gdb/
[deliverable/binutils-gdb.git] / bfd / sunos.c
1 /* BFD backend for SunOS binaries.
2 Copyright 1990, 1991, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2011, 2012
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #define TARGETNAME "a.out-sunos-big"
25
26 /* Do not "beautify" the CONCAT* macro args. Traditional C will not
27 remove whitespace added here, and thus will fail to concatenate
28 the tokens. */
29 #define MY(OP) CONCAT2 (sunos_big_,OP)
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "bfdlink.h"
34 #include "libaout.h"
35
36 /* ??? Where should this go? */
37 #define MACHTYPE_OK(mtype) \
38 (((mtype) == M_SPARC && bfd_lookup_arch (bfd_arch_sparc, 0) != NULL) \
39 || ((mtype) == M_SPARCLET \
40 && bfd_lookup_arch (bfd_arch_sparc, bfd_mach_sparc_sparclet) != NULL) \
41 || ((mtype) == M_SPARCLITE_LE \
42 && bfd_lookup_arch (bfd_arch_sparc, bfd_mach_sparc_sparclet) != NULL) \
43 || (((mtype) == M_UNKNOWN || (mtype) == M_68010 || (mtype) == M_68020) \
44 && bfd_lookup_arch (bfd_arch_m68k, 0) != NULL))
45
46 #define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound
47 #define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab
48 #define MY_get_synthetic_symtab _bfd_nodynamic_get_synthetic_symtab
49 #define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound
50 #define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc
51 #define MY_bfd_link_hash_table_create sunos_link_hash_table_create
52 #define MY_add_dynamic_symbols sunos_add_dynamic_symbols
53 #define MY_add_one_symbol sunos_add_one_symbol
54 #define MY_link_dynamic_object sunos_link_dynamic_object
55 #define MY_write_dynamic_symbol sunos_write_dynamic_symbol
56 #define MY_check_dynamic_reloc sunos_check_dynamic_reloc
57 #define MY_finish_dynamic_link sunos_finish_dynamic_link
58
59 static bfd_boolean sunos_add_dynamic_symbols (bfd *, struct bfd_link_info *, struct external_nlist **, bfd_size_type *, char **);
60 static bfd_boolean sunos_add_one_symbol (struct bfd_link_info *, bfd *, const char *, flagword, asection *, bfd_vma, const char *, bfd_boolean, bfd_boolean, struct bfd_link_hash_entry **);
61 static bfd_boolean sunos_link_dynamic_object (struct bfd_link_info *, bfd *);
62 static bfd_boolean sunos_write_dynamic_symbol (bfd *, struct bfd_link_info *, struct aout_link_hash_entry *);
63 static bfd_boolean sunos_check_dynamic_reloc (struct bfd_link_info *, bfd *, asection *, struct aout_link_hash_entry *, void *, bfd_byte *, bfd_boolean *, bfd_vma *);
64 static bfd_boolean sunos_finish_dynamic_link (bfd *, struct bfd_link_info *);
65 static struct bfd_link_hash_table *sunos_link_hash_table_create (bfd *);
66 static long sunos_get_dynamic_symtab_upper_bound (bfd *);
67 static long sunos_canonicalize_dynamic_symtab (bfd *, asymbol **);
68 static long sunos_get_dynamic_reloc_upper_bound (bfd *);
69 static long sunos_canonicalize_dynamic_reloc (bfd *, arelent **, asymbol **);
70
71 /* Include the usual a.out support. */
72 #include "aoutf1.h"
73
74 /* The SunOS 4.1.4 /usr/include/locale.h defines valid as a macro. */
75 #undef valid
76
77 /* SunOS shared library support. We store a pointer to this structure
78 in obj_aout_dynamic_info (abfd). */
79
80 struct sunos_dynamic_info
81 {
82 /* Whether we found any dynamic information. */
83 bfd_boolean valid;
84 /* Dynamic information. */
85 struct internal_sun4_dynamic_link dyninfo;
86 /* Number of dynamic symbols. */
87 unsigned long dynsym_count;
88 /* Read in nlists for dynamic symbols. */
89 struct external_nlist *dynsym;
90 /* asymbol structures for dynamic symbols. */
91 aout_symbol_type *canonical_dynsym;
92 /* Read in dynamic string table. */
93 char *dynstr;
94 /* Number of dynamic relocs. */
95 unsigned long dynrel_count;
96 /* Read in dynamic relocs. This may be reloc_std_external or
97 reloc_ext_external. */
98 void * dynrel;
99 /* arelent structures for dynamic relocs. */
100 arelent *canonical_dynrel;
101 };
102
103 /* The hash table of dynamic symbols is composed of two word entries.
104 See include/aout/sun4.h for details. */
105
106 #define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD)
107
108 /* Read in the basic dynamic information. This locates the __DYNAMIC
109 structure and uses it to find the dynamic_link structure. It
110 creates and saves a sunos_dynamic_info structure. If it can't find
111 __DYNAMIC, it sets the valid field of the sunos_dynamic_info
112 structure to FALSE to avoid doing this work again. */
113
114 static bfd_boolean
115 sunos_read_dynamic_info (bfd *abfd)
116 {
117 struct sunos_dynamic_info *info;
118 asection *dynsec;
119 bfd_vma dynoff;
120 struct external_sun4_dynamic dyninfo;
121 unsigned long dynver;
122 struct external_sun4_dynamic_link linkinfo;
123 bfd_size_type amt;
124
125 if (obj_aout_dynamic_info (abfd) != NULL)
126 return TRUE;
127
128 if ((abfd->flags & DYNAMIC) == 0)
129 {
130 bfd_set_error (bfd_error_invalid_operation);
131 return FALSE;
132 }
133
134 amt = sizeof (struct sunos_dynamic_info);
135 info = bfd_zalloc (abfd, amt);
136 if (!info)
137 return FALSE;
138 info->valid = FALSE;
139 info->dynsym = NULL;
140 info->dynstr = NULL;
141 info->canonical_dynsym = NULL;
142 info->dynrel = NULL;
143 info->canonical_dynrel = NULL;
144 obj_aout_dynamic_info (abfd) = (void *) info;
145
146 /* This code used to look for the __DYNAMIC symbol to locate the dynamic
147 linking information.
148 However this inhibits recovering the dynamic symbols from a
149 stripped object file, so blindly assume that the dynamic linking
150 information is located at the start of the data section.
151 We could verify this assumption later by looking through the dynamic
152 symbols for the __DYNAMIC symbol. */
153 if ((abfd->flags & DYNAMIC) == 0)
154 return TRUE;
155 if (! bfd_get_section_contents (abfd, obj_datasec (abfd), (void *) &dyninfo,
156 (file_ptr) 0,
157 (bfd_size_type) sizeof dyninfo))
158 return TRUE;
159
160 dynver = GET_WORD (abfd, dyninfo.ld_version);
161 if (dynver != 2 && dynver != 3)
162 return TRUE;
163
164 dynoff = GET_WORD (abfd, dyninfo.ld);
165
166 /* dynoff is a virtual address. It is probably always in the .data
167 section, but this code should work even if it moves. */
168 if (dynoff < bfd_get_section_vma (abfd, obj_datasec (abfd)))
169 dynsec = obj_textsec (abfd);
170 else
171 dynsec = obj_datasec (abfd);
172 dynoff -= bfd_get_section_vma (abfd, dynsec);
173 if (dynoff > dynsec->size)
174 return TRUE;
175
176 /* This executable appears to be dynamically linked in a way that we
177 can understand. */
178 if (! bfd_get_section_contents (abfd, dynsec, (void *) &linkinfo,
179 (file_ptr) dynoff,
180 (bfd_size_type) sizeof linkinfo))
181 return TRUE;
182
183 /* Swap in the dynamic link information. */
184 info->dyninfo.ld_loaded = GET_WORD (abfd, linkinfo.ld_loaded);
185 info->dyninfo.ld_need = GET_WORD (abfd, linkinfo.ld_need);
186 info->dyninfo.ld_rules = GET_WORD (abfd, linkinfo.ld_rules);
187 info->dyninfo.ld_got = GET_WORD (abfd, linkinfo.ld_got);
188 info->dyninfo.ld_plt = GET_WORD (abfd, linkinfo.ld_plt);
189 info->dyninfo.ld_rel = GET_WORD (abfd, linkinfo.ld_rel);
190 info->dyninfo.ld_hash = GET_WORD (abfd, linkinfo.ld_hash);
191 info->dyninfo.ld_stab = GET_WORD (abfd, linkinfo.ld_stab);
192 info->dyninfo.ld_stab_hash = GET_WORD (abfd, linkinfo.ld_stab_hash);
193 info->dyninfo.ld_buckets = GET_WORD (abfd, linkinfo.ld_buckets);
194 info->dyninfo.ld_symbols = GET_WORD (abfd, linkinfo.ld_symbols);
195 info->dyninfo.ld_symb_size = GET_WORD (abfd, linkinfo.ld_symb_size);
196 info->dyninfo.ld_text = GET_WORD (abfd, linkinfo.ld_text);
197 info->dyninfo.ld_plt_sz = GET_WORD (abfd, linkinfo.ld_plt_sz);
198
199 /* Reportedly the addresses need to be offset by the size of the
200 exec header in an NMAGIC file. */
201 if (adata (abfd).magic == n_magic)
202 {
203 unsigned long exec_bytes_size = adata (abfd).exec_bytes_size;
204
205 info->dyninfo.ld_need += exec_bytes_size;
206 info->dyninfo.ld_rules += exec_bytes_size;
207 info->dyninfo.ld_rel += exec_bytes_size;
208 info->dyninfo.ld_hash += exec_bytes_size;
209 info->dyninfo.ld_stab += exec_bytes_size;
210 info->dyninfo.ld_symbols += exec_bytes_size;
211 }
212
213 /* The only way to get the size of the symbol information appears to
214 be to determine the distance between it and the string table. */
215 info->dynsym_count = ((info->dyninfo.ld_symbols - info->dyninfo.ld_stab)
216 / EXTERNAL_NLIST_SIZE);
217 BFD_ASSERT (info->dynsym_count * EXTERNAL_NLIST_SIZE
218 == (unsigned long) (info->dyninfo.ld_symbols
219 - info->dyninfo.ld_stab));
220
221 /* Similarly, the relocs end at the hash table. */
222 info->dynrel_count = ((info->dyninfo.ld_hash - info->dyninfo.ld_rel)
223 / obj_reloc_entry_size (abfd));
224 BFD_ASSERT (info->dynrel_count * obj_reloc_entry_size (abfd)
225 == (unsigned long) (info->dyninfo.ld_hash
226 - info->dyninfo.ld_rel));
227
228 info->valid = TRUE;
229
230 return TRUE;
231 }
232
233 /* Return the amount of memory required for the dynamic symbols. */
234
235 static long
236 sunos_get_dynamic_symtab_upper_bound (bfd *abfd)
237 {
238 struct sunos_dynamic_info *info;
239
240 if (! sunos_read_dynamic_info (abfd))
241 return -1;
242
243 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
244 if (! info->valid)
245 {
246 bfd_set_error (bfd_error_no_symbols);
247 return -1;
248 }
249
250 return (info->dynsym_count + 1) * sizeof (asymbol *);
251 }
252
253 /* Read the external dynamic symbols. */
254
255 static bfd_boolean
256 sunos_slurp_dynamic_symtab (bfd *abfd)
257 {
258 struct sunos_dynamic_info *info;
259 bfd_size_type amt;
260
261 /* Get the general dynamic information. */
262 if (obj_aout_dynamic_info (abfd) == NULL)
263 {
264 if (! sunos_read_dynamic_info (abfd))
265 return FALSE;
266 }
267
268 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
269 if (! info->valid)
270 {
271 bfd_set_error (bfd_error_no_symbols);
272 return FALSE;
273 }
274
275 /* Get the dynamic nlist structures. */
276 if (info->dynsym == NULL)
277 {
278 amt = (bfd_size_type) info->dynsym_count * EXTERNAL_NLIST_SIZE;
279 info->dynsym = bfd_alloc (abfd, amt);
280 if (info->dynsym == NULL && info->dynsym_count != 0)
281 return FALSE;
282 if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_stab, SEEK_SET) != 0
283 || bfd_bread ((void *) info->dynsym, amt, abfd) != amt)
284 {
285 if (info->dynsym != NULL)
286 {
287 bfd_release (abfd, info->dynsym);
288 info->dynsym = NULL;
289 }
290 return FALSE;
291 }
292 }
293
294 /* Get the dynamic strings. */
295 if (info->dynstr == NULL)
296 {
297 amt = info->dyninfo.ld_symb_size;
298 info->dynstr = bfd_alloc (abfd, amt);
299 if (info->dynstr == NULL && info->dyninfo.ld_symb_size != 0)
300 return FALSE;
301 if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_symbols, SEEK_SET) != 0
302 || bfd_bread ((void *) info->dynstr, amt, abfd) != amt)
303 {
304 if (info->dynstr != NULL)
305 {
306 bfd_release (abfd, info->dynstr);
307 info->dynstr = NULL;
308 }
309 return FALSE;
310 }
311 }
312
313 return TRUE;
314 }
315
316 /* Read in the dynamic symbols. */
317
318 static long
319 sunos_canonicalize_dynamic_symtab (bfd *abfd, asymbol **storage)
320 {
321 struct sunos_dynamic_info *info;
322 unsigned long i;
323
324 if (! sunos_slurp_dynamic_symtab (abfd))
325 return -1;
326
327 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
328
329 #ifdef CHECK_DYNAMIC_HASH
330 /* Check my understanding of the dynamic hash table by making sure
331 that each symbol can be located in the hash table. */
332 {
333 bfd_size_type table_size;
334 bfd_byte *table;
335 bfd_size_type i;
336
337 if (info->dyninfo.ld_buckets > info->dynsym_count)
338 abort ();
339 table_size = info->dyninfo.ld_stab - info->dyninfo.ld_hash;
340 table = bfd_malloc (table_size);
341 if (table == NULL && table_size != 0)
342 abort ();
343 if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_hash, SEEK_SET) != 0
344 || bfd_bread ((void *) table, table_size, abfd) != table_size)
345 abort ();
346 for (i = 0; i < info->dynsym_count; i++)
347 {
348 unsigned char *name;
349 unsigned long hash;
350
351 name = ((unsigned char *) info->dynstr
352 + GET_WORD (abfd, info->dynsym[i].e_strx));
353 hash = 0;
354 while (*name != '\0')
355 hash = (hash << 1) + *name++;
356 hash &= 0x7fffffff;
357 hash %= info->dyninfo.ld_buckets;
358 while (GET_WORD (abfd, table + hash * HASH_ENTRY_SIZE) != i)
359 {
360 hash = GET_WORD (abfd,
361 table + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
362 if (hash == 0 || hash >= table_size / HASH_ENTRY_SIZE)
363 abort ();
364 }
365 }
366 free (table);
367 }
368 #endif /* CHECK_DYNAMIC_HASH */
369
370 /* Get the asymbol structures corresponding to the dynamic nlist
371 structures. */
372 if (info->canonical_dynsym == NULL)
373 {
374 bfd_size_type size;
375 bfd_size_type strsize = info->dyninfo.ld_symb_size;
376
377 size = (bfd_size_type) info->dynsym_count * sizeof (aout_symbol_type);
378 info->canonical_dynsym = bfd_alloc (abfd, size);
379 if (info->canonical_dynsym == NULL && info->dynsym_count != 0)
380 return -1;
381
382 if (! aout_32_translate_symbol_table (abfd, info->canonical_dynsym,
383 info->dynsym,
384 (bfd_size_type) info->dynsym_count,
385 info->dynstr, strsize, TRUE))
386 {
387 if (info->canonical_dynsym != NULL)
388 {
389 bfd_release (abfd, info->canonical_dynsym);
390 info->canonical_dynsym = NULL;
391 }
392 return -1;
393 }
394 }
395
396 /* Return pointers to the dynamic asymbol structures. */
397 for (i = 0; i < info->dynsym_count; i++)
398 *storage++ = (asymbol *) (info->canonical_dynsym + i);
399 *storage = NULL;
400
401 return info->dynsym_count;
402 }
403
404 /* Return the amount of memory required for the dynamic relocs. */
405
406 static long
407 sunos_get_dynamic_reloc_upper_bound (bfd *abfd)
408 {
409 struct sunos_dynamic_info *info;
410
411 if (! sunos_read_dynamic_info (abfd))
412 return -1;
413
414 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
415 if (! info->valid)
416 {
417 bfd_set_error (bfd_error_no_symbols);
418 return -1;
419 }
420
421 return (info->dynrel_count + 1) * sizeof (arelent *);
422 }
423
424 /* Read in the dynamic relocs. */
425
426 static long
427 sunos_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage, asymbol **syms)
428 {
429 struct sunos_dynamic_info *info;
430 unsigned long i;
431 bfd_size_type size;
432
433 /* Get the general dynamic information. */
434 if (obj_aout_dynamic_info (abfd) == NULL)
435 {
436 if (! sunos_read_dynamic_info (abfd))
437 return -1;
438 }
439
440 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
441 if (! info->valid)
442 {
443 bfd_set_error (bfd_error_no_symbols);
444 return -1;
445 }
446
447 /* Get the dynamic reloc information. */
448 if (info->dynrel == NULL)
449 {
450 size = (bfd_size_type) info->dynrel_count * obj_reloc_entry_size (abfd);
451 info->dynrel = bfd_alloc (abfd, size);
452 if (info->dynrel == NULL && size != 0)
453 return -1;
454 if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_rel, SEEK_SET) != 0
455 || bfd_bread ((void *) info->dynrel, size, abfd) != size)
456 {
457 if (info->dynrel != NULL)
458 {
459 bfd_release (abfd, info->dynrel);
460 info->dynrel = NULL;
461 }
462 return -1;
463 }
464 }
465
466 /* Get the arelent structures corresponding to the dynamic reloc
467 information. */
468 if (info->canonical_dynrel == NULL)
469 {
470 arelent *to;
471
472 size = (bfd_size_type) info->dynrel_count * sizeof (arelent);
473 info->canonical_dynrel = bfd_alloc (abfd, size);
474 if (info->canonical_dynrel == NULL && info->dynrel_count != 0)
475 return -1;
476
477 to = info->canonical_dynrel;
478
479 if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE)
480 {
481 struct reloc_ext_external *p;
482 struct reloc_ext_external *pend;
483
484 p = (struct reloc_ext_external *) info->dynrel;
485 pend = p + info->dynrel_count;
486 for (; p < pend; p++, to++)
487 NAME (aout, swap_ext_reloc_in) (abfd, p, to, syms,
488 (bfd_size_type) info->dynsym_count);
489 }
490 else
491 {
492 struct reloc_std_external *p;
493 struct reloc_std_external *pend;
494
495 p = (struct reloc_std_external *) info->dynrel;
496 pend = p + info->dynrel_count;
497 for (; p < pend; p++, to++)
498 NAME (aout, swap_std_reloc_in) (abfd, p, to, syms,
499 (bfd_size_type) info->dynsym_count);
500 }
501 }
502
503 /* Return pointers to the dynamic arelent structures. */
504 for (i = 0; i < info->dynrel_count; i++)
505 *storage++ = info->canonical_dynrel + i;
506 *storage = NULL;
507
508 return info->dynrel_count;
509 }
510 \f
511 /* Code to handle linking of SunOS shared libraries. */
512
513 /* A SPARC procedure linkage table entry is 12 bytes. The first entry
514 in the table is a jump which is filled in by the runtime linker.
515 The remaining entries are branches back to the first entry,
516 followed by an index into the relocation table encoded to look like
517 a sethi of %g0. */
518
519 #define SPARC_PLT_ENTRY_SIZE (12)
520
521 static const bfd_byte sparc_plt_first_entry[SPARC_PLT_ENTRY_SIZE] =
522 {
523 /* sethi %hi(0),%g1; address filled in by runtime linker. */
524 0x3, 0, 0, 0,
525 /* jmp %g1; offset filled in by runtime linker. */
526 0x81, 0xc0, 0x60, 0,
527 /* nop */
528 0x1, 0, 0, 0
529 };
530
531 /* save %sp, -96, %sp */
532 #define SPARC_PLT_ENTRY_WORD0 ((bfd_vma) 0x9de3bfa0)
533 /* call; address filled in later. */
534 #define SPARC_PLT_ENTRY_WORD1 ((bfd_vma) 0x40000000)
535 /* sethi; reloc index filled in later. */
536 #define SPARC_PLT_ENTRY_WORD2 ((bfd_vma) 0x01000000)
537
538 /* This sequence is used when for the jump table entry to a defined
539 symbol in a complete executable. It is used when linking PIC
540 compiled code which is not being put into a shared library. */
541 /* sethi <address to be filled in later>, %g1 */
542 #define SPARC_PLT_PIC_WORD0 ((bfd_vma) 0x03000000)
543 /* jmp %g1 + <address to be filled in later> */
544 #define SPARC_PLT_PIC_WORD1 ((bfd_vma) 0x81c06000)
545 /* nop */
546 #define SPARC_PLT_PIC_WORD2 ((bfd_vma) 0x01000000)
547
548 /* An m68k procedure linkage table entry is 8 bytes. The first entry
549 in the table is a jump which is filled in the by the runtime
550 linker. The remaining entries are branches back to the first
551 entry, followed by a two byte index into the relocation table. */
552
553 #define M68K_PLT_ENTRY_SIZE (8)
554
555 static const bfd_byte m68k_plt_first_entry[M68K_PLT_ENTRY_SIZE] =
556 {
557 /* jmps @# */
558 0x4e, 0xf9,
559 /* Filled in by runtime linker with a magic address. */
560 0, 0, 0, 0,
561 /* Not used? */
562 0, 0
563 };
564
565 /* bsrl */
566 #define M68K_PLT_ENTRY_WORD0 ((bfd_vma) 0x61ff)
567 /* Remaining words filled in later. */
568
569 /* An entry in the SunOS linker hash table. */
570
571 struct sunos_link_hash_entry
572 {
573 struct aout_link_hash_entry root;
574
575 /* If this is a dynamic symbol, this is its index into the dynamic
576 symbol table. This is initialized to -1. As the linker looks at
577 the input files, it changes this to -2 if it will be added to the
578 dynamic symbol table. After all the input files have been seen,
579 the linker will know whether to build a dynamic symbol table; if
580 it does build one, this becomes the index into the table. */
581 long dynindx;
582
583 /* If this is a dynamic symbol, this is the index of the name in the
584 dynamic symbol string table. */
585 long dynstr_index;
586
587 /* The offset into the global offset table used for this symbol. If
588 the symbol does not require a GOT entry, this is 0. */
589 bfd_vma got_offset;
590
591 /* The offset into the procedure linkage table used for this symbol.
592 If the symbol does not require a PLT entry, this is 0. */
593 bfd_vma plt_offset;
594
595 /* Some linker flags. */
596 unsigned char flags;
597 /* Symbol is referenced by a regular object. */
598 #define SUNOS_REF_REGULAR 01
599 /* Symbol is defined by a regular object. */
600 #define SUNOS_DEF_REGULAR 02
601 /* Symbol is referenced by a dynamic object. */
602 #define SUNOS_REF_DYNAMIC 04
603 /* Symbol is defined by a dynamic object. */
604 #define SUNOS_DEF_DYNAMIC 010
605 /* Symbol is a constructor symbol in a regular object. */
606 #define SUNOS_CONSTRUCTOR 020
607 };
608
609 /* The SunOS linker hash table. */
610
611 struct sunos_link_hash_table
612 {
613 struct aout_link_hash_table root;
614
615 /* The object which holds the dynamic sections. */
616 bfd *dynobj;
617
618 /* Whether we have created the dynamic sections. */
619 bfd_boolean dynamic_sections_created;
620
621 /* Whether we need the dynamic sections. */
622 bfd_boolean dynamic_sections_needed;
623
624 /* Whether we need the .got table. */
625 bfd_boolean got_needed;
626
627 /* The number of dynamic symbols. */
628 size_t dynsymcount;
629
630 /* The number of buckets in the hash table. */
631 size_t bucketcount;
632
633 /* The list of dynamic objects needed by dynamic objects included in
634 the link. */
635 struct bfd_link_needed_list *needed;
636
637 /* The offset of __GLOBAL_OFFSET_TABLE_ into the .got section. */
638 bfd_vma got_base;
639 };
640
641 /* Routine to create an entry in an SunOS link hash table. */
642
643 static struct bfd_hash_entry *
644 sunos_link_hash_newfunc (struct bfd_hash_entry *entry,
645 struct bfd_hash_table *table,
646 const char *string)
647 {
648 struct sunos_link_hash_entry *ret = (struct sunos_link_hash_entry *) entry;
649
650 /* Allocate the structure if it has not already been allocated by a
651 subclass. */
652 if (ret == NULL)
653 ret = bfd_hash_allocate (table, sizeof (* ret));
654 if (ret == NULL)
655 return NULL;
656
657 /* Call the allocation method of the superclass. */
658 ret = ((struct sunos_link_hash_entry *)
659 NAME (aout, link_hash_newfunc) ((struct bfd_hash_entry *) ret,
660 table, string));
661 if (ret != NULL)
662 {
663 /* Set local fields. */
664 ret->dynindx = -1;
665 ret->dynstr_index = -1;
666 ret->got_offset = 0;
667 ret->plt_offset = 0;
668 ret->flags = 0;
669 }
670
671 return (struct bfd_hash_entry *) ret;
672 }
673
674 /* Create a SunOS link hash table. */
675
676 static struct bfd_link_hash_table *
677 sunos_link_hash_table_create (bfd *abfd)
678 {
679 struct sunos_link_hash_table *ret;
680 bfd_size_type amt = sizeof (struct sunos_link_hash_table);
681
682 ret = bfd_malloc (amt);
683 if (ret == NULL)
684 return NULL;
685 if (!NAME (aout, link_hash_table_init) (&ret->root, abfd,
686 sunos_link_hash_newfunc,
687 sizeof (struct sunos_link_hash_entry)))
688 {
689 free (ret);
690 return NULL;
691 }
692
693 ret->dynobj = NULL;
694 ret->dynamic_sections_created = FALSE;
695 ret->dynamic_sections_needed = FALSE;
696 ret->got_needed = FALSE;
697 ret->dynsymcount = 0;
698 ret->bucketcount = 0;
699 ret->needed = NULL;
700 ret->got_base = 0;
701
702 return &ret->root.root;
703 }
704
705 /* Look up an entry in an SunOS link hash table. */
706
707 #define sunos_link_hash_lookup(table, string, create, copy, follow) \
708 ((struct sunos_link_hash_entry *) \
709 aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\
710 (follow)))
711
712 /* Traverse a SunOS link hash table. */
713
714 #define sunos_link_hash_traverse(table, func, info) \
715 (aout_link_hash_traverse \
716 (&(table)->root, \
717 (bfd_boolean (*) (struct aout_link_hash_entry *, void *)) (func), \
718 (info)))
719
720 /* Get the SunOS link hash table from the info structure. This is
721 just a cast. */
722
723 #define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash))
724
725 /* Create the dynamic sections needed if we are linking against a
726 dynamic object, or if we are linking PIC compiled code. ABFD is a
727 bfd we can attach the dynamic sections to. The linker script will
728 look for these special sections names and put them in the right
729 place in the output file. See include/aout/sun4.h for more details
730 of the dynamic linking information. */
731
732 static bfd_boolean
733 sunos_create_dynamic_sections (bfd *abfd,
734 struct bfd_link_info *info,
735 bfd_boolean needed)
736 {
737 asection *s;
738
739 if (! sunos_hash_table (info)->dynamic_sections_created)
740 {
741 flagword flags;
742
743 sunos_hash_table (info)->dynobj = abfd;
744
745 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
746 | SEC_LINKER_CREATED);
747
748 /* The .dynamic section holds the basic dynamic information: the
749 sun4_dynamic structure, the dynamic debugger information, and
750 the sun4_dynamic_link structure. */
751 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
752 if (s == NULL
753 || ! bfd_set_section_alignment (abfd, s, 2))
754 return FALSE;
755
756 /* The .got section holds the global offset table. The address
757 is put in the ld_got field. */
758 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
759 if (s == NULL
760 || ! bfd_set_section_alignment (abfd, s, 2))
761 return FALSE;
762
763 /* The .plt section holds the procedure linkage table. The
764 address is put in the ld_plt field. */
765 s = bfd_make_section_anyway_with_flags (abfd, ".plt", flags | SEC_CODE);
766 if (s == NULL
767 || ! bfd_set_section_alignment (abfd, s, 2))
768 return FALSE;
769
770 /* The .dynrel section holds the dynamic relocs. The address is
771 put in the ld_rel field. */
772 s = bfd_make_section_anyway_with_flags (abfd, ".dynrel",
773 flags | SEC_READONLY);
774 if (s == NULL
775 || ! bfd_set_section_alignment (abfd, s, 2))
776 return FALSE;
777
778 /* The .hash section holds the dynamic hash table. The address
779 is put in the ld_hash field. */
780 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
781 flags | SEC_READONLY);
782 if (s == NULL
783 || ! bfd_set_section_alignment (abfd, s, 2))
784 return FALSE;
785
786 /* The .dynsym section holds the dynamic symbols. The address
787 is put in the ld_stab field. */
788 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
789 flags | SEC_READONLY);
790 if (s == NULL
791 || ! bfd_set_section_alignment (abfd, s, 2))
792 return FALSE;
793
794 /* The .dynstr section holds the dynamic symbol string table.
795 The address is put in the ld_symbols field. */
796 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
797 flags | SEC_READONLY);
798 if (s == NULL
799 || ! bfd_set_section_alignment (abfd, s, 2))
800 return FALSE;
801
802 sunos_hash_table (info)->dynamic_sections_created = TRUE;
803 }
804
805 if ((needed && ! sunos_hash_table (info)->dynamic_sections_needed)
806 || info->shared)
807 {
808 bfd *dynobj;
809
810 dynobj = sunos_hash_table (info)->dynobj;
811
812 s = bfd_get_linker_section (dynobj, ".got");
813 if (s->size == 0)
814 s->size = BYTES_IN_WORD;
815
816 sunos_hash_table (info)->dynamic_sections_needed = TRUE;
817 sunos_hash_table (info)->got_needed = TRUE;
818 }
819
820 return TRUE;
821 }
822
823 /* Add dynamic symbols during a link. This is called by the a.out
824 backend linker for each object it encounters. */
825
826 static bfd_boolean
827 sunos_add_dynamic_symbols (bfd *abfd,
828 struct bfd_link_info *info,
829 struct external_nlist **symsp,
830 bfd_size_type *sym_countp,
831 char **stringsp)
832 {
833 bfd *dynobj;
834 struct sunos_dynamic_info *dinfo;
835 unsigned long need;
836
837 /* Make sure we have all the required sections. */
838 if (info->output_bfd->xvec == abfd->xvec)
839 {
840 if (! sunos_create_dynamic_sections (abfd, info,
841 ((abfd->flags & DYNAMIC) != 0
842 && !info->relocatable)))
843 return FALSE;
844 }
845
846 /* There is nothing else to do for a normal object. */
847 if ((abfd->flags & DYNAMIC) == 0)
848 return TRUE;
849
850 dynobj = sunos_hash_table (info)->dynobj;
851
852 /* We do not want to include the sections in a dynamic object in the
853 output file. We hack by simply clobbering the list of sections
854 in the BFD. This could be handled more cleanly by, say, a new
855 section flag; the existing SEC_NEVER_LOAD flag is not the one we
856 want, because that one still implies that the section takes up
857 space in the output file. If this is the first object we have
858 seen, we must preserve the dynamic sections we just created. */
859 if (abfd != dynobj)
860 abfd->sections = NULL;
861 else
862 {
863 asection *s;
864
865 for (s = abfd->sections; s != NULL; s = s->next)
866 {
867 if ((s->flags & SEC_LINKER_CREATED) == 0)
868 bfd_section_list_remove (abfd, s);
869 }
870 }
871
872 /* The native linker seems to just ignore dynamic objects when -r is
873 used. */
874 if (info->relocatable)
875 return TRUE;
876
877 /* There's no hope of using a dynamic object which does not exactly
878 match the format of the output file. */
879 if (info->output_bfd->xvec != abfd->xvec)
880 {
881 bfd_set_error (bfd_error_invalid_operation);
882 return FALSE;
883 }
884
885 /* Make sure we have a .need and a .rules sections. These are only
886 needed if there really is a dynamic object in the link, so they
887 are not added by sunos_create_dynamic_sections. */
888 if (bfd_get_section_by_name (dynobj, ".need") == NULL)
889 {
890 /* The .need section holds the list of names of shared objets
891 which must be included at runtime. The address of this
892 section is put in the ld_need field. */
893 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
894 | SEC_IN_MEMORY | SEC_READONLY);
895 asection *s = bfd_make_section_with_flags (dynobj, ".need", flags);
896 if (s == NULL
897 || ! bfd_set_section_alignment (dynobj, s, 2))
898 return FALSE;
899 }
900
901 if (bfd_get_section_by_name (dynobj, ".rules") == NULL)
902 {
903 /* The .rules section holds the path to search for shared
904 objects. The address of this section is put in the ld_rules
905 field. */
906 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
907 | SEC_IN_MEMORY | SEC_READONLY);
908 asection *s = bfd_make_section_with_flags (dynobj, ".rules", flags);
909 if (s == NULL
910 || ! bfd_set_section_alignment (dynobj, s, 2))
911 return FALSE;
912 }
913
914 /* Pick up the dynamic symbols and return them to the caller. */
915 if (! sunos_slurp_dynamic_symtab (abfd))
916 return FALSE;
917
918 dinfo = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
919 *symsp = dinfo->dynsym;
920 *sym_countp = dinfo->dynsym_count;
921 *stringsp = dinfo->dynstr;
922
923 /* Record information about any other objects needed by this one. */
924 need = dinfo->dyninfo.ld_need;
925 while (need != 0)
926 {
927 bfd_byte buf[16];
928 unsigned long name, flags;
929 unsigned short major_vno, minor_vno;
930 struct bfd_link_needed_list *needed, **pp;
931 char *namebuf, *p;
932 bfd_size_type alc;
933 bfd_byte b;
934 char *namecopy;
935
936 if (bfd_seek (abfd, (file_ptr) need, SEEK_SET) != 0
937 || bfd_bread (buf, (bfd_size_type) 16, abfd) != 16)
938 return FALSE;
939
940 /* For the format of an ld_need entry, see aout/sun4.h. We
941 should probably define structs for this manipulation. */
942 name = bfd_get_32 (abfd, buf);
943 flags = bfd_get_32 (abfd, buf + 4);
944 major_vno = (unsigned short) bfd_get_16 (abfd, buf + 8);
945 minor_vno = (unsigned short) bfd_get_16 (abfd, buf + 10);
946 need = bfd_get_32 (abfd, buf + 12);
947
948 alc = sizeof (struct bfd_link_needed_list);
949 needed = bfd_alloc (abfd, alc);
950 if (needed == NULL)
951 return FALSE;
952 needed->by = abfd;
953
954 /* We return the name as [-l]name[.maj][.min]. */
955 alc = 30;
956 namebuf = bfd_malloc (alc + 1);
957 if (namebuf == NULL)
958 return FALSE;
959 p = namebuf;
960
961 if ((flags & 0x80000000) != 0)
962 {
963 *p++ = '-';
964 *p++ = 'l';
965 }
966 if (bfd_seek (abfd, (file_ptr) name, SEEK_SET) != 0)
967 {
968 free (namebuf);
969 return FALSE;
970 }
971
972 do
973 {
974 if (bfd_bread (&b, (bfd_size_type) 1, abfd) != 1)
975 {
976 free (namebuf);
977 return FALSE;
978 }
979
980 if ((bfd_size_type) (p - namebuf) >= alc)
981 {
982 char *n;
983
984 alc *= 2;
985 n = bfd_realloc (namebuf, alc + 1);
986 if (n == NULL)
987 {
988 free (namebuf);
989 return FALSE;
990 }
991 p = n + (p - namebuf);
992 namebuf = n;
993 }
994
995 *p++ = b;
996 }
997 while (b != '\0');
998
999 if (major_vno == 0)
1000 *p = '\0';
1001 else
1002 {
1003 char majbuf[30];
1004 char minbuf[30];
1005
1006 sprintf (majbuf, ".%d", major_vno);
1007 if (minor_vno == 0)
1008 minbuf[0] = '\0';
1009 else
1010 sprintf (minbuf, ".%d", minor_vno);
1011
1012 if ((p - namebuf) + strlen (majbuf) + strlen (minbuf) >= alc)
1013 {
1014 char *n;
1015
1016 alc = (p - namebuf) + strlen (majbuf) + strlen (minbuf);
1017 n = bfd_realloc (namebuf, alc + 1);
1018 if (n == NULL)
1019 {
1020 free (namebuf);
1021 return FALSE;
1022 }
1023 p = n + (p - namebuf);
1024 namebuf = n;
1025 }
1026
1027 strcpy (p, majbuf);
1028 strcat (p, minbuf);
1029 }
1030
1031 namecopy = bfd_alloc (abfd, (bfd_size_type) strlen (namebuf) + 1);
1032 if (namecopy == NULL)
1033 {
1034 free (namebuf);
1035 return FALSE;
1036 }
1037 strcpy (namecopy, namebuf);
1038 free (namebuf);
1039 needed->name = namecopy;
1040
1041 needed->next = NULL;
1042
1043 for (pp = &sunos_hash_table (info)->needed;
1044 *pp != NULL;
1045 pp = &(*pp)->next)
1046 ;
1047 *pp = needed;
1048 }
1049
1050 return TRUE;
1051 }
1052
1053 /* Function to add a single symbol to the linker hash table. This is
1054 a wrapper around _bfd_generic_link_add_one_symbol which handles the
1055 tweaking needed for dynamic linking support. */
1056
1057 static bfd_boolean
1058 sunos_add_one_symbol (struct bfd_link_info *info,
1059 bfd *abfd,
1060 const char *name,
1061 flagword flags,
1062 asection *section,
1063 bfd_vma value,
1064 const char *string,
1065 bfd_boolean copy,
1066 bfd_boolean collect,
1067 struct bfd_link_hash_entry **hashp)
1068 {
1069 struct sunos_link_hash_entry *h;
1070 int new_flag;
1071
1072 if ((flags & (BSF_INDIRECT | BSF_WARNING | BSF_CONSTRUCTOR)) != 0
1073 || ! bfd_is_und_section (section))
1074 h = sunos_link_hash_lookup (sunos_hash_table (info), name, TRUE, copy,
1075 FALSE);
1076 else
1077 h = ((struct sunos_link_hash_entry *)
1078 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE));
1079 if (h == NULL)
1080 return FALSE;
1081
1082 if (hashp != NULL)
1083 *hashp = (struct bfd_link_hash_entry *) h;
1084
1085 /* Treat a common symbol in a dynamic object as defined in the .bss
1086 section of the dynamic object. We don't want to allocate space
1087 for it in our process image. */
1088 if ((abfd->flags & DYNAMIC) != 0
1089 && bfd_is_com_section (section))
1090 section = obj_bsssec (abfd);
1091
1092 if (! bfd_is_und_section (section)
1093 && h->root.root.type != bfd_link_hash_new
1094 && h->root.root.type != bfd_link_hash_undefined
1095 && h->root.root.type != bfd_link_hash_defweak)
1096 {
1097 /* We are defining the symbol, and it is already defined. This
1098 is a potential multiple definition error. */
1099 if ((abfd->flags & DYNAMIC) != 0)
1100 {
1101 /* The definition we are adding is from a dynamic object.
1102 We do not want this new definition to override the
1103 existing definition, so we pretend it is just a
1104 reference. */
1105 section = bfd_und_section_ptr;
1106 }
1107 else if (h->root.root.type == bfd_link_hash_defined
1108 && h->root.root.u.def.section->owner != NULL
1109 && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1110 {
1111 /* The existing definition is from a dynamic object. We
1112 want to override it with the definition we just found.
1113 Clobber the existing definition. */
1114 h->root.root.type = bfd_link_hash_undefined;
1115 h->root.root.u.undef.abfd = h->root.root.u.def.section->owner;
1116 }
1117 else if (h->root.root.type == bfd_link_hash_common
1118 && (h->root.root.u.c.p->section->owner->flags & DYNAMIC) != 0)
1119 {
1120 /* The existing definition is from a dynamic object. We
1121 want to override it with the definition we just found.
1122 Clobber the existing definition. We can't set it to new,
1123 because it is on the undefined list. */
1124 h->root.root.type = bfd_link_hash_undefined;
1125 h->root.root.u.undef.abfd = h->root.root.u.c.p->section->owner;
1126 }
1127 }
1128
1129 if ((abfd->flags & DYNAMIC) != 0
1130 && abfd->xvec == info->output_bfd->xvec
1131 && (h->flags & SUNOS_CONSTRUCTOR) != 0)
1132 /* The existing symbol is a constructor symbol, and this symbol
1133 is from a dynamic object. A constructor symbol is actually a
1134 definition, although the type will be bfd_link_hash_undefined
1135 at this point. We want to ignore the definition from the
1136 dynamic object. */
1137 section = bfd_und_section_ptr;
1138 else if ((flags & BSF_CONSTRUCTOR) != 0
1139 && (abfd->flags & DYNAMIC) == 0
1140 && h->root.root.type == bfd_link_hash_defined
1141 && h->root.root.u.def.section->owner != NULL
1142 && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1143 /* The existing symbol is defined by a dynamic object, and this
1144 is a constructor symbol. As above, we want to force the use
1145 of the constructor symbol from the regular object. */
1146 h->root.root.type = bfd_link_hash_new;
1147
1148 /* Do the usual procedure for adding a symbol. */
1149 if (! _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section,
1150 value, string, copy, collect,
1151 hashp))
1152 return FALSE;
1153
1154 if (abfd->xvec == info->output_bfd->xvec)
1155 {
1156 /* Set a flag in the hash table entry indicating the type of
1157 reference or definition we just found. Keep a count of the
1158 number of dynamic symbols we find. A dynamic symbol is one
1159 which is referenced or defined by both a regular object and a
1160 shared object. */
1161 if ((abfd->flags & DYNAMIC) == 0)
1162 {
1163 if (bfd_is_und_section (section))
1164 new_flag = SUNOS_REF_REGULAR;
1165 else
1166 new_flag = SUNOS_DEF_REGULAR;
1167 }
1168 else
1169 {
1170 if (bfd_is_und_section (section))
1171 new_flag = SUNOS_REF_DYNAMIC;
1172 else
1173 new_flag = SUNOS_DEF_DYNAMIC;
1174 }
1175 h->flags |= new_flag;
1176
1177 if (h->dynindx == -1
1178 && (h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
1179 {
1180 ++sunos_hash_table (info)->dynsymcount;
1181 h->dynindx = -2;
1182 }
1183
1184 if ((flags & BSF_CONSTRUCTOR) != 0
1185 && (abfd->flags & DYNAMIC) == 0)
1186 h->flags |= SUNOS_CONSTRUCTOR;
1187 }
1188
1189 return TRUE;
1190 }
1191
1192 extern const bfd_target MY (vec);
1193
1194 /* Return the list of objects needed by BFD. */
1195
1196 struct bfd_link_needed_list *
1197 bfd_sunos_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1198 struct bfd_link_info *info)
1199 {
1200 if (info->output_bfd->xvec != &MY (vec))
1201 return NULL;
1202 return sunos_hash_table (info)->needed;
1203 }
1204
1205 /* Record an assignment made to a symbol by a linker script. We need
1206 this in case some dynamic object refers to this symbol. */
1207
1208 bfd_boolean
1209 bfd_sunos_record_link_assignment (bfd *output_bfd,
1210 struct bfd_link_info *info,
1211 const char *name)
1212 {
1213 struct sunos_link_hash_entry *h;
1214
1215 if (output_bfd->xvec != &MY(vec))
1216 return TRUE;
1217
1218 /* This is called after we have examined all the input objects. If
1219 the symbol does not exist, it merely means that no object refers
1220 to it, and we can just ignore it at this point. */
1221 h = sunos_link_hash_lookup (sunos_hash_table (info), name,
1222 FALSE, FALSE, FALSE);
1223 if (h == NULL)
1224 return TRUE;
1225
1226 /* In a shared library, the __DYNAMIC symbol does not appear in the
1227 dynamic symbol table. */
1228 if (! info->shared || strcmp (name, "__DYNAMIC") != 0)
1229 {
1230 h->flags |= SUNOS_DEF_REGULAR;
1231
1232 if (h->dynindx == -1)
1233 {
1234 ++sunos_hash_table (info)->dynsymcount;
1235 h->dynindx = -2;
1236 }
1237 }
1238
1239 return TRUE;
1240 }
1241
1242 /* Scan the relocs for an input section using standard relocs. We
1243 need to figure out what to do for each reloc against a dynamic
1244 symbol. If the symbol is in the .text section, an entry is made in
1245 the procedure linkage table. Note that this will do the wrong
1246 thing if the symbol is actually data; I don't think the Sun 3
1247 native linker handles this case correctly either. If the symbol is
1248 not in the .text section, we must preserve the reloc as a dynamic
1249 reloc. FIXME: We should also handle the PIC relocs here by
1250 building global offset table entries. */
1251
1252 static bfd_boolean
1253 sunos_scan_std_relocs (struct bfd_link_info *info,
1254 bfd *abfd,
1255 asection *sec ATTRIBUTE_UNUSED,
1256 const struct reloc_std_external *relocs,
1257 bfd_size_type rel_size)
1258 {
1259 bfd *dynobj;
1260 asection *splt = NULL;
1261 asection *srel = NULL;
1262 struct sunos_link_hash_entry **sym_hashes;
1263 const struct reloc_std_external *rel, *relend;
1264
1265 /* We only know how to handle m68k plt entries. */
1266 if (bfd_get_arch (abfd) != bfd_arch_m68k)
1267 {
1268 bfd_set_error (bfd_error_invalid_target);
1269 return FALSE;
1270 }
1271
1272 dynobj = NULL;
1273
1274 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1275
1276 relend = relocs + rel_size / RELOC_STD_SIZE;
1277 for (rel = relocs; rel < relend; rel++)
1278 {
1279 int r_index;
1280 struct sunos_link_hash_entry *h;
1281
1282 /* We only want relocs against external symbols. */
1283 if (bfd_header_big_endian (abfd))
1284 {
1285 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG) == 0)
1286 continue;
1287 }
1288 else
1289 {
1290 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE) == 0)
1291 continue;
1292 }
1293
1294 /* Get the symbol index. */
1295 if (bfd_header_big_endian (abfd))
1296 r_index = ((rel->r_index[0] << 16)
1297 | (rel->r_index[1] << 8)
1298 | rel->r_index[2]);
1299 else
1300 r_index = ((rel->r_index[2] << 16)
1301 | (rel->r_index[1] << 8)
1302 | rel->r_index[0]);
1303
1304 /* Get the hash table entry. */
1305 h = sym_hashes[r_index];
1306 if (h == NULL)
1307 /* This should not normally happen, but it will in any case
1308 be caught in the relocation phase. */
1309 continue;
1310
1311 /* At this point common symbols have already been allocated, so
1312 we don't have to worry about them. We need to consider that
1313 we may have already seen this symbol and marked it undefined;
1314 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1315 will be zero. */
1316 if (h->root.root.type != bfd_link_hash_defined
1317 && h->root.root.type != bfd_link_hash_defweak
1318 && h->root.root.type != bfd_link_hash_undefined)
1319 continue;
1320
1321 if ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1322 || (h->flags & SUNOS_DEF_REGULAR) != 0)
1323 continue;
1324
1325 if (dynobj == NULL)
1326 {
1327 asection *sgot;
1328
1329 if (! sunos_create_dynamic_sections (abfd, info, FALSE))
1330 return FALSE;
1331 dynobj = sunos_hash_table (info)->dynobj;
1332 splt = bfd_get_linker_section (dynobj, ".plt");
1333 srel = bfd_get_linker_section (dynobj, ".dynrel");
1334 BFD_ASSERT (splt != NULL && srel != NULL);
1335
1336 sgot = bfd_get_linker_section (dynobj, ".got");
1337 BFD_ASSERT (sgot != NULL);
1338 if (sgot->size == 0)
1339 sgot->size = BYTES_IN_WORD;
1340 sunos_hash_table (info)->got_needed = TRUE;
1341 }
1342
1343 BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0);
1344 BFD_ASSERT (h->plt_offset != 0
1345 || ((h->root.root.type == bfd_link_hash_defined
1346 || h->root.root.type == bfd_link_hash_defweak)
1347 ? (h->root.root.u.def.section->owner->flags
1348 & DYNAMIC) != 0
1349 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
1350
1351 /* This reloc is against a symbol defined only by a dynamic
1352 object. */
1353 if (h->root.root.type == bfd_link_hash_undefined)
1354 /* Presumably this symbol was marked as being undefined by
1355 an earlier reloc. */
1356 srel->size += RELOC_STD_SIZE;
1357 else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0)
1358 {
1359 bfd *sub;
1360
1361 /* This reloc is not in the .text section. It must be
1362 copied into the dynamic relocs. We mark the symbol as
1363 being undefined. */
1364 srel->size += RELOC_STD_SIZE;
1365 sub = h->root.root.u.def.section->owner;
1366 h->root.root.type = bfd_link_hash_undefined;
1367 h->root.root.u.undef.abfd = sub;
1368 }
1369 else
1370 {
1371 /* This symbol is in the .text section. We must give it an
1372 entry in the procedure linkage table, if we have not
1373 already done so. We change the definition of the symbol
1374 to the .plt section; this will cause relocs against it to
1375 be handled correctly. */
1376 if (h->plt_offset == 0)
1377 {
1378 if (splt->size == 0)
1379 splt->size = M68K_PLT_ENTRY_SIZE;
1380 h->plt_offset = splt->size;
1381
1382 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1383 {
1384 h->root.root.u.def.section = splt;
1385 h->root.root.u.def.value = splt->size;
1386 }
1387
1388 splt->size += M68K_PLT_ENTRY_SIZE;
1389
1390 /* We may also need a dynamic reloc entry. */
1391 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1392 srel->size += RELOC_STD_SIZE;
1393 }
1394 }
1395 }
1396
1397 return TRUE;
1398 }
1399
1400 /* Scan the relocs for an input section using extended relocs. We
1401 need to figure out what to do for each reloc against a dynamic
1402 symbol. If the reloc is a WDISP30, and the symbol is in the .text
1403 section, an entry is made in the procedure linkage table.
1404 Otherwise, we must preserve the reloc as a dynamic reloc. */
1405
1406 static bfd_boolean
1407 sunos_scan_ext_relocs (struct bfd_link_info *info,
1408 bfd *abfd,
1409 asection *sec ATTRIBUTE_UNUSED,
1410 const struct reloc_ext_external *relocs,
1411 bfd_size_type rel_size)
1412 {
1413 bfd *dynobj;
1414 struct sunos_link_hash_entry **sym_hashes;
1415 const struct reloc_ext_external *rel, *relend;
1416 asection *splt = NULL;
1417 asection *sgot = NULL;
1418 asection *srel = NULL;
1419 bfd_size_type amt;
1420
1421 /* We only know how to handle SPARC plt entries. */
1422 if (bfd_get_arch (abfd) != bfd_arch_sparc)
1423 {
1424 bfd_set_error (bfd_error_invalid_target);
1425 return FALSE;
1426 }
1427
1428 dynobj = NULL;
1429
1430 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1431
1432 relend = relocs + rel_size / RELOC_EXT_SIZE;
1433 for (rel = relocs; rel < relend; rel++)
1434 {
1435 unsigned int r_index;
1436 int r_extern;
1437 int r_type;
1438 struct sunos_link_hash_entry *h = NULL;
1439
1440 /* Swap in the reloc information. */
1441 if (bfd_header_big_endian (abfd))
1442 {
1443 r_index = ((rel->r_index[0] << 16)
1444 | (rel->r_index[1] << 8)
1445 | rel->r_index[2]);
1446 r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
1447 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
1448 >> RELOC_EXT_BITS_TYPE_SH_BIG);
1449 }
1450 else
1451 {
1452 r_index = ((rel->r_index[2] << 16)
1453 | (rel->r_index[1] << 8)
1454 | rel->r_index[0]);
1455 r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
1456 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
1457 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
1458 }
1459
1460 if (r_extern)
1461 {
1462 h = sym_hashes[r_index];
1463 if (h == NULL)
1464 {
1465 /* This should not normally happen, but it will in any
1466 case be caught in the relocation phase. */
1467 continue;
1468 }
1469 }
1470
1471 /* If this is a base relative reloc, we need to make an entry in
1472 the .got section. */
1473 if (r_type == RELOC_BASE10
1474 || r_type == RELOC_BASE13
1475 || r_type == RELOC_BASE22)
1476 {
1477 if (dynobj == NULL)
1478 {
1479 if (! sunos_create_dynamic_sections (abfd, info, FALSE))
1480 return FALSE;
1481 dynobj = sunos_hash_table (info)->dynobj;
1482 splt = bfd_get_linker_section (dynobj, ".plt");
1483 sgot = bfd_get_linker_section (dynobj, ".got");
1484 srel = bfd_get_linker_section (dynobj, ".dynrel");
1485 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1486
1487 /* Make sure we have an initial entry in the .got table. */
1488 if (sgot->size == 0)
1489 sgot->size = BYTES_IN_WORD;
1490 sunos_hash_table (info)->got_needed = TRUE;
1491 }
1492
1493 if (r_extern)
1494 {
1495 if (h->got_offset != 0)
1496 continue;
1497
1498 h->got_offset = sgot->size;
1499 }
1500 else
1501 {
1502 if (r_index >= bfd_get_symcount (abfd))
1503 /* This is abnormal, but should be caught in the
1504 relocation phase. */
1505 continue;
1506
1507 if (adata (abfd).local_got_offsets == NULL)
1508 {
1509 amt = bfd_get_symcount (abfd);
1510 amt *= sizeof (bfd_vma);
1511 adata (abfd).local_got_offsets = bfd_zalloc (abfd, amt);
1512 if (adata (abfd).local_got_offsets == NULL)
1513 return FALSE;
1514 }
1515
1516 if (adata (abfd).local_got_offsets[r_index] != 0)
1517 continue;
1518
1519 adata (abfd).local_got_offsets[r_index] = sgot->size;
1520 }
1521
1522 sgot->size += BYTES_IN_WORD;
1523
1524 /* If we are making a shared library, or if the symbol is
1525 defined by a dynamic object, we will need a dynamic reloc
1526 entry. */
1527 if (info->shared
1528 || (h != NULL
1529 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1530 && (h->flags & SUNOS_DEF_REGULAR) == 0))
1531 srel->size += RELOC_EXT_SIZE;
1532
1533 continue;
1534 }
1535
1536 /* Otherwise, we are only interested in relocs against symbols
1537 defined in dynamic objects but not in regular objects. We
1538 only need to consider relocs against external symbols. */
1539 if (! r_extern)
1540 {
1541 /* But, if we are creating a shared library, we need to
1542 generate an absolute reloc. */
1543 if (info->shared)
1544 {
1545 if (dynobj == NULL)
1546 {
1547 if (! sunos_create_dynamic_sections (abfd, info, TRUE))
1548 return FALSE;
1549 dynobj = sunos_hash_table (info)->dynobj;
1550 splt = bfd_get_linker_section (dynobj, ".plt");
1551 sgot = bfd_get_linker_section (dynobj, ".got");
1552 srel = bfd_get_linker_section (dynobj, ".dynrel");
1553 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1554 }
1555
1556 srel->size += RELOC_EXT_SIZE;
1557 }
1558
1559 continue;
1560 }
1561
1562 /* At this point common symbols have already been allocated, so
1563 we don't have to worry about them. We need to consider that
1564 we may have already seen this symbol and marked it undefined;
1565 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1566 will be zero. */
1567 if (h->root.root.type != bfd_link_hash_defined
1568 && h->root.root.type != bfd_link_hash_defweak
1569 && h->root.root.type != bfd_link_hash_undefined)
1570 continue;
1571
1572 if (r_type != RELOC_JMP_TBL
1573 && ! info->shared
1574 && ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1575 || (h->flags & SUNOS_DEF_REGULAR) != 0))
1576 continue;
1577
1578 if (r_type == RELOC_JMP_TBL
1579 && ! info->shared
1580 && (h->flags & SUNOS_DEF_DYNAMIC) == 0
1581 && (h->flags & SUNOS_DEF_REGULAR) == 0)
1582 {
1583 /* This symbol is apparently undefined. Don't do anything
1584 here; just let the relocation routine report an undefined
1585 symbol. */
1586 continue;
1587 }
1588
1589 if (strcmp (h->root.root.root.string, "__GLOBAL_OFFSET_TABLE_") == 0)
1590 continue;
1591
1592 if (dynobj == NULL)
1593 {
1594 if (! sunos_create_dynamic_sections (abfd, info, FALSE))
1595 return FALSE;
1596 dynobj = sunos_hash_table (info)->dynobj;
1597 splt = bfd_get_linker_section (dynobj, ".plt");
1598 sgot = bfd_get_linker_section (dynobj, ".got");
1599 srel = bfd_get_linker_section (dynobj, ".dynrel");
1600 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1601
1602 /* Make sure we have an initial entry in the .got table. */
1603 if (sgot->size == 0)
1604 sgot->size = BYTES_IN_WORD;
1605 sunos_hash_table (info)->got_needed = TRUE;
1606 }
1607
1608 BFD_ASSERT (r_type == RELOC_JMP_TBL
1609 || info->shared
1610 || (h->flags & SUNOS_REF_REGULAR) != 0);
1611 BFD_ASSERT (r_type == RELOC_JMP_TBL
1612 || info->shared
1613 || h->plt_offset != 0
1614 || ((h->root.root.type == bfd_link_hash_defined
1615 || h->root.root.type == bfd_link_hash_defweak)
1616 ? (h->root.root.u.def.section->owner->flags
1617 & DYNAMIC) != 0
1618 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
1619
1620 /* This reloc is against a symbol defined only by a dynamic
1621 object, or it is a jump table reloc from PIC compiled code. */
1622
1623 if (r_type != RELOC_JMP_TBL
1624 && h->root.root.type == bfd_link_hash_undefined)
1625 /* Presumably this symbol was marked as being undefined by
1626 an earlier reloc. */
1627 srel->size += RELOC_EXT_SIZE;
1628
1629 else if (r_type != RELOC_JMP_TBL
1630 && (h->root.root.u.def.section->flags & SEC_CODE) == 0)
1631 {
1632 bfd *sub;
1633
1634 /* This reloc is not in the .text section. It must be
1635 copied into the dynamic relocs. We mark the symbol as
1636 being undefined. */
1637 srel->size += RELOC_EXT_SIZE;
1638 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1639 {
1640 sub = h->root.root.u.def.section->owner;
1641 h->root.root.type = bfd_link_hash_undefined;
1642 h->root.root.u.undef.abfd = sub;
1643 }
1644 }
1645 else
1646 {
1647 /* This symbol is in the .text section. We must give it an
1648 entry in the procedure linkage table, if we have not
1649 already done so. We change the definition of the symbol
1650 to the .plt section; this will cause relocs against it to
1651 be handled correctly. */
1652 if (h->plt_offset == 0)
1653 {
1654 if (splt->size == 0)
1655 splt->size = SPARC_PLT_ENTRY_SIZE;
1656 h->plt_offset = splt->size;
1657
1658 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1659 {
1660 if (h->root.root.type == bfd_link_hash_undefined)
1661 h->root.root.type = bfd_link_hash_defined;
1662 h->root.root.u.def.section = splt;
1663 h->root.root.u.def.value = splt->size;
1664 }
1665
1666 splt->size += SPARC_PLT_ENTRY_SIZE;
1667
1668 /* We will also need a dynamic reloc entry, unless this
1669 is a JMP_TBL reloc produced by linking PIC compiled
1670 code, and we are not making a shared library. */
1671 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
1672 srel->size += RELOC_EXT_SIZE;
1673 }
1674
1675 /* If we are creating a shared library, we need to copy over
1676 any reloc other than a jump table reloc. */
1677 if (info->shared && r_type != RELOC_JMP_TBL)
1678 srel->size += RELOC_EXT_SIZE;
1679 }
1680 }
1681
1682 return TRUE;
1683 }
1684
1685 /* Scan the relocs for an input section. */
1686
1687 static bfd_boolean
1688 sunos_scan_relocs (struct bfd_link_info *info,
1689 bfd *abfd,
1690 asection *sec,
1691 bfd_size_type rel_size)
1692 {
1693 void * relocs;
1694 void * free_relocs = NULL;
1695
1696 if (rel_size == 0)
1697 return TRUE;
1698
1699 if (! info->keep_memory)
1700 relocs = free_relocs = bfd_malloc (rel_size);
1701 else
1702 {
1703 struct aout_section_data_struct *n;
1704 bfd_size_type amt = sizeof (struct aout_section_data_struct);
1705
1706 n = bfd_alloc (abfd, amt);
1707 if (n == NULL)
1708 relocs = NULL;
1709 else
1710 {
1711 set_aout_section_data (sec, n);
1712 relocs = bfd_malloc (rel_size);
1713 aout_section_data (sec)->relocs = relocs;
1714 }
1715 }
1716 if (relocs == NULL)
1717 return FALSE;
1718
1719 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
1720 || bfd_bread (relocs, rel_size, abfd) != rel_size)
1721 goto error_return;
1722
1723 if (obj_reloc_entry_size (abfd) == RELOC_STD_SIZE)
1724 {
1725 if (! sunos_scan_std_relocs (info, abfd, sec,
1726 (struct reloc_std_external *) relocs,
1727 rel_size))
1728 goto error_return;
1729 }
1730 else
1731 {
1732 if (! sunos_scan_ext_relocs (info, abfd, sec,
1733 (struct reloc_ext_external *) relocs,
1734 rel_size))
1735 goto error_return;
1736 }
1737
1738 if (free_relocs != NULL)
1739 free (free_relocs);
1740
1741 return TRUE;
1742
1743 error_return:
1744 if (free_relocs != NULL)
1745 free (free_relocs);
1746 return FALSE;
1747 }
1748
1749 /* Build the hash table of dynamic symbols, and to mark as written all
1750 symbols from dynamic objects which we do not plan to write out. */
1751
1752 static bfd_boolean
1753 sunos_scan_dynamic_symbol (struct sunos_link_hash_entry *h, void * data)
1754 {
1755 struct bfd_link_info *info = (struct bfd_link_info *) data;
1756
1757 /* Set the written flag for symbols we do not want to write out as
1758 part of the regular symbol table. This is all symbols which are
1759 not defined in a regular object file. For some reason symbols
1760 which are referenced by a regular object and defined by a dynamic
1761 object do not seem to show up in the regular symbol table. It is
1762 possible for a symbol to have only SUNOS_REF_REGULAR set here, it
1763 is an undefined symbol which was turned into a common symbol
1764 because it was found in an archive object which was not included
1765 in the link. */
1766 if ((h->flags & SUNOS_DEF_REGULAR) == 0
1767 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1768 && strcmp (h->root.root.root.string, "__DYNAMIC") != 0)
1769 h->root.written = TRUE;
1770
1771 /* If this symbol is defined by a dynamic object and referenced by a
1772 regular object, see whether we gave it a reasonable value while
1773 scanning the relocs. */
1774 if ((h->flags & SUNOS_DEF_REGULAR) == 0
1775 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1776 && (h->flags & SUNOS_REF_REGULAR) != 0)
1777 {
1778 if ((h->root.root.type == bfd_link_hash_defined
1779 || h->root.root.type == bfd_link_hash_defweak)
1780 && ((h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1781 && h->root.root.u.def.section->output_section == NULL)
1782 {
1783 bfd *sub;
1784
1785 /* This symbol is currently defined in a dynamic section
1786 which is not being put into the output file. This
1787 implies that there is no reloc against the symbol. I'm
1788 not sure why this case would ever occur. In any case, we
1789 change the symbol to be undefined. */
1790 sub = h->root.root.u.def.section->owner;
1791 h->root.root.type = bfd_link_hash_undefined;
1792 h->root.root.u.undef.abfd = sub;
1793 }
1794 }
1795
1796 /* If this symbol is defined or referenced by a regular file, add it
1797 to the dynamic symbols. */
1798 if ((h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
1799 {
1800 asection *s;
1801 size_t len;
1802 bfd_byte *contents;
1803 unsigned char *name;
1804 unsigned long hash;
1805 bfd *dynobj;
1806
1807 BFD_ASSERT (h->dynindx == -2);
1808
1809 dynobj = sunos_hash_table (info)->dynobj;
1810
1811 h->dynindx = sunos_hash_table (info)->dynsymcount;
1812 ++sunos_hash_table (info)->dynsymcount;
1813
1814 len = strlen (h->root.root.root.string);
1815
1816 /* We don't bother to construct a BFD hash table for the strings
1817 which are the names of the dynamic symbols. Using a hash
1818 table for the regular symbols is beneficial, because the
1819 regular symbols includes the debugging symbols, which have
1820 long names and are often duplicated in several object files.
1821 There are no debugging symbols in the dynamic symbols. */
1822 s = bfd_get_linker_section (dynobj, ".dynstr");
1823 BFD_ASSERT (s != NULL);
1824 contents = bfd_realloc (s->contents, s->size + len + 1);
1825 if (contents == NULL)
1826 return FALSE;
1827 s->contents = contents;
1828
1829 h->dynstr_index = s->size;
1830 strcpy ((char *) contents + s->size, h->root.root.root.string);
1831 s->size += len + 1;
1832
1833 /* Add it to the dynamic hash table. */
1834 name = (unsigned char *) h->root.root.root.string;
1835 hash = 0;
1836 while (*name != '\0')
1837 hash = (hash << 1) + *name++;
1838 hash &= 0x7fffffff;
1839 hash %= sunos_hash_table (info)->bucketcount;
1840
1841 s = bfd_get_linker_section (dynobj, ".hash");
1842 BFD_ASSERT (s != NULL);
1843
1844 if (GET_SWORD (dynobj, s->contents + hash * HASH_ENTRY_SIZE) == -1)
1845 PUT_WORD (dynobj, h->dynindx, s->contents + hash * HASH_ENTRY_SIZE);
1846 else
1847 {
1848 bfd_vma next;
1849
1850 next = GET_WORD (dynobj,
1851 (s->contents
1852 + hash * HASH_ENTRY_SIZE
1853 + BYTES_IN_WORD));
1854 PUT_WORD (dynobj, s->size / HASH_ENTRY_SIZE,
1855 s->contents + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
1856 PUT_WORD (dynobj, h->dynindx, s->contents + s->size);
1857 PUT_WORD (dynobj, next, s->contents + s->size + BYTES_IN_WORD);
1858 s->size += HASH_ENTRY_SIZE;
1859 }
1860 }
1861
1862 return TRUE;
1863 }
1864
1865 /* Set up the sizes and contents of the dynamic sections created in
1866 sunos_add_dynamic_symbols. This is called by the SunOS linker
1867 emulation before_allocation routine. We must set the sizes of the
1868 sections before the linker sets the addresses of the various
1869 sections. This unfortunately requires reading all the relocs so
1870 that we can work out which ones need to become dynamic relocs. If
1871 info->keep_memory is TRUE, we keep the relocs in memory; otherwise,
1872 we discard them, and will read them again later. */
1873
1874 bfd_boolean
1875 bfd_sunos_size_dynamic_sections (bfd *output_bfd,
1876 struct bfd_link_info *info,
1877 asection **sdynptr,
1878 asection **sneedptr,
1879 asection **srulesptr)
1880 {
1881 bfd *dynobj;
1882 bfd_size_type dynsymcount;
1883 struct sunos_link_hash_entry *h;
1884 asection *s;
1885 size_t bucketcount;
1886 bfd_size_type hashalloc;
1887 size_t i;
1888 bfd *sub;
1889
1890 *sdynptr = NULL;
1891 *sneedptr = NULL;
1892 *srulesptr = NULL;
1893
1894 if (info->relocatable)
1895 return TRUE;
1896
1897 if (output_bfd->xvec != &MY(vec))
1898 return TRUE;
1899
1900 /* Look through all the input BFD's and read their relocs. It would
1901 be better if we didn't have to do this, but there is no other way
1902 to determine the number of dynamic relocs we need, and, more
1903 importantly, there is no other way to know which symbols should
1904 get an entry in the procedure linkage table. */
1905 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
1906 {
1907 if ((sub->flags & DYNAMIC) == 0
1908 && sub->xvec == output_bfd->xvec)
1909 {
1910 if (! sunos_scan_relocs (info, sub, obj_textsec (sub),
1911 exec_hdr (sub)->a_trsize)
1912 || ! sunos_scan_relocs (info, sub, obj_datasec (sub),
1913 exec_hdr (sub)->a_drsize))
1914 return FALSE;
1915 }
1916 }
1917
1918 dynobj = sunos_hash_table (info)->dynobj;
1919 dynsymcount = sunos_hash_table (info)->dynsymcount;
1920
1921 /* If there were no dynamic objects in the link, and we don't need
1922 to build a global offset table, there is nothing to do here. */
1923 if (! sunos_hash_table (info)->dynamic_sections_needed
1924 && ! sunos_hash_table (info)->got_needed)
1925 return TRUE;
1926
1927 /* If __GLOBAL_OFFSET_TABLE_ was mentioned, define it. */
1928 h = sunos_link_hash_lookup (sunos_hash_table (info),
1929 "__GLOBAL_OFFSET_TABLE_", FALSE, FALSE, FALSE);
1930 if (h != NULL && (h->flags & SUNOS_REF_REGULAR) != 0)
1931 {
1932 h->flags |= SUNOS_DEF_REGULAR;
1933 if (h->dynindx == -1)
1934 {
1935 ++sunos_hash_table (info)->dynsymcount;
1936 h->dynindx = -2;
1937 }
1938 s = bfd_get_linker_section (dynobj, ".got");
1939 BFD_ASSERT (s != NULL);
1940 h->root.root.type = bfd_link_hash_defined;
1941 h->root.root.u.def.section = s;
1942
1943 /* If the .got section is more than 0x1000 bytes, we set
1944 __GLOBAL_OFFSET_TABLE_ to be 0x1000 bytes into the section,
1945 so that 13 bit relocations have a greater chance of working. */
1946 if (s->size >= 0x1000)
1947 h->root.root.u.def.value = 0x1000;
1948 else
1949 h->root.root.u.def.value = 0;
1950
1951 sunos_hash_table (info)->got_base = h->root.root.u.def.value;
1952 }
1953
1954 /* If there are any shared objects in the link, then we need to set
1955 up the dynamic linking information. */
1956 if (sunos_hash_table (info)->dynamic_sections_needed)
1957 {
1958 *sdynptr = bfd_get_linker_section (dynobj, ".dynamic");
1959
1960 /* The .dynamic section is always the same size. */
1961 s = *sdynptr;
1962 BFD_ASSERT (s != NULL);
1963 s->size = (sizeof (struct external_sun4_dynamic)
1964 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE
1965 + sizeof (struct external_sun4_dynamic_link));
1966
1967 /* Set the size of the .dynsym and .hash sections. We counted
1968 the number of dynamic symbols as we read the input files. We
1969 will build the dynamic symbol table (.dynsym) and the hash
1970 table (.hash) when we build the final symbol table, because
1971 until then we do not know the correct value to give the
1972 symbols. We build the dynamic symbol string table (.dynstr)
1973 in a traversal of the symbol table using
1974 sunos_scan_dynamic_symbol. */
1975 s = bfd_get_linker_section (dynobj, ".dynsym");
1976 BFD_ASSERT (s != NULL);
1977 s->size = dynsymcount * sizeof (struct external_nlist);
1978 s->contents = bfd_alloc (output_bfd, s->size);
1979 if (s->contents == NULL && s->size != 0)
1980 return FALSE;
1981
1982 /* The number of buckets is just the number of symbols divided
1983 by four. To compute the final size of the hash table, we
1984 must actually compute the hash table. Normally we need
1985 exactly as many entries in the hash table as there are
1986 dynamic symbols, but if some of the buckets are not used we
1987 will need additional entries. In the worst case, every
1988 symbol will hash to the same bucket, and we will need
1989 BUCKETCOUNT - 1 extra entries. */
1990 if (dynsymcount >= 4)
1991 bucketcount = dynsymcount / 4;
1992 else if (dynsymcount > 0)
1993 bucketcount = dynsymcount;
1994 else
1995 bucketcount = 1;
1996 s = bfd_get_linker_section (dynobj, ".hash");
1997 BFD_ASSERT (s != NULL);
1998 hashalloc = (dynsymcount + bucketcount - 1) * HASH_ENTRY_SIZE;
1999 s->contents = bfd_zalloc (dynobj, hashalloc);
2000 if (s->contents == NULL && dynsymcount > 0)
2001 return FALSE;
2002 for (i = 0; i < bucketcount; i++)
2003 PUT_WORD (output_bfd, (bfd_vma) -1, s->contents + i * HASH_ENTRY_SIZE);
2004 s->size = bucketcount * HASH_ENTRY_SIZE;
2005
2006 sunos_hash_table (info)->bucketcount = bucketcount;
2007
2008 /* Scan all the symbols, place them in the dynamic symbol table,
2009 and build the dynamic hash table. We reuse dynsymcount as a
2010 counter for the number of symbols we have added so far. */
2011 sunos_hash_table (info)->dynsymcount = 0;
2012 sunos_link_hash_traverse (sunos_hash_table (info),
2013 sunos_scan_dynamic_symbol,
2014 (void *) info);
2015 BFD_ASSERT (sunos_hash_table (info)->dynsymcount == dynsymcount);
2016
2017 /* The SunOS native linker seems to align the total size of the
2018 symbol strings to a multiple of 8. I don't know if this is
2019 important, but it can't hurt much. */
2020 s = bfd_get_linker_section (dynobj, ".dynstr");
2021 BFD_ASSERT (s != NULL);
2022 if ((s->size & 7) != 0)
2023 {
2024 bfd_size_type add;
2025 bfd_byte *contents;
2026
2027 add = 8 - (s->size & 7);
2028 contents = bfd_realloc (s->contents, s->size + add);
2029 if (contents == NULL)
2030 return FALSE;
2031 memset (contents + s->size, 0, (size_t) add);
2032 s->contents = contents;
2033 s->size += add;
2034 }
2035 }
2036
2037 /* Now that we have worked out the sizes of the procedure linkage
2038 table and the dynamic relocs, allocate storage for them. */
2039 s = bfd_get_linker_section (dynobj, ".plt");
2040 BFD_ASSERT (s != NULL);
2041 if (s->size != 0)
2042 {
2043 s->contents = bfd_alloc (dynobj, s->size);
2044 if (s->contents == NULL)
2045 return FALSE;
2046
2047 /* Fill in the first entry in the table. */
2048 switch (bfd_get_arch (dynobj))
2049 {
2050 case bfd_arch_sparc:
2051 memcpy (s->contents, sparc_plt_first_entry, SPARC_PLT_ENTRY_SIZE);
2052 break;
2053
2054 case bfd_arch_m68k:
2055 memcpy (s->contents, m68k_plt_first_entry, M68K_PLT_ENTRY_SIZE);
2056 break;
2057
2058 default:
2059 abort ();
2060 }
2061 }
2062
2063 s = bfd_get_linker_section (dynobj, ".dynrel");
2064 if (s->size != 0)
2065 {
2066 s->contents = bfd_alloc (dynobj, s->size);
2067 if (s->contents == NULL)
2068 return FALSE;
2069 }
2070 /* We use the reloc_count field to keep track of how many of the
2071 relocs we have output so far. */
2072 s->reloc_count = 0;
2073
2074 /* Make space for the global offset table. */
2075 s = bfd_get_linker_section (dynobj, ".got");
2076 s->contents = bfd_alloc (dynobj, s->size);
2077 if (s->contents == NULL)
2078 return FALSE;
2079
2080 *sneedptr = bfd_get_section_by_name (dynobj, ".need");
2081 *srulesptr = bfd_get_section_by_name (dynobj, ".rules");
2082
2083 return TRUE;
2084 }
2085
2086 /* Link a dynamic object. We actually don't have anything to do at
2087 this point. This entry point exists to prevent the regular linker
2088 code from doing anything with the object. */
2089
2090 static bfd_boolean
2091 sunos_link_dynamic_object (struct bfd_link_info *info ATTRIBUTE_UNUSED,
2092 bfd *abfd ATTRIBUTE_UNUSED)
2093 {
2094 return TRUE;
2095 }
2096
2097 /* Write out a dynamic symbol. This is called by the final traversal
2098 over the symbol table. */
2099
2100 static bfd_boolean
2101 sunos_write_dynamic_symbol (bfd *output_bfd,
2102 struct bfd_link_info *info,
2103 struct aout_link_hash_entry *harg)
2104 {
2105 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
2106 int type;
2107 bfd_vma val;
2108 asection *s;
2109 struct external_nlist *outsym;
2110
2111 /* If this symbol is in the procedure linkage table, fill in the
2112 table entry. */
2113 if (h->plt_offset != 0)
2114 {
2115 bfd *dynobj;
2116 asection *splt;
2117 bfd_byte *p;
2118 bfd_vma r_address;
2119
2120 dynobj = sunos_hash_table (info)->dynobj;
2121 splt = bfd_get_linker_section (dynobj, ".plt");
2122 p = splt->contents + h->plt_offset;
2123
2124 s = bfd_get_linker_section (dynobj, ".dynrel");
2125
2126 r_address = (splt->output_section->vma
2127 + splt->output_offset
2128 + h->plt_offset);
2129
2130 switch (bfd_get_arch (output_bfd))
2131 {
2132 case bfd_arch_sparc:
2133 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
2134 {
2135 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD0, p);
2136 bfd_put_32 (output_bfd,
2137 (SPARC_PLT_ENTRY_WORD1
2138 + (((- (h->plt_offset + 4) >> 2)
2139 & 0x3fffffff))),
2140 p + 4);
2141 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD2 + s->reloc_count,
2142 p + 8);
2143 }
2144 else
2145 {
2146 val = (h->root.root.u.def.section->output_section->vma
2147 + h->root.root.u.def.section->output_offset
2148 + h->root.root.u.def.value);
2149 bfd_put_32 (output_bfd,
2150 SPARC_PLT_PIC_WORD0 + ((val >> 10) & 0x3fffff),
2151 p);
2152 bfd_put_32 (output_bfd,
2153 SPARC_PLT_PIC_WORD1 + (val & 0x3ff),
2154 p + 4);
2155 bfd_put_32 (output_bfd, SPARC_PLT_PIC_WORD2, p + 8);
2156 }
2157 break;
2158
2159 case bfd_arch_m68k:
2160 if (! info->shared && (h->flags & SUNOS_DEF_REGULAR) != 0)
2161 abort ();
2162 bfd_put_16 (output_bfd, M68K_PLT_ENTRY_WORD0, p);
2163 bfd_put_32 (output_bfd, (- (h->plt_offset + 2)), p + 2);
2164 bfd_put_16 (output_bfd, (bfd_vma) s->reloc_count, p + 6);
2165 r_address += 2;
2166 break;
2167
2168 default:
2169 abort ();
2170 }
2171
2172 /* We also need to add a jump table reloc, unless this is the
2173 result of a JMP_TBL reloc from PIC compiled code. */
2174 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
2175 {
2176 BFD_ASSERT (h->dynindx >= 0);
2177 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
2178 < s->size);
2179 p = s->contents + s->reloc_count * obj_reloc_entry_size (output_bfd);
2180 if (obj_reloc_entry_size (output_bfd) == RELOC_STD_SIZE)
2181 {
2182 struct reloc_std_external *srel;
2183
2184 srel = (struct reloc_std_external *) p;
2185 PUT_WORD (output_bfd, r_address, srel->r_address);
2186 if (bfd_header_big_endian (output_bfd))
2187 {
2188 srel->r_index[0] = (bfd_byte) (h->dynindx >> 16);
2189 srel->r_index[1] = (bfd_byte) (h->dynindx >> 8);
2190 srel->r_index[2] = (bfd_byte) (h->dynindx);
2191 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_BIG
2192 | RELOC_STD_BITS_JMPTABLE_BIG);
2193 }
2194 else
2195 {
2196 srel->r_index[2] = (bfd_byte) (h->dynindx >> 16);
2197 srel->r_index[1] = (bfd_byte) (h->dynindx >> 8);
2198 srel->r_index[0] = (bfd_byte)h->dynindx;
2199 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_LITTLE
2200 | RELOC_STD_BITS_JMPTABLE_LITTLE);
2201 }
2202 }
2203 else
2204 {
2205 struct reloc_ext_external *erel;
2206
2207 erel = (struct reloc_ext_external *) p;
2208 PUT_WORD (output_bfd, r_address, erel->r_address);
2209 if (bfd_header_big_endian (output_bfd))
2210 {
2211 erel->r_index[0] = (bfd_byte) (h->dynindx >> 16);
2212 erel->r_index[1] = (bfd_byte) (h->dynindx >> 8);
2213 erel->r_index[2] = (bfd_byte)h->dynindx;
2214 erel->r_type[0] =
2215 (RELOC_EXT_BITS_EXTERN_BIG
2216 | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_BIG));
2217 }
2218 else
2219 {
2220 erel->r_index[2] = (bfd_byte) (h->dynindx >> 16);
2221 erel->r_index[1] = (bfd_byte) (h->dynindx >> 8);
2222 erel->r_index[0] = (bfd_byte)h->dynindx;
2223 erel->r_type[0] =
2224 (RELOC_EXT_BITS_EXTERN_LITTLE
2225 | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_LITTLE));
2226 }
2227 PUT_WORD (output_bfd, (bfd_vma) 0, erel->r_addend);
2228 }
2229
2230 ++s->reloc_count;
2231 }
2232 }
2233
2234 /* If this is not a dynamic symbol, we don't have to do anything
2235 else. We only check this after handling the PLT entry, because
2236 we can have a PLT entry for a nondynamic symbol when linking PIC
2237 compiled code from a regular object. */
2238 if (h->dynindx < 0)
2239 return TRUE;
2240
2241 switch (h->root.root.type)
2242 {
2243 default:
2244 case bfd_link_hash_new:
2245 abort ();
2246 /* Avoid variable not initialized warnings. */
2247 return TRUE;
2248 case bfd_link_hash_undefined:
2249 type = N_UNDF | N_EXT;
2250 val = 0;
2251 break;
2252 case bfd_link_hash_defined:
2253 case bfd_link_hash_defweak:
2254 {
2255 asection *sec;
2256 asection *output_section;
2257
2258 sec = h->root.root.u.def.section;
2259 output_section = sec->output_section;
2260 BFD_ASSERT (bfd_is_abs_section (output_section)
2261 || output_section->owner == output_bfd);
2262 if (h->plt_offset != 0
2263 && (h->flags & SUNOS_DEF_REGULAR) == 0)
2264 {
2265 type = N_UNDF | N_EXT;
2266 val = 0;
2267 }
2268 else
2269 {
2270 if (output_section == obj_textsec (output_bfd))
2271 type = (h->root.root.type == bfd_link_hash_defined
2272 ? N_TEXT
2273 : N_WEAKT);
2274 else if (output_section == obj_datasec (output_bfd))
2275 type = (h->root.root.type == bfd_link_hash_defined
2276 ? N_DATA
2277 : N_WEAKD);
2278 else if (output_section == obj_bsssec (output_bfd))
2279 type = (h->root.root.type == bfd_link_hash_defined
2280 ? N_BSS
2281 : N_WEAKB);
2282 else
2283 type = (h->root.root.type == bfd_link_hash_defined
2284 ? N_ABS
2285 : N_WEAKA);
2286 type |= N_EXT;
2287 val = (h->root.root.u.def.value
2288 + output_section->vma
2289 + sec->output_offset);
2290 }
2291 }
2292 break;
2293 case bfd_link_hash_common:
2294 type = N_UNDF | N_EXT;
2295 val = h->root.root.u.c.size;
2296 break;
2297 case bfd_link_hash_undefweak:
2298 type = N_WEAKU;
2299 val = 0;
2300 break;
2301 case bfd_link_hash_indirect:
2302 case bfd_link_hash_warning:
2303 /* FIXME: Ignore these for now. The circumstances under which
2304 they should be written out are not clear to me. */
2305 return TRUE;
2306 }
2307
2308 s = bfd_get_linker_section (sunos_hash_table (info)->dynobj, ".dynsym");
2309 BFD_ASSERT (s != NULL);
2310 outsym = ((struct external_nlist *)
2311 (s->contents + h->dynindx * EXTERNAL_NLIST_SIZE));
2312
2313 H_PUT_8 (output_bfd, type, outsym->e_type);
2314 H_PUT_8 (output_bfd, 0, outsym->e_other);
2315
2316 /* FIXME: The native linker doesn't use 0 for desc. It seems to use
2317 one less than the desc value in the shared library, although that
2318 seems unlikely. */
2319 H_PUT_16 (output_bfd, 0, outsym->e_desc);
2320
2321 PUT_WORD (output_bfd, h->dynstr_index, outsym->e_strx);
2322 PUT_WORD (output_bfd, val, outsym->e_value);
2323
2324 return TRUE;
2325 }
2326
2327 /* This is called for each reloc against an external symbol. If this
2328 is a reloc which are are going to copy as a dynamic reloc, then
2329 copy it over, and tell the caller to not bother processing this
2330 reloc. */
2331
2332 static bfd_boolean
2333 sunos_check_dynamic_reloc (struct bfd_link_info *info,
2334 bfd *input_bfd,
2335 asection *input_section,
2336 struct aout_link_hash_entry *harg,
2337 void * reloc,
2338 bfd_byte *contents ATTRIBUTE_UNUSED,
2339 bfd_boolean *skip,
2340 bfd_vma *relocationp)
2341 {
2342 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
2343 bfd *dynobj;
2344 bfd_boolean baserel;
2345 bfd_boolean jmptbl;
2346 bfd_boolean pcrel;
2347 asection *s;
2348 bfd_byte *p;
2349 long indx;
2350
2351 *skip = FALSE;
2352
2353 dynobj = sunos_hash_table (info)->dynobj;
2354
2355 if (h != NULL
2356 && h->plt_offset != 0
2357 && (info->shared
2358 || (h->flags & SUNOS_DEF_REGULAR) == 0))
2359 {
2360 asection *splt;
2361
2362 /* Redirect the relocation to the PLT entry. */
2363 splt = bfd_get_linker_section (dynobj, ".plt");
2364 *relocationp = (splt->output_section->vma
2365 + splt->output_offset
2366 + h->plt_offset);
2367 }
2368
2369 if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
2370 {
2371 struct reloc_std_external *srel;
2372
2373 srel = (struct reloc_std_external *) reloc;
2374 if (bfd_header_big_endian (input_bfd))
2375 {
2376 baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
2377 jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
2378 pcrel = (0 != (srel->r_type[0] & RELOC_STD_BITS_PCREL_BIG));
2379 }
2380 else
2381 {
2382 baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
2383 jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE));
2384 pcrel = (0 != (srel->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE));
2385 }
2386 }
2387 else
2388 {
2389 struct reloc_ext_external *erel;
2390 int r_type;
2391
2392 erel = (struct reloc_ext_external *) reloc;
2393 if (bfd_header_big_endian (input_bfd))
2394 r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
2395 >> RELOC_EXT_BITS_TYPE_SH_BIG);
2396 else
2397 r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
2398 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
2399 baserel = (r_type == RELOC_BASE10
2400 || r_type == RELOC_BASE13
2401 || r_type == RELOC_BASE22);
2402 jmptbl = r_type == RELOC_JMP_TBL;
2403 pcrel = (r_type == RELOC_DISP8
2404 || r_type == RELOC_DISP16
2405 || r_type == RELOC_DISP32
2406 || r_type == RELOC_WDISP30
2407 || r_type == RELOC_WDISP22);
2408 /* We don't consider the PC10 and PC22 types to be PC relative,
2409 because they are pcrel_offset. */
2410 }
2411
2412 if (baserel)
2413 {
2414 bfd_vma *got_offsetp;
2415 asection *sgot;
2416
2417 if (h != NULL)
2418 got_offsetp = &h->got_offset;
2419 else if (adata (input_bfd).local_got_offsets == NULL)
2420 got_offsetp = NULL;
2421 else
2422 {
2423 struct reloc_std_external *srel;
2424 int r_index;
2425
2426 srel = (struct reloc_std_external *) reloc;
2427 if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
2428 {
2429 if (bfd_header_big_endian (input_bfd))
2430 r_index = ((srel->r_index[0] << 16)
2431 | (srel->r_index[1] << 8)
2432 | srel->r_index[2]);
2433 else
2434 r_index = ((srel->r_index[2] << 16)
2435 | (srel->r_index[1] << 8)
2436 | srel->r_index[0]);
2437 }
2438 else
2439 {
2440 struct reloc_ext_external *erel;
2441
2442 erel = (struct reloc_ext_external *) reloc;
2443 if (bfd_header_big_endian (input_bfd))
2444 r_index = ((erel->r_index[0] << 16)
2445 | (erel->r_index[1] << 8)
2446 | erel->r_index[2]);
2447 else
2448 r_index = ((erel->r_index[2] << 16)
2449 | (erel->r_index[1] << 8)
2450 | erel->r_index[0]);
2451 }
2452
2453 got_offsetp = adata (input_bfd).local_got_offsets + r_index;
2454 }
2455
2456 BFD_ASSERT (got_offsetp != NULL && *got_offsetp != 0);
2457
2458 sgot = bfd_get_linker_section (dynobj, ".got");
2459
2460 /* We set the least significant bit to indicate whether we have
2461 already initialized the GOT entry. */
2462 if ((*got_offsetp & 1) == 0)
2463 {
2464 if (h == NULL
2465 || (! info->shared
2466 && ((h->flags & SUNOS_DEF_DYNAMIC) == 0
2467 || (h->flags & SUNOS_DEF_REGULAR) != 0)))
2468 PUT_WORD (dynobj, *relocationp, sgot->contents + *got_offsetp);
2469 else
2470 PUT_WORD (dynobj, 0, sgot->contents + *got_offsetp);
2471
2472 if (info->shared
2473 || (h != NULL
2474 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
2475 && (h->flags & SUNOS_DEF_REGULAR) == 0))
2476 {
2477 /* We need to create a GLOB_DAT or 32 reloc to tell the
2478 dynamic linker to fill in this entry in the table. */
2479
2480 s = bfd_get_linker_section (dynobj, ".dynrel");
2481 BFD_ASSERT (s != NULL);
2482 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
2483 < s->size);
2484
2485 p = (s->contents
2486 + s->reloc_count * obj_reloc_entry_size (dynobj));
2487
2488 if (h != NULL)
2489 indx = h->dynindx;
2490 else
2491 indx = 0;
2492
2493 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
2494 {
2495 struct reloc_std_external *srel;
2496
2497 srel = (struct reloc_std_external *) p;
2498 PUT_WORD (dynobj,
2499 (*got_offsetp
2500 + sgot->output_section->vma
2501 + sgot->output_offset),
2502 srel->r_address);
2503 if (bfd_header_big_endian (dynobj))
2504 {
2505 srel->r_index[0] = (bfd_byte) (indx >> 16);
2506 srel->r_index[1] = (bfd_byte) (indx >> 8);
2507 srel->r_index[2] = (bfd_byte)indx;
2508 if (h == NULL)
2509 srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_BIG;
2510 else
2511 srel->r_type[0] =
2512 (RELOC_STD_BITS_EXTERN_BIG
2513 | RELOC_STD_BITS_BASEREL_BIG
2514 | RELOC_STD_BITS_RELATIVE_BIG
2515 | (2 << RELOC_STD_BITS_LENGTH_SH_BIG));
2516 }
2517 else
2518 {
2519 srel->r_index[2] = (bfd_byte) (indx >> 16);
2520 srel->r_index[1] = (bfd_byte) (indx >> 8);
2521 srel->r_index[0] = (bfd_byte)indx;
2522 if (h == NULL)
2523 srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_LITTLE;
2524 else
2525 srel->r_type[0] =
2526 (RELOC_STD_BITS_EXTERN_LITTLE
2527 | RELOC_STD_BITS_BASEREL_LITTLE
2528 | RELOC_STD_BITS_RELATIVE_LITTLE
2529 | (2 << RELOC_STD_BITS_LENGTH_SH_LITTLE));
2530 }
2531 }
2532 else
2533 {
2534 struct reloc_ext_external *erel;
2535
2536 erel = (struct reloc_ext_external *) p;
2537 PUT_WORD (dynobj,
2538 (*got_offsetp
2539 + sgot->output_section->vma
2540 + sgot->output_offset),
2541 erel->r_address);
2542 if (bfd_header_big_endian (dynobj))
2543 {
2544 erel->r_index[0] = (bfd_byte) (indx >> 16);
2545 erel->r_index[1] = (bfd_byte) (indx >> 8);
2546 erel->r_index[2] = (bfd_byte)indx;
2547 if (h == NULL)
2548 erel->r_type[0] =
2549 RELOC_32 << RELOC_EXT_BITS_TYPE_SH_BIG;
2550 else
2551 erel->r_type[0] =
2552 (RELOC_EXT_BITS_EXTERN_BIG
2553 | (RELOC_GLOB_DAT << RELOC_EXT_BITS_TYPE_SH_BIG));
2554 }
2555 else
2556 {
2557 erel->r_index[2] = (bfd_byte) (indx >> 16);
2558 erel->r_index[1] = (bfd_byte) (indx >> 8);
2559 erel->r_index[0] = (bfd_byte)indx;
2560 if (h == NULL)
2561 erel->r_type[0] =
2562 RELOC_32 << RELOC_EXT_BITS_TYPE_SH_LITTLE;
2563 else
2564 erel->r_type[0] =
2565 (RELOC_EXT_BITS_EXTERN_LITTLE
2566 | (RELOC_GLOB_DAT
2567 << RELOC_EXT_BITS_TYPE_SH_LITTLE));
2568 }
2569 PUT_WORD (dynobj, 0, erel->r_addend);
2570 }
2571
2572 ++s->reloc_count;
2573 }
2574
2575 *got_offsetp |= 1;
2576 }
2577
2578 *relocationp = (sgot->vma
2579 + (*got_offsetp &~ (bfd_vma) 1)
2580 - sunos_hash_table (info)->got_base);
2581
2582 /* There is nothing else to do for a base relative reloc. */
2583 return TRUE;
2584 }
2585
2586 if (! sunos_hash_table (info)->dynamic_sections_needed)
2587 return TRUE;
2588 if (! info->shared)
2589 {
2590 if (h == NULL
2591 || h->dynindx == -1
2592 || h->root.root.type != bfd_link_hash_undefined
2593 || (h->flags & SUNOS_DEF_REGULAR) != 0
2594 || (h->flags & SUNOS_DEF_DYNAMIC) == 0
2595 || (h->root.root.u.undef.abfd->flags & DYNAMIC) == 0)
2596 return TRUE;
2597 }
2598 else
2599 {
2600 if (h != NULL
2601 && (h->dynindx == -1
2602 || jmptbl
2603 || strcmp (h->root.root.root.string,
2604 "__GLOBAL_OFFSET_TABLE_") == 0))
2605 return TRUE;
2606 }
2607
2608 /* It looks like this is a reloc we are supposed to copy. */
2609
2610 s = bfd_get_linker_section (dynobj, ".dynrel");
2611 BFD_ASSERT (s != NULL);
2612 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) < s->size);
2613
2614 p = s->contents + s->reloc_count * obj_reloc_entry_size (dynobj);
2615
2616 /* Copy the reloc over. */
2617 memcpy (p, reloc, obj_reloc_entry_size (dynobj));
2618
2619 if (h != NULL)
2620 indx = h->dynindx;
2621 else
2622 indx = 0;
2623
2624 /* Adjust the address and symbol index. */
2625 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
2626 {
2627 struct reloc_std_external *srel;
2628
2629 srel = (struct reloc_std_external *) p;
2630 PUT_WORD (dynobj,
2631 (GET_WORD (dynobj, srel->r_address)
2632 + input_section->output_section->vma
2633 + input_section->output_offset),
2634 srel->r_address);
2635 if (bfd_header_big_endian (dynobj))
2636 {
2637 srel->r_index[0] = (bfd_byte) (indx >> 16);
2638 srel->r_index[1] = (bfd_byte) (indx >> 8);
2639 srel->r_index[2] = (bfd_byte)indx;
2640 }
2641 else
2642 {
2643 srel->r_index[2] = (bfd_byte) (indx >> 16);
2644 srel->r_index[1] = (bfd_byte) (indx >> 8);
2645 srel->r_index[0] = (bfd_byte)indx;
2646 }
2647 /* FIXME: We may have to change the addend for a PC relative
2648 reloc. */
2649 }
2650 else
2651 {
2652 struct reloc_ext_external *erel;
2653
2654 erel = (struct reloc_ext_external *) p;
2655 PUT_WORD (dynobj,
2656 (GET_WORD (dynobj, erel->r_address)
2657 + input_section->output_section->vma
2658 + input_section->output_offset),
2659 erel->r_address);
2660 if (bfd_header_big_endian (dynobj))
2661 {
2662 erel->r_index[0] = (bfd_byte) (indx >> 16);
2663 erel->r_index[1] = (bfd_byte) (indx >> 8);
2664 erel->r_index[2] = (bfd_byte)indx;
2665 }
2666 else
2667 {
2668 erel->r_index[2] = (bfd_byte) (indx >> 16);
2669 erel->r_index[1] = (bfd_byte) (indx >> 8);
2670 erel->r_index[0] = (bfd_byte)indx;
2671 }
2672 if (pcrel && h != NULL)
2673 {
2674 /* Adjust the addend for the change in address. */
2675 PUT_WORD (dynobj,
2676 (GET_WORD (dynobj, erel->r_addend)
2677 - (input_section->output_section->vma
2678 + input_section->output_offset
2679 - input_section->vma)),
2680 erel->r_addend);
2681 }
2682 }
2683
2684 ++s->reloc_count;
2685
2686 if (h != NULL)
2687 *skip = TRUE;
2688
2689 return TRUE;
2690 }
2691
2692 /* Finish up the dynamic linking information. */
2693
2694 static bfd_boolean
2695 sunos_finish_dynamic_link (bfd *abfd, struct bfd_link_info *info)
2696 {
2697 bfd *dynobj;
2698 asection *o;
2699 asection *s;
2700 asection *sdyn;
2701
2702 if (! sunos_hash_table (info)->dynamic_sections_needed
2703 && ! sunos_hash_table (info)->got_needed)
2704 return TRUE;
2705
2706 dynobj = sunos_hash_table (info)->dynobj;
2707
2708 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2709 BFD_ASSERT (sdyn != NULL);
2710
2711 /* Finish up the .need section. The linker emulation code filled it
2712 in, but with offsets from the start of the section instead of
2713 real addresses. Now that we know the section location, we can
2714 fill in the final values. */
2715 s = bfd_get_section_by_name (dynobj, ".need");
2716 if (s != NULL && s->size != 0)
2717 {
2718 file_ptr filepos;
2719 bfd_byte *p;
2720
2721 filepos = s->output_section->filepos + s->output_offset;
2722 p = s->contents;
2723 while (1)
2724 {
2725 bfd_vma val;
2726
2727 PUT_WORD (dynobj, GET_WORD (dynobj, p) + filepos, p);
2728 val = GET_WORD (dynobj, p + 12);
2729 if (val == 0)
2730 break;
2731 PUT_WORD (dynobj, val + filepos, p + 12);
2732 p += 16;
2733 }
2734 }
2735
2736 /* The first entry in the .got section is the address of the
2737 dynamic information, unless this is a shared library. */
2738 s = bfd_get_linker_section (dynobj, ".got");
2739 BFD_ASSERT (s != NULL);
2740 if (info->shared || sdyn->size == 0)
2741 PUT_WORD (dynobj, 0, s->contents);
2742 else
2743 PUT_WORD (dynobj, sdyn->output_section->vma + sdyn->output_offset,
2744 s->contents);
2745
2746 for (o = dynobj->sections; o != NULL; o = o->next)
2747 {
2748 if ((o->flags & SEC_HAS_CONTENTS) != 0
2749 && o->contents != NULL)
2750 {
2751 BFD_ASSERT (o->output_section != NULL
2752 && o->output_section->owner == abfd);
2753 if (! bfd_set_section_contents (abfd, o->output_section,
2754 o->contents,
2755 (file_ptr) o->output_offset,
2756 o->size))
2757 return FALSE;
2758 }
2759 }
2760
2761 if (sdyn->size > 0)
2762 {
2763 struct external_sun4_dynamic esd;
2764 struct external_sun4_dynamic_link esdl;
2765 file_ptr pos;
2766
2767 /* Finish up the dynamic link information. */
2768 PUT_WORD (dynobj, (bfd_vma) 3, esd.ld_version);
2769 PUT_WORD (dynobj,
2770 sdyn->output_section->vma + sdyn->output_offset + sizeof esd,
2771 esd.ldd);
2772 PUT_WORD (dynobj,
2773 (sdyn->output_section->vma
2774 + sdyn->output_offset
2775 + sizeof esd
2776 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
2777 esd.ld);
2778
2779 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esd,
2780 (file_ptr) sdyn->output_offset,
2781 (bfd_size_type) sizeof esd))
2782 return FALSE;
2783
2784 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_loaded);
2785
2786 s = bfd_get_section_by_name (dynobj, ".need");
2787 if (s == NULL || s->size == 0)
2788 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_need);
2789 else
2790 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2791 esdl.ld_need);
2792
2793 s = bfd_get_section_by_name (dynobj, ".rules");
2794 if (s == NULL || s->size == 0)
2795 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_rules);
2796 else
2797 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2798 esdl.ld_rules);
2799
2800 s = bfd_get_linker_section (dynobj, ".got");
2801 BFD_ASSERT (s != NULL);
2802 PUT_WORD (dynobj, s->output_section->vma + s->output_offset,
2803 esdl.ld_got);
2804
2805 s = bfd_get_linker_section (dynobj, ".plt");
2806 BFD_ASSERT (s != NULL);
2807 PUT_WORD (dynobj, s->output_section->vma + s->output_offset,
2808 esdl.ld_plt);
2809 PUT_WORD (dynobj, s->size, esdl.ld_plt_sz);
2810
2811 s = bfd_get_linker_section (dynobj, ".dynrel");
2812 BFD_ASSERT (s != NULL);
2813 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
2814 == s->size);
2815 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2816 esdl.ld_rel);
2817
2818 s = bfd_get_linker_section (dynobj, ".hash");
2819 BFD_ASSERT (s != NULL);
2820 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2821 esdl.ld_hash);
2822
2823 s = bfd_get_linker_section (dynobj, ".dynsym");
2824 BFD_ASSERT (s != NULL);
2825 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2826 esdl.ld_stab);
2827
2828 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_stab_hash);
2829
2830 PUT_WORD (dynobj, (bfd_vma) sunos_hash_table (info)->bucketcount,
2831 esdl.ld_buckets);
2832
2833 s = bfd_get_linker_section (dynobj, ".dynstr");
2834 BFD_ASSERT (s != NULL);
2835 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2836 esdl.ld_symbols);
2837 PUT_WORD (dynobj, s->size, esdl.ld_symb_size);
2838
2839 /* The size of the text area is the size of the .text section
2840 rounded up to a page boundary. FIXME: Should the page size be
2841 conditional on something? */
2842 PUT_WORD (dynobj,
2843 BFD_ALIGN (obj_textsec (abfd)->size, 0x2000),
2844 esdl.ld_text);
2845
2846 pos = sdyn->output_offset;
2847 pos += sizeof esd + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE;
2848 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esdl,
2849 pos, (bfd_size_type) sizeof esdl))
2850 return FALSE;
2851
2852 abfd->flags |= DYNAMIC;
2853 }
2854
2855 return TRUE;
2856 }
This page took 0.087179 seconds and 4 git commands to generate.