4504 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4505 }
4506
4507 /* What's left is the third part. It's unpacked
4508 just like the second. */
4509 if (tmp == 9)
4510 rptr->addend += (0xe << 2);
4511 else
4512 {
4513 tmp2 = tmp / 3;
4514 tmp -= tmp2 * 3;
4515 rptr->addend += (tmp2 << 4) + (tmp << 2);
4516 }
4517 }
4518 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4519 }
4520 break;
4521 /* Handle the linker expression stack. */
4522 case 'O':
4523 switch (op)
4524 {
4525 case R_COMP1:
4526 subop = comp1_opcodes;
4527 break;
4528 case R_COMP2:
4529 subop = comp2_opcodes;
4530 break;
4531 case R_COMP3:
4532 subop = comp3_opcodes;
4533 break;
4534 default:
4535 abort ();
4536 }
4537 while (*subop <= (unsigned char) c)
4538 ++subop;
4539 --subop;
4540 break;
4541 /* The lower 32unwind bits must be persistent. */
4542 case 'U':
4543 saved_unwind_bits = var ('U');
4544 break;
4545
4546 default:
4547 break;
4548 }
4549 }
4550
4551 /* If we used a previous fixup, clean up after it. */
4552 if (prev_fixup)
4553 {
4554 fixup = save_fixup + 1;
4555 prev_fixup = 0;
4556 }
4557 /* Queue it. */
4558 else if (fixup > save_fixup + 1)
4559 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4560
4561 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4562 fixups to BFD. */
4563 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4564 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4565 {
4566 /* Done with a single reloction. Loop back to the top. */
4567 if (! just_count)
4568 {
4569 if (som_hppa_howto_table[op].type == R_ENTRY)
4570 rptr->addend = var ('T');
4571 else if (som_hppa_howto_table[op].type == R_EXIT)
4572 rptr->addend = var ('U');
4573 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4574 || som_hppa_howto_table[op].type == R_ABS_CALL)
4575 ;
4576 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4577 {
4578 unsigned addend = var ('V');
4579
4580 /* Try what was specified in R_DATA_OVERRIDE first
4581 (if anything). Then the hard way using the
4582 section contents. */
4583 rptr->addend = var ('V');
4584
4585 if (rptr->addend == 0 && !section->contents)
4586 {
4587 /* Got to read the damn contents first. We don't
4588 bother saving the contents (yet). Add it one
4589 day if the need arises. */
4590 section->contents = bfd_malloc (section->_raw_size);
4591 if (section->contents == NULL)
4592 return -1;
4593
4594 deallocate_contents = 1;
4595 bfd_get_section_contents (section->owner,
4596 section,
4597 section->contents,
4598 0,
4599 section->_raw_size);
4600 }
4601 else if (rptr->addend == 0)
4602 rptr->addend = bfd_get_32 (section->owner,
4603 (section->contents
4604 + offset - var ('L')));
4605
4606 }
4607 else
4608 rptr->addend = var ('V');
4609 rptr++;
4610 }
4611 count++;
4612 /* Now that we've handled a "full" relocation, reset
4613 some state. */
4614 memset (variables, 0, sizeof (variables));
4615 memset (stack, 0, sizeof (stack));
4616 }
4617 }
4618 if (deallocate_contents)
4619 free (section->contents);
4620
4621 return count;
4622
4623 #undef var
4624 #undef push
4625 #undef pop
4626 #undef emptystack
4627 }
4628
4629 /* Read in the relocs (aka fixups in SOM terms) for a section.
4630
4631 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4632 set to true to indicate it only needs a count of the number
4633 of actual relocations. */
4634
4635 static boolean
4636 som_slurp_reloc_table (abfd, section, symbols, just_count)
4637 bfd *abfd;
4638 asection *section;
4639 asymbol **symbols;
4640 boolean just_count;
4641 {
4642 char *external_relocs;
4643 unsigned int fixup_stream_size;
4644 arelent *internal_relocs;
4645 unsigned int num_relocs;
4646
4647 fixup_stream_size = som_section_data (section)->reloc_size;
4648 /* If there were no relocations, then there is nothing to do. */
4649 if (section->reloc_count == 0)
4650 return true;
4651
4652 /* If reloc_count is -1, then the relocation stream has not been
4653 parsed. We must do so now to know how many relocations exist. */
4654 if (section->reloc_count == -1)
4655 {
4656 external_relocs = (char *) bfd_malloc (fixup_stream_size);
4657 if (external_relocs == (char *) NULL)
4658 return false;
4659 /* Read in the external forms. */
4660 if (bfd_seek (abfd,
4661 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4662 SEEK_SET)
4663 != 0)
4664 return false;
4665 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4666 != fixup_stream_size)
4667 return false;
4668
4669 /* Let callers know how many relocations found.
4670 also save the relocation stream as we will
4671 need it again. */
4672 section->reloc_count = som_set_reloc_info (external_relocs,
4673 fixup_stream_size,
4674 NULL, NULL, NULL, true);
4675
4676 som_section_data (section)->reloc_stream = external_relocs;
4677 }
4678
4679 /* If the caller only wanted a count, then return now. */
4680 if (just_count)
4681 return true;
4682
4683 num_relocs = section->reloc_count;
4684 external_relocs = som_section_data (section)->reloc_stream;
4685 /* Return saved information about the relocations if it is available. */
4686 if (section->relocation != (arelent *) NULL)
4687 return true;
4688
4689 internal_relocs = (arelent *)
4690 bfd_zalloc (abfd, (num_relocs * sizeof (arelent)));
4691 if (internal_relocs == (arelent *) NULL)
4692 return false;
4693
4694 /* Process and internalize the relocations. */
4695 som_set_reloc_info (external_relocs, fixup_stream_size,
4696 internal_relocs, section, symbols, false);
4697
4698 /* We're done with the external relocations. Free them. */
4699 free (external_relocs);
4700 som_section_data (section)->reloc_stream = NULL;
4701
4702 /* Save our results and return success. */
4703 section->relocation = internal_relocs;
4704 return (true);
4705 }
4706
4707 /* Return the number of bytes required to store the relocation
4708 information associated with the given section. */
4709
4710 static long
4711 som_get_reloc_upper_bound (abfd, asect)
4712 bfd *abfd;
4713 sec_ptr asect;
4714 {
4715 /* If section has relocations, then read in the relocation stream
4716 and parse it to determine how many relocations exist. */
4717 if (asect->flags & SEC_RELOC)
4718 {
4719 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4720 return -1;
4721 return (asect->reloc_count + 1) * sizeof (arelent *);
4722 }
4723 /* There are no relocations. */
4724 return 0;
4725 }
4726
4727 /* Convert relocations from SOM (external) form into BFD internal
4728 form. Return the number of relocations. */
4729
4730 static long
4731 som_canonicalize_reloc (abfd, section, relptr, symbols)
4732 bfd *abfd;
4733 sec_ptr section;
4734 arelent **relptr;
4735 asymbol **symbols;
4736 {
4737 arelent *tblptr;
4738 int count;
4739
4740 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4741 return -1;
4742
4743 count = section->reloc_count;
4744 tblptr = section->relocation;
4745
4746 while (count--)
4747 *relptr++ = tblptr++;
4748
4749 *relptr = (arelent *) NULL;
4750 return section->reloc_count;
4751 }
4752
4753 extern const bfd_target som_vec;
4754
4755 /* A hook to set up object file dependent section information. */
4756
4757 static boolean
4758 som_new_section_hook (abfd, newsect)
4759 bfd *abfd;
4760 asection *newsect;
4761 {
4762 newsect->used_by_bfd =
4763 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4764 if (!newsect->used_by_bfd)
4765 return false;
4766 newsect->alignment_power = 3;
4767
4768 /* We allow more than three sections internally */
4769 return true;
4770 }
4771
4772 /* Copy any private info we understand from the input symbol
4773 to the output symbol. */
4774
4775 static boolean
4776 som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol)
4777 bfd *ibfd;
4778 asymbol *isymbol;
4779 bfd *obfd;
4780 asymbol *osymbol;
4781 {
4782 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
4783 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
4784
4785 /* One day we may try to grok other private data. */
4786 if (ibfd->xvec->flavour != bfd_target_som_flavour
4787 || obfd->xvec->flavour != bfd_target_som_flavour)
4788 return false;
4789
4790 /* The only private information we need to copy is the argument relocation
4791 bits. */
4792 output_symbol->tc_data.hppa_arg_reloc = input_symbol->tc_data.hppa_arg_reloc;
4793
4794 return true;
4795 }
4796
4797 /* Copy any private info we understand from the input section
4798 to the output section. */
4799 static boolean
4800 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4801 bfd *ibfd;
4802 asection *isection;
4803 bfd *obfd;
4804 asection *osection;
4805 {
4806 /* One day we may try to grok other private data. */
4807 if (ibfd->xvec->flavour != bfd_target_som_flavour
4808 || obfd->xvec->flavour != bfd_target_som_flavour
4809 || (!som_is_space (isection) && !som_is_subspace (isection)))
4810 return true;
4811
4812 som_section_data (osection)->copy_data
4813 = (struct som_copyable_section_data_struct *)
4814 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4815 if (som_section_data (osection)->copy_data == NULL)
4816 return false;
4817
4818 memcpy (som_section_data (osection)->copy_data,
4819 som_section_data (isection)->copy_data,
4820 sizeof (struct som_copyable_section_data_struct));
4821
4822 /* Reparent if necessary. */
4823 if (som_section_data (osection)->copy_data->container)
4824 som_section_data (osection)->copy_data->container =
4825 som_section_data (osection)->copy_data->container->output_section;
4826
4827 return true;
4828 }
4829
4830 /* Copy any private info we understand from the input bfd
4831 to the output bfd. */
4832
4833 static boolean
4834 som_bfd_copy_private_bfd_data (ibfd, obfd)
4835 bfd *ibfd, *obfd;
4836 {
4837 /* One day we may try to grok other private data. */
4838 if (ibfd->xvec->flavour != bfd_target_som_flavour
4839 || obfd->xvec->flavour != bfd_target_som_flavour)
4840 return true;
4841
4842 /* Allocate some memory to hold the data we need. */
4843 obj_som_exec_data (obfd) = (struct som_exec_data *)
4844 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4845 if (obj_som_exec_data (obfd) == NULL)
4846 return false;
4847
4848 /* Now copy the data. */
4849 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4850 sizeof (struct som_exec_data));
4851
4852 return true;
4853 }
4854
4855 /* Set backend info for sections which can not be described
4856 in the BFD data structures. */
4857
4858 boolean
4859 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4860 asection *section;
4861 int defined;
4862 int private;
4863 unsigned int sort_key;
4864 int spnum;
4865 {
4866 /* Allocate memory to hold the magic information. */
4867 if (som_section_data (section)->copy_data == NULL)
4868 {
4869 som_section_data (section)->copy_data
4870 = (struct som_copyable_section_data_struct *)
4871 bfd_zalloc (section->owner,
4872 sizeof (struct som_copyable_section_data_struct));
4873 if (som_section_data (section)->copy_data == NULL)
4874 return false;
4875 }
4876 som_section_data (section)->copy_data->sort_key = sort_key;
4877 som_section_data (section)->copy_data->is_defined = defined;
4878 som_section_data (section)->copy_data->is_private = private;
4879 som_section_data (section)->copy_data->container = section;
4880 som_section_data (section)->copy_data->space_number = spnum;
4881 return true;
4882 }
4883
4884 /* Set backend info for subsections which can not be described
4885 in the BFD data structures. */
4886
4887 boolean
4888 bfd_som_set_subsection_attributes (section, container, access,
4889 sort_key, quadrant)
4890 asection *section;
4891 asection *container;
4892 int access;
4893 unsigned int sort_key;
4894 int quadrant;
4895 {
4896 /* Allocate memory to hold the magic information. */
4897 if (som_section_data (section)->copy_data == NULL)
4898 {
4899 som_section_data (section)->copy_data
4900 = (struct som_copyable_section_data_struct *)
4901 bfd_zalloc (section->owner,
4902 sizeof (struct som_copyable_section_data_struct));
4903 if (som_section_data (section)->copy_data == NULL)
4904 return false;
4905 }
4906 som_section_data (section)->copy_data->sort_key = sort_key;
4907 som_section_data (section)->copy_data->access_control_bits = access;
4908 som_section_data (section)->copy_data->quadrant = quadrant;
4909 som_section_data (section)->copy_data->container = container;
4910 return true;
4911 }
4912
4913 /* Set the full SOM symbol type. SOM needs far more symbol information
4914 than any other object file format I'm aware of. It is mandatory
4915 to be able to know if a symbol is an entry point, millicode, data,
4916 code, absolute, storage request, or procedure label. If you get
4917 the symbol type wrong your program will not link. */
4918
4919 void
4920 bfd_som_set_symbol_type (symbol, type)
4921 asymbol *symbol;
4922 unsigned int type;
4923 {
4924 som_symbol_data (symbol)->som_type = type;
4925 }
4926
4927 /* Attach an auxiliary header to the BFD backend so that it may be
4928 written into the object file. */
4929 boolean
4930 bfd_som_attach_aux_hdr (abfd, type, string)
4931 bfd *abfd;
4932 int type;
4933 char *string;
4934 {
4935 if (type == VERSION_AUX_ID)
4936 {
4937 int len = strlen (string);
4938 int pad = 0;
4939
4940 if (len % 4)
4941 pad = (4 - (len % 4));
4942 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4943 bfd_zalloc (abfd, sizeof (struct aux_id)
4944 + sizeof (unsigned int) + len + pad);
4945 if (!obj_som_version_hdr (abfd))
4946 return false;
4947 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4948 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4949 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4950 obj_som_version_hdr (abfd)->string_length = len;
4951 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4952 }
4953 else if (type == COPYRIGHT_AUX_ID)
4954 {
4955 int len = strlen (string);
4956 int pad = 0;
4957
4958 if (len % 4)
4959 pad = (4 - (len % 4));
4960 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4961 bfd_zalloc (abfd, sizeof (struct aux_id)
4962 + sizeof (unsigned int) + len + pad);
4963 if (!obj_som_copyright_hdr (abfd))
4964 return false;
4965 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4966 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4967 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4968 obj_som_copyright_hdr (abfd)->string_length = len;
4969 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4970 }
4971 return true;
4972 }
4973
4974 static boolean
4975 som_get_section_contents (abfd, section, location, offset, count)
4976 bfd *abfd;
4977 sec_ptr section;
4978 PTR location;
4979 file_ptr offset;
4980 bfd_size_type count;
4981 {
4982 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
4983 return true;
4984 if ((bfd_size_type)(offset+count) > section->_raw_size
4985 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4986 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4987 return (false); /* on error */
4988 return (true);
4989 }
4990
4991 static boolean
4992 som_set_section_contents (abfd, section, location, offset, count)
4993 bfd *abfd;
4994 sec_ptr section;
4995 PTR location;
4996 file_ptr offset;
4997 bfd_size_type count;
4998 {
4999 if (abfd->output_has_begun == false)
5000 {
5001 /* Set up fixed parts of the file, space, and subspace headers.
5002 Notify the world that output has begun. */
5003 som_prep_headers (abfd);
5004 abfd->output_has_begun = true;
5005 /* Start writing the object file. This include all the string
5006 tables, fixup streams, and other portions of the object file. */
5007 som_begin_writing (abfd);
5008 }
5009
5010 /* Only write subspaces which have "real" contents (eg. the contents
5011 are not generated at run time by the OS). */
5012 if (!som_is_subspace (section)
5013 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5014 return true;
5015
5016 /* Seek to the proper offset within the object file and write the
5017 data. */
5018 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
5019 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
5020 return false;
5021
5022 if (bfd_write ((PTR) location, 1, count, abfd) != count)
5023 return false;
5024 return true;
5025 }
5026
5027 static boolean
5028 som_set_arch_mach (abfd, arch, machine)
5029 bfd *abfd;
5030 enum bfd_architecture arch;
5031 unsigned long machine;
5032 {
5033 /* Allow any architecture to be supported by the SOM backend */
5034 return bfd_default_set_arch_mach (abfd, arch, machine);
5035 }
5036
5037 static boolean
5038 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
5039 functionname_ptr, line_ptr)
5040 bfd *abfd;
5041 asection *section;
5042 asymbol **symbols;
5043 bfd_vma offset;
5044 CONST char **filename_ptr;
5045 CONST char **functionname_ptr;
5046 unsigned int *line_ptr;
5047 {
5048 return (false);
5049 }
5050
5051 static int
5052 som_sizeof_headers (abfd, reloc)
5053 bfd *abfd;
5054 boolean reloc;
5055 {
5056 (*_bfd_error_handler) (_("som_sizeof_headers unimplemented"));
5057 fflush (stderr);
5058 abort ();
5059 return (0);
5060 }
5061
5062 /* Return the single-character symbol type corresponding to
5063 SOM section S, or '?' for an unknown SOM section. */
5064
5065 static char
5066 som_section_type (s)
5067 const char *s;
5068 {
5069 const struct section_to_type *t;
5070
5071 for (t = &stt[0]; t->section; t++)
5072 if (!strcmp (s, t->section))
5073 return t->type;
5074 return '?';
5075 }
5076
5077 static int
5078 som_decode_symclass (symbol)
5079 asymbol *symbol;
5080 {
5081 char c;
5082
5083 if (bfd_is_com_section (symbol->section))
5084 return 'C';
5085 if (bfd_is_und_section (symbol->section))
5086 return 'U';
5087 if (bfd_is_ind_section (symbol->section))
5088 return 'I';
5089 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
5090 return '?';
5091
5092 if (bfd_is_abs_section (symbol->section)
5093 || (som_symbol_data (symbol) != NULL
5094 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5095 c = 'a';
5096 else if (symbol->section)
5097 c = som_section_type (symbol->section->name);
5098 else
5099 return '?';
5100 if (symbol->flags & BSF_GLOBAL)
5101 c = toupper (c);
5102 return c;
5103 }
5104
5105 /* Return information about SOM symbol SYMBOL in RET. */
5106
5107 static void
5108 som_get_symbol_info (ignore_abfd, symbol, ret)
5109 bfd *ignore_abfd;
5110 asymbol *symbol;
5111 symbol_info *ret;
5112 {
5113 ret->type = som_decode_symclass (symbol);
5114 if (ret->type != 'U')
5115 ret->value = symbol->value+symbol->section->vma;
5116 else
5117 ret->value = 0;
5118 ret->name = symbol->name;
5119 }
5120
5121 /* Count the number of symbols in the archive symbol table. Necessary
5122 so that we can allocate space for all the carsyms at once. */
5123
5124 static boolean
5125 som_bfd_count_ar_symbols (abfd, lst_header, count)
5126 bfd *abfd;
5127 struct lst_header *lst_header;
5128 symindex *count;
5129 {
5130 unsigned int i;
5131 unsigned int *hash_table = NULL;
5132 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5133
5134 hash_table =
5135 (unsigned int *) bfd_malloc (lst_header->hash_size
5136 * sizeof (unsigned int));
5137 if (hash_table == NULL && lst_header->hash_size != 0)
5138 goto error_return;
5139
5140 /* Don't forget to initialize the counter! */
5141 *count = 0;
5142
5143 /* Read in the hash table. The has table is an array of 32bit file offsets
5144 which point to the hash chains. */
5145 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5146 != lst_header->hash_size * 4)
5147 goto error_return;
5148
5149 /* Walk each chain counting the number of symbols found on that particular
5150 chain. */
5151 for (i = 0; i < lst_header->hash_size; i++)
5152 {
5153 struct lst_symbol_record lst_symbol;
5154
5155 /* An empty chain has zero as it's file offset. */
5156 if (hash_table[i] == 0)
5157 continue;
5158
5159 /* Seek to the first symbol in this hash chain. */
5160 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5161 goto error_return;
5162
5163 /* Read in this symbol and update the counter. */
5164 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5165 != sizeof (lst_symbol))
5166 goto error_return;
5167
5168 (*count)++;
5169
5170 /* Now iterate through the rest of the symbols on this chain. */
5171 while (lst_symbol.next_entry)
5172 {
5173
5174 /* Seek to the next symbol. */
5175 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5176 < 0)
5177 goto error_return;
5178
5179 /* Read the symbol in and update the counter. */
5180 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5181 != sizeof (lst_symbol))
5182 goto error_return;
5183
5184 (*count)++;
5185 }
5186 }
5187 if (hash_table != NULL)
5188 free (hash_table);
5189 return true;
5190
5191 error_return:
5192 if (hash_table != NULL)
5193 free (hash_table);
5194 return false;
5195 }
5196
5197 /* Fill in the canonical archive symbols (SYMS) from the archive described
5198 by ABFD and LST_HEADER. */
5199
5200 static boolean
5201 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
5202 bfd *abfd;
5203 struct lst_header *lst_header;
5204 carsym **syms;
5205 {
5206 unsigned int i, len;
5207 carsym *set = syms[0];
5208 unsigned int *hash_table = NULL;
5209 struct som_entry *som_dict = NULL;
5210 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5211
5212 hash_table =
5213 (unsigned int *) bfd_malloc (lst_header->hash_size
5214 * sizeof (unsigned int));
5215 if (hash_table == NULL && lst_header->hash_size != 0)
5216 goto error_return;
5217
5218 som_dict =
5219 (struct som_entry *) bfd_malloc (lst_header->module_count
5220 * sizeof (struct som_entry));
5221 if (som_dict == NULL && lst_header->module_count != 0)
5222 goto error_return;
5223
5224 /* Read in the hash table. The has table is an array of 32bit file offsets
5225 which point to the hash chains. */
5226 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5227 != lst_header->hash_size * 4)
5228 goto error_return;
5229
5230 /* Seek to and read in the SOM dictionary. We will need this to fill
5231 in the carsym's filepos field. */
5232 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
5233 goto error_return;
5234
5235 if (bfd_read ((PTR) som_dict, lst_header->module_count,
5236 sizeof (struct som_entry), abfd)
5237 != lst_header->module_count * sizeof (struct som_entry))
5238 goto error_return;
5239
5240 /* Walk each chain filling in the carsyms as we go along. */
5241 for (i = 0; i < lst_header->hash_size; i++)
5242 {
5243 struct lst_symbol_record lst_symbol;
5244
5245 /* An empty chain has zero as it's file offset. */
5246 if (hash_table[i] == 0)
5247 continue;
5248
5249 /* Seek to and read the first symbol on the chain. */
5250 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5251 goto error_return;
5252
5253 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5254 != sizeof (lst_symbol))
5255 goto error_return;
5256
5257 /* Get the name of the symbol, first get the length which is stored
5258 as a 32bit integer just before the symbol.
5259
5260 One might ask why we don't just read in the entire string table
5261 and index into it. Well, according to the SOM ABI the string
5262 index can point *anywhere* in the archive to save space, so just
5263 using the string table would not be safe. */
5264 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5265 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5266 goto error_return;
5267
5268 if (bfd_read (&len, 1, 4, abfd) != 4)
5269 goto error_return;
5270
5271 /* Allocate space for the name and null terminate it too. */
5272 set->name = bfd_zalloc (abfd, len + 1);
5273 if (!set->name)
5274 goto error_return;
5275 if (bfd_read (set->name, 1, len, abfd) != len)
5276 goto error_return;
5277
5278 set->name[len] = 0;
5279
5280 /* Fill in the file offset. Note that the "location" field points
5281 to the SOM itself, not the ar_hdr in front of it. */
5282 set->file_offset = som_dict[lst_symbol.som_index].location
5283 - sizeof (struct ar_hdr);
5284
5285 /* Go to the next symbol. */
5286 set++;
5287
5288 /* Iterate through the rest of the chain. */
5289 while (lst_symbol.next_entry)
5290 {
5291 /* Seek to the next symbol and read it in. */
5292 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
5293 goto error_return;
5294
5295 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5296 != sizeof (lst_symbol))
5297 goto error_return;
5298
5299 /* Seek to the name length & string and read them in. */
5300 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5301 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5302 goto error_return;
5303
5304 if (bfd_read (&len, 1, 4, abfd) != 4)
5305 goto error_return;
5306
5307 /* Allocate space for the name and null terminate it too. */
5308 set->name = bfd_zalloc (abfd, len + 1);
5309 if (!set->name)
5310 goto error_return;
5311
5312 if (bfd_read (set->name, 1, len, abfd) != len)
5313 goto error_return;
5314 set->name[len] = 0;
5315
5316 /* Fill in the file offset. Note that the "location" field points
5317 to the SOM itself, not the ar_hdr in front of it. */
5318 set->file_offset = som_dict[lst_symbol.som_index].location
5319 - sizeof (struct ar_hdr);
5320
5321 /* Go on to the next symbol. */
5322 set++;
5323 }
5324 }
5325 /* If we haven't died by now, then we successfully read the entire
5326 archive symbol table. */
5327 if (hash_table != NULL)
5328 free (hash_table);
5329 if (som_dict != NULL)
5330 free (som_dict);
5331 return true;
5332
5333 error_return:
5334 if (hash_table != NULL)
5335 free (hash_table);
5336 if (som_dict != NULL)
5337 free (som_dict);
5338 return false;
5339 }
5340
5341 /* Read in the LST from the archive. */
5342 static boolean
5343 som_slurp_armap (abfd)
5344 bfd *abfd;
5345 {
5346 struct lst_header lst_header;
5347 struct ar_hdr ar_header;
5348 unsigned int parsed_size;
5349 struct artdata *ardata = bfd_ardata (abfd);
5350 char nextname[17];
5351 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
5352
5353 /* Special cases. */
5354 if (i == 0)
5355 return true;
5356 if (i != 16)
5357 return false;
5358
5359 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
5360 return false;
5361
5362 /* For archives without .o files there is no symbol table. */
5363 if (strncmp (nextname, "/ ", 16))
5364 {
5365 bfd_has_map (abfd) = false;
5366 return true;
5367 }
5368
5369 /* Read in and sanity check the archive header. */
5370 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
5371 != sizeof (struct ar_hdr))
5372 return false;
5373
5374 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5375 {
5376 bfd_set_error (bfd_error_malformed_archive);
5377 return false;
5378 }
5379
5380 /* How big is the archive symbol table entry? */
5381 errno = 0;
5382 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5383 if (errno != 0)
5384 {
5385 bfd_set_error (bfd_error_malformed_archive);
5386 return false;
5387 }
5388
5389 /* Save off the file offset of the first real user data. */
5390 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5391
5392 /* Read in the library symbol table. We'll make heavy use of this
5393 in just a minute. */
5394 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
5395 != sizeof (struct lst_header))
5396 return false;
5397
5398 /* Sanity check. */
5399 if (lst_header.a_magic != LIBMAGIC)
5400 {
5401 bfd_set_error (bfd_error_malformed_archive);
5402 return false;
5403 }
5404
5405 /* Count the number of symbols in the library symbol table. */
5406 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
5407 == false)
5408 return false;
5409
5410 /* Get back to the start of the library symbol table. */
5411 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
5412 + sizeof (struct lst_header), SEEK_SET) < 0)
5413 return false;
5414
5415 /* Initializae the cache and allocate space for the library symbols. */
5416 ardata->cache = 0;
5417 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5418 (ardata->symdef_count
5419 * sizeof (carsym)));
5420 if (!ardata->symdefs)
5421 return false;
5422
5423 /* Now fill in the canonical archive symbols. */
5424 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5425 == false)
5426 return false;
5427
5428 /* Seek back to the "first" file in the archive. Note the "first"
5429 file may be the extended name table. */
5430 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5431 return false;
5432
5433 /* Notify the generic archive code that we have a symbol map. */
5434 bfd_has_map (abfd) = true;
5435 return true;
5436 }
5437
5438 /* Begin preparing to write a SOM library symbol table.
5439
5440 As part of the prep work we need to determine the number of symbols
5441 and the size of the associated string section. */
5442
5443 static boolean
5444 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5445 bfd *abfd;
5446 unsigned int *num_syms, *stringsize;
5447 {
5448 bfd *curr_bfd = abfd->archive_head;
5449
5450 /* Some initialization. */
5451 *num_syms = 0;
5452 *stringsize = 0;
5453
5454 /* Iterate over each BFD within this archive. */
5455 while (curr_bfd != NULL)
5456 {
5457 unsigned int curr_count, i;
5458 som_symbol_type *sym;
5459
5460 /* Don't bother for non-SOM objects. */
5461 if (curr_bfd->format != bfd_object
5462 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5463 {
5464 curr_bfd = curr_bfd->next;
5465 continue;
5466 }
5467
5468 /* Make sure the symbol table has been read, then snag a pointer
5469 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5470 but doing so avoids allocating lots of extra memory. */
5471 if (som_slurp_symbol_table (curr_bfd) == false)
5472 return false;
5473
5474 sym = obj_som_symtab (curr_bfd);
5475 curr_count = bfd_get_symcount (curr_bfd);
5476
5477 /* Examine each symbol to determine if it belongs in the
5478 library symbol table. */
5479 for (i = 0; i < curr_count; i++, sym++)
5480 {
5481 struct som_misc_symbol_info info;
5482
5483 /* Derive SOM information from the BFD symbol. */
5484 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5485
5486 /* Should we include this symbol? */
5487 if (info.symbol_type == ST_NULL
5488 || info.symbol_type == ST_SYM_EXT
5489 || info.symbol_type == ST_ARG_EXT)
5490 continue;
5491
5492 /* Only global symbols and unsatisfied commons. */
5493 if (info.symbol_scope != SS_UNIVERSAL
5494 && info.symbol_type != ST_STORAGE)
5495 continue;
5496
5497 /* Do no include undefined symbols. */
5498 if (bfd_is_und_section (sym->symbol.section))
5499 continue;
5500
5501 /* Bump the various counters, being careful to honor
5502 alignment considerations in the string table. */
5503 (*num_syms)++;
5504 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5505 while (*stringsize % 4)
5506 (*stringsize)++;
5507 }
5508
5509 curr_bfd = curr_bfd->next;
5510 }
5511 return true;
5512 }
5513
5514 /* Hash a symbol name based on the hashing algorithm presented in the
5515 SOM ABI. */
5516 static unsigned int
5517 som_bfd_ar_symbol_hash (symbol)
5518 asymbol *symbol;
5519 {
5520 unsigned int len = strlen (symbol->name);
5521
5522 /* Names with length 1 are special. */
5523 if (len == 1)
5524 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5525
5526 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5527 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5528 }
5529
5530 /* Do the bulk of the work required to write the SOM library
5531 symbol table. */
5532
5533 static boolean
5534 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst, elength)
5535 bfd *abfd;
5536 unsigned int nsyms, string_size;
5537 struct lst_header lst;
5538 unsigned elength;
5539 {
5540 file_ptr lst_filepos;
5541 char *strings = NULL, *p;
5542 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5543 bfd *curr_bfd;
5544 unsigned int *hash_table = NULL;
5545 struct som_entry *som_dict = NULL;
5546 struct lst_symbol_record **last_hash_entry = NULL;
5547 unsigned int curr_som_offset, som_index = 0;
5548
5549 hash_table =
5550 (unsigned int *) bfd_malloc (lst.hash_size * sizeof (unsigned int));
5551 if (hash_table == NULL && lst.hash_size != 0)
5552 goto error_return;
5553 som_dict =
5554 (struct som_entry *) bfd_malloc (lst.module_count
5555 * sizeof (struct som_entry));
5556 if (som_dict == NULL && lst.module_count != 0)
5557 goto error_return;
5558
5559 last_hash_entry =
5560 ((struct lst_symbol_record **)
5561 bfd_malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5562 if (last_hash_entry == NULL && lst.hash_size != 0)
5563 goto error_return;
5564
5565 /* Lots of fields are file positions relative to the start
5566 of the lst record. So save its location. */
5567 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5568
5569 /* Some initialization. */
5570 memset (hash_table, 0, 4 * lst.hash_size);
5571 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5572 memset (last_hash_entry, 0,
5573 lst.hash_size * sizeof (struct lst_symbol_record *));
5574
5575 /* Symbols have som_index fields, so we have to keep track of the
5576 index of each SOM in the archive.
5577
5578 The SOM dictionary has (among other things) the absolute file
5579 position for the SOM which a particular dictionary entry
5580 describes. We have to compute that information as we iterate
5581 through the SOMs/symbols. */
5582 som_index = 0;
5583
5584 /* We add in the size of the archive header twice as the location
5585 in the SOM dictionary is the actual offset of the SOM, not the
5586 archive header before the SOM. */
5587 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5588
5589 /* Make room for the archive header and the contents of the
5590 extended string table. Note that elength includes the size
5591 of the archive header for the extended name table! */
5592 if (elength)
5593 curr_som_offset += elength;
5594
5595 /* Make sure we're properly aligned. */
5596 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5597
5598 /* FIXME should be done with buffers just like everything else... */
5599 lst_syms = bfd_malloc (nsyms * sizeof (struct lst_symbol_record));
5600 if (lst_syms == NULL && nsyms != 0)
5601 goto error_return;
5602 strings = bfd_malloc (string_size);
5603 if (strings == NULL && string_size != 0)
5604 goto error_return;
5605
5606 p = strings;
5607 curr_lst_sym = lst_syms;
5608
5609 curr_bfd = abfd->archive_head;
5610 while (curr_bfd != NULL)
5611 {
5612 unsigned int curr_count, i;
5613 som_symbol_type *sym;
5614
5615 /* Don't bother for non-SOM objects. */
5616 if (curr_bfd->format != bfd_object
5617 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5618 {
5619 curr_bfd = curr_bfd->next;
5620 continue;
5621 }
5622
5623 /* Make sure the symbol table has been read, then snag a pointer
5624 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5625 but doing so avoids allocating lots of extra memory. */
5626 if (som_slurp_symbol_table (curr_bfd) == false)
5627 goto error_return;
5628
5629 sym = obj_som_symtab (curr_bfd);
5630 curr_count = bfd_get_symcount (curr_bfd);
5631
5632 for (i = 0; i < curr_count; i++, sym++)
5633 {
5634 struct som_misc_symbol_info info;
5635
5636 /* Derive SOM information from the BFD symbol. */
5637 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5638
5639 /* Should we include this symbol? */
5640 if (info.symbol_type == ST_NULL
5641 || info.symbol_type == ST_SYM_EXT
5642 || info.symbol_type == ST_ARG_EXT)
5643 continue;
5644
5645 /* Only global symbols and unsatisfied commons. */
5646 if (info.symbol_scope != SS_UNIVERSAL
5647 && info.symbol_type != ST_STORAGE)
5648 continue;
5649
5650 /* Do no include undefined symbols. */
5651 if (bfd_is_und_section (sym->symbol.section))
5652 continue;
5653
5654 /* If this is the first symbol from this SOM, then update
5655 the SOM dictionary too. */
5656 if (som_dict[som_index].location == 0)
5657 {
5658 som_dict[som_index].location = curr_som_offset;
5659 som_dict[som_index].length = arelt_size (curr_bfd);
5660 }
5661
5662 /* Fill in the lst symbol record. */
5663 curr_lst_sym->hidden = 0;
5664 curr_lst_sym->secondary_def = 0;
5665 curr_lst_sym->symbol_type = info.symbol_type;
5666 curr_lst_sym->symbol_scope = info.symbol_scope;
5667 curr_lst_sym->check_level = 0;
5668 curr_lst_sym->must_qualify = 0;
5669 curr_lst_sym->initially_frozen = 0;
5670 curr_lst_sym->memory_resident = 0;
5671 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5672 curr_lst_sym->dup_common = 0;
5673 curr_lst_sym->xleast = 0;
5674 curr_lst_sym->arg_reloc = info.arg_reloc;
5675 curr_lst_sym->name.n_strx = p - strings + 4;
5676 curr_lst_sym->qualifier_name.n_strx = 0;
5677 curr_lst_sym->symbol_info = info.symbol_info;
5678 curr_lst_sym->symbol_value = info.symbol_value;
5679 curr_lst_sym->symbol_descriptor = 0;
5680 curr_lst_sym->reserved = 0;
5681 curr_lst_sym->som_index = som_index;
5682 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5683 curr_lst_sym->next_entry = 0;
5684
5685 /* Insert into the hash table. */
5686 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5687 {
5688 struct lst_symbol_record *tmp;
5689
5690 /* There is already something at the head of this hash chain,
5691 so tack this symbol onto the end of the chain. */
5692 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5693 tmp->next_entry
5694 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5695 + lst.hash_size * 4
5696 + lst.module_count * sizeof (struct som_entry)
5697 + sizeof (struct lst_header);
5698 }
5699 else
5700 {
5701 /* First entry in this hash chain. */
5702 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5703 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5704 + lst.hash_size * 4
5705 + lst.module_count * sizeof (struct som_entry)
5706 + sizeof (struct lst_header);
5707 }
5708
5709 /* Keep track of the last symbol we added to this chain so we can
5710 easily update its next_entry pointer. */
5711 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5712 = curr_lst_sym;
5713
5714
5715 /* Update the string table. */
5716 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5717 p += 4;
5718 strcpy (p, sym->symbol.name);
5719 p += strlen (sym->symbol.name) + 1;
5720 while ((int)p % 4)
5721 {
5722 bfd_put_8 (abfd, 0, p);
5723 p++;
5724 }
5725
5726 /* Head to the next symbol. */
5727 curr_lst_sym++;
5728 }
5729
5730 /* Keep track of where each SOM will finally reside; then look
5731 at the next BFD. */
5732 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5733
5734 /* A particular object in the archive may have an odd length; the
5735 linker requires objects begin on an even boundary. So round
5736 up the current offset as necessary. */
5737 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5738 curr_bfd = curr_bfd->next;
5739 som_index++;
5740 }
5741
5742 /* Now scribble out the hash table. */
5743 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5744 != lst.hash_size * 4)
5745 goto error_return;
5746
5747 /* Then the SOM dictionary. */
5748 if (bfd_write ((PTR) som_dict, lst.module_count,
5749 sizeof (struct som_entry), abfd)
5750 != lst.module_count * sizeof (struct som_entry))
5751 goto error_return;
5752
5753 /* The library symbols. */
5754 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5755 != nsyms * sizeof (struct lst_symbol_record))
5756 goto error_return;
5757
5758 /* And finally the strings. */
5759 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5760 goto error_return;
5761
5762 if (hash_table != NULL)
5763 free (hash_table);
5764 if (som_dict != NULL)
5765 free (som_dict);
5766 if (last_hash_entry != NULL)
5767 free (last_hash_entry);
5768 if (lst_syms != NULL)
5769 free (lst_syms);
5770 if (strings != NULL)
5771 free (strings);
5772 return true;
5773
5774 error_return:
5775 if (hash_table != NULL)
5776 free (hash_table);
5777 if (som_dict != NULL)
5778 free (som_dict);
5779 if (last_hash_entry != NULL)
5780 free (last_hash_entry);
5781 if (lst_syms != NULL)
5782 free (lst_syms);
5783 if (strings != NULL)
5784 free (strings);
5785
5786 return false;
5787 }
5788
5789 /* Write out the LST for the archive.
5790
5791 You'll never believe this is really how armaps are handled in SOM... */
5792
5793 /*ARGSUSED*/
5794 static boolean
5795 som_write_armap (abfd, elength, map, orl_count, stridx)
5796 bfd *abfd;
5797 unsigned int elength;
5798 struct orl *map;
5799 unsigned int orl_count;
5800 int stridx;
5801 {
5802 bfd *curr_bfd;
5803 struct stat statbuf;
5804 unsigned int i, lst_size, nsyms, stringsize;
5805 struct ar_hdr hdr;
5806 struct lst_header lst;
5807 int *p;
5808
5809 /* We'll use this for the archive's date and mode later. */
5810 if (stat (abfd->filename, &statbuf) != 0)
5811 {
5812 bfd_set_error (bfd_error_system_call);
5813 return false;
5814 }
5815 /* Fudge factor. */
5816 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5817
5818 /* Account for the lst header first. */
5819 lst_size = sizeof (struct lst_header);
5820
5821 /* Start building the LST header. */
5822 /* FIXME: Do we need to examine each element to determine the
5823 largest id number? */
5824 lst.system_id = CPU_PA_RISC1_0;
5825 lst.a_magic = LIBMAGIC;
5826 lst.version_id = VERSION_ID;
5827 lst.file_time.secs = 0;
5828 lst.file_time.nanosecs = 0;
5829
5830 lst.hash_loc = lst_size;
5831 lst.hash_size = SOM_LST_HASH_SIZE;
5832
5833 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5834 lst_size += 4 * SOM_LST_HASH_SIZE;
5835
5836 /* We need to count the number of SOMs in this archive. */
5837 curr_bfd = abfd->archive_head;
5838 lst.module_count = 0;
5839 while (curr_bfd != NULL)
5840 {
5841 /* Only true SOM objects count. */
5842 if (curr_bfd->format == bfd_object
5843 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5844 lst.module_count++;
5845 curr_bfd = curr_bfd->next;
5846 }
5847 lst.module_limit = lst.module_count;
5848 lst.dir_loc = lst_size;
5849 lst_size += sizeof (struct som_entry) * lst.module_count;
5850
5851 /* We don't support import/export tables, auxiliary headers,
5852 or free lists yet. Make the linker work a little harder
5853 to make our life easier. */
5854
5855 lst.export_loc = 0;
5856 lst.export_count = 0;
5857 lst.import_loc = 0;
5858 lst.aux_loc = 0;
5859 lst.aux_size = 0;
5860
5861 /* Count how many symbols we will have on the hash chains and the
5862 size of the associated string table. */
5863 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5864 return false;
5865
5866 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5867
5868 /* For the string table. One day we might actually use this info
5869 to avoid small seeks/reads when reading archives. */
5870 lst.string_loc = lst_size;
5871 lst.string_size = stringsize;
5872 lst_size += stringsize;
5873
5874 /* SOM ABI says this must be zero. */
5875 lst.free_list = 0;
5876 lst.file_end = lst_size;
5877
5878 /* Compute the checksum. Must happen after the entire lst header
5879 has filled in. */
5880 p = (int *)&lst;
5881 lst.checksum = 0;
5882 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5883 lst.checksum ^= *p++;
5884
5885 sprintf (hdr.ar_name, "/ ");
5886 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5887 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5888 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5889 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5890 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5891 hdr.ar_fmag[0] = '`';
5892 hdr.ar_fmag[1] = '\012';
5893
5894 /* Turn any nulls into spaces. */
5895 for (i = 0; i < sizeof (struct ar_hdr); i++)
5896 if (((char *) (&hdr))[i] == '\0')
5897 (((char *) (&hdr))[i]) = ' ';
5898
5899 /* Scribble out the ar header. */
5900 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5901 != sizeof (struct ar_hdr))
5902 return false;
5903
5904 /* Now scribble out the lst header. */
5905 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5906 != sizeof (struct lst_header))
5907 return false;
5908
5909 /* Build and write the armap. */
5910 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength)
5911 == false)
5912 return false;
5913
5914 /* Done. */
5915 return true;
5916 }
5917
5918 /* Free all information we have cached for this BFD. We can always
5919 read it again later if we need it. */
5920
5921 static boolean
5922 som_bfd_free_cached_info (abfd)
5923 bfd *abfd;
5924 {
5925 asection *o;
5926
5927 if (bfd_get_format (abfd) != bfd_object)
5928 return true;
5929
5930 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5931 /* Free the native string and symbol tables. */
5932 FREE (obj_som_symtab (abfd));
5933 FREE (obj_som_stringtab (abfd));
5934 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5935 {
5936 /* Free the native relocations. */
5937 o->reloc_count = -1;
5938 FREE (som_section_data (o)->reloc_stream);
5939 /* Free the generic relocations. */
5940 FREE (o->relocation);
5941 }
5942 #undef FREE
5943
5944 return true;
5945 }
5946
5947 /* End of miscellaneous support functions. */
5948
5949 /* Linker support functions. */
5950 static boolean
5951 som_bfd_link_split_section (abfd, sec)
5952 bfd *abfd;
5953 asection *sec;
5954 {
5955 return (som_is_subspace (sec) && sec->_raw_size > 240000);
5956 }
5957
5958 #define som_close_and_cleanup som_bfd_free_cached_info
5959
5960 #define som_read_ar_hdr _bfd_generic_read_ar_hdr
5961 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5962 #define som_get_elt_at_index _bfd_generic_get_elt_at_index
5963 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5964 #define som_truncate_arname bfd_bsd_truncate_arname
5965 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5966 #define som_construct_extended_name_table \
5967 _bfd_archive_coff_construct_extended_name_table
5968 #define som_update_armap_timestamp bfd_true
5969 #define som_bfd_print_private_bfd_data _bfd_generic_bfd_print_private_bfd_data
5970
5971 #define som_get_lineno _bfd_nosymbols_get_lineno
5972 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5973 #define som_read_minisymbols _bfd_generic_read_minisymbols
5974 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
5975 #define som_get_section_contents_in_window \
5976 _bfd_generic_get_section_contents_in_window
5977
5978 #define som_bfd_get_relocated_section_contents \
5979 bfd_generic_get_relocated_section_contents
5980 #define som_bfd_relax_section bfd_generic_relax_section
5981 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5982 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5983 #define som_bfd_final_link _bfd_generic_final_link
5984
5985 #define som_bfd_gc_sections bfd_generic_gc_sections
5986
5987
5988 const bfd_target som_vec =
5989 {
5990 "som", /* name */
5991 bfd_target_som_flavour,
5992 BFD_ENDIAN_BIG, /* target byte order */
5993 BFD_ENDIAN_BIG, /* target headers byte order */
5994 (HAS_RELOC | EXEC_P | /* object flags */
5995 HAS_LINENO | HAS_DEBUG |
5996 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5997 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5998 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5999
6000 /* leading_symbol_char: is the first char of a user symbol
6001 predictable, and if so what is it */
6002 0,
6003 '/', /* ar_pad_char */
6004 14, /* ar_max_namelen */
6005 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6006 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6007 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
6008 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6009 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6010 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
6011 {_bfd_dummy_target,
6012 som_object_p, /* bfd_check_format */
6013 bfd_generic_archive_p,
6014 _bfd_dummy_target
6015 },
6016 {
6017 bfd_false,
6018 som_mkobject,
6019 _bfd_generic_mkarchive,
6020 bfd_false
6021 },
6022 {
6023 bfd_false,
6024 som_write_object_contents,
6025 _bfd_write_archive_contents,
6026 bfd_false,
6027 },
6028 #undef som
6029
6030 BFD_JUMP_TABLE_GENERIC (som),
6031 BFD_JUMP_TABLE_COPY (som),
6032 BFD_JUMP_TABLE_CORE (_bfd_nocore),
6033 BFD_JUMP_TABLE_ARCHIVE (som),
6034 BFD_JUMP_TABLE_SYMBOLS (som),
6035 BFD_JUMP_TABLE_RELOCS (som),
6036 BFD_JUMP_TABLE_WRITE (som),
6037 BFD_JUMP_TABLE_LINK (som),
6038 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6039
6040 (PTR) 0
6041 };
6042
6043 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.179205 seconds and 4 git commands to generate.