1 /* BFD backend for SunOS binaries.
2 Copyright (C) 1990-2014 Free Software Foundation, Inc.
3 Written by Cygnus Support.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
22 #define TARGETNAME "a.out-sunos-big"
24 /* Do not "beautify" the CONCAT* macro args. Traditional C will not
25 remove whitespace added here, and thus will fail to concatenate
27 #define MY(OP) CONCAT2 (sparc_aout_sunos_be_,OP)
34 /* ??? Where should this go? */
35 #define MACHTYPE_OK(mtype) \
36 (((mtype) == M_SPARC && bfd_lookup_arch (bfd_arch_sparc, 0) != NULL) \
37 || ((mtype) == M_SPARCLET \
38 && bfd_lookup_arch (bfd_arch_sparc, bfd_mach_sparc_sparclet) != NULL) \
39 || ((mtype) == M_SPARCLITE_LE \
40 && bfd_lookup_arch (bfd_arch_sparc, bfd_mach_sparc_sparclet) != NULL) \
41 || (((mtype) == M_UNKNOWN || (mtype) == M_68010 || (mtype) == M_68020) \
42 && bfd_lookup_arch (bfd_arch_m68k, 0) != NULL))
44 #define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound
45 #define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab
46 #define MY_get_synthetic_symtab _bfd_nodynamic_get_synthetic_symtab
47 #define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound
48 #define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc
49 #define MY_bfd_link_hash_table_create sunos_link_hash_table_create
50 #define MY_add_dynamic_symbols sunos_add_dynamic_symbols
51 #define MY_add_one_symbol sunos_add_one_symbol
52 #define MY_link_dynamic_object sunos_link_dynamic_object
53 #define MY_write_dynamic_symbol sunos_write_dynamic_symbol
54 #define MY_check_dynamic_reloc sunos_check_dynamic_reloc
55 #define MY_finish_dynamic_link sunos_finish_dynamic_link
57 static bfd_boolean
sunos_add_dynamic_symbols (bfd
*, struct bfd_link_info
*, struct external_nlist
**, bfd_size_type
*, char **);
58 static bfd_boolean
sunos_add_one_symbol (struct bfd_link_info
*, bfd
*, const char *, flagword
, asection
*, bfd_vma
, const char *, bfd_boolean
, bfd_boolean
, struct bfd_link_hash_entry
**);
59 static bfd_boolean
sunos_link_dynamic_object (struct bfd_link_info
*, bfd
*);
60 static bfd_boolean
sunos_write_dynamic_symbol (bfd
*, struct bfd_link_info
*, struct aout_link_hash_entry
*);
61 static bfd_boolean
sunos_check_dynamic_reloc (struct bfd_link_info
*, bfd
*, asection
*, struct aout_link_hash_entry
*, void *, bfd_byte
*, bfd_boolean
*, bfd_vma
*);
62 static bfd_boolean
sunos_finish_dynamic_link (bfd
*, struct bfd_link_info
*);
63 static struct bfd_link_hash_table
*sunos_link_hash_table_create (bfd
*);
64 static long sunos_get_dynamic_symtab_upper_bound (bfd
*);
65 static long sunos_canonicalize_dynamic_symtab (bfd
*, asymbol
**);
66 static long sunos_get_dynamic_reloc_upper_bound (bfd
*);
67 static long sunos_canonicalize_dynamic_reloc (bfd
*, arelent
**, asymbol
**);
69 /* Include the usual a.out support. */
72 /* The SunOS 4.1.4 /usr/include/locale.h defines valid as a macro. */
75 /* SunOS shared library support. We store a pointer to this structure
76 in obj_aout_dynamic_info (abfd). */
78 struct sunos_dynamic_info
80 /* Whether we found any dynamic information. */
82 /* Dynamic information. */
83 struct internal_sun4_dynamic_link dyninfo
;
84 /* Number of dynamic symbols. */
85 unsigned long dynsym_count
;
86 /* Read in nlists for dynamic symbols. */
87 struct external_nlist
*dynsym
;
88 /* asymbol structures for dynamic symbols. */
89 aout_symbol_type
*canonical_dynsym
;
90 /* Read in dynamic string table. */
92 /* Number of dynamic relocs. */
93 unsigned long dynrel_count
;
94 /* Read in dynamic relocs. This may be reloc_std_external or
95 reloc_ext_external. */
97 /* arelent structures for dynamic relocs. */
98 arelent
*canonical_dynrel
;
101 /* The hash table of dynamic symbols is composed of two word entries.
102 See include/aout/sun4.h for details. */
104 #define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD)
106 /* Read in the basic dynamic information. This locates the __DYNAMIC
107 structure and uses it to find the dynamic_link structure. It
108 creates and saves a sunos_dynamic_info structure. If it can't find
109 __DYNAMIC, it sets the valid field of the sunos_dynamic_info
110 structure to FALSE to avoid doing this work again. */
113 sunos_read_dynamic_info (bfd
*abfd
)
115 struct sunos_dynamic_info
*info
;
118 struct external_sun4_dynamic dyninfo
;
119 unsigned long dynver
;
120 struct external_sun4_dynamic_link linkinfo
;
123 if (obj_aout_dynamic_info (abfd
) != NULL
)
126 if ((abfd
->flags
& DYNAMIC
) == 0)
128 bfd_set_error (bfd_error_invalid_operation
);
132 amt
= sizeof (struct sunos_dynamic_info
);
133 info
= bfd_zalloc (abfd
, amt
);
139 info
->canonical_dynsym
= NULL
;
141 info
->canonical_dynrel
= NULL
;
142 obj_aout_dynamic_info (abfd
) = (void *) info
;
144 /* This code used to look for the __DYNAMIC symbol to locate the dynamic
146 However this inhibits recovering the dynamic symbols from a
147 stripped object file, so blindly assume that the dynamic linking
148 information is located at the start of the data section.
149 We could verify this assumption later by looking through the dynamic
150 symbols for the __DYNAMIC symbol. */
151 if ((abfd
->flags
& DYNAMIC
) == 0)
153 if (! bfd_get_section_contents (abfd
, obj_datasec (abfd
), (void *) &dyninfo
,
155 (bfd_size_type
) sizeof dyninfo
))
158 dynver
= GET_WORD (abfd
, dyninfo
.ld_version
);
159 if (dynver
!= 2 && dynver
!= 3)
162 dynoff
= GET_WORD (abfd
, dyninfo
.ld
);
164 /* dynoff is a virtual address. It is probably always in the .data
165 section, but this code should work even if it moves. */
166 if (dynoff
< bfd_get_section_vma (abfd
, obj_datasec (abfd
)))
167 dynsec
= obj_textsec (abfd
);
169 dynsec
= obj_datasec (abfd
);
170 dynoff
-= bfd_get_section_vma (abfd
, dynsec
);
171 if (dynoff
> dynsec
->size
)
174 /* This executable appears to be dynamically linked in a way that we
176 if (! bfd_get_section_contents (abfd
, dynsec
, (void *) &linkinfo
,
178 (bfd_size_type
) sizeof linkinfo
))
181 /* Swap in the dynamic link information. */
182 info
->dyninfo
.ld_loaded
= GET_WORD (abfd
, linkinfo
.ld_loaded
);
183 info
->dyninfo
.ld_need
= GET_WORD (abfd
, linkinfo
.ld_need
);
184 info
->dyninfo
.ld_rules
= GET_WORD (abfd
, linkinfo
.ld_rules
);
185 info
->dyninfo
.ld_got
= GET_WORD (abfd
, linkinfo
.ld_got
);
186 info
->dyninfo
.ld_plt
= GET_WORD (abfd
, linkinfo
.ld_plt
);
187 info
->dyninfo
.ld_rel
= GET_WORD (abfd
, linkinfo
.ld_rel
);
188 info
->dyninfo
.ld_hash
= GET_WORD (abfd
, linkinfo
.ld_hash
);
189 info
->dyninfo
.ld_stab
= GET_WORD (abfd
, linkinfo
.ld_stab
);
190 info
->dyninfo
.ld_stab_hash
= GET_WORD (abfd
, linkinfo
.ld_stab_hash
);
191 info
->dyninfo
.ld_buckets
= GET_WORD (abfd
, linkinfo
.ld_buckets
);
192 info
->dyninfo
.ld_symbols
= GET_WORD (abfd
, linkinfo
.ld_symbols
);
193 info
->dyninfo
.ld_symb_size
= GET_WORD (abfd
, linkinfo
.ld_symb_size
);
194 info
->dyninfo
.ld_text
= GET_WORD (abfd
, linkinfo
.ld_text
);
195 info
->dyninfo
.ld_plt_sz
= GET_WORD (abfd
, linkinfo
.ld_plt_sz
);
197 /* Reportedly the addresses need to be offset by the size of the
198 exec header in an NMAGIC file. */
199 if (adata (abfd
).magic
== n_magic
)
201 unsigned long exec_bytes_size
= adata (abfd
).exec_bytes_size
;
203 info
->dyninfo
.ld_need
+= exec_bytes_size
;
204 info
->dyninfo
.ld_rules
+= exec_bytes_size
;
205 info
->dyninfo
.ld_rel
+= exec_bytes_size
;
206 info
->dyninfo
.ld_hash
+= exec_bytes_size
;
207 info
->dyninfo
.ld_stab
+= exec_bytes_size
;
208 info
->dyninfo
.ld_symbols
+= exec_bytes_size
;
211 /* The only way to get the size of the symbol information appears to
212 be to determine the distance between it and the string table. */
213 info
->dynsym_count
= ((info
->dyninfo
.ld_symbols
- info
->dyninfo
.ld_stab
)
214 / EXTERNAL_NLIST_SIZE
);
215 BFD_ASSERT (info
->dynsym_count
* EXTERNAL_NLIST_SIZE
216 == (unsigned long) (info
->dyninfo
.ld_symbols
217 - info
->dyninfo
.ld_stab
));
219 /* Similarly, the relocs end at the hash table. */
220 info
->dynrel_count
= ((info
->dyninfo
.ld_hash
- info
->dyninfo
.ld_rel
)
221 / obj_reloc_entry_size (abfd
));
222 BFD_ASSERT (info
->dynrel_count
* obj_reloc_entry_size (abfd
)
223 == (unsigned long) (info
->dyninfo
.ld_hash
224 - info
->dyninfo
.ld_rel
));
231 /* Return the amount of memory required for the dynamic symbols. */
234 sunos_get_dynamic_symtab_upper_bound (bfd
*abfd
)
236 struct sunos_dynamic_info
*info
;
238 if (! sunos_read_dynamic_info (abfd
))
241 info
= (struct sunos_dynamic_info
*) obj_aout_dynamic_info (abfd
);
244 bfd_set_error (bfd_error_no_symbols
);
248 return (info
->dynsym_count
+ 1) * sizeof (asymbol
*);
251 /* Read the external dynamic symbols. */
254 sunos_slurp_dynamic_symtab (bfd
*abfd
)
256 struct sunos_dynamic_info
*info
;
259 /* Get the general dynamic information. */
260 if (obj_aout_dynamic_info (abfd
) == NULL
)
262 if (! sunos_read_dynamic_info (abfd
))
266 info
= (struct sunos_dynamic_info
*) obj_aout_dynamic_info (abfd
);
269 bfd_set_error (bfd_error_no_symbols
);
273 /* Get the dynamic nlist structures. */
274 if (info
->dynsym
== NULL
)
276 amt
= (bfd_size_type
) info
->dynsym_count
* EXTERNAL_NLIST_SIZE
;
277 info
->dynsym
= bfd_alloc (abfd
, amt
);
278 if (info
->dynsym
== NULL
&& info
->dynsym_count
!= 0)
280 if (bfd_seek (abfd
, (file_ptr
) info
->dyninfo
.ld_stab
, SEEK_SET
) != 0
281 || bfd_bread ((void *) info
->dynsym
, amt
, abfd
) != amt
)
283 if (info
->dynsym
!= NULL
)
285 bfd_release (abfd
, info
->dynsym
);
292 /* Get the dynamic strings. */
293 if (info
->dynstr
== NULL
)
295 amt
= info
->dyninfo
.ld_symb_size
;
296 info
->dynstr
= bfd_alloc (abfd
, amt
);
297 if (info
->dynstr
== NULL
&& info
->dyninfo
.ld_symb_size
!= 0)
299 if (bfd_seek (abfd
, (file_ptr
) info
->dyninfo
.ld_symbols
, SEEK_SET
) != 0
300 || bfd_bread ((void *) info
->dynstr
, amt
, abfd
) != amt
)
302 if (info
->dynstr
!= NULL
)
304 bfd_release (abfd
, info
->dynstr
);
314 /* Read in the dynamic symbols. */
317 sunos_canonicalize_dynamic_symtab (bfd
*abfd
, asymbol
**storage
)
319 struct sunos_dynamic_info
*info
;
322 if (! sunos_slurp_dynamic_symtab (abfd
))
325 info
= (struct sunos_dynamic_info
*) obj_aout_dynamic_info (abfd
);
327 #ifdef CHECK_DYNAMIC_HASH
328 /* Check my understanding of the dynamic hash table by making sure
329 that each symbol can be located in the hash table. */
331 bfd_size_type table_size
;
335 if (info
->dyninfo
.ld_buckets
> info
->dynsym_count
)
337 table_size
= info
->dyninfo
.ld_stab
- info
->dyninfo
.ld_hash
;
338 table
= bfd_malloc (table_size
);
339 if (table
== NULL
&& table_size
!= 0)
341 if (bfd_seek (abfd
, (file_ptr
) info
->dyninfo
.ld_hash
, SEEK_SET
) != 0
342 || bfd_bread ((void *) table
, table_size
, abfd
) != table_size
)
344 for (i
= 0; i
< info
->dynsym_count
; i
++)
349 name
= ((unsigned char *) info
->dynstr
350 + GET_WORD (abfd
, info
->dynsym
[i
].e_strx
));
352 while (*name
!= '\0')
353 hash
= (hash
<< 1) + *name
++;
355 hash
%= info
->dyninfo
.ld_buckets
;
356 while (GET_WORD (abfd
, table
+ hash
* HASH_ENTRY_SIZE
) != i
)
358 hash
= GET_WORD (abfd
,
359 table
+ hash
* HASH_ENTRY_SIZE
+ BYTES_IN_WORD
);
360 if (hash
== 0 || hash
>= table_size
/ HASH_ENTRY_SIZE
)
366 #endif /* CHECK_DYNAMIC_HASH */
368 /* Get the asymbol structures corresponding to the dynamic nlist
370 if (info
->canonical_dynsym
== NULL
)
373 bfd_size_type strsize
= info
->dyninfo
.ld_symb_size
;
375 size
= (bfd_size_type
) info
->dynsym_count
* sizeof (aout_symbol_type
);
376 info
->canonical_dynsym
= bfd_alloc (abfd
, size
);
377 if (info
->canonical_dynsym
== NULL
&& info
->dynsym_count
!= 0)
380 if (! aout_32_translate_symbol_table (abfd
, info
->canonical_dynsym
,
382 (bfd_size_type
) info
->dynsym_count
,
383 info
->dynstr
, strsize
, TRUE
))
385 if (info
->canonical_dynsym
!= NULL
)
387 bfd_release (abfd
, info
->canonical_dynsym
);
388 info
->canonical_dynsym
= NULL
;
394 /* Return pointers to the dynamic asymbol structures. */
395 for (i
= 0; i
< info
->dynsym_count
; i
++)
396 *storage
++ = (asymbol
*) (info
->canonical_dynsym
+ i
);
399 return info
->dynsym_count
;
402 /* Return the amount of memory required for the dynamic relocs. */
405 sunos_get_dynamic_reloc_upper_bound (bfd
*abfd
)
407 struct sunos_dynamic_info
*info
;
409 if (! sunos_read_dynamic_info (abfd
))
412 info
= (struct sunos_dynamic_info
*) obj_aout_dynamic_info (abfd
);
415 bfd_set_error (bfd_error_no_symbols
);
419 return (info
->dynrel_count
+ 1) * sizeof (arelent
*);
422 /* Read in the dynamic relocs. */
425 sunos_canonicalize_dynamic_reloc (bfd
*abfd
, arelent
**storage
, asymbol
**syms
)
427 struct sunos_dynamic_info
*info
;
431 /* Get the general dynamic information. */
432 if (obj_aout_dynamic_info (abfd
) == NULL
)
434 if (! sunos_read_dynamic_info (abfd
))
438 info
= (struct sunos_dynamic_info
*) obj_aout_dynamic_info (abfd
);
441 bfd_set_error (bfd_error_no_symbols
);
445 /* Get the dynamic reloc information. */
446 if (info
->dynrel
== NULL
)
448 size
= (bfd_size_type
) info
->dynrel_count
* obj_reloc_entry_size (abfd
);
449 info
->dynrel
= bfd_alloc (abfd
, size
);
450 if (info
->dynrel
== NULL
&& size
!= 0)
452 if (bfd_seek (abfd
, (file_ptr
) info
->dyninfo
.ld_rel
, SEEK_SET
) != 0
453 || bfd_bread ((void *) info
->dynrel
, size
, abfd
) != size
)
455 if (info
->dynrel
!= NULL
)
457 bfd_release (abfd
, info
->dynrel
);
464 /* Get the arelent structures corresponding to the dynamic reloc
466 if (info
->canonical_dynrel
== NULL
)
470 size
= (bfd_size_type
) info
->dynrel_count
* sizeof (arelent
);
471 info
->canonical_dynrel
= bfd_alloc (abfd
, size
);
472 if (info
->canonical_dynrel
== NULL
&& info
->dynrel_count
!= 0)
475 to
= info
->canonical_dynrel
;
477 if (obj_reloc_entry_size (abfd
) == RELOC_EXT_SIZE
)
479 struct reloc_ext_external
*p
;
480 struct reloc_ext_external
*pend
;
482 p
= (struct reloc_ext_external
*) info
->dynrel
;
483 pend
= p
+ info
->dynrel_count
;
484 for (; p
< pend
; p
++, to
++)
485 NAME (aout
, swap_ext_reloc_in
) (abfd
, p
, to
, syms
,
486 (bfd_size_type
) info
->dynsym_count
);
490 struct reloc_std_external
*p
;
491 struct reloc_std_external
*pend
;
493 p
= (struct reloc_std_external
*) info
->dynrel
;
494 pend
= p
+ info
->dynrel_count
;
495 for (; p
< pend
; p
++, to
++)
496 NAME (aout
, swap_std_reloc_in
) (abfd
, p
, to
, syms
,
497 (bfd_size_type
) info
->dynsym_count
);
501 /* Return pointers to the dynamic arelent structures. */
502 for (i
= 0; i
< info
->dynrel_count
; i
++)
503 *storage
++ = info
->canonical_dynrel
+ i
;
506 return info
->dynrel_count
;
509 /* Code to handle linking of SunOS shared libraries. */
511 /* A SPARC procedure linkage table entry is 12 bytes. The first entry
512 in the table is a jump which is filled in by the runtime linker.
513 The remaining entries are branches back to the first entry,
514 followed by an index into the relocation table encoded to look like
517 #define SPARC_PLT_ENTRY_SIZE (12)
519 static const bfd_byte sparc_plt_first_entry
[SPARC_PLT_ENTRY_SIZE
] =
521 /* sethi %hi(0),%g1; address filled in by runtime linker. */
523 /* jmp %g1; offset filled in by runtime linker. */
529 /* save %sp, -96, %sp */
530 #define SPARC_PLT_ENTRY_WORD0 ((bfd_vma) 0x9de3bfa0)
531 /* call; address filled in later. */
532 #define SPARC_PLT_ENTRY_WORD1 ((bfd_vma) 0x40000000)
533 /* sethi; reloc index filled in later. */
534 #define SPARC_PLT_ENTRY_WORD2 ((bfd_vma) 0x01000000)
536 /* This sequence is used when for the jump table entry to a defined
537 symbol in a complete executable. It is used when linking PIC
538 compiled code which is not being put into a shared library. */
539 /* sethi <address to be filled in later>, %g1 */
540 #define SPARC_PLT_PIC_WORD0 ((bfd_vma) 0x03000000)
541 /* jmp %g1 + <address to be filled in later> */
542 #define SPARC_PLT_PIC_WORD1 ((bfd_vma) 0x81c06000)
544 #define SPARC_PLT_PIC_WORD2 ((bfd_vma) 0x01000000)
546 /* An m68k procedure linkage table entry is 8 bytes. The first entry
547 in the table is a jump which is filled in the by the runtime
548 linker. The remaining entries are branches back to the first
549 entry, followed by a two byte index into the relocation table. */
551 #define M68K_PLT_ENTRY_SIZE (8)
553 static const bfd_byte m68k_plt_first_entry
[M68K_PLT_ENTRY_SIZE
] =
557 /* Filled in by runtime linker with a magic address. */
564 #define M68K_PLT_ENTRY_WORD0 ((bfd_vma) 0x61ff)
565 /* Remaining words filled in later. */
567 /* An entry in the SunOS linker hash table. */
569 struct sunos_link_hash_entry
571 struct aout_link_hash_entry root
;
573 /* If this is a dynamic symbol, this is its index into the dynamic
574 symbol table. This is initialized to -1. As the linker looks at
575 the input files, it changes this to -2 if it will be added to the
576 dynamic symbol table. After all the input files have been seen,
577 the linker will know whether to build a dynamic symbol table; if
578 it does build one, this becomes the index into the table. */
581 /* If this is a dynamic symbol, this is the index of the name in the
582 dynamic symbol string table. */
585 /* The offset into the global offset table used for this symbol. If
586 the symbol does not require a GOT entry, this is 0. */
589 /* The offset into the procedure linkage table used for this symbol.
590 If the symbol does not require a PLT entry, this is 0. */
593 /* Some linker flags. */
595 /* Symbol is referenced by a regular object. */
596 #define SUNOS_REF_REGULAR 01
597 /* Symbol is defined by a regular object. */
598 #define SUNOS_DEF_REGULAR 02
599 /* Symbol is referenced by a dynamic object. */
600 #define SUNOS_REF_DYNAMIC 04
601 /* Symbol is defined by a dynamic object. */
602 #define SUNOS_DEF_DYNAMIC 010
603 /* Symbol is a constructor symbol in a regular object. */
604 #define SUNOS_CONSTRUCTOR 020
607 /* The SunOS linker hash table. */
609 struct sunos_link_hash_table
611 struct aout_link_hash_table root
;
613 /* The object which holds the dynamic sections. */
616 /* Whether we have created the dynamic sections. */
617 bfd_boolean dynamic_sections_created
;
619 /* Whether we need the dynamic sections. */
620 bfd_boolean dynamic_sections_needed
;
622 /* Whether we need the .got table. */
623 bfd_boolean got_needed
;
625 /* The number of dynamic symbols. */
628 /* The number of buckets in the hash table. */
631 /* The list of dynamic objects needed by dynamic objects included in
633 struct bfd_link_needed_list
*needed
;
635 /* The offset of __GLOBAL_OFFSET_TABLE_ into the .got section. */
639 /* Routine to create an entry in an SunOS link hash table. */
641 static struct bfd_hash_entry
*
642 sunos_link_hash_newfunc (struct bfd_hash_entry
*entry
,
643 struct bfd_hash_table
*table
,
646 struct sunos_link_hash_entry
*ret
= (struct sunos_link_hash_entry
*) entry
;
648 /* Allocate the structure if it has not already been allocated by a
651 ret
= bfd_hash_allocate (table
, sizeof (* ret
));
655 /* Call the allocation method of the superclass. */
656 ret
= ((struct sunos_link_hash_entry
*)
657 NAME (aout
, link_hash_newfunc
) ((struct bfd_hash_entry
*) ret
,
661 /* Set local fields. */
663 ret
->dynstr_index
= -1;
669 return (struct bfd_hash_entry
*) ret
;
672 /* Create a SunOS link hash table. */
674 static struct bfd_link_hash_table
*
675 sunos_link_hash_table_create (bfd
*abfd
)
677 struct sunos_link_hash_table
*ret
;
678 bfd_size_type amt
= sizeof (struct sunos_link_hash_table
);
680 ret
= bfd_zmalloc (amt
);
683 if (!NAME (aout
, link_hash_table_init
) (&ret
->root
, abfd
,
684 sunos_link_hash_newfunc
,
685 sizeof (struct sunos_link_hash_entry
)))
691 return &ret
->root
.root
;
694 /* Look up an entry in an SunOS link hash table. */
696 #define sunos_link_hash_lookup(table, string, create, copy, follow) \
697 ((struct sunos_link_hash_entry *) \
698 aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\
701 /* Traverse a SunOS link hash table. */
703 #define sunos_link_hash_traverse(table, func, info) \
704 (aout_link_hash_traverse \
706 (bfd_boolean (*) (struct aout_link_hash_entry *, void *)) (func), \
709 /* Get the SunOS link hash table from the info structure. This is
712 #define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash))
714 /* Create the dynamic sections needed if we are linking against a
715 dynamic object, or if we are linking PIC compiled code. ABFD is a
716 bfd we can attach the dynamic sections to. The linker script will
717 look for these special sections names and put them in the right
718 place in the output file. See include/aout/sun4.h for more details
719 of the dynamic linking information. */
722 sunos_create_dynamic_sections (bfd
*abfd
,
723 struct bfd_link_info
*info
,
728 if (! sunos_hash_table (info
)->dynamic_sections_created
)
732 sunos_hash_table (info
)->dynobj
= abfd
;
734 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
735 | SEC_LINKER_CREATED
);
737 /* The .dynamic section holds the basic dynamic information: the
738 sun4_dynamic structure, the dynamic debugger information, and
739 the sun4_dynamic_link structure. */
740 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynamic", flags
);
742 || ! bfd_set_section_alignment (abfd
, s
, 2))
745 /* The .got section holds the global offset table. The address
746 is put in the ld_got field. */
747 s
= bfd_make_section_anyway_with_flags (abfd
, ".got", flags
);
749 || ! bfd_set_section_alignment (abfd
, s
, 2))
752 /* The .plt section holds the procedure linkage table. The
753 address is put in the ld_plt field. */
754 s
= bfd_make_section_anyway_with_flags (abfd
, ".plt", flags
| SEC_CODE
);
756 || ! bfd_set_section_alignment (abfd
, s
, 2))
759 /* The .dynrel section holds the dynamic relocs. The address is
760 put in the ld_rel field. */
761 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynrel",
762 flags
| SEC_READONLY
);
764 || ! bfd_set_section_alignment (abfd
, s
, 2))
767 /* The .hash section holds the dynamic hash table. The address
768 is put in the ld_hash field. */
769 s
= bfd_make_section_anyway_with_flags (abfd
, ".hash",
770 flags
| SEC_READONLY
);
772 || ! bfd_set_section_alignment (abfd
, s
, 2))
775 /* The .dynsym section holds the dynamic symbols. The address
776 is put in the ld_stab field. */
777 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynsym",
778 flags
| SEC_READONLY
);
780 || ! bfd_set_section_alignment (abfd
, s
, 2))
783 /* The .dynstr section holds the dynamic symbol string table.
784 The address is put in the ld_symbols field. */
785 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynstr",
786 flags
| SEC_READONLY
);
788 || ! bfd_set_section_alignment (abfd
, s
, 2))
791 sunos_hash_table (info
)->dynamic_sections_created
= TRUE
;
794 if ((needed
&& ! sunos_hash_table (info
)->dynamic_sections_needed
)
799 dynobj
= sunos_hash_table (info
)->dynobj
;
801 s
= bfd_get_linker_section (dynobj
, ".got");
803 s
->size
= BYTES_IN_WORD
;
805 sunos_hash_table (info
)->dynamic_sections_needed
= TRUE
;
806 sunos_hash_table (info
)->got_needed
= TRUE
;
812 /* Add dynamic symbols during a link. This is called by the a.out
813 backend linker for each object it encounters. */
816 sunos_add_dynamic_symbols (bfd
*abfd
,
817 struct bfd_link_info
*info
,
818 struct external_nlist
**symsp
,
819 bfd_size_type
*sym_countp
,
823 struct sunos_dynamic_info
*dinfo
;
826 /* Make sure we have all the required sections. */
827 if (info
->output_bfd
->xvec
== abfd
->xvec
)
829 if (! sunos_create_dynamic_sections (abfd
, info
,
830 ((abfd
->flags
& DYNAMIC
) != 0
831 && !info
->relocatable
)))
835 /* There is nothing else to do for a normal object. */
836 if ((abfd
->flags
& DYNAMIC
) == 0)
839 dynobj
= sunos_hash_table (info
)->dynobj
;
841 /* We do not want to include the sections in a dynamic object in the
842 output file. We hack by simply clobbering the list of sections
843 in the BFD. This could be handled more cleanly by, say, a new
844 section flag; the existing SEC_NEVER_LOAD flag is not the one we
845 want, because that one still implies that the section takes up
846 space in the output file. If this is the first object we have
847 seen, we must preserve the dynamic sections we just created. */
849 abfd
->sections
= NULL
;
854 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
856 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
857 bfd_section_list_remove (abfd
, s
);
861 /* The native linker seems to just ignore dynamic objects when -r is
863 if (info
->relocatable
)
866 /* There's no hope of using a dynamic object which does not exactly
867 match the format of the output file. */
868 if (info
->output_bfd
->xvec
!= abfd
->xvec
)
870 bfd_set_error (bfd_error_invalid_operation
);
874 /* Make sure we have a .need and a .rules sections. These are only
875 needed if there really is a dynamic object in the link, so they
876 are not added by sunos_create_dynamic_sections. */
877 if (bfd_get_section_by_name (dynobj
, ".need") == NULL
)
879 /* The .need section holds the list of names of shared objets
880 which must be included at runtime. The address of this
881 section is put in the ld_need field. */
882 flagword flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
883 | SEC_IN_MEMORY
| SEC_READONLY
);
884 asection
*s
= bfd_make_section_with_flags (dynobj
, ".need", flags
);
886 || ! bfd_set_section_alignment (dynobj
, s
, 2))
890 if (bfd_get_section_by_name (dynobj
, ".rules") == NULL
)
892 /* The .rules section holds the path to search for shared
893 objects. The address of this section is put in the ld_rules
895 flagword flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
896 | SEC_IN_MEMORY
| SEC_READONLY
);
897 asection
*s
= bfd_make_section_with_flags (dynobj
, ".rules", flags
);
899 || ! bfd_set_section_alignment (dynobj
, s
, 2))
903 /* Pick up the dynamic symbols and return them to the caller. */
904 if (! sunos_slurp_dynamic_symtab (abfd
))
907 dinfo
= (struct sunos_dynamic_info
*) obj_aout_dynamic_info (abfd
);
908 *symsp
= dinfo
->dynsym
;
909 *sym_countp
= dinfo
->dynsym_count
;
910 *stringsp
= dinfo
->dynstr
;
912 /* Record information about any other objects needed by this one. */
913 need
= dinfo
->dyninfo
.ld_need
;
917 unsigned long name
, flags
;
918 unsigned short major_vno
, minor_vno
;
919 struct bfd_link_needed_list
*needed
, **pp
;
925 if (bfd_seek (abfd
, (file_ptr
) need
, SEEK_SET
) != 0
926 || bfd_bread (buf
, (bfd_size_type
) 16, abfd
) != 16)
929 /* For the format of an ld_need entry, see aout/sun4.h. We
930 should probably define structs for this manipulation. */
931 name
= bfd_get_32 (abfd
, buf
);
932 flags
= bfd_get_32 (abfd
, buf
+ 4);
933 major_vno
= (unsigned short) bfd_get_16 (abfd
, buf
+ 8);
934 minor_vno
= (unsigned short) bfd_get_16 (abfd
, buf
+ 10);
935 need
= bfd_get_32 (abfd
, buf
+ 12);
937 alc
= sizeof (struct bfd_link_needed_list
);
938 needed
= bfd_alloc (abfd
, alc
);
943 /* We return the name as [-l]name[.maj][.min]. */
945 namebuf
= bfd_malloc (alc
+ 1);
950 if ((flags
& 0x80000000) != 0)
955 if (bfd_seek (abfd
, (file_ptr
) name
, SEEK_SET
) != 0)
963 if (bfd_bread (&b
, (bfd_size_type
) 1, abfd
) != 1)
969 if ((bfd_size_type
) (p
- namebuf
) >= alc
)
974 n
= bfd_realloc (namebuf
, alc
+ 1);
980 p
= n
+ (p
- namebuf
);
995 sprintf (majbuf
, ".%d", major_vno
);
999 sprintf (minbuf
, ".%d", minor_vno
);
1001 if ((p
- namebuf
) + strlen (majbuf
) + strlen (minbuf
) >= alc
)
1005 alc
= (p
- namebuf
) + strlen (majbuf
) + strlen (minbuf
);
1006 n
= bfd_realloc (namebuf
, alc
+ 1);
1012 p
= n
+ (p
- namebuf
);
1020 namecopy
= bfd_alloc (abfd
, (bfd_size_type
) strlen (namebuf
) + 1);
1021 if (namecopy
== NULL
)
1026 strcpy (namecopy
, namebuf
);
1028 needed
->name
= namecopy
;
1030 needed
->next
= NULL
;
1032 for (pp
= &sunos_hash_table (info
)->needed
;
1042 /* Function to add a single symbol to the linker hash table. This is
1043 a wrapper around _bfd_generic_link_add_one_symbol which handles the
1044 tweaking needed for dynamic linking support. */
1047 sunos_add_one_symbol (struct bfd_link_info
*info
,
1055 bfd_boolean collect
,
1056 struct bfd_link_hash_entry
**hashp
)
1058 struct sunos_link_hash_entry
*h
;
1061 if ((flags
& (BSF_INDIRECT
| BSF_WARNING
| BSF_CONSTRUCTOR
)) != 0
1062 || ! bfd_is_und_section (section
))
1063 h
= sunos_link_hash_lookup (sunos_hash_table (info
), name
, TRUE
, copy
,
1066 h
= ((struct sunos_link_hash_entry
*)
1067 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, copy
, FALSE
));
1072 *hashp
= (struct bfd_link_hash_entry
*) h
;
1074 /* Treat a common symbol in a dynamic object as defined in the .bss
1075 section of the dynamic object. We don't want to allocate space
1076 for it in our process image. */
1077 if ((abfd
->flags
& DYNAMIC
) != 0
1078 && bfd_is_com_section (section
))
1079 section
= obj_bsssec (abfd
);
1081 if (! bfd_is_und_section (section
)
1082 && h
->root
.root
.type
!= bfd_link_hash_new
1083 && h
->root
.root
.type
!= bfd_link_hash_undefined
1084 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
1086 /* We are defining the symbol, and it is already defined. This
1087 is a potential multiple definition error. */
1088 if ((abfd
->flags
& DYNAMIC
) != 0)
1090 /* The definition we are adding is from a dynamic object.
1091 We do not want this new definition to override the
1092 existing definition, so we pretend it is just a
1094 section
= bfd_und_section_ptr
;
1096 else if (h
->root
.root
.type
== bfd_link_hash_defined
1097 && h
->root
.root
.u
.def
.section
->owner
!= NULL
1098 && (h
->root
.root
.u
.def
.section
->owner
->flags
& DYNAMIC
) != 0)
1100 /* The existing definition is from a dynamic object. We
1101 want to override it with the definition we just found.
1102 Clobber the existing definition. */
1103 h
->root
.root
.type
= bfd_link_hash_undefined
;
1104 h
->root
.root
.u
.undef
.abfd
= h
->root
.root
.u
.def
.section
->owner
;
1106 else if (h
->root
.root
.type
== bfd_link_hash_common
1107 && (h
->root
.root
.u
.c
.p
->section
->owner
->flags
& DYNAMIC
) != 0)
1109 /* The existing definition is from a dynamic object. We
1110 want to override it with the definition we just found.
1111 Clobber the existing definition. We can't set it to new,
1112 because it is on the undefined list. */
1113 h
->root
.root
.type
= bfd_link_hash_undefined
;
1114 h
->root
.root
.u
.undef
.abfd
= h
->root
.root
.u
.c
.p
->section
->owner
;
1118 if ((abfd
->flags
& DYNAMIC
) != 0
1119 && abfd
->xvec
== info
->output_bfd
->xvec
1120 && (h
->flags
& SUNOS_CONSTRUCTOR
) != 0)
1121 /* The existing symbol is a constructor symbol, and this symbol
1122 is from a dynamic object. A constructor symbol is actually a
1123 definition, although the type will be bfd_link_hash_undefined
1124 at this point. We want to ignore the definition from the
1126 section
= bfd_und_section_ptr
;
1127 else if ((flags
& BSF_CONSTRUCTOR
) != 0
1128 && (abfd
->flags
& DYNAMIC
) == 0
1129 && h
->root
.root
.type
== bfd_link_hash_defined
1130 && h
->root
.root
.u
.def
.section
->owner
!= NULL
1131 && (h
->root
.root
.u
.def
.section
->owner
->flags
& DYNAMIC
) != 0)
1132 /* The existing symbol is defined by a dynamic object, and this
1133 is a constructor symbol. As above, we want to force the use
1134 of the constructor symbol from the regular object. */
1135 h
->root
.root
.type
= bfd_link_hash_new
;
1137 /* Do the usual procedure for adding a symbol. */
1138 if (! _bfd_generic_link_add_one_symbol (info
, abfd
, name
, flags
, section
,
1139 value
, string
, copy
, collect
,
1143 if (abfd
->xvec
== info
->output_bfd
->xvec
)
1145 /* Set a flag in the hash table entry indicating the type of
1146 reference or definition we just found. Keep a count of the
1147 number of dynamic symbols we find. A dynamic symbol is one
1148 which is referenced or defined by both a regular object and a
1150 if ((abfd
->flags
& DYNAMIC
) == 0)
1152 if (bfd_is_und_section (section
))
1153 new_flag
= SUNOS_REF_REGULAR
;
1155 new_flag
= SUNOS_DEF_REGULAR
;
1159 if (bfd_is_und_section (section
))
1160 new_flag
= SUNOS_REF_DYNAMIC
;
1162 new_flag
= SUNOS_DEF_DYNAMIC
;
1164 h
->flags
|= new_flag
;
1166 if (h
->dynindx
== -1
1167 && (h
->flags
& (SUNOS_DEF_REGULAR
| SUNOS_REF_REGULAR
)) != 0)
1169 ++sunos_hash_table (info
)->dynsymcount
;
1173 if ((flags
& BSF_CONSTRUCTOR
) != 0
1174 && (abfd
->flags
& DYNAMIC
) == 0)
1175 h
->flags
|= SUNOS_CONSTRUCTOR
;
1181 extern const bfd_target
MY (vec
);
1183 /* Return the list of objects needed by BFD. */
1185 struct bfd_link_needed_list
*
1186 bfd_sunos_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1187 struct bfd_link_info
*info
)
1189 if (info
->output_bfd
->xvec
!= &MY (vec
))
1191 return sunos_hash_table (info
)->needed
;
1194 /* Record an assignment made to a symbol by a linker script. We need
1195 this in case some dynamic object refers to this symbol. */
1198 bfd_sunos_record_link_assignment (bfd
*output_bfd
,
1199 struct bfd_link_info
*info
,
1202 struct sunos_link_hash_entry
*h
;
1204 if (output_bfd
->xvec
!= &MY(vec
))
1207 /* This is called after we have examined all the input objects. If
1208 the symbol does not exist, it merely means that no object refers
1209 to it, and we can just ignore it at this point. */
1210 h
= sunos_link_hash_lookup (sunos_hash_table (info
), name
,
1211 FALSE
, FALSE
, FALSE
);
1215 /* In a shared library, the __DYNAMIC symbol does not appear in the
1216 dynamic symbol table. */
1217 if (! info
->shared
|| strcmp (name
, "__DYNAMIC") != 0)
1219 h
->flags
|= SUNOS_DEF_REGULAR
;
1221 if (h
->dynindx
== -1)
1223 ++sunos_hash_table (info
)->dynsymcount
;
1231 /* Scan the relocs for an input section using standard relocs. We
1232 need to figure out what to do for each reloc against a dynamic
1233 symbol. If the symbol is in the .text section, an entry is made in
1234 the procedure linkage table. Note that this will do the wrong
1235 thing if the symbol is actually data; I don't think the Sun 3
1236 native linker handles this case correctly either. If the symbol is
1237 not in the .text section, we must preserve the reloc as a dynamic
1238 reloc. FIXME: We should also handle the PIC relocs here by
1239 building global offset table entries. */
1242 sunos_scan_std_relocs (struct bfd_link_info
*info
,
1244 asection
*sec ATTRIBUTE_UNUSED
,
1245 const struct reloc_std_external
*relocs
,
1246 bfd_size_type rel_size
)
1249 asection
*splt
= NULL
;
1250 asection
*srel
= NULL
;
1251 struct sunos_link_hash_entry
**sym_hashes
;
1252 const struct reloc_std_external
*rel
, *relend
;
1254 /* We only know how to handle m68k plt entries. */
1255 if (bfd_get_arch (abfd
) != bfd_arch_m68k
)
1257 bfd_set_error (bfd_error_invalid_target
);
1263 sym_hashes
= (struct sunos_link_hash_entry
**) obj_aout_sym_hashes (abfd
);
1265 relend
= relocs
+ rel_size
/ RELOC_STD_SIZE
;
1266 for (rel
= relocs
; rel
< relend
; rel
++)
1269 struct sunos_link_hash_entry
*h
;
1271 /* We only want relocs against external symbols. */
1272 if (bfd_header_big_endian (abfd
))
1274 if ((rel
->r_type
[0] & RELOC_STD_BITS_EXTERN_BIG
) == 0)
1279 if ((rel
->r_type
[0] & RELOC_STD_BITS_EXTERN_LITTLE
) == 0)
1283 /* Get the symbol index. */
1284 if (bfd_header_big_endian (abfd
))
1285 r_index
= ((rel
->r_index
[0] << 16)
1286 | (rel
->r_index
[1] << 8)
1289 r_index
= ((rel
->r_index
[2] << 16)
1290 | (rel
->r_index
[1] << 8)
1293 /* Get the hash table entry. */
1294 h
= sym_hashes
[r_index
];
1296 /* This should not normally happen, but it will in any case
1297 be caught in the relocation phase. */
1300 /* At this point common symbols have already been allocated, so
1301 we don't have to worry about them. We need to consider that
1302 we may have already seen this symbol and marked it undefined;
1303 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1305 if (h
->root
.root
.type
!= bfd_link_hash_defined
1306 && h
->root
.root
.type
!= bfd_link_hash_defweak
1307 && h
->root
.root
.type
!= bfd_link_hash_undefined
)
1310 if ((h
->flags
& SUNOS_DEF_DYNAMIC
) == 0
1311 || (h
->flags
& SUNOS_DEF_REGULAR
) != 0)
1318 if (! sunos_create_dynamic_sections (abfd
, info
, FALSE
))
1320 dynobj
= sunos_hash_table (info
)->dynobj
;
1321 splt
= bfd_get_linker_section (dynobj
, ".plt");
1322 srel
= bfd_get_linker_section (dynobj
, ".dynrel");
1323 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
1325 sgot
= bfd_get_linker_section (dynobj
, ".got");
1326 BFD_ASSERT (sgot
!= NULL
);
1327 if (sgot
->size
== 0)
1328 sgot
->size
= BYTES_IN_WORD
;
1329 sunos_hash_table (info
)->got_needed
= TRUE
;
1332 BFD_ASSERT ((h
->flags
& SUNOS_REF_REGULAR
) != 0);
1333 BFD_ASSERT (h
->plt_offset
!= 0
1334 || ((h
->root
.root
.type
== bfd_link_hash_defined
1335 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1336 ? (h
->root
.root
.u
.def
.section
->owner
->flags
1338 : (h
->root
.root
.u
.undef
.abfd
->flags
& DYNAMIC
) != 0));
1340 /* This reloc is against a symbol defined only by a dynamic
1342 if (h
->root
.root
.type
== bfd_link_hash_undefined
)
1343 /* Presumably this symbol was marked as being undefined by
1344 an earlier reloc. */
1345 srel
->size
+= RELOC_STD_SIZE
;
1346 else if ((h
->root
.root
.u
.def
.section
->flags
& SEC_CODE
) == 0)
1350 /* This reloc is not in the .text section. It must be
1351 copied into the dynamic relocs. We mark the symbol as
1353 srel
->size
+= RELOC_STD_SIZE
;
1354 sub
= h
->root
.root
.u
.def
.section
->owner
;
1355 h
->root
.root
.type
= bfd_link_hash_undefined
;
1356 h
->root
.root
.u
.undef
.abfd
= sub
;
1360 /* This symbol is in the .text section. We must give it an
1361 entry in the procedure linkage table, if we have not
1362 already done so. We change the definition of the symbol
1363 to the .plt section; this will cause relocs against it to
1364 be handled correctly. */
1365 if (h
->plt_offset
== 0)
1367 if (splt
->size
== 0)
1368 splt
->size
= M68K_PLT_ENTRY_SIZE
;
1369 h
->plt_offset
= splt
->size
;
1371 if ((h
->flags
& SUNOS_DEF_REGULAR
) == 0)
1373 h
->root
.root
.u
.def
.section
= splt
;
1374 h
->root
.root
.u
.def
.value
= splt
->size
;
1377 splt
->size
+= M68K_PLT_ENTRY_SIZE
;
1379 /* We may also need a dynamic reloc entry. */
1380 if ((h
->flags
& SUNOS_DEF_REGULAR
) == 0)
1381 srel
->size
+= RELOC_STD_SIZE
;
1389 /* Scan the relocs for an input section using extended relocs. We
1390 need to figure out what to do for each reloc against a dynamic
1391 symbol. If the reloc is a WDISP30, and the symbol is in the .text
1392 section, an entry is made in the procedure linkage table.
1393 Otherwise, we must preserve the reloc as a dynamic reloc. */
1396 sunos_scan_ext_relocs (struct bfd_link_info
*info
,
1398 asection
*sec ATTRIBUTE_UNUSED
,
1399 const struct reloc_ext_external
*relocs
,
1400 bfd_size_type rel_size
)
1403 struct sunos_link_hash_entry
**sym_hashes
;
1404 const struct reloc_ext_external
*rel
, *relend
;
1405 asection
*splt
= NULL
;
1406 asection
*sgot
= NULL
;
1407 asection
*srel
= NULL
;
1410 /* We only know how to handle SPARC plt entries. */
1411 if (bfd_get_arch (abfd
) != bfd_arch_sparc
)
1413 bfd_set_error (bfd_error_invalid_target
);
1419 sym_hashes
= (struct sunos_link_hash_entry
**) obj_aout_sym_hashes (abfd
);
1421 relend
= relocs
+ rel_size
/ RELOC_EXT_SIZE
;
1422 for (rel
= relocs
; rel
< relend
; rel
++)
1424 unsigned int r_index
;
1427 struct sunos_link_hash_entry
*h
= NULL
;
1429 /* Swap in the reloc information. */
1430 if (bfd_header_big_endian (abfd
))
1432 r_index
= ((rel
->r_index
[0] << 16)
1433 | (rel
->r_index
[1] << 8)
1435 r_extern
= (0 != (rel
->r_type
[0] & RELOC_EXT_BITS_EXTERN_BIG
));
1436 r_type
= ((rel
->r_type
[0] & RELOC_EXT_BITS_TYPE_BIG
)
1437 >> RELOC_EXT_BITS_TYPE_SH_BIG
);
1441 r_index
= ((rel
->r_index
[2] << 16)
1442 | (rel
->r_index
[1] << 8)
1444 r_extern
= (0 != (rel
->r_type
[0] & RELOC_EXT_BITS_EXTERN_LITTLE
));
1445 r_type
= ((rel
->r_type
[0] & RELOC_EXT_BITS_TYPE_LITTLE
)
1446 >> RELOC_EXT_BITS_TYPE_SH_LITTLE
);
1451 h
= sym_hashes
[r_index
];
1454 /* This should not normally happen, but it will in any
1455 case be caught in the relocation phase. */
1460 /* If this is a base relative reloc, we need to make an entry in
1461 the .got section. */
1462 if (r_type
== RELOC_BASE10
1463 || r_type
== RELOC_BASE13
1464 || r_type
== RELOC_BASE22
)
1468 if (! sunos_create_dynamic_sections (abfd
, info
, FALSE
))
1470 dynobj
= sunos_hash_table (info
)->dynobj
;
1471 splt
= bfd_get_linker_section (dynobj
, ".plt");
1472 sgot
= bfd_get_linker_section (dynobj
, ".got");
1473 srel
= bfd_get_linker_section (dynobj
, ".dynrel");
1474 BFD_ASSERT (splt
!= NULL
&& sgot
!= NULL
&& srel
!= NULL
);
1476 /* Make sure we have an initial entry in the .got table. */
1477 if (sgot
->size
== 0)
1478 sgot
->size
= BYTES_IN_WORD
;
1479 sunos_hash_table (info
)->got_needed
= TRUE
;
1484 if (h
->got_offset
!= 0)
1487 h
->got_offset
= sgot
->size
;
1491 if (r_index
>= bfd_get_symcount (abfd
))
1492 /* This is abnormal, but should be caught in the
1493 relocation phase. */
1496 if (adata (abfd
).local_got_offsets
== NULL
)
1498 amt
= bfd_get_symcount (abfd
);
1499 amt
*= sizeof (bfd_vma
);
1500 adata (abfd
).local_got_offsets
= bfd_zalloc (abfd
, amt
);
1501 if (adata (abfd
).local_got_offsets
== NULL
)
1505 if (adata (abfd
).local_got_offsets
[r_index
] != 0)
1508 adata (abfd
).local_got_offsets
[r_index
] = sgot
->size
;
1511 sgot
->size
+= BYTES_IN_WORD
;
1513 /* If we are making a shared library, or if the symbol is
1514 defined by a dynamic object, we will need a dynamic reloc
1518 && (h
->flags
& SUNOS_DEF_DYNAMIC
) != 0
1519 && (h
->flags
& SUNOS_DEF_REGULAR
) == 0))
1520 srel
->size
+= RELOC_EXT_SIZE
;
1525 /* Otherwise, we are only interested in relocs against symbols
1526 defined in dynamic objects but not in regular objects. We
1527 only need to consider relocs against external symbols. */
1530 /* But, if we are creating a shared library, we need to
1531 generate an absolute reloc. */
1536 if (! sunos_create_dynamic_sections (abfd
, info
, TRUE
))
1538 dynobj
= sunos_hash_table (info
)->dynobj
;
1539 splt
= bfd_get_linker_section (dynobj
, ".plt");
1540 sgot
= bfd_get_linker_section (dynobj
, ".got");
1541 srel
= bfd_get_linker_section (dynobj
, ".dynrel");
1542 BFD_ASSERT (splt
!= NULL
&& sgot
!= NULL
&& srel
!= NULL
);
1545 srel
->size
+= RELOC_EXT_SIZE
;
1551 /* At this point common symbols have already been allocated, so
1552 we don't have to worry about them. We need to consider that
1553 we may have already seen this symbol and marked it undefined;
1554 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1556 if (h
->root
.root
.type
!= bfd_link_hash_defined
1557 && h
->root
.root
.type
!= bfd_link_hash_defweak
1558 && h
->root
.root
.type
!= bfd_link_hash_undefined
)
1561 if (r_type
!= RELOC_JMP_TBL
1563 && ((h
->flags
& SUNOS_DEF_DYNAMIC
) == 0
1564 || (h
->flags
& SUNOS_DEF_REGULAR
) != 0))
1567 if (r_type
== RELOC_JMP_TBL
1569 && (h
->flags
& SUNOS_DEF_DYNAMIC
) == 0
1570 && (h
->flags
& SUNOS_DEF_REGULAR
) == 0)
1572 /* This symbol is apparently undefined. Don't do anything
1573 here; just let the relocation routine report an undefined
1578 if (strcmp (h
->root
.root
.root
.string
, "__GLOBAL_OFFSET_TABLE_") == 0)
1583 if (! sunos_create_dynamic_sections (abfd
, info
, FALSE
))
1585 dynobj
= sunos_hash_table (info
)->dynobj
;
1586 splt
= bfd_get_linker_section (dynobj
, ".plt");
1587 sgot
= bfd_get_linker_section (dynobj
, ".got");
1588 srel
= bfd_get_linker_section (dynobj
, ".dynrel");
1589 BFD_ASSERT (splt
!= NULL
&& sgot
!= NULL
&& srel
!= NULL
);
1591 /* Make sure we have an initial entry in the .got table. */
1592 if (sgot
->size
== 0)
1593 sgot
->size
= BYTES_IN_WORD
;
1594 sunos_hash_table (info
)->got_needed
= TRUE
;
1597 BFD_ASSERT (r_type
== RELOC_JMP_TBL
1599 || (h
->flags
& SUNOS_REF_REGULAR
) != 0);
1600 BFD_ASSERT (r_type
== RELOC_JMP_TBL
1602 || h
->plt_offset
!= 0
1603 || ((h
->root
.root
.type
== bfd_link_hash_defined
1604 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1605 ? (h
->root
.root
.u
.def
.section
->owner
->flags
1607 : (h
->root
.root
.u
.undef
.abfd
->flags
& DYNAMIC
) != 0));
1609 /* This reloc is against a symbol defined only by a dynamic
1610 object, or it is a jump table reloc from PIC compiled code. */
1612 if (r_type
!= RELOC_JMP_TBL
1613 && h
->root
.root
.type
== bfd_link_hash_undefined
)
1614 /* Presumably this symbol was marked as being undefined by
1615 an earlier reloc. */
1616 srel
->size
+= RELOC_EXT_SIZE
;
1618 else if (r_type
!= RELOC_JMP_TBL
1619 && (h
->root
.root
.u
.def
.section
->flags
& SEC_CODE
) == 0)
1623 /* This reloc is not in the .text section. It must be
1624 copied into the dynamic relocs. We mark the symbol as
1626 srel
->size
+= RELOC_EXT_SIZE
;
1627 if ((h
->flags
& SUNOS_DEF_REGULAR
) == 0)
1629 sub
= h
->root
.root
.u
.def
.section
->owner
;
1630 h
->root
.root
.type
= bfd_link_hash_undefined
;
1631 h
->root
.root
.u
.undef
.abfd
= sub
;
1636 /* This symbol is in the .text section. We must give it an
1637 entry in the procedure linkage table, if we have not
1638 already done so. We change the definition of the symbol
1639 to the .plt section; this will cause relocs against it to
1640 be handled correctly. */
1641 if (h
->plt_offset
== 0)
1643 if (splt
->size
== 0)
1644 splt
->size
= SPARC_PLT_ENTRY_SIZE
;
1645 h
->plt_offset
= splt
->size
;
1647 if ((h
->flags
& SUNOS_DEF_REGULAR
) == 0)
1649 if (h
->root
.root
.type
== bfd_link_hash_undefined
)
1650 h
->root
.root
.type
= bfd_link_hash_defined
;
1651 h
->root
.root
.u
.def
.section
= splt
;
1652 h
->root
.root
.u
.def
.value
= splt
->size
;
1655 splt
->size
+= SPARC_PLT_ENTRY_SIZE
;
1657 /* We will also need a dynamic reloc entry, unless this
1658 is a JMP_TBL reloc produced by linking PIC compiled
1659 code, and we are not making a shared library. */
1660 if (info
->shared
|| (h
->flags
& SUNOS_DEF_REGULAR
) == 0)
1661 srel
->size
+= RELOC_EXT_SIZE
;
1664 /* If we are creating a shared library, we need to copy over
1665 any reloc other than a jump table reloc. */
1666 if (info
->shared
&& r_type
!= RELOC_JMP_TBL
)
1667 srel
->size
+= RELOC_EXT_SIZE
;
1674 /* Scan the relocs for an input section. */
1677 sunos_scan_relocs (struct bfd_link_info
*info
,
1680 bfd_size_type rel_size
)
1683 void * free_relocs
= NULL
;
1688 if (! info
->keep_memory
)
1689 relocs
= free_relocs
= bfd_malloc (rel_size
);
1692 struct aout_section_data_struct
*n
;
1693 bfd_size_type amt
= sizeof (struct aout_section_data_struct
);
1695 n
= bfd_alloc (abfd
, amt
);
1700 set_aout_section_data (sec
, n
);
1701 relocs
= bfd_malloc (rel_size
);
1702 aout_section_data (sec
)->relocs
= relocs
;
1708 if (bfd_seek (abfd
, sec
->rel_filepos
, SEEK_SET
) != 0
1709 || bfd_bread (relocs
, rel_size
, abfd
) != rel_size
)
1712 if (obj_reloc_entry_size (abfd
) == RELOC_STD_SIZE
)
1714 if (! sunos_scan_std_relocs (info
, abfd
, sec
,
1715 (struct reloc_std_external
*) relocs
,
1721 if (! sunos_scan_ext_relocs (info
, abfd
, sec
,
1722 (struct reloc_ext_external
*) relocs
,
1727 if (free_relocs
!= NULL
)
1733 if (free_relocs
!= NULL
)
1738 /* Build the hash table of dynamic symbols, and to mark as written all
1739 symbols from dynamic objects which we do not plan to write out. */
1742 sunos_scan_dynamic_symbol (struct sunos_link_hash_entry
*h
, void * data
)
1744 struct bfd_link_info
*info
= (struct bfd_link_info
*) data
;
1746 /* Set the written flag for symbols we do not want to write out as
1747 part of the regular symbol table. This is all symbols which are
1748 not defined in a regular object file. For some reason symbols
1749 which are referenced by a regular object and defined by a dynamic
1750 object do not seem to show up in the regular symbol table. It is
1751 possible for a symbol to have only SUNOS_REF_REGULAR set here, it
1752 is an undefined symbol which was turned into a common symbol
1753 because it was found in an archive object which was not included
1755 if ((h
->flags
& SUNOS_DEF_REGULAR
) == 0
1756 && (h
->flags
& SUNOS_DEF_DYNAMIC
) != 0
1757 && strcmp (h
->root
.root
.root
.string
, "__DYNAMIC") != 0)
1758 h
->root
.written
= TRUE
;
1760 /* If this symbol is defined by a dynamic object and referenced by a
1761 regular object, see whether we gave it a reasonable value while
1762 scanning the relocs. */
1763 if ((h
->flags
& SUNOS_DEF_REGULAR
) == 0
1764 && (h
->flags
& SUNOS_DEF_DYNAMIC
) != 0
1765 && (h
->flags
& SUNOS_REF_REGULAR
) != 0)
1767 if ((h
->root
.root
.type
== bfd_link_hash_defined
1768 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1769 && ((h
->root
.root
.u
.def
.section
->owner
->flags
& DYNAMIC
) != 0)
1770 && h
->root
.root
.u
.def
.section
->output_section
== NULL
)
1774 /* This symbol is currently defined in a dynamic section
1775 which is not being put into the output file. This
1776 implies that there is no reloc against the symbol. I'm
1777 not sure why this case would ever occur. In any case, we
1778 change the symbol to be undefined. */
1779 sub
= h
->root
.root
.u
.def
.section
->owner
;
1780 h
->root
.root
.type
= bfd_link_hash_undefined
;
1781 h
->root
.root
.u
.undef
.abfd
= sub
;
1785 /* If this symbol is defined or referenced by a regular file, add it
1786 to the dynamic symbols. */
1787 if ((h
->flags
& (SUNOS_DEF_REGULAR
| SUNOS_REF_REGULAR
)) != 0)
1792 unsigned char *name
;
1796 BFD_ASSERT (h
->dynindx
== -2);
1798 dynobj
= sunos_hash_table (info
)->dynobj
;
1800 h
->dynindx
= sunos_hash_table (info
)->dynsymcount
;
1801 ++sunos_hash_table (info
)->dynsymcount
;
1803 len
= strlen (h
->root
.root
.root
.string
);
1805 /* We don't bother to construct a BFD hash table for the strings
1806 which are the names of the dynamic symbols. Using a hash
1807 table for the regular symbols is beneficial, because the
1808 regular symbols includes the debugging symbols, which have
1809 long names and are often duplicated in several object files.
1810 There are no debugging symbols in the dynamic symbols. */
1811 s
= bfd_get_linker_section (dynobj
, ".dynstr");
1812 BFD_ASSERT (s
!= NULL
);
1813 contents
= bfd_realloc (s
->contents
, s
->size
+ len
+ 1);
1814 if (contents
== NULL
)
1816 s
->contents
= contents
;
1818 h
->dynstr_index
= s
->size
;
1819 strcpy ((char *) contents
+ s
->size
, h
->root
.root
.root
.string
);
1822 /* Add it to the dynamic hash table. */
1823 name
= (unsigned char *) h
->root
.root
.root
.string
;
1825 while (*name
!= '\0')
1826 hash
= (hash
<< 1) + *name
++;
1828 hash
%= sunos_hash_table (info
)->bucketcount
;
1830 s
= bfd_get_linker_section (dynobj
, ".hash");
1831 BFD_ASSERT (s
!= NULL
);
1833 if (GET_SWORD (dynobj
, s
->contents
+ hash
* HASH_ENTRY_SIZE
) == -1)
1834 PUT_WORD (dynobj
, h
->dynindx
, s
->contents
+ hash
* HASH_ENTRY_SIZE
);
1839 next
= GET_WORD (dynobj
,
1841 + hash
* HASH_ENTRY_SIZE
1843 PUT_WORD (dynobj
, s
->size
/ HASH_ENTRY_SIZE
,
1844 s
->contents
+ hash
* HASH_ENTRY_SIZE
+ BYTES_IN_WORD
);
1845 PUT_WORD (dynobj
, h
->dynindx
, s
->contents
+ s
->size
);
1846 PUT_WORD (dynobj
, next
, s
->contents
+ s
->size
+ BYTES_IN_WORD
);
1847 s
->size
+= HASH_ENTRY_SIZE
;
1854 /* Set up the sizes and contents of the dynamic sections created in
1855 sunos_add_dynamic_symbols. This is called by the SunOS linker
1856 emulation before_allocation routine. We must set the sizes of the
1857 sections before the linker sets the addresses of the various
1858 sections. This unfortunately requires reading all the relocs so
1859 that we can work out which ones need to become dynamic relocs. If
1860 info->keep_memory is TRUE, we keep the relocs in memory; otherwise,
1861 we discard them, and will read them again later. */
1864 bfd_sunos_size_dynamic_sections (bfd
*output_bfd
,
1865 struct bfd_link_info
*info
,
1867 asection
**sneedptr
,
1868 asection
**srulesptr
)
1871 bfd_size_type dynsymcount
;
1872 struct sunos_link_hash_entry
*h
;
1875 bfd_size_type hashalloc
;
1883 if (info
->relocatable
)
1886 if (output_bfd
->xvec
!= &MY(vec
))
1889 /* Look through all the input BFD's and read their relocs. It would
1890 be better if we didn't have to do this, but there is no other way
1891 to determine the number of dynamic relocs we need, and, more
1892 importantly, there is no other way to know which symbols should
1893 get an entry in the procedure linkage table. */
1894 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
1896 if ((sub
->flags
& DYNAMIC
) == 0
1897 && sub
->xvec
== output_bfd
->xvec
)
1899 if (! sunos_scan_relocs (info
, sub
, obj_textsec (sub
),
1900 exec_hdr (sub
)->a_trsize
)
1901 || ! sunos_scan_relocs (info
, sub
, obj_datasec (sub
),
1902 exec_hdr (sub
)->a_drsize
))
1907 dynobj
= sunos_hash_table (info
)->dynobj
;
1908 dynsymcount
= sunos_hash_table (info
)->dynsymcount
;
1910 /* If there were no dynamic objects in the link, and we don't need
1911 to build a global offset table, there is nothing to do here. */
1912 if (! sunos_hash_table (info
)->dynamic_sections_needed
1913 && ! sunos_hash_table (info
)->got_needed
)
1916 /* If __GLOBAL_OFFSET_TABLE_ was mentioned, define it. */
1917 h
= sunos_link_hash_lookup (sunos_hash_table (info
),
1918 "__GLOBAL_OFFSET_TABLE_", FALSE
, FALSE
, FALSE
);
1919 if (h
!= NULL
&& (h
->flags
& SUNOS_REF_REGULAR
) != 0)
1921 h
->flags
|= SUNOS_DEF_REGULAR
;
1922 if (h
->dynindx
== -1)
1924 ++sunos_hash_table (info
)->dynsymcount
;
1927 s
= bfd_get_linker_section (dynobj
, ".got");
1928 BFD_ASSERT (s
!= NULL
);
1929 h
->root
.root
.type
= bfd_link_hash_defined
;
1930 h
->root
.root
.u
.def
.section
= s
;
1932 /* If the .got section is more than 0x1000 bytes, we set
1933 __GLOBAL_OFFSET_TABLE_ to be 0x1000 bytes into the section,
1934 so that 13 bit relocations have a greater chance of working. */
1935 if (s
->size
>= 0x1000)
1936 h
->root
.root
.u
.def
.value
= 0x1000;
1938 h
->root
.root
.u
.def
.value
= 0;
1940 sunos_hash_table (info
)->got_base
= h
->root
.root
.u
.def
.value
;
1943 /* If there are any shared objects in the link, then we need to set
1944 up the dynamic linking information. */
1945 if (sunos_hash_table (info
)->dynamic_sections_needed
)
1947 *sdynptr
= bfd_get_linker_section (dynobj
, ".dynamic");
1949 /* The .dynamic section is always the same size. */
1951 BFD_ASSERT (s
!= NULL
);
1952 s
->size
= (sizeof (struct external_sun4_dynamic
)
1953 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE
1954 + sizeof (struct external_sun4_dynamic_link
));
1956 /* Set the size of the .dynsym and .hash sections. We counted
1957 the number of dynamic symbols as we read the input files. We
1958 will build the dynamic symbol table (.dynsym) and the hash
1959 table (.hash) when we build the final symbol table, because
1960 until then we do not know the correct value to give the
1961 symbols. We build the dynamic symbol string table (.dynstr)
1962 in a traversal of the symbol table using
1963 sunos_scan_dynamic_symbol. */
1964 s
= bfd_get_linker_section (dynobj
, ".dynsym");
1965 BFD_ASSERT (s
!= NULL
);
1966 s
->size
= dynsymcount
* sizeof (struct external_nlist
);
1967 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
1968 if (s
->contents
== NULL
&& s
->size
!= 0)
1971 /* The number of buckets is just the number of symbols divided
1972 by four. To compute the final size of the hash table, we
1973 must actually compute the hash table. Normally we need
1974 exactly as many entries in the hash table as there are
1975 dynamic symbols, but if some of the buckets are not used we
1976 will need additional entries. In the worst case, every
1977 symbol will hash to the same bucket, and we will need
1978 BUCKETCOUNT - 1 extra entries. */
1979 if (dynsymcount
>= 4)
1980 bucketcount
= dynsymcount
/ 4;
1981 else if (dynsymcount
> 0)
1982 bucketcount
= dynsymcount
;
1985 s
= bfd_get_linker_section (dynobj
, ".hash");
1986 BFD_ASSERT (s
!= NULL
);
1987 hashalloc
= (dynsymcount
+ bucketcount
- 1) * HASH_ENTRY_SIZE
;
1988 s
->contents
= bfd_zalloc (dynobj
, hashalloc
);
1989 if (s
->contents
== NULL
&& dynsymcount
> 0)
1991 for (i
= 0; i
< bucketcount
; i
++)
1992 PUT_WORD (output_bfd
, (bfd_vma
) -1, s
->contents
+ i
* HASH_ENTRY_SIZE
);
1993 s
->size
= bucketcount
* HASH_ENTRY_SIZE
;
1995 sunos_hash_table (info
)->bucketcount
= bucketcount
;
1997 /* Scan all the symbols, place them in the dynamic symbol table,
1998 and build the dynamic hash table. We reuse dynsymcount as a
1999 counter for the number of symbols we have added so far. */
2000 sunos_hash_table (info
)->dynsymcount
= 0;
2001 sunos_link_hash_traverse (sunos_hash_table (info
),
2002 sunos_scan_dynamic_symbol
,
2004 BFD_ASSERT (sunos_hash_table (info
)->dynsymcount
== dynsymcount
);
2006 /* The SunOS native linker seems to align the total size of the
2007 symbol strings to a multiple of 8. I don't know if this is
2008 important, but it can't hurt much. */
2009 s
= bfd_get_linker_section (dynobj
, ".dynstr");
2010 BFD_ASSERT (s
!= NULL
);
2011 if ((s
->size
& 7) != 0)
2016 add
= 8 - (s
->size
& 7);
2017 contents
= bfd_realloc (s
->contents
, s
->size
+ add
);
2018 if (contents
== NULL
)
2020 memset (contents
+ s
->size
, 0, (size_t) add
);
2021 s
->contents
= contents
;
2026 /* Now that we have worked out the sizes of the procedure linkage
2027 table and the dynamic relocs, allocate storage for them. */
2028 s
= bfd_get_linker_section (dynobj
, ".plt");
2029 BFD_ASSERT (s
!= NULL
);
2032 s
->contents
= bfd_alloc (dynobj
, s
->size
);
2033 if (s
->contents
== NULL
)
2036 /* Fill in the first entry in the table. */
2037 switch (bfd_get_arch (dynobj
))
2039 case bfd_arch_sparc
:
2040 memcpy (s
->contents
, sparc_plt_first_entry
, SPARC_PLT_ENTRY_SIZE
);
2044 memcpy (s
->contents
, m68k_plt_first_entry
, M68K_PLT_ENTRY_SIZE
);
2052 s
= bfd_get_linker_section (dynobj
, ".dynrel");
2055 s
->contents
= bfd_alloc (dynobj
, s
->size
);
2056 if (s
->contents
== NULL
)
2059 /* We use the reloc_count field to keep track of how many of the
2060 relocs we have output so far. */
2063 /* Make space for the global offset table. */
2064 s
= bfd_get_linker_section (dynobj
, ".got");
2065 s
->contents
= bfd_alloc (dynobj
, s
->size
);
2066 if (s
->contents
== NULL
)
2069 *sneedptr
= bfd_get_section_by_name (dynobj
, ".need");
2070 *srulesptr
= bfd_get_section_by_name (dynobj
, ".rules");
2075 /* Link a dynamic object. We actually don't have anything to do at
2076 this point. This entry point exists to prevent the regular linker
2077 code from doing anything with the object. */
2080 sunos_link_dynamic_object (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
2081 bfd
*abfd ATTRIBUTE_UNUSED
)
2086 /* Write out a dynamic symbol. This is called by the final traversal
2087 over the symbol table. */
2090 sunos_write_dynamic_symbol (bfd
*output_bfd
,
2091 struct bfd_link_info
*info
,
2092 struct aout_link_hash_entry
*harg
)
2094 struct sunos_link_hash_entry
*h
= (struct sunos_link_hash_entry
*) harg
;
2098 struct external_nlist
*outsym
;
2100 /* If this symbol is in the procedure linkage table, fill in the
2102 if (h
->plt_offset
!= 0)
2109 dynobj
= sunos_hash_table (info
)->dynobj
;
2110 splt
= bfd_get_linker_section (dynobj
, ".plt");
2111 p
= splt
->contents
+ h
->plt_offset
;
2113 s
= bfd_get_linker_section (dynobj
, ".dynrel");
2115 r_address
= (splt
->output_section
->vma
2116 + splt
->output_offset
2119 switch (bfd_get_arch (output_bfd
))
2121 case bfd_arch_sparc
:
2122 if (info
->shared
|| (h
->flags
& SUNOS_DEF_REGULAR
) == 0)
2124 bfd_put_32 (output_bfd
, SPARC_PLT_ENTRY_WORD0
, p
);
2125 bfd_put_32 (output_bfd
,
2126 (SPARC_PLT_ENTRY_WORD1
2127 + (((- (h
->plt_offset
+ 4) >> 2)
2130 bfd_put_32 (output_bfd
, SPARC_PLT_ENTRY_WORD2
+ s
->reloc_count
,
2135 val
= (h
->root
.root
.u
.def
.section
->output_section
->vma
2136 + h
->root
.root
.u
.def
.section
->output_offset
2137 + h
->root
.root
.u
.def
.value
);
2138 bfd_put_32 (output_bfd
,
2139 SPARC_PLT_PIC_WORD0
+ ((val
>> 10) & 0x3fffff),
2141 bfd_put_32 (output_bfd
,
2142 SPARC_PLT_PIC_WORD1
+ (val
& 0x3ff),
2144 bfd_put_32 (output_bfd
, SPARC_PLT_PIC_WORD2
, p
+ 8);
2149 if (! info
->shared
&& (h
->flags
& SUNOS_DEF_REGULAR
) != 0)
2151 bfd_put_16 (output_bfd
, M68K_PLT_ENTRY_WORD0
, p
);
2152 bfd_put_32 (output_bfd
, (- (h
->plt_offset
+ 2)), p
+ 2);
2153 bfd_put_16 (output_bfd
, (bfd_vma
) s
->reloc_count
, p
+ 6);
2161 /* We also need to add a jump table reloc, unless this is the
2162 result of a JMP_TBL reloc from PIC compiled code. */
2163 if (info
->shared
|| (h
->flags
& SUNOS_DEF_REGULAR
) == 0)
2165 BFD_ASSERT (h
->dynindx
>= 0);
2166 BFD_ASSERT (s
->reloc_count
* obj_reloc_entry_size (dynobj
)
2168 p
= s
->contents
+ s
->reloc_count
* obj_reloc_entry_size (output_bfd
);
2169 if (obj_reloc_entry_size (output_bfd
) == RELOC_STD_SIZE
)
2171 struct reloc_std_external
*srel
;
2173 srel
= (struct reloc_std_external
*) p
;
2174 PUT_WORD (output_bfd
, r_address
, srel
->r_address
);
2175 if (bfd_header_big_endian (output_bfd
))
2177 srel
->r_index
[0] = (bfd_byte
) (h
->dynindx
>> 16);
2178 srel
->r_index
[1] = (bfd_byte
) (h
->dynindx
>> 8);
2179 srel
->r_index
[2] = (bfd_byte
) (h
->dynindx
);
2180 srel
->r_type
[0] = (RELOC_STD_BITS_EXTERN_BIG
2181 | RELOC_STD_BITS_JMPTABLE_BIG
);
2185 srel
->r_index
[2] = (bfd_byte
) (h
->dynindx
>> 16);
2186 srel
->r_index
[1] = (bfd_byte
) (h
->dynindx
>> 8);
2187 srel
->r_index
[0] = (bfd_byte
)h
->dynindx
;
2188 srel
->r_type
[0] = (RELOC_STD_BITS_EXTERN_LITTLE
2189 | RELOC_STD_BITS_JMPTABLE_LITTLE
);
2194 struct reloc_ext_external
*erel
;
2196 erel
= (struct reloc_ext_external
*) p
;
2197 PUT_WORD (output_bfd
, r_address
, erel
->r_address
);
2198 if (bfd_header_big_endian (output_bfd
))
2200 erel
->r_index
[0] = (bfd_byte
) (h
->dynindx
>> 16);
2201 erel
->r_index
[1] = (bfd_byte
) (h
->dynindx
>> 8);
2202 erel
->r_index
[2] = (bfd_byte
)h
->dynindx
;
2204 (RELOC_EXT_BITS_EXTERN_BIG
2205 | (RELOC_JMP_SLOT
<< RELOC_EXT_BITS_TYPE_SH_BIG
));
2209 erel
->r_index
[2] = (bfd_byte
) (h
->dynindx
>> 16);
2210 erel
->r_index
[1] = (bfd_byte
) (h
->dynindx
>> 8);
2211 erel
->r_index
[0] = (bfd_byte
)h
->dynindx
;
2213 (RELOC_EXT_BITS_EXTERN_LITTLE
2214 | (RELOC_JMP_SLOT
<< RELOC_EXT_BITS_TYPE_SH_LITTLE
));
2216 PUT_WORD (output_bfd
, (bfd_vma
) 0, erel
->r_addend
);
2223 /* If this is not a dynamic symbol, we don't have to do anything
2224 else. We only check this after handling the PLT entry, because
2225 we can have a PLT entry for a nondynamic symbol when linking PIC
2226 compiled code from a regular object. */
2230 switch (h
->root
.root
.type
)
2233 case bfd_link_hash_new
:
2235 /* Avoid variable not initialized warnings. */
2237 case bfd_link_hash_undefined
:
2238 type
= N_UNDF
| N_EXT
;
2241 case bfd_link_hash_defined
:
2242 case bfd_link_hash_defweak
:
2245 asection
*output_section
;
2247 sec
= h
->root
.root
.u
.def
.section
;
2248 output_section
= sec
->output_section
;
2249 BFD_ASSERT (bfd_is_abs_section (output_section
)
2250 || output_section
->owner
== output_bfd
);
2251 if (h
->plt_offset
!= 0
2252 && (h
->flags
& SUNOS_DEF_REGULAR
) == 0)
2254 type
= N_UNDF
| N_EXT
;
2259 if (output_section
== obj_textsec (output_bfd
))
2260 type
= (h
->root
.root
.type
== bfd_link_hash_defined
2263 else if (output_section
== obj_datasec (output_bfd
))
2264 type
= (h
->root
.root
.type
== bfd_link_hash_defined
2267 else if (output_section
== obj_bsssec (output_bfd
))
2268 type
= (h
->root
.root
.type
== bfd_link_hash_defined
2272 type
= (h
->root
.root
.type
== bfd_link_hash_defined
2276 val
= (h
->root
.root
.u
.def
.value
2277 + output_section
->vma
2278 + sec
->output_offset
);
2282 case bfd_link_hash_common
:
2283 type
= N_UNDF
| N_EXT
;
2284 val
= h
->root
.root
.u
.c
.size
;
2286 case bfd_link_hash_undefweak
:
2290 case bfd_link_hash_indirect
:
2291 case bfd_link_hash_warning
:
2292 /* FIXME: Ignore these for now. The circumstances under which
2293 they should be written out are not clear to me. */
2297 s
= bfd_get_linker_section (sunos_hash_table (info
)->dynobj
, ".dynsym");
2298 BFD_ASSERT (s
!= NULL
);
2299 outsym
= ((struct external_nlist
*)
2300 (s
->contents
+ h
->dynindx
* EXTERNAL_NLIST_SIZE
));
2302 H_PUT_8 (output_bfd
, type
, outsym
->e_type
);
2303 H_PUT_8 (output_bfd
, 0, outsym
->e_other
);
2305 /* FIXME: The native linker doesn't use 0 for desc. It seems to use
2306 one less than the desc value in the shared library, although that
2308 H_PUT_16 (output_bfd
, 0, outsym
->e_desc
);
2310 PUT_WORD (output_bfd
, h
->dynstr_index
, outsym
->e_strx
);
2311 PUT_WORD (output_bfd
, val
, outsym
->e_value
);
2316 /* This is called for each reloc against an external symbol. If this
2317 is a reloc which are are going to copy as a dynamic reloc, then
2318 copy it over, and tell the caller to not bother processing this
2322 sunos_check_dynamic_reloc (struct bfd_link_info
*info
,
2324 asection
*input_section
,
2325 struct aout_link_hash_entry
*harg
,
2327 bfd_byte
*contents ATTRIBUTE_UNUSED
,
2329 bfd_vma
*relocationp
)
2331 struct sunos_link_hash_entry
*h
= (struct sunos_link_hash_entry
*) harg
;
2333 bfd_boolean baserel
;
2342 dynobj
= sunos_hash_table (info
)->dynobj
;
2345 && h
->plt_offset
!= 0
2347 || (h
->flags
& SUNOS_DEF_REGULAR
) == 0))
2351 /* Redirect the relocation to the PLT entry. */
2352 splt
= bfd_get_linker_section (dynobj
, ".plt");
2353 *relocationp
= (splt
->output_section
->vma
2354 + splt
->output_offset
2358 if (obj_reloc_entry_size (input_bfd
) == RELOC_STD_SIZE
)
2360 struct reloc_std_external
*srel
;
2362 srel
= (struct reloc_std_external
*) reloc
;
2363 if (bfd_header_big_endian (input_bfd
))
2365 baserel
= (0 != (srel
->r_type
[0] & RELOC_STD_BITS_BASEREL_BIG
));
2366 jmptbl
= (0 != (srel
->r_type
[0] & RELOC_STD_BITS_JMPTABLE_BIG
));
2367 pcrel
= (0 != (srel
->r_type
[0] & RELOC_STD_BITS_PCREL_BIG
));
2371 baserel
= (0 != (srel
->r_type
[0] & RELOC_STD_BITS_BASEREL_LITTLE
));
2372 jmptbl
= (0 != (srel
->r_type
[0] & RELOC_STD_BITS_JMPTABLE_LITTLE
));
2373 pcrel
= (0 != (srel
->r_type
[0] & RELOC_STD_BITS_PCREL_LITTLE
));
2378 struct reloc_ext_external
*erel
;
2381 erel
= (struct reloc_ext_external
*) reloc
;
2382 if (bfd_header_big_endian (input_bfd
))
2383 r_type
= ((erel
->r_type
[0] & RELOC_EXT_BITS_TYPE_BIG
)
2384 >> RELOC_EXT_BITS_TYPE_SH_BIG
);
2386 r_type
= ((erel
->r_type
[0] & RELOC_EXT_BITS_TYPE_LITTLE
)
2387 >> RELOC_EXT_BITS_TYPE_SH_LITTLE
);
2388 baserel
= (r_type
== RELOC_BASE10
2389 || r_type
== RELOC_BASE13
2390 || r_type
== RELOC_BASE22
);
2391 jmptbl
= r_type
== RELOC_JMP_TBL
;
2392 pcrel
= (r_type
== RELOC_DISP8
2393 || r_type
== RELOC_DISP16
2394 || r_type
== RELOC_DISP32
2395 || r_type
== RELOC_WDISP30
2396 || r_type
== RELOC_WDISP22
);
2397 /* We don't consider the PC10 and PC22 types to be PC relative,
2398 because they are pcrel_offset. */
2403 bfd_vma
*got_offsetp
;
2407 got_offsetp
= &h
->got_offset
;
2408 else if (adata (input_bfd
).local_got_offsets
== NULL
)
2412 struct reloc_std_external
*srel
;
2415 srel
= (struct reloc_std_external
*) reloc
;
2416 if (obj_reloc_entry_size (input_bfd
) == RELOC_STD_SIZE
)
2418 if (bfd_header_big_endian (input_bfd
))
2419 r_index
= ((srel
->r_index
[0] << 16)
2420 | (srel
->r_index
[1] << 8)
2421 | srel
->r_index
[2]);
2423 r_index
= ((srel
->r_index
[2] << 16)
2424 | (srel
->r_index
[1] << 8)
2425 | srel
->r_index
[0]);
2429 struct reloc_ext_external
*erel
;
2431 erel
= (struct reloc_ext_external
*) reloc
;
2432 if (bfd_header_big_endian (input_bfd
))
2433 r_index
= ((erel
->r_index
[0] << 16)
2434 | (erel
->r_index
[1] << 8)
2435 | erel
->r_index
[2]);
2437 r_index
= ((erel
->r_index
[2] << 16)
2438 | (erel
->r_index
[1] << 8)
2439 | erel
->r_index
[0]);
2442 got_offsetp
= adata (input_bfd
).local_got_offsets
+ r_index
;
2445 BFD_ASSERT (got_offsetp
!= NULL
&& *got_offsetp
!= 0);
2447 sgot
= bfd_get_linker_section (dynobj
, ".got");
2449 /* We set the least significant bit to indicate whether we have
2450 already initialized the GOT entry. */
2451 if ((*got_offsetp
& 1) == 0)
2455 && ((h
->flags
& SUNOS_DEF_DYNAMIC
) == 0
2456 || (h
->flags
& SUNOS_DEF_REGULAR
) != 0)))
2457 PUT_WORD (dynobj
, *relocationp
, sgot
->contents
+ *got_offsetp
);
2459 PUT_WORD (dynobj
, 0, sgot
->contents
+ *got_offsetp
);
2463 && (h
->flags
& SUNOS_DEF_DYNAMIC
) != 0
2464 && (h
->flags
& SUNOS_DEF_REGULAR
) == 0))
2466 /* We need to create a GLOB_DAT or 32 reloc to tell the
2467 dynamic linker to fill in this entry in the table. */
2469 s
= bfd_get_linker_section (dynobj
, ".dynrel");
2470 BFD_ASSERT (s
!= NULL
);
2471 BFD_ASSERT (s
->reloc_count
* obj_reloc_entry_size (dynobj
)
2475 + s
->reloc_count
* obj_reloc_entry_size (dynobj
));
2482 if (obj_reloc_entry_size (dynobj
) == RELOC_STD_SIZE
)
2484 struct reloc_std_external
*srel
;
2486 srel
= (struct reloc_std_external
*) p
;
2489 + sgot
->output_section
->vma
2490 + sgot
->output_offset
),
2492 if (bfd_header_big_endian (dynobj
))
2494 srel
->r_index
[0] = (bfd_byte
) (indx
>> 16);
2495 srel
->r_index
[1] = (bfd_byte
) (indx
>> 8);
2496 srel
->r_index
[2] = (bfd_byte
)indx
;
2498 srel
->r_type
[0] = 2 << RELOC_STD_BITS_LENGTH_SH_BIG
;
2501 (RELOC_STD_BITS_EXTERN_BIG
2502 | RELOC_STD_BITS_BASEREL_BIG
2503 | RELOC_STD_BITS_RELATIVE_BIG
2504 | (2 << RELOC_STD_BITS_LENGTH_SH_BIG
));
2508 srel
->r_index
[2] = (bfd_byte
) (indx
>> 16);
2509 srel
->r_index
[1] = (bfd_byte
) (indx
>> 8);
2510 srel
->r_index
[0] = (bfd_byte
)indx
;
2512 srel
->r_type
[0] = 2 << RELOC_STD_BITS_LENGTH_SH_LITTLE
;
2515 (RELOC_STD_BITS_EXTERN_LITTLE
2516 | RELOC_STD_BITS_BASEREL_LITTLE
2517 | RELOC_STD_BITS_RELATIVE_LITTLE
2518 | (2 << RELOC_STD_BITS_LENGTH_SH_LITTLE
));
2523 struct reloc_ext_external
*erel
;
2525 erel
= (struct reloc_ext_external
*) p
;
2528 + sgot
->output_section
->vma
2529 + sgot
->output_offset
),
2531 if (bfd_header_big_endian (dynobj
))
2533 erel
->r_index
[0] = (bfd_byte
) (indx
>> 16);
2534 erel
->r_index
[1] = (bfd_byte
) (indx
>> 8);
2535 erel
->r_index
[2] = (bfd_byte
)indx
;
2538 RELOC_32
<< RELOC_EXT_BITS_TYPE_SH_BIG
;
2541 (RELOC_EXT_BITS_EXTERN_BIG
2542 | (RELOC_GLOB_DAT
<< RELOC_EXT_BITS_TYPE_SH_BIG
));
2546 erel
->r_index
[2] = (bfd_byte
) (indx
>> 16);
2547 erel
->r_index
[1] = (bfd_byte
) (indx
>> 8);
2548 erel
->r_index
[0] = (bfd_byte
)indx
;
2551 RELOC_32
<< RELOC_EXT_BITS_TYPE_SH_LITTLE
;
2554 (RELOC_EXT_BITS_EXTERN_LITTLE
2556 << RELOC_EXT_BITS_TYPE_SH_LITTLE
));
2558 PUT_WORD (dynobj
, 0, erel
->r_addend
);
2567 *relocationp
= (sgot
->vma
2568 + (*got_offsetp
&~ (bfd_vma
) 1)
2569 - sunos_hash_table (info
)->got_base
);
2571 /* There is nothing else to do for a base relative reloc. */
2575 if (! sunos_hash_table (info
)->dynamic_sections_needed
)
2581 || h
->root
.root
.type
!= bfd_link_hash_undefined
2582 || (h
->flags
& SUNOS_DEF_REGULAR
) != 0
2583 || (h
->flags
& SUNOS_DEF_DYNAMIC
) == 0
2584 || (h
->root
.root
.u
.undef
.abfd
->flags
& DYNAMIC
) == 0)
2590 && (h
->dynindx
== -1
2592 || strcmp (h
->root
.root
.root
.string
,
2593 "__GLOBAL_OFFSET_TABLE_") == 0))
2597 /* It looks like this is a reloc we are supposed to copy. */
2599 s
= bfd_get_linker_section (dynobj
, ".dynrel");
2600 BFD_ASSERT (s
!= NULL
);
2601 BFD_ASSERT (s
->reloc_count
* obj_reloc_entry_size (dynobj
) < s
->size
);
2603 p
= s
->contents
+ s
->reloc_count
* obj_reloc_entry_size (dynobj
);
2605 /* Copy the reloc over. */
2606 memcpy (p
, reloc
, obj_reloc_entry_size (dynobj
));
2613 /* Adjust the address and symbol index. */
2614 if (obj_reloc_entry_size (dynobj
) == RELOC_STD_SIZE
)
2616 struct reloc_std_external
*srel
;
2618 srel
= (struct reloc_std_external
*) p
;
2620 (GET_WORD (dynobj
, srel
->r_address
)
2621 + input_section
->output_section
->vma
2622 + input_section
->output_offset
),
2624 if (bfd_header_big_endian (dynobj
))
2626 srel
->r_index
[0] = (bfd_byte
) (indx
>> 16);
2627 srel
->r_index
[1] = (bfd_byte
) (indx
>> 8);
2628 srel
->r_index
[2] = (bfd_byte
)indx
;
2632 srel
->r_index
[2] = (bfd_byte
) (indx
>> 16);
2633 srel
->r_index
[1] = (bfd_byte
) (indx
>> 8);
2634 srel
->r_index
[0] = (bfd_byte
)indx
;
2636 /* FIXME: We may have to change the addend for a PC relative
2641 struct reloc_ext_external
*erel
;
2643 erel
= (struct reloc_ext_external
*) p
;
2645 (GET_WORD (dynobj
, erel
->r_address
)
2646 + input_section
->output_section
->vma
2647 + input_section
->output_offset
),
2649 if (bfd_header_big_endian (dynobj
))
2651 erel
->r_index
[0] = (bfd_byte
) (indx
>> 16);
2652 erel
->r_index
[1] = (bfd_byte
) (indx
>> 8);
2653 erel
->r_index
[2] = (bfd_byte
)indx
;
2657 erel
->r_index
[2] = (bfd_byte
) (indx
>> 16);
2658 erel
->r_index
[1] = (bfd_byte
) (indx
>> 8);
2659 erel
->r_index
[0] = (bfd_byte
)indx
;
2661 if (pcrel
&& h
!= NULL
)
2663 /* Adjust the addend for the change in address. */
2665 (GET_WORD (dynobj
, erel
->r_addend
)
2666 - (input_section
->output_section
->vma
2667 + input_section
->output_offset
2668 - input_section
->vma
)),
2681 /* Finish up the dynamic linking information. */
2684 sunos_finish_dynamic_link (bfd
*abfd
, struct bfd_link_info
*info
)
2691 if (! sunos_hash_table (info
)->dynamic_sections_needed
2692 && ! sunos_hash_table (info
)->got_needed
)
2695 dynobj
= sunos_hash_table (info
)->dynobj
;
2697 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
2698 BFD_ASSERT (sdyn
!= NULL
);
2700 /* Finish up the .need section. The linker emulation code filled it
2701 in, but with offsets from the start of the section instead of
2702 real addresses. Now that we know the section location, we can
2703 fill in the final values. */
2704 s
= bfd_get_section_by_name (dynobj
, ".need");
2705 if (s
!= NULL
&& s
->size
!= 0)
2710 filepos
= s
->output_section
->filepos
+ s
->output_offset
;
2716 PUT_WORD (dynobj
, GET_WORD (dynobj
, p
) + filepos
, p
);
2717 val
= GET_WORD (dynobj
, p
+ 12);
2720 PUT_WORD (dynobj
, val
+ filepos
, p
+ 12);
2725 /* The first entry in the .got section is the address of the
2726 dynamic information, unless this is a shared library. */
2727 s
= bfd_get_linker_section (dynobj
, ".got");
2728 BFD_ASSERT (s
!= NULL
);
2729 if (info
->shared
|| sdyn
->size
== 0)
2730 PUT_WORD (dynobj
, 0, s
->contents
);
2732 PUT_WORD (dynobj
, sdyn
->output_section
->vma
+ sdyn
->output_offset
,
2735 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
2737 if ((o
->flags
& SEC_HAS_CONTENTS
) != 0
2738 && o
->contents
!= NULL
)
2740 BFD_ASSERT (o
->output_section
!= NULL
2741 && o
->output_section
->owner
== abfd
);
2742 if (! bfd_set_section_contents (abfd
, o
->output_section
,
2744 (file_ptr
) o
->output_offset
,
2752 struct external_sun4_dynamic esd
;
2753 struct external_sun4_dynamic_link esdl
;
2756 /* Finish up the dynamic link information. */
2757 PUT_WORD (dynobj
, (bfd_vma
) 3, esd
.ld_version
);
2759 sdyn
->output_section
->vma
+ sdyn
->output_offset
+ sizeof esd
,
2762 (sdyn
->output_section
->vma
2763 + sdyn
->output_offset
2765 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE
),
2768 if (! bfd_set_section_contents (abfd
, sdyn
->output_section
, &esd
,
2769 (file_ptr
) sdyn
->output_offset
,
2770 (bfd_size_type
) sizeof esd
))
2773 PUT_WORD (dynobj
, (bfd_vma
) 0, esdl
.ld_loaded
);
2775 s
= bfd_get_section_by_name (dynobj
, ".need");
2776 if (s
== NULL
|| s
->size
== 0)
2777 PUT_WORD (dynobj
, (bfd_vma
) 0, esdl
.ld_need
);
2779 PUT_WORD (dynobj
, s
->output_section
->filepos
+ s
->output_offset
,
2782 s
= bfd_get_section_by_name (dynobj
, ".rules");
2783 if (s
== NULL
|| s
->size
== 0)
2784 PUT_WORD (dynobj
, (bfd_vma
) 0, esdl
.ld_rules
);
2786 PUT_WORD (dynobj
, s
->output_section
->filepos
+ s
->output_offset
,
2789 s
= bfd_get_linker_section (dynobj
, ".got");
2790 BFD_ASSERT (s
!= NULL
);
2791 PUT_WORD (dynobj
, s
->output_section
->vma
+ s
->output_offset
,
2794 s
= bfd_get_linker_section (dynobj
, ".plt");
2795 BFD_ASSERT (s
!= NULL
);
2796 PUT_WORD (dynobj
, s
->output_section
->vma
+ s
->output_offset
,
2798 PUT_WORD (dynobj
, s
->size
, esdl
.ld_plt_sz
);
2800 s
= bfd_get_linker_section (dynobj
, ".dynrel");
2801 BFD_ASSERT (s
!= NULL
);
2802 BFD_ASSERT (s
->reloc_count
* obj_reloc_entry_size (dynobj
)
2804 PUT_WORD (dynobj
, s
->output_section
->filepos
+ s
->output_offset
,
2807 s
= bfd_get_linker_section (dynobj
, ".hash");
2808 BFD_ASSERT (s
!= NULL
);
2809 PUT_WORD (dynobj
, s
->output_section
->filepos
+ s
->output_offset
,
2812 s
= bfd_get_linker_section (dynobj
, ".dynsym");
2813 BFD_ASSERT (s
!= NULL
);
2814 PUT_WORD (dynobj
, s
->output_section
->filepos
+ s
->output_offset
,
2817 PUT_WORD (dynobj
, (bfd_vma
) 0, esdl
.ld_stab_hash
);
2819 PUT_WORD (dynobj
, (bfd_vma
) sunos_hash_table (info
)->bucketcount
,
2822 s
= bfd_get_linker_section (dynobj
, ".dynstr");
2823 BFD_ASSERT (s
!= NULL
);
2824 PUT_WORD (dynobj
, s
->output_section
->filepos
+ s
->output_offset
,
2826 PUT_WORD (dynobj
, s
->size
, esdl
.ld_symb_size
);
2828 /* The size of the text area is the size of the .text section
2829 rounded up to a page boundary. FIXME: Should the page size be
2830 conditional on something? */
2832 BFD_ALIGN (obj_textsec (abfd
)->size
, 0x2000),
2835 pos
= sdyn
->output_offset
;
2836 pos
+= sizeof esd
+ EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE
;
2837 if (! bfd_set_section_contents (abfd
, sdyn
->output_section
, &esdl
,
2838 pos
, (bfd_size_type
) sizeof esdl
))
2841 abfd
->flags
|= DYNAMIC
;