Warn if GOT16 overflows.
[deliverable/binutils-gdb.git] / bfd / sunos.c
1 /* BFD backend for SunOS binaries.
2 Copyright (C) 1990, 91, 92, 93, 94, 1995 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #define TARGETNAME "a.out-sunos-big"
22 #define MY(OP) CAT(sunos_big_,OP)
23
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libaout.h"
27
28 /* Static routines defined in this file. */
29
30 static boolean sunos_read_dynamic_info PARAMS ((bfd *));
31 static long sunos_get_dynamic_symtab_upper_bound PARAMS ((bfd *));
32 static long sunos_canonicalize_dynamic_symtab PARAMS ((bfd *, asymbol **));
33 static long sunos_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
34 static long sunos_canonicalize_dynamic_reloc
35 PARAMS ((bfd *, arelent **, asymbol **));
36 static struct bfd_hash_entry *sunos_link_hash_newfunc
37 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
38 static struct bfd_link_hash_table *sunos_link_hash_table_create
39 PARAMS ((bfd *));
40 static boolean sunos_add_dynamic_symbols
41 PARAMS ((bfd *, struct bfd_link_info *));
42 static boolean sunos_add_one_symbol
43 PARAMS ((struct bfd_link_info *, bfd *, const char *, flagword, asection *,
44 bfd_vma, const char *, boolean, boolean,
45 struct bfd_link_hash_entry **));
46 static boolean sunos_scan_relocs
47 PARAMS ((struct bfd_link_info *, bfd *, asection *, bfd_size_type));
48 static boolean sunos_scan_std_relocs
49 PARAMS ((struct bfd_link_info *, bfd *, asection *,
50 const struct reloc_std_external *, bfd_size_type));
51 static boolean sunos_scan_ext_relocs
52 PARAMS ((struct bfd_link_info *, bfd *, asection *,
53 const struct reloc_ext_external *, bfd_size_type));
54 static boolean sunos_link_dynamic_object
55 PARAMS ((struct bfd_link_info *, bfd *));
56 static boolean sunos_write_dynamic_symbol
57 PARAMS ((bfd *, struct bfd_link_info *, struct aout_link_hash_entry *));
58 static boolean sunos_check_dynamic_reloc
59 PARAMS ((struct bfd_link_info *, bfd *, asection *,
60 struct aout_link_hash_entry *, PTR, boolean *));
61 static boolean sunos_finish_dynamic_link
62 PARAMS ((bfd *, struct bfd_link_info *));
63
64 #define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound
65 #define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab
66 #define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound
67 #define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc
68 #define MY_bfd_link_hash_table_create sunos_link_hash_table_create
69 #define MY_add_dynamic_symbols sunos_add_dynamic_symbols
70 #define MY_add_one_symbol sunos_add_one_symbol
71 #define MY_link_dynamic_object sunos_link_dynamic_object
72 #define MY_write_dynamic_symbol sunos_write_dynamic_symbol
73 #define MY_check_dynamic_reloc sunos_check_dynamic_reloc
74 #define MY_finish_dynamic_link sunos_finish_dynamic_link
75
76 /* Include the usual a.out support. */
77 #include "aoutf1.h"
78
79 /* SunOS shared library support. We store a pointer to this structure
80 in obj_aout_dynamic_info (abfd). */
81
82 struct sunos_dynamic_info
83 {
84 /* Whether we found any dynamic information. */
85 boolean valid;
86 /* Dynamic information. */
87 struct internal_sun4_dynamic_link dyninfo;
88 /* Number of dynamic symbols. */
89 long dynsym_count;
90 /* Read in nlists for dynamic symbols. */
91 struct external_nlist *dynsym;
92 /* asymbol structures for dynamic symbols. */
93 aout_symbol_type *canonical_dynsym;
94 /* Read in dynamic string table. */
95 char *dynstr;
96 /* Number of dynamic relocs. */
97 long dynrel_count;
98 /* Read in dynamic relocs. This may be reloc_std_external or
99 reloc_ext_external. */
100 PTR dynrel;
101 /* arelent structures for dynamic relocs. */
102 arelent *canonical_dynrel;
103 };
104
105 /* The hash table of dynamic symbols is composed of two word entries.
106 See include/aout/sun4.h for details. */
107
108 #define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD)
109
110 /* Read in the basic dynamic information. This locates the __DYNAMIC
111 structure and uses it to find the dynamic_link structure. It
112 creates and saves a sunos_dynamic_info structure. If it can't find
113 __DYNAMIC, it sets the valid field of the sunos_dynamic_info
114 structure to false to avoid doing this work again. */
115
116 static boolean
117 sunos_read_dynamic_info (abfd)
118 bfd *abfd;
119 {
120 struct sunos_dynamic_info *info;
121 asection *dynsec;
122 file_ptr dynoff;
123 struct external_sun4_dynamic dyninfo;
124 unsigned long dynver;
125 struct external_sun4_dynamic_link linkinfo;
126
127 if (obj_aout_dynamic_info (abfd) != (PTR) NULL)
128 return true;
129
130 if ((abfd->flags & DYNAMIC) == 0)
131 {
132 bfd_set_error (bfd_error_invalid_operation);
133 return false;
134 }
135
136 info = ((struct sunos_dynamic_info *)
137 bfd_zalloc (abfd, sizeof (struct sunos_dynamic_info)));
138 if (!info)
139 {
140 bfd_set_error (bfd_error_no_memory);
141 return false;
142 }
143 info->valid = false;
144 info->dynsym = NULL;
145 info->dynstr = NULL;
146 info->canonical_dynsym = NULL;
147 info->dynrel = NULL;
148 info->canonical_dynrel = NULL;
149 obj_aout_dynamic_info (abfd) = (PTR) info;
150
151 /* This code used to look for the __DYNAMIC symbol to locate the dynamic
152 linking information.
153 However this inhibits recovering the dynamic symbols from a
154 stripped object file, so blindly assume that the dynamic linking
155 information is located at the start of the data section.
156 We could verify this assumption later by looking through the dynamic
157 symbols for the __DYNAMIC symbol. */
158 if ((abfd->flags & DYNAMIC) == 0)
159 return true;
160 if (! bfd_get_section_contents (abfd, obj_datasec (abfd), (PTR) &dyninfo,
161 (file_ptr) 0, sizeof dyninfo))
162 return true;
163
164 dynver = GET_WORD (abfd, dyninfo.ld_version);
165 if (dynver != 2 && dynver != 3)
166 return true;
167
168 dynoff = GET_WORD (abfd, dyninfo.ld);
169
170 /* dynoff is a virtual address. It is probably always in the .data
171 section, but this code should work even if it moves. */
172 if (dynoff < bfd_get_section_vma (abfd, obj_datasec (abfd)))
173 dynsec = obj_textsec (abfd);
174 else
175 dynsec = obj_datasec (abfd);
176 dynoff -= bfd_get_section_vma (abfd, dynsec);
177 if (dynoff < 0 || dynoff > bfd_section_size (abfd, dynsec))
178 return true;
179
180 /* This executable appears to be dynamically linked in a way that we
181 can understand. */
182 if (! bfd_get_section_contents (abfd, dynsec, (PTR) &linkinfo, dynoff,
183 (bfd_size_type) sizeof linkinfo))
184 return true;
185
186 /* Swap in the dynamic link information. */
187 info->dyninfo.ld_loaded = GET_WORD (abfd, linkinfo.ld_loaded);
188 info->dyninfo.ld_need = GET_WORD (abfd, linkinfo.ld_need);
189 info->dyninfo.ld_rules = GET_WORD (abfd, linkinfo.ld_rules);
190 info->dyninfo.ld_got = GET_WORD (abfd, linkinfo.ld_got);
191 info->dyninfo.ld_plt = GET_WORD (abfd, linkinfo.ld_plt);
192 info->dyninfo.ld_rel = GET_WORD (abfd, linkinfo.ld_rel);
193 info->dyninfo.ld_hash = GET_WORD (abfd, linkinfo.ld_hash);
194 info->dyninfo.ld_stab = GET_WORD (abfd, linkinfo.ld_stab);
195 info->dyninfo.ld_stab_hash = GET_WORD (abfd, linkinfo.ld_stab_hash);
196 info->dyninfo.ld_buckets = GET_WORD (abfd, linkinfo.ld_buckets);
197 info->dyninfo.ld_symbols = GET_WORD (abfd, linkinfo.ld_symbols);
198 info->dyninfo.ld_symb_size = GET_WORD (abfd, linkinfo.ld_symb_size);
199 info->dyninfo.ld_text = GET_WORD (abfd, linkinfo.ld_text);
200 info->dyninfo.ld_plt_sz = GET_WORD (abfd, linkinfo.ld_plt_sz);
201
202 /* The only way to get the size of the symbol information appears to
203 be to determine the distance between it and the string table. */
204 info->dynsym_count = ((info->dyninfo.ld_symbols - info->dyninfo.ld_stab)
205 / EXTERNAL_NLIST_SIZE);
206 BFD_ASSERT (info->dynsym_count * EXTERNAL_NLIST_SIZE
207 == info->dyninfo.ld_symbols - info->dyninfo.ld_stab);
208
209 /* Similarly, the relocs end at the hash table. */
210 info->dynrel_count = ((info->dyninfo.ld_hash - info->dyninfo.ld_rel)
211 / obj_reloc_entry_size (abfd));
212 BFD_ASSERT (info->dynrel_count * obj_reloc_entry_size (abfd)
213 == info->dyninfo.ld_hash - info->dyninfo.ld_rel);
214
215 info->valid = true;
216
217 return true;
218 }
219
220 /* Return the amount of memory required for the dynamic symbols. */
221
222 static long
223 sunos_get_dynamic_symtab_upper_bound (abfd)
224 bfd *abfd;
225 {
226 struct sunos_dynamic_info *info;
227
228 if (! sunos_read_dynamic_info (abfd))
229 return -1;
230
231 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
232 if (! info->valid)
233 {
234 bfd_set_error (bfd_error_no_symbols);
235 return -1;
236 }
237
238 return (info->dynsym_count + 1) * sizeof (asymbol *);
239 }
240
241 /* Read in the dynamic symbols. */
242
243 static long
244 sunos_canonicalize_dynamic_symtab (abfd, storage)
245 bfd *abfd;
246 asymbol **storage;
247 {
248 struct sunos_dynamic_info *info;
249 long i;
250
251 /* Get the general dynamic information. */
252 if (obj_aout_dynamic_info (abfd) == NULL)
253 {
254 if (! sunos_read_dynamic_info (abfd))
255 return -1;
256 }
257
258 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
259 if (! info->valid)
260 {
261 bfd_set_error (bfd_error_no_symbols);
262 return -1;
263 }
264
265 /* Get the dynamic nlist structures. */
266 if (info->dynsym == (struct external_nlist *) NULL)
267 {
268 info->dynsym = ((struct external_nlist *)
269 bfd_alloc (abfd,
270 (info->dynsym_count
271 * EXTERNAL_NLIST_SIZE)));
272 if (info->dynsym == NULL && info->dynsym_count != 0)
273 {
274 bfd_set_error (bfd_error_no_memory);
275 return -1;
276 }
277 if (bfd_seek (abfd, info->dyninfo.ld_stab, SEEK_SET) != 0
278 || (bfd_read ((PTR) info->dynsym, info->dynsym_count,
279 EXTERNAL_NLIST_SIZE, abfd)
280 != info->dynsym_count * EXTERNAL_NLIST_SIZE))
281 {
282 if (info->dynsym != NULL)
283 {
284 bfd_release (abfd, info->dynsym);
285 info->dynsym = NULL;
286 }
287 return -1;
288 }
289 }
290
291 /* Get the dynamic strings. */
292 if (info->dynstr == (char *) NULL)
293 {
294 info->dynstr = (char *) bfd_alloc (abfd, info->dyninfo.ld_symb_size);
295 if (info->dynstr == NULL && info->dyninfo.ld_symb_size != 0)
296 {
297 bfd_set_error (bfd_error_no_memory);
298 return -1;
299 }
300 if (bfd_seek (abfd, info->dyninfo.ld_symbols, SEEK_SET) != 0
301 || (bfd_read ((PTR) info->dynstr, 1, info->dyninfo.ld_symb_size,
302 abfd)
303 != info->dyninfo.ld_symb_size))
304 {
305 if (info->dynstr != NULL)
306 {
307 bfd_release (abfd, info->dynstr);
308 info->dynstr = NULL;
309 }
310 return -1;
311 }
312 }
313
314 #ifdef CHECK_DYNAMIC_HASH
315 /* Check my understanding of the dynamic hash table by making sure
316 that each symbol can be located in the hash table. */
317 {
318 bfd_size_type table_size;
319 bfd_byte *table;
320 bfd_size_type i;
321
322 if (info->dyninfo.ld_buckets > info->dynsym_count)
323 abort ();
324 table_size = info->dyninfo.ld_stab - info->dyninfo.ld_hash;
325 table = (bfd_byte *) malloc (table_size);
326 if (table == NULL && table_size != 0)
327 abort ();
328 if (bfd_seek (abfd, info->dyninfo.ld_hash, SEEK_SET) != 0
329 || bfd_read ((PTR) table, 1, table_size, abfd) != table_size)
330 abort ();
331 for (i = 0; i < info->dynsym_count; i++)
332 {
333 unsigned char *name;
334 unsigned long hash;
335
336 name = ((unsigned char *) info->dynstr
337 + GET_WORD (abfd, info->dynsym[i].e_strx));
338 hash = 0;
339 while (*name != '\0')
340 hash = (hash << 1) + *name++;
341 hash &= 0x7fffffff;
342 hash %= info->dyninfo.ld_buckets;
343 while (GET_WORD (abfd, table + hash * HASH_ENTRY_SIZE) != i)
344 {
345 hash = GET_WORD (abfd,
346 table + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
347 if (hash == 0 || hash >= table_size / HASH_ENTRY_SIZE)
348 abort ();
349 }
350 }
351 free (table);
352 }
353 #endif /* CHECK_DYNAMIC_HASH */
354
355 /* Get the asymbol structures corresponding to the dynamic nlist
356 structures. */
357 if (info->canonical_dynsym == (aout_symbol_type *) NULL)
358 {
359 info->canonical_dynsym = ((aout_symbol_type *)
360 bfd_alloc (abfd,
361 (info->dynsym_count
362 * sizeof (aout_symbol_type))));
363 if (info->canonical_dynsym == NULL && info->dynsym_count != 0)
364 {
365 bfd_set_error (bfd_error_no_memory);
366 return -1;
367 }
368
369 if (! aout_32_translate_symbol_table (abfd, info->canonical_dynsym,
370 info->dynsym, info->dynsym_count,
371 info->dynstr,
372 info->dyninfo.ld_symb_size,
373 true))
374 {
375 if (info->canonical_dynsym != NULL)
376 {
377 bfd_release (abfd, info->canonical_dynsym);
378 info->canonical_dynsym = NULL;
379 }
380 return -1;
381 }
382 }
383
384 /* Return pointers to the dynamic asymbol structures. */
385 for (i = 0; i < info->dynsym_count; i++)
386 *storage++ = (asymbol *) (info->canonical_dynsym + i);
387 *storage = NULL;
388
389 return info->dynsym_count;
390 }
391
392 /* Return the amount of memory required for the dynamic relocs. */
393
394 static long
395 sunos_get_dynamic_reloc_upper_bound (abfd)
396 bfd *abfd;
397 {
398 struct sunos_dynamic_info *info;
399
400 if (! sunos_read_dynamic_info (abfd))
401 return -1;
402
403 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
404 if (! info->valid)
405 {
406 bfd_set_error (bfd_error_no_symbols);
407 return -1;
408 }
409
410 return (info->dynrel_count + 1) * sizeof (arelent *);
411 }
412
413 /* Read in the dynamic relocs. */
414
415 static long
416 sunos_canonicalize_dynamic_reloc (abfd, storage, syms)
417 bfd *abfd;
418 arelent **storage;
419 asymbol **syms;
420 {
421 struct sunos_dynamic_info *info;
422 long i;
423
424 /* Get the general dynamic information. */
425 if (obj_aout_dynamic_info (abfd) == (PTR) NULL)
426 {
427 if (! sunos_read_dynamic_info (abfd))
428 return -1;
429 }
430
431 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
432 if (! info->valid)
433 {
434 bfd_set_error (bfd_error_no_symbols);
435 return -1;
436 }
437
438 /* Get the dynamic reloc information. */
439 if (info->dynrel == NULL)
440 {
441 info->dynrel = (PTR) bfd_alloc (abfd,
442 (info->dynrel_count
443 * obj_reloc_entry_size (abfd)));
444 if (info->dynrel == NULL && info->dynrel_count != 0)
445 {
446 bfd_set_error (bfd_error_no_memory);
447 return -1;
448 }
449 if (bfd_seek (abfd, info->dyninfo.ld_rel, SEEK_SET) != 0
450 || (bfd_read ((PTR) info->dynrel, info->dynrel_count,
451 obj_reloc_entry_size (abfd), abfd)
452 != info->dynrel_count * obj_reloc_entry_size (abfd)))
453 {
454 if (info->dynrel != NULL)
455 {
456 bfd_release (abfd, info->dynrel);
457 info->dynrel = NULL;
458 }
459 return -1;
460 }
461 }
462
463 /* Get the arelent structures corresponding to the dynamic reloc
464 information. */
465 if (info->canonical_dynrel == (arelent *) NULL)
466 {
467 arelent *to;
468
469 info->canonical_dynrel = ((arelent *)
470 bfd_alloc (abfd,
471 (info->dynrel_count
472 * sizeof (arelent))));
473 if (info->canonical_dynrel == NULL && info->dynrel_count != 0)
474 {
475 bfd_set_error (bfd_error_no_memory);
476 return -1;
477 }
478
479 to = info->canonical_dynrel;
480
481 if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE)
482 {
483 register struct reloc_ext_external *p;
484 struct reloc_ext_external *pend;
485
486 p = (struct reloc_ext_external *) info->dynrel;
487 pend = p + info->dynrel_count;
488 for (; p < pend; p++, to++)
489 NAME(aout,swap_ext_reloc_in) (abfd, p, to, syms);
490 }
491 else
492 {
493 register struct reloc_std_external *p;
494 struct reloc_std_external *pend;
495
496 p = (struct reloc_std_external *) info->dynrel;
497 pend = p + info->dynrel_count;
498 for (; p < pend; p++, to++)
499 NAME(aout,swap_std_reloc_in) (abfd, p, to, syms);
500 }
501 }
502
503 /* Return pointers to the dynamic arelent structures. */
504 for (i = 0; i < info->dynrel_count; i++)
505 *storage++ = info->canonical_dynrel + i;
506 *storage = NULL;
507
508 return info->dynrel_count;
509 }
510 \f
511 /* Code to handle linking of SunOS shared libraries. */
512
513 /* A SPARC procedure linkage table entry is 12 bytes. The first entry
514 in the table is a jump which is filled in by the runtime linker.
515 The remaining entries are branches back to the first entry,
516 followed by an index into the relocation table encoded to look like
517 a sethi of %g0. */
518
519 #define SPARC_PLT_ENTRY_SIZE (12)
520
521 static const bfd_byte sparc_plt_first_entry[SPARC_PLT_ENTRY_SIZE] =
522 {
523 /* sethi %hi(0),%g1; address filled in by runtime linker. */
524 0x3, 0, 0, 0,
525 /* jmp %g1; offset filled in by runtime linker. */
526 0x81, 0xc0, 0x60, 0,
527 /* nop */
528 0x1, 0, 0, 0
529 };
530
531 /* save %sp, -96, %sp */
532 #define SPARC_PLT_ENTRY_WORD0 0x9de3bfa0
533 /* call; address filled in later. */
534 #define SPARC_PLT_ENTRY_WORD1 0x40000000
535 /* sethi; reloc index filled in later. */
536 #define SPARC_PLT_ENTRY_WORD2 0x01000000
537
538 /* An m68k procedure linkage table entry is 8 bytes. The first entry
539 in the table is a jump which is filled in the by the runtime
540 linker. The remaining entries are branches back to the first
541 entry, followed by a two byte index into the relocation table. */
542
543 #define M68K_PLT_ENTRY_SIZE (8)
544
545 static const bfd_byte m68k_plt_first_entry[M68K_PLT_ENTRY_SIZE] =
546 {
547 /* jmps @# */
548 0x4e, 0xf9,
549 /* Filled in by runtime linker with a magic address. */
550 0, 0, 0, 0,
551 /* Not used? */
552 0, 0
553 };
554
555 /* bsrl */
556 #define M68K_PLT_ENTRY_WORD0 (0x61ff)
557 /* Remaining words filled in later. */
558
559 /* An entry in the SunOS linker hash table. */
560
561 struct sunos_link_hash_entry
562 {
563 struct aout_link_hash_entry root;
564
565 /* If this is a dynamic symbol, this is its index into the dynamic
566 symbol table. This is initialized to -1. As the linker looks at
567 the input files, it changes this to -2 if it will be added to the
568 dynamic symbol table. After all the input files have been seen,
569 the linker will know whether to build a dynamic symbol table; if
570 it does build one, this becomes the index into the table. */
571 long dynindx;
572
573 /* If this is a dynamic symbol, this is the index of the name in the
574 dynamic symbol string table. */
575 long dynstr_index;
576
577 /* Some linker flags. */
578 unsigned char flags;
579 /* Symbol is referenced by a regular object. */
580 #define SUNOS_REF_REGULAR 01
581 /* Symbol is defined by a regular object. */
582 #define SUNOS_DEF_REGULAR 02
583 /* Symbol is referenced by a dynamic object. */
584 #define SUNOS_REF_DYNAMIC 010
585 /* Symbol is defined by a dynamic object. */
586 #define SUNOS_DEF_DYNAMIC 020
587 };
588
589 /* The SunOS linker hash table. */
590
591 struct sunos_link_hash_table
592 {
593 struct aout_link_hash_table root;
594
595 /* The first dynamic object found during the link. */
596 bfd *dynobj;
597
598 /* The number of dynamic symbols. */
599 size_t dynsymcount;
600
601 /* The number of buckets in the hash table. */
602 size_t bucketcount;
603 };
604
605 /* Routine to create an entry in an SunOS link hash table. */
606
607 static struct bfd_hash_entry *
608 sunos_link_hash_newfunc (entry, table, string)
609 struct bfd_hash_entry *entry;
610 struct bfd_hash_table *table;
611 const char *string;
612 {
613 struct sunos_link_hash_entry *ret = (struct sunos_link_hash_entry *) entry;
614
615 /* Allocate the structure if it has not already been allocated by a
616 subclass. */
617 if (ret == (struct sunos_link_hash_entry *) NULL)
618 ret = ((struct sunos_link_hash_entry *)
619 bfd_hash_allocate (table, sizeof (struct sunos_link_hash_entry)));
620 if (ret == (struct sunos_link_hash_entry *) NULL)
621 {
622 bfd_set_error (bfd_error_no_memory);
623 return (struct bfd_hash_entry *) ret;
624 }
625
626 /* Call the allocation method of the superclass. */
627 ret = ((struct sunos_link_hash_entry *)
628 NAME(aout,link_hash_newfunc) ((struct bfd_hash_entry *) ret,
629 table, string));
630 if (ret != NULL)
631 {
632 /* Set local fields. */
633 ret->dynindx = -1;
634 ret->dynstr_index = -1;
635 ret->flags = 0;
636 }
637
638 return (struct bfd_hash_entry *) ret;
639 }
640
641 /* Create a SunOS link hash table. */
642
643 static struct bfd_link_hash_table *
644 sunos_link_hash_table_create (abfd)
645 bfd *abfd;
646 {
647 struct sunos_link_hash_table *ret;
648
649 ret = ((struct sunos_link_hash_table *)
650 malloc (sizeof (struct sunos_link_hash_table)));
651 if (ret == (struct sunos_link_hash_table *) NULL)
652 {
653 bfd_set_error (bfd_error_no_memory);
654 return (struct bfd_link_hash_table *) NULL;
655 }
656 if (! NAME(aout,link_hash_table_init) (&ret->root, abfd,
657 sunos_link_hash_newfunc))
658 {
659 free (ret);
660 return (struct bfd_link_hash_table *) NULL;
661 }
662
663 ret->dynobj = NULL;
664 ret->dynsymcount = 0;
665 ret->bucketcount = 0;
666
667 return &ret->root.root;
668 }
669
670 /* Look up an entry in an SunOS link hash table. */
671
672 #define sunos_link_hash_lookup(table, string, create, copy, follow) \
673 ((struct sunos_link_hash_entry *) \
674 aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\
675 (follow)))
676
677 /* Traverse a SunOS link hash table. */
678
679 #define sunos_link_hash_traverse(table, func, info) \
680 (aout_link_hash_traverse \
681 (&(table)->root, \
682 (boolean (*) PARAMS ((struct aout_link_hash_entry *, PTR))) (func), \
683 (info)))
684
685 /* Get the SunOS link hash table from the info structure. This is
686 just a cast. */
687
688 #define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash))
689
690 static boolean sunos_scan_dynamic_symbol
691 PARAMS ((struct sunos_link_hash_entry *, PTR));
692
693 /* Add dynamic symbols during a link. This is called by the a.out
694 backend linker when it encounters an object with the DYNAMIC flag
695 set. */
696
697 static boolean
698 sunos_add_dynamic_symbols (abfd, info)
699 bfd *abfd;
700 struct bfd_link_info *info;
701 {
702 asection *s;
703
704 /* We do not want to include the sections in a dynamic object in the
705 output file. We hack by simply clobbering the list of sections
706 in the BFD. This could be handled more cleanly by, say, a new
707 section flag; the existing SEC_NEVER_LOAD flag is not the one we
708 want, because that one still implies that the section takes up
709 space in the output file. */
710 abfd->sections = NULL;
711
712 /* The native linker seems to just ignore dynamic objects when -r is
713 used. */
714 if (info->relocateable)
715 return true;
716
717 /* There's no hope of using a dynamic object which does not exactly
718 match the format of the output file. */
719 if (info->hash->creator != abfd->xvec)
720 {
721 bfd_set_error (bfd_error_invalid_operation);
722 return false;
723 }
724
725 /* If this is the first dynamic object, create some new sections to
726 hold dynamic linking information. We need to put these sections
727 somewhere, and the first dynamic object is as good a place as
728 any. The linker script will look for these special section names
729 and put them in the right place in the output file. See
730 include/aout/sun4.h for more details of the dynamic linking
731 information. */
732 if (sunos_hash_table (info)->dynobj == NULL)
733 {
734 flagword flags;
735 asection *sdyn;
736
737 sunos_hash_table (info)->dynobj = abfd;
738
739 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
740
741 /* The .dynamic section holds the basic dynamic information: the
742 sun4_dynamic structure, the dynamic debugger information, and
743 the sun4_dynamic_link structure. */
744 s = bfd_make_section (abfd, ".dynamic");
745 if (s == NULL
746 || ! bfd_set_section_flags (abfd, s, flags)
747 || ! bfd_set_section_alignment (abfd, s, 2))
748 return false;
749 sdyn = s;
750
751 /* The .need section holds the list of names of shared objets
752 which must be included at runtime. The address of this
753 section is put in the ld_need field. */
754 s = bfd_make_section (abfd, ".need");
755 if (s == NULL
756 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
757 || ! bfd_set_section_alignment (abfd, s, 2))
758 return false;
759
760 /* The .rules section holds the path to search for shared
761 objects. The address of this section is put in the ld_rules
762 field. */
763 s = bfd_make_section (abfd, ".rules");
764 if (s == NULL
765 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
766 || ! bfd_set_section_alignment (abfd, s, 2))
767 return false;
768
769 /* The .got section holds the global offset table. I don't
770 really know how this works, actually. It seems to only be
771 used for PIC code. The address minus four is put in the
772 ld_got field. */
773 s = bfd_make_section (abfd, ".got");
774 if (s == NULL
775 || ! bfd_set_section_flags (abfd, s, flags)
776 || ! bfd_set_section_alignment (abfd, s, 2))
777 return false;
778 s->_raw_size = BYTES_IN_WORD;
779
780 /* The .plt section holds the procedure linkage table. The
781 address is put in the ld_plt field. */
782 s = bfd_make_section (abfd, ".plt");
783 if (s == NULL
784 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
785 || ! bfd_set_section_alignment (abfd, s, 2))
786 return false;
787
788 /* The .dynrel section holds the dynamic relocs. The address is
789 put in the ld_rel field. */
790 s = bfd_make_section (abfd, ".dynrel");
791 if (s == NULL
792 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
793 || ! bfd_set_section_alignment (abfd, s, 2))
794 return false;
795
796 /* The .hash section holds the dynamic hash table. The address
797 is put in the ld_hash field. */
798 s = bfd_make_section (abfd, ".hash");
799 if (s == NULL
800 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
801 || ! bfd_set_section_alignment (abfd, s, 2))
802 return false;
803
804 /* The .dynsym section holds the dynamic symbols. The address
805 is put in the ld_stab field. */
806 s = bfd_make_section (abfd, ".dynsym");
807 if (s == NULL
808 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
809 || ! bfd_set_section_alignment (abfd, s, 2))
810 return false;
811
812 /* The .dynstr section holds the dynamic symbol string table.
813 The address is put in the ld_symbols field. */
814 s = bfd_make_section (abfd, ".dynstr");
815 if (s == NULL
816 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
817 || ! bfd_set_section_alignment (abfd, s, 2))
818 return false;
819 }
820
821 return true;
822 }
823
824 /* Function to add a single symbol to the linker hash table. This is
825 a wrapper around _bfd_generic_link_add_one_symbol which handles the
826 tweaking needed for dynamic linking support. */
827
828 static boolean
829 sunos_add_one_symbol (info, abfd, name, flags, section, value, string,
830 copy, collect, hashp)
831 struct bfd_link_info *info;
832 bfd *abfd;
833 const char *name;
834 flagword flags;
835 asection *section;
836 bfd_vma value;
837 const char *string;
838 boolean copy;
839 boolean collect;
840 struct bfd_link_hash_entry **hashp;
841 {
842 struct sunos_link_hash_entry *h;
843 int new_flag;
844
845 h = sunos_link_hash_lookup (sunos_hash_table (info), name, true, copy,
846 false);
847 if (h == NULL)
848 return false;
849
850 if (hashp != NULL)
851 *hashp = (struct bfd_link_hash_entry *) h;
852
853 /* Treat a common symbol in a dynamic object as defined in the .bss
854 section of the dynamic object. We don't want to allocate space
855 for it in our process image. */
856 if ((abfd->flags & DYNAMIC) != 0
857 && bfd_is_com_section (section))
858 section = obj_bsssec (abfd);
859
860 if (! bfd_is_und_section (section)
861 && h->root.root.type != bfd_link_hash_new
862 && h->root.root.type != bfd_link_hash_undefined
863 && h->root.root.type != bfd_link_hash_defweak)
864 {
865 /* We are defining the symbol, and it is already defined. This
866 is a potential multiple definition error. */
867 if ((abfd->flags & DYNAMIC) != 0)
868 {
869 /* The definition we are adding is from a dynamic object.
870 We do not want this new definition to override the
871 existing definition, so we pretend it is just a
872 reference. */
873 section = bfd_und_section_ptr;
874 }
875 else if ((h->root.root.type == bfd_link_hash_defined
876 && h->root.root.u.def.section->owner != NULL
877 && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
878 || (h->root.root.type == bfd_link_hash_common
879 && ((h->root.root.u.c.section->owner->flags & DYNAMIC)
880 != 0)))
881 {
882 /* The existing definition is from a dynamic object. We
883 want to override it with the definition we just found.
884 Clobber the existing definition. */
885 h->root.root.type = bfd_link_hash_new;
886 }
887 }
888
889 /* Do the usual procedure for adding a symbol. */
890 if (! _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section,
891 value, string, copy, collect,
892 hashp))
893 return false;
894
895 if (abfd->xvec == info->hash->creator)
896 {
897 /* Set a flag in the hash table entry indicating the type of
898 reference or definition we just found. Keep a count of the
899 number of dynamic symbols we find. A dynamic symbol is one
900 which is referenced or defined by both a regular object and a
901 shared object. */
902 if ((abfd->flags & DYNAMIC) == 0)
903 {
904 if (bfd_is_und_section (section))
905 new_flag = SUNOS_REF_REGULAR;
906 else
907 new_flag = SUNOS_DEF_REGULAR;
908 }
909 else
910 {
911 if (bfd_is_und_section (section))
912 new_flag = SUNOS_REF_DYNAMIC;
913 else
914 new_flag = SUNOS_DEF_DYNAMIC;
915 }
916 h->flags |= new_flag;
917
918 if (h->dynindx == -1
919 && (h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
920 {
921 ++sunos_hash_table (info)->dynsymcount;
922 h->dynindx = -2;
923 }
924 }
925
926 return true;
927 }
928
929 /* Record an assignment made to a symbol by a linker script. We need
930 this in case some dynamic object refers to this symbol. */
931
932 boolean
933 bfd_sunos_record_link_assignment (output_bfd, info, name)
934 bfd *output_bfd;
935 struct bfd_link_info *info;
936 const char *name;
937 {
938 struct sunos_link_hash_entry *h;
939
940 /* This is called after we have examined all the input objects. If
941 the symbol does not exist, it merely means that no object refers
942 to it, and we can just ignore it at this point. */
943 h = sunos_link_hash_lookup (sunos_hash_table (info), name,
944 false, false, false);
945 if (h == NULL)
946 return true;
947
948 h->flags |= SUNOS_DEF_REGULAR;
949
950 if (h->dynindx == -1)
951 {
952 ++sunos_hash_table (info)->dynsymcount;
953 h->dynindx = -2;
954 }
955
956 return true;
957 }
958
959 /* Set up the sizes and contents of the dynamic sections created in
960 sunos_add_dynamic_symbols. This is called by the SunOS linker
961 emulation before_allocation routine. We must set the sizes of the
962 sections before the linker sets the addresses of the various
963 sections. This unfortunately requires reading all the relocs so
964 that we can work out which ones need to become dynamic relocs. If
965 info->keep_memory is true, we keep the relocs in memory; otherwise,
966 we discard them, and will read them again later. */
967
968 boolean
969 bfd_sunos_size_dynamic_sections (output_bfd, info, sdynptr, sneedptr,
970 srulesptr)
971 bfd *output_bfd;
972 struct bfd_link_info *info;
973 asection **sdynptr;
974 asection **sneedptr;
975 asection **srulesptr;
976 {
977 bfd *dynobj;
978 size_t dynsymcount;
979 asection *s;
980 size_t bucketcount;
981 size_t hashalloc;
982 size_t i;
983 bfd *sub;
984
985 *sdynptr = NULL;
986 *sneedptr = NULL;
987 *srulesptr = NULL;
988
989 dynobj = sunos_hash_table (info)->dynobj;
990 dynsymcount = sunos_hash_table (info)->dynsymcount;
991
992 /* If there were no dynamic objects in the link, there is nothing to
993 do here. */
994 if (dynobj == NULL)
995 return true;
996
997 /* The .dynamic section is always the same size. */
998 s = bfd_get_section_by_name (dynobj, ".dynamic");
999 BFD_ASSERT (s != NULL);
1000 s->_raw_size = (sizeof (struct external_sun4_dynamic)
1001 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE
1002 + sizeof (struct external_sun4_dynamic_link));
1003
1004 /* Set the size of the .dynsym and .hash sections. We counted the
1005 number of dynamic symbols as we read the input files. We will
1006 build the dynamic symbol table (.dynsym) and the hash table
1007 (.hash) when we build the final symbol table, because until then
1008 we do not know the correct value to give the symbols. We build
1009 the dynamic symbol string table (.dynstr) in a traversal of the
1010 symbol table using sunos_scan_dynamic_symbol. */
1011 s = bfd_get_section_by_name (dynobj, ".dynsym");
1012 BFD_ASSERT (s != NULL);
1013 s->_raw_size = dynsymcount * sizeof (struct external_nlist);
1014 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
1015 if (s->contents == NULL && s->_raw_size != 0)
1016 {
1017 bfd_set_error (bfd_error_no_memory);
1018 return false;
1019 }
1020
1021 /* The number of buckets is just the number of symbols divided by
1022 four. The compute the final size of the hash table, we must
1023 actually compute the hash table. Normally we need exactly as
1024 many entries in the hash table as there are dynamic symbols, but
1025 if some of the buckets are not used we will need additional
1026 entries. In the worse case, every symbol will hash to the same
1027 bucket, and we will need BUCKETCOUNT - 1 extra entries. */
1028 if (dynsymcount >= 4)
1029 bucketcount = dynsymcount / 4;
1030 else if (dynsymcount > 0)
1031 bucketcount = dynsymcount;
1032 else
1033 bucketcount = 1;
1034 s = bfd_get_section_by_name (dynobj, ".hash");
1035 BFD_ASSERT (s != NULL);
1036 hashalloc = (dynsymcount + bucketcount - 1) * HASH_ENTRY_SIZE;
1037 s->contents = (bfd_byte *) bfd_alloc (dynobj, hashalloc);
1038 if (s->contents == NULL && dynsymcount > 0)
1039 {
1040 bfd_set_error (bfd_error_no_memory);
1041 return false;
1042 }
1043 memset (s->contents, 0, hashalloc);
1044 for (i = 0; i < bucketcount; i++)
1045 PUT_WORD (output_bfd, (bfd_vma) -1, s->contents + i * HASH_ENTRY_SIZE);
1046 s->_raw_size = bucketcount * HASH_ENTRY_SIZE;
1047
1048 sunos_hash_table (info)->bucketcount = bucketcount;
1049
1050 /* Look through all the input BFD's and read their relocs. It would
1051 be better if we didn't have to do this, but there is no other way
1052 to determine the number of dynamic relocs we need, and, more
1053 importantly, there is no other way to know which symbols should
1054 get an entry in the procedure linkage table. */
1055 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
1056 {
1057 if ((sub->flags & DYNAMIC) == 0)
1058 {
1059 if (! sunos_scan_relocs (info, sub, obj_textsec (sub),
1060 exec_hdr (sub)->a_trsize)
1061 || ! sunos_scan_relocs (info, sub, obj_datasec (sub),
1062 exec_hdr (sub)->a_drsize))
1063 return false;
1064 }
1065 }
1066
1067 /* Scan all the symbols, place them in the dynamic symbol table, and
1068 build the dynamic hash table. We reuse dynsymcount as a counter
1069 for the number of symbols we have added so far. */
1070 sunos_hash_table (info)->dynsymcount = 0;
1071 sunos_link_hash_traverse (sunos_hash_table (info),
1072 sunos_scan_dynamic_symbol,
1073 (PTR) info);
1074 BFD_ASSERT (sunos_hash_table (info)->dynsymcount == dynsymcount);
1075
1076 /* The SunOS native linker seems to align the total size of the
1077 symbol strings to a multiple of 8. I don't know if this is
1078 important, but it can't hurt much. */
1079 s = bfd_get_section_by_name (dynobj, ".dynstr");
1080 BFD_ASSERT (s != NULL);
1081 if ((s->_raw_size & 7) != 0)
1082 {
1083 bfd_size_type add;
1084 bfd_byte *contents;
1085
1086 add = 8 - (s->_raw_size & 7);
1087 contents = (bfd_byte *) realloc (s->contents, s->_raw_size + add);
1088 if (contents == NULL)
1089 {
1090 bfd_set_error (bfd_error_no_memory);
1091 return false;
1092 }
1093 memset (contents + s->_raw_size, 0, add);
1094 s->contents = contents;
1095 s->_raw_size += add;
1096 }
1097
1098 /* Now that we have worked out the sizes of the procedure linkage
1099 table and the dynamic relocs, allocate storage for them. */
1100 s = bfd_get_section_by_name (dynobj, ".plt");
1101 BFD_ASSERT (s != NULL);
1102 if (s->_raw_size != 0)
1103 {
1104 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1105 if (s->contents == NULL)
1106 {
1107 bfd_set_error (bfd_error_no_memory);
1108 return false;
1109 }
1110
1111 /* Fill in the first entry in the table. */
1112 switch (bfd_get_arch (dynobj))
1113 {
1114 case bfd_arch_sparc:
1115 memcpy (s->contents, sparc_plt_first_entry, SPARC_PLT_ENTRY_SIZE);
1116 break;
1117
1118 case bfd_arch_m68k:
1119 memcpy (s->contents, m68k_plt_first_entry, M68K_PLT_ENTRY_SIZE);
1120 break;
1121
1122 default:
1123 abort ();
1124 }
1125 }
1126
1127 s = bfd_get_section_by_name (dynobj, ".dynrel");
1128 if (s->_raw_size != 0)
1129 {
1130 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1131 if (s->contents == NULL)
1132 {
1133 bfd_set_error (bfd_error_no_memory);
1134 return false;
1135 }
1136 }
1137 /* We use the reloc_count field to keep track of how many of the
1138 relocs we have output so far. */
1139 s->reloc_count = 0;
1140
1141 /* Make space for the global offset table. */
1142 s = bfd_get_section_by_name (dynobj, ".got");
1143 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1144 if (s->contents == NULL)
1145 {
1146 bfd_set_error (bfd_error_no_memory);
1147 return false;
1148 }
1149
1150 *sdynptr = bfd_get_section_by_name (dynobj, ".dynamic");
1151 *sneedptr = bfd_get_section_by_name (dynobj, ".need");
1152 *srulesptr = bfd_get_section_by_name (dynobj, ".rules");
1153
1154 return true;
1155 }
1156
1157 /* Scan the relocs for an input section. */
1158
1159 static boolean
1160 sunos_scan_relocs (info, abfd, sec, rel_size)
1161 struct bfd_link_info *info;
1162 bfd *abfd;
1163 asection *sec;
1164 bfd_size_type rel_size;
1165 {
1166 PTR relocs;
1167 PTR free_relocs = NULL;
1168
1169 if (rel_size == 0)
1170 return true;
1171
1172 if (! info->keep_memory)
1173 relocs = free_relocs = malloc (rel_size);
1174 else
1175 {
1176 aout_section_data (sec) =
1177 ((struct aout_section_data_struct *)
1178 bfd_alloc (abfd, sizeof (struct aout_section_data_struct)));
1179 if (aout_section_data (sec) == NULL)
1180 relocs = NULL;
1181 else
1182 relocs = aout_section_data (sec)->relocs = malloc (rel_size);
1183 }
1184 if (relocs == NULL)
1185 {
1186 bfd_set_error (bfd_error_no_memory);
1187 return false;
1188 }
1189
1190 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
1191 || bfd_read (relocs, 1, rel_size, abfd) != rel_size)
1192 goto error_return;
1193
1194 if (obj_reloc_entry_size (abfd) == RELOC_STD_SIZE)
1195 {
1196 if (! sunos_scan_std_relocs (info, abfd, sec,
1197 (struct reloc_std_external *) relocs,
1198 rel_size))
1199 goto error_return;
1200 }
1201 else
1202 {
1203 if (! sunos_scan_ext_relocs (info, abfd, sec,
1204 (struct reloc_ext_external *) relocs,
1205 rel_size))
1206 goto error_return;
1207 }
1208
1209 if (free_relocs != NULL)
1210 free (free_relocs);
1211
1212 return true;
1213
1214 error_return:
1215 if (free_relocs != NULL)
1216 free (free_relocs);
1217 return false;
1218 }
1219
1220 /* Scan the relocs for an input section using standard relocs. We
1221 need to figure out what to do for each reloc against a dynamic
1222 symbol. If the symbol is in the .text section, an entry is made in
1223 the procedure linkage table. Note that this will do the wrong
1224 thing if the symbol is actually data; I don't think the Sun 3
1225 native linker handles this case correctly either. If the symbol is
1226 not in the .text section, we must preserve the reloc as a dynamic
1227 reloc. FIXME: We should also handle the PIC relocs here by
1228 building global offset table entries. */
1229
1230 static boolean
1231 sunos_scan_std_relocs (info, abfd, sec, relocs, rel_size)
1232 struct bfd_link_info *info;
1233 bfd *abfd;
1234 asection *sec;
1235 const struct reloc_std_external *relocs;
1236 bfd_size_type rel_size;
1237 {
1238 bfd *dynobj;
1239 asection *splt;
1240 asection *srel;
1241 struct sunos_link_hash_entry **sym_hashes;
1242 const struct reloc_std_external *rel, *relend;
1243
1244 /* We only know how to handle m68k plt entries. */
1245 if (bfd_get_arch (abfd) != bfd_arch_m68k)
1246 {
1247 bfd_set_error (bfd_error_invalid_target);
1248 return false;
1249 }
1250
1251 dynobj = sunos_hash_table (info)->dynobj;
1252 splt = bfd_get_section_by_name (dynobj, ".plt");
1253 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1254 BFD_ASSERT (splt != NULL && srel != NULL);
1255 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1256
1257 relend = relocs + rel_size / RELOC_STD_SIZE;
1258 for (rel = relocs; rel < relend; rel++)
1259 {
1260 int r_index;
1261 struct sunos_link_hash_entry *h;
1262
1263 /* We only want relocs against external symbols. */
1264 if (abfd->xvec->header_byteorder_big_p)
1265 {
1266 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG) == 0)
1267 continue;
1268 }
1269 else
1270 {
1271 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE) == 0)
1272 continue;
1273 }
1274
1275 /* Get the symbol index. */
1276 if (abfd->xvec->header_byteorder_big_p)
1277 {
1278 r_index = ((rel->r_index[0] << 16)
1279 | (rel->r_index[1] << 8)
1280 | rel->r_index[2]);
1281 }
1282 else
1283 {
1284 r_index = ((rel->r_index[2] << 16)
1285 | (rel->r_index[1] << 8)
1286 | rel->r_index[0]);
1287 }
1288
1289 /* Get the hash table entry. */
1290 h = sym_hashes[r_index];
1291 if (h == NULL)
1292 {
1293 /* This should not normally happen, but it will in any case
1294 be caught in the relocation phase. */
1295 continue;
1296 }
1297
1298 /* At this point common symbols have already been allocated, so
1299 we don't have to worry about them. We need to consider that
1300 we may have already seen this symbol and marked it undefined;
1301 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1302 will be zero. */
1303 if (h->root.root.type != bfd_link_hash_defined
1304 && h->root.root.type != bfd_link_hash_defweak
1305 && h->root.root.type != bfd_link_hash_undefined)
1306 continue;
1307
1308 if ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1309 || (h->flags & SUNOS_DEF_REGULAR) != 0)
1310 continue;
1311
1312 BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0);
1313 BFD_ASSERT ((h->root.root.type == bfd_link_hash_defined
1314 || h->root.root.type == bfd_link_hash_defweak)
1315 ? (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0
1316 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0);
1317
1318 /* This reloc is against a symbol defined only by a dynamic
1319 object. */
1320
1321 if (h->root.root.type == bfd_link_hash_undefined)
1322 {
1323 /* Presumably this symbol was marked as being undefined by
1324 an earlier reloc. */
1325 srel->_raw_size += RELOC_STD_SIZE;
1326 }
1327 else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0)
1328 {
1329 bfd *sub;
1330
1331 /* This reloc is not in the .text section. It must be
1332 copied into the dynamic relocs. We mark the symbol as
1333 being undefined. */
1334 srel->_raw_size += RELOC_STD_SIZE;
1335 sub = h->root.root.u.def.section->owner;
1336 h->root.root.type = bfd_link_hash_undefined;
1337 h->root.root.u.undef.abfd = sub;
1338 }
1339 else
1340 {
1341 /* This symbol is in the .text section. We must give it an
1342 entry in the procedure linkage table, if we have not
1343 already done so. We change the definition of the symbol
1344 to the .plt section; this will cause relocs against it to
1345 be handled correctly. */
1346 if (h->root.root.u.def.section != splt)
1347 {
1348 if (splt->_raw_size == 0)
1349 splt->_raw_size = M68K_PLT_ENTRY_SIZE;
1350 h->root.root.u.def.section = splt;
1351 h->root.root.u.def.value = splt->_raw_size;
1352 splt->_raw_size += M68K_PLT_ENTRY_SIZE;
1353
1354 /* We will also need a dynamic reloc entry. */
1355 srel->_raw_size += RELOC_STD_SIZE;
1356 }
1357 }
1358 }
1359
1360 return true;
1361 }
1362
1363 /* Scan the relocs for an input section using extended relocs. We
1364 need to figure out what to do for each reloc against a dynamic
1365 symbol. If the reloc is a WDISP30, and the symbol is in the .text
1366 section, an entry is made in the procedure linkage table.
1367 Otherwise, we must preserve the reloc as a dynamic reloc. FIXME:
1368 We should also handle the PIC relocs here by building global offset
1369 table entries. */
1370
1371 static boolean
1372 sunos_scan_ext_relocs (info, abfd, sec, relocs, rel_size)
1373 struct bfd_link_info *info;
1374 bfd *abfd;
1375 asection *sec;
1376 const struct reloc_ext_external *relocs;
1377 bfd_size_type rel_size;
1378 {
1379 bfd *dynobj;
1380 asection *splt;
1381 asection *srel;
1382 struct sunos_link_hash_entry **sym_hashes;
1383 const struct reloc_ext_external *rel, *relend;
1384
1385 /* We only know how to handle SPARC plt entries. */
1386 if (bfd_get_arch (abfd) != bfd_arch_sparc)
1387 {
1388 bfd_set_error (bfd_error_invalid_target);
1389 return false;
1390 }
1391
1392 dynobj = sunos_hash_table (info)->dynobj;
1393 splt = bfd_get_section_by_name (dynobj, ".plt");
1394 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1395 BFD_ASSERT (splt != NULL && srel != NULL);
1396 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1397
1398 relend = relocs + rel_size / RELOC_EXT_SIZE;
1399 for (rel = relocs; rel < relend; rel++)
1400 {
1401 int r_index;
1402 int r_type;
1403 struct sunos_link_hash_entry *h;
1404
1405 /* We only want relocs against external symbols. */
1406 if (abfd->xvec->header_byteorder_big_p)
1407 {
1408 if ((rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG) == 0)
1409 continue;
1410 }
1411 else
1412 {
1413 if ((rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE) == 0)
1414 continue;
1415 }
1416
1417 /* Get the symbol index and reloc type. */
1418 if (abfd->xvec->header_byteorder_big_p)
1419 {
1420 r_index = ((rel->r_index[0] << 16)
1421 | (rel->r_index[1] << 8)
1422 | rel->r_index[2]);
1423 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
1424 >> RELOC_EXT_BITS_TYPE_SH_BIG);
1425 }
1426 else
1427 {
1428 r_index = ((rel->r_index[2] << 16)
1429 | (rel->r_index[1] << 8)
1430 | rel->r_index[0]);
1431 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
1432 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
1433 }
1434
1435 /* Get the hash table entry. */
1436 h = sym_hashes[r_index];
1437 if (h == NULL)
1438 {
1439 /* This should not normally happen, but it will in any case
1440 be caught in the relocation phase. */
1441 continue;
1442 }
1443
1444 /* At this point common symbols have already been allocated, so
1445 we don't have to worry about them. We need to consider that
1446 we may have already seen this symbol and marked it undefined;
1447 if the symbols is really undefined, then SUNOS_DEF_DYNAMIC
1448 will be zero. */
1449 if (h->root.root.type != bfd_link_hash_defined
1450 && h->root.root.type != bfd_link_hash_defweak
1451 && h->root.root.type != bfd_link_hash_undefined)
1452 continue;
1453
1454 if ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1455 || (h->flags & SUNOS_DEF_REGULAR) != 0)
1456 continue;
1457
1458 BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0);
1459 BFD_ASSERT ((h->root.root.type == bfd_link_hash_defined
1460 || h->root.root.type == bfd_link_hash_defweak)
1461 ? (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0
1462 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0);
1463
1464 /* This reloc is against a symbol defined only by a dynamic
1465 object. */
1466
1467 if (h->root.root.type == bfd_link_hash_undefined)
1468 {
1469 /* Presumably this symbol was marked as being undefined by
1470 an earlier reloc. */
1471 srel->_raw_size += RELOC_EXT_SIZE;
1472 }
1473 else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0)
1474 {
1475 bfd *sub;
1476
1477 /* This reloc is not in the .text section. It must be
1478 copied into the dynamic relocs. We mark the symbol as
1479 being undefined. */
1480 srel->_raw_size += RELOC_EXT_SIZE;
1481 sub = h->root.root.u.def.section->owner;
1482 h->root.root.type = bfd_link_hash_undefined;
1483 h->root.root.u.undef.abfd = sub;
1484 }
1485 else
1486 {
1487 /* This symbol is in the .text section. We must give it an
1488 entry in the procedure linkage table, if we have not
1489 already done so. We change the definition of the symbol
1490 to the .plt section; this will cause relocs against it to
1491 be handled correctly. */
1492 if (h->root.root.u.def.section != splt)
1493 {
1494 if (splt->_raw_size == 0)
1495 splt->_raw_size = SPARC_PLT_ENTRY_SIZE;
1496 h->root.root.u.def.section = splt;
1497 h->root.root.u.def.value = splt->_raw_size;
1498 splt->_raw_size += SPARC_PLT_ENTRY_SIZE;
1499
1500 /* We will also need a dynamic reloc entry. */
1501 srel->_raw_size += RELOC_EXT_SIZE;
1502 }
1503 }
1504 }
1505
1506 return true;
1507 }
1508
1509 /* Build the hash table of dynamic symbols, and to mark as written all
1510 symbols from dynamic objects which we do not plan to write out. */
1511
1512 static boolean
1513 sunos_scan_dynamic_symbol (h, data)
1514 struct sunos_link_hash_entry *h;
1515 PTR data;
1516 {
1517 struct bfd_link_info *info = (struct bfd_link_info *) data;
1518
1519 /* Set the written flag for symbols we do not want to write out as
1520 part of the regular symbol table. This is all symbols which are
1521 not defined in a regular object file. For some reason symbols
1522 which are referenced by a regular object and defined by a dynamic
1523 object do not seem to show up in the regular symbol table. */
1524 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1525 h->root.written = true;
1526
1527 /* If this symbol is defined by a dynamic object and referenced by a
1528 regular object, see whether we gave it a reasonable value while
1529 scanning the relocs. */
1530
1531 if ((h->flags & SUNOS_DEF_REGULAR) == 0
1532 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1533 && (h->flags & SUNOS_REF_REGULAR) != 0)
1534 {
1535 if ((h->root.root.type == bfd_link_hash_defined
1536 || h->root.root.type == bfd_link_hash_defweak)
1537 && ((h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1538 && h->root.root.u.def.section->output_section == NULL)
1539 {
1540 bfd *sub;
1541
1542 /* This symbol is currently defined in a dynamic section
1543 which is not being put into the output file. This
1544 implies that there is no reloc against the symbol. I'm
1545 not sure why this case would ever occur. In any case, we
1546 change the symbol to be undefined. */
1547 sub = h->root.root.u.def.section->owner;
1548 h->root.root.type = bfd_link_hash_undefined;
1549 h->root.root.u.undef.abfd = sub;
1550 }
1551 }
1552
1553 /* If this symbol is defined or referenced by a regular file, add it
1554 to the dynamic symbols. */
1555 if ((h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
1556 {
1557 asection *s;
1558 size_t len;
1559 bfd_byte *contents;
1560 unsigned char *name;
1561 unsigned long hash;
1562 bfd *dynobj;
1563
1564 BFD_ASSERT (h->dynindx == -2);
1565
1566 h->dynindx = sunos_hash_table (info)->dynsymcount;
1567 ++sunos_hash_table (info)->dynsymcount;
1568
1569 len = strlen (h->root.root.root.string);
1570
1571 /* We don't bother to construct a BFD hash table for the strings
1572 which are the names of the dynamic symbols. Using a hash
1573 table for the regular symbols is beneficial, because the
1574 regular symbols includes the debugging symbols, which have
1575 long names and are often duplicated in several object files.
1576 There are no debugging symbols in the dynamic symbols. */
1577 s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj,
1578 ".dynstr");
1579 BFD_ASSERT (s != NULL);
1580 if (s->contents == NULL)
1581 contents = (bfd_byte *) malloc (len + 1);
1582 else
1583 contents = (bfd_byte *) realloc (s->contents, s->_raw_size + len + 1);
1584 if (contents == NULL)
1585 {
1586 bfd_set_error (bfd_error_no_memory);
1587 return false;
1588 }
1589 s->contents = contents;
1590
1591 h->dynstr_index = s->_raw_size;
1592 strcpy (contents + s->_raw_size, h->root.root.root.string);
1593 s->_raw_size += len + 1;
1594
1595 /* Add it to the dynamic hash table. */
1596 name = (unsigned char *) h->root.root.root.string;
1597 hash = 0;
1598 while (*name != '\0')
1599 hash = (hash << 1) + *name++;
1600 hash &= 0x7fffffff;
1601 hash %= sunos_hash_table (info)->bucketcount;
1602
1603 dynobj = sunos_hash_table (info)->dynobj;
1604 s = bfd_get_section_by_name (dynobj, ".hash");
1605 BFD_ASSERT (s != NULL);
1606
1607 if (GET_SWORD (dynobj, s->contents + hash * HASH_ENTRY_SIZE) == -1)
1608 PUT_WORD (dynobj, h->dynindx, s->contents + hash * HASH_ENTRY_SIZE);
1609 else
1610 {
1611 bfd_vma next;
1612
1613 next = GET_WORD (dynobj,
1614 (s->contents
1615 + hash * HASH_ENTRY_SIZE
1616 + BYTES_IN_WORD));
1617 PUT_WORD (dynobj, s->_raw_size / HASH_ENTRY_SIZE,
1618 s->contents + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
1619 PUT_WORD (dynobj, h->dynindx, s->contents + s->_raw_size);
1620 PUT_WORD (dynobj, next, s->contents + s->_raw_size + BYTES_IN_WORD);
1621 s->_raw_size += HASH_ENTRY_SIZE;
1622 }
1623 }
1624
1625 return true;
1626 }
1627
1628 /* Link a dynamic object. We actually don't have anything to do at
1629 this point. This entry point exists to prevent the regular linker
1630 code from doing anything with the object. */
1631
1632 /*ARGSUSED*/
1633 static boolean
1634 sunos_link_dynamic_object (info, abfd)
1635 struct bfd_link_info *info;
1636 bfd *abfd;
1637 {
1638 return true;
1639 }
1640
1641
1642 /* Write out a dynamic symbol. This is called by the final traversal
1643 over the symbol table. */
1644
1645 static boolean
1646 sunos_write_dynamic_symbol (output_bfd, info, harg)
1647 bfd *output_bfd;
1648 struct bfd_link_info *info;
1649 struct aout_link_hash_entry *harg;
1650 {
1651 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
1652 boolean plt;
1653 int type;
1654 bfd_vma val;
1655 asection *s;
1656 struct external_nlist *outsym;
1657
1658 if (h->dynindx < 0)
1659 return true;
1660
1661 plt = false;
1662 switch (h->root.root.type)
1663 {
1664 default:
1665 case bfd_link_hash_new:
1666 abort ();
1667 /* Avoid variable not initialized warnings. */
1668 return true;
1669 case bfd_link_hash_undefined:
1670 type = N_UNDF | N_EXT;
1671 val = 0;
1672 break;
1673 case bfd_link_hash_defined:
1674 case bfd_link_hash_defweak:
1675 {
1676 asection *sec;
1677 asection *output_section;
1678
1679 sec = h->root.root.u.def.section;
1680 output_section = sec->output_section;
1681 BFD_ASSERT (bfd_is_abs_section (output_section)
1682 || output_section->owner == output_bfd);
1683 if (strcmp (sec->name, ".plt") == 0)
1684 {
1685 plt = true;
1686 type = N_UNDF | N_EXT;
1687 val = 0;
1688 }
1689 else
1690 {
1691 if (output_section == obj_textsec (output_bfd))
1692 type = (h->root.root.type == bfd_link_hash_defined
1693 ? N_TEXT
1694 : N_WEAKT);
1695 else if (output_section == obj_datasec (output_bfd))
1696 type = (h->root.root.type == bfd_link_hash_defined
1697 ? N_DATA
1698 : N_WEAKD);
1699 else if (output_section == obj_bsssec (output_bfd))
1700 type = (h->root.root.type == bfd_link_hash_defined
1701 ? N_BSS
1702 : N_WEAKB);
1703 else
1704 type = (h->root.root.type == bfd_link_hash_defined
1705 ? N_ABS
1706 : N_WEAKA);
1707 type |= N_EXT;
1708 val = (h->root.root.u.def.value
1709 + output_section->vma
1710 + sec->output_offset);
1711 }
1712 }
1713 break;
1714 case bfd_link_hash_common:
1715 type = N_UNDF | N_EXT;
1716 val = h->root.root.u.c.size;
1717 break;
1718 case bfd_link_hash_undefweak:
1719 type = N_WEAKU;
1720 val = 0;
1721 break;
1722 case bfd_link_hash_indirect:
1723 case bfd_link_hash_warning:
1724 /* FIXME: Ignore these for now. The circumstances under which
1725 they should be written out are not clear to me. */
1726 return true;
1727 }
1728
1729 s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynsym");
1730 BFD_ASSERT (s != NULL);
1731 outsym = ((struct external_nlist *)
1732 (s->contents + h->dynindx * EXTERNAL_NLIST_SIZE));
1733
1734 bfd_h_put_8 (output_bfd, type, outsym->e_type);
1735 bfd_h_put_8 (output_bfd, 0, outsym->e_other);
1736
1737 /* FIXME: The native linker doesn't use 0 for desc. It seems to use
1738 one less than the desc value in the shared library, although that
1739 seems unlikely. */
1740 bfd_h_put_16 (output_bfd, 0, outsym->e_desc);
1741
1742 PUT_WORD (output_bfd, h->dynstr_index, outsym->e_strx);
1743 PUT_WORD (output_bfd, val, outsym->e_value);
1744
1745 /* If this symbol is in the procedure linkage table, fill in the
1746 table entry. */
1747 if (plt)
1748 {
1749 bfd_byte *p;
1750 asection *s;
1751 bfd_vma r_address;
1752
1753 p = h->root.root.u.def.section->contents + h->root.root.u.def.value;
1754
1755 s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynrel");
1756 BFD_ASSERT (s != NULL);
1757
1758 r_address = (h->root.root.u.def.section->output_section->vma
1759 + h->root.root.u.def.section->output_offset
1760 + h->root.root.u.def.value);
1761
1762 switch (bfd_get_arch (output_bfd))
1763 {
1764 case bfd_arch_sparc:
1765 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD0, p);
1766 bfd_put_32 (output_bfd,
1767 (SPARC_PLT_ENTRY_WORD1
1768 + (((- (h->root.root.u.def.value + 4) >> 2)
1769 & 0x3fffffff))),
1770 p + 4);
1771 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD2 + s->reloc_count,
1772 p + 8);
1773 break;
1774
1775 case bfd_arch_m68k:
1776 bfd_put_16 (output_bfd, M68K_PLT_ENTRY_WORD0, p);
1777 bfd_put_32 (output_bfd, (- (h->root.root.u.def.value + 2)), p + 2);
1778 bfd_put_16 (output_bfd, s->reloc_count, p + 6);
1779 r_address += 2;
1780 break;
1781
1782 default:
1783 abort ();
1784 }
1785
1786 /* We also need to add a jump table reloc. */
1787 p = s->contents + s->reloc_count * obj_reloc_entry_size (output_bfd);
1788 if (obj_reloc_entry_size (output_bfd) == RELOC_STD_SIZE)
1789 {
1790 struct reloc_std_external *srel;
1791
1792 srel = (struct reloc_std_external *) p;
1793 PUT_WORD (output_bfd, r_address, srel->r_address);
1794 if (output_bfd->xvec->header_byteorder_big_p)
1795 {
1796 srel->r_index[0] = h->dynindx >> 16;
1797 srel->r_index[1] = h->dynindx >> 8;
1798 srel->r_index[2] = h->dynindx;
1799 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_BIG
1800 | RELOC_STD_BITS_JMPTABLE_BIG);
1801 }
1802 else
1803 {
1804 srel->r_index[2] = h->dynindx >> 16;
1805 srel->r_index[1] = h->dynindx >> 8;
1806 srel->r_index[0] = h->dynindx;
1807 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_LITTLE
1808 | RELOC_STD_BITS_JMPTABLE_LITTLE);
1809 }
1810 }
1811 else
1812 {
1813 struct reloc_ext_external *erel;
1814
1815 erel = (struct reloc_ext_external *) p;
1816 PUT_WORD (output_bfd, r_address, erel->r_address);
1817 if (output_bfd->xvec->header_byteorder_big_p)
1818 {
1819 erel->r_index[0] = h->dynindx >> 16;
1820 erel->r_index[1] = h->dynindx >> 8;
1821 erel->r_index[2] = h->dynindx;
1822 erel->r_type[0] = (RELOC_EXT_BITS_EXTERN_BIG
1823 | (22 << RELOC_EXT_BITS_TYPE_SH_BIG));
1824 }
1825 else
1826 {
1827 erel->r_index[2] = h->dynindx >> 16;
1828 erel->r_index[1] = h->dynindx >> 8;
1829 erel->r_index[0] = h->dynindx;
1830 erel->r_type[0] = (RELOC_EXT_BITS_EXTERN_LITTLE
1831 | (22 << RELOC_EXT_BITS_TYPE_SH_LITTLE));
1832 }
1833 PUT_WORD (output_bfd, (bfd_vma) 0, erel->r_addend);
1834 }
1835
1836 ++s->reloc_count;
1837 }
1838
1839 return true;
1840 }
1841
1842 /* This is called for each reloc against an external symbol. If this
1843 is a reloc which are are going to copy as a dynamic reloc, then
1844 copy it over, and tell the caller to not bother processing this
1845 reloc. */
1846
1847 /*ARGSUSED*/
1848 static boolean
1849 sunos_check_dynamic_reloc (info, input_bfd, input_section, harg, reloc, skip)
1850 struct bfd_link_info *info;
1851 bfd *input_bfd;
1852 asection *input_section;
1853 struct aout_link_hash_entry *harg;
1854 PTR reloc;
1855 boolean *skip;
1856 {
1857 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
1858 bfd *dynobj;
1859 asection *srel;
1860 bfd_byte *p;
1861
1862 *skip = false;
1863
1864 dynobj = sunos_hash_table (info)->dynobj;
1865
1866 if (dynobj == NULL
1867 || h->dynindx == -1
1868 || h->root.root.type != bfd_link_hash_undefined
1869 || (h->flags & SUNOS_DEF_REGULAR) != 0
1870 || (h->flags & SUNOS_DEF_DYNAMIC) == 0
1871 || (h->root.root.u.undef.abfd->flags & DYNAMIC) == 0)
1872 return true;
1873
1874 /* It looks this is a reloc we are supposed to copy. */
1875
1876 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1877 BFD_ASSERT (srel != NULL);
1878
1879 p = srel->contents + srel->reloc_count * obj_reloc_entry_size (dynobj);
1880
1881 /* Copy the reloc over. */
1882 memcpy (p, reloc, obj_reloc_entry_size (dynobj));
1883
1884 /* Adjust the address and symbol index. */
1885 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
1886 {
1887 struct reloc_std_external *srel;
1888
1889 srel = (struct reloc_std_external *) p;
1890 PUT_WORD (dynobj,
1891 (GET_WORD (dynobj, srel->r_address)
1892 + input_section->output_section->vma
1893 + input_section->output_offset),
1894 srel->r_address);
1895 if (dynobj->xvec->header_byteorder_big_p)
1896 {
1897 srel->r_index[0] = h->dynindx >> 16;
1898 srel->r_index[1] = h->dynindx >> 8;
1899 srel->r_index[2] = h->dynindx;
1900 }
1901 else
1902 {
1903 srel->r_index[2] = h->dynindx >> 16;
1904 srel->r_index[1] = h->dynindx >> 8;
1905 srel->r_index[0] = h->dynindx;
1906 }
1907 }
1908 else
1909 {
1910 struct reloc_ext_external *erel;
1911
1912 erel = (struct reloc_ext_external *) p;
1913 PUT_WORD (dynobj,
1914 (GET_WORD (dynobj, erel->r_address)
1915 + input_section->output_section->vma
1916 + input_section->output_offset),
1917 erel->r_address);
1918 if (dynobj->xvec->header_byteorder_big_p)
1919 {
1920 erel->r_index[0] = h->dynindx >> 16;
1921 erel->r_index[1] = h->dynindx >> 8;
1922 erel->r_index[2] = h->dynindx;
1923 }
1924 else
1925 {
1926 erel->r_index[2] = h->dynindx >> 16;
1927 erel->r_index[1] = h->dynindx >> 8;
1928 erel->r_index[0] = h->dynindx;
1929 }
1930 }
1931
1932 ++srel->reloc_count;
1933
1934 *skip = true;
1935
1936 return true;
1937 }
1938
1939 /* Finish up the dynamic linking information. */
1940
1941 static boolean
1942 sunos_finish_dynamic_link (abfd, info)
1943 bfd *abfd;
1944 struct bfd_link_info *info;
1945 {
1946 bfd *dynobj;
1947 asection *o;
1948 asection *s;
1949 asection *sdyn;
1950 struct external_sun4_dynamic esd;
1951 struct external_sun4_dynamic_link esdl;
1952
1953 dynobj = sunos_hash_table (info)->dynobj;
1954 if (dynobj == NULL)
1955 return true;
1956
1957 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1958 BFD_ASSERT (sdyn != NULL);
1959
1960 /* Finish up the .need section. The linker emulation code filled it
1961 in, but with offsets from the start of the section instead of
1962 real addresses. Now that we know the section location, we can
1963 fill in the final values. */
1964 s = bfd_get_section_by_name (dynobj, ".need");
1965 BFD_ASSERT (s != NULL);
1966 if (s->_raw_size != 0)
1967 {
1968 file_ptr filepos;
1969 bfd_byte *p;
1970
1971 filepos = s->output_section->filepos + s->output_offset;
1972 p = s->contents;
1973 while (1)
1974 {
1975 bfd_vma val;
1976
1977 PUT_WORD (dynobj, GET_WORD (dynobj, p) + filepos, p);
1978 val = GET_WORD (dynobj, p + 12);
1979 if (val == 0)
1980 break;
1981 PUT_WORD (dynobj, val + filepos, p + 12);
1982 p += 16;
1983 }
1984 }
1985
1986 /* The first entry in the .got section is the address of the dynamic
1987 information. */
1988 s = bfd_get_section_by_name (dynobj, ".got");
1989 BFD_ASSERT (s != NULL);
1990 PUT_WORD (dynobj, sdyn->output_section->vma + sdyn->output_offset,
1991 s->contents);
1992
1993 for (o = dynobj->sections; o != NULL; o = o->next)
1994 {
1995 if ((o->flags & SEC_HAS_CONTENTS) != 0
1996 && o->contents != NULL)
1997 {
1998 BFD_ASSERT (o->output_section != NULL
1999 && o->output_section->owner == abfd);
2000 if (! bfd_set_section_contents (abfd, o->output_section,
2001 o->contents, o->output_offset,
2002 o->_raw_size))
2003 return false;
2004 }
2005 }
2006
2007 /* Finish up the dynamic link information. */
2008 PUT_WORD (dynobj, (bfd_vma) 3, esd.ld_version);
2009 PUT_WORD (dynobj,
2010 sdyn->output_section->vma + sdyn->output_offset + sizeof esd,
2011 esd.ldd);
2012 PUT_WORD (dynobj,
2013 (sdyn->output_section->vma
2014 + sdyn->output_offset
2015 + sizeof esd
2016 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
2017 esd.ld);
2018
2019 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esd,
2020 sdyn->output_offset, sizeof esd))
2021 return false;
2022
2023
2024 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_loaded);
2025
2026 s = bfd_get_section_by_name (dynobj, ".need");
2027 BFD_ASSERT (s != NULL);
2028 if (s->_raw_size == 0)
2029 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_need);
2030 else
2031 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2032 esdl.ld_need);
2033
2034 s = bfd_get_section_by_name (dynobj, ".rules");
2035 BFD_ASSERT (s != NULL);
2036 if (s->_raw_size == 0)
2037 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_rules);
2038 else
2039 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2040 esdl.ld_rules);
2041
2042 s = bfd_get_section_by_name (dynobj, ".got");
2043 BFD_ASSERT (s != NULL);
2044 PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_got);
2045
2046 s = bfd_get_section_by_name (dynobj, ".plt");
2047 BFD_ASSERT (s != NULL);
2048 PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_plt);
2049 PUT_WORD (dynobj, s->_raw_size, esdl.ld_plt_sz);
2050
2051 s = bfd_get_section_by_name (dynobj, ".dynrel");
2052 BFD_ASSERT (s != NULL);
2053 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) == s->_raw_size);
2054 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2055 esdl.ld_rel);
2056
2057 s = bfd_get_section_by_name (dynobj, ".hash");
2058 BFD_ASSERT (s != NULL);
2059 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2060 esdl.ld_hash);
2061
2062 s = bfd_get_section_by_name (dynobj, ".dynsym");
2063 BFD_ASSERT (s != NULL);
2064 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2065 esdl.ld_stab);
2066
2067 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_stab_hash);
2068
2069 PUT_WORD (dynobj, (bfd_vma) sunos_hash_table (info)->bucketcount,
2070 esdl.ld_buckets);
2071
2072 s = bfd_get_section_by_name (dynobj, ".dynstr");
2073 BFD_ASSERT (s != NULL);
2074 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2075 esdl.ld_symbols);
2076 PUT_WORD (dynobj, s->_raw_size, esdl.ld_symb_size);
2077
2078 /* The size of the text area is the size of the .text section
2079 rounded up to a page boundary. FIXME: Should the page size be
2080 conditional on something? */
2081 PUT_WORD (dynobj,
2082 BFD_ALIGN (obj_textsec (abfd)->_raw_size, 0x2000),
2083 esdl.ld_text);
2084
2085 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esdl,
2086 (sdyn->output_offset
2087 + sizeof esd
2088 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
2089 sizeof esdl))
2090 return false;
2091
2092 abfd->flags |= DYNAMIC;
2093
2094 return true;
2095 }
This page took 0.071672 seconds and 4 git commands to generate.