* som.c (som_bfd_copy_private_symbol_data): Cast initializations
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "bfd.h"
25 #include "sysdep.h"
26
27 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
28
29 #include "libbfd.h"
30 #include "som.h"
31
32 #include <stdio.h>
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/file.h>
38 #include <errno.h>
39
40 /* Magic not defined in standard HP-UX header files until 8.0 */
41
42 #ifndef CPU_PA_RISC1_0
43 #define CPU_PA_RISC1_0 0x20B
44 #endif /* CPU_PA_RISC1_0 */
45
46 #ifndef CPU_PA_RISC1_1
47 #define CPU_PA_RISC1_1 0x210
48 #endif /* CPU_PA_RISC1_1 */
49
50 #ifndef _PA_RISC1_0_ID
51 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
52 #endif /* _PA_RISC1_0_ID */
53
54 #ifndef _PA_RISC1_1_ID
55 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
56 #endif /* _PA_RISC1_1_ID */
57
58 #ifndef _PA_RISC_MAXID
59 #define _PA_RISC_MAXID 0x2FF
60 #endif /* _PA_RISC_MAXID */
61
62 #ifndef _PA_RISC_ID
63 #define _PA_RISC_ID(__m_num) \
64 (((__m_num) == _PA_RISC1_0_ID) || \
65 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
66 #endif /* _PA_RISC_ID */
67
68
69 /* HIUX in it's infinite stupidity changed the names for several "well
70 known" constants. Work around such braindamage. Try the HPUX version
71 first, then the HIUX version, and finally provide a default. */
72 #ifdef HPUX_AUX_ID
73 #define EXEC_AUX_ID HPUX_AUX_ID
74 #endif
75
76 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
77 #define EXEC_AUX_ID HIUX_AUX_ID
78 #endif
79
80 #ifndef EXEC_AUX_ID
81 #define EXEC_AUX_ID 0
82 #endif
83
84 /* Size (in chars) of the temporary buffers used during fixup and string
85 table writes. */
86
87 #define SOM_TMP_BUFSIZE 8192
88
89 /* Size of the hash table in archives. */
90 #define SOM_LST_HASH_SIZE 31
91
92 /* Max number of SOMs to be found in an archive. */
93 #define SOM_LST_MODULE_LIMIT 1024
94
95 /* Generic alignment macro. */
96 #define SOM_ALIGN(val, alignment) \
97 (((val) + (alignment) - 1) & ~((alignment) - 1))
98
99 /* SOM allows any one of the four previous relocations to be reused
100 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
101 relocations are always a single byte, using a R_PREV_FIXUP instead
102 of some multi-byte relocation makes object files smaller.
103
104 Note one side effect of using a R_PREV_FIXUP is the relocation that
105 is being repeated moves to the front of the queue. */
106 struct reloc_queue
107 {
108 unsigned char *reloc;
109 unsigned int size;
110 } reloc_queue[4];
111
112 /* This fully describes the symbol types which may be attached to
113 an EXPORT or IMPORT directive. Only SOM uses this formation
114 (ELF has no need for it). */
115 typedef enum
116 {
117 SYMBOL_TYPE_UNKNOWN,
118 SYMBOL_TYPE_ABSOLUTE,
119 SYMBOL_TYPE_CODE,
120 SYMBOL_TYPE_DATA,
121 SYMBOL_TYPE_ENTRY,
122 SYMBOL_TYPE_MILLICODE,
123 SYMBOL_TYPE_PLABEL,
124 SYMBOL_TYPE_PRI_PROG,
125 SYMBOL_TYPE_SEC_PROG,
126 } pa_symbol_type;
127
128 struct section_to_type
129 {
130 char *section;
131 char type;
132 };
133
134 /* Assorted symbol information that needs to be derived from the BFD symbol
135 and/or the BFD backend private symbol data. */
136 struct som_misc_symbol_info
137 {
138 unsigned int symbol_type;
139 unsigned int symbol_scope;
140 unsigned int arg_reloc;
141 unsigned int symbol_info;
142 unsigned int symbol_value;
143 };
144
145 /* Forward declarations */
146
147 static boolean som_mkobject PARAMS ((bfd *));
148 static const bfd_target * som_object_setup PARAMS ((bfd *,
149 struct header *,
150 struct som_exec_auxhdr *));
151 static boolean setup_sections PARAMS ((bfd *, struct header *));
152 static const bfd_target * som_object_p PARAMS ((bfd *));
153 static boolean som_write_object_contents PARAMS ((bfd *));
154 static boolean som_slurp_string_table PARAMS ((bfd *));
155 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
156 static long som_get_symtab_upper_bound PARAMS ((bfd *));
157 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
158 arelent **, asymbol **));
159 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
160 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
161 arelent *, asection *,
162 asymbol **, boolean));
163 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
164 asymbol **, boolean));
165 static long som_get_symtab PARAMS ((bfd *, asymbol **));
166 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
167 static void som_print_symbol PARAMS ((bfd *, PTR,
168 asymbol *, bfd_print_symbol_type));
169 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
170 static boolean som_bfd_copy_private_symbol_data PARAMS ((bfd *, asymbol *,
171 bfd *, asymbol *));
172 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
173 bfd *, asection *));
174 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
175 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
176 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
177 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
178 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
179 file_ptr, bfd_size_type));
180 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
181 file_ptr, bfd_size_type));
182 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
183 unsigned long));
184 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
185 asymbol **, bfd_vma,
186 CONST char **,
187 CONST char **,
188 unsigned int *));
189 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
190 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
191 struct symbol_dictionary_record *));
192 static int log2 PARAMS ((unsigned int));
193 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
194 asymbol *, PTR,
195 asection *, bfd *,
196 char **));
197 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
198 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
199 struct reloc_queue *));
200 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
201 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
202 struct reloc_queue *));
203 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
204 unsigned int,
205 struct reloc_queue *));
206
207 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
208 unsigned char *, unsigned int *,
209 struct reloc_queue *));
210 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
211 unsigned int *,
212 struct reloc_queue *));
213 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
214 unsigned int *,
215 arelent *, int,
216 struct reloc_queue *));
217 static unsigned long som_count_spaces PARAMS ((bfd *));
218 static unsigned long som_count_subspaces PARAMS ((bfd *));
219 static int compare_syms PARAMS ((const void *, const void *));
220 static int compare_subspaces PARAMS ((const void *, const void *));
221 static unsigned long som_compute_checksum PARAMS ((bfd *));
222 static boolean som_prep_headers PARAMS ((bfd *));
223 static int som_sizeof_headers PARAMS ((bfd *, boolean));
224 static boolean som_finish_writing PARAMS ((bfd *));
225 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
226 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
227 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
228 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
229 unsigned int *));
230 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
231 asymbol **, unsigned int,
232 unsigned *));
233 static boolean som_begin_writing PARAMS ((bfd *));
234 static reloc_howto_type * som_bfd_reloc_type_lookup
235 PARAMS ((bfd *, bfd_reloc_code_real_type));
236 static char som_section_type PARAMS ((const char *));
237 static int som_decode_symclass PARAMS ((asymbol *));
238 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
239 symindex *));
240
241 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
242 carsym **syms));
243 static boolean som_slurp_armap PARAMS ((bfd *));
244 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
245 unsigned int, int));
246 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
247 struct som_misc_symbol_info *));
248 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
249 unsigned int *));
250 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
251 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
252 unsigned int,
253 struct lst_header));
254 static CONST char *normalize PARAMS ((CONST char *file));
255 static boolean som_is_space PARAMS ((asection *));
256 static boolean som_is_subspace PARAMS ((asection *));
257 static boolean som_is_container PARAMS ((asection *, asection *));
258 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
259 static boolean som_bfd_link_split_section PARAMS ((bfd *, asection *));
260
261 /* Map SOM section names to POSIX/BSD single-character symbol types.
262
263 This table includes all the standard subspaces as defined in the
264 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
265 some reason was left out, and sections specific to embedded stabs. */
266
267 static const struct section_to_type stt[] = {
268 {"$TEXT$", 't'},
269 {"$SHLIB_INFO$", 't'},
270 {"$MILLICODE$", 't'},
271 {"$LIT$", 't'},
272 {"$CODE$", 't'},
273 {"$UNWIND_START$", 't'},
274 {"$UNWIND$", 't'},
275 {"$PRIVATE$", 'd'},
276 {"$PLT$", 'd'},
277 {"$SHLIB_DATA$", 'd'},
278 {"$DATA$", 'd'},
279 {"$SHORTDATA$", 'g'},
280 {"$DLT$", 'd'},
281 {"$GLOBAL$", 'g'},
282 {"$SHORTBSS$", 's'},
283 {"$BSS$", 'b'},
284 {"$GDB_STRINGS$", 'N'},
285 {"$GDB_SYMBOLS$", 'N'},
286 {0, 0}
287 };
288
289 /* About the relocation formatting table...
290
291 There are 256 entries in the table, one for each possible
292 relocation opcode available in SOM. We index the table by
293 the relocation opcode. The names and operations are those
294 defined by a.out_800 (4).
295
296 Right now this table is only used to count and perform minimal
297 processing on relocation streams so that they can be internalized
298 into BFD and symbolically printed by utilities. To make actual use
299 of them would be much more difficult, BFD's concept of relocations
300 is far too simple to handle SOM relocations. The basic assumption
301 that a relocation can be completely processed independent of other
302 relocations before an object file is written is invalid for SOM.
303
304 The SOM relocations are meant to be processed as a stream, they
305 specify copying of data from the input section to the output section
306 while possibly modifying the data in some manner. They also can
307 specify that a variable number of zeros or uninitialized data be
308 inserted on in the output segment at the current offset. Some
309 relocations specify that some previous relocation be re-applied at
310 the current location in the input/output sections. And finally a number
311 of relocations have effects on other sections (R_ENTRY, R_EXIT,
312 R_UNWIND_AUX and a variety of others). There isn't even enough room
313 in the BFD relocation data structure to store enough information to
314 perform all the relocations.
315
316 Each entry in the table has three fields.
317
318 The first entry is an index into this "class" of relocations. This
319 index can then be used as a variable within the relocation itself.
320
321 The second field is a format string which actually controls processing
322 of the relocation. It uses a simple postfix machine to do calculations
323 based on variables/constants found in the string and the relocation
324 stream.
325
326 The third field specifys whether or not this relocation may use
327 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
328 stored in the instruction.
329
330 Variables:
331
332 L = input space byte count
333 D = index into class of relocations
334 M = output space byte count
335 N = statement number (unused?)
336 O = stack operation
337 R = parameter relocation bits
338 S = symbol index
339 T = first 32 bits of stack unwind information
340 U = second 32 bits of stack unwind information
341 V = a literal constant (usually used in the next relocation)
342 P = a previous relocation
343
344 Lower case letters (starting with 'b') refer to following
345 bytes in the relocation stream. 'b' is the next 1 byte,
346 c is the next 2 bytes, d is the next 3 bytes, etc...
347 This is the variable part of the relocation entries that
348 makes our life a living hell.
349
350 numerical constants are also used in the format string. Note
351 the constants are represented in decimal.
352
353 '+', "*" and "=" represents the obvious postfix operators.
354 '<' represents a left shift.
355
356 Stack Operations:
357
358 Parameter Relocation Bits:
359
360 Unwind Entries:
361
362 Previous Relocations: The index field represents which in the queue
363 of 4 previous fixups should be re-applied.
364
365 Literal Constants: These are generally used to represent addend
366 parts of relocations when these constants are not stored in the
367 fields of the instructions themselves. For example the instruction
368 addil foo-$global$-0x1234 would use an override for "0x1234" rather
369 than storing it into the addil itself. */
370
371 struct fixup_format
372 {
373 int D;
374 char *format;
375 };
376
377 static const struct fixup_format som_fixup_formats[256] =
378 {
379 /* R_NO_RELOCATION */
380 0, "LD1+4*=", /* 0x00 */
381 1, "LD1+4*=", /* 0x01 */
382 2, "LD1+4*=", /* 0x02 */
383 3, "LD1+4*=", /* 0x03 */
384 4, "LD1+4*=", /* 0x04 */
385 5, "LD1+4*=", /* 0x05 */
386 6, "LD1+4*=", /* 0x06 */
387 7, "LD1+4*=", /* 0x07 */
388 8, "LD1+4*=", /* 0x08 */
389 9, "LD1+4*=", /* 0x09 */
390 10, "LD1+4*=", /* 0x0a */
391 11, "LD1+4*=", /* 0x0b */
392 12, "LD1+4*=", /* 0x0c */
393 13, "LD1+4*=", /* 0x0d */
394 14, "LD1+4*=", /* 0x0e */
395 15, "LD1+4*=", /* 0x0f */
396 16, "LD1+4*=", /* 0x10 */
397 17, "LD1+4*=", /* 0x11 */
398 18, "LD1+4*=", /* 0x12 */
399 19, "LD1+4*=", /* 0x13 */
400 20, "LD1+4*=", /* 0x14 */
401 21, "LD1+4*=", /* 0x15 */
402 22, "LD1+4*=", /* 0x16 */
403 23, "LD1+4*=", /* 0x17 */
404 0, "LD8<b+1+4*=", /* 0x18 */
405 1, "LD8<b+1+4*=", /* 0x19 */
406 2, "LD8<b+1+4*=", /* 0x1a */
407 3, "LD8<b+1+4*=", /* 0x1b */
408 0, "LD16<c+1+4*=", /* 0x1c */
409 1, "LD16<c+1+4*=", /* 0x1d */
410 2, "LD16<c+1+4*=", /* 0x1e */
411 0, "Ld1+=", /* 0x1f */
412 /* R_ZEROES */
413 0, "Lb1+4*=", /* 0x20 */
414 1, "Ld1+=", /* 0x21 */
415 /* R_UNINIT */
416 0, "Lb1+4*=", /* 0x22 */
417 1, "Ld1+=", /* 0x23 */
418 /* R_RELOCATION */
419 0, "L4=", /* 0x24 */
420 /* R_DATA_ONE_SYMBOL */
421 0, "L4=Sb=", /* 0x25 */
422 1, "L4=Sd=", /* 0x26 */
423 /* R_DATA_PLEBEL */
424 0, "L4=Sb=", /* 0x27 */
425 1, "L4=Sd=", /* 0x28 */
426 /* R_SPACE_REF */
427 0, "L4=", /* 0x29 */
428 /* R_REPEATED_INIT */
429 0, "L4=Mb1+4*=", /* 0x2a */
430 1, "Lb4*=Mb1+L*=", /* 0x2b */
431 2, "Lb4*=Md1+4*=", /* 0x2c */
432 3, "Ld1+=Me1+=", /* 0x2d */
433 /* R_RESERVED */
434 0, "", /* 0x2e */
435 0, "", /* 0x2f */
436 /* R_PCREL_CALL */
437 0, "L4=RD=Sb=", /* 0x30 */
438 1, "L4=RD=Sb=", /* 0x31 */
439 2, "L4=RD=Sb=", /* 0x32 */
440 3, "L4=RD=Sb=", /* 0x33 */
441 4, "L4=RD=Sb=", /* 0x34 */
442 5, "L4=RD=Sb=", /* 0x35 */
443 6, "L4=RD=Sb=", /* 0x36 */
444 7, "L4=RD=Sb=", /* 0x37 */
445 8, "L4=RD=Sb=", /* 0x38 */
446 9, "L4=RD=Sb=", /* 0x39 */
447 0, "L4=RD8<b+=Sb=",/* 0x3a */
448 1, "L4=RD8<b+=Sb=",/* 0x3b */
449 0, "L4=RD8<b+=Sd=",/* 0x3c */
450 1, "L4=RD8<b+=Sd=",/* 0x3d */
451 /* R_RESERVED */
452 0, "", /* 0x3e */
453 0, "", /* 0x3f */
454 /* R_ABS_CALL */
455 0, "L4=RD=Sb=", /* 0x40 */
456 1, "L4=RD=Sb=", /* 0x41 */
457 2, "L4=RD=Sb=", /* 0x42 */
458 3, "L4=RD=Sb=", /* 0x43 */
459 4, "L4=RD=Sb=", /* 0x44 */
460 5, "L4=RD=Sb=", /* 0x45 */
461 6, "L4=RD=Sb=", /* 0x46 */
462 7, "L4=RD=Sb=", /* 0x47 */
463 8, "L4=RD=Sb=", /* 0x48 */
464 9, "L4=RD=Sb=", /* 0x49 */
465 0, "L4=RD8<b+=Sb=",/* 0x4a */
466 1, "L4=RD8<b+=Sb=",/* 0x4b */
467 0, "L4=RD8<b+=Sd=",/* 0x4c */
468 1, "L4=RD8<b+=Sd=",/* 0x4d */
469 /* R_RESERVED */
470 0, "", /* 0x4e */
471 0, "", /* 0x4f */
472 /* R_DP_RELATIVE */
473 0, "L4=SD=", /* 0x50 */
474 1, "L4=SD=", /* 0x51 */
475 2, "L4=SD=", /* 0x52 */
476 3, "L4=SD=", /* 0x53 */
477 4, "L4=SD=", /* 0x54 */
478 5, "L4=SD=", /* 0x55 */
479 6, "L4=SD=", /* 0x56 */
480 7, "L4=SD=", /* 0x57 */
481 8, "L4=SD=", /* 0x58 */
482 9, "L4=SD=", /* 0x59 */
483 10, "L4=SD=", /* 0x5a */
484 11, "L4=SD=", /* 0x5b */
485 12, "L4=SD=", /* 0x5c */
486 13, "L4=SD=", /* 0x5d */
487 14, "L4=SD=", /* 0x5e */
488 15, "L4=SD=", /* 0x5f */
489 16, "L4=SD=", /* 0x60 */
490 17, "L4=SD=", /* 0x61 */
491 18, "L4=SD=", /* 0x62 */
492 19, "L4=SD=", /* 0x63 */
493 20, "L4=SD=", /* 0x64 */
494 21, "L4=SD=", /* 0x65 */
495 22, "L4=SD=", /* 0x66 */
496 23, "L4=SD=", /* 0x67 */
497 24, "L4=SD=", /* 0x68 */
498 25, "L4=SD=", /* 0x69 */
499 26, "L4=SD=", /* 0x6a */
500 27, "L4=SD=", /* 0x6b */
501 28, "L4=SD=", /* 0x6c */
502 29, "L4=SD=", /* 0x6d */
503 30, "L4=SD=", /* 0x6e */
504 31, "L4=SD=", /* 0x6f */
505 32, "L4=Sb=", /* 0x70 */
506 33, "L4=Sd=", /* 0x71 */
507 /* R_RESERVED */
508 0, "", /* 0x72 */
509 0, "", /* 0x73 */
510 0, "", /* 0x74 */
511 0, "", /* 0x75 */
512 0, "", /* 0x76 */
513 0, "", /* 0x77 */
514 /* R_DLT_REL */
515 0, "L4=Sb=", /* 0x78 */
516 1, "L4=Sd=", /* 0x79 */
517 /* R_RESERVED */
518 0, "", /* 0x7a */
519 0, "", /* 0x7b */
520 0, "", /* 0x7c */
521 0, "", /* 0x7d */
522 0, "", /* 0x7e */
523 0, "", /* 0x7f */
524 /* R_CODE_ONE_SYMBOL */
525 0, "L4=SD=", /* 0x80 */
526 1, "L4=SD=", /* 0x81 */
527 2, "L4=SD=", /* 0x82 */
528 3, "L4=SD=", /* 0x83 */
529 4, "L4=SD=", /* 0x84 */
530 5, "L4=SD=", /* 0x85 */
531 6, "L4=SD=", /* 0x86 */
532 7, "L4=SD=", /* 0x87 */
533 8, "L4=SD=", /* 0x88 */
534 9, "L4=SD=", /* 0x89 */
535 10, "L4=SD=", /* 0x8q */
536 11, "L4=SD=", /* 0x8b */
537 12, "L4=SD=", /* 0x8c */
538 13, "L4=SD=", /* 0x8d */
539 14, "L4=SD=", /* 0x8e */
540 15, "L4=SD=", /* 0x8f */
541 16, "L4=SD=", /* 0x90 */
542 17, "L4=SD=", /* 0x91 */
543 18, "L4=SD=", /* 0x92 */
544 19, "L4=SD=", /* 0x93 */
545 20, "L4=SD=", /* 0x94 */
546 21, "L4=SD=", /* 0x95 */
547 22, "L4=SD=", /* 0x96 */
548 23, "L4=SD=", /* 0x97 */
549 24, "L4=SD=", /* 0x98 */
550 25, "L4=SD=", /* 0x99 */
551 26, "L4=SD=", /* 0x9a */
552 27, "L4=SD=", /* 0x9b */
553 28, "L4=SD=", /* 0x9c */
554 29, "L4=SD=", /* 0x9d */
555 30, "L4=SD=", /* 0x9e */
556 31, "L4=SD=", /* 0x9f */
557 32, "L4=Sb=", /* 0xa0 */
558 33, "L4=Sd=", /* 0xa1 */
559 /* R_RESERVED */
560 0, "", /* 0xa2 */
561 0, "", /* 0xa3 */
562 0, "", /* 0xa4 */
563 0, "", /* 0xa5 */
564 0, "", /* 0xa6 */
565 0, "", /* 0xa7 */
566 0, "", /* 0xa8 */
567 0, "", /* 0xa9 */
568 0, "", /* 0xaa */
569 0, "", /* 0xab */
570 0, "", /* 0xac */
571 0, "", /* 0xad */
572 /* R_MILLI_REL */
573 0, "L4=Sb=", /* 0xae */
574 1, "L4=Sd=", /* 0xaf */
575 /* R_CODE_PLABEL */
576 0, "L4=Sb=", /* 0xb0 */
577 1, "L4=Sd=", /* 0xb1 */
578 /* R_BREAKPOINT */
579 0, "L4=", /* 0xb2 */
580 /* R_ENTRY */
581 0, "Te=Ue=", /* 0xb3 */
582 1, "Uf=", /* 0xb4 */
583 /* R_ALT_ENTRY */
584 0, "", /* 0xb5 */
585 /* R_EXIT */
586 0, "", /* 0xb6 */
587 /* R_BEGIN_TRY */
588 0, "", /* 0xb7 */
589 /* R_END_TRY */
590 0, "R0=", /* 0xb8 */
591 1, "Rb4*=", /* 0xb9 */
592 2, "Rd4*=", /* 0xba */
593 /* R_BEGIN_BRTAB */
594 0, "", /* 0xbb */
595 /* R_END_BRTAB */
596 0, "", /* 0xbc */
597 /* R_STATEMENT */
598 0, "Nb=", /* 0xbd */
599 1, "Nc=", /* 0xbe */
600 2, "Nd=", /* 0xbf */
601 /* R_DATA_EXPR */
602 0, "L4=", /* 0xc0 */
603 /* R_CODE_EXPR */
604 0, "L4=", /* 0xc1 */
605 /* R_FSEL */
606 0, "", /* 0xc2 */
607 /* R_LSEL */
608 0, "", /* 0xc3 */
609 /* R_RSEL */
610 0, "", /* 0xc4 */
611 /* R_N_MODE */
612 0, "", /* 0xc5 */
613 /* R_S_MODE */
614 0, "", /* 0xc6 */
615 /* R_D_MODE */
616 0, "", /* 0xc7 */
617 /* R_R_MODE */
618 0, "", /* 0xc8 */
619 /* R_DATA_OVERRIDE */
620 0, "V0=", /* 0xc9 */
621 1, "Vb=", /* 0xca */
622 2, "Vc=", /* 0xcb */
623 3, "Vd=", /* 0xcc */
624 4, "Ve=", /* 0xcd */
625 /* R_TRANSLATED */
626 0, "", /* 0xce */
627 /* R_RESERVED */
628 0, "", /* 0xcf */
629 /* R_COMP1 */
630 0, "Ob=", /* 0xd0 */
631 /* R_COMP2 */
632 0, "Ob=Sd=", /* 0xd1 */
633 /* R_COMP3 */
634 0, "Ob=Ve=", /* 0xd2 */
635 /* R_PREV_FIXUP */
636 0, "P", /* 0xd3 */
637 1, "P", /* 0xd4 */
638 2, "P", /* 0xd5 */
639 3, "P", /* 0xd6 */
640 /* R_RESERVED */
641 0, "", /* 0xd7 */
642 0, "", /* 0xd8 */
643 0, "", /* 0xd9 */
644 0, "", /* 0xda */
645 0, "", /* 0xdb */
646 0, "", /* 0xdc */
647 0, "", /* 0xdd */
648 0, "", /* 0xde */
649 0, "", /* 0xdf */
650 0, "", /* 0xe0 */
651 0, "", /* 0xe1 */
652 0, "", /* 0xe2 */
653 0, "", /* 0xe3 */
654 0, "", /* 0xe4 */
655 0, "", /* 0xe5 */
656 0, "", /* 0xe6 */
657 0, "", /* 0xe7 */
658 0, "", /* 0xe8 */
659 0, "", /* 0xe9 */
660 0, "", /* 0xea */
661 0, "", /* 0xeb */
662 0, "", /* 0xec */
663 0, "", /* 0xed */
664 0, "", /* 0xee */
665 0, "", /* 0xef */
666 0, "", /* 0xf0 */
667 0, "", /* 0xf1 */
668 0, "", /* 0xf2 */
669 0, "", /* 0xf3 */
670 0, "", /* 0xf4 */
671 0, "", /* 0xf5 */
672 0, "", /* 0xf6 */
673 0, "", /* 0xf7 */
674 0, "", /* 0xf8 */
675 0, "", /* 0xf9 */
676 0, "", /* 0xfa */
677 0, "", /* 0xfb */
678 0, "", /* 0xfc */
679 0, "", /* 0xfd */
680 0, "", /* 0xfe */
681 0, "", /* 0xff */
682 };
683
684 static const int comp1_opcodes[] =
685 {
686 0x00,
687 0x40,
688 0x41,
689 0x42,
690 0x43,
691 0x44,
692 0x45,
693 0x46,
694 0x47,
695 0x48,
696 0x49,
697 0x4a,
698 0x4b,
699 0x60,
700 0x80,
701 0xa0,
702 0xc0,
703 -1
704 };
705
706 static const int comp2_opcodes[] =
707 {
708 0x00,
709 0x80,
710 0x82,
711 0xc0,
712 -1
713 };
714
715 static const int comp3_opcodes[] =
716 {
717 0x00,
718 0x02,
719 -1
720 };
721
722 /* These apparently are not in older versions of hpux reloc.h. */
723 #ifndef R_DLT_REL
724 #define R_DLT_REL 0x78
725 #endif
726
727 #ifndef R_AUX_UNWIND
728 #define R_AUX_UNWIND 0xcf
729 #endif
730
731 #ifndef R_SEC_STMT
732 #define R_SEC_STMT 0xd7
733 #endif
734
735 static reloc_howto_type som_hppa_howto_table[] =
736 {
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
747 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
748 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
749 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
750 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
751 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
752 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
753 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
754 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
755 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
756 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
757 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
758 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
759 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
760 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
761 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
762 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
763 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
764 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
765 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
766 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
767 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
768 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
769 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
770 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
771 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
772 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
773 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
774 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
775 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
776 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
777 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
778 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
779 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
780 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
781 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
782 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
783 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
784 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
785 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
786 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
787 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
788 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
789 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
790 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
791 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
792 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
793 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
794 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
795 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
796 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
797 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
798 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
799 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
800 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
801 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
802 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
803 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
804 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
805 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
806 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
807 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
808 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
809 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
810 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
811 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
812 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
813 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
814 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
815 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
816 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
830 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
831 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
832 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
833 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
834 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
835 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
836 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
837 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
838 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
839 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
840 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
841 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
842 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
843 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
844 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
845 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
846 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
847 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
848 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
849 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
850 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
851 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
852 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
853 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
854 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
855 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
858 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
859 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
860 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
861 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
862 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
863 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
864 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
878 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
879 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
880 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
881 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
882 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
883 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
884 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
885 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
886 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
887 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
888 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
889 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
890 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
891 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
892 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
893 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
894 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
895 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
896 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
897 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
898 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
899 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
904 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
905 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
906 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
907 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
908 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
909 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
910 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
911 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
912 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
913 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
914 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
915 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
916 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
917 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
918 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
919 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
920 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
921 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
922 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
923 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
924 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
925 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
926 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
927 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
928 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
929 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
930 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
931 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
932 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
933 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
934 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
935 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
936 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
937 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
938 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
939 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
940 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
941 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
942 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
943 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
944 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
945 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
946 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
947 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
948 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
949 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
950 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
951 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
952 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
970 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
971 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
972 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
973 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
974 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
975 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
976 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
977 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
978 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
979 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
980 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
981 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
982 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
983 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
984 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
985 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
986 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
987 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
988 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
989 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
990 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
991 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
992 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
993
994 /* Initialize the SOM relocation queue. By definition the queue holds
995 the last four multibyte fixups. */
996
997 static void
998 som_initialize_reloc_queue (queue)
999 struct reloc_queue *queue;
1000 {
1001 queue[0].reloc = NULL;
1002 queue[0].size = 0;
1003 queue[1].reloc = NULL;
1004 queue[1].size = 0;
1005 queue[2].reloc = NULL;
1006 queue[2].size = 0;
1007 queue[3].reloc = NULL;
1008 queue[3].size = 0;
1009 }
1010
1011 /* Insert a new relocation into the relocation queue. */
1012
1013 static void
1014 som_reloc_queue_insert (p, size, queue)
1015 unsigned char *p;
1016 unsigned int size;
1017 struct reloc_queue *queue;
1018 {
1019 queue[3].reloc = queue[2].reloc;
1020 queue[3].size = queue[2].size;
1021 queue[2].reloc = queue[1].reloc;
1022 queue[2].size = queue[1].size;
1023 queue[1].reloc = queue[0].reloc;
1024 queue[1].size = queue[0].size;
1025 queue[0].reloc = p;
1026 queue[0].size = size;
1027 }
1028
1029 /* When an entry in the relocation queue is reused, the entry moves
1030 to the front of the queue. */
1031
1032 static void
1033 som_reloc_queue_fix (queue, index)
1034 struct reloc_queue *queue;
1035 unsigned int index;
1036 {
1037 if (index == 0)
1038 return;
1039
1040 if (index == 1)
1041 {
1042 unsigned char *tmp1 = queue[0].reloc;
1043 unsigned int tmp2 = queue[0].size;
1044 queue[0].reloc = queue[1].reloc;
1045 queue[0].size = queue[1].size;
1046 queue[1].reloc = tmp1;
1047 queue[1].size = tmp2;
1048 return;
1049 }
1050
1051 if (index == 2)
1052 {
1053 unsigned char *tmp1 = queue[0].reloc;
1054 unsigned int tmp2 = queue[0].size;
1055 queue[0].reloc = queue[2].reloc;
1056 queue[0].size = queue[2].size;
1057 queue[2].reloc = queue[1].reloc;
1058 queue[2].size = queue[1].size;
1059 queue[1].reloc = tmp1;
1060 queue[1].size = tmp2;
1061 return;
1062 }
1063
1064 if (index == 3)
1065 {
1066 unsigned char *tmp1 = queue[0].reloc;
1067 unsigned int tmp2 = queue[0].size;
1068 queue[0].reloc = queue[3].reloc;
1069 queue[0].size = queue[3].size;
1070 queue[3].reloc = queue[2].reloc;
1071 queue[3].size = queue[2].size;
1072 queue[2].reloc = queue[1].reloc;
1073 queue[2].size = queue[1].size;
1074 queue[1].reloc = tmp1;
1075 queue[1].size = tmp2;
1076 return;
1077 }
1078 abort();
1079 }
1080
1081 /* Search for a particular relocation in the relocation queue. */
1082
1083 static int
1084 som_reloc_queue_find (p, size, queue)
1085 unsigned char *p;
1086 unsigned int size;
1087 struct reloc_queue *queue;
1088 {
1089 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1090 && size == queue[0].size)
1091 return 0;
1092 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1093 && size == queue[1].size)
1094 return 1;
1095 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1096 && size == queue[2].size)
1097 return 2;
1098 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1099 && size == queue[3].size)
1100 return 3;
1101 return -1;
1102 }
1103
1104 static unsigned char *
1105 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1106 bfd *abfd;
1107 int *subspace_reloc_sizep;
1108 unsigned char *p;
1109 unsigned int size;
1110 struct reloc_queue *queue;
1111 {
1112 int queue_index = som_reloc_queue_find (p, size, queue);
1113
1114 if (queue_index != -1)
1115 {
1116 /* Found this in a previous fixup. Undo the fixup we
1117 just built and use R_PREV_FIXUP instead. We saved
1118 a total of size - 1 bytes in the fixup stream. */
1119 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1120 p += 1;
1121 *subspace_reloc_sizep += 1;
1122 som_reloc_queue_fix (queue, queue_index);
1123 }
1124 else
1125 {
1126 som_reloc_queue_insert (p, size, queue);
1127 *subspace_reloc_sizep += size;
1128 p += size;
1129 }
1130 return p;
1131 }
1132
1133 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1134 bytes without any relocation. Update the size of the subspace
1135 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1136 current pointer into the relocation stream. */
1137
1138 static unsigned char *
1139 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1140 bfd *abfd;
1141 unsigned int skip;
1142 unsigned char *p;
1143 unsigned int *subspace_reloc_sizep;
1144 struct reloc_queue *queue;
1145 {
1146 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1147 then R_PREV_FIXUPs to get the difference down to a
1148 reasonable size. */
1149 if (skip >= 0x1000000)
1150 {
1151 skip -= 0x1000000;
1152 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1153 bfd_put_8 (abfd, 0xff, p + 1);
1154 bfd_put_16 (abfd, 0xffff, p + 2);
1155 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1156 while (skip >= 0x1000000)
1157 {
1158 skip -= 0x1000000;
1159 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1160 p++;
1161 *subspace_reloc_sizep += 1;
1162 /* No need to adjust queue here since we are repeating the
1163 most recent fixup. */
1164 }
1165 }
1166
1167 /* The difference must be less than 0x1000000. Use one
1168 more R_NO_RELOCATION entry to get to the right difference. */
1169 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1170 {
1171 /* Difference can be handled in a simple single-byte
1172 R_NO_RELOCATION entry. */
1173 if (skip <= 0x60)
1174 {
1175 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1176 *subspace_reloc_sizep += 1;
1177 p++;
1178 }
1179 /* Handle it with a two byte R_NO_RELOCATION entry. */
1180 else if (skip <= 0x1000)
1181 {
1182 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1183 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1184 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1185 }
1186 /* Handle it with a three byte R_NO_RELOCATION entry. */
1187 else
1188 {
1189 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1190 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1191 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1192 }
1193 }
1194 /* Ugh. Punt and use a 4 byte entry. */
1195 else if (skip > 0)
1196 {
1197 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1198 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1199 bfd_put_16 (abfd, skip - 1, p + 2);
1200 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1201 }
1202 return p;
1203 }
1204
1205 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1206 from a BFD relocation. Update the size of the subspace relocation
1207 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1208 into the relocation stream. */
1209
1210 static unsigned char *
1211 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1212 bfd *abfd;
1213 int addend;
1214 unsigned char *p;
1215 unsigned int *subspace_reloc_sizep;
1216 struct reloc_queue *queue;
1217 {
1218 if ((unsigned)(addend) + 0x80 < 0x100)
1219 {
1220 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1221 bfd_put_8 (abfd, addend, p + 1);
1222 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1223 }
1224 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1225 {
1226 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1227 bfd_put_16 (abfd, addend, p + 1);
1228 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1229 }
1230 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1231 {
1232 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1233 bfd_put_8 (abfd, addend >> 16, p + 1);
1234 bfd_put_16 (abfd, addend, p + 2);
1235 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1236 }
1237 else
1238 {
1239 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1240 bfd_put_32 (abfd, addend, p + 1);
1241 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1242 }
1243 return p;
1244 }
1245
1246 /* Handle a single function call relocation. */
1247
1248 static unsigned char *
1249 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1250 bfd *abfd;
1251 unsigned char *p;
1252 unsigned int *subspace_reloc_sizep;
1253 arelent *bfd_reloc;
1254 int sym_num;
1255 struct reloc_queue *queue;
1256 {
1257 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1258 int rtn_bits = arg_bits & 0x3;
1259 int type, done = 0;
1260
1261 /* You'll never believe all this is necessary to handle relocations
1262 for function calls. Having to compute and pack the argument
1263 relocation bits is the real nightmare.
1264
1265 If you're interested in how this works, just forget it. You really
1266 do not want to know about this braindamage. */
1267
1268 /* First see if this can be done with a "simple" relocation. Simple
1269 relocations have a symbol number < 0x100 and have simple encodings
1270 of argument relocations. */
1271
1272 if (sym_num < 0x100)
1273 {
1274 switch (arg_bits)
1275 {
1276 case 0:
1277 case 1:
1278 type = 0;
1279 break;
1280 case 1 << 8:
1281 case 1 << 8 | 1:
1282 type = 1;
1283 break;
1284 case 1 << 8 | 1 << 6:
1285 case 1 << 8 | 1 << 6 | 1:
1286 type = 2;
1287 break;
1288 case 1 << 8 | 1 << 6 | 1 << 4:
1289 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1290 type = 3;
1291 break;
1292 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1293 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1294 type = 4;
1295 break;
1296 default:
1297 /* Not one of the easy encodings. This will have to be
1298 handled by the more complex code below. */
1299 type = -1;
1300 break;
1301 }
1302 if (type != -1)
1303 {
1304 /* Account for the return value too. */
1305 if (rtn_bits)
1306 type += 5;
1307
1308 /* Emit a 2 byte relocation. Then see if it can be handled
1309 with a relocation which is already in the relocation queue. */
1310 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1311 bfd_put_8 (abfd, sym_num, p + 1);
1312 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1313 done = 1;
1314 }
1315 }
1316
1317 /* If this could not be handled with a simple relocation, then do a hard
1318 one. Hard relocations occur if the symbol number was too high or if
1319 the encoding of argument relocation bits is too complex. */
1320 if (! done)
1321 {
1322 /* Don't ask about these magic sequences. I took them straight
1323 from gas-1.36 which took them from the a.out man page. */
1324 type = rtn_bits;
1325 if ((arg_bits >> 6 & 0xf) == 0xe)
1326 type += 9 * 40;
1327 else
1328 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1329 if ((arg_bits >> 2 & 0xf) == 0xe)
1330 type += 9 * 4;
1331 else
1332 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1333
1334 /* Output the first two bytes of the relocation. These describe
1335 the length of the relocation and encoding style. */
1336 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1337 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1338 p);
1339 bfd_put_8 (abfd, type, p + 1);
1340
1341 /* Now output the symbol index and see if this bizarre relocation
1342 just happened to be in the relocation queue. */
1343 if (sym_num < 0x100)
1344 {
1345 bfd_put_8 (abfd, sym_num, p + 2);
1346 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1347 }
1348 else
1349 {
1350 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1351 bfd_put_16 (abfd, sym_num, p + 3);
1352 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1353 }
1354 }
1355 return p;
1356 }
1357
1358
1359 /* Return the logarithm of X, base 2, considering X unsigned.
1360 Abort -1 if X is not a power or two or is zero. */
1361
1362 static int
1363 log2 (x)
1364 unsigned int x;
1365 {
1366 int log = 0;
1367
1368 /* Test for 0 or a power of 2. */
1369 if (x == 0 || x != (x & -x))
1370 return -1;
1371
1372 while ((x >>= 1) != 0)
1373 log++;
1374 return log;
1375 }
1376
1377 static bfd_reloc_status_type
1378 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1379 input_section, output_bfd, error_message)
1380 bfd *abfd;
1381 arelent *reloc_entry;
1382 asymbol *symbol_in;
1383 PTR data;
1384 asection *input_section;
1385 bfd *output_bfd;
1386 char **error_message;
1387 {
1388 if (output_bfd)
1389 {
1390 reloc_entry->address += input_section->output_offset;
1391 return bfd_reloc_ok;
1392 }
1393 return bfd_reloc_ok;
1394 }
1395
1396 /* Given a generic HPPA relocation type, the instruction format,
1397 and a field selector, return one or more appropriate SOM relocations. */
1398
1399 int **
1400 hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff)
1401 bfd *abfd;
1402 int base_type;
1403 int format;
1404 enum hppa_reloc_field_selector_type_alt field;
1405 int sym_diff;
1406 {
1407 int *final_type, **final_types;
1408
1409 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 6);
1410 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1411 if (!final_types || !final_type)
1412 {
1413 bfd_set_error (bfd_error_no_memory);
1414 return NULL;
1415 }
1416
1417 /* The field selector may require additional relocations to be
1418 generated. It's impossible to know at this moment if additional
1419 relocations will be needed, so we make them. The code to actually
1420 write the relocation/fixup stream is responsible for removing
1421 any redundant relocations. */
1422 switch (field)
1423 {
1424 case e_fsel:
1425 case e_psel:
1426 case e_lpsel:
1427 case e_rpsel:
1428 final_types[0] = final_type;
1429 final_types[1] = NULL;
1430 final_types[2] = NULL;
1431 *final_type = base_type;
1432 break;
1433
1434 case e_tsel:
1435 case e_ltsel:
1436 case e_rtsel:
1437 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1438 if (!final_types[0])
1439 {
1440 bfd_set_error (bfd_error_no_memory);
1441 return NULL;
1442 }
1443 if (field == e_tsel)
1444 *final_types[0] = R_FSEL;
1445 else if (field == e_ltsel)
1446 *final_types[0] = R_LSEL;
1447 else
1448 *final_types[0] = R_RSEL;
1449 final_types[1] = final_type;
1450 final_types[2] = NULL;
1451 *final_type = base_type;
1452 break;
1453
1454 case e_lssel:
1455 case e_rssel:
1456 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1457 if (!final_types[0])
1458 {
1459 bfd_set_error (bfd_error_no_memory);
1460 return NULL;
1461 }
1462 *final_types[0] = R_S_MODE;
1463 final_types[1] = final_type;
1464 final_types[2] = NULL;
1465 *final_type = base_type;
1466 break;
1467
1468 case e_lsel:
1469 case e_rsel:
1470 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1471 if (!final_types[0])
1472 {
1473 bfd_set_error (bfd_error_no_memory);
1474 return NULL;
1475 }
1476 *final_types[0] = R_N_MODE;
1477 final_types[1] = final_type;
1478 final_types[2] = NULL;
1479 *final_type = base_type;
1480 break;
1481
1482 case e_ldsel:
1483 case e_rdsel:
1484 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1485 if (!final_types[0])
1486 {
1487 bfd_set_error (bfd_error_no_memory);
1488 return NULL;
1489 }
1490 *final_types[0] = R_D_MODE;
1491 final_types[1] = final_type;
1492 final_types[2] = NULL;
1493 *final_type = base_type;
1494 break;
1495
1496 case e_lrsel:
1497 case e_rrsel:
1498 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1499 if (!final_types[0])
1500 {
1501 bfd_set_error (bfd_error_no_memory);
1502 return NULL;
1503 }
1504 *final_types[0] = R_R_MODE;
1505 final_types[1] = final_type;
1506 final_types[2] = NULL;
1507 *final_type = base_type;
1508 break;
1509 }
1510
1511 switch (base_type)
1512 {
1513 case R_HPPA:
1514 /* The difference of two symbols needs *very* special handling. */
1515 if (sym_diff)
1516 {
1517 final_types[0] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1518 final_types[1] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1519 final_types[2] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1520 final_types[3] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1521 if (!final_types[0] || !final_types[1] || !final_types[2])
1522 {
1523 bfd_set_error (bfd_error_no_memory);
1524 return NULL;
1525 }
1526 if (field == e_fsel)
1527 *final_types[0] = R_FSEL;
1528 else if (field == e_rsel)
1529 *final_types[0] = R_RSEL;
1530 else if (field == e_lsel)
1531 *final_types[0] = R_LSEL;
1532 *final_types[1] = R_COMP2;
1533 *final_types[2] = R_COMP2;
1534 *final_types[3] = R_COMP1;
1535 final_types[4] = final_type;
1536 *final_types[4] = R_CODE_EXPR;
1537 final_types[5] = NULL;
1538 break;
1539 }
1540 /* PLABELs get their own relocation type. */
1541 else if (field == e_psel
1542 || field == e_lpsel
1543 || field == e_rpsel)
1544 {
1545 /* A PLABEL relocation that has a size of 32 bits must
1546 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1547 if (format == 32)
1548 *final_type = R_DATA_PLABEL;
1549 else
1550 *final_type = R_CODE_PLABEL;
1551 }
1552 /* PIC stuff. */
1553 else if (field == e_tsel
1554 || field == e_ltsel
1555 || field == e_rtsel)
1556 *final_type = R_DLT_REL;
1557 /* A relocation in the data space is always a full 32bits. */
1558 else if (format == 32)
1559 *final_type = R_DATA_ONE_SYMBOL;
1560
1561 break;
1562
1563 case R_HPPA_GOTOFF:
1564 /* More PLABEL special cases. */
1565 if (field == e_psel
1566 || field == e_lpsel
1567 || field == e_rpsel)
1568 *final_type = R_DATA_PLABEL;
1569 break;
1570
1571 case R_HPPA_COMPLEX:
1572 /* The difference of two symbols needs *very* special handling. */
1573 if (sym_diff)
1574 {
1575 final_types[0] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1576 final_types[1] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1577 final_types[2] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1578 final_types[3] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1579 if (!final_types[0] || !final_types[1] || !final_types[2])
1580 {
1581 bfd_set_error (bfd_error_no_memory);
1582 return NULL;
1583 }
1584 if (field == e_fsel)
1585 *final_types[0] = R_FSEL;
1586 else if (field == e_rsel)
1587 *final_types[0] = R_RSEL;
1588 else if (field == e_lsel)
1589 *final_types[0] = R_LSEL;
1590 *final_types[1] = R_COMP2;
1591 *final_types[2] = R_COMP2;
1592 *final_types[3] = R_COMP1;
1593 final_types[4] = final_type;
1594 *final_types[4] = R_CODE_EXPR;
1595 final_types[5] = NULL;
1596 break;
1597 }
1598 else
1599 break;
1600
1601 case R_HPPA_NONE:
1602 case R_HPPA_ABS_CALL:
1603 case R_HPPA_PCREL_CALL:
1604 /* Right now we can default all these. */
1605 break;
1606 }
1607 return final_types;
1608 }
1609
1610 /* Return the address of the correct entry in the PA SOM relocation
1611 howto table. */
1612
1613 /*ARGSUSED*/
1614 static reloc_howto_type *
1615 som_bfd_reloc_type_lookup (abfd, code)
1616 bfd *abfd;
1617 bfd_reloc_code_real_type code;
1618 {
1619 if ((int) code < (int) R_NO_RELOCATION + 255)
1620 {
1621 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1622 return &som_hppa_howto_table[(int) code];
1623 }
1624
1625 return (reloc_howto_type *) 0;
1626 }
1627
1628 /* Perform some initialization for an object. Save results of this
1629 initialization in the BFD. */
1630
1631 static const bfd_target *
1632 som_object_setup (abfd, file_hdrp, aux_hdrp)
1633 bfd *abfd;
1634 struct header *file_hdrp;
1635 struct som_exec_auxhdr *aux_hdrp;
1636 {
1637 asection *section;
1638 int found;
1639
1640 /* som_mkobject will set bfd_error if som_mkobject fails. */
1641 if (som_mkobject (abfd) != true)
1642 return 0;
1643
1644 /* Set BFD flags based on what information is available in the SOM. */
1645 abfd->flags = NO_FLAGS;
1646 if (file_hdrp->symbol_total)
1647 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1648
1649 switch (file_hdrp->a_magic)
1650 {
1651 case DEMAND_MAGIC:
1652 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1653 break;
1654 case SHARE_MAGIC:
1655 abfd->flags |= (WP_TEXT | EXEC_P);
1656 break;
1657 case EXEC_MAGIC:
1658 abfd->flags |= (EXEC_P);
1659 break;
1660 case RELOC_MAGIC:
1661 abfd->flags |= HAS_RELOC;
1662 break;
1663 #ifdef SHL_MAGIC
1664 case SHL_MAGIC:
1665 #endif
1666 #ifdef DL_MAGIC
1667 case DL_MAGIC:
1668 #endif
1669 abfd->flags |= DYNAMIC;
1670 break;
1671
1672 default:
1673 break;
1674 }
1675
1676 /* Allocate space to hold the saved exec header information. */
1677 obj_som_exec_data (abfd) = (struct som_exec_data *)
1678 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1679 if (obj_som_exec_data (abfd) == NULL)
1680 {
1681 bfd_set_error (bfd_error_no_memory);
1682 return NULL;
1683 }
1684
1685 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1686
1687 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1688 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1689
1690 It's about time, OSF has used the new id since at least 1992;
1691 HPUX didn't start till nearly 1995!.
1692
1693 The new approach examines the entry field. If it's zero or not 4
1694 byte aligned then it's not a proper code address and we guess it's
1695 really the executable flags. */
1696 found = 0;
1697 for (section = abfd->sections; section; section = section->next)
1698 {
1699 if ((section->flags & SEC_CODE) == 0)
1700 continue;
1701 if (aux_hdrp->exec_entry >= section->vma
1702 && aux_hdrp->exec_entry < section->vma + section->_cooked_size)
1703 found = 1;
1704 }
1705 if (aux_hdrp->exec_entry == 0
1706 || (aux_hdrp->exec_entry & 0x3) != 0
1707 || ! found)
1708 {
1709 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1710 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1711 }
1712 else
1713 {
1714 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1715 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1716 }
1717
1718 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1719 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1720
1721 /* Initialize the saved symbol table and string table to NULL.
1722 Save important offsets and sizes from the SOM header into
1723 the BFD. */
1724 obj_som_stringtab (abfd) = (char *) NULL;
1725 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1726 obj_som_sorted_syms (abfd) = NULL;
1727 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1728 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1729 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1730 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1731 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1732
1733 return abfd->xvec;
1734 }
1735
1736 /* Convert all of the space and subspace info into BFD sections. Each space
1737 contains a number of subspaces, which in turn describe the mapping between
1738 regions of the exec file, and the address space that the program runs in.
1739 BFD sections which correspond to spaces will overlap the sections for the
1740 associated subspaces. */
1741
1742 static boolean
1743 setup_sections (abfd, file_hdr)
1744 bfd *abfd;
1745 struct header *file_hdr;
1746 {
1747 char *space_strings;
1748 unsigned int space_index, i;
1749 unsigned int total_subspaces = 0;
1750 asection **subspace_sections, *section;
1751
1752 /* First, read in space names */
1753
1754 space_strings = malloc (file_hdr->space_strings_size);
1755 if (!space_strings && file_hdr->space_strings_size != 0)
1756 {
1757 bfd_set_error (bfd_error_no_memory);
1758 goto error_return;
1759 }
1760
1761 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1762 goto error_return;
1763 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1764 != file_hdr->space_strings_size)
1765 goto error_return;
1766
1767 /* Loop over all of the space dictionaries, building up sections */
1768 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1769 {
1770 struct space_dictionary_record space;
1771 struct subspace_dictionary_record subspace, save_subspace;
1772 int subspace_index;
1773 asection *space_asect;
1774 char *newname;
1775
1776 /* Read the space dictionary element */
1777 if (bfd_seek (abfd, file_hdr->space_location
1778 + space_index * sizeof space, SEEK_SET) < 0)
1779 goto error_return;
1780 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1781 goto error_return;
1782
1783 /* Setup the space name string */
1784 space.name.n_name = space.name.n_strx + space_strings;
1785
1786 /* Make a section out of it */
1787 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1788 if (!newname)
1789 goto error_return;
1790 strcpy (newname, space.name.n_name);
1791
1792 space_asect = bfd_make_section_anyway (abfd, newname);
1793 if (!space_asect)
1794 goto error_return;
1795
1796 if (space.is_loadable == 0)
1797 space_asect->flags |= SEC_DEBUGGING;
1798
1799 /* Set up all the attributes for the space. */
1800 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1801 space.is_private, space.sort_key,
1802 space.space_number) == false)
1803 goto error_return;
1804
1805 /* Now, read in the first subspace for this space */
1806 if (bfd_seek (abfd, file_hdr->subspace_location
1807 + space.subspace_index * sizeof subspace,
1808 SEEK_SET) < 0)
1809 goto error_return;
1810 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1811 goto error_return;
1812 /* Seek back to the start of the subspaces for loop below */
1813 if (bfd_seek (abfd, file_hdr->subspace_location
1814 + space.subspace_index * sizeof subspace,
1815 SEEK_SET) < 0)
1816 goto error_return;
1817
1818 /* Setup the start address and file loc from the first subspace record */
1819 space_asect->vma = subspace.subspace_start;
1820 space_asect->filepos = subspace.file_loc_init_value;
1821 space_asect->alignment_power = log2 (subspace.alignment);
1822 if (space_asect->alignment_power == -1)
1823 goto error_return;
1824
1825 /* Initialize save_subspace so we can reliably determine if this
1826 loop placed any useful values into it. */
1827 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1828
1829 /* Loop over the rest of the subspaces, building up more sections */
1830 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1831 subspace_index++)
1832 {
1833 asection *subspace_asect;
1834
1835 /* Read in the next subspace */
1836 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1837 != sizeof subspace)
1838 goto error_return;
1839
1840 /* Setup the subspace name string */
1841 subspace.name.n_name = subspace.name.n_strx + space_strings;
1842
1843 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1844 if (!newname)
1845 goto error_return;
1846 strcpy (newname, subspace.name.n_name);
1847
1848 /* Make a section out of this subspace */
1849 subspace_asect = bfd_make_section_anyway (abfd, newname);
1850 if (!subspace_asect)
1851 goto error_return;
1852
1853 /* Store private information about the section. */
1854 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1855 subspace.access_control_bits,
1856 subspace.sort_key,
1857 subspace.quadrant) == false)
1858 goto error_return;
1859
1860 /* Keep an easy mapping between subspaces and sections.
1861 Note we do not necessarily read the subspaces in the
1862 same order in which they appear in the object file.
1863
1864 So to make the target index come out correctly, we
1865 store the location of the subspace header in target
1866 index, then sort using the location of the subspace
1867 header as the key. Then we can assign correct
1868 subspace indices. */
1869 total_subspaces++;
1870 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
1871
1872 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1873 by the access_control_bits in the subspace header. */
1874 switch (subspace.access_control_bits >> 4)
1875 {
1876 /* Readonly data. */
1877 case 0x0:
1878 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1879 break;
1880
1881 /* Normal data. */
1882 case 0x1:
1883 subspace_asect->flags |= SEC_DATA;
1884 break;
1885
1886 /* Readonly code and the gateways.
1887 Gateways have other attributes which do not map
1888 into anything BFD knows about. */
1889 case 0x2:
1890 case 0x4:
1891 case 0x5:
1892 case 0x6:
1893 case 0x7:
1894 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1895 break;
1896
1897 /* dynamic (writable) code. */
1898 case 0x3:
1899 subspace_asect->flags |= SEC_CODE;
1900 break;
1901 }
1902
1903 if (subspace.dup_common || subspace.is_common)
1904 subspace_asect->flags |= SEC_IS_COMMON;
1905 else if (subspace.subspace_length > 0)
1906 subspace_asect->flags |= SEC_HAS_CONTENTS;
1907
1908 if (subspace.is_loadable)
1909 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1910 else
1911 subspace_asect->flags |= SEC_DEBUGGING;
1912
1913 if (subspace.code_only)
1914 subspace_asect->flags |= SEC_CODE;
1915
1916 /* Both file_loc_init_value and initialization_length will
1917 be zero for a BSS like subspace. */
1918 if (subspace.file_loc_init_value == 0
1919 && subspace.initialization_length == 0)
1920 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
1921
1922 /* This subspace has relocations.
1923 The fixup_request_quantity is a byte count for the number of
1924 entries in the relocation stream; it is not the actual number
1925 of relocations in the subspace. */
1926 if (subspace.fixup_request_quantity != 0)
1927 {
1928 subspace_asect->flags |= SEC_RELOC;
1929 subspace_asect->rel_filepos = subspace.fixup_request_index;
1930 som_section_data (subspace_asect)->reloc_size
1931 = subspace.fixup_request_quantity;
1932 /* We can not determine this yet. When we read in the
1933 relocation table the correct value will be filled in. */
1934 subspace_asect->reloc_count = -1;
1935 }
1936
1937 /* Update save_subspace if appropriate. */
1938 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1939 save_subspace = subspace;
1940
1941 subspace_asect->vma = subspace.subspace_start;
1942 subspace_asect->_cooked_size = subspace.subspace_length;
1943 subspace_asect->_raw_size = subspace.subspace_length;
1944 subspace_asect->filepos = subspace.file_loc_init_value;
1945 subspace_asect->alignment_power = log2 (subspace.alignment);
1946 if (subspace_asect->alignment_power == -1)
1947 goto error_return;
1948 }
1949
1950 /* Yow! there is no subspace within the space which actually
1951 has initialized information in it; this should never happen
1952 as far as I know. */
1953 if (!save_subspace.file_loc_init_value)
1954 goto error_return;
1955
1956 /* Setup the sizes for the space section based upon the info in the
1957 last subspace of the space. */
1958 space_asect->_cooked_size = save_subspace.subspace_start
1959 - space_asect->vma + save_subspace.subspace_length;
1960 space_asect->_raw_size = save_subspace.file_loc_init_value
1961 - space_asect->filepos + save_subspace.initialization_length;
1962 }
1963 /* Now that we've read in all the subspace records, we need to assign
1964 a target index to each subspace. */
1965 subspace_sections = (asection **) malloc (total_subspaces
1966 * sizeof (asection *));
1967 if (subspace_sections == NULL)
1968 goto error_return;
1969
1970 for (i = 0, section = abfd->sections; section; section = section->next)
1971 {
1972 if (!som_is_subspace (section))
1973 continue;
1974
1975 subspace_sections[i] = section;
1976 i++;
1977 }
1978 qsort (subspace_sections, total_subspaces,
1979 sizeof (asection *), compare_subspaces);
1980
1981 /* subspace_sections is now sorted in the order in which the subspaces
1982 appear in the object file. Assign an index to each one now. */
1983 for (i = 0; i < total_subspaces; i++)
1984 subspace_sections[i]->target_index = i;
1985
1986 if (space_strings != NULL)
1987 free (space_strings);
1988
1989 if (subspace_sections != NULL)
1990 free (subspace_sections);
1991
1992 return true;
1993
1994 error_return:
1995 if (space_strings != NULL)
1996 free (space_strings);
1997
1998 if (subspace_sections != NULL)
1999 free (subspace_sections);
2000 return false;
2001 }
2002
2003 /* Read in a SOM object and make it into a BFD. */
2004
2005 static const bfd_target *
2006 som_object_p (abfd)
2007 bfd *abfd;
2008 {
2009 struct header file_hdr;
2010 struct som_exec_auxhdr aux_hdr;
2011
2012 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
2013 {
2014 if (bfd_get_error () != bfd_error_system_call)
2015 bfd_set_error (bfd_error_wrong_format);
2016 return 0;
2017 }
2018
2019 if (!_PA_RISC_ID (file_hdr.system_id))
2020 {
2021 bfd_set_error (bfd_error_wrong_format);
2022 return 0;
2023 }
2024
2025 switch (file_hdr.a_magic)
2026 {
2027 case RELOC_MAGIC:
2028 case EXEC_MAGIC:
2029 case SHARE_MAGIC:
2030 case DEMAND_MAGIC:
2031 #ifdef DL_MAGIC
2032 case DL_MAGIC:
2033 #endif
2034 #ifdef SHL_MAGIC
2035 case SHL_MAGIC:
2036 #endif
2037 #ifdef EXECLIBMAGIC
2038 case EXECLIBMAGIC:
2039 #endif
2040 #ifdef SHARED_MAGIC_CNX
2041 case SHARED_MAGIC_CNX:
2042 #endif
2043 break;
2044 default:
2045 bfd_set_error (bfd_error_wrong_format);
2046 return 0;
2047 }
2048
2049 if (file_hdr.version_id != VERSION_ID
2050 && file_hdr.version_id != NEW_VERSION_ID)
2051 {
2052 bfd_set_error (bfd_error_wrong_format);
2053 return 0;
2054 }
2055
2056 /* If the aux_header_size field in the file header is zero, then this
2057 object is an incomplete executable (a .o file). Do not try to read
2058 a non-existant auxiliary header. */
2059 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
2060 if (file_hdr.aux_header_size != 0)
2061 {
2062 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
2063 {
2064 if (bfd_get_error () != bfd_error_system_call)
2065 bfd_set_error (bfd_error_wrong_format);
2066 return 0;
2067 }
2068 }
2069
2070 if (!setup_sections (abfd, &file_hdr))
2071 {
2072 /* setup_sections does not bubble up a bfd error code. */
2073 bfd_set_error (bfd_error_bad_value);
2074 return 0;
2075 }
2076
2077 /* This appears to be a valid SOM object. Do some initialization. */
2078 return som_object_setup (abfd, &file_hdr, &aux_hdr);
2079 }
2080
2081 /* Create a SOM object. */
2082
2083 static boolean
2084 som_mkobject (abfd)
2085 bfd *abfd;
2086 {
2087 /* Allocate memory to hold backend information. */
2088 abfd->tdata.som_data = (struct som_data_struct *)
2089 bfd_zalloc (abfd, sizeof (struct som_data_struct));
2090 if (abfd->tdata.som_data == NULL)
2091 {
2092 bfd_set_error (bfd_error_no_memory);
2093 return false;
2094 }
2095 return true;
2096 }
2097
2098 /* Initialize some information in the file header. This routine makes
2099 not attempt at doing the right thing for a full executable; it
2100 is only meant to handle relocatable objects. */
2101
2102 static boolean
2103 som_prep_headers (abfd)
2104 bfd *abfd;
2105 {
2106 struct header *file_hdr;
2107 asection *section;
2108
2109 /* Make and attach a file header to the BFD. */
2110 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
2111 if (file_hdr == NULL)
2112
2113 {
2114 bfd_set_error (bfd_error_no_memory);
2115 return false;
2116 }
2117 obj_som_file_hdr (abfd) = file_hdr;
2118
2119 if (abfd->flags & (EXEC_P | DYNAMIC))
2120 {
2121
2122 /* Make and attach an exec header to the BFD. */
2123 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
2124 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
2125 if (obj_som_exec_hdr (abfd) == NULL)
2126 {
2127 bfd_set_error (bfd_error_no_memory);
2128 return false;
2129 }
2130
2131 if (abfd->flags & D_PAGED)
2132 file_hdr->a_magic = DEMAND_MAGIC;
2133 else if (abfd->flags & WP_TEXT)
2134 file_hdr->a_magic = SHARE_MAGIC;
2135 #ifdef SHL_MAGIC
2136 else if (abfd->flags & DYNAMIC)
2137 file_hdr->a_magic = SHL_MAGIC;
2138 #endif
2139 else
2140 file_hdr->a_magic = EXEC_MAGIC;
2141 }
2142 else
2143 file_hdr->a_magic = RELOC_MAGIC;
2144
2145 /* Only new format SOM is supported. */
2146 file_hdr->version_id = NEW_VERSION_ID;
2147
2148 /* These fields are optional, and embedding timestamps is not always
2149 a wise thing to do, it makes comparing objects during a multi-stage
2150 bootstrap difficult. */
2151 file_hdr->file_time.secs = 0;
2152 file_hdr->file_time.nanosecs = 0;
2153
2154 file_hdr->entry_space = 0;
2155 file_hdr->entry_subspace = 0;
2156 file_hdr->entry_offset = 0;
2157 file_hdr->presumed_dp = 0;
2158
2159 /* Now iterate over the sections translating information from
2160 BFD sections to SOM spaces/subspaces. */
2161
2162 for (section = abfd->sections; section != NULL; section = section->next)
2163 {
2164 /* Ignore anything which has not been marked as a space or
2165 subspace. */
2166 if (!som_is_space (section) && !som_is_subspace (section))
2167 continue;
2168
2169 if (som_is_space (section))
2170 {
2171 /* Allocate space for the space dictionary. */
2172 som_section_data (section)->space_dict
2173 = (struct space_dictionary_record *)
2174 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2175 if (som_section_data (section)->space_dict == NULL)
2176 {
2177 bfd_set_error (bfd_error_no_memory);
2178 return false;
2179 }
2180 /* Set space attributes. Note most attributes of SOM spaces
2181 are set based on the subspaces it contains. */
2182 som_section_data (section)->space_dict->loader_fix_index = -1;
2183 som_section_data (section)->space_dict->init_pointer_index = -1;
2184
2185 /* Set more attributes that were stuffed away in private data. */
2186 som_section_data (section)->space_dict->sort_key =
2187 som_section_data (section)->copy_data->sort_key;
2188 som_section_data (section)->space_dict->is_defined =
2189 som_section_data (section)->copy_data->is_defined;
2190 som_section_data (section)->space_dict->is_private =
2191 som_section_data (section)->copy_data->is_private;
2192 som_section_data (section)->space_dict->space_number =
2193 som_section_data (section)->copy_data->space_number;
2194 }
2195 else
2196 {
2197 /* Allocate space for the subspace dictionary. */
2198 som_section_data (section)->subspace_dict
2199 = (struct subspace_dictionary_record *)
2200 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2201 if (som_section_data (section)->subspace_dict == NULL)
2202 {
2203 bfd_set_error (bfd_error_no_memory);
2204 return false;
2205 }
2206
2207 /* Set subspace attributes. Basic stuff is done here, additional
2208 attributes are filled in later as more information becomes
2209 available. */
2210 if (section->flags & SEC_IS_COMMON)
2211 {
2212 som_section_data (section)->subspace_dict->dup_common = 1;
2213 som_section_data (section)->subspace_dict->is_common = 1;
2214 }
2215
2216 if (section->flags & SEC_ALLOC)
2217 som_section_data (section)->subspace_dict->is_loadable = 1;
2218
2219 if (section->flags & SEC_CODE)
2220 som_section_data (section)->subspace_dict->code_only = 1;
2221
2222 som_section_data (section)->subspace_dict->subspace_start =
2223 section->vma;
2224 som_section_data (section)->subspace_dict->subspace_length =
2225 bfd_section_size (abfd, section);
2226 som_section_data (section)->subspace_dict->initialization_length =
2227 bfd_section_size (abfd, section);
2228 som_section_data (section)->subspace_dict->alignment =
2229 1 << section->alignment_power;
2230
2231 /* Set more attributes that were stuffed away in private data. */
2232 som_section_data (section)->subspace_dict->sort_key =
2233 som_section_data (section)->copy_data->sort_key;
2234 som_section_data (section)->subspace_dict->access_control_bits =
2235 som_section_data (section)->copy_data->access_control_bits;
2236 som_section_data (section)->subspace_dict->quadrant =
2237 som_section_data (section)->copy_data->quadrant;
2238 }
2239 }
2240 return true;
2241 }
2242
2243 /* Return true if the given section is a SOM space, false otherwise. */
2244
2245 static boolean
2246 som_is_space (section)
2247 asection *section;
2248 {
2249 /* If no copy data is available, then it's neither a space nor a
2250 subspace. */
2251 if (som_section_data (section)->copy_data == NULL)
2252 return false;
2253
2254 /* If the containing space isn't the same as the given section,
2255 then this isn't a space. */
2256 if (som_section_data (section)->copy_data->container != section
2257 && (som_section_data (section)->copy_data->container->output_section
2258 != section))
2259 return false;
2260
2261 /* OK. Must be a space. */
2262 return true;
2263 }
2264
2265 /* Return true if the given section is a SOM subspace, false otherwise. */
2266
2267 static boolean
2268 som_is_subspace (section)
2269 asection *section;
2270 {
2271 /* If no copy data is available, then it's neither a space nor a
2272 subspace. */
2273 if (som_section_data (section)->copy_data == NULL)
2274 return false;
2275
2276 /* If the containing space is the same as the given section,
2277 then this isn't a subspace. */
2278 if (som_section_data (section)->copy_data->container == section
2279 || (som_section_data (section)->copy_data->container->output_section
2280 == section))
2281 return false;
2282
2283 /* OK. Must be a subspace. */
2284 return true;
2285 }
2286
2287 /* Return true if the given space containins the given subspace. It
2288 is safe to assume space really is a space, and subspace really
2289 is a subspace. */
2290
2291 static boolean
2292 som_is_container (space, subspace)
2293 asection *space, *subspace;
2294 {
2295 return (som_section_data (subspace)->copy_data->container == space
2296 || (som_section_data (subspace)->copy_data->container->output_section
2297 == space));
2298 }
2299
2300 /* Count and return the number of spaces attached to the given BFD. */
2301
2302 static unsigned long
2303 som_count_spaces (abfd)
2304 bfd *abfd;
2305 {
2306 int count = 0;
2307 asection *section;
2308
2309 for (section = abfd->sections; section != NULL; section = section->next)
2310 count += som_is_space (section);
2311
2312 return count;
2313 }
2314
2315 /* Count the number of subspaces attached to the given BFD. */
2316
2317 static unsigned long
2318 som_count_subspaces (abfd)
2319 bfd *abfd;
2320 {
2321 int count = 0;
2322 asection *section;
2323
2324 for (section = abfd->sections; section != NULL; section = section->next)
2325 count += som_is_subspace (section);
2326
2327 return count;
2328 }
2329
2330 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2331
2332 We desire symbols to be ordered starting with the symbol with the
2333 highest relocation count down to the symbol with the lowest relocation
2334 count. Doing so compacts the relocation stream. */
2335
2336 static int
2337 compare_syms (arg1, arg2)
2338 const PTR arg1;
2339 const PTR arg2;
2340
2341 {
2342 asymbol **sym1 = (asymbol **) arg1;
2343 asymbol **sym2 = (asymbol **) arg2;
2344 unsigned int count1, count2;
2345
2346 /* Get relocation count for each symbol. Note that the count
2347 is stored in the udata pointer for section symbols! */
2348 if ((*sym1)->flags & BSF_SECTION_SYM)
2349 count1 = (*sym1)->udata.i;
2350 else
2351 count1 = som_symbol_data (*sym1)->reloc_count;
2352
2353 if ((*sym2)->flags & BSF_SECTION_SYM)
2354 count2 = (*sym2)->udata.i;
2355 else
2356 count2 = som_symbol_data (*sym2)->reloc_count;
2357
2358 /* Return the appropriate value. */
2359 if (count1 < count2)
2360 return 1;
2361 else if (count1 > count2)
2362 return -1;
2363 return 0;
2364 }
2365
2366 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2367 and subspace. */
2368
2369 static int
2370 compare_subspaces (arg1, arg2)
2371 const PTR arg1;
2372 const PTR arg2;
2373
2374 {
2375 asection **subspace1 = (asection **) arg1;
2376 asection **subspace2 = (asection **) arg2;
2377 unsigned int count1, count2;
2378
2379 if ((*subspace1)->target_index < (*subspace2)->target_index)
2380 return -1;
2381 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2382 return 1;
2383 else
2384 return 0;
2385 }
2386
2387 /* Perform various work in preparation for emitting the fixup stream. */
2388
2389 static void
2390 som_prep_for_fixups (abfd, syms, num_syms)
2391 bfd *abfd;
2392 asymbol **syms;
2393 unsigned long num_syms;
2394 {
2395 int i;
2396 asection *section;
2397 asymbol **sorted_syms;
2398
2399 /* Most SOM relocations involving a symbol have a length which is
2400 dependent on the index of the symbol. So symbols which are
2401 used often in relocations should have a small index. */
2402
2403 /* First initialize the counters for each symbol. */
2404 for (i = 0; i < num_syms; i++)
2405 {
2406 /* Handle a section symbol; these have no pointers back to the
2407 SOM symbol info. So we just use the udata field to hold the
2408 relocation count. */
2409 if (som_symbol_data (syms[i]) == NULL
2410 || syms[i]->flags & BSF_SECTION_SYM)
2411 {
2412 syms[i]->flags |= BSF_SECTION_SYM;
2413 syms[i]->udata.i = 0;
2414 }
2415 else
2416 som_symbol_data (syms[i])->reloc_count = 0;
2417 }
2418
2419 /* Now that the counters are initialized, make a weighted count
2420 of how often a given symbol is used in a relocation. */
2421 for (section = abfd->sections; section != NULL; section = section->next)
2422 {
2423 int i;
2424
2425 /* Does this section have any relocations? */
2426 if (section->reloc_count <= 0)
2427 continue;
2428
2429 /* Walk through each relocation for this section. */
2430 for (i = 1; i < section->reloc_count; i++)
2431 {
2432 arelent *reloc = section->orelocation[i];
2433 int scale;
2434
2435 /* A relocation against a symbol in the *ABS* section really
2436 does not have a symbol. Likewise if the symbol isn't associated
2437 with any section. */
2438 if (reloc->sym_ptr_ptr == NULL
2439 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2440 continue;
2441
2442 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2443 and R_CODE_ONE_SYMBOL relocations to come first. These
2444 two relocations have single byte versions if the symbol
2445 index is very small. */
2446 if (reloc->howto->type == R_DP_RELATIVE
2447 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2448 scale = 2;
2449 else
2450 scale = 1;
2451
2452 /* Handle section symbols by storing the count in the udata
2453 field. It will not be used and the count is very important
2454 for these symbols. */
2455 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2456 {
2457 (*reloc->sym_ptr_ptr)->udata.i =
2458 (*reloc->sym_ptr_ptr)->udata.i + scale;
2459 continue;
2460 }
2461
2462 /* A normal symbol. Increment the count. */
2463 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2464 }
2465 }
2466
2467 /* Sort a copy of the symbol table, rather than the canonical
2468 output symbol table. */
2469 sorted_syms = (asymbol **) bfd_zalloc (abfd, num_syms * sizeof (asymbol *));
2470 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2471 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2472 obj_som_sorted_syms (abfd) = sorted_syms;
2473
2474 /* Compute the symbol indexes, they will be needed by the relocation
2475 code. */
2476 for (i = 0; i < num_syms; i++)
2477 {
2478 /* A section symbol. Again, there is no pointer to backend symbol
2479 information, so we reuse the udata field again. */
2480 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2481 sorted_syms[i]->udata.i = i;
2482 else
2483 som_symbol_data (sorted_syms[i])->index = i;
2484 }
2485 }
2486
2487 static boolean
2488 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2489 bfd *abfd;
2490 unsigned long current_offset;
2491 unsigned int *total_reloc_sizep;
2492 {
2493 unsigned int i, j;
2494 /* Chunk of memory that we can use as buffer space, then throw
2495 away. */
2496 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2497 unsigned char *p;
2498 unsigned int total_reloc_size = 0;
2499 unsigned int subspace_reloc_size = 0;
2500 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2501 asection *section = abfd->sections;
2502
2503 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2504 p = tmp_space;
2505
2506 /* All the fixups for a particular subspace are emitted in a single
2507 stream. All the subspaces for a particular space are emitted
2508 as a single stream.
2509
2510 So, to get all the locations correct one must iterate through all the
2511 spaces, for each space iterate through its subspaces and output a
2512 fixups stream. */
2513 for (i = 0; i < num_spaces; i++)
2514 {
2515 asection *subsection;
2516
2517 /* Find a space. */
2518 while (!som_is_space (section))
2519 section = section->next;
2520
2521 /* Now iterate through each of its subspaces. */
2522 for (subsection = abfd->sections;
2523 subsection != NULL;
2524 subsection = subsection->next)
2525 {
2526 int reloc_offset, current_rounding_mode;
2527
2528 /* Find a subspace of this space. */
2529 if (!som_is_subspace (subsection)
2530 || !som_is_container (section, subsection))
2531 continue;
2532
2533 /* If this subspace does not have real data, then we are
2534 finised with it. */
2535 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2536 {
2537 som_section_data (subsection)->subspace_dict->fixup_request_index
2538 = -1;
2539 continue;
2540 }
2541
2542 /* This subspace has some relocations. Put the relocation stream
2543 index into the subspace record. */
2544 som_section_data (subsection)->subspace_dict->fixup_request_index
2545 = total_reloc_size;
2546
2547 /* To make life easier start over with a clean slate for
2548 each subspace. Seek to the start of the relocation stream
2549 for this subspace in preparation for writing out its fixup
2550 stream. */
2551 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2552 return false;
2553
2554 /* Buffer space has already been allocated. Just perform some
2555 initialization here. */
2556 p = tmp_space;
2557 subspace_reloc_size = 0;
2558 reloc_offset = 0;
2559 som_initialize_reloc_queue (reloc_queue);
2560 current_rounding_mode = R_N_MODE;
2561
2562 /* Translate each BFD relocation into one or more SOM
2563 relocations. */
2564 for (j = 0; j < subsection->reloc_count; j++)
2565 {
2566 arelent *bfd_reloc = subsection->orelocation[j];
2567 unsigned int skip;
2568 int sym_num;
2569
2570 /* Get the symbol number. Remember it's stored in a
2571 special place for section symbols. */
2572 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2573 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2574 else
2575 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2576
2577 /* If there is not enough room for the next couple relocations,
2578 then dump the current buffer contents now. Also reinitialize
2579 the relocation queue.
2580
2581 No single BFD relocation could ever translate into more
2582 than 100 bytes of SOM relocations (20bytes is probably the
2583 upper limit, but leave lots of space for growth). */
2584 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2585 {
2586 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2587 != p - tmp_space)
2588 return false;
2589
2590 p = tmp_space;
2591 som_initialize_reloc_queue (reloc_queue);
2592 }
2593
2594 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2595 skipped. */
2596 skip = bfd_reloc->address - reloc_offset;
2597 p = som_reloc_skip (abfd, skip, p,
2598 &subspace_reloc_size, reloc_queue);
2599
2600 /* Update reloc_offset for the next iteration.
2601
2602 Many relocations do not consume input bytes. They
2603 are markers, or set state necessary to perform some
2604 later relocation. */
2605 switch (bfd_reloc->howto->type)
2606 {
2607 /* This only needs to handle relocations that may be
2608 made by hppa_som_gen_reloc. */
2609 case R_ENTRY:
2610 case R_ALT_ENTRY:
2611 case R_EXIT:
2612 case R_N_MODE:
2613 case R_S_MODE:
2614 case R_D_MODE:
2615 case R_R_MODE:
2616 case R_FSEL:
2617 case R_LSEL:
2618 case R_RSEL:
2619 case R_COMP1:
2620 case R_COMP2:
2621 reloc_offset = bfd_reloc->address;
2622 break;
2623
2624 default:
2625 reloc_offset = bfd_reloc->address + 4;
2626 break;
2627 }
2628
2629 /* Now the actual relocation we care about. */
2630 switch (bfd_reloc->howto->type)
2631 {
2632 case R_PCREL_CALL:
2633 case R_ABS_CALL:
2634 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2635 bfd_reloc, sym_num, reloc_queue);
2636 break;
2637
2638 case R_CODE_ONE_SYMBOL:
2639 case R_DP_RELATIVE:
2640 /* Account for any addend. */
2641 if (bfd_reloc->addend)
2642 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2643 &subspace_reloc_size, reloc_queue);
2644
2645 if (sym_num < 0x20)
2646 {
2647 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2648 subspace_reloc_size += 1;
2649 p += 1;
2650 }
2651 else if (sym_num < 0x100)
2652 {
2653 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2654 bfd_put_8 (abfd, sym_num, p + 1);
2655 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2656 2, reloc_queue);
2657 }
2658 else if (sym_num < 0x10000000)
2659 {
2660 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2661 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2662 bfd_put_16 (abfd, sym_num, p + 2);
2663 p = try_prev_fixup (abfd, &subspace_reloc_size,
2664 p, 4, reloc_queue);
2665 }
2666 else
2667 abort ();
2668 break;
2669
2670 case R_DATA_ONE_SYMBOL:
2671 case R_DATA_PLABEL:
2672 case R_CODE_PLABEL:
2673 case R_DLT_REL:
2674 /* Account for any addend using R_DATA_OVERRIDE. */
2675 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2676 && bfd_reloc->addend)
2677 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2678 &subspace_reloc_size, reloc_queue);
2679
2680 if (sym_num < 0x100)
2681 {
2682 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2683 bfd_put_8 (abfd, sym_num, p + 1);
2684 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2685 2, reloc_queue);
2686 }
2687 else if (sym_num < 0x10000000)
2688 {
2689 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2690 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2691 bfd_put_16 (abfd, sym_num, p + 2);
2692 p = try_prev_fixup (abfd, &subspace_reloc_size,
2693 p, 4, reloc_queue);
2694 }
2695 else
2696 abort ();
2697 break;
2698
2699 case R_ENTRY:
2700 {
2701 int tmp;
2702 arelent *tmp_reloc = NULL;
2703 bfd_put_8 (abfd, R_ENTRY, p);
2704
2705 /* R_ENTRY relocations have 64 bits of associated
2706 data. Unfortunately the addend field of a bfd
2707 relocation is only 32 bits. So, we split up
2708 the 64bit unwind information and store part in
2709 the R_ENTRY relocation, and the rest in the R_EXIT
2710 relocation. */
2711 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2712
2713 /* Find the next R_EXIT relocation. */
2714 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2715 {
2716 tmp_reloc = subsection->orelocation[tmp];
2717 if (tmp_reloc->howto->type == R_EXIT)
2718 break;
2719 }
2720
2721 if (tmp == subsection->reloc_count)
2722 abort ();
2723
2724 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2725 p = try_prev_fixup (abfd, &subspace_reloc_size,
2726 p, 9, reloc_queue);
2727 break;
2728 }
2729
2730 case R_N_MODE:
2731 case R_S_MODE:
2732 case R_D_MODE:
2733 case R_R_MODE:
2734 /* If this relocation requests the current rounding
2735 mode, then it is redundant. */
2736 if (bfd_reloc->howto->type != current_rounding_mode)
2737 {
2738 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2739 subspace_reloc_size += 1;
2740 p += 1;
2741 current_rounding_mode = bfd_reloc->howto->type;
2742 }
2743 break;
2744
2745 case R_EXIT:
2746 case R_ALT_ENTRY:
2747 case R_FSEL:
2748 case R_LSEL:
2749 case R_RSEL:
2750 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2751 subspace_reloc_size += 1;
2752 p += 1;
2753 break;
2754
2755 case R_COMP1:
2756 /* The only time we generate R_COMP1, R_COMP2 and
2757 R_CODE_EXPR relocs is for the difference of two
2758 symbols. Hence we can cheat here. */
2759 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2760 bfd_put_8 (abfd, 0x44, p + 1);
2761 p = try_prev_fixup (abfd, &subspace_reloc_size,
2762 p, 2, reloc_queue);
2763 break;
2764
2765 case R_COMP2:
2766 /* The only time we generate R_COMP1, R_COMP2 and
2767 R_CODE_EXPR relocs is for the difference of two
2768 symbols. Hence we can cheat here. */
2769 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2770 bfd_put_8 (abfd, 0x80, p + 1);
2771 bfd_put_8 (abfd, sym_num >> 16, p + 2);
2772 bfd_put_16 (abfd, sym_num, p + 3);
2773 p = try_prev_fixup (abfd, &subspace_reloc_size,
2774 p, 5, reloc_queue);
2775 break;
2776
2777 case R_CODE_EXPR:
2778 /* The only time we generate R_COMP1, R_COMP2 and
2779 R_CODE_EXPR relocs is for the difference of two
2780 symbols. Hence we can cheat here. */
2781 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2782 subspace_reloc_size += 1;
2783 p += 1;
2784 break;
2785
2786 /* Put a "R_RESERVED" relocation in the stream if
2787 we hit something we do not understand. The linker
2788 will complain loudly if this ever happens. */
2789 default:
2790 bfd_put_8 (abfd, 0xff, p);
2791 subspace_reloc_size += 1;
2792 p += 1;
2793 break;
2794 }
2795 }
2796
2797 /* Last BFD relocation for a subspace has been processed.
2798 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2799 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2800 - reloc_offset,
2801 p, &subspace_reloc_size, reloc_queue);
2802
2803 /* Scribble out the relocations. */
2804 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2805 != p - tmp_space)
2806 return false;
2807 p = tmp_space;
2808
2809 total_reloc_size += subspace_reloc_size;
2810 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2811 = subspace_reloc_size;
2812 }
2813 section = section->next;
2814 }
2815 *total_reloc_sizep = total_reloc_size;
2816 return true;
2817 }
2818
2819 /* Write out the space/subspace string table. */
2820
2821 static boolean
2822 som_write_space_strings (abfd, current_offset, string_sizep)
2823 bfd *abfd;
2824 unsigned long current_offset;
2825 unsigned int *string_sizep;
2826 {
2827 /* Chunk of memory that we can use as buffer space, then throw
2828 away. */
2829 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2830 unsigned char *p;
2831 unsigned int strings_size = 0;
2832 asection *section;
2833
2834 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2835 p = tmp_space;
2836
2837 /* Seek to the start of the space strings in preparation for writing
2838 them out. */
2839 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2840 return false;
2841
2842 /* Walk through all the spaces and subspaces (order is not important)
2843 building up and writing string table entries for their names. */
2844 for (section = abfd->sections; section != NULL; section = section->next)
2845 {
2846 int length;
2847
2848 /* Only work with space/subspaces; avoid any other sections
2849 which might have been made (.text for example). */
2850 if (!som_is_space (section) && !som_is_subspace (section))
2851 continue;
2852
2853 /* Get the length of the space/subspace name. */
2854 length = strlen (section->name);
2855
2856 /* If there is not enough room for the next entry, then dump the
2857 current buffer contents now. Each entry will take 4 bytes to
2858 hold the string length + the string itself + null terminator. */
2859 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2860 {
2861 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2862 != p - tmp_space)
2863 return false;
2864 /* Reset to beginning of the buffer space. */
2865 p = tmp_space;
2866 }
2867
2868 /* First element in a string table entry is the length of the
2869 string. Alignment issues are already handled. */
2870 bfd_put_32 (abfd, length, p);
2871 p += 4;
2872 strings_size += 4;
2873
2874 /* Record the index in the space/subspace records. */
2875 if (som_is_space (section))
2876 som_section_data (section)->space_dict->name.n_strx = strings_size;
2877 else
2878 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2879
2880 /* Next comes the string itself + a null terminator. */
2881 strcpy (p, section->name);
2882 p += length + 1;
2883 strings_size += length + 1;
2884
2885 /* Always align up to the next word boundary. */
2886 while (strings_size % 4)
2887 {
2888 bfd_put_8 (abfd, 0, p);
2889 p++;
2890 strings_size++;
2891 }
2892 }
2893
2894 /* Done with the space/subspace strings. Write out any information
2895 contained in a partial block. */
2896 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2897 return false;
2898 *string_sizep = strings_size;
2899 return true;
2900 }
2901
2902 /* Write out the symbol string table. */
2903
2904 static boolean
2905 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2906 bfd *abfd;
2907 unsigned long current_offset;
2908 asymbol **syms;
2909 unsigned int num_syms;
2910 unsigned int *string_sizep;
2911 {
2912 unsigned int i;
2913
2914 /* Chunk of memory that we can use as buffer space, then throw
2915 away. */
2916 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2917 unsigned char *p;
2918 unsigned int strings_size = 0;
2919
2920 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2921 p = tmp_space;
2922
2923 /* Seek to the start of the space strings in preparation for writing
2924 them out. */
2925 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2926 return false;
2927
2928 for (i = 0; i < num_syms; i++)
2929 {
2930 int length = strlen (syms[i]->name);
2931
2932 /* If there is not enough room for the next entry, then dump the
2933 current buffer contents now. */
2934 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2935 {
2936 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2937 != p - tmp_space)
2938 return false;
2939 /* Reset to beginning of the buffer space. */
2940 p = tmp_space;
2941 }
2942
2943 /* First element in a string table entry is the length of the
2944 string. This must always be 4 byte aligned. This is also
2945 an appropriate time to fill in the string index field in the
2946 symbol table entry. */
2947 bfd_put_32 (abfd, length, p);
2948 strings_size += 4;
2949 p += 4;
2950
2951 /* Next comes the string itself + a null terminator. */
2952 strcpy (p, syms[i]->name);
2953
2954 som_symbol_data(syms[i])->stringtab_offset = strings_size;
2955 p += length + 1;
2956 strings_size += length + 1;
2957
2958 /* Always align up to the next word boundary. */
2959 while (strings_size % 4)
2960 {
2961 bfd_put_8 (abfd, 0, p);
2962 strings_size++;
2963 p++;
2964 }
2965 }
2966
2967 /* Scribble out any partial block. */
2968 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2969 return false;
2970
2971 *string_sizep = strings_size;
2972 return true;
2973 }
2974
2975 /* Compute variable information to be placed in the SOM headers,
2976 space/subspace dictionaries, relocation streams, etc. Begin
2977 writing parts of the object file. */
2978
2979 static boolean
2980 som_begin_writing (abfd)
2981 bfd *abfd;
2982 {
2983 unsigned long current_offset = 0;
2984 int strings_size = 0;
2985 unsigned int total_reloc_size = 0;
2986 unsigned long num_spaces, num_subspaces, num_syms, i;
2987 asection *section;
2988 asymbol **syms = bfd_get_outsymbols (abfd);
2989 unsigned int total_subspaces = 0;
2990 struct som_exec_auxhdr *exec_header = NULL;
2991
2992 /* The file header will always be first in an object file,
2993 everything else can be in random locations. To keep things
2994 "simple" BFD will lay out the object file in the manner suggested
2995 by the PRO ABI for PA-RISC Systems. */
2996
2997 /* Before any output can really begin offsets for all the major
2998 portions of the object file must be computed. So, starting
2999 with the initial file header compute (and sometimes write)
3000 each portion of the object file. */
3001
3002 /* Make room for the file header, it's contents are not complete
3003 yet, so it can not be written at this time. */
3004 current_offset += sizeof (struct header);
3005
3006 /* Any auxiliary headers will follow the file header. Right now
3007 we support only the copyright and version headers. */
3008 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3009 obj_som_file_hdr (abfd)->aux_header_size = 0;
3010 if (abfd->flags & (EXEC_P | DYNAMIC))
3011 {
3012 /* Parts of the exec header will be filled in later, so
3013 delay writing the header itself. Fill in the defaults,
3014 and write it later. */
3015 current_offset += sizeof (struct som_exec_auxhdr);
3016 obj_som_file_hdr (abfd)->aux_header_size
3017 += sizeof (struct som_exec_auxhdr);
3018 exec_header = obj_som_exec_hdr (abfd);
3019 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3020 exec_header->som_auxhdr.length = 40;
3021 }
3022 if (obj_som_version_hdr (abfd) != NULL)
3023 {
3024 unsigned int len;
3025
3026 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3027 return false;
3028
3029 /* Write the aux_id structure and the string length. */
3030 len = sizeof (struct aux_id) + sizeof (unsigned int);
3031 obj_som_file_hdr (abfd)->aux_header_size += len;
3032 current_offset += len;
3033 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
3034 return false;
3035
3036 /* Write the version string. */
3037 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3038 obj_som_file_hdr (abfd)->aux_header_size += len;
3039 current_offset += len;
3040 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
3041 len, 1, abfd) != len)
3042 return false;
3043 }
3044
3045 if (obj_som_copyright_hdr (abfd) != NULL)
3046 {
3047 unsigned int len;
3048
3049 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3050 return false;
3051
3052 /* Write the aux_id structure and the string length. */
3053 len = sizeof (struct aux_id) + sizeof (unsigned int);
3054 obj_som_file_hdr (abfd)->aux_header_size += len;
3055 current_offset += len;
3056 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
3057 return false;
3058
3059 /* Write the copyright string. */
3060 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3061 obj_som_file_hdr (abfd)->aux_header_size += len;
3062 current_offset += len;
3063 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
3064 len, 1, abfd) != len)
3065 return false;
3066 }
3067
3068 /* Next comes the initialization pointers; we have no initialization
3069 pointers, so current offset does not change. */
3070 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3071 obj_som_file_hdr (abfd)->init_array_total = 0;
3072
3073 /* Next are the space records. These are fixed length records.
3074
3075 Count the number of spaces to determine how much room is needed
3076 in the object file for the space records.
3077
3078 The names of the spaces are stored in a separate string table,
3079 and the index for each space into the string table is computed
3080 below. Therefore, it is not possible to write the space headers
3081 at this time. */
3082 num_spaces = som_count_spaces (abfd);
3083 obj_som_file_hdr (abfd)->space_location = current_offset;
3084 obj_som_file_hdr (abfd)->space_total = num_spaces;
3085 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3086
3087 /* Next are the subspace records. These are fixed length records.
3088
3089 Count the number of subspaes to determine how much room is needed
3090 in the object file for the subspace records.
3091
3092 A variety if fields in the subspace record are still unknown at
3093 this time (index into string table, fixup stream location/size, etc). */
3094 num_subspaces = som_count_subspaces (abfd);
3095 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3096 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3097 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
3098
3099 /* Next is the string table for the space/subspace names. We will
3100 build and write the string table on the fly. At the same time
3101 we will fill in the space/subspace name index fields. */
3102
3103 /* The string table needs to be aligned on a word boundary. */
3104 if (current_offset % 4)
3105 current_offset += (4 - (current_offset % 4));
3106
3107 /* Mark the offset of the space/subspace string table in the
3108 file header. */
3109 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3110
3111 /* Scribble out the space strings. */
3112 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
3113 return false;
3114
3115 /* Record total string table size in the header and update the
3116 current offset. */
3117 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3118 current_offset += strings_size;
3119
3120 /* Next is the symbol table. These are fixed length records.
3121
3122 Count the number of symbols to determine how much room is needed
3123 in the object file for the symbol table.
3124
3125 The names of the symbols are stored in a separate string table,
3126 and the index for each symbol name into the string table is computed
3127 below. Therefore, it is not possible to write the symobl table
3128 at this time. */
3129 num_syms = bfd_get_symcount (abfd);
3130 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3131 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3132 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3133
3134 /* Next are the symbol strings.
3135 Align them to a word boundary. */
3136 if (current_offset % 4)
3137 current_offset += (4 - (current_offset % 4));
3138 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3139
3140 /* Scribble out the symbol strings. */
3141 if (som_write_symbol_strings (abfd, current_offset, syms,
3142 num_syms, &strings_size)
3143 == false)
3144 return false;
3145
3146 /* Record total string table size in header and update the
3147 current offset. */
3148 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3149 current_offset += strings_size;
3150
3151 /* Next is the compiler records. We do not use these. */
3152 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3153 obj_som_file_hdr (abfd)->compiler_total = 0;
3154
3155 /* Now compute the file positions for the loadable subspaces, taking
3156 care to make sure everything stays properly aligned. */
3157
3158 section = abfd->sections;
3159 for (i = 0; i < num_spaces; i++)
3160 {
3161 asection *subsection;
3162 int first_subspace;
3163 unsigned int subspace_offset = 0;
3164
3165 /* Find a space. */
3166 while (!som_is_space (section))
3167 section = section->next;
3168
3169 first_subspace = 1;
3170 /* Now look for all its subspaces. */
3171 for (subsection = abfd->sections;
3172 subsection != NULL;
3173 subsection = subsection->next)
3174 {
3175
3176 if (!som_is_subspace (subsection)
3177 || !som_is_container (section, subsection)
3178 || (subsection->flags & SEC_ALLOC) == 0)
3179 continue;
3180
3181 /* If this is the first subspace in the space, and we are
3182 building an executable, then take care to make sure all
3183 the alignments are correct and update the exec header. */
3184 if (first_subspace
3185 && (abfd->flags & (EXEC_P | DYNAMIC)))
3186 {
3187 /* Demand paged executables have each space aligned to a
3188 page boundary. Sharable executables (write-protected
3189 text) have just the private (aka data & bss) space aligned
3190 to a page boundary. Ugh. Not true for HPUX.
3191
3192 The HPUX kernel requires the text to always be page aligned
3193 within the file regardless of the executable's type. */
3194 if (abfd->flags & (D_PAGED | DYNAMIC)
3195 || (subsection->flags & SEC_CODE)
3196 || ((abfd->flags & WP_TEXT)
3197 && (subsection->flags & SEC_DATA)))
3198 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3199
3200 /* Update the exec header. */
3201 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3202 {
3203 exec_header->exec_tmem = section->vma;
3204 exec_header->exec_tfile = current_offset;
3205 }
3206 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3207 {
3208 exec_header->exec_dmem = section->vma;
3209 exec_header->exec_dfile = current_offset;
3210 }
3211
3212 /* Keep track of exactly where we are within a particular
3213 space. This is necessary as the braindamaged HPUX
3214 loader will create holes between subspaces *and*
3215 subspace alignments are *NOT* preserved. What a crock. */
3216 subspace_offset = subsection->vma;
3217
3218 /* Only do this for the first subspace within each space. */
3219 first_subspace = 0;
3220 }
3221 else if (abfd->flags & (EXEC_P | DYNAMIC))
3222 {
3223 /* The braindamaged HPUX loader may have created a hole
3224 between two subspaces. It is *not* sufficient to use
3225 the alignment specifications within the subspaces to
3226 account for these holes -- I've run into at least one
3227 case where the loader left one code subspace unaligned
3228 in a final executable.
3229
3230 To combat this we keep a current offset within each space,
3231 and use the subspace vma fields to detect and preserve
3232 holes. What a crock!
3233
3234 ps. This is not necessary for unloadable space/subspaces. */
3235 current_offset += subsection->vma - subspace_offset;
3236 if (subsection->flags & SEC_CODE)
3237 exec_header->exec_tsize += subsection->vma - subspace_offset;
3238 else
3239 exec_header->exec_dsize += subsection->vma - subspace_offset;
3240 subspace_offset += subsection->vma - subspace_offset;
3241 }
3242
3243
3244 subsection->target_index = total_subspaces++;
3245 /* This is real data to be loaded from the file. */
3246 if (subsection->flags & SEC_LOAD)
3247 {
3248 /* Update the size of the code & data. */
3249 if (abfd->flags & (EXEC_P | DYNAMIC)
3250 && subsection->flags & SEC_CODE)
3251 exec_header->exec_tsize += subsection->_cooked_size;
3252 else if (abfd->flags & (EXEC_P | DYNAMIC)
3253 && subsection->flags & SEC_DATA)
3254 exec_header->exec_dsize += subsection->_cooked_size;
3255 som_section_data (subsection)->subspace_dict->file_loc_init_value
3256 = current_offset;
3257 subsection->filepos = current_offset;
3258 current_offset += bfd_section_size (abfd, subsection);
3259 subspace_offset += bfd_section_size (abfd, subsection);
3260 }
3261 /* Looks like uninitialized data. */
3262 else
3263 {
3264 /* Update the size of the bss section. */
3265 if (abfd->flags & (EXEC_P | DYNAMIC))
3266 exec_header->exec_bsize += subsection->_cooked_size;
3267
3268 som_section_data (subsection)->subspace_dict->file_loc_init_value
3269 = 0;
3270 som_section_data (subsection)->subspace_dict->
3271 initialization_length = 0;
3272 }
3273 }
3274 /* Goto the next section. */
3275 section = section->next;
3276 }
3277
3278 /* Finally compute the file positions for unloadable subspaces.
3279 If building an executable, start the unloadable stuff on its
3280 own page. */
3281
3282 if (abfd->flags & (EXEC_P | DYNAMIC))
3283 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3284
3285 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3286 section = abfd->sections;
3287 for (i = 0; i < num_spaces; i++)
3288 {
3289 asection *subsection;
3290
3291 /* Find a space. */
3292 while (!som_is_space (section))
3293 section = section->next;
3294
3295 if (abfd->flags & (EXEC_P | DYNAMIC))
3296 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3297
3298 /* Now look for all its subspaces. */
3299 for (subsection = abfd->sections;
3300 subsection != NULL;
3301 subsection = subsection->next)
3302 {
3303
3304 if (!som_is_subspace (subsection)
3305 || !som_is_container (section, subsection)
3306 || (subsection->flags & SEC_ALLOC) != 0)
3307 continue;
3308
3309 subsection->target_index = total_subspaces++;
3310 /* This is real data to be loaded from the file. */
3311 if ((subsection->flags & SEC_LOAD) == 0)
3312 {
3313 som_section_data (subsection)->subspace_dict->file_loc_init_value
3314 = current_offset;
3315 subsection->filepos = current_offset;
3316 current_offset += bfd_section_size (abfd, subsection);
3317 }
3318 /* Looks like uninitialized data. */
3319 else
3320 {
3321 som_section_data (subsection)->subspace_dict->file_loc_init_value
3322 = 0;
3323 som_section_data (subsection)->subspace_dict->
3324 initialization_length = bfd_section_size (abfd, subsection);
3325 }
3326 }
3327 /* Goto the next section. */
3328 section = section->next;
3329 }
3330
3331 /* If building an executable, then make sure to seek to and write
3332 one byte at the end of the file to make sure any necessary
3333 zeros are filled in. Ugh. */
3334 if (abfd->flags & (EXEC_P | DYNAMIC))
3335 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3336 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3337 return false;
3338 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3339 return false;
3340
3341 obj_som_file_hdr (abfd)->unloadable_sp_size
3342 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3343
3344 /* Loader fixups are not supported in any way shape or form. */
3345 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3346 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3347
3348 /* Done. Store the total size of the SOM so far. */
3349 obj_som_file_hdr (abfd)->som_length = current_offset;
3350
3351 return true;
3352 }
3353
3354 /* Finally, scribble out the various headers to the disk. */
3355
3356 static boolean
3357 som_finish_writing (abfd)
3358 bfd *abfd;
3359 {
3360 int num_spaces = som_count_spaces (abfd);
3361 int i;
3362 int subspace_index = 0;
3363 file_ptr location;
3364 asection *section;
3365 unsigned long current_offset;
3366 unsigned int total_reloc_size;
3367
3368 /* Do prep work before handling fixups. */
3369 som_prep_for_fixups (abfd,
3370 bfd_get_outsymbols (abfd),
3371 bfd_get_symcount (abfd));
3372
3373 current_offset = obj_som_file_hdr (abfd)->som_length;
3374
3375 /* At the end of the file is the fixup stream which starts on a
3376 word boundary. */
3377 if (current_offset % 4)
3378 current_offset += (4 - (current_offset % 4));
3379 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3380
3381 /* Write the fixups and update fields in subspace headers which
3382 relate to the fixup stream. */
3383 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
3384 return false;
3385
3386 /* Record the total size of the fixup stream in the file header. */
3387 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3388
3389 obj_som_file_hdr (abfd)->som_length += total_reloc_size;
3390
3391 /* Now that the symbol table information is complete, build and
3392 write the symbol table. */
3393 if (som_build_and_write_symbol_table (abfd) == false)
3394 return false;
3395
3396 /* Subspaces are written first so that we can set up information
3397 about them in their containing spaces as the subspace is written. */
3398
3399 /* Seek to the start of the subspace dictionary records. */
3400 location = obj_som_file_hdr (abfd)->subspace_location;
3401 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3402 return false;
3403
3404 section = abfd->sections;
3405 /* Now for each loadable space write out records for its subspaces. */
3406 for (i = 0; i < num_spaces; i++)
3407 {
3408 asection *subsection;
3409
3410 /* Find a space. */
3411 while (!som_is_space (section))
3412 section = section->next;
3413
3414 /* Now look for all its subspaces. */
3415 for (subsection = abfd->sections;
3416 subsection != NULL;
3417 subsection = subsection->next)
3418 {
3419
3420 /* Skip any section which does not correspond to a space
3421 or subspace. Or does not have SEC_ALLOC set (and therefore
3422 has no real bits on the disk). */
3423 if (!som_is_subspace (subsection)
3424 || !som_is_container (section, subsection)
3425 || (subsection->flags & SEC_ALLOC) == 0)
3426 continue;
3427
3428 /* If this is the first subspace for this space, then save
3429 the index of the subspace in its containing space. Also
3430 set "is_loadable" in the containing space. */
3431
3432 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3433 {
3434 som_section_data (section)->space_dict->is_loadable = 1;
3435 som_section_data (section)->space_dict->subspace_index
3436 = subspace_index;
3437 }
3438
3439 /* Increment the number of subspaces seen and the number of
3440 subspaces contained within the current space. */
3441 subspace_index++;
3442 som_section_data (section)->space_dict->subspace_quantity++;
3443
3444 /* Mark the index of the current space within the subspace's
3445 dictionary record. */
3446 som_section_data (subsection)->subspace_dict->space_index = i;
3447
3448 /* Dump the current subspace header. */
3449 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3450 sizeof (struct subspace_dictionary_record), 1, abfd)
3451 != sizeof (struct subspace_dictionary_record))
3452 return false;
3453 }
3454 /* Goto the next section. */
3455 section = section->next;
3456 }
3457
3458 /* Now repeat the process for unloadable subspaces. */
3459 section = abfd->sections;
3460 /* Now for each space write out records for its subspaces. */
3461 for (i = 0; i < num_spaces; i++)
3462 {
3463 asection *subsection;
3464
3465 /* Find a space. */
3466 while (!som_is_space (section))
3467 section = section->next;
3468
3469 /* Now look for all its subspaces. */
3470 for (subsection = abfd->sections;
3471 subsection != NULL;
3472 subsection = subsection->next)
3473 {
3474
3475 /* Skip any section which does not correspond to a space or
3476 subspace, or which SEC_ALLOC set (and therefore handled
3477 in the loadable spaces/subspaces code above). */
3478
3479 if (!som_is_subspace (subsection)
3480 || !som_is_container (section, subsection)
3481 || (subsection->flags & SEC_ALLOC) != 0)
3482 continue;
3483
3484 /* If this is the first subspace for this space, then save
3485 the index of the subspace in its containing space. Clear
3486 "is_loadable". */
3487
3488 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3489 {
3490 som_section_data (section)->space_dict->is_loadable = 0;
3491 som_section_data (section)->space_dict->subspace_index
3492 = subspace_index;
3493 }
3494
3495 /* Increment the number of subspaces seen and the number of
3496 subspaces contained within the current space. */
3497 som_section_data (section)->space_dict->subspace_quantity++;
3498 subspace_index++;
3499
3500 /* Mark the index of the current space within the subspace's
3501 dictionary record. */
3502 som_section_data (subsection)->subspace_dict->space_index = i;
3503
3504 /* Dump this subspace header. */
3505 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3506 sizeof (struct subspace_dictionary_record), 1, abfd)
3507 != sizeof (struct subspace_dictionary_record))
3508 return false;
3509 }
3510 /* Goto the next section. */
3511 section = section->next;
3512 }
3513
3514 /* All the subspace dictiondary records are written, and all the
3515 fields are set up in the space dictionary records.
3516
3517 Seek to the right location and start writing the space
3518 dictionary records. */
3519 location = obj_som_file_hdr (abfd)->space_location;
3520 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3521 return false;
3522
3523 section = abfd->sections;
3524 for (i = 0; i < num_spaces; i++)
3525 {
3526
3527 /* Find a space. */
3528 while (!som_is_space (section))
3529 section = section->next;
3530
3531 /* Dump its header */
3532 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3533 sizeof (struct space_dictionary_record), 1, abfd)
3534 != sizeof (struct space_dictionary_record))
3535 return false;
3536
3537 /* Goto the next section. */
3538 section = section->next;
3539 }
3540
3541 /* Setting of the system_id has to happen very late now that copying of
3542 BFD private data happens *after* section contents are set. */
3543 if (abfd->flags & (EXEC_P | DYNAMIC))
3544 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3545 else if (bfd_get_mach (abfd) == pa11)
3546 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_1;
3547 else
3548 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3549
3550 /* Compute the checksum for the file header just before writing
3551 the header to disk. */
3552 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3553
3554 /* Only thing left to do is write out the file header. It is always
3555 at location zero. Seek there and write it. */
3556 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3557 return false;
3558 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3559 sizeof (struct header), 1, abfd)
3560 != sizeof (struct header))
3561 return false;
3562
3563 /* Now write the exec header. */
3564 if (abfd->flags & (EXEC_P | DYNAMIC))
3565 {
3566 long tmp;
3567 struct som_exec_auxhdr *exec_header;
3568
3569 exec_header = obj_som_exec_hdr (abfd);
3570 exec_header->exec_entry = bfd_get_start_address (abfd);
3571 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3572
3573 /* Oh joys. Ram some of the BSS data into the DATA section
3574 to be compatable with how the hp linker makes objects
3575 (saves memory space). */
3576 tmp = exec_header->exec_dsize;
3577 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3578 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3579 if (exec_header->exec_bsize < 0)
3580 exec_header->exec_bsize = 0;
3581 exec_header->exec_dsize = tmp;
3582
3583 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3584 SEEK_SET) < 0)
3585 return false;
3586
3587 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3588 != AUX_HDR_SIZE)
3589 return false;
3590 }
3591 return true;
3592 }
3593
3594 /* Compute and return the checksum for a SOM file header. */
3595
3596 static unsigned long
3597 som_compute_checksum (abfd)
3598 bfd *abfd;
3599 {
3600 unsigned long checksum, count, i;
3601 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3602
3603 checksum = 0;
3604 count = sizeof (struct header) / sizeof (unsigned long);
3605 for (i = 0; i < count; i++)
3606 checksum ^= *(buffer + i);
3607
3608 return checksum;
3609 }
3610
3611 static void
3612 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3613 bfd *abfd;
3614 asymbol *sym;
3615 struct som_misc_symbol_info *info;
3616 {
3617 /* Initialize. */
3618 memset (info, 0, sizeof (struct som_misc_symbol_info));
3619
3620 /* The HP SOM linker requires detailed type information about
3621 all symbols (including undefined symbols!). Unfortunately,
3622 the type specified in an import/export statement does not
3623 always match what the linker wants. Severe braindamage. */
3624
3625 /* Section symbols will not have a SOM symbol type assigned to
3626 them yet. Assign all section symbols type ST_DATA. */
3627 if (sym->flags & BSF_SECTION_SYM)
3628 info->symbol_type = ST_DATA;
3629 else
3630 {
3631 /* Common symbols must have scope SS_UNSAT and type
3632 ST_STORAGE or the linker will choke. */
3633 if (bfd_is_com_section (sym->section))
3634 {
3635 info->symbol_scope = SS_UNSAT;
3636 info->symbol_type = ST_STORAGE;
3637 }
3638
3639 /* It is possible to have a symbol without an associated
3640 type. This happens if the user imported the symbol
3641 without a type and the symbol was never defined
3642 locally. If BSF_FUNCTION is set for this symbol, then
3643 assign it type ST_CODE (the HP linker requires undefined
3644 external functions to have type ST_CODE rather than ST_ENTRY). */
3645 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3646 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3647 && bfd_is_und_section (sym->section)
3648 && sym->flags & BSF_FUNCTION)
3649 info->symbol_type = ST_CODE;
3650
3651 /* Handle function symbols which were defined in this file.
3652 They should have type ST_ENTRY. Also retrieve the argument
3653 relocation bits from the SOM backend information. */
3654 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3655 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3656 && (sym->flags & BSF_FUNCTION))
3657 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3658 && (sym->flags & BSF_FUNCTION)))
3659 {
3660 info->symbol_type = ST_ENTRY;
3661 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3662 }
3663
3664 /* If the type is unknown at this point, it should be ST_DATA or
3665 ST_CODE (function/ST_ENTRY symbols were handled as special
3666 cases above). */
3667 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3668 {
3669 if (sym->section->flags & SEC_CODE)
3670 info->symbol_type = ST_CODE;
3671 else
3672 info->symbol_type = ST_DATA;
3673 }
3674
3675 /* From now on it's a very simple mapping. */
3676 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3677 info->symbol_type = ST_ABSOLUTE;
3678 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3679 info->symbol_type = ST_CODE;
3680 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3681 info->symbol_type = ST_DATA;
3682 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3683 info->symbol_type = ST_MILLICODE;
3684 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3685 info->symbol_type = ST_PLABEL;
3686 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3687 info->symbol_type = ST_PRI_PROG;
3688 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3689 info->symbol_type = ST_SEC_PROG;
3690 }
3691
3692 /* Now handle the symbol's scope. Exported data which is not
3693 in the common section has scope SS_UNIVERSAL. Note scope
3694 of common symbols was handled earlier! */
3695 if (bfd_is_und_section (sym->section))
3696 info->symbol_scope = SS_UNSAT;
3697 else if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3698 info->symbol_scope = SS_UNIVERSAL;
3699 /* Anything else which is not in the common section has scope
3700 SS_LOCAL. */
3701 else if (! bfd_is_com_section (sym->section))
3702 info->symbol_scope = SS_LOCAL;
3703
3704 /* Now set the symbol_info field. It has no real meaning
3705 for undefined or common symbols, but the HP linker will
3706 choke if it's not set to some "reasonable" value. We
3707 use zero as a reasonable value. */
3708 if (bfd_is_com_section (sym->section)
3709 || bfd_is_und_section (sym->section)
3710 || bfd_is_abs_section (sym->section))
3711 info->symbol_info = 0;
3712 /* For all other symbols, the symbol_info field contains the
3713 subspace index of the space this symbol is contained in. */
3714 else
3715 info->symbol_info = sym->section->target_index;
3716
3717 /* Set the symbol's value. */
3718 info->symbol_value = sym->value + sym->section->vma;
3719 }
3720
3721 /* Build and write, in one big chunk, the entire symbol table for
3722 this BFD. */
3723
3724 static boolean
3725 som_build_and_write_symbol_table (abfd)
3726 bfd *abfd;
3727 {
3728 unsigned int num_syms = bfd_get_symcount (abfd);
3729 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3730 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
3731 struct symbol_dictionary_record *som_symtab = NULL;
3732 int i, symtab_size;
3733
3734 /* Compute total symbol table size and allocate a chunk of memory
3735 to hold the symbol table as we build it. */
3736 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3737 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3738 if (som_symtab == NULL && symtab_size != 0)
3739 {
3740 bfd_set_error (bfd_error_no_memory);
3741 goto error_return;
3742 }
3743 memset (som_symtab, 0, symtab_size);
3744
3745 /* Walk over each symbol. */
3746 for (i = 0; i < num_syms; i++)
3747 {
3748 struct som_misc_symbol_info info;
3749
3750 /* This is really an index into the symbol strings table.
3751 By the time we get here, the index has already been
3752 computed and stored into the name field in the BFD symbol. */
3753 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
3754
3755 /* Derive SOM information from the BFD symbol. */
3756 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3757
3758 /* Now use it. */
3759 som_symtab[i].symbol_type = info.symbol_type;
3760 som_symtab[i].symbol_scope = info.symbol_scope;
3761 som_symtab[i].arg_reloc = info.arg_reloc;
3762 som_symtab[i].symbol_info = info.symbol_info;
3763 som_symtab[i].symbol_value = info.symbol_value;
3764 }
3765
3766 /* Everything is ready, seek to the right location and
3767 scribble out the symbol table. */
3768 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3769 return false;
3770
3771 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3772 goto error_return;
3773
3774 if (som_symtab != NULL)
3775 free (som_symtab);
3776 return true;
3777 error_return:
3778 if (som_symtab != NULL)
3779 free (som_symtab);
3780 return false;
3781 }
3782
3783 /* Write an object in SOM format. */
3784
3785 static boolean
3786 som_write_object_contents (abfd)
3787 bfd *abfd;
3788 {
3789 if (abfd->output_has_begun == false)
3790 {
3791 /* Set up fixed parts of the file, space, and subspace headers.
3792 Notify the world that output has begun. */
3793 som_prep_headers (abfd);
3794 abfd->output_has_begun = true;
3795 /* Start writing the object file. This include all the string
3796 tables, fixup streams, and other portions of the object file. */
3797 som_begin_writing (abfd);
3798 }
3799
3800 return (som_finish_writing (abfd));
3801 }
3802
3803 \f
3804 /* Read and save the string table associated with the given BFD. */
3805
3806 static boolean
3807 som_slurp_string_table (abfd)
3808 bfd *abfd;
3809 {
3810 char *stringtab;
3811
3812 /* Use the saved version if its available. */
3813 if (obj_som_stringtab (abfd) != NULL)
3814 return true;
3815
3816 /* I don't think this can currently happen, and I'm not sure it should
3817 really be an error, but it's better than getting unpredictable results
3818 from the host's malloc when passed a size of zero. */
3819 if (obj_som_stringtab_size (abfd) == 0)
3820 {
3821 bfd_set_error (bfd_error_no_symbols);
3822 return false;
3823 }
3824
3825 /* Allocate and read in the string table. */
3826 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3827 if (stringtab == NULL)
3828 {
3829 bfd_set_error (bfd_error_no_memory);
3830 return false;
3831 }
3832
3833 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3834 return false;
3835
3836 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3837 != obj_som_stringtab_size (abfd))
3838 return false;
3839
3840 /* Save our results and return success. */
3841 obj_som_stringtab (abfd) = stringtab;
3842 return true;
3843 }
3844
3845 /* Return the amount of data (in bytes) required to hold the symbol
3846 table for this object. */
3847
3848 static long
3849 som_get_symtab_upper_bound (abfd)
3850 bfd *abfd;
3851 {
3852 if (!som_slurp_symbol_table (abfd))
3853 return -1;
3854
3855 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3856 }
3857
3858 /* Convert from a SOM subspace index to a BFD section. */
3859
3860 static asection *
3861 bfd_section_from_som_symbol (abfd, symbol)
3862 bfd *abfd;
3863 struct symbol_dictionary_record *symbol;
3864 {
3865 asection *section;
3866
3867 /* The meaning of the symbol_info field changes for functions
3868 within executables. So only use the quick symbol_info mapping for
3869 incomplete objects and non-function symbols in executables. */
3870 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3871 || (symbol->symbol_type != ST_ENTRY
3872 && symbol->symbol_type != ST_PRI_PROG
3873 && symbol->symbol_type != ST_SEC_PROG
3874 && symbol->symbol_type != ST_MILLICODE))
3875 {
3876 unsigned int index = symbol->symbol_info;
3877 for (section = abfd->sections; section != NULL; section = section->next)
3878 if (section->target_index == index && som_is_subspace (section))
3879 return section;
3880
3881 /* Could be a symbol from an external library (such as an OMOS
3882 shared library). Don't abort. */
3883 return bfd_abs_section_ptr;
3884
3885 }
3886 else
3887 {
3888 unsigned int value = symbol->symbol_value;
3889
3890 /* For executables we will have to use the symbol's address and
3891 find out what section would contain that address. Yuk. */
3892 for (section = abfd->sections; section; section = section->next)
3893 {
3894 if (value >= section->vma
3895 && value <= section->vma + section->_cooked_size
3896 && som_is_subspace (section))
3897 return section;
3898 }
3899
3900 /* Could be a symbol from an external library (such as an OMOS
3901 shared library). Don't abort. */
3902 return bfd_abs_section_ptr;
3903
3904 }
3905 }
3906
3907 /* Read and save the symbol table associated with the given BFD. */
3908
3909 static unsigned int
3910 som_slurp_symbol_table (abfd)
3911 bfd *abfd;
3912 {
3913 int symbol_count = bfd_get_symcount (abfd);
3914 int symsize = sizeof (struct symbol_dictionary_record);
3915 char *stringtab;
3916 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3917 som_symbol_type *sym, *symbase;
3918
3919 /* Return saved value if it exists. */
3920 if (obj_som_symtab (abfd) != NULL)
3921 goto successful_return;
3922
3923 /* Special case. This is *not* an error. */
3924 if (symbol_count == 0)
3925 goto successful_return;
3926
3927 if (!som_slurp_string_table (abfd))
3928 goto error_return;
3929
3930 stringtab = obj_som_stringtab (abfd);
3931
3932 symbase = (som_symbol_type *)
3933 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3934 if (symbase == NULL)
3935 {
3936 bfd_set_error (bfd_error_no_memory);
3937 goto error_return;
3938 }
3939
3940 /* Read in the external SOM representation. */
3941 buf = malloc (symbol_count * symsize);
3942 if (buf == NULL && symbol_count * symsize != 0)
3943 {
3944 bfd_set_error (bfd_error_no_memory);
3945 goto error_return;
3946 }
3947 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3948 goto error_return;
3949 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3950 != symbol_count * symsize)
3951 goto error_return;
3952
3953 /* Iterate over all the symbols and internalize them. */
3954 endbufp = buf + symbol_count;
3955 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3956 {
3957
3958 /* I don't think we care about these. */
3959 if (bufp->symbol_type == ST_SYM_EXT
3960 || bufp->symbol_type == ST_ARG_EXT)
3961 continue;
3962
3963 /* Set some private data we care about. */
3964 if (bufp->symbol_type == ST_NULL)
3965 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3966 else if (bufp->symbol_type == ST_ABSOLUTE)
3967 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3968 else if (bufp->symbol_type == ST_DATA)
3969 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3970 else if (bufp->symbol_type == ST_CODE)
3971 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3972 else if (bufp->symbol_type == ST_PRI_PROG)
3973 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3974 else if (bufp->symbol_type == ST_SEC_PROG)
3975 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3976 else if (bufp->symbol_type == ST_ENTRY)
3977 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3978 else if (bufp->symbol_type == ST_MILLICODE)
3979 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3980 else if (bufp->symbol_type == ST_PLABEL)
3981 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3982 else
3983 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3984 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3985
3986 /* Some reasonable defaults. */
3987 sym->symbol.the_bfd = abfd;
3988 sym->symbol.name = bufp->name.n_strx + stringtab;
3989 sym->symbol.value = bufp->symbol_value;
3990 sym->symbol.section = 0;
3991 sym->symbol.flags = 0;
3992
3993 switch (bufp->symbol_type)
3994 {
3995 case ST_ENTRY:
3996 case ST_MILLICODE:
3997 sym->symbol.flags |= BSF_FUNCTION;
3998 sym->symbol.value &= ~0x3;
3999 break;
4000
4001 case ST_STUB:
4002 case ST_CODE:
4003 case ST_PRI_PROG:
4004 case ST_SEC_PROG:
4005 sym->symbol.value &= ~0x3;
4006 /* If the symbol's scope is ST_UNSAT, then these are
4007 undefined function symbols. */
4008 if (bufp->symbol_scope == SS_UNSAT)
4009 sym->symbol.flags |= BSF_FUNCTION;
4010
4011
4012 default:
4013 break;
4014 }
4015
4016 /* Handle scoping and section information. */
4017 switch (bufp->symbol_scope)
4018 {
4019 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4020 so the section associated with this symbol can't be known. */
4021 case SS_EXTERNAL:
4022 if (bufp->symbol_type != ST_STORAGE)
4023 sym->symbol.section = bfd_und_section_ptr;
4024 else
4025 sym->symbol.section = bfd_com_section_ptr;
4026 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4027 break;
4028
4029 case SS_UNSAT:
4030 if (bufp->symbol_type != ST_STORAGE)
4031 sym->symbol.section = bfd_und_section_ptr;
4032 else
4033 sym->symbol.section = bfd_com_section_ptr;
4034 break;
4035
4036 case SS_UNIVERSAL:
4037 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4038 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4039 sym->symbol.value -= sym->symbol.section->vma;
4040 break;
4041
4042 #if 0
4043 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
4044 Sound dumb? It is. */
4045 case SS_GLOBAL:
4046 #endif
4047 case SS_LOCAL:
4048 sym->symbol.flags |= BSF_LOCAL;
4049 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4050 sym->symbol.value -= sym->symbol.section->vma;
4051 break;
4052 }
4053
4054 /* Mark section symbols and symbols used by the debugger.
4055 Note $START$ is a magic code symbol, NOT a section symbol. */
4056 if (sym->symbol.name[0] == '$'
4057 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4058 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4059 sym->symbol.flags |= BSF_SECTION_SYM;
4060 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
4061 {
4062 sym->symbol.flags |= BSF_SECTION_SYM;
4063 sym->symbol.name = sym->symbol.section->name;
4064 }
4065 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
4066 sym->symbol.flags |= BSF_DEBUGGING;
4067
4068 /* Note increment at bottom of loop, since we skip some symbols
4069 we can not include it as part of the for statement. */
4070 sym++;
4071 }
4072
4073 /* Save our results and return success. */
4074 obj_som_symtab (abfd) = symbase;
4075 successful_return:
4076 if (buf != NULL)
4077 free (buf);
4078 return (true);
4079
4080 error_return:
4081 if (buf != NULL)
4082 free (buf);
4083 return false;
4084 }
4085
4086 /* Canonicalize a SOM symbol table. Return the number of entries
4087 in the symbol table. */
4088
4089 static long
4090 som_get_symtab (abfd, location)
4091 bfd *abfd;
4092 asymbol **location;
4093 {
4094 int i;
4095 som_symbol_type *symbase;
4096
4097 if (!som_slurp_symbol_table (abfd))
4098 return -1;
4099
4100 i = bfd_get_symcount (abfd);
4101 symbase = obj_som_symtab (abfd);
4102
4103 for (; i > 0; i--, location++, symbase++)
4104 *location = &symbase->symbol;
4105
4106 /* Final null pointer. */
4107 *location = 0;
4108 return (bfd_get_symcount (abfd));
4109 }
4110
4111 /* Make a SOM symbol. There is nothing special to do here. */
4112
4113 static asymbol *
4114 som_make_empty_symbol (abfd)
4115 bfd *abfd;
4116 {
4117 som_symbol_type *new =
4118 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
4119 if (new == NULL)
4120 {
4121 bfd_set_error (bfd_error_no_memory);
4122 return 0;
4123 }
4124 new->symbol.the_bfd = abfd;
4125
4126 return &new->symbol;
4127 }
4128
4129 /* Print symbol information. */
4130
4131 static void
4132 som_print_symbol (ignore_abfd, afile, symbol, how)
4133 bfd *ignore_abfd;
4134 PTR afile;
4135 asymbol *symbol;
4136 bfd_print_symbol_type how;
4137 {
4138 FILE *file = (FILE *) afile;
4139 switch (how)
4140 {
4141 case bfd_print_symbol_name:
4142 fprintf (file, "%s", symbol->name);
4143 break;
4144 case bfd_print_symbol_more:
4145 fprintf (file, "som ");
4146 fprintf_vma (file, symbol->value);
4147 fprintf (file, " %lx", (long) symbol->flags);
4148 break;
4149 case bfd_print_symbol_all:
4150 {
4151 CONST char *section_name;
4152 section_name = symbol->section ? symbol->section->name : "(*none*)";
4153 bfd_print_symbol_vandf ((PTR) file, symbol);
4154 fprintf (file, " %s\t%s", section_name, symbol->name);
4155 break;
4156 }
4157 }
4158 }
4159
4160 static boolean
4161 som_bfd_is_local_label (abfd, sym)
4162 bfd *abfd;
4163 asymbol *sym;
4164 {
4165 return (sym->name[0] == 'L' && sym->name[1] == '$');
4166 }
4167
4168 /* Count or process variable-length SOM fixup records.
4169
4170 To avoid code duplication we use this code both to compute the number
4171 of relocations requested by a stream, and to internalize the stream.
4172
4173 When computing the number of relocations requested by a stream the
4174 variables rptr, section, and symbols have no meaning.
4175
4176 Return the number of relocations requested by the fixup stream. When
4177 not just counting
4178
4179 This needs at least two or three more passes to get it cleaned up. */
4180
4181 static unsigned int
4182 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
4183 unsigned char *fixup;
4184 unsigned int end;
4185 arelent *internal_relocs;
4186 asection *section;
4187 asymbol **symbols;
4188 boolean just_count;
4189 {
4190 unsigned int op, varname, deallocate_contents = 0;
4191 unsigned char *end_fixups = &fixup[end];
4192 const struct fixup_format *fp;
4193 char *cp;
4194 unsigned char *save_fixup;
4195 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4196 const int *subop;
4197 arelent *rptr= internal_relocs;
4198 unsigned int offset = 0;
4199
4200 #define var(c) variables[(c) - 'A']
4201 #define push(v) (*sp++ = (v))
4202 #define pop() (*--sp)
4203 #define emptystack() (sp == stack)
4204
4205 som_initialize_reloc_queue (reloc_queue);
4206 memset (variables, 0, sizeof (variables));
4207 memset (stack, 0, sizeof (stack));
4208 count = 0;
4209 prev_fixup = 0;
4210 saved_unwind_bits = 0;
4211 sp = stack;
4212
4213 while (fixup < end_fixups)
4214 {
4215
4216 /* Save pointer to the start of this fixup. We'll use
4217 it later to determine if it is necessary to put this fixup
4218 on the queue. */
4219 save_fixup = fixup;
4220
4221 /* Get the fixup code and its associated format. */
4222 op = *fixup++;
4223 fp = &som_fixup_formats[op];
4224
4225 /* Handle a request for a previous fixup. */
4226 if (*fp->format == 'P')
4227 {
4228 /* Get pointer to the beginning of the prev fixup, move
4229 the repeated fixup to the head of the queue. */
4230 fixup = reloc_queue[fp->D].reloc;
4231 som_reloc_queue_fix (reloc_queue, fp->D);
4232 prev_fixup = 1;
4233
4234 /* Get the fixup code and its associated format. */
4235 op = *fixup++;
4236 fp = &som_fixup_formats[op];
4237 }
4238
4239 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4240 if (! just_count
4241 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4242 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4243 {
4244 rptr->address = offset;
4245 rptr->howto = &som_hppa_howto_table[op];
4246 rptr->addend = 0;
4247 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4248 }
4249
4250 /* Set default input length to 0. Get the opcode class index
4251 into D. */
4252 var ('L') = 0;
4253 var ('D') = fp->D;
4254 var ('U') = saved_unwind_bits;
4255
4256 /* Get the opcode format. */
4257 cp = fp->format;
4258
4259 /* Process the format string. Parsing happens in two phases,
4260 parse RHS, then assign to LHS. Repeat until no more
4261 characters in the format string. */
4262 while (*cp)
4263 {
4264 /* The variable this pass is going to compute a value for. */
4265 varname = *cp++;
4266
4267 /* Start processing RHS. Continue until a NULL or '=' is found. */
4268 do
4269 {
4270 c = *cp++;
4271
4272 /* If this is a variable, push it on the stack. */
4273 if (isupper (c))
4274 push (var (c));
4275
4276 /* If this is a lower case letter, then it represents
4277 additional data from the fixup stream to be pushed onto
4278 the stack. */
4279 else if (islower (c))
4280 {
4281 int bits = (c - 'a') * 8;
4282 for (v = 0; c > 'a'; --c)
4283 v = (v << 8) | *fixup++;
4284 if (varname == 'V')
4285 v = sign_extend (v, bits);
4286 push (v);
4287 }
4288
4289 /* A decimal constant. Push it on the stack. */
4290 else if (isdigit (c))
4291 {
4292 v = c - '0';
4293 while (isdigit (*cp))
4294 v = (v * 10) + (*cp++ - '0');
4295 push (v);
4296 }
4297 else
4298
4299 /* An operator. Pop two two values from the stack and
4300 use them as operands to the given operation. Push
4301 the result of the operation back on the stack. */
4302 switch (c)
4303 {
4304 case '+':
4305 v = pop ();
4306 v += pop ();
4307 push (v);
4308 break;
4309 case '*':
4310 v = pop ();
4311 v *= pop ();
4312 push (v);
4313 break;
4314 case '<':
4315 v = pop ();
4316 v = pop () << v;
4317 push (v);
4318 break;
4319 default:
4320 abort ();
4321 }
4322 }
4323 while (*cp && *cp != '=');
4324
4325 /* Move over the equal operator. */
4326 cp++;
4327
4328 /* Pop the RHS off the stack. */
4329 c = pop ();
4330
4331 /* Perform the assignment. */
4332 var (varname) = c;
4333
4334 /* Handle side effects. and special 'O' stack cases. */
4335 switch (varname)
4336 {
4337 /* Consume some bytes from the input space. */
4338 case 'L':
4339 offset += c;
4340 break;
4341 /* A symbol to use in the relocation. Make a note
4342 of this if we are not just counting. */
4343 case 'S':
4344 if (! just_count)
4345 rptr->sym_ptr_ptr = &symbols[c];
4346 break;
4347 /* Argument relocation bits for a function call. */
4348 case 'R':
4349 if (! just_count)
4350 {
4351 unsigned int tmp = var ('R');
4352 rptr->addend = 0;
4353
4354 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4355 && R_PCREL_CALL + 10 > op)
4356 || (som_hppa_howto_table[op].type == R_ABS_CALL
4357 && R_ABS_CALL + 10 > op))
4358 {
4359 /* Simple encoding. */
4360 if (tmp > 4)
4361 {
4362 tmp -= 5;
4363 rptr->addend |= 1;
4364 }
4365 if (tmp == 4)
4366 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4367 else if (tmp == 3)
4368 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4369 else if (tmp == 2)
4370 rptr->addend |= 1 << 8 | 1 << 6;
4371 else if (tmp == 1)
4372 rptr->addend |= 1 << 8;
4373 }
4374 else
4375 {
4376 unsigned int tmp1, tmp2;
4377
4378 /* First part is easy -- low order two bits are
4379 directly copied, then shifted away. */
4380 rptr->addend = tmp & 0x3;
4381 tmp >>= 2;
4382
4383 /* Diving the result by 10 gives us the second
4384 part. If it is 9, then the first two words
4385 are a double precision paramater, else it is
4386 3 * the first arg bits + the 2nd arg bits. */
4387 tmp1 = tmp / 10;
4388 tmp -= tmp1 * 10;
4389 if (tmp1 == 9)
4390 rptr->addend += (0xe << 6);
4391 else
4392 {
4393 /* Get the two pieces. */
4394 tmp2 = tmp1 / 3;
4395 tmp1 -= tmp2 * 3;
4396 /* Put them in the addend. */
4397 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4398 }
4399
4400 /* What's left is the third part. It's unpacked
4401 just like the second. */
4402 if (tmp == 9)
4403 rptr->addend += (0xe << 2);
4404 else
4405 {
4406 tmp2 = tmp / 3;
4407 tmp -= tmp2 * 3;
4408 rptr->addend += (tmp2 << 4) + (tmp << 2);
4409 }
4410 }
4411 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4412 }
4413 break;
4414 /* Handle the linker expression stack. */
4415 case 'O':
4416 switch (op)
4417 {
4418 case R_COMP1:
4419 subop = comp1_opcodes;
4420 break;
4421 case R_COMP2:
4422 subop = comp2_opcodes;
4423 break;
4424 case R_COMP3:
4425 subop = comp3_opcodes;
4426 break;
4427 default:
4428 abort ();
4429 }
4430 while (*subop <= (unsigned char) c)
4431 ++subop;
4432 --subop;
4433 break;
4434 /* The lower 32unwind bits must be persistent. */
4435 case 'U':
4436 saved_unwind_bits = var ('U');
4437 break;
4438
4439 default:
4440 break;
4441 }
4442 }
4443
4444 /* If we used a previous fixup, clean up after it. */
4445 if (prev_fixup)
4446 {
4447 fixup = save_fixup + 1;
4448 prev_fixup = 0;
4449 }
4450 /* Queue it. */
4451 else if (fixup > save_fixup + 1)
4452 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4453
4454 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4455 fixups to BFD. */
4456 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4457 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4458 {
4459 /* Done with a single reloction. Loop back to the top. */
4460 if (! just_count)
4461 {
4462 if (som_hppa_howto_table[op].type == R_ENTRY)
4463 rptr->addend = var ('T');
4464 else if (som_hppa_howto_table[op].type == R_EXIT)
4465 rptr->addend = var ('U');
4466 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4467 || som_hppa_howto_table[op].type == R_ABS_CALL)
4468 ;
4469 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4470 {
4471 unsigned addend = var ('V');
4472
4473 /* Try what was specified in R_DATA_OVERRIDE first
4474 (if anything). Then the hard way using the
4475 section contents. */
4476 rptr->addend = var ('V');
4477
4478 if (rptr->addend == 0 && !section->contents)
4479 {
4480 /* Got to read the damn contents first. We don't
4481 bother saving the contents (yet). Add it one
4482 day if the need arises. */
4483 section->contents = malloc (section->_raw_size);
4484 if (section->contents == NULL)
4485 return -1;
4486
4487 deallocate_contents = 1;
4488 bfd_get_section_contents (section->owner,
4489 section,
4490 section->contents,
4491 0,
4492 section->_raw_size);
4493 }
4494 else if (rptr->addend == 0)
4495 rptr->addend = bfd_get_32 (section->owner,
4496 (section->contents
4497 + offset - var ('L')));
4498
4499 }
4500 else
4501 rptr->addend = var ('V');
4502 rptr++;
4503 }
4504 count++;
4505 /* Now that we've handled a "full" relocation, reset
4506 some state. */
4507 memset (variables, 0, sizeof (variables));
4508 memset (stack, 0, sizeof (stack));
4509 }
4510 }
4511 if (deallocate_contents)
4512 free (section->contents);
4513
4514 return count;
4515
4516 #undef var
4517 #undef push
4518 #undef pop
4519 #undef emptystack
4520 }
4521
4522 /* Read in the relocs (aka fixups in SOM terms) for a section.
4523
4524 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4525 set to true to indicate it only needs a count of the number
4526 of actual relocations. */
4527
4528 static boolean
4529 som_slurp_reloc_table (abfd, section, symbols, just_count)
4530 bfd *abfd;
4531 asection *section;
4532 asymbol **symbols;
4533 boolean just_count;
4534 {
4535 char *external_relocs;
4536 unsigned int fixup_stream_size;
4537 arelent *internal_relocs;
4538 unsigned int num_relocs;
4539
4540 fixup_stream_size = som_section_data (section)->reloc_size;
4541 /* If there were no relocations, then there is nothing to do. */
4542 if (section->reloc_count == 0)
4543 return true;
4544
4545 /* If reloc_count is -1, then the relocation stream has not been
4546 parsed. We must do so now to know how many relocations exist. */
4547 if (section->reloc_count == -1)
4548 {
4549 external_relocs = (char *) malloc (fixup_stream_size);
4550 if (external_relocs == (char *) NULL)
4551 {
4552 bfd_set_error (bfd_error_no_memory);
4553 return false;
4554 }
4555 /* Read in the external forms. */
4556 if (bfd_seek (abfd,
4557 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4558 SEEK_SET)
4559 != 0)
4560 return false;
4561 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4562 != fixup_stream_size)
4563 return false;
4564
4565 /* Let callers know how many relocations found.
4566 also save the relocation stream as we will
4567 need it again. */
4568 section->reloc_count = som_set_reloc_info (external_relocs,
4569 fixup_stream_size,
4570 NULL, NULL, NULL, true);
4571
4572 som_section_data (section)->reloc_stream = external_relocs;
4573 }
4574
4575 /* If the caller only wanted a count, then return now. */
4576 if (just_count)
4577 return true;
4578
4579 num_relocs = section->reloc_count;
4580 external_relocs = som_section_data (section)->reloc_stream;
4581 /* Return saved information about the relocations if it is available. */
4582 if (section->relocation != (arelent *) NULL)
4583 return true;
4584
4585 internal_relocs = (arelent *)
4586 bfd_zalloc (abfd, (num_relocs * sizeof (arelent)));
4587 if (internal_relocs == (arelent *) NULL)
4588 {
4589 bfd_set_error (bfd_error_no_memory);
4590 return false;
4591 }
4592
4593 /* Process and internalize the relocations. */
4594 som_set_reloc_info (external_relocs, fixup_stream_size,
4595 internal_relocs, section, symbols, false);
4596
4597 /* We're done with the external relocations. Free them. */
4598 free (external_relocs);
4599
4600 /* Save our results and return success. */
4601 section->relocation = internal_relocs;
4602 return (true);
4603 }
4604
4605 /* Return the number of bytes required to store the relocation
4606 information associated with the given section. */
4607
4608 static long
4609 som_get_reloc_upper_bound (abfd, asect)
4610 bfd *abfd;
4611 sec_ptr asect;
4612 {
4613 /* If section has relocations, then read in the relocation stream
4614 and parse it to determine how many relocations exist. */
4615 if (asect->flags & SEC_RELOC)
4616 {
4617 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4618 return -1;
4619 return (asect->reloc_count + 1) * sizeof (arelent *);
4620 }
4621 /* There are no relocations. */
4622 return 0;
4623 }
4624
4625 /* Convert relocations from SOM (external) form into BFD internal
4626 form. Return the number of relocations. */
4627
4628 static long
4629 som_canonicalize_reloc (abfd, section, relptr, symbols)
4630 bfd *abfd;
4631 sec_ptr section;
4632 arelent **relptr;
4633 asymbol **symbols;
4634 {
4635 arelent *tblptr;
4636 int count;
4637
4638 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4639 return -1;
4640
4641 count = section->reloc_count;
4642 tblptr = section->relocation;
4643
4644 while (count--)
4645 *relptr++ = tblptr++;
4646
4647 *relptr = (arelent *) NULL;
4648 return section->reloc_count;
4649 }
4650
4651 extern const bfd_target som_vec;
4652
4653 /* A hook to set up object file dependent section information. */
4654
4655 static boolean
4656 som_new_section_hook (abfd, newsect)
4657 bfd *abfd;
4658 asection *newsect;
4659 {
4660 newsect->used_by_bfd =
4661 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4662 if (!newsect->used_by_bfd)
4663 {
4664 bfd_set_error (bfd_error_no_memory);
4665 return false;
4666 }
4667 newsect->alignment_power = 3;
4668
4669 /* We allow more than three sections internally */
4670 return true;
4671 }
4672
4673 /* Copy any private info we understand from the input symbol
4674 to the output symbol. */
4675
4676 static boolean
4677 som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol)
4678 bfd *ibfd;
4679 asymbol *isymbol;
4680 bfd *obfd;
4681 asymbol *osymbol;
4682 {
4683 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
4684 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
4685
4686 /* One day we may try to grok other private data. */
4687 if (ibfd->xvec->flavour != bfd_target_som_flavour
4688 || obfd->xvec->flavour != bfd_target_som_flavour)
4689 return false;
4690
4691 /* The only private information we need to copy is the argument relocation
4692 bits. */
4693 output_symbol->tc_data.hppa_arg_reloc = input_symbol->tc_data.hppa_arg_reloc;
4694
4695 return true;
4696 }
4697
4698 /* Copy any private info we understand from the input section
4699 to the output section. */
4700 static boolean
4701 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4702 bfd *ibfd;
4703 asection *isection;
4704 bfd *obfd;
4705 asection *osection;
4706 {
4707 /* One day we may try to grok other private data. */
4708 if (ibfd->xvec->flavour != bfd_target_som_flavour
4709 || obfd->xvec->flavour != bfd_target_som_flavour
4710 || (!som_is_space (isection) && !som_is_subspace (isection)))
4711 return true;
4712
4713 som_section_data (osection)->copy_data
4714 = (struct som_copyable_section_data_struct *)
4715 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4716 if (som_section_data (osection)->copy_data == NULL)
4717 {
4718 bfd_set_error (bfd_error_no_memory);
4719 return false;
4720 }
4721
4722 memcpy (som_section_data (osection)->copy_data,
4723 som_section_data (isection)->copy_data,
4724 sizeof (struct som_copyable_section_data_struct));
4725
4726 /* Reparent if necessary. */
4727 if (som_section_data (osection)->copy_data->container)
4728 som_section_data (osection)->copy_data->container =
4729 som_section_data (osection)->copy_data->container->output_section;
4730
4731 return true;
4732 }
4733
4734 /* Copy any private info we understand from the input bfd
4735 to the output bfd. */
4736
4737 static boolean
4738 som_bfd_copy_private_bfd_data (ibfd, obfd)
4739 bfd *ibfd, *obfd;
4740 {
4741 /* One day we may try to grok other private data. */
4742 if (ibfd->xvec->flavour != bfd_target_som_flavour
4743 || obfd->xvec->flavour != bfd_target_som_flavour)
4744 return true;
4745
4746 /* Allocate some memory to hold the data we need. */
4747 obj_som_exec_data (obfd) = (struct som_exec_data *)
4748 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4749 if (obj_som_exec_data (obfd) == NULL)
4750 {
4751 bfd_set_error (bfd_error_no_memory);
4752 return false;
4753 }
4754
4755 /* Now copy the data. */
4756 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4757 sizeof (struct som_exec_data));
4758
4759 return true;
4760 }
4761
4762 /* Set backend info for sections which can not be described
4763 in the BFD data structures. */
4764
4765 boolean
4766 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4767 asection *section;
4768 int defined;
4769 int private;
4770 unsigned int sort_key;
4771 int spnum;
4772 {
4773 /* Allocate memory to hold the magic information. */
4774 if (som_section_data (section)->copy_data == NULL)
4775 {
4776 som_section_data (section)->copy_data
4777 = (struct som_copyable_section_data_struct *)
4778 bfd_zalloc (section->owner,
4779 sizeof (struct som_copyable_section_data_struct));
4780 if (som_section_data (section)->copy_data == NULL)
4781 {
4782 bfd_set_error (bfd_error_no_memory);
4783 return false;
4784 }
4785 }
4786 som_section_data (section)->copy_data->sort_key = sort_key;
4787 som_section_data (section)->copy_data->is_defined = defined;
4788 som_section_data (section)->copy_data->is_private = private;
4789 som_section_data (section)->copy_data->container = section;
4790 som_section_data (section)->copy_data->space_number = spnum;
4791 return true;
4792 }
4793
4794 /* Set backend info for subsections which can not be described
4795 in the BFD data structures. */
4796
4797 boolean
4798 bfd_som_set_subsection_attributes (section, container, access,
4799 sort_key, quadrant)
4800 asection *section;
4801 asection *container;
4802 int access;
4803 unsigned int sort_key;
4804 int quadrant;
4805 {
4806 /* Allocate memory to hold the magic information. */
4807 if (som_section_data (section)->copy_data == NULL)
4808 {
4809 som_section_data (section)->copy_data
4810 = (struct som_copyable_section_data_struct *)
4811 bfd_zalloc (section->owner,
4812 sizeof (struct som_copyable_section_data_struct));
4813 if (som_section_data (section)->copy_data == NULL)
4814 {
4815 bfd_set_error (bfd_error_no_memory);
4816 return false;
4817 }
4818 }
4819 som_section_data (section)->copy_data->sort_key = sort_key;
4820 som_section_data (section)->copy_data->access_control_bits = access;
4821 som_section_data (section)->copy_data->quadrant = quadrant;
4822 som_section_data (section)->copy_data->container = container;
4823 return true;
4824 }
4825
4826 /* Set the full SOM symbol type. SOM needs far more symbol information
4827 than any other object file format I'm aware of. It is mandatory
4828 to be able to know if a symbol is an entry point, millicode, data,
4829 code, absolute, storage request, or procedure label. If you get
4830 the symbol type wrong your program will not link. */
4831
4832 void
4833 bfd_som_set_symbol_type (symbol, type)
4834 asymbol *symbol;
4835 unsigned int type;
4836 {
4837 som_symbol_data (symbol)->som_type = type;
4838 }
4839
4840 /* Attach an auxiliary header to the BFD backend so that it may be
4841 written into the object file. */
4842 boolean
4843 bfd_som_attach_aux_hdr (abfd, type, string)
4844 bfd *abfd;
4845 int type;
4846 char *string;
4847 {
4848 if (type == VERSION_AUX_ID)
4849 {
4850 int len = strlen (string);
4851 int pad = 0;
4852
4853 if (len % 4)
4854 pad = (4 - (len % 4));
4855 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4856 bfd_zalloc (abfd, sizeof (struct aux_id)
4857 + sizeof (unsigned int) + len + pad);
4858 if (!obj_som_version_hdr (abfd))
4859 {
4860 bfd_set_error (bfd_error_no_memory);
4861 return false;
4862 }
4863 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4864 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4865 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4866 obj_som_version_hdr (abfd)->string_length = len;
4867 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4868 }
4869 else if (type == COPYRIGHT_AUX_ID)
4870 {
4871 int len = strlen (string);
4872 int pad = 0;
4873
4874 if (len % 4)
4875 pad = (4 - (len % 4));
4876 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4877 bfd_zalloc (abfd, sizeof (struct aux_id)
4878 + sizeof (unsigned int) + len + pad);
4879 if (!obj_som_copyright_hdr (abfd))
4880 {
4881 bfd_set_error (bfd_error_no_memory);
4882 return false;
4883 }
4884 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4885 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4886 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4887 obj_som_copyright_hdr (abfd)->string_length = len;
4888 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4889 }
4890 return true;
4891 }
4892
4893 static boolean
4894 som_get_section_contents (abfd, section, location, offset, count)
4895 bfd *abfd;
4896 sec_ptr section;
4897 PTR location;
4898 file_ptr offset;
4899 bfd_size_type count;
4900 {
4901 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
4902 return true;
4903 if ((bfd_size_type)(offset+count) > section->_raw_size
4904 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4905 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4906 return (false); /* on error */
4907 return (true);
4908 }
4909
4910 static boolean
4911 som_set_section_contents (abfd, section, location, offset, count)
4912 bfd *abfd;
4913 sec_ptr section;
4914 PTR location;
4915 file_ptr offset;
4916 bfd_size_type count;
4917 {
4918 if (abfd->output_has_begun == false)
4919 {
4920 /* Set up fixed parts of the file, space, and subspace headers.
4921 Notify the world that output has begun. */
4922 som_prep_headers (abfd);
4923 abfd->output_has_begun = true;
4924 /* Start writing the object file. This include all the string
4925 tables, fixup streams, and other portions of the object file. */
4926 som_begin_writing (abfd);
4927 }
4928
4929 /* Only write subspaces which have "real" contents (eg. the contents
4930 are not generated at run time by the OS). */
4931 if (!som_is_subspace (section)
4932 || ((section->flags & SEC_HAS_CONTENTS) == 0))
4933 return true;
4934
4935 /* Seek to the proper offset within the object file and write the
4936 data. */
4937 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4938 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4939 return false;
4940
4941 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4942 return false;
4943 return true;
4944 }
4945
4946 static boolean
4947 som_set_arch_mach (abfd, arch, machine)
4948 bfd *abfd;
4949 enum bfd_architecture arch;
4950 unsigned long machine;
4951 {
4952 /* Allow any architecture to be supported by the SOM backend */
4953 return bfd_default_set_arch_mach (abfd, arch, machine);
4954 }
4955
4956 static boolean
4957 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4958 functionname_ptr, line_ptr)
4959 bfd *abfd;
4960 asection *section;
4961 asymbol **symbols;
4962 bfd_vma offset;
4963 CONST char **filename_ptr;
4964 CONST char **functionname_ptr;
4965 unsigned int *line_ptr;
4966 {
4967 return (false);
4968 }
4969
4970 static int
4971 som_sizeof_headers (abfd, reloc)
4972 bfd *abfd;
4973 boolean reloc;
4974 {
4975 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4976 fflush (stderr);
4977 abort ();
4978 return (0);
4979 }
4980
4981 /* Return the single-character symbol type corresponding to
4982 SOM section S, or '?' for an unknown SOM section. */
4983
4984 static char
4985 som_section_type (s)
4986 const char *s;
4987 {
4988 const struct section_to_type *t;
4989
4990 for (t = &stt[0]; t->section; t++)
4991 if (!strcmp (s, t->section))
4992 return t->type;
4993 return '?';
4994 }
4995
4996 static int
4997 som_decode_symclass (symbol)
4998 asymbol *symbol;
4999 {
5000 char c;
5001
5002 if (bfd_is_com_section (symbol->section))
5003 return 'C';
5004 if (bfd_is_und_section (symbol->section))
5005 return 'U';
5006 if (bfd_is_ind_section (symbol->section))
5007 return 'I';
5008 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
5009 return '?';
5010
5011 if (bfd_is_abs_section (symbol->section)
5012 || (som_symbol_data (symbol) != NULL
5013 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5014 c = 'a';
5015 else if (symbol->section)
5016 c = som_section_type (symbol->section->name);
5017 else
5018 return '?';
5019 if (symbol->flags & BSF_GLOBAL)
5020 c = toupper (c);
5021 return c;
5022 }
5023
5024 /* Return information about SOM symbol SYMBOL in RET. */
5025
5026 static void
5027 som_get_symbol_info (ignore_abfd, symbol, ret)
5028 bfd *ignore_abfd;
5029 asymbol *symbol;
5030 symbol_info *ret;
5031 {
5032 ret->type = som_decode_symclass (symbol);
5033 if (ret->type != 'U')
5034 ret->value = symbol->value+symbol->section->vma;
5035 else
5036 ret->value = 0;
5037 ret->name = symbol->name;
5038 }
5039
5040 /* Count the number of symbols in the archive symbol table. Necessary
5041 so that we can allocate space for all the carsyms at once. */
5042
5043 static boolean
5044 som_bfd_count_ar_symbols (abfd, lst_header, count)
5045 bfd *abfd;
5046 struct lst_header *lst_header;
5047 symindex *count;
5048 {
5049 unsigned int i;
5050 unsigned int *hash_table = NULL;
5051 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5052
5053 hash_table =
5054 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
5055 if (hash_table == NULL && lst_header->hash_size != 0)
5056 {
5057 bfd_set_error (bfd_error_no_memory);
5058 goto error_return;
5059 }
5060
5061 /* Don't forget to initialize the counter! */
5062 *count = 0;
5063
5064 /* Read in the hash table. The has table is an array of 32bit file offsets
5065 which point to the hash chains. */
5066 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5067 != lst_header->hash_size * 4)
5068 goto error_return;
5069
5070 /* Walk each chain counting the number of symbols found on that particular
5071 chain. */
5072 for (i = 0; i < lst_header->hash_size; i++)
5073 {
5074 struct lst_symbol_record lst_symbol;
5075
5076 /* An empty chain has zero as it's file offset. */
5077 if (hash_table[i] == 0)
5078 continue;
5079
5080 /* Seek to the first symbol in this hash chain. */
5081 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5082 goto error_return;
5083
5084 /* Read in this symbol and update the counter. */
5085 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5086 != sizeof (lst_symbol))
5087 goto error_return;
5088
5089 (*count)++;
5090
5091 /* Now iterate through the rest of the symbols on this chain. */
5092 while (lst_symbol.next_entry)
5093 {
5094
5095 /* Seek to the next symbol. */
5096 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5097 < 0)
5098 goto error_return;
5099
5100 /* Read the symbol in and update the counter. */
5101 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5102 != sizeof (lst_symbol))
5103 goto error_return;
5104
5105 (*count)++;
5106 }
5107 }
5108 if (hash_table != NULL)
5109 free (hash_table);
5110 return true;
5111
5112 error_return:
5113 if (hash_table != NULL)
5114 free (hash_table);
5115 return false;
5116 }
5117
5118 /* Fill in the canonical archive symbols (SYMS) from the archive described
5119 by ABFD and LST_HEADER. */
5120
5121 static boolean
5122 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
5123 bfd *abfd;
5124 struct lst_header *lst_header;
5125 carsym **syms;
5126 {
5127 unsigned int i, len;
5128 carsym *set = syms[0];
5129 unsigned int *hash_table = NULL;
5130 struct som_entry *som_dict = NULL;
5131 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5132
5133 hash_table =
5134 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
5135 if (hash_table == NULL && lst_header->hash_size != 0)
5136 {
5137 bfd_set_error (bfd_error_no_memory);
5138 goto error_return;
5139 }
5140
5141 som_dict =
5142 (struct som_entry *) malloc (lst_header->module_count
5143 * sizeof (struct som_entry));
5144 if (som_dict == NULL && lst_header->module_count != 0)
5145 {
5146 bfd_set_error (bfd_error_no_memory);
5147 goto error_return;
5148 }
5149
5150 /* Read in the hash table. The has table is an array of 32bit file offsets
5151 which point to the hash chains. */
5152 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5153 != lst_header->hash_size * 4)
5154 goto error_return;
5155
5156 /* Seek to and read in the SOM dictionary. We will need this to fill
5157 in the carsym's filepos field. */
5158 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
5159 goto error_return;
5160
5161 if (bfd_read ((PTR) som_dict, lst_header->module_count,
5162 sizeof (struct som_entry), abfd)
5163 != lst_header->module_count * sizeof (struct som_entry))
5164 goto error_return;
5165
5166 /* Walk each chain filling in the carsyms as we go along. */
5167 for (i = 0; i < lst_header->hash_size; i++)
5168 {
5169 struct lst_symbol_record lst_symbol;
5170
5171 /* An empty chain has zero as it's file offset. */
5172 if (hash_table[i] == 0)
5173 continue;
5174
5175 /* Seek to and read the first symbol on the chain. */
5176 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5177 goto error_return;
5178
5179 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5180 != sizeof (lst_symbol))
5181 goto error_return;
5182
5183 /* Get the name of the symbol, first get the length which is stored
5184 as a 32bit integer just before the symbol.
5185
5186 One might ask why we don't just read in the entire string table
5187 and index into it. Well, according to the SOM ABI the string
5188 index can point *anywhere* in the archive to save space, so just
5189 using the string table would not be safe. */
5190 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5191 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5192 goto error_return;
5193
5194 if (bfd_read (&len, 1, 4, abfd) != 4)
5195 goto error_return;
5196
5197 /* Allocate space for the name and null terminate it too. */
5198 set->name = bfd_zalloc (abfd, len + 1);
5199 if (!set->name)
5200 {
5201 bfd_set_error (bfd_error_no_memory);
5202 goto error_return;
5203 }
5204 if (bfd_read (set->name, 1, len, abfd) != len)
5205 goto error_return;
5206
5207 set->name[len] = 0;
5208
5209 /* Fill in the file offset. Note that the "location" field points
5210 to the SOM itself, not the ar_hdr in front of it. */
5211 set->file_offset = som_dict[lst_symbol.som_index].location
5212 - sizeof (struct ar_hdr);
5213
5214 /* Go to the next symbol. */
5215 set++;
5216
5217 /* Iterate through the rest of the chain. */
5218 while (lst_symbol.next_entry)
5219 {
5220 /* Seek to the next symbol and read it in. */
5221 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
5222 goto error_return;
5223
5224 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5225 != sizeof (lst_symbol))
5226 goto error_return;
5227
5228 /* Seek to the name length & string and read them in. */
5229 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5230 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5231 goto error_return;
5232
5233 if (bfd_read (&len, 1, 4, abfd) != 4)
5234 goto error_return;
5235
5236 /* Allocate space for the name and null terminate it too. */
5237 set->name = bfd_zalloc (abfd, len + 1);
5238 if (!set->name)
5239 {
5240 bfd_set_error (bfd_error_no_memory);
5241 goto error_return;
5242 }
5243
5244 if (bfd_read (set->name, 1, len, abfd) != len)
5245 goto error_return;
5246 set->name[len] = 0;
5247
5248 /* Fill in the file offset. Note that the "location" field points
5249 to the SOM itself, not the ar_hdr in front of it. */
5250 set->file_offset = som_dict[lst_symbol.som_index].location
5251 - sizeof (struct ar_hdr);
5252
5253 /* Go on to the next symbol. */
5254 set++;
5255 }
5256 }
5257 /* If we haven't died by now, then we successfully read the entire
5258 archive symbol table. */
5259 if (hash_table != NULL)
5260 free (hash_table);
5261 if (som_dict != NULL)
5262 free (som_dict);
5263 return true;
5264
5265 error_return:
5266 if (hash_table != NULL)
5267 free (hash_table);
5268 if (som_dict != NULL)
5269 free (som_dict);
5270 return false;
5271 }
5272
5273 /* Read in the LST from the archive. */
5274 static boolean
5275 som_slurp_armap (abfd)
5276 bfd *abfd;
5277 {
5278 struct lst_header lst_header;
5279 struct ar_hdr ar_header;
5280 unsigned int parsed_size;
5281 struct artdata *ardata = bfd_ardata (abfd);
5282 char nextname[17];
5283 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
5284
5285 /* Special cases. */
5286 if (i == 0)
5287 return true;
5288 if (i != 16)
5289 return false;
5290
5291 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
5292 return false;
5293
5294 /* For archives without .o files there is no symbol table. */
5295 if (strncmp (nextname, "/ ", 16))
5296 {
5297 bfd_has_map (abfd) = false;
5298 return true;
5299 }
5300
5301 /* Read in and sanity check the archive header. */
5302 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
5303 != sizeof (struct ar_hdr))
5304 return false;
5305
5306 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5307 {
5308 bfd_set_error (bfd_error_malformed_archive);
5309 return false;
5310 }
5311
5312 /* How big is the archive symbol table entry? */
5313 errno = 0;
5314 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5315 if (errno != 0)
5316 {
5317 bfd_set_error (bfd_error_malformed_archive);
5318 return false;
5319 }
5320
5321 /* Save off the file offset of the first real user data. */
5322 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5323
5324 /* Read in the library symbol table. We'll make heavy use of this
5325 in just a minute. */
5326 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
5327 != sizeof (struct lst_header))
5328 return false;
5329
5330 /* Sanity check. */
5331 if (lst_header.a_magic != LIBMAGIC)
5332 {
5333 bfd_set_error (bfd_error_malformed_archive);
5334 return false;
5335 }
5336
5337 /* Count the number of symbols in the library symbol table. */
5338 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
5339 == false)
5340 return false;
5341
5342 /* Get back to the start of the library symbol table. */
5343 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
5344 + sizeof (struct lst_header), SEEK_SET) < 0)
5345 return false;
5346
5347 /* Initializae the cache and allocate space for the library symbols. */
5348 ardata->cache = 0;
5349 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5350 (ardata->symdef_count
5351 * sizeof (carsym)));
5352 if (!ardata->symdefs)
5353 {
5354 bfd_set_error (bfd_error_no_memory);
5355 return false;
5356 }
5357
5358 /* Now fill in the canonical archive symbols. */
5359 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5360 == false)
5361 return false;
5362
5363 /* Seek back to the "first" file in the archive. Note the "first"
5364 file may be the extended name table. */
5365 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5366 return false;
5367
5368 /* Notify the generic archive code that we have a symbol map. */
5369 bfd_has_map (abfd) = true;
5370 return true;
5371 }
5372
5373 /* Begin preparing to write a SOM library symbol table.
5374
5375 As part of the prep work we need to determine the number of symbols
5376 and the size of the associated string section. */
5377
5378 static boolean
5379 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5380 bfd *abfd;
5381 unsigned int *num_syms, *stringsize;
5382 {
5383 bfd *curr_bfd = abfd->archive_head;
5384
5385 /* Some initialization. */
5386 *num_syms = 0;
5387 *stringsize = 0;
5388
5389 /* Iterate over each BFD within this archive. */
5390 while (curr_bfd != NULL)
5391 {
5392 unsigned int curr_count, i;
5393 som_symbol_type *sym;
5394
5395 /* Don't bother for non-SOM objects. */
5396 if (curr_bfd->format != bfd_object
5397 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5398 {
5399 curr_bfd = curr_bfd->next;
5400 continue;
5401 }
5402
5403 /* Make sure the symbol table has been read, then snag a pointer
5404 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5405 but doing so avoids allocating lots of extra memory. */
5406 if (som_slurp_symbol_table (curr_bfd) == false)
5407 return false;
5408
5409 sym = obj_som_symtab (curr_bfd);
5410 curr_count = bfd_get_symcount (curr_bfd);
5411
5412 /* Examine each symbol to determine if it belongs in the
5413 library symbol table. */
5414 for (i = 0; i < curr_count; i++, sym++)
5415 {
5416 struct som_misc_symbol_info info;
5417
5418 /* Derive SOM information from the BFD symbol. */
5419 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5420
5421 /* Should we include this symbol? */
5422 if (info.symbol_type == ST_NULL
5423 || info.symbol_type == ST_SYM_EXT
5424 || info.symbol_type == ST_ARG_EXT)
5425 continue;
5426
5427 /* Only global symbols and unsatisfied commons. */
5428 if (info.symbol_scope != SS_UNIVERSAL
5429 && info.symbol_type != ST_STORAGE)
5430 continue;
5431
5432 /* Do no include undefined symbols. */
5433 if (bfd_is_und_section (sym->symbol.section))
5434 continue;
5435
5436 /* Bump the various counters, being careful to honor
5437 alignment considerations in the string table. */
5438 (*num_syms)++;
5439 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5440 while (*stringsize % 4)
5441 (*stringsize)++;
5442 }
5443
5444 curr_bfd = curr_bfd->next;
5445 }
5446 return true;
5447 }
5448
5449 /* Hash a symbol name based on the hashing algorithm presented in the
5450 SOM ABI. */
5451 static unsigned int
5452 som_bfd_ar_symbol_hash (symbol)
5453 asymbol *symbol;
5454 {
5455 unsigned int len = strlen (symbol->name);
5456
5457 /* Names with length 1 are special. */
5458 if (len == 1)
5459 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5460
5461 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5462 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5463 }
5464
5465 static CONST char *
5466 normalize (file)
5467 CONST char *file;
5468 {
5469 CONST char *filename = strrchr (file, '/');
5470
5471 if (filename != NULL)
5472 filename++;
5473 else
5474 filename = file;
5475 return filename;
5476 }
5477
5478 /* Do the bulk of the work required to write the SOM library
5479 symbol table. */
5480
5481 static boolean
5482 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5483 bfd *abfd;
5484 unsigned int nsyms, string_size;
5485 struct lst_header lst;
5486 {
5487 file_ptr lst_filepos;
5488 char *strings = NULL, *p;
5489 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5490 bfd *curr_bfd;
5491 unsigned int *hash_table = NULL;
5492 struct som_entry *som_dict = NULL;
5493 struct lst_symbol_record **last_hash_entry = NULL;
5494 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5495 unsigned int maxname = abfd->xvec->ar_max_namelen;
5496
5497 hash_table =
5498 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5499 if (hash_table == NULL && lst.hash_size != 0)
5500 {
5501 bfd_set_error (bfd_error_no_memory);
5502 goto error_return;
5503 }
5504 som_dict =
5505 (struct som_entry *) malloc (lst.module_count
5506 * sizeof (struct som_entry));
5507 if (som_dict == NULL && lst.module_count != 0)
5508 {
5509 bfd_set_error (bfd_error_no_memory);
5510 goto error_return;
5511 }
5512
5513 last_hash_entry =
5514 ((struct lst_symbol_record **)
5515 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5516 if (last_hash_entry == NULL && lst.hash_size != 0)
5517 {
5518 bfd_set_error (bfd_error_no_memory);
5519 goto error_return;
5520 }
5521
5522 /* Lots of fields are file positions relative to the start
5523 of the lst record. So save its location. */
5524 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5525
5526 /* Some initialization. */
5527 memset (hash_table, 0, 4 * lst.hash_size);
5528 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5529 memset (last_hash_entry, 0,
5530 lst.hash_size * sizeof (struct lst_symbol_record *));
5531
5532 /* Symbols have som_index fields, so we have to keep track of the
5533 index of each SOM in the archive.
5534
5535 The SOM dictionary has (among other things) the absolute file
5536 position for the SOM which a particular dictionary entry
5537 describes. We have to compute that information as we iterate
5538 through the SOMs/symbols. */
5539 som_index = 0;
5540 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5541
5542 /* Yow! We have to know the size of the extended name table
5543 too. */
5544 for (curr_bfd = abfd->archive_head;
5545 curr_bfd != NULL;
5546 curr_bfd = curr_bfd->next)
5547 {
5548 CONST char *normal = normalize (curr_bfd->filename);
5549 unsigned int thislen;
5550
5551 if (!normal)
5552 {
5553 bfd_set_error (bfd_error_no_memory);
5554 return false;
5555 }
5556 thislen = strlen (normal);
5557 if (thislen > maxname)
5558 extended_name_length += thislen + 1;
5559 }
5560
5561 /* Make room for the archive header and the contents of the
5562 extended string table. */
5563 if (extended_name_length)
5564 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5565
5566 /* Make sure we're properly aligned. */
5567 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5568
5569 /* FIXME should be done with buffers just like everything else... */
5570 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5571 if (lst_syms == NULL && nsyms != 0)
5572 {
5573 bfd_set_error (bfd_error_no_memory);
5574 goto error_return;
5575 }
5576 strings = malloc (string_size);
5577 if (strings == NULL && string_size != 0)
5578 {
5579 bfd_set_error (bfd_error_no_memory);
5580 goto error_return;
5581 }
5582
5583 p = strings;
5584 curr_lst_sym = lst_syms;
5585
5586 curr_bfd = abfd->archive_head;
5587 while (curr_bfd != NULL)
5588 {
5589 unsigned int curr_count, i;
5590 som_symbol_type *sym;
5591
5592 /* Don't bother for non-SOM objects. */
5593 if (curr_bfd->format != bfd_object
5594 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5595 {
5596 curr_bfd = curr_bfd->next;
5597 continue;
5598 }
5599
5600 /* Make sure the symbol table has been read, then snag a pointer
5601 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5602 but doing so avoids allocating lots of extra memory. */
5603 if (som_slurp_symbol_table (curr_bfd) == false)
5604 goto error_return;
5605
5606 sym = obj_som_symtab (curr_bfd);
5607 curr_count = bfd_get_symcount (curr_bfd);
5608
5609 for (i = 0; i < curr_count; i++, sym++)
5610 {
5611 struct som_misc_symbol_info info;
5612
5613 /* Derive SOM information from the BFD symbol. */
5614 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5615
5616 /* Should we include this symbol? */
5617 if (info.symbol_type == ST_NULL
5618 || info.symbol_type == ST_SYM_EXT
5619 || info.symbol_type == ST_ARG_EXT)
5620 continue;
5621
5622 /* Only global symbols and unsatisfied commons. */
5623 if (info.symbol_scope != SS_UNIVERSAL
5624 && info.symbol_type != ST_STORAGE)
5625 continue;
5626
5627 /* Do no include undefined symbols. */
5628 if (bfd_is_und_section (sym->symbol.section))
5629 continue;
5630
5631 /* If this is the first symbol from this SOM, then update
5632 the SOM dictionary too. */
5633 if (som_dict[som_index].location == 0)
5634 {
5635 som_dict[som_index].location = curr_som_offset;
5636 som_dict[som_index].length = arelt_size (curr_bfd);
5637 }
5638
5639 /* Fill in the lst symbol record. */
5640 curr_lst_sym->hidden = 0;
5641 curr_lst_sym->secondary_def = 0;
5642 curr_lst_sym->symbol_type = info.symbol_type;
5643 curr_lst_sym->symbol_scope = info.symbol_scope;
5644 curr_lst_sym->check_level = 0;
5645 curr_lst_sym->must_qualify = 0;
5646 curr_lst_sym->initially_frozen = 0;
5647 curr_lst_sym->memory_resident = 0;
5648 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5649 curr_lst_sym->dup_common = 0;
5650 curr_lst_sym->xleast = 0;
5651 curr_lst_sym->arg_reloc = info.arg_reloc;
5652 curr_lst_sym->name.n_strx = p - strings + 4;
5653 curr_lst_sym->qualifier_name.n_strx = 0;
5654 curr_lst_sym->symbol_info = info.symbol_info;
5655 curr_lst_sym->symbol_value = info.symbol_value;
5656 curr_lst_sym->symbol_descriptor = 0;
5657 curr_lst_sym->reserved = 0;
5658 curr_lst_sym->som_index = som_index;
5659 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5660 curr_lst_sym->next_entry = 0;
5661
5662 /* Insert into the hash table. */
5663 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5664 {
5665 struct lst_symbol_record *tmp;
5666
5667 /* There is already something at the head of this hash chain,
5668 so tack this symbol onto the end of the chain. */
5669 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5670 tmp->next_entry
5671 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5672 + lst.hash_size * 4
5673 + lst.module_count * sizeof (struct som_entry)
5674 + sizeof (struct lst_header);
5675 }
5676 else
5677 {
5678 /* First entry in this hash chain. */
5679 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5680 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5681 + lst.hash_size * 4
5682 + lst.module_count * sizeof (struct som_entry)
5683 + sizeof (struct lst_header);
5684 }
5685
5686 /* Keep track of the last symbol we added to this chain so we can
5687 easily update its next_entry pointer. */
5688 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5689 = curr_lst_sym;
5690
5691
5692 /* Update the string table. */
5693 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5694 p += 4;
5695 strcpy (p, sym->symbol.name);
5696 p += strlen (sym->symbol.name) + 1;
5697 while ((int)p % 4)
5698 {
5699 bfd_put_8 (abfd, 0, p);
5700 p++;
5701 }
5702
5703 /* Head to the next symbol. */
5704 curr_lst_sym++;
5705 }
5706
5707 /* Keep track of where each SOM will finally reside; then look
5708 at the next BFD. */
5709 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5710
5711 /* A particular object in the archive may have an odd length; the
5712 linker requires objects begin on an even boundary. So round
5713 up the current offset as necessary. */
5714 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5715 curr_bfd = curr_bfd->next;
5716 som_index++;
5717 }
5718
5719 /* Now scribble out the hash table. */
5720 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5721 != lst.hash_size * 4)
5722 goto error_return;
5723
5724 /* Then the SOM dictionary. */
5725 if (bfd_write ((PTR) som_dict, lst.module_count,
5726 sizeof (struct som_entry), abfd)
5727 != lst.module_count * sizeof (struct som_entry))
5728 goto error_return;
5729
5730 /* The library symbols. */
5731 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5732 != nsyms * sizeof (struct lst_symbol_record))
5733 goto error_return;
5734
5735 /* And finally the strings. */
5736 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5737 goto error_return;
5738
5739 if (hash_table != NULL)
5740 free (hash_table);
5741 if (som_dict != NULL)
5742 free (som_dict);
5743 if (last_hash_entry != NULL)
5744 free (last_hash_entry);
5745 if (lst_syms != NULL)
5746 free (lst_syms);
5747 if (strings != NULL)
5748 free (strings);
5749 return true;
5750
5751 error_return:
5752 if (hash_table != NULL)
5753 free (hash_table);
5754 if (som_dict != NULL)
5755 free (som_dict);
5756 if (last_hash_entry != NULL)
5757 free (last_hash_entry);
5758 if (lst_syms != NULL)
5759 free (lst_syms);
5760 if (strings != NULL)
5761 free (strings);
5762
5763 return false;
5764 }
5765
5766 /* SOM almost uses the SVR4 style extended name support, but not
5767 quite. */
5768
5769 static boolean
5770 som_construct_extended_name_table (abfd, tabloc, tablen, name)
5771 bfd *abfd;
5772 char **tabloc;
5773 bfd_size_type *tablen;
5774 const char **name;
5775 {
5776 *name = "//";
5777 return _bfd_construct_extended_name_table (abfd, false, tabloc, tablen);
5778 }
5779
5780 /* Write out the LST for the archive.
5781
5782 You'll never believe this is really how armaps are handled in SOM... */
5783
5784 /*ARGSUSED*/
5785 static boolean
5786 som_write_armap (abfd, elength, map, orl_count, stridx)
5787 bfd *abfd;
5788 unsigned int elength;
5789 struct orl *map;
5790 unsigned int orl_count;
5791 int stridx;
5792 {
5793 bfd *curr_bfd;
5794 struct stat statbuf;
5795 unsigned int i, lst_size, nsyms, stringsize;
5796 struct ar_hdr hdr;
5797 struct lst_header lst;
5798 int *p;
5799
5800 /* We'll use this for the archive's date and mode later. */
5801 if (stat (abfd->filename, &statbuf) != 0)
5802 {
5803 bfd_set_error (bfd_error_system_call);
5804 return false;
5805 }
5806 /* Fudge factor. */
5807 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5808
5809 /* Account for the lst header first. */
5810 lst_size = sizeof (struct lst_header);
5811
5812 /* Start building the LST header. */
5813 /* FIXME: Do we need to examine each element to determine the
5814 largest id number? */
5815 lst.system_id = CPU_PA_RISC1_0;
5816 lst.a_magic = LIBMAGIC;
5817 lst.version_id = VERSION_ID;
5818 lst.file_time.secs = 0;
5819 lst.file_time.nanosecs = 0;
5820
5821 lst.hash_loc = lst_size;
5822 lst.hash_size = SOM_LST_HASH_SIZE;
5823
5824 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5825 lst_size += 4 * SOM_LST_HASH_SIZE;
5826
5827 /* We need to count the number of SOMs in this archive. */
5828 curr_bfd = abfd->archive_head;
5829 lst.module_count = 0;
5830 while (curr_bfd != NULL)
5831 {
5832 /* Only true SOM objects count. */
5833 if (curr_bfd->format == bfd_object
5834 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5835 lst.module_count++;
5836 curr_bfd = curr_bfd->next;
5837 }
5838 lst.module_limit = lst.module_count;
5839 lst.dir_loc = lst_size;
5840 lst_size += sizeof (struct som_entry) * lst.module_count;
5841
5842 /* We don't support import/export tables, auxiliary headers,
5843 or free lists yet. Make the linker work a little harder
5844 to make our life easier. */
5845
5846 lst.export_loc = 0;
5847 lst.export_count = 0;
5848 lst.import_loc = 0;
5849 lst.aux_loc = 0;
5850 lst.aux_size = 0;
5851
5852 /* Count how many symbols we will have on the hash chains and the
5853 size of the associated string table. */
5854 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5855 return false;
5856
5857 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5858
5859 /* For the string table. One day we might actually use this info
5860 to avoid small seeks/reads when reading archives. */
5861 lst.string_loc = lst_size;
5862 lst.string_size = stringsize;
5863 lst_size += stringsize;
5864
5865 /* SOM ABI says this must be zero. */
5866 lst.free_list = 0;
5867 lst.file_end = lst_size;
5868
5869 /* Compute the checksum. Must happen after the entire lst header
5870 has filled in. */
5871 p = (int *)&lst;
5872 lst.checksum = 0;
5873 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5874 lst.checksum ^= *p++;
5875
5876 sprintf (hdr.ar_name, "/ ");
5877 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5878 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5879 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5880 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5881 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5882 hdr.ar_fmag[0] = '`';
5883 hdr.ar_fmag[1] = '\012';
5884
5885 /* Turn any nulls into spaces. */
5886 for (i = 0; i < sizeof (struct ar_hdr); i++)
5887 if (((char *) (&hdr))[i] == '\0')
5888 (((char *) (&hdr))[i]) = ' ';
5889
5890 /* Scribble out the ar header. */
5891 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5892 != sizeof (struct ar_hdr))
5893 return false;
5894
5895 /* Now scribble out the lst header. */
5896 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5897 != sizeof (struct lst_header))
5898 return false;
5899
5900 /* Build and write the armap. */
5901 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5902 return false;
5903
5904 /* Done. */
5905 return true;
5906 }
5907
5908 /* Free all information we have cached for this BFD. We can always
5909 read it again later if we need it. */
5910
5911 static boolean
5912 som_bfd_free_cached_info (abfd)
5913 bfd *abfd;
5914 {
5915 asection *o;
5916
5917 if (bfd_get_format (abfd) != bfd_object)
5918 return true;
5919
5920 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5921 /* Free the native string and symbol tables. */
5922 FREE (obj_som_symtab (abfd));
5923 FREE (obj_som_stringtab (abfd));
5924 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5925 {
5926 /* Free the native relocations. */
5927 o->reloc_count = -1;
5928 FREE (som_section_data (o)->reloc_stream);
5929 /* Free the generic relocations. */
5930 FREE (o->relocation);
5931 }
5932 #undef FREE
5933
5934 return true;
5935 }
5936
5937 /* End of miscellaneous support functions. */
5938
5939 /* Linker support functions. */
5940 static boolean
5941 som_bfd_link_split_section (abfd, sec)
5942 bfd *abfd;
5943 asection *sec;
5944 {
5945 return (som_is_subspace (sec) && sec->_raw_size > 240000);
5946 }
5947
5948 #define som_close_and_cleanup som_bfd_free_cached_info
5949
5950 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5951 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5952 #define som_truncate_arname bfd_bsd_truncate_arname
5953 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5954 #define som_update_armap_timestamp bfd_true
5955
5956 #define som_get_lineno _bfd_nosymbols_get_lineno
5957 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5958 #define som_read_minisymbols _bfd_generic_read_minisymbols
5959 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
5960
5961 #define som_bfd_get_relocated_section_contents \
5962 bfd_generic_get_relocated_section_contents
5963 #define som_bfd_relax_section bfd_generic_relax_section
5964 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5965 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5966 #define som_bfd_final_link _bfd_generic_final_link
5967
5968 const bfd_target som_vec =
5969 {
5970 "som", /* name */
5971 bfd_target_som_flavour,
5972 true, /* target byte order */
5973 true, /* target headers byte order */
5974 (HAS_RELOC | EXEC_P | /* object flags */
5975 HAS_LINENO | HAS_DEBUG |
5976 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5977 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5978 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5979
5980 /* leading_symbol_char: is the first char of a user symbol
5981 predictable, and if so what is it */
5982 0,
5983 '/', /* ar_pad_char */
5984 14, /* ar_max_namelen */
5985 3, /* minimum alignment */
5986 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5987 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5988 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5989 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5990 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5991 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5992 {_bfd_dummy_target,
5993 som_object_p, /* bfd_check_format */
5994 bfd_generic_archive_p,
5995 _bfd_dummy_target
5996 },
5997 {
5998 bfd_false,
5999 som_mkobject,
6000 _bfd_generic_mkarchive,
6001 bfd_false
6002 },
6003 {
6004 bfd_false,
6005 som_write_object_contents,
6006 _bfd_write_archive_contents,
6007 bfd_false,
6008 },
6009 #undef som
6010
6011 BFD_JUMP_TABLE_GENERIC (som),
6012 BFD_JUMP_TABLE_COPY (som),
6013 BFD_JUMP_TABLE_CORE (_bfd_nocore),
6014 BFD_JUMP_TABLE_ARCHIVE (som),
6015 BFD_JUMP_TABLE_SYMBOLS (som),
6016 BFD_JUMP_TABLE_RELOCS (som),
6017 BFD_JUMP_TABLE_WRITE (som),
6018 BFD_JUMP_TABLE_LINK (som),
6019 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6020
6021 (PTR) 0
6022 };
6023
6024 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.215489 seconds and 5 git commands to generate.