Add support for PEF, Mach-O, xSYM
[deliverable/binutils-gdb.git] / bfd / sunos.c
1 /* BFD backend for SunOS binaries.
2 Copyright 1990, 1991, 1992, 1994, 1995, 1996, 1997, 1998, 2000, 2001,
3 2002
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 #define TARGETNAME "a.out-sunos-big"
24
25 /* Do not "beautify" the CONCAT* macro args. Traditional C will not
26 remove whitespace added here, and thus will fail to concatenate
27 the tokens. */
28 #define MY(OP) CONCAT2 (sunos_big_,OP)
29
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libaout.h"
33
34 /* Static routines defined in this file. */
35
36 static boolean sunos_read_dynamic_info PARAMS ((bfd *));
37 static long sunos_get_dynamic_symtab_upper_bound PARAMS ((bfd *));
38 static boolean sunos_slurp_dynamic_symtab PARAMS ((bfd *));
39 static long sunos_canonicalize_dynamic_symtab PARAMS ((bfd *, asymbol **));
40 static long sunos_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
41 static long sunos_canonicalize_dynamic_reloc
42 PARAMS ((bfd *, arelent **, asymbol **));
43 static struct bfd_hash_entry *sunos_link_hash_newfunc
44 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
45 static struct bfd_link_hash_table *sunos_link_hash_table_create
46 PARAMS ((bfd *));
47 static boolean sunos_create_dynamic_sections
48 PARAMS ((bfd *, struct bfd_link_info *, boolean));
49 static boolean sunos_add_dynamic_symbols
50 PARAMS ((bfd *, struct bfd_link_info *, struct external_nlist **,
51 bfd_size_type *, char **));
52 static boolean sunos_add_one_symbol
53 PARAMS ((struct bfd_link_info *, bfd *, const char *, flagword, asection *,
54 bfd_vma, const char *, boolean, boolean,
55 struct bfd_link_hash_entry **));
56 static boolean sunos_scan_relocs
57 PARAMS ((struct bfd_link_info *, bfd *, asection *, bfd_size_type));
58 static boolean sunos_scan_std_relocs
59 PARAMS ((struct bfd_link_info *, bfd *, asection *,
60 const struct reloc_std_external *, bfd_size_type));
61 static boolean sunos_scan_ext_relocs
62 PARAMS ((struct bfd_link_info *, bfd *, asection *,
63 const struct reloc_ext_external *, bfd_size_type));
64 static boolean sunos_link_dynamic_object
65 PARAMS ((struct bfd_link_info *, bfd *));
66 static boolean sunos_write_dynamic_symbol
67 PARAMS ((bfd *, struct bfd_link_info *, struct aout_link_hash_entry *));
68 static boolean sunos_check_dynamic_reloc
69 PARAMS ((struct bfd_link_info *, bfd *, asection *,
70 struct aout_link_hash_entry *, PTR, bfd_byte *, boolean *,
71 bfd_vma *));
72 static boolean sunos_finish_dynamic_link
73 PARAMS ((bfd *, struct bfd_link_info *));
74
75 #define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound
76 #define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab
77 #define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound
78 #define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc
79 #define MY_bfd_link_hash_table_create sunos_link_hash_table_create
80 #define MY_add_dynamic_symbols sunos_add_dynamic_symbols
81 #define MY_add_one_symbol sunos_add_one_symbol
82 #define MY_link_dynamic_object sunos_link_dynamic_object
83 #define MY_write_dynamic_symbol sunos_write_dynamic_symbol
84 #define MY_check_dynamic_reloc sunos_check_dynamic_reloc
85 #define MY_finish_dynamic_link sunos_finish_dynamic_link
86
87 /* ??? Where should this go? */
88 #define MACHTYPE_OK(mtype) \
89 (((mtype) == M_SPARC && bfd_lookup_arch (bfd_arch_sparc, 0) != NULL) \
90 || ((mtype) == M_SPARCLET \
91 && bfd_lookup_arch (bfd_arch_sparc, bfd_mach_sparc_sparclet) != NULL) \
92 || ((mtype) == M_SPARCLITE_LE \
93 && bfd_lookup_arch (bfd_arch_sparc, bfd_mach_sparc_sparclet) != NULL) \
94 || (((mtype) == M_UNKNOWN || (mtype) == M_68010 || (mtype) == M_68020) \
95 && bfd_lookup_arch (bfd_arch_m68k, 0) != NULL))
96
97 /* Include the usual a.out support. */
98 #include "aoutf1.h"
99
100 /* The SunOS 4.1.4 /usr/include/locale.h defines valid as a macro. */
101 #undef valid
102
103 /* SunOS shared library support. We store a pointer to this structure
104 in obj_aout_dynamic_info (abfd). */
105
106 struct sunos_dynamic_info
107 {
108 /* Whether we found any dynamic information. */
109 boolean valid;
110 /* Dynamic information. */
111 struct internal_sun4_dynamic_link dyninfo;
112 /* Number of dynamic symbols. */
113 unsigned long dynsym_count;
114 /* Read in nlists for dynamic symbols. */
115 struct external_nlist *dynsym;
116 /* asymbol structures for dynamic symbols. */
117 aout_symbol_type *canonical_dynsym;
118 /* Read in dynamic string table. */
119 char *dynstr;
120 /* Number of dynamic relocs. */
121 unsigned long dynrel_count;
122 /* Read in dynamic relocs. This may be reloc_std_external or
123 reloc_ext_external. */
124 PTR dynrel;
125 /* arelent structures for dynamic relocs. */
126 arelent *canonical_dynrel;
127 };
128
129 /* The hash table of dynamic symbols is composed of two word entries.
130 See include/aout/sun4.h for details. */
131
132 #define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD)
133
134 /* Read in the basic dynamic information. This locates the __DYNAMIC
135 structure and uses it to find the dynamic_link structure. It
136 creates and saves a sunos_dynamic_info structure. If it can't find
137 __DYNAMIC, it sets the valid field of the sunos_dynamic_info
138 structure to false to avoid doing this work again. */
139
140 static boolean
141 sunos_read_dynamic_info (abfd)
142 bfd *abfd;
143 {
144 struct sunos_dynamic_info *info;
145 asection *dynsec;
146 bfd_vma dynoff;
147 struct external_sun4_dynamic dyninfo;
148 unsigned long dynver;
149 struct external_sun4_dynamic_link linkinfo;
150 bfd_size_type amt;
151
152 if (obj_aout_dynamic_info (abfd) != (PTR) NULL)
153 return true;
154
155 if ((abfd->flags & DYNAMIC) == 0)
156 {
157 bfd_set_error (bfd_error_invalid_operation);
158 return false;
159 }
160
161 amt = sizeof (struct sunos_dynamic_info);
162 info = (struct sunos_dynamic_info *) bfd_zalloc (abfd, amt);
163 if (!info)
164 return false;
165 info->valid = false;
166 info->dynsym = NULL;
167 info->dynstr = NULL;
168 info->canonical_dynsym = NULL;
169 info->dynrel = NULL;
170 info->canonical_dynrel = NULL;
171 obj_aout_dynamic_info (abfd) = (PTR) info;
172
173 /* This code used to look for the __DYNAMIC symbol to locate the dynamic
174 linking information.
175 However this inhibits recovering the dynamic symbols from a
176 stripped object file, so blindly assume that the dynamic linking
177 information is located at the start of the data section.
178 We could verify this assumption later by looking through the dynamic
179 symbols for the __DYNAMIC symbol. */
180 if ((abfd->flags & DYNAMIC) == 0)
181 return true;
182 if (! bfd_get_section_contents (abfd, obj_datasec (abfd), (PTR) &dyninfo,
183 (file_ptr) 0,
184 (bfd_size_type) sizeof dyninfo))
185 return true;
186
187 dynver = GET_WORD (abfd, dyninfo.ld_version);
188 if (dynver != 2 && dynver != 3)
189 return true;
190
191 dynoff = GET_WORD (abfd, dyninfo.ld);
192
193 /* dynoff is a virtual address. It is probably always in the .data
194 section, but this code should work even if it moves. */
195 if (dynoff < bfd_get_section_vma (abfd, obj_datasec (abfd)))
196 dynsec = obj_textsec (abfd);
197 else
198 dynsec = obj_datasec (abfd);
199 dynoff -= bfd_get_section_vma (abfd, dynsec);
200 if (dynoff > bfd_section_size (abfd, dynsec))
201 return true;
202
203 /* This executable appears to be dynamically linked in a way that we
204 can understand. */
205 if (! bfd_get_section_contents (abfd, dynsec, (PTR) &linkinfo,
206 (file_ptr) dynoff,
207 (bfd_size_type) sizeof linkinfo))
208 return true;
209
210 /* Swap in the dynamic link information. */
211 info->dyninfo.ld_loaded = GET_WORD (abfd, linkinfo.ld_loaded);
212 info->dyninfo.ld_need = GET_WORD (abfd, linkinfo.ld_need);
213 info->dyninfo.ld_rules = GET_WORD (abfd, linkinfo.ld_rules);
214 info->dyninfo.ld_got = GET_WORD (abfd, linkinfo.ld_got);
215 info->dyninfo.ld_plt = GET_WORD (abfd, linkinfo.ld_plt);
216 info->dyninfo.ld_rel = GET_WORD (abfd, linkinfo.ld_rel);
217 info->dyninfo.ld_hash = GET_WORD (abfd, linkinfo.ld_hash);
218 info->dyninfo.ld_stab = GET_WORD (abfd, linkinfo.ld_stab);
219 info->dyninfo.ld_stab_hash = GET_WORD (abfd, linkinfo.ld_stab_hash);
220 info->dyninfo.ld_buckets = GET_WORD (abfd, linkinfo.ld_buckets);
221 info->dyninfo.ld_symbols = GET_WORD (abfd, linkinfo.ld_symbols);
222 info->dyninfo.ld_symb_size = GET_WORD (abfd, linkinfo.ld_symb_size);
223 info->dyninfo.ld_text = GET_WORD (abfd, linkinfo.ld_text);
224 info->dyninfo.ld_plt_sz = GET_WORD (abfd, linkinfo.ld_plt_sz);
225
226 /* Reportedly the addresses need to be offset by the size of the
227 exec header in an NMAGIC file. */
228 if (adata (abfd).magic == n_magic)
229 {
230 unsigned long exec_bytes_size = adata (abfd).exec_bytes_size;
231
232 info->dyninfo.ld_need += exec_bytes_size;
233 info->dyninfo.ld_rules += exec_bytes_size;
234 info->dyninfo.ld_rel += exec_bytes_size;
235 info->dyninfo.ld_hash += exec_bytes_size;
236 info->dyninfo.ld_stab += exec_bytes_size;
237 info->dyninfo.ld_symbols += exec_bytes_size;
238 }
239
240 /* The only way to get the size of the symbol information appears to
241 be to determine the distance between it and the string table. */
242 info->dynsym_count = ((info->dyninfo.ld_symbols - info->dyninfo.ld_stab)
243 / EXTERNAL_NLIST_SIZE);
244 BFD_ASSERT (info->dynsym_count * EXTERNAL_NLIST_SIZE
245 == (unsigned long) (info->dyninfo.ld_symbols
246 - info->dyninfo.ld_stab));
247
248 /* Similarly, the relocs end at the hash table. */
249 info->dynrel_count = ((info->dyninfo.ld_hash - info->dyninfo.ld_rel)
250 / obj_reloc_entry_size (abfd));
251 BFD_ASSERT (info->dynrel_count * obj_reloc_entry_size (abfd)
252 == (unsigned long) (info->dyninfo.ld_hash
253 - info->dyninfo.ld_rel));
254
255 info->valid = true;
256
257 return true;
258 }
259
260 /* Return the amount of memory required for the dynamic symbols. */
261
262 static long
263 sunos_get_dynamic_symtab_upper_bound (abfd)
264 bfd *abfd;
265 {
266 struct sunos_dynamic_info *info;
267
268 if (! sunos_read_dynamic_info (abfd))
269 return -1;
270
271 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
272 if (! info->valid)
273 {
274 bfd_set_error (bfd_error_no_symbols);
275 return -1;
276 }
277
278 return (info->dynsym_count + 1) * sizeof (asymbol *);
279 }
280
281 /* Read the external dynamic symbols. */
282
283 static boolean
284 sunos_slurp_dynamic_symtab (abfd)
285 bfd *abfd;
286 {
287 struct sunos_dynamic_info *info;
288 bfd_size_type amt;
289
290 /* Get the general dynamic information. */
291 if (obj_aout_dynamic_info (abfd) == NULL)
292 {
293 if (! sunos_read_dynamic_info (abfd))
294 return false;
295 }
296
297 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
298 if (! info->valid)
299 {
300 bfd_set_error (bfd_error_no_symbols);
301 return false;
302 }
303
304 /* Get the dynamic nlist structures. */
305 if (info->dynsym == (struct external_nlist *) NULL)
306 {
307 amt = (bfd_size_type) info->dynsym_count * EXTERNAL_NLIST_SIZE;
308 info->dynsym = (struct external_nlist *) bfd_alloc (abfd, amt);
309 if (info->dynsym == NULL && info->dynsym_count != 0)
310 return false;
311 if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_stab, SEEK_SET) != 0
312 || bfd_bread ((PTR) info->dynsym, amt, abfd) != amt)
313 {
314 if (info->dynsym != NULL)
315 {
316 bfd_release (abfd, info->dynsym);
317 info->dynsym = NULL;
318 }
319 return false;
320 }
321 }
322
323 /* Get the dynamic strings. */
324 if (info->dynstr == (char *) NULL)
325 {
326 amt = info->dyninfo.ld_symb_size;
327 info->dynstr = (char *) bfd_alloc (abfd, amt);
328 if (info->dynstr == NULL && info->dyninfo.ld_symb_size != 0)
329 return false;
330 if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_symbols, SEEK_SET) != 0
331 || bfd_bread ((PTR) info->dynstr, amt, abfd) != amt)
332 {
333 if (info->dynstr != NULL)
334 {
335 bfd_release (abfd, info->dynstr);
336 info->dynstr = NULL;
337 }
338 return false;
339 }
340 }
341
342 return true;
343 }
344
345 /* Read in the dynamic symbols. */
346
347 static long
348 sunos_canonicalize_dynamic_symtab (abfd, storage)
349 bfd *abfd;
350 asymbol **storage;
351 {
352 struct sunos_dynamic_info *info;
353 unsigned long i;
354
355 if (! sunos_slurp_dynamic_symtab (abfd))
356 return -1;
357
358 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
359
360 #ifdef CHECK_DYNAMIC_HASH
361 /* Check my understanding of the dynamic hash table by making sure
362 that each symbol can be located in the hash table. */
363 {
364 bfd_size_type table_size;
365 bfd_byte *table;
366 bfd_size_type i;
367
368 if (info->dyninfo.ld_buckets > info->dynsym_count)
369 abort ();
370 table_size = info->dyninfo.ld_stab - info->dyninfo.ld_hash;
371 table = (bfd_byte *) bfd_malloc (table_size);
372 if (table == NULL && table_size != 0)
373 abort ();
374 if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_hash, SEEK_SET) != 0
375 || bfd_bread ((PTR) table, table_size, abfd) != table_size)
376 abort ();
377 for (i = 0; i < info->dynsym_count; i++)
378 {
379 unsigned char *name;
380 unsigned long hash;
381
382 name = ((unsigned char *) info->dynstr
383 + GET_WORD (abfd, info->dynsym[i].e_strx));
384 hash = 0;
385 while (*name != '\0')
386 hash = (hash << 1) + *name++;
387 hash &= 0x7fffffff;
388 hash %= info->dyninfo.ld_buckets;
389 while (GET_WORD (abfd, table + hash * HASH_ENTRY_SIZE) != i)
390 {
391 hash = GET_WORD (abfd,
392 table + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
393 if (hash == 0 || hash >= table_size / HASH_ENTRY_SIZE)
394 abort ();
395 }
396 }
397 free (table);
398 }
399 #endif /* CHECK_DYNAMIC_HASH */
400
401 /* Get the asymbol structures corresponding to the dynamic nlist
402 structures. */
403 if (info->canonical_dynsym == (aout_symbol_type *) NULL)
404 {
405 bfd_size_type size;
406 bfd_size_type strsize = info->dyninfo.ld_symb_size;
407
408 size = (bfd_size_type) info->dynsym_count * sizeof (aout_symbol_type);
409 info->canonical_dynsym = (aout_symbol_type *) bfd_alloc (abfd, size);
410 if (info->canonical_dynsym == NULL && info->dynsym_count != 0)
411 return -1;
412
413 if (! aout_32_translate_symbol_table (abfd, info->canonical_dynsym,
414 info->dynsym,
415 (bfd_size_type) info->dynsym_count,
416 info->dynstr, strsize, true))
417 {
418 if (info->canonical_dynsym != NULL)
419 {
420 bfd_release (abfd, info->canonical_dynsym);
421 info->canonical_dynsym = NULL;
422 }
423 return -1;
424 }
425 }
426
427 /* Return pointers to the dynamic asymbol structures. */
428 for (i = 0; i < info->dynsym_count; i++)
429 *storage++ = (asymbol *) (info->canonical_dynsym + i);
430 *storage = NULL;
431
432 return info->dynsym_count;
433 }
434
435 /* Return the amount of memory required for the dynamic relocs. */
436
437 static long
438 sunos_get_dynamic_reloc_upper_bound (abfd)
439 bfd *abfd;
440 {
441 struct sunos_dynamic_info *info;
442
443 if (! sunos_read_dynamic_info (abfd))
444 return -1;
445
446 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
447 if (! info->valid)
448 {
449 bfd_set_error (bfd_error_no_symbols);
450 return -1;
451 }
452
453 return (info->dynrel_count + 1) * sizeof (arelent *);
454 }
455
456 /* Read in the dynamic relocs. */
457
458 static long
459 sunos_canonicalize_dynamic_reloc (abfd, storage, syms)
460 bfd *abfd;
461 arelent **storage;
462 asymbol **syms;
463 {
464 struct sunos_dynamic_info *info;
465 unsigned long i;
466 bfd_size_type size;
467
468 /* Get the general dynamic information. */
469 if (obj_aout_dynamic_info (abfd) == (PTR) NULL)
470 {
471 if (! sunos_read_dynamic_info (abfd))
472 return -1;
473 }
474
475 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
476 if (! info->valid)
477 {
478 bfd_set_error (bfd_error_no_symbols);
479 return -1;
480 }
481
482 /* Get the dynamic reloc information. */
483 if (info->dynrel == NULL)
484 {
485 size = (bfd_size_type) info->dynrel_count * obj_reloc_entry_size (abfd);
486 info->dynrel = (PTR) bfd_alloc (abfd, size);
487 if (info->dynrel == NULL && size != 0)
488 return -1;
489 if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_rel, SEEK_SET) != 0
490 || bfd_bread ((PTR) info->dynrel, size, abfd) != size)
491 {
492 if (info->dynrel != NULL)
493 {
494 bfd_release (abfd, info->dynrel);
495 info->dynrel = NULL;
496 }
497 return -1;
498 }
499 }
500
501 /* Get the arelent structures corresponding to the dynamic reloc
502 information. */
503 if (info->canonical_dynrel == (arelent *) NULL)
504 {
505 arelent *to;
506
507 size = (bfd_size_type) info->dynrel_count * sizeof (arelent);
508 info->canonical_dynrel = (arelent *) bfd_alloc (abfd, size);
509 if (info->canonical_dynrel == NULL && info->dynrel_count != 0)
510 return -1;
511
512 to = info->canonical_dynrel;
513
514 if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE)
515 {
516 register struct reloc_ext_external *p;
517 struct reloc_ext_external *pend;
518
519 p = (struct reloc_ext_external *) info->dynrel;
520 pend = p + info->dynrel_count;
521 for (; p < pend; p++, to++)
522 NAME(aout,swap_ext_reloc_in) (abfd, p, to, syms,
523 (bfd_size_type) info->dynsym_count);
524 }
525 else
526 {
527 register struct reloc_std_external *p;
528 struct reloc_std_external *pend;
529
530 p = (struct reloc_std_external *) info->dynrel;
531 pend = p + info->dynrel_count;
532 for (; p < pend; p++, to++)
533 NAME(aout,swap_std_reloc_in) (abfd, p, to, syms,
534 (bfd_size_type) info->dynsym_count);
535 }
536 }
537
538 /* Return pointers to the dynamic arelent structures. */
539 for (i = 0; i < info->dynrel_count; i++)
540 *storage++ = info->canonical_dynrel + i;
541 *storage = NULL;
542
543 return info->dynrel_count;
544 }
545 \f
546 /* Code to handle linking of SunOS shared libraries. */
547
548 /* A SPARC procedure linkage table entry is 12 bytes. The first entry
549 in the table is a jump which is filled in by the runtime linker.
550 The remaining entries are branches back to the first entry,
551 followed by an index into the relocation table encoded to look like
552 a sethi of %g0. */
553
554 #define SPARC_PLT_ENTRY_SIZE (12)
555
556 static const bfd_byte sparc_plt_first_entry[SPARC_PLT_ENTRY_SIZE] =
557 {
558 /* sethi %hi(0),%g1; address filled in by runtime linker. */
559 0x3, 0, 0, 0,
560 /* jmp %g1; offset filled in by runtime linker. */
561 0x81, 0xc0, 0x60, 0,
562 /* nop */
563 0x1, 0, 0, 0
564 };
565
566 /* save %sp, -96, %sp */
567 #define SPARC_PLT_ENTRY_WORD0 ((bfd_vma) 0x9de3bfa0)
568 /* call; address filled in later. */
569 #define SPARC_PLT_ENTRY_WORD1 ((bfd_vma) 0x40000000)
570 /* sethi; reloc index filled in later. */
571 #define SPARC_PLT_ENTRY_WORD2 ((bfd_vma) 0x01000000)
572
573 /* This sequence is used when for the jump table entry to a defined
574 symbol in a complete executable. It is used when linking PIC
575 compiled code which is not being put into a shared library. */
576 /* sethi <address to be filled in later>, %g1 */
577 #define SPARC_PLT_PIC_WORD0 ((bfd_vma) 0x03000000)
578 /* jmp %g1 + <address to be filled in later> */
579 #define SPARC_PLT_PIC_WORD1 ((bfd_vma) 0x81c06000)
580 /* nop */
581 #define SPARC_PLT_PIC_WORD2 ((bfd_vma) 0x01000000)
582
583 /* An m68k procedure linkage table entry is 8 bytes. The first entry
584 in the table is a jump which is filled in the by the runtime
585 linker. The remaining entries are branches back to the first
586 entry, followed by a two byte index into the relocation table. */
587
588 #define M68K_PLT_ENTRY_SIZE (8)
589
590 static const bfd_byte m68k_plt_first_entry[M68K_PLT_ENTRY_SIZE] =
591 {
592 /* jmps @# */
593 0x4e, 0xf9,
594 /* Filled in by runtime linker with a magic address. */
595 0, 0, 0, 0,
596 /* Not used? */
597 0, 0
598 };
599
600 /* bsrl */
601 #define M68K_PLT_ENTRY_WORD0 ((bfd_vma) 0x61ff)
602 /* Remaining words filled in later. */
603
604 /* An entry in the SunOS linker hash table. */
605
606 struct sunos_link_hash_entry
607 {
608 struct aout_link_hash_entry root;
609
610 /* If this is a dynamic symbol, this is its index into the dynamic
611 symbol table. This is initialized to -1. As the linker looks at
612 the input files, it changes this to -2 if it will be added to the
613 dynamic symbol table. After all the input files have been seen,
614 the linker will know whether to build a dynamic symbol table; if
615 it does build one, this becomes the index into the table. */
616 long dynindx;
617
618 /* If this is a dynamic symbol, this is the index of the name in the
619 dynamic symbol string table. */
620 long dynstr_index;
621
622 /* The offset into the global offset table used for this symbol. If
623 the symbol does not require a GOT entry, this is 0. */
624 bfd_vma got_offset;
625
626 /* The offset into the procedure linkage table used for this symbol.
627 If the symbol does not require a PLT entry, this is 0. */
628 bfd_vma plt_offset;
629
630 /* Some linker flags. */
631 unsigned char flags;
632 /* Symbol is referenced by a regular object. */
633 #define SUNOS_REF_REGULAR 01
634 /* Symbol is defined by a regular object. */
635 #define SUNOS_DEF_REGULAR 02
636 /* Symbol is referenced by a dynamic object. */
637 #define SUNOS_REF_DYNAMIC 04
638 /* Symbol is defined by a dynamic object. */
639 #define SUNOS_DEF_DYNAMIC 010
640 /* Symbol is a constructor symbol in a regular object. */
641 #define SUNOS_CONSTRUCTOR 020
642 };
643
644 /* The SunOS linker hash table. */
645
646 struct sunos_link_hash_table
647 {
648 struct aout_link_hash_table root;
649
650 /* The object which holds the dynamic sections. */
651 bfd *dynobj;
652
653 /* Whether we have created the dynamic sections. */
654 boolean dynamic_sections_created;
655
656 /* Whether we need the dynamic sections. */
657 boolean dynamic_sections_needed;
658
659 /* Whether we need the .got table. */
660 boolean got_needed;
661
662 /* The number of dynamic symbols. */
663 size_t dynsymcount;
664
665 /* The number of buckets in the hash table. */
666 size_t bucketcount;
667
668 /* The list of dynamic objects needed by dynamic objects included in
669 the link. */
670 struct bfd_link_needed_list *needed;
671
672 /* The offset of __GLOBAL_OFFSET_TABLE_ into the .got section. */
673 bfd_vma got_base;
674 };
675
676 /* Routine to create an entry in an SunOS link hash table. */
677
678 static struct bfd_hash_entry *
679 sunos_link_hash_newfunc (entry, table, string)
680 struct bfd_hash_entry *entry;
681 struct bfd_hash_table *table;
682 const char *string;
683 {
684 struct sunos_link_hash_entry *ret = (struct sunos_link_hash_entry *) entry;
685
686 /* Allocate the structure if it has not already been allocated by a
687 subclass. */
688 if (ret == (struct sunos_link_hash_entry *) NULL)
689 ret = ((struct sunos_link_hash_entry *)
690 bfd_hash_allocate (table, sizeof (struct sunos_link_hash_entry)));
691 if (ret == (struct sunos_link_hash_entry *) NULL)
692 return (struct bfd_hash_entry *) ret;
693
694 /* Call the allocation method of the superclass. */
695 ret = ((struct sunos_link_hash_entry *)
696 NAME(aout,link_hash_newfunc) ((struct bfd_hash_entry *) ret,
697 table, string));
698 if (ret != NULL)
699 {
700 /* Set local fields. */
701 ret->dynindx = -1;
702 ret->dynstr_index = -1;
703 ret->got_offset = 0;
704 ret->plt_offset = 0;
705 ret->flags = 0;
706 }
707
708 return (struct bfd_hash_entry *) ret;
709 }
710
711 /* Create a SunOS link hash table. */
712
713 static struct bfd_link_hash_table *
714 sunos_link_hash_table_create (abfd)
715 bfd *abfd;
716 {
717 struct sunos_link_hash_table *ret;
718 bfd_size_type amt = sizeof (struct sunos_link_hash_table);
719
720 ret = (struct sunos_link_hash_table *) bfd_malloc (amt);
721 if (ret == (struct sunos_link_hash_table *) NULL)
722 return (struct bfd_link_hash_table *) NULL;
723 if (! NAME(aout,link_hash_table_init) (&ret->root, abfd,
724 sunos_link_hash_newfunc))
725 {
726 free (ret);
727 return (struct bfd_link_hash_table *) NULL;
728 }
729
730 ret->dynobj = NULL;
731 ret->dynamic_sections_created = false;
732 ret->dynamic_sections_needed = false;
733 ret->got_needed = false;
734 ret->dynsymcount = 0;
735 ret->bucketcount = 0;
736 ret->needed = NULL;
737 ret->got_base = 0;
738
739 return &ret->root.root;
740 }
741
742 /* Look up an entry in an SunOS link hash table. */
743
744 #define sunos_link_hash_lookup(table, string, create, copy, follow) \
745 ((struct sunos_link_hash_entry *) \
746 aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\
747 (follow)))
748
749 /* Traverse a SunOS link hash table. */
750
751 #define sunos_link_hash_traverse(table, func, info) \
752 (aout_link_hash_traverse \
753 (&(table)->root, \
754 (boolean (*) PARAMS ((struct aout_link_hash_entry *, PTR))) (func), \
755 (info)))
756
757 /* Get the SunOS link hash table from the info structure. This is
758 just a cast. */
759
760 #define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash))
761
762 static boolean sunos_scan_dynamic_symbol
763 PARAMS ((struct sunos_link_hash_entry *, PTR));
764
765 /* Create the dynamic sections needed if we are linking against a
766 dynamic object, or if we are linking PIC compiled code. ABFD is a
767 bfd we can attach the dynamic sections to. The linker script will
768 look for these special sections names and put them in the right
769 place in the output file. See include/aout/sun4.h for more details
770 of the dynamic linking information. */
771
772 static boolean
773 sunos_create_dynamic_sections (abfd, info, needed)
774 bfd *abfd;
775 struct bfd_link_info *info;
776 boolean needed;
777 {
778 asection *s;
779
780 if (! sunos_hash_table (info)->dynamic_sections_created)
781 {
782 flagword flags;
783
784 sunos_hash_table (info)->dynobj = abfd;
785
786 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
787 | SEC_LINKER_CREATED);
788
789 /* The .dynamic section holds the basic dynamic information: the
790 sun4_dynamic structure, the dynamic debugger information, and
791 the sun4_dynamic_link structure. */
792 s = bfd_make_section (abfd, ".dynamic");
793 if (s == NULL
794 || ! bfd_set_section_flags (abfd, s, flags)
795 || ! bfd_set_section_alignment (abfd, s, 2))
796 return false;
797
798 /* The .got section holds the global offset table. The address
799 is put in the ld_got field. */
800 s = bfd_make_section (abfd, ".got");
801 if (s == NULL
802 || ! bfd_set_section_flags (abfd, s, flags)
803 || ! bfd_set_section_alignment (abfd, s, 2))
804 return false;
805
806 /* The .plt section holds the procedure linkage table. The
807 address is put in the ld_plt field. */
808 s = bfd_make_section (abfd, ".plt");
809 if (s == NULL
810 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
811 || ! bfd_set_section_alignment (abfd, s, 2))
812 return false;
813
814 /* The .dynrel section holds the dynamic relocs. The address is
815 put in the ld_rel field. */
816 s = bfd_make_section (abfd, ".dynrel");
817 if (s == NULL
818 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
819 || ! bfd_set_section_alignment (abfd, s, 2))
820 return false;
821
822 /* The .hash section holds the dynamic hash table. The address
823 is put in the ld_hash field. */
824 s = bfd_make_section (abfd, ".hash");
825 if (s == NULL
826 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
827 || ! bfd_set_section_alignment (abfd, s, 2))
828 return false;
829
830 /* The .dynsym section holds the dynamic symbols. The address
831 is put in the ld_stab field. */
832 s = bfd_make_section (abfd, ".dynsym");
833 if (s == NULL
834 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
835 || ! bfd_set_section_alignment (abfd, s, 2))
836 return false;
837
838 /* The .dynstr section holds the dynamic symbol string table.
839 The address is put in the ld_symbols field. */
840 s = bfd_make_section (abfd, ".dynstr");
841 if (s == NULL
842 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
843 || ! bfd_set_section_alignment (abfd, s, 2))
844 return false;
845
846 sunos_hash_table (info)->dynamic_sections_created = true;
847 }
848
849 if ((needed && ! sunos_hash_table (info)->dynamic_sections_needed)
850 || info->shared)
851 {
852 bfd *dynobj;
853
854 dynobj = sunos_hash_table (info)->dynobj;
855
856 s = bfd_get_section_by_name (dynobj, ".got");
857 if (s->_raw_size == 0)
858 s->_raw_size = BYTES_IN_WORD;
859
860 sunos_hash_table (info)->dynamic_sections_needed = true;
861 sunos_hash_table (info)->got_needed = true;
862 }
863
864 return true;
865 }
866
867 /* Add dynamic symbols during a link. This is called by the a.out
868 backend linker for each object it encounters. */
869
870 static boolean
871 sunos_add_dynamic_symbols (abfd, info, symsp, sym_countp, stringsp)
872 bfd *abfd;
873 struct bfd_link_info *info;
874 struct external_nlist **symsp;
875 bfd_size_type *sym_countp;
876 char **stringsp;
877 {
878 bfd *dynobj;
879 struct sunos_dynamic_info *dinfo;
880 unsigned long need;
881 asection **ps;
882
883 /* Make sure we have all the required sections. */
884 if (info->hash->creator == abfd->xvec)
885 {
886 if (! sunos_create_dynamic_sections (abfd, info,
887 (((abfd->flags & DYNAMIC) != 0
888 && ! info->relocateable)
889 ? true
890 : false)))
891 return false;
892 }
893
894 /* There is nothing else to do for a normal object. */
895 if ((abfd->flags & DYNAMIC) == 0)
896 return true;
897
898 dynobj = sunos_hash_table (info)->dynobj;
899
900 /* We do not want to include the sections in a dynamic object in the
901 output file. We hack by simply clobbering the list of sections
902 in the BFD. This could be handled more cleanly by, say, a new
903 section flag; the existing SEC_NEVER_LOAD flag is not the one we
904 want, because that one still implies that the section takes up
905 space in the output file. If this is the first object we have
906 seen, we must preserve the dynamic sections we just created. */
907 for (ps = &abfd->sections; *ps != NULL; )
908 {
909 if (abfd != dynobj || ((*ps)->flags & SEC_LINKER_CREATED) == 0)
910 bfd_section_list_remove (abfd, ps);
911 else
912 ps = &(*ps)->next;
913 }
914
915 /* The native linker seems to just ignore dynamic objects when -r is
916 used. */
917 if (info->relocateable)
918 return true;
919
920 /* There's no hope of using a dynamic object which does not exactly
921 match the format of the output file. */
922 if (info->hash->creator != abfd->xvec)
923 {
924 bfd_set_error (bfd_error_invalid_operation);
925 return false;
926 }
927
928 /* Make sure we have a .need and a .rules sections. These are only
929 needed if there really is a dynamic object in the link, so they
930 are not added by sunos_create_dynamic_sections. */
931 if (bfd_get_section_by_name (dynobj, ".need") == NULL)
932 {
933 /* The .need section holds the list of names of shared objets
934 which must be included at runtime. The address of this
935 section is put in the ld_need field. */
936 asection *s = bfd_make_section (dynobj, ".need");
937 if (s == NULL
938 || ! bfd_set_section_flags (dynobj, s,
939 (SEC_ALLOC
940 | SEC_LOAD
941 | SEC_HAS_CONTENTS
942 | SEC_IN_MEMORY
943 | SEC_READONLY))
944 || ! bfd_set_section_alignment (dynobj, s, 2))
945 return false;
946 }
947
948 if (bfd_get_section_by_name (dynobj, ".rules") == NULL)
949 {
950 /* The .rules section holds the path to search for shared
951 objects. The address of this section is put in the ld_rules
952 field. */
953 asection *s = bfd_make_section (dynobj, ".rules");
954 if (s == NULL
955 || ! bfd_set_section_flags (dynobj, s,
956 (SEC_ALLOC
957 | SEC_LOAD
958 | SEC_HAS_CONTENTS
959 | SEC_IN_MEMORY
960 | SEC_READONLY))
961 || ! bfd_set_section_alignment (dynobj, s, 2))
962 return false;
963 }
964
965 /* Pick up the dynamic symbols and return them to the caller. */
966 if (! sunos_slurp_dynamic_symtab (abfd))
967 return false;
968
969 dinfo = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
970 *symsp = dinfo->dynsym;
971 *sym_countp = dinfo->dynsym_count;
972 *stringsp = dinfo->dynstr;
973
974 /* Record information about any other objects needed by this one. */
975 need = dinfo->dyninfo.ld_need;
976 while (need != 0)
977 {
978 bfd_byte buf[16];
979 unsigned long name, flags;
980 unsigned short major_vno, minor_vno;
981 struct bfd_link_needed_list *needed, **pp;
982 char *namebuf, *p;
983 bfd_size_type alc;
984 bfd_byte b;
985 char *namecopy;
986
987 if (bfd_seek (abfd, (file_ptr) need, SEEK_SET) != 0
988 || bfd_bread (buf, (bfd_size_type) 16, abfd) != 16)
989 return false;
990
991 /* For the format of an ld_need entry, see aout/sun4.h. We
992 should probably define structs for this manipulation. */
993
994 name = bfd_get_32 (abfd, buf);
995 flags = bfd_get_32 (abfd, buf + 4);
996 major_vno = (unsigned short) bfd_get_16 (abfd, buf + 8);
997 minor_vno = (unsigned short) bfd_get_16 (abfd, buf + 10);
998 need = bfd_get_32 (abfd, buf + 12);
999
1000 alc = sizeof (struct bfd_link_needed_list);
1001 needed = (struct bfd_link_needed_list *) bfd_alloc (abfd, alc);
1002 if (needed == NULL)
1003 return false;
1004 needed->by = abfd;
1005
1006 /* We return the name as [-l]name[.maj][.min]. */
1007 alc = 30;
1008 namebuf = (char *) bfd_malloc (alc + 1);
1009 if (namebuf == NULL)
1010 return false;
1011 p = namebuf;
1012
1013 if ((flags & 0x80000000) != 0)
1014 {
1015 *p++ = '-';
1016 *p++ = 'l';
1017 }
1018 if (bfd_seek (abfd, (file_ptr) name, SEEK_SET) != 0)
1019 {
1020 free (namebuf);
1021 return false;
1022 }
1023
1024 do
1025 {
1026 if (bfd_bread (&b, (bfd_size_type) 1, abfd) != 1)
1027 {
1028 free (namebuf);
1029 return false;
1030 }
1031
1032 if ((bfd_size_type) (p - namebuf) >= alc)
1033 {
1034 char *n;
1035
1036 alc *= 2;
1037 n = (char *) bfd_realloc (namebuf, alc + 1);
1038 if (n == NULL)
1039 {
1040 free (namebuf);
1041 return false;
1042 }
1043 p = n + (p - namebuf);
1044 namebuf = n;
1045 }
1046
1047 *p++ = b;
1048 }
1049 while (b != '\0');
1050
1051 if (major_vno == 0)
1052 *p = '\0';
1053 else
1054 {
1055 char majbuf[30];
1056 char minbuf[30];
1057
1058 sprintf (majbuf, ".%d", major_vno);
1059 if (minor_vno == 0)
1060 minbuf[0] = '\0';
1061 else
1062 sprintf (minbuf, ".%d", minor_vno);
1063
1064 if ((p - namebuf) + strlen (majbuf) + strlen (minbuf) >= alc)
1065 {
1066 char *n;
1067
1068 alc = (p - namebuf) + strlen (majbuf) + strlen (minbuf);
1069 n = (char *) bfd_realloc (namebuf, alc + 1);
1070 if (n == NULL)
1071 {
1072 free (namebuf);
1073 return false;
1074 }
1075 p = n + (p - namebuf);
1076 namebuf = n;
1077 }
1078
1079 strcpy (p, majbuf);
1080 strcat (p, minbuf);
1081 }
1082
1083 namecopy = bfd_alloc (abfd, (bfd_size_type) strlen (namebuf) + 1);
1084 if (namecopy == NULL)
1085 {
1086 free (namebuf);
1087 return false;
1088 }
1089 strcpy (namecopy, namebuf);
1090 free (namebuf);
1091 needed->name = namecopy;
1092
1093 needed->next = NULL;
1094
1095 for (pp = &sunos_hash_table (info)->needed;
1096 *pp != NULL;
1097 pp = &(*pp)->next)
1098 ;
1099 *pp = needed;
1100 }
1101
1102 return true;
1103 }
1104
1105 /* Function to add a single symbol to the linker hash table. This is
1106 a wrapper around _bfd_generic_link_add_one_symbol which handles the
1107 tweaking needed for dynamic linking support. */
1108
1109 static boolean
1110 sunos_add_one_symbol (info, abfd, name, flags, section, value, string,
1111 copy, collect, hashp)
1112 struct bfd_link_info *info;
1113 bfd *abfd;
1114 const char *name;
1115 flagword flags;
1116 asection *section;
1117 bfd_vma value;
1118 const char *string;
1119 boolean copy;
1120 boolean collect;
1121 struct bfd_link_hash_entry **hashp;
1122 {
1123 struct sunos_link_hash_entry *h;
1124 int new_flag;
1125
1126 if ((flags & (BSF_INDIRECT | BSF_WARNING | BSF_CONSTRUCTOR)) != 0
1127 || ! bfd_is_und_section (section))
1128 h = sunos_link_hash_lookup (sunos_hash_table (info), name, true, copy,
1129 false);
1130 else
1131 h = ((struct sunos_link_hash_entry *)
1132 bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false));
1133 if (h == NULL)
1134 return false;
1135
1136 if (hashp != NULL)
1137 *hashp = (struct bfd_link_hash_entry *) h;
1138
1139 /* Treat a common symbol in a dynamic object as defined in the .bss
1140 section of the dynamic object. We don't want to allocate space
1141 for it in our process image. */
1142 if ((abfd->flags & DYNAMIC) != 0
1143 && bfd_is_com_section (section))
1144 section = obj_bsssec (abfd);
1145
1146 if (! bfd_is_und_section (section)
1147 && h->root.root.type != bfd_link_hash_new
1148 && h->root.root.type != bfd_link_hash_undefined
1149 && h->root.root.type != bfd_link_hash_defweak)
1150 {
1151 /* We are defining the symbol, and it is already defined. This
1152 is a potential multiple definition error. */
1153 if ((abfd->flags & DYNAMIC) != 0)
1154 {
1155 /* The definition we are adding is from a dynamic object.
1156 We do not want this new definition to override the
1157 existing definition, so we pretend it is just a
1158 reference. */
1159 section = bfd_und_section_ptr;
1160 }
1161 else if (h->root.root.type == bfd_link_hash_defined
1162 && h->root.root.u.def.section->owner != NULL
1163 && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1164 {
1165 /* The existing definition is from a dynamic object. We
1166 want to override it with the definition we just found.
1167 Clobber the existing definition. */
1168 h->root.root.type = bfd_link_hash_undefined;
1169 h->root.root.u.undef.abfd = h->root.root.u.def.section->owner;
1170 }
1171 else if (h->root.root.type == bfd_link_hash_common
1172 && (h->root.root.u.c.p->section->owner->flags & DYNAMIC) != 0)
1173 {
1174 /* The existing definition is from a dynamic object. We
1175 want to override it with the definition we just found.
1176 Clobber the existing definition. We can't set it to new,
1177 because it is on the undefined list. */
1178 h->root.root.type = bfd_link_hash_undefined;
1179 h->root.root.u.undef.abfd = h->root.root.u.c.p->section->owner;
1180 }
1181 }
1182
1183 if ((abfd->flags & DYNAMIC) != 0
1184 && abfd->xvec == info->hash->creator
1185 && (h->flags & SUNOS_CONSTRUCTOR) != 0)
1186 {
1187 /* The existing symbol is a constructor symbol, and this symbol
1188 is from a dynamic object. A constructor symbol is actually a
1189 definition, although the type will be bfd_link_hash_undefined
1190 at this point. We want to ignore the definition from the
1191 dynamic object. */
1192 section = bfd_und_section_ptr;
1193 }
1194 else if ((flags & BSF_CONSTRUCTOR) != 0
1195 && (abfd->flags & DYNAMIC) == 0
1196 && h->root.root.type == bfd_link_hash_defined
1197 && h->root.root.u.def.section->owner != NULL
1198 && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1199 {
1200 /* The existing symbol is defined by a dynamic object, and this
1201 is a constructor symbol. As above, we want to force the use
1202 of the constructor symbol from the regular object. */
1203 h->root.root.type = bfd_link_hash_new;
1204 }
1205
1206 /* Do the usual procedure for adding a symbol. */
1207 if (! _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section,
1208 value, string, copy, collect,
1209 hashp))
1210 return false;
1211
1212 if (abfd->xvec == info->hash->creator)
1213 {
1214 /* Set a flag in the hash table entry indicating the type of
1215 reference or definition we just found. Keep a count of the
1216 number of dynamic symbols we find. A dynamic symbol is one
1217 which is referenced or defined by both a regular object and a
1218 shared object. */
1219 if ((abfd->flags & DYNAMIC) == 0)
1220 {
1221 if (bfd_is_und_section (section))
1222 new_flag = SUNOS_REF_REGULAR;
1223 else
1224 new_flag = SUNOS_DEF_REGULAR;
1225 }
1226 else
1227 {
1228 if (bfd_is_und_section (section))
1229 new_flag = SUNOS_REF_DYNAMIC;
1230 else
1231 new_flag = SUNOS_DEF_DYNAMIC;
1232 }
1233 h->flags |= new_flag;
1234
1235 if (h->dynindx == -1
1236 && (h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
1237 {
1238 ++sunos_hash_table (info)->dynsymcount;
1239 h->dynindx = -2;
1240 }
1241
1242 if ((flags & BSF_CONSTRUCTOR) != 0
1243 && (abfd->flags & DYNAMIC) == 0)
1244 h->flags |= SUNOS_CONSTRUCTOR;
1245 }
1246
1247 return true;
1248 }
1249
1250 /* Return the list of objects needed by BFD. */
1251
1252 /*ARGSUSED*/
1253 struct bfd_link_needed_list *
1254 bfd_sunos_get_needed_list (abfd, info)
1255 bfd *abfd ATTRIBUTE_UNUSED;
1256 struct bfd_link_info *info;
1257 {
1258 if (info->hash->creator != &MY(vec))
1259 return NULL;
1260 return sunos_hash_table (info)->needed;
1261 }
1262
1263 /* Record an assignment made to a symbol by a linker script. We need
1264 this in case some dynamic object refers to this symbol. */
1265
1266 boolean
1267 bfd_sunos_record_link_assignment (output_bfd, info, name)
1268 bfd *output_bfd;
1269 struct bfd_link_info *info;
1270 const char *name;
1271 {
1272 struct sunos_link_hash_entry *h;
1273
1274 if (output_bfd->xvec != &MY(vec))
1275 return true;
1276
1277 /* This is called after we have examined all the input objects. If
1278 the symbol does not exist, it merely means that no object refers
1279 to it, and we can just ignore it at this point. */
1280 h = sunos_link_hash_lookup (sunos_hash_table (info), name,
1281 false, false, false);
1282 if (h == NULL)
1283 return true;
1284
1285 /* In a shared library, the __DYNAMIC symbol does not appear in the
1286 dynamic symbol table. */
1287 if (! info->shared || strcmp (name, "__DYNAMIC") != 0)
1288 {
1289 h->flags |= SUNOS_DEF_REGULAR;
1290
1291 if (h->dynindx == -1)
1292 {
1293 ++sunos_hash_table (info)->dynsymcount;
1294 h->dynindx = -2;
1295 }
1296 }
1297
1298 return true;
1299 }
1300
1301 /* Set up the sizes and contents of the dynamic sections created in
1302 sunos_add_dynamic_symbols. This is called by the SunOS linker
1303 emulation before_allocation routine. We must set the sizes of the
1304 sections before the linker sets the addresses of the various
1305 sections. This unfortunately requires reading all the relocs so
1306 that we can work out which ones need to become dynamic relocs. If
1307 info->keep_memory is true, we keep the relocs in memory; otherwise,
1308 we discard them, and will read them again later. */
1309
1310 boolean
1311 bfd_sunos_size_dynamic_sections (output_bfd, info, sdynptr, sneedptr,
1312 srulesptr)
1313 bfd *output_bfd;
1314 struct bfd_link_info *info;
1315 asection **sdynptr;
1316 asection **sneedptr;
1317 asection **srulesptr;
1318 {
1319 bfd *dynobj;
1320 bfd_size_type dynsymcount;
1321 struct sunos_link_hash_entry *h;
1322 asection *s;
1323 size_t bucketcount;
1324 bfd_size_type hashalloc;
1325 size_t i;
1326 bfd *sub;
1327
1328 *sdynptr = NULL;
1329 *sneedptr = NULL;
1330 *srulesptr = NULL;
1331
1332 if (info->relocateable)
1333 return true;
1334
1335 if (output_bfd->xvec != &MY(vec))
1336 return true;
1337
1338 /* Look through all the input BFD's and read their relocs. It would
1339 be better if we didn't have to do this, but there is no other way
1340 to determine the number of dynamic relocs we need, and, more
1341 importantly, there is no other way to know which symbols should
1342 get an entry in the procedure linkage table. */
1343 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
1344 {
1345 if ((sub->flags & DYNAMIC) == 0
1346 && sub->xvec == output_bfd->xvec)
1347 {
1348 if (! sunos_scan_relocs (info, sub, obj_textsec (sub),
1349 exec_hdr (sub)->a_trsize)
1350 || ! sunos_scan_relocs (info, sub, obj_datasec (sub),
1351 exec_hdr (sub)->a_drsize))
1352 return false;
1353 }
1354 }
1355
1356 dynobj = sunos_hash_table (info)->dynobj;
1357 dynsymcount = sunos_hash_table (info)->dynsymcount;
1358
1359 /* If there were no dynamic objects in the link, and we don't need
1360 to build a global offset table, there is nothing to do here. */
1361 if (! sunos_hash_table (info)->dynamic_sections_needed
1362 && ! sunos_hash_table (info)->got_needed)
1363 return true;
1364
1365 /* If __GLOBAL_OFFSET_TABLE_ was mentioned, define it. */
1366 h = sunos_link_hash_lookup (sunos_hash_table (info),
1367 "__GLOBAL_OFFSET_TABLE_", false, false, false);
1368 if (h != NULL && (h->flags & SUNOS_REF_REGULAR) != 0)
1369 {
1370 h->flags |= SUNOS_DEF_REGULAR;
1371 if (h->dynindx == -1)
1372 {
1373 ++sunos_hash_table (info)->dynsymcount;
1374 h->dynindx = -2;
1375 }
1376 h->root.root.type = bfd_link_hash_defined;
1377 h->root.root.u.def.section = bfd_get_section_by_name (dynobj, ".got");
1378
1379 /* If the .got section is more than 0x1000 bytes, we set
1380 __GLOBAL_OFFSET_TABLE_ to be 0x1000 bytes into the section,
1381 so that 13 bit relocations have a greater chance of working. */
1382 s = bfd_get_section_by_name (dynobj, ".got");
1383 BFD_ASSERT (s != NULL);
1384 if (s->_raw_size >= 0x1000)
1385 h->root.root.u.def.value = 0x1000;
1386 else
1387 h->root.root.u.def.value = 0;
1388
1389 sunos_hash_table (info)->got_base = h->root.root.u.def.value;
1390 }
1391
1392 /* If there are any shared objects in the link, then we need to set
1393 up the dynamic linking information. */
1394 if (sunos_hash_table (info)->dynamic_sections_needed)
1395 {
1396 *sdynptr = bfd_get_section_by_name (dynobj, ".dynamic");
1397
1398 /* The .dynamic section is always the same size. */
1399 s = *sdynptr;
1400 BFD_ASSERT (s != NULL);
1401 s->_raw_size = (sizeof (struct external_sun4_dynamic)
1402 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE
1403 + sizeof (struct external_sun4_dynamic_link));
1404
1405 /* Set the size of the .dynsym and .hash sections. We counted
1406 the number of dynamic symbols as we read the input files. We
1407 will build the dynamic symbol table (.dynsym) and the hash
1408 table (.hash) when we build the final symbol table, because
1409 until then we do not know the correct value to give the
1410 symbols. We build the dynamic symbol string table (.dynstr)
1411 in a traversal of the symbol table using
1412 sunos_scan_dynamic_symbol. */
1413 s = bfd_get_section_by_name (dynobj, ".dynsym");
1414 BFD_ASSERT (s != NULL);
1415 s->_raw_size = dynsymcount * sizeof (struct external_nlist);
1416 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
1417 if (s->contents == NULL && s->_raw_size != 0)
1418 return false;
1419
1420 /* The number of buckets is just the number of symbols divided
1421 by four. To compute the final size of the hash table, we
1422 must actually compute the hash table. Normally we need
1423 exactly as many entries in the hash table as there are
1424 dynamic symbols, but if some of the buckets are not used we
1425 will need additional entries. In the worst case, every
1426 symbol will hash to the same bucket, and we will need
1427 BUCKETCOUNT - 1 extra entries. */
1428 if (dynsymcount >= 4)
1429 bucketcount = dynsymcount / 4;
1430 else if (dynsymcount > 0)
1431 bucketcount = dynsymcount;
1432 else
1433 bucketcount = 1;
1434 s = bfd_get_section_by_name (dynobj, ".hash");
1435 BFD_ASSERT (s != NULL);
1436 hashalloc = (dynsymcount + bucketcount - 1) * HASH_ENTRY_SIZE;
1437 s->contents = (bfd_byte *) bfd_zalloc (dynobj, hashalloc);
1438 if (s->contents == NULL && dynsymcount > 0)
1439 return false;
1440 for (i = 0; i < bucketcount; i++)
1441 PUT_WORD (output_bfd, (bfd_vma) -1, s->contents + i * HASH_ENTRY_SIZE);
1442 s->_raw_size = bucketcount * HASH_ENTRY_SIZE;
1443
1444 sunos_hash_table (info)->bucketcount = bucketcount;
1445
1446 /* Scan all the symbols, place them in the dynamic symbol table,
1447 and build the dynamic hash table. We reuse dynsymcount as a
1448 counter for the number of symbols we have added so far. */
1449 sunos_hash_table (info)->dynsymcount = 0;
1450 sunos_link_hash_traverse (sunos_hash_table (info),
1451 sunos_scan_dynamic_symbol,
1452 (PTR) info);
1453 BFD_ASSERT (sunos_hash_table (info)->dynsymcount == dynsymcount);
1454
1455 /* The SunOS native linker seems to align the total size of the
1456 symbol strings to a multiple of 8. I don't know if this is
1457 important, but it can't hurt much. */
1458 s = bfd_get_section_by_name (dynobj, ".dynstr");
1459 BFD_ASSERT (s != NULL);
1460 if ((s->_raw_size & 7) != 0)
1461 {
1462 bfd_size_type add;
1463 bfd_byte *contents;
1464
1465 add = 8 - (s->_raw_size & 7);
1466 contents = (bfd_byte *) bfd_realloc (s->contents,
1467 s->_raw_size + add);
1468 if (contents == NULL)
1469 return false;
1470 memset (contents + s->_raw_size, 0, (size_t) add);
1471 s->contents = contents;
1472 s->_raw_size += add;
1473 }
1474 }
1475
1476 /* Now that we have worked out the sizes of the procedure linkage
1477 table and the dynamic relocs, allocate storage for them. */
1478 s = bfd_get_section_by_name (dynobj, ".plt");
1479 BFD_ASSERT (s != NULL);
1480 if (s->_raw_size != 0)
1481 {
1482 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1483 if (s->contents == NULL)
1484 return false;
1485
1486 /* Fill in the first entry in the table. */
1487 switch (bfd_get_arch (dynobj))
1488 {
1489 case bfd_arch_sparc:
1490 memcpy (s->contents, sparc_plt_first_entry, SPARC_PLT_ENTRY_SIZE);
1491 break;
1492
1493 case bfd_arch_m68k:
1494 memcpy (s->contents, m68k_plt_first_entry, M68K_PLT_ENTRY_SIZE);
1495 break;
1496
1497 default:
1498 abort ();
1499 }
1500 }
1501
1502 s = bfd_get_section_by_name (dynobj, ".dynrel");
1503 if (s->_raw_size != 0)
1504 {
1505 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1506 if (s->contents == NULL)
1507 return false;
1508 }
1509 /* We use the reloc_count field to keep track of how many of the
1510 relocs we have output so far. */
1511 s->reloc_count = 0;
1512
1513 /* Make space for the global offset table. */
1514 s = bfd_get_section_by_name (dynobj, ".got");
1515 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1516 if (s->contents == NULL)
1517 return false;
1518
1519 *sneedptr = bfd_get_section_by_name (dynobj, ".need");
1520 *srulesptr = bfd_get_section_by_name (dynobj, ".rules");
1521
1522 return true;
1523 }
1524
1525 /* Scan the relocs for an input section. */
1526
1527 static boolean
1528 sunos_scan_relocs (info, abfd, sec, rel_size)
1529 struct bfd_link_info *info;
1530 bfd *abfd;
1531 asection *sec;
1532 bfd_size_type rel_size;
1533 {
1534 PTR relocs;
1535 PTR free_relocs = NULL;
1536
1537 if (rel_size == 0)
1538 return true;
1539
1540 if (! info->keep_memory)
1541 relocs = free_relocs = bfd_malloc (rel_size);
1542 else
1543 {
1544 struct aout_section_data_struct *n;
1545 bfd_size_type amt = sizeof (struct aout_section_data_struct);
1546
1547 n = (struct aout_section_data_struct *) bfd_alloc (abfd, amt);
1548 if (n == NULL)
1549 relocs = NULL;
1550 else
1551 {
1552 set_aout_section_data (sec, n);
1553 relocs = bfd_malloc (rel_size);
1554 aout_section_data (sec)->relocs = relocs;
1555 }
1556 }
1557 if (relocs == NULL)
1558 return false;
1559
1560 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
1561 || bfd_bread (relocs, rel_size, abfd) != rel_size)
1562 goto error_return;
1563
1564 if (obj_reloc_entry_size (abfd) == RELOC_STD_SIZE)
1565 {
1566 if (! sunos_scan_std_relocs (info, abfd, sec,
1567 (struct reloc_std_external *) relocs,
1568 rel_size))
1569 goto error_return;
1570 }
1571 else
1572 {
1573 if (! sunos_scan_ext_relocs (info, abfd, sec,
1574 (struct reloc_ext_external *) relocs,
1575 rel_size))
1576 goto error_return;
1577 }
1578
1579 if (free_relocs != NULL)
1580 free (free_relocs);
1581
1582 return true;
1583
1584 error_return:
1585 if (free_relocs != NULL)
1586 free (free_relocs);
1587 return false;
1588 }
1589
1590 /* Scan the relocs for an input section using standard relocs. We
1591 need to figure out what to do for each reloc against a dynamic
1592 symbol. If the symbol is in the .text section, an entry is made in
1593 the procedure linkage table. Note that this will do the wrong
1594 thing if the symbol is actually data; I don't think the Sun 3
1595 native linker handles this case correctly either. If the symbol is
1596 not in the .text section, we must preserve the reloc as a dynamic
1597 reloc. FIXME: We should also handle the PIC relocs here by
1598 building global offset table entries. */
1599
1600 static boolean
1601 sunos_scan_std_relocs (info, abfd, sec, relocs, rel_size)
1602 struct bfd_link_info *info;
1603 bfd *abfd;
1604 asection *sec ATTRIBUTE_UNUSED;
1605 const struct reloc_std_external *relocs;
1606 bfd_size_type rel_size;
1607 {
1608 bfd *dynobj;
1609 asection *splt = NULL;
1610 asection *srel = NULL;
1611 struct sunos_link_hash_entry **sym_hashes;
1612 const struct reloc_std_external *rel, *relend;
1613
1614 /* We only know how to handle m68k plt entries. */
1615 if (bfd_get_arch (abfd) != bfd_arch_m68k)
1616 {
1617 bfd_set_error (bfd_error_invalid_target);
1618 return false;
1619 }
1620
1621 dynobj = NULL;
1622
1623 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1624
1625 relend = relocs + rel_size / RELOC_STD_SIZE;
1626 for (rel = relocs; rel < relend; rel++)
1627 {
1628 int r_index;
1629 struct sunos_link_hash_entry *h;
1630
1631 /* We only want relocs against external symbols. */
1632 if (bfd_header_big_endian (abfd))
1633 {
1634 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG) == 0)
1635 continue;
1636 }
1637 else
1638 {
1639 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE) == 0)
1640 continue;
1641 }
1642
1643 /* Get the symbol index. */
1644 if (bfd_header_big_endian (abfd))
1645 r_index = ((rel->r_index[0] << 16)
1646 | (rel->r_index[1] << 8)
1647 | rel->r_index[2]);
1648 else
1649 r_index = ((rel->r_index[2] << 16)
1650 | (rel->r_index[1] << 8)
1651 | rel->r_index[0]);
1652
1653 /* Get the hash table entry. */
1654 h = sym_hashes[r_index];
1655 if (h == NULL)
1656 {
1657 /* This should not normally happen, but it will in any case
1658 be caught in the relocation phase. */
1659 continue;
1660 }
1661
1662 /* At this point common symbols have already been allocated, so
1663 we don't have to worry about them. We need to consider that
1664 we may have already seen this symbol and marked it undefined;
1665 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1666 will be zero. */
1667 if (h->root.root.type != bfd_link_hash_defined
1668 && h->root.root.type != bfd_link_hash_defweak
1669 && h->root.root.type != bfd_link_hash_undefined)
1670 continue;
1671
1672 if ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1673 || (h->flags & SUNOS_DEF_REGULAR) != 0)
1674 continue;
1675
1676 if (dynobj == NULL)
1677 {
1678 asection *sgot;
1679
1680 if (! sunos_create_dynamic_sections (abfd, info, false))
1681 return false;
1682 dynobj = sunos_hash_table (info)->dynobj;
1683 splt = bfd_get_section_by_name (dynobj, ".plt");
1684 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1685 BFD_ASSERT (splt != NULL && srel != NULL);
1686
1687 sgot = bfd_get_section_by_name (dynobj, ".got");
1688 BFD_ASSERT (sgot != NULL);
1689 if (sgot->_raw_size == 0)
1690 sgot->_raw_size = BYTES_IN_WORD;
1691 sunos_hash_table (info)->got_needed = true;
1692 }
1693
1694 BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0);
1695 BFD_ASSERT (h->plt_offset != 0
1696 || ((h->root.root.type == bfd_link_hash_defined
1697 || h->root.root.type == bfd_link_hash_defweak)
1698 ? (h->root.root.u.def.section->owner->flags
1699 & DYNAMIC) != 0
1700 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
1701
1702 /* This reloc is against a symbol defined only by a dynamic
1703 object. */
1704
1705 if (h->root.root.type == bfd_link_hash_undefined)
1706 {
1707 /* Presumably this symbol was marked as being undefined by
1708 an earlier reloc. */
1709 srel->_raw_size += RELOC_STD_SIZE;
1710 }
1711 else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0)
1712 {
1713 bfd *sub;
1714
1715 /* This reloc is not in the .text section. It must be
1716 copied into the dynamic relocs. We mark the symbol as
1717 being undefined. */
1718 srel->_raw_size += RELOC_STD_SIZE;
1719 sub = h->root.root.u.def.section->owner;
1720 h->root.root.type = bfd_link_hash_undefined;
1721 h->root.root.u.undef.abfd = sub;
1722 }
1723 else
1724 {
1725 /* This symbol is in the .text section. We must give it an
1726 entry in the procedure linkage table, if we have not
1727 already done so. We change the definition of the symbol
1728 to the .plt section; this will cause relocs against it to
1729 be handled correctly. */
1730 if (h->plt_offset == 0)
1731 {
1732 if (splt->_raw_size == 0)
1733 splt->_raw_size = M68K_PLT_ENTRY_SIZE;
1734 h->plt_offset = splt->_raw_size;
1735
1736 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1737 {
1738 h->root.root.u.def.section = splt;
1739 h->root.root.u.def.value = splt->_raw_size;
1740 }
1741
1742 splt->_raw_size += M68K_PLT_ENTRY_SIZE;
1743
1744 /* We may also need a dynamic reloc entry. */
1745 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1746 srel->_raw_size += RELOC_STD_SIZE;
1747 }
1748 }
1749 }
1750
1751 return true;
1752 }
1753
1754 /* Scan the relocs for an input section using extended relocs. We
1755 need to figure out what to do for each reloc against a dynamic
1756 symbol. If the reloc is a WDISP30, and the symbol is in the .text
1757 section, an entry is made in the procedure linkage table.
1758 Otherwise, we must preserve the reloc as a dynamic reloc. */
1759
1760 static boolean
1761 sunos_scan_ext_relocs (info, abfd, sec, relocs, rel_size)
1762 struct bfd_link_info *info;
1763 bfd *abfd;
1764 asection *sec ATTRIBUTE_UNUSED;
1765 const struct reloc_ext_external *relocs;
1766 bfd_size_type rel_size;
1767 {
1768 bfd *dynobj;
1769 struct sunos_link_hash_entry **sym_hashes;
1770 const struct reloc_ext_external *rel, *relend;
1771 asection *splt = NULL;
1772 asection *sgot = NULL;
1773 asection *srel = NULL;
1774 bfd_size_type amt;
1775
1776 /* We only know how to handle SPARC plt entries. */
1777 if (bfd_get_arch (abfd) != bfd_arch_sparc)
1778 {
1779 bfd_set_error (bfd_error_invalid_target);
1780 return false;
1781 }
1782
1783 dynobj = NULL;
1784
1785 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1786
1787 relend = relocs + rel_size / RELOC_EXT_SIZE;
1788 for (rel = relocs; rel < relend; rel++)
1789 {
1790 unsigned int r_index;
1791 int r_extern;
1792 int r_type;
1793 struct sunos_link_hash_entry *h = NULL;
1794
1795 /* Swap in the reloc information. */
1796 if (bfd_header_big_endian (abfd))
1797 {
1798 r_index = ((rel->r_index[0] << 16)
1799 | (rel->r_index[1] << 8)
1800 | rel->r_index[2]);
1801 r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
1802 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
1803 >> RELOC_EXT_BITS_TYPE_SH_BIG);
1804 }
1805 else
1806 {
1807 r_index = ((rel->r_index[2] << 16)
1808 | (rel->r_index[1] << 8)
1809 | rel->r_index[0]);
1810 r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
1811 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
1812 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
1813 }
1814
1815 if (r_extern)
1816 {
1817 h = sym_hashes[r_index];
1818 if (h == NULL)
1819 {
1820 /* This should not normally happen, but it will in any
1821 case be caught in the relocation phase. */
1822 continue;
1823 }
1824 }
1825
1826 /* If this is a base relative reloc, we need to make an entry in
1827 the .got section. */
1828 if (r_type == RELOC_BASE10
1829 || r_type == RELOC_BASE13
1830 || r_type == RELOC_BASE22)
1831 {
1832 if (dynobj == NULL)
1833 {
1834 if (! sunos_create_dynamic_sections (abfd, info, false))
1835 return false;
1836 dynobj = sunos_hash_table (info)->dynobj;
1837 splt = bfd_get_section_by_name (dynobj, ".plt");
1838 sgot = bfd_get_section_by_name (dynobj, ".got");
1839 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1840 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1841
1842 /* Make sure we have an initial entry in the .got table. */
1843 if (sgot->_raw_size == 0)
1844 sgot->_raw_size = BYTES_IN_WORD;
1845 sunos_hash_table (info)->got_needed = true;
1846 }
1847
1848 if (r_extern)
1849 {
1850 if (h->got_offset != 0)
1851 continue;
1852
1853 h->got_offset = sgot->_raw_size;
1854 }
1855 else
1856 {
1857 if (r_index >= bfd_get_symcount (abfd))
1858 {
1859 /* This is abnormal, but should be caught in the
1860 relocation phase. */
1861 continue;
1862 }
1863
1864 if (adata (abfd).local_got_offsets == NULL)
1865 {
1866 amt = bfd_get_symcount (abfd);
1867 amt *= sizeof (bfd_vma);
1868 adata (abfd).local_got_offsets =
1869 (bfd_vma *) bfd_zalloc (abfd, amt);
1870 if (adata (abfd).local_got_offsets == NULL)
1871 return false;
1872 }
1873
1874 if (adata (abfd).local_got_offsets[r_index] != 0)
1875 continue;
1876
1877 adata (abfd).local_got_offsets[r_index] = sgot->_raw_size;
1878 }
1879
1880 sgot->_raw_size += BYTES_IN_WORD;
1881
1882 /* If we are making a shared library, or if the symbol is
1883 defined by a dynamic object, we will need a dynamic reloc
1884 entry. */
1885 if (info->shared
1886 || (h != NULL
1887 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1888 && (h->flags & SUNOS_DEF_REGULAR) == 0))
1889 srel->_raw_size += RELOC_EXT_SIZE;
1890
1891 continue;
1892 }
1893
1894 /* Otherwise, we are only interested in relocs against symbols
1895 defined in dynamic objects but not in regular objects. We
1896 only need to consider relocs against external symbols. */
1897 if (! r_extern)
1898 {
1899 /* But, if we are creating a shared library, we need to
1900 generate an absolute reloc. */
1901 if (info->shared)
1902 {
1903 if (dynobj == NULL)
1904 {
1905 if (! sunos_create_dynamic_sections (abfd, info, true))
1906 return false;
1907 dynobj = sunos_hash_table (info)->dynobj;
1908 splt = bfd_get_section_by_name (dynobj, ".plt");
1909 sgot = bfd_get_section_by_name (dynobj, ".got");
1910 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1911 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1912 }
1913
1914 srel->_raw_size += RELOC_EXT_SIZE;
1915 }
1916
1917 continue;
1918 }
1919
1920 /* At this point common symbols have already been allocated, so
1921 we don't have to worry about them. We need to consider that
1922 we may have already seen this symbol and marked it undefined;
1923 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1924 will be zero. */
1925 if (h->root.root.type != bfd_link_hash_defined
1926 && h->root.root.type != bfd_link_hash_defweak
1927 && h->root.root.type != bfd_link_hash_undefined)
1928 continue;
1929
1930 if (r_type != RELOC_JMP_TBL
1931 && ! info->shared
1932 && ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1933 || (h->flags & SUNOS_DEF_REGULAR) != 0))
1934 continue;
1935
1936 if (r_type == RELOC_JMP_TBL
1937 && ! info->shared
1938 && (h->flags & SUNOS_DEF_DYNAMIC) == 0
1939 && (h->flags & SUNOS_DEF_REGULAR) == 0)
1940 {
1941 /* This symbol is apparently undefined. Don't do anything
1942 here; just let the relocation routine report an undefined
1943 symbol. */
1944 continue;
1945 }
1946
1947 if (strcmp (h->root.root.root.string, "__GLOBAL_OFFSET_TABLE_") == 0)
1948 continue;
1949
1950 if (dynobj == NULL)
1951 {
1952 if (! sunos_create_dynamic_sections (abfd, info, false))
1953 return false;
1954 dynobj = sunos_hash_table (info)->dynobj;
1955 splt = bfd_get_section_by_name (dynobj, ".plt");
1956 sgot = bfd_get_section_by_name (dynobj, ".got");
1957 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1958 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1959
1960 /* Make sure we have an initial entry in the .got table. */
1961 if (sgot->_raw_size == 0)
1962 sgot->_raw_size = BYTES_IN_WORD;
1963 sunos_hash_table (info)->got_needed = true;
1964 }
1965
1966 BFD_ASSERT (r_type == RELOC_JMP_TBL
1967 || info->shared
1968 || (h->flags & SUNOS_REF_REGULAR) != 0);
1969 BFD_ASSERT (r_type == RELOC_JMP_TBL
1970 || info->shared
1971 || h->plt_offset != 0
1972 || ((h->root.root.type == bfd_link_hash_defined
1973 || h->root.root.type == bfd_link_hash_defweak)
1974 ? (h->root.root.u.def.section->owner->flags
1975 & DYNAMIC) != 0
1976 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
1977
1978 /* This reloc is against a symbol defined only by a dynamic
1979 object, or it is a jump table reloc from PIC compiled code. */
1980
1981 if (r_type != RELOC_JMP_TBL
1982 && h->root.root.type == bfd_link_hash_undefined)
1983 {
1984 /* Presumably this symbol was marked as being undefined by
1985 an earlier reloc. */
1986 srel->_raw_size += RELOC_EXT_SIZE;
1987 }
1988 else if (r_type != RELOC_JMP_TBL
1989 && (h->root.root.u.def.section->flags & SEC_CODE) == 0)
1990 {
1991 bfd *sub;
1992
1993 /* This reloc is not in the .text section. It must be
1994 copied into the dynamic relocs. We mark the symbol as
1995 being undefined. */
1996 srel->_raw_size += RELOC_EXT_SIZE;
1997 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1998 {
1999 sub = h->root.root.u.def.section->owner;
2000 h->root.root.type = bfd_link_hash_undefined;
2001 h->root.root.u.undef.abfd = sub;
2002 }
2003 }
2004 else
2005 {
2006 /* This symbol is in the .text section. We must give it an
2007 entry in the procedure linkage table, if we have not
2008 already done so. We change the definition of the symbol
2009 to the .plt section; this will cause relocs against it to
2010 be handled correctly. */
2011 if (h->plt_offset == 0)
2012 {
2013 if (splt->_raw_size == 0)
2014 splt->_raw_size = SPARC_PLT_ENTRY_SIZE;
2015 h->plt_offset = splt->_raw_size;
2016
2017 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
2018 {
2019 if (h->root.root.type == bfd_link_hash_undefined)
2020 h->root.root.type = bfd_link_hash_defined;
2021 h->root.root.u.def.section = splt;
2022 h->root.root.u.def.value = splt->_raw_size;
2023 }
2024
2025 splt->_raw_size += SPARC_PLT_ENTRY_SIZE;
2026
2027 /* We will also need a dynamic reloc entry, unless this
2028 is a JMP_TBL reloc produced by linking PIC compiled
2029 code, and we are not making a shared library. */
2030 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
2031 srel->_raw_size += RELOC_EXT_SIZE;
2032 }
2033
2034 /* If we are creating a shared library, we need to copy over
2035 any reloc other than a jump table reloc. */
2036 if (info->shared && r_type != RELOC_JMP_TBL)
2037 srel->_raw_size += RELOC_EXT_SIZE;
2038 }
2039 }
2040
2041 return true;
2042 }
2043
2044 /* Build the hash table of dynamic symbols, and to mark as written all
2045 symbols from dynamic objects which we do not plan to write out. */
2046
2047 static boolean
2048 sunos_scan_dynamic_symbol (h, data)
2049 struct sunos_link_hash_entry *h;
2050 PTR data;
2051 {
2052 struct bfd_link_info *info = (struct bfd_link_info *) data;
2053
2054 if (h->root.root.type == bfd_link_hash_warning)
2055 h = (struct sunos_link_hash_entry *) h->root.root.u.i.link;
2056
2057 /* Set the written flag for symbols we do not want to write out as
2058 part of the regular symbol table. This is all symbols which are
2059 not defined in a regular object file. For some reason symbols
2060 which are referenced by a regular object and defined by a dynamic
2061 object do not seem to show up in the regular symbol table. It is
2062 possible for a symbol to have only SUNOS_REF_REGULAR set here, it
2063 is an undefined symbol which was turned into a common symbol
2064 because it was found in an archive object which was not included
2065 in the link. */
2066 if ((h->flags & SUNOS_DEF_REGULAR) == 0
2067 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
2068 && strcmp (h->root.root.root.string, "__DYNAMIC") != 0)
2069 h->root.written = true;
2070
2071 /* If this symbol is defined by a dynamic object and referenced by a
2072 regular object, see whether we gave it a reasonable value while
2073 scanning the relocs. */
2074
2075 if ((h->flags & SUNOS_DEF_REGULAR) == 0
2076 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
2077 && (h->flags & SUNOS_REF_REGULAR) != 0)
2078 {
2079 if ((h->root.root.type == bfd_link_hash_defined
2080 || h->root.root.type == bfd_link_hash_defweak)
2081 && ((h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
2082 && h->root.root.u.def.section->output_section == NULL)
2083 {
2084 bfd *sub;
2085
2086 /* This symbol is currently defined in a dynamic section
2087 which is not being put into the output file. This
2088 implies that there is no reloc against the symbol. I'm
2089 not sure why this case would ever occur. In any case, we
2090 change the symbol to be undefined. */
2091 sub = h->root.root.u.def.section->owner;
2092 h->root.root.type = bfd_link_hash_undefined;
2093 h->root.root.u.undef.abfd = sub;
2094 }
2095 }
2096
2097 /* If this symbol is defined or referenced by a regular file, add it
2098 to the dynamic symbols. */
2099 if ((h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
2100 {
2101 asection *s;
2102 size_t len;
2103 bfd_byte *contents;
2104 unsigned char *name;
2105 unsigned long hash;
2106 bfd *dynobj;
2107
2108 BFD_ASSERT (h->dynindx == -2);
2109
2110 dynobj = sunos_hash_table (info)->dynobj;
2111
2112 h->dynindx = sunos_hash_table (info)->dynsymcount;
2113 ++sunos_hash_table (info)->dynsymcount;
2114
2115 len = strlen (h->root.root.root.string);
2116
2117 /* We don't bother to construct a BFD hash table for the strings
2118 which are the names of the dynamic symbols. Using a hash
2119 table for the regular symbols is beneficial, because the
2120 regular symbols includes the debugging symbols, which have
2121 long names and are often duplicated in several object files.
2122 There are no debugging symbols in the dynamic symbols. */
2123 s = bfd_get_section_by_name (dynobj, ".dynstr");
2124 BFD_ASSERT (s != NULL);
2125 contents = (bfd_byte *) bfd_realloc (s->contents,
2126 s->_raw_size + len + 1);
2127 if (contents == NULL)
2128 return false;
2129 s->contents = contents;
2130
2131 h->dynstr_index = s->_raw_size;
2132 strcpy ((char *) contents + s->_raw_size, h->root.root.root.string);
2133 s->_raw_size += len + 1;
2134
2135 /* Add it to the dynamic hash table. */
2136 name = (unsigned char *) h->root.root.root.string;
2137 hash = 0;
2138 while (*name != '\0')
2139 hash = (hash << 1) + *name++;
2140 hash &= 0x7fffffff;
2141 hash %= sunos_hash_table (info)->bucketcount;
2142
2143 s = bfd_get_section_by_name (dynobj, ".hash");
2144 BFD_ASSERT (s != NULL);
2145
2146 if (GET_SWORD (dynobj, s->contents + hash * HASH_ENTRY_SIZE) == -1)
2147 PUT_WORD (dynobj, h->dynindx, s->contents + hash * HASH_ENTRY_SIZE);
2148 else
2149 {
2150 bfd_vma next;
2151
2152 next = GET_WORD (dynobj,
2153 (s->contents
2154 + hash * HASH_ENTRY_SIZE
2155 + BYTES_IN_WORD));
2156 PUT_WORD (dynobj, s->_raw_size / HASH_ENTRY_SIZE,
2157 s->contents + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
2158 PUT_WORD (dynobj, h->dynindx, s->contents + s->_raw_size);
2159 PUT_WORD (dynobj, next, s->contents + s->_raw_size + BYTES_IN_WORD);
2160 s->_raw_size += HASH_ENTRY_SIZE;
2161 }
2162 }
2163
2164 return true;
2165 }
2166
2167 /* Link a dynamic object. We actually don't have anything to do at
2168 this point. This entry point exists to prevent the regular linker
2169 code from doing anything with the object. */
2170
2171 /*ARGSUSED*/
2172 static boolean
2173 sunos_link_dynamic_object (info, abfd)
2174 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2175 bfd *abfd ATTRIBUTE_UNUSED;
2176 {
2177 return true;
2178 }
2179
2180 /* Write out a dynamic symbol. This is called by the final traversal
2181 over the symbol table. */
2182
2183 static boolean
2184 sunos_write_dynamic_symbol (output_bfd, info, harg)
2185 bfd *output_bfd;
2186 struct bfd_link_info *info;
2187 struct aout_link_hash_entry *harg;
2188 {
2189 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
2190 int type;
2191 bfd_vma val;
2192 asection *s;
2193 struct external_nlist *outsym;
2194
2195 /* If this symbol is in the procedure linkage table, fill in the
2196 table entry. */
2197 if (h->plt_offset != 0)
2198 {
2199 bfd *dynobj;
2200 asection *splt;
2201 bfd_byte *p;
2202 bfd_vma r_address;
2203
2204 dynobj = sunos_hash_table (info)->dynobj;
2205 splt = bfd_get_section_by_name (dynobj, ".plt");
2206 p = splt->contents + h->plt_offset;
2207
2208 s = bfd_get_section_by_name (dynobj, ".dynrel");
2209
2210 r_address = (splt->output_section->vma
2211 + splt->output_offset
2212 + h->plt_offset);
2213
2214 switch (bfd_get_arch (output_bfd))
2215 {
2216 case bfd_arch_sparc:
2217 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
2218 {
2219 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD0, p);
2220 bfd_put_32 (output_bfd,
2221 (SPARC_PLT_ENTRY_WORD1
2222 + (((- (h->plt_offset + 4) >> 2)
2223 & 0x3fffffff))),
2224 p + 4);
2225 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD2 + s->reloc_count,
2226 p + 8);
2227 }
2228 else
2229 {
2230 val = (h->root.root.u.def.section->output_section->vma
2231 + h->root.root.u.def.section->output_offset
2232 + h->root.root.u.def.value);
2233 bfd_put_32 (output_bfd,
2234 SPARC_PLT_PIC_WORD0 + ((val >> 10) & 0x3fffff),
2235 p);
2236 bfd_put_32 (output_bfd,
2237 SPARC_PLT_PIC_WORD1 + (val & 0x3ff),
2238 p + 4);
2239 bfd_put_32 (output_bfd, SPARC_PLT_PIC_WORD2, p + 8);
2240 }
2241 break;
2242
2243 case bfd_arch_m68k:
2244 if (! info->shared && (h->flags & SUNOS_DEF_REGULAR) != 0)
2245 abort ();
2246 bfd_put_16 (output_bfd, M68K_PLT_ENTRY_WORD0, p);
2247 bfd_put_32 (output_bfd, (- (h->plt_offset + 2)), p + 2);
2248 bfd_put_16 (output_bfd, (bfd_vma) s->reloc_count, p + 6);
2249 r_address += 2;
2250 break;
2251
2252 default:
2253 abort ();
2254 }
2255
2256 /* We also need to add a jump table reloc, unless this is the
2257 result of a JMP_TBL reloc from PIC compiled code. */
2258 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
2259 {
2260 BFD_ASSERT (h->dynindx >= 0);
2261 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
2262 < s->_raw_size);
2263 p = s->contents + s->reloc_count * obj_reloc_entry_size (output_bfd);
2264 if (obj_reloc_entry_size (output_bfd) == RELOC_STD_SIZE)
2265 {
2266 struct reloc_std_external *srel;
2267
2268 srel = (struct reloc_std_external *) p;
2269 PUT_WORD (output_bfd, r_address, srel->r_address);
2270 if (bfd_header_big_endian (output_bfd))
2271 {
2272 srel->r_index[0] = (bfd_byte) (h->dynindx >> 16);
2273 srel->r_index[1] = (bfd_byte) (h->dynindx >> 8);
2274 srel->r_index[2] = (bfd_byte) (h->dynindx);
2275 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_BIG
2276 | RELOC_STD_BITS_JMPTABLE_BIG);
2277 }
2278 else
2279 {
2280 srel->r_index[2] = (bfd_byte) (h->dynindx >> 16);
2281 srel->r_index[1] = (bfd_byte) (h->dynindx >> 8);
2282 srel->r_index[0] = (bfd_byte)h->dynindx;
2283 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_LITTLE
2284 | RELOC_STD_BITS_JMPTABLE_LITTLE);
2285 }
2286 }
2287 else
2288 {
2289 struct reloc_ext_external *erel;
2290
2291 erel = (struct reloc_ext_external *) p;
2292 PUT_WORD (output_bfd, r_address, erel->r_address);
2293 if (bfd_header_big_endian (output_bfd))
2294 {
2295 erel->r_index[0] = (bfd_byte) (h->dynindx >> 16);
2296 erel->r_index[1] = (bfd_byte) (h->dynindx >> 8);
2297 erel->r_index[2] = (bfd_byte)h->dynindx;
2298 erel->r_type[0] =
2299 (RELOC_EXT_BITS_EXTERN_BIG
2300 | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_BIG));
2301 }
2302 else
2303 {
2304 erel->r_index[2] = (bfd_byte) (h->dynindx >> 16);
2305 erel->r_index[1] = (bfd_byte) (h->dynindx >> 8);
2306 erel->r_index[0] = (bfd_byte)h->dynindx;
2307 erel->r_type[0] =
2308 (RELOC_EXT_BITS_EXTERN_LITTLE
2309 | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_LITTLE));
2310 }
2311 PUT_WORD (output_bfd, (bfd_vma) 0, erel->r_addend);
2312 }
2313
2314 ++s->reloc_count;
2315 }
2316 }
2317
2318 /* If this is not a dynamic symbol, we don't have to do anything
2319 else. We only check this after handling the PLT entry, because
2320 we can have a PLT entry for a nondynamic symbol when linking PIC
2321 compiled code from a regular object. */
2322 if (h->dynindx < 0)
2323 return true;
2324
2325 switch (h->root.root.type)
2326 {
2327 default:
2328 case bfd_link_hash_new:
2329 abort ();
2330 /* Avoid variable not initialized warnings. */
2331 return true;
2332 case bfd_link_hash_undefined:
2333 type = N_UNDF | N_EXT;
2334 val = 0;
2335 break;
2336 case bfd_link_hash_defined:
2337 case bfd_link_hash_defweak:
2338 {
2339 asection *sec;
2340 asection *output_section;
2341
2342 sec = h->root.root.u.def.section;
2343 output_section = sec->output_section;
2344 BFD_ASSERT (bfd_is_abs_section (output_section)
2345 || output_section->owner == output_bfd);
2346 if (h->plt_offset != 0
2347 && (h->flags & SUNOS_DEF_REGULAR) == 0)
2348 {
2349 type = N_UNDF | N_EXT;
2350 val = 0;
2351 }
2352 else
2353 {
2354 if (output_section == obj_textsec (output_bfd))
2355 type = (h->root.root.type == bfd_link_hash_defined
2356 ? N_TEXT
2357 : N_WEAKT);
2358 else if (output_section == obj_datasec (output_bfd))
2359 type = (h->root.root.type == bfd_link_hash_defined
2360 ? N_DATA
2361 : N_WEAKD);
2362 else if (output_section == obj_bsssec (output_bfd))
2363 type = (h->root.root.type == bfd_link_hash_defined
2364 ? N_BSS
2365 : N_WEAKB);
2366 else
2367 type = (h->root.root.type == bfd_link_hash_defined
2368 ? N_ABS
2369 : N_WEAKA);
2370 type |= N_EXT;
2371 val = (h->root.root.u.def.value
2372 + output_section->vma
2373 + sec->output_offset);
2374 }
2375 }
2376 break;
2377 case bfd_link_hash_common:
2378 type = N_UNDF | N_EXT;
2379 val = h->root.root.u.c.size;
2380 break;
2381 case bfd_link_hash_undefweak:
2382 type = N_WEAKU;
2383 val = 0;
2384 break;
2385 case bfd_link_hash_indirect:
2386 case bfd_link_hash_warning:
2387 /* FIXME: Ignore these for now. The circumstances under which
2388 they should be written out are not clear to me. */
2389 return true;
2390 }
2391
2392 s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynsym");
2393 BFD_ASSERT (s != NULL);
2394 outsym = ((struct external_nlist *)
2395 (s->contents + h->dynindx * EXTERNAL_NLIST_SIZE));
2396
2397 H_PUT_8 (output_bfd, type, outsym->e_type);
2398 H_PUT_8 (output_bfd, 0, outsym->e_other);
2399
2400 /* FIXME: The native linker doesn't use 0 for desc. It seems to use
2401 one less than the desc value in the shared library, although that
2402 seems unlikely. */
2403 H_PUT_16 (output_bfd, 0, outsym->e_desc);
2404
2405 PUT_WORD (output_bfd, h->dynstr_index, outsym->e_strx);
2406 PUT_WORD (output_bfd, val, outsym->e_value);
2407
2408 return true;
2409 }
2410
2411 /* This is called for each reloc against an external symbol. If this
2412 is a reloc which are are going to copy as a dynamic reloc, then
2413 copy it over, and tell the caller to not bother processing this
2414 reloc. */
2415
2416 /*ARGSUSED*/
2417 static boolean
2418 sunos_check_dynamic_reloc (info, input_bfd, input_section, harg, reloc,
2419 contents, skip, relocationp)
2420 struct bfd_link_info *info;
2421 bfd *input_bfd;
2422 asection *input_section;
2423 struct aout_link_hash_entry *harg;
2424 PTR reloc;
2425 bfd_byte *contents ATTRIBUTE_UNUSED;
2426 boolean *skip;
2427 bfd_vma *relocationp;
2428 {
2429 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
2430 bfd *dynobj;
2431 boolean baserel;
2432 boolean jmptbl;
2433 boolean pcrel;
2434 asection *s;
2435 bfd_byte *p;
2436 long indx;
2437
2438 *skip = false;
2439
2440 dynobj = sunos_hash_table (info)->dynobj;
2441
2442 if (h != NULL
2443 && h->plt_offset != 0
2444 && (info->shared
2445 || (h->flags & SUNOS_DEF_REGULAR) == 0))
2446 {
2447 asection *splt;
2448
2449 /* Redirect the relocation to the PLT entry. */
2450 splt = bfd_get_section_by_name (dynobj, ".plt");
2451 *relocationp = (splt->output_section->vma
2452 + splt->output_offset
2453 + h->plt_offset);
2454 }
2455
2456 if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
2457 {
2458 struct reloc_std_external *srel;
2459
2460 srel = (struct reloc_std_external *) reloc;
2461 if (bfd_header_big_endian (input_bfd))
2462 {
2463 baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
2464 jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
2465 pcrel = (0 != (srel->r_type[0] & RELOC_STD_BITS_PCREL_BIG));
2466 }
2467 else
2468 {
2469 baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
2470 jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE));
2471 pcrel = (0 != (srel->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE));
2472 }
2473 }
2474 else
2475 {
2476 struct reloc_ext_external *erel;
2477 int r_type;
2478
2479 erel = (struct reloc_ext_external *) reloc;
2480 if (bfd_header_big_endian (input_bfd))
2481 r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
2482 >> RELOC_EXT_BITS_TYPE_SH_BIG);
2483 else
2484 r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
2485 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
2486 baserel = (r_type == RELOC_BASE10
2487 || r_type == RELOC_BASE13
2488 || r_type == RELOC_BASE22);
2489 jmptbl = r_type == RELOC_JMP_TBL;
2490 pcrel = (r_type == RELOC_DISP8
2491 || r_type == RELOC_DISP16
2492 || r_type == RELOC_DISP32
2493 || r_type == RELOC_WDISP30
2494 || r_type == RELOC_WDISP22);
2495 /* We don't consider the PC10 and PC22 types to be PC relative,
2496 because they are pcrel_offset. */
2497 }
2498
2499 if (baserel)
2500 {
2501 bfd_vma *got_offsetp;
2502 asection *sgot;
2503
2504 if (h != NULL)
2505 got_offsetp = &h->got_offset;
2506 else if (adata (input_bfd).local_got_offsets == NULL)
2507 got_offsetp = NULL;
2508 else
2509 {
2510 struct reloc_std_external *srel;
2511 int r_index;
2512
2513 srel = (struct reloc_std_external *) reloc;
2514 if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
2515 {
2516 if (bfd_header_big_endian (input_bfd))
2517 r_index = ((srel->r_index[0] << 16)
2518 | (srel->r_index[1] << 8)
2519 | srel->r_index[2]);
2520 else
2521 r_index = ((srel->r_index[2] << 16)
2522 | (srel->r_index[1] << 8)
2523 | srel->r_index[0]);
2524 }
2525 else
2526 {
2527 struct reloc_ext_external *erel;
2528
2529 erel = (struct reloc_ext_external *) reloc;
2530 if (bfd_header_big_endian (input_bfd))
2531 r_index = ((erel->r_index[0] << 16)
2532 | (erel->r_index[1] << 8)
2533 | erel->r_index[2]);
2534 else
2535 r_index = ((erel->r_index[2] << 16)
2536 | (erel->r_index[1] << 8)
2537 | erel->r_index[0]);
2538 }
2539
2540 got_offsetp = adata (input_bfd).local_got_offsets + r_index;
2541 }
2542
2543 BFD_ASSERT (got_offsetp != NULL && *got_offsetp != 0);
2544
2545 sgot = bfd_get_section_by_name (dynobj, ".got");
2546
2547 /* We set the least significant bit to indicate whether we have
2548 already initialized the GOT entry. */
2549 if ((*got_offsetp & 1) == 0)
2550 {
2551 if (h == NULL
2552 || (! info->shared
2553 && ((h->flags & SUNOS_DEF_DYNAMIC) == 0
2554 || (h->flags & SUNOS_DEF_REGULAR) != 0)))
2555 PUT_WORD (dynobj, *relocationp, sgot->contents + *got_offsetp);
2556 else
2557 PUT_WORD (dynobj, 0, sgot->contents + *got_offsetp);
2558
2559 if (info->shared
2560 || (h != NULL
2561 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
2562 && (h->flags & SUNOS_DEF_REGULAR) == 0))
2563 {
2564 /* We need to create a GLOB_DAT or 32 reloc to tell the
2565 dynamic linker to fill in this entry in the table. */
2566
2567 s = bfd_get_section_by_name (dynobj, ".dynrel");
2568 BFD_ASSERT (s != NULL);
2569 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
2570 < s->_raw_size);
2571
2572 p = (s->contents
2573 + s->reloc_count * obj_reloc_entry_size (dynobj));
2574
2575 if (h != NULL)
2576 indx = h->dynindx;
2577 else
2578 indx = 0;
2579
2580 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
2581 {
2582 struct reloc_std_external *srel;
2583
2584 srel = (struct reloc_std_external *) p;
2585 PUT_WORD (dynobj,
2586 (*got_offsetp
2587 + sgot->output_section->vma
2588 + sgot->output_offset),
2589 srel->r_address);
2590 if (bfd_header_big_endian (dynobj))
2591 {
2592 srel->r_index[0] = (bfd_byte) (indx >> 16);
2593 srel->r_index[1] = (bfd_byte) (indx >> 8);
2594 srel->r_index[2] = (bfd_byte)indx;
2595 if (h == NULL)
2596 srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_BIG;
2597 else
2598 srel->r_type[0] =
2599 (RELOC_STD_BITS_EXTERN_BIG
2600 | RELOC_STD_BITS_BASEREL_BIG
2601 | RELOC_STD_BITS_RELATIVE_BIG
2602 | (2 << RELOC_STD_BITS_LENGTH_SH_BIG));
2603 }
2604 else
2605 {
2606 srel->r_index[2] = (bfd_byte) (indx >> 16);
2607 srel->r_index[1] = (bfd_byte) (indx >> 8);
2608 srel->r_index[0] = (bfd_byte)indx;
2609 if (h == NULL)
2610 srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_LITTLE;
2611 else
2612 srel->r_type[0] =
2613 (RELOC_STD_BITS_EXTERN_LITTLE
2614 | RELOC_STD_BITS_BASEREL_LITTLE
2615 | RELOC_STD_BITS_RELATIVE_LITTLE
2616 | (2 << RELOC_STD_BITS_LENGTH_SH_LITTLE));
2617 }
2618 }
2619 else
2620 {
2621 struct reloc_ext_external *erel;
2622
2623 erel = (struct reloc_ext_external *) p;
2624 PUT_WORD (dynobj,
2625 (*got_offsetp
2626 + sgot->output_section->vma
2627 + sgot->output_offset),
2628 erel->r_address);
2629 if (bfd_header_big_endian (dynobj))
2630 {
2631 erel->r_index[0] = (bfd_byte) (indx >> 16);
2632 erel->r_index[1] = (bfd_byte) (indx >> 8);
2633 erel->r_index[2] = (bfd_byte)indx;
2634 if (h == NULL)
2635 erel->r_type[0] =
2636 RELOC_32 << RELOC_EXT_BITS_TYPE_SH_BIG;
2637 else
2638 erel->r_type[0] =
2639 (RELOC_EXT_BITS_EXTERN_BIG
2640 | (RELOC_GLOB_DAT << RELOC_EXT_BITS_TYPE_SH_BIG));
2641 }
2642 else
2643 {
2644 erel->r_index[2] = (bfd_byte) (indx >> 16);
2645 erel->r_index[1] = (bfd_byte) (indx >> 8);
2646 erel->r_index[0] = (bfd_byte)indx;
2647 if (h == NULL)
2648 erel->r_type[0] =
2649 RELOC_32 << RELOC_EXT_BITS_TYPE_SH_LITTLE;
2650 else
2651 erel->r_type[0] =
2652 (RELOC_EXT_BITS_EXTERN_LITTLE
2653 | (RELOC_GLOB_DAT
2654 << RELOC_EXT_BITS_TYPE_SH_LITTLE));
2655 }
2656 PUT_WORD (dynobj, 0, erel->r_addend);
2657 }
2658
2659 ++s->reloc_count;
2660 }
2661
2662 *got_offsetp |= 1;
2663 }
2664
2665 *relocationp = (sgot->vma
2666 + (*got_offsetp &~ (bfd_vma) 1)
2667 - sunos_hash_table (info)->got_base);
2668
2669 /* There is nothing else to do for a base relative reloc. */
2670 return true;
2671 }
2672
2673 if (! sunos_hash_table (info)->dynamic_sections_needed)
2674 return true;
2675 if (! info->shared)
2676 {
2677 if (h == NULL
2678 || h->dynindx == -1
2679 || h->root.root.type != bfd_link_hash_undefined
2680 || (h->flags & SUNOS_DEF_REGULAR) != 0
2681 || (h->flags & SUNOS_DEF_DYNAMIC) == 0
2682 || (h->root.root.u.undef.abfd->flags & DYNAMIC) == 0)
2683 return true;
2684 }
2685 else
2686 {
2687 if (h != NULL
2688 && (h->dynindx == -1
2689 || jmptbl
2690 || strcmp (h->root.root.root.string,
2691 "__GLOBAL_OFFSET_TABLE_") == 0))
2692 return true;
2693 }
2694
2695 /* It looks like this is a reloc we are supposed to copy. */
2696
2697 s = bfd_get_section_by_name (dynobj, ".dynrel");
2698 BFD_ASSERT (s != NULL);
2699 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) < s->_raw_size);
2700
2701 p = s->contents + s->reloc_count * obj_reloc_entry_size (dynobj);
2702
2703 /* Copy the reloc over. */
2704 memcpy (p, reloc, obj_reloc_entry_size (dynobj));
2705
2706 if (h != NULL)
2707 indx = h->dynindx;
2708 else
2709 indx = 0;
2710
2711 /* Adjust the address and symbol index. */
2712 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
2713 {
2714 struct reloc_std_external *srel;
2715
2716 srel = (struct reloc_std_external *) p;
2717 PUT_WORD (dynobj,
2718 (GET_WORD (dynobj, srel->r_address)
2719 + input_section->output_section->vma
2720 + input_section->output_offset),
2721 srel->r_address);
2722 if (bfd_header_big_endian (dynobj))
2723 {
2724 srel->r_index[0] = (bfd_byte) (indx >> 16);
2725 srel->r_index[1] = (bfd_byte) (indx >> 8);
2726 srel->r_index[2] = (bfd_byte)indx;
2727 }
2728 else
2729 {
2730 srel->r_index[2] = (bfd_byte) (indx >> 16);
2731 srel->r_index[1] = (bfd_byte) (indx >> 8);
2732 srel->r_index[0] = (bfd_byte)indx;
2733 }
2734 /* FIXME: We may have to change the addend for a PC relative
2735 reloc. */
2736 }
2737 else
2738 {
2739 struct reloc_ext_external *erel;
2740
2741 erel = (struct reloc_ext_external *) p;
2742 PUT_WORD (dynobj,
2743 (GET_WORD (dynobj, erel->r_address)
2744 + input_section->output_section->vma
2745 + input_section->output_offset),
2746 erel->r_address);
2747 if (bfd_header_big_endian (dynobj))
2748 {
2749 erel->r_index[0] = (bfd_byte) (indx >> 16);
2750 erel->r_index[1] = (bfd_byte) (indx >> 8);
2751 erel->r_index[2] = (bfd_byte)indx;
2752 }
2753 else
2754 {
2755 erel->r_index[2] = (bfd_byte) (indx >> 16);
2756 erel->r_index[1] = (bfd_byte) (indx >> 8);
2757 erel->r_index[0] = (bfd_byte)indx;
2758 }
2759 if (pcrel && h != NULL)
2760 {
2761 /* Adjust the addend for the change in address. */
2762 PUT_WORD (dynobj,
2763 (GET_WORD (dynobj, erel->r_addend)
2764 - (input_section->output_section->vma
2765 + input_section->output_offset
2766 - input_section->vma)),
2767 erel->r_addend);
2768 }
2769 }
2770
2771 ++s->reloc_count;
2772
2773 if (h != NULL)
2774 *skip = true;
2775
2776 return true;
2777 }
2778
2779 /* Finish up the dynamic linking information. */
2780
2781 static boolean
2782 sunos_finish_dynamic_link (abfd, info)
2783 bfd *abfd;
2784 struct bfd_link_info *info;
2785 {
2786 bfd *dynobj;
2787 asection *o;
2788 asection *s;
2789 asection *sdyn;
2790
2791 if (! sunos_hash_table (info)->dynamic_sections_needed
2792 && ! sunos_hash_table (info)->got_needed)
2793 return true;
2794
2795 dynobj = sunos_hash_table (info)->dynobj;
2796
2797 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2798 BFD_ASSERT (sdyn != NULL);
2799
2800 /* Finish up the .need section. The linker emulation code filled it
2801 in, but with offsets from the start of the section instead of
2802 real addresses. Now that we know the section location, we can
2803 fill in the final values. */
2804 s = bfd_get_section_by_name (dynobj, ".need");
2805 if (s != NULL && s->_raw_size != 0)
2806 {
2807 file_ptr filepos;
2808 bfd_byte *p;
2809
2810 filepos = s->output_section->filepos + s->output_offset;
2811 p = s->contents;
2812 while (1)
2813 {
2814 bfd_vma val;
2815
2816 PUT_WORD (dynobj, GET_WORD (dynobj, p) + filepos, p);
2817 val = GET_WORD (dynobj, p + 12);
2818 if (val == 0)
2819 break;
2820 PUT_WORD (dynobj, val + filepos, p + 12);
2821 p += 16;
2822 }
2823 }
2824
2825 /* The first entry in the .got section is the address of the
2826 dynamic information, unless this is a shared library. */
2827 s = bfd_get_section_by_name (dynobj, ".got");
2828 BFD_ASSERT (s != NULL);
2829 if (info->shared || sdyn->_raw_size == 0)
2830 PUT_WORD (dynobj, 0, s->contents);
2831 else
2832 PUT_WORD (dynobj, sdyn->output_section->vma + sdyn->output_offset,
2833 s->contents);
2834
2835 for (o = dynobj->sections; o != NULL; o = o->next)
2836 {
2837 if ((o->flags & SEC_HAS_CONTENTS) != 0
2838 && o->contents != NULL)
2839 {
2840 BFD_ASSERT (o->output_section != NULL
2841 && o->output_section->owner == abfd);
2842 if (! bfd_set_section_contents (abfd, o->output_section,
2843 o->contents,
2844 (file_ptr) o->output_offset,
2845 o->_raw_size))
2846 return false;
2847 }
2848 }
2849
2850 if (sdyn->_raw_size > 0)
2851 {
2852 struct external_sun4_dynamic esd;
2853 struct external_sun4_dynamic_link esdl;
2854 file_ptr pos;
2855
2856 /* Finish up the dynamic link information. */
2857 PUT_WORD (dynobj, (bfd_vma) 3, esd.ld_version);
2858 PUT_WORD (dynobj,
2859 sdyn->output_section->vma + sdyn->output_offset + sizeof esd,
2860 esd.ldd);
2861 PUT_WORD (dynobj,
2862 (sdyn->output_section->vma
2863 + sdyn->output_offset
2864 + sizeof esd
2865 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
2866 esd.ld);
2867
2868 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esd,
2869 (file_ptr) sdyn->output_offset,
2870 (bfd_size_type) sizeof esd))
2871 return false;
2872
2873 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_loaded);
2874
2875 s = bfd_get_section_by_name (dynobj, ".need");
2876 if (s == NULL || s->_raw_size == 0)
2877 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_need);
2878 else
2879 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2880 esdl.ld_need);
2881
2882 s = bfd_get_section_by_name (dynobj, ".rules");
2883 if (s == NULL || s->_raw_size == 0)
2884 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_rules);
2885 else
2886 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2887 esdl.ld_rules);
2888
2889 s = bfd_get_section_by_name (dynobj, ".got");
2890 BFD_ASSERT (s != NULL);
2891 PUT_WORD (dynobj, s->output_section->vma + s->output_offset,
2892 esdl.ld_got);
2893
2894 s = bfd_get_section_by_name (dynobj, ".plt");
2895 BFD_ASSERT (s != NULL);
2896 PUT_WORD (dynobj, s->output_section->vma + s->output_offset,
2897 esdl.ld_plt);
2898 PUT_WORD (dynobj, s->_raw_size, esdl.ld_plt_sz);
2899
2900 s = bfd_get_section_by_name (dynobj, ".dynrel");
2901 BFD_ASSERT (s != NULL);
2902 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
2903 == s->_raw_size);
2904 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2905 esdl.ld_rel);
2906
2907 s = bfd_get_section_by_name (dynobj, ".hash");
2908 BFD_ASSERT (s != NULL);
2909 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2910 esdl.ld_hash);
2911
2912 s = bfd_get_section_by_name (dynobj, ".dynsym");
2913 BFD_ASSERT (s != NULL);
2914 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2915 esdl.ld_stab);
2916
2917 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_stab_hash);
2918
2919 PUT_WORD (dynobj, (bfd_vma) sunos_hash_table (info)->bucketcount,
2920 esdl.ld_buckets);
2921
2922 s = bfd_get_section_by_name (dynobj, ".dynstr");
2923 BFD_ASSERT (s != NULL);
2924 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2925 esdl.ld_symbols);
2926 PUT_WORD (dynobj, s->_raw_size, esdl.ld_symb_size);
2927
2928 /* The size of the text area is the size of the .text section
2929 rounded up to a page boundary. FIXME: Should the page size be
2930 conditional on something? */
2931 PUT_WORD (dynobj,
2932 BFD_ALIGN (obj_textsec (abfd)->_raw_size, 0x2000),
2933 esdl.ld_text);
2934
2935 pos = sdyn->output_offset;
2936 pos += sizeof esd + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE;
2937 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esdl,
2938 pos, (bfd_size_type) sizeof esdl))
2939 return false;
2940
2941 abfd->flags |= DYNAMIC;
2942 }
2943
2944 return true;
2945 }
This page took 0.089404 seconds and 4 git commands to generate.