* stabs.c (_bfd_link_section_stabs): Use bfd_make_section*_with_flags
[deliverable/binutils-gdb.git] / bfd / sunos.c
1 /* BFD backend for SunOS binaries.
2 Copyright 1990, 1991, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 Written by Cygnus Support.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #define TARGETNAME "a.out-sunos-big"
23
24 /* Do not "beautify" the CONCAT* macro args. Traditional C will not
25 remove whitespace added here, and thus will fail to concatenate
26 the tokens. */
27 #define MY(OP) CONCAT2 (sunos_big_,OP)
28
29 #include "bfd.h"
30 #include "bfdlink.h"
31 #include "libaout.h"
32
33 /* ??? Where should this go? */
34 #define MACHTYPE_OK(mtype) \
35 (((mtype) == M_SPARC && bfd_lookup_arch (bfd_arch_sparc, 0) != NULL) \
36 || ((mtype) == M_SPARCLET \
37 && bfd_lookup_arch (bfd_arch_sparc, bfd_mach_sparc_sparclet) != NULL) \
38 || ((mtype) == M_SPARCLITE_LE \
39 && bfd_lookup_arch (bfd_arch_sparc, bfd_mach_sparc_sparclet) != NULL) \
40 || (((mtype) == M_UNKNOWN || (mtype) == M_68010 || (mtype) == M_68020) \
41 && bfd_lookup_arch (bfd_arch_m68k, 0) != NULL))
42
43 #define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound
44 #define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab
45 #define MY_get_synthetic_symtab _bfd_nodynamic_get_synthetic_symtab
46 #define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound
47 #define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc
48 #define MY_bfd_link_hash_table_create sunos_link_hash_table_create
49 #define MY_add_dynamic_symbols sunos_add_dynamic_symbols
50 #define MY_add_one_symbol sunos_add_one_symbol
51 #define MY_link_dynamic_object sunos_link_dynamic_object
52 #define MY_write_dynamic_symbol sunos_write_dynamic_symbol
53 #define MY_check_dynamic_reloc sunos_check_dynamic_reloc
54 #define MY_finish_dynamic_link sunos_finish_dynamic_link
55
56 static bfd_boolean sunos_add_dynamic_symbols (bfd *, struct bfd_link_info *, struct external_nlist **, bfd_size_type *, char **);
57 static bfd_boolean sunos_add_one_symbol (struct bfd_link_info *, bfd *, const char *, flagword, asection *, bfd_vma, const char *, bfd_boolean, bfd_boolean, struct bfd_link_hash_entry **);
58 static bfd_boolean sunos_link_dynamic_object (struct bfd_link_info *, bfd *);
59 static bfd_boolean sunos_write_dynamic_symbol (bfd *, struct bfd_link_info *, struct aout_link_hash_entry *);
60 static bfd_boolean sunos_check_dynamic_reloc (struct bfd_link_info *, bfd *, asection *, struct aout_link_hash_entry *, void *, bfd_byte *, bfd_boolean *, bfd_vma *);
61 static bfd_boolean sunos_finish_dynamic_link (bfd *, struct bfd_link_info *);
62 static struct bfd_link_hash_table *sunos_link_hash_table_create (bfd *);
63 static long sunos_get_dynamic_symtab_upper_bound (bfd *);
64 static long sunos_canonicalize_dynamic_symtab (bfd *, asymbol **);
65 static long sunos_get_dynamic_reloc_upper_bound (bfd *);
66 static long sunos_canonicalize_dynamic_reloc (bfd *, arelent **, asymbol **);
67
68 /* Include the usual a.out support. */
69 #include "aoutf1.h"
70
71 /* The SunOS 4.1.4 /usr/include/locale.h defines valid as a macro. */
72 #undef valid
73
74 /* SunOS shared library support. We store a pointer to this structure
75 in obj_aout_dynamic_info (abfd). */
76
77 struct sunos_dynamic_info
78 {
79 /* Whether we found any dynamic information. */
80 bfd_boolean valid;
81 /* Dynamic information. */
82 struct internal_sun4_dynamic_link dyninfo;
83 /* Number of dynamic symbols. */
84 unsigned long dynsym_count;
85 /* Read in nlists for dynamic symbols. */
86 struct external_nlist *dynsym;
87 /* asymbol structures for dynamic symbols. */
88 aout_symbol_type *canonical_dynsym;
89 /* Read in dynamic string table. */
90 char *dynstr;
91 /* Number of dynamic relocs. */
92 unsigned long dynrel_count;
93 /* Read in dynamic relocs. This may be reloc_std_external or
94 reloc_ext_external. */
95 void * dynrel;
96 /* arelent structures for dynamic relocs. */
97 arelent *canonical_dynrel;
98 };
99
100 /* The hash table of dynamic symbols is composed of two word entries.
101 See include/aout/sun4.h for details. */
102
103 #define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD)
104
105 /* Read in the basic dynamic information. This locates the __DYNAMIC
106 structure and uses it to find the dynamic_link structure. It
107 creates and saves a sunos_dynamic_info structure. If it can't find
108 __DYNAMIC, it sets the valid field of the sunos_dynamic_info
109 structure to FALSE to avoid doing this work again. */
110
111 static bfd_boolean
112 sunos_read_dynamic_info (bfd *abfd)
113 {
114 struct sunos_dynamic_info *info;
115 asection *dynsec;
116 bfd_vma dynoff;
117 struct external_sun4_dynamic dyninfo;
118 unsigned long dynver;
119 struct external_sun4_dynamic_link linkinfo;
120 bfd_size_type amt;
121
122 if (obj_aout_dynamic_info (abfd) != NULL)
123 return TRUE;
124
125 if ((abfd->flags & DYNAMIC) == 0)
126 {
127 bfd_set_error (bfd_error_invalid_operation);
128 return FALSE;
129 }
130
131 amt = sizeof (struct sunos_dynamic_info);
132 info = bfd_zalloc (abfd, amt);
133 if (!info)
134 return FALSE;
135 info->valid = FALSE;
136 info->dynsym = NULL;
137 info->dynstr = NULL;
138 info->canonical_dynsym = NULL;
139 info->dynrel = NULL;
140 info->canonical_dynrel = NULL;
141 obj_aout_dynamic_info (abfd) = (void *) info;
142
143 /* This code used to look for the __DYNAMIC symbol to locate the dynamic
144 linking information.
145 However this inhibits recovering the dynamic symbols from a
146 stripped object file, so blindly assume that the dynamic linking
147 information is located at the start of the data section.
148 We could verify this assumption later by looking through the dynamic
149 symbols for the __DYNAMIC symbol. */
150 if ((abfd->flags & DYNAMIC) == 0)
151 return TRUE;
152 if (! bfd_get_section_contents (abfd, obj_datasec (abfd), (void *) &dyninfo,
153 (file_ptr) 0,
154 (bfd_size_type) sizeof dyninfo))
155 return TRUE;
156
157 dynver = GET_WORD (abfd, dyninfo.ld_version);
158 if (dynver != 2 && dynver != 3)
159 return TRUE;
160
161 dynoff = GET_WORD (abfd, dyninfo.ld);
162
163 /* dynoff is a virtual address. It is probably always in the .data
164 section, but this code should work even if it moves. */
165 if (dynoff < bfd_get_section_vma (abfd, obj_datasec (abfd)))
166 dynsec = obj_textsec (abfd);
167 else
168 dynsec = obj_datasec (abfd);
169 dynoff -= bfd_get_section_vma (abfd, dynsec);
170 if (dynoff > dynsec->size)
171 return TRUE;
172
173 /* This executable appears to be dynamically linked in a way that we
174 can understand. */
175 if (! bfd_get_section_contents (abfd, dynsec, (void *) &linkinfo,
176 (file_ptr) dynoff,
177 (bfd_size_type) sizeof linkinfo))
178 return TRUE;
179
180 /* Swap in the dynamic link information. */
181 info->dyninfo.ld_loaded = GET_WORD (abfd, linkinfo.ld_loaded);
182 info->dyninfo.ld_need = GET_WORD (abfd, linkinfo.ld_need);
183 info->dyninfo.ld_rules = GET_WORD (abfd, linkinfo.ld_rules);
184 info->dyninfo.ld_got = GET_WORD (abfd, linkinfo.ld_got);
185 info->dyninfo.ld_plt = GET_WORD (abfd, linkinfo.ld_plt);
186 info->dyninfo.ld_rel = GET_WORD (abfd, linkinfo.ld_rel);
187 info->dyninfo.ld_hash = GET_WORD (abfd, linkinfo.ld_hash);
188 info->dyninfo.ld_stab = GET_WORD (abfd, linkinfo.ld_stab);
189 info->dyninfo.ld_stab_hash = GET_WORD (abfd, linkinfo.ld_stab_hash);
190 info->dyninfo.ld_buckets = GET_WORD (abfd, linkinfo.ld_buckets);
191 info->dyninfo.ld_symbols = GET_WORD (abfd, linkinfo.ld_symbols);
192 info->dyninfo.ld_symb_size = GET_WORD (abfd, linkinfo.ld_symb_size);
193 info->dyninfo.ld_text = GET_WORD (abfd, linkinfo.ld_text);
194 info->dyninfo.ld_plt_sz = GET_WORD (abfd, linkinfo.ld_plt_sz);
195
196 /* Reportedly the addresses need to be offset by the size of the
197 exec header in an NMAGIC file. */
198 if (adata (abfd).magic == n_magic)
199 {
200 unsigned long exec_bytes_size = adata (abfd).exec_bytes_size;
201
202 info->dyninfo.ld_need += exec_bytes_size;
203 info->dyninfo.ld_rules += exec_bytes_size;
204 info->dyninfo.ld_rel += exec_bytes_size;
205 info->dyninfo.ld_hash += exec_bytes_size;
206 info->dyninfo.ld_stab += exec_bytes_size;
207 info->dyninfo.ld_symbols += exec_bytes_size;
208 }
209
210 /* The only way to get the size of the symbol information appears to
211 be to determine the distance between it and the string table. */
212 info->dynsym_count = ((info->dyninfo.ld_symbols - info->dyninfo.ld_stab)
213 / EXTERNAL_NLIST_SIZE);
214 BFD_ASSERT (info->dynsym_count * EXTERNAL_NLIST_SIZE
215 == (unsigned long) (info->dyninfo.ld_symbols
216 - info->dyninfo.ld_stab));
217
218 /* Similarly, the relocs end at the hash table. */
219 info->dynrel_count = ((info->dyninfo.ld_hash - info->dyninfo.ld_rel)
220 / obj_reloc_entry_size (abfd));
221 BFD_ASSERT (info->dynrel_count * obj_reloc_entry_size (abfd)
222 == (unsigned long) (info->dyninfo.ld_hash
223 - info->dyninfo.ld_rel));
224
225 info->valid = TRUE;
226
227 return TRUE;
228 }
229
230 /* Return the amount of memory required for the dynamic symbols. */
231
232 static long
233 sunos_get_dynamic_symtab_upper_bound (bfd *abfd)
234 {
235 struct sunos_dynamic_info *info;
236
237 if (! sunos_read_dynamic_info (abfd))
238 return -1;
239
240 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
241 if (! info->valid)
242 {
243 bfd_set_error (bfd_error_no_symbols);
244 return -1;
245 }
246
247 return (info->dynsym_count + 1) * sizeof (asymbol *);
248 }
249
250 /* Read the external dynamic symbols. */
251
252 static bfd_boolean
253 sunos_slurp_dynamic_symtab (bfd *abfd)
254 {
255 struct sunos_dynamic_info *info;
256 bfd_size_type amt;
257
258 /* Get the general dynamic information. */
259 if (obj_aout_dynamic_info (abfd) == NULL)
260 {
261 if (! sunos_read_dynamic_info (abfd))
262 return FALSE;
263 }
264
265 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
266 if (! info->valid)
267 {
268 bfd_set_error (bfd_error_no_symbols);
269 return FALSE;
270 }
271
272 /* Get the dynamic nlist structures. */
273 if (info->dynsym == NULL)
274 {
275 amt = (bfd_size_type) info->dynsym_count * EXTERNAL_NLIST_SIZE;
276 info->dynsym = bfd_alloc (abfd, amt);
277 if (info->dynsym == NULL && info->dynsym_count != 0)
278 return FALSE;
279 if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_stab, SEEK_SET) != 0
280 || bfd_bread ((void *) info->dynsym, amt, abfd) != amt)
281 {
282 if (info->dynsym != NULL)
283 {
284 bfd_release (abfd, info->dynsym);
285 info->dynsym = NULL;
286 }
287 return FALSE;
288 }
289 }
290
291 /* Get the dynamic strings. */
292 if (info->dynstr == NULL)
293 {
294 amt = info->dyninfo.ld_symb_size;
295 info->dynstr = bfd_alloc (abfd, amt);
296 if (info->dynstr == NULL && info->dyninfo.ld_symb_size != 0)
297 return FALSE;
298 if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_symbols, SEEK_SET) != 0
299 || bfd_bread ((void *) info->dynstr, amt, abfd) != amt)
300 {
301 if (info->dynstr != NULL)
302 {
303 bfd_release (abfd, info->dynstr);
304 info->dynstr = NULL;
305 }
306 return FALSE;
307 }
308 }
309
310 return TRUE;
311 }
312
313 /* Read in the dynamic symbols. */
314
315 static long
316 sunos_canonicalize_dynamic_symtab (bfd *abfd, asymbol **storage)
317 {
318 struct sunos_dynamic_info *info;
319 unsigned long i;
320
321 if (! sunos_slurp_dynamic_symtab (abfd))
322 return -1;
323
324 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
325
326 #ifdef CHECK_DYNAMIC_HASH
327 /* Check my understanding of the dynamic hash table by making sure
328 that each symbol can be located in the hash table. */
329 {
330 bfd_size_type table_size;
331 bfd_byte *table;
332 bfd_size_type i;
333
334 if (info->dyninfo.ld_buckets > info->dynsym_count)
335 abort ();
336 table_size = info->dyninfo.ld_stab - info->dyninfo.ld_hash;
337 table = bfd_malloc (table_size);
338 if (table == NULL && table_size != 0)
339 abort ();
340 if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_hash, SEEK_SET) != 0
341 || bfd_bread ((void *) table, table_size, abfd) != table_size)
342 abort ();
343 for (i = 0; i < info->dynsym_count; i++)
344 {
345 unsigned char *name;
346 unsigned long hash;
347
348 name = ((unsigned char *) info->dynstr
349 + GET_WORD (abfd, info->dynsym[i].e_strx));
350 hash = 0;
351 while (*name != '\0')
352 hash = (hash << 1) + *name++;
353 hash &= 0x7fffffff;
354 hash %= info->dyninfo.ld_buckets;
355 while (GET_WORD (abfd, table + hash * HASH_ENTRY_SIZE) != i)
356 {
357 hash = GET_WORD (abfd,
358 table + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
359 if (hash == 0 || hash >= table_size / HASH_ENTRY_SIZE)
360 abort ();
361 }
362 }
363 free (table);
364 }
365 #endif /* CHECK_DYNAMIC_HASH */
366
367 /* Get the asymbol structures corresponding to the dynamic nlist
368 structures. */
369 if (info->canonical_dynsym == NULL)
370 {
371 bfd_size_type size;
372 bfd_size_type strsize = info->dyninfo.ld_symb_size;
373
374 size = (bfd_size_type) info->dynsym_count * sizeof (aout_symbol_type);
375 info->canonical_dynsym = bfd_alloc (abfd, size);
376 if (info->canonical_dynsym == NULL && info->dynsym_count != 0)
377 return -1;
378
379 if (! aout_32_translate_symbol_table (abfd, info->canonical_dynsym,
380 info->dynsym,
381 (bfd_size_type) info->dynsym_count,
382 info->dynstr, strsize, TRUE))
383 {
384 if (info->canonical_dynsym != NULL)
385 {
386 bfd_release (abfd, info->canonical_dynsym);
387 info->canonical_dynsym = NULL;
388 }
389 return -1;
390 }
391 }
392
393 /* Return pointers to the dynamic asymbol structures. */
394 for (i = 0; i < info->dynsym_count; i++)
395 *storage++ = (asymbol *) (info->canonical_dynsym + i);
396 *storage = NULL;
397
398 return info->dynsym_count;
399 }
400
401 /* Return the amount of memory required for the dynamic relocs. */
402
403 static long
404 sunos_get_dynamic_reloc_upper_bound (bfd *abfd)
405 {
406 struct sunos_dynamic_info *info;
407
408 if (! sunos_read_dynamic_info (abfd))
409 return -1;
410
411 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
412 if (! info->valid)
413 {
414 bfd_set_error (bfd_error_no_symbols);
415 return -1;
416 }
417
418 return (info->dynrel_count + 1) * sizeof (arelent *);
419 }
420
421 /* Read in the dynamic relocs. */
422
423 static long
424 sunos_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage, asymbol **syms)
425 {
426 struct sunos_dynamic_info *info;
427 unsigned long i;
428 bfd_size_type size;
429
430 /* Get the general dynamic information. */
431 if (obj_aout_dynamic_info (abfd) == NULL)
432 {
433 if (! sunos_read_dynamic_info (abfd))
434 return -1;
435 }
436
437 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
438 if (! info->valid)
439 {
440 bfd_set_error (bfd_error_no_symbols);
441 return -1;
442 }
443
444 /* Get the dynamic reloc information. */
445 if (info->dynrel == NULL)
446 {
447 size = (bfd_size_type) info->dynrel_count * obj_reloc_entry_size (abfd);
448 info->dynrel = bfd_alloc (abfd, size);
449 if (info->dynrel == NULL && size != 0)
450 return -1;
451 if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_rel, SEEK_SET) != 0
452 || bfd_bread ((void *) info->dynrel, size, abfd) != size)
453 {
454 if (info->dynrel != NULL)
455 {
456 bfd_release (abfd, info->dynrel);
457 info->dynrel = NULL;
458 }
459 return -1;
460 }
461 }
462
463 /* Get the arelent structures corresponding to the dynamic reloc
464 information. */
465 if (info->canonical_dynrel == NULL)
466 {
467 arelent *to;
468
469 size = (bfd_size_type) info->dynrel_count * sizeof (arelent);
470 info->canonical_dynrel = bfd_alloc (abfd, size);
471 if (info->canonical_dynrel == NULL && info->dynrel_count != 0)
472 return -1;
473
474 to = info->canonical_dynrel;
475
476 if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE)
477 {
478 struct reloc_ext_external *p;
479 struct reloc_ext_external *pend;
480
481 p = (struct reloc_ext_external *) info->dynrel;
482 pend = p + info->dynrel_count;
483 for (; p < pend; p++, to++)
484 NAME (aout, swap_ext_reloc_in) (abfd, p, to, syms,
485 (bfd_size_type) info->dynsym_count);
486 }
487 else
488 {
489 struct reloc_std_external *p;
490 struct reloc_std_external *pend;
491
492 p = (struct reloc_std_external *) info->dynrel;
493 pend = p + info->dynrel_count;
494 for (; p < pend; p++, to++)
495 NAME (aout, swap_std_reloc_in) (abfd, p, to, syms,
496 (bfd_size_type) info->dynsym_count);
497 }
498 }
499
500 /* Return pointers to the dynamic arelent structures. */
501 for (i = 0; i < info->dynrel_count; i++)
502 *storage++ = info->canonical_dynrel + i;
503 *storage = NULL;
504
505 return info->dynrel_count;
506 }
507 \f
508 /* Code to handle linking of SunOS shared libraries. */
509
510 /* A SPARC procedure linkage table entry is 12 bytes. The first entry
511 in the table is a jump which is filled in by the runtime linker.
512 The remaining entries are branches back to the first entry,
513 followed by an index into the relocation table encoded to look like
514 a sethi of %g0. */
515
516 #define SPARC_PLT_ENTRY_SIZE (12)
517
518 static const bfd_byte sparc_plt_first_entry[SPARC_PLT_ENTRY_SIZE] =
519 {
520 /* sethi %hi(0),%g1; address filled in by runtime linker. */
521 0x3, 0, 0, 0,
522 /* jmp %g1; offset filled in by runtime linker. */
523 0x81, 0xc0, 0x60, 0,
524 /* nop */
525 0x1, 0, 0, 0
526 };
527
528 /* save %sp, -96, %sp */
529 #define SPARC_PLT_ENTRY_WORD0 ((bfd_vma) 0x9de3bfa0)
530 /* call; address filled in later. */
531 #define SPARC_PLT_ENTRY_WORD1 ((bfd_vma) 0x40000000)
532 /* sethi; reloc index filled in later. */
533 #define SPARC_PLT_ENTRY_WORD2 ((bfd_vma) 0x01000000)
534
535 /* This sequence is used when for the jump table entry to a defined
536 symbol in a complete executable. It is used when linking PIC
537 compiled code which is not being put into a shared library. */
538 /* sethi <address to be filled in later>, %g1 */
539 #define SPARC_PLT_PIC_WORD0 ((bfd_vma) 0x03000000)
540 /* jmp %g1 + <address to be filled in later> */
541 #define SPARC_PLT_PIC_WORD1 ((bfd_vma) 0x81c06000)
542 /* nop */
543 #define SPARC_PLT_PIC_WORD2 ((bfd_vma) 0x01000000)
544
545 /* An m68k procedure linkage table entry is 8 bytes. The first entry
546 in the table is a jump which is filled in the by the runtime
547 linker. The remaining entries are branches back to the first
548 entry, followed by a two byte index into the relocation table. */
549
550 #define M68K_PLT_ENTRY_SIZE (8)
551
552 static const bfd_byte m68k_plt_first_entry[M68K_PLT_ENTRY_SIZE] =
553 {
554 /* jmps @# */
555 0x4e, 0xf9,
556 /* Filled in by runtime linker with a magic address. */
557 0, 0, 0, 0,
558 /* Not used? */
559 0, 0
560 };
561
562 /* bsrl */
563 #define M68K_PLT_ENTRY_WORD0 ((bfd_vma) 0x61ff)
564 /* Remaining words filled in later. */
565
566 /* An entry in the SunOS linker hash table. */
567
568 struct sunos_link_hash_entry
569 {
570 struct aout_link_hash_entry root;
571
572 /* If this is a dynamic symbol, this is its index into the dynamic
573 symbol table. This is initialized to -1. As the linker looks at
574 the input files, it changes this to -2 if it will be added to the
575 dynamic symbol table. After all the input files have been seen,
576 the linker will know whether to build a dynamic symbol table; if
577 it does build one, this becomes the index into the table. */
578 long dynindx;
579
580 /* If this is a dynamic symbol, this is the index of the name in the
581 dynamic symbol string table. */
582 long dynstr_index;
583
584 /* The offset into the global offset table used for this symbol. If
585 the symbol does not require a GOT entry, this is 0. */
586 bfd_vma got_offset;
587
588 /* The offset into the procedure linkage table used for this symbol.
589 If the symbol does not require a PLT entry, this is 0. */
590 bfd_vma plt_offset;
591
592 /* Some linker flags. */
593 unsigned char flags;
594 /* Symbol is referenced by a regular object. */
595 #define SUNOS_REF_REGULAR 01
596 /* Symbol is defined by a regular object. */
597 #define SUNOS_DEF_REGULAR 02
598 /* Symbol is referenced by a dynamic object. */
599 #define SUNOS_REF_DYNAMIC 04
600 /* Symbol is defined by a dynamic object. */
601 #define SUNOS_DEF_DYNAMIC 010
602 /* Symbol is a constructor symbol in a regular object. */
603 #define SUNOS_CONSTRUCTOR 020
604 };
605
606 /* The SunOS linker hash table. */
607
608 struct sunos_link_hash_table
609 {
610 struct aout_link_hash_table root;
611
612 /* The object which holds the dynamic sections. */
613 bfd *dynobj;
614
615 /* Whether we have created the dynamic sections. */
616 bfd_boolean dynamic_sections_created;
617
618 /* Whether we need the dynamic sections. */
619 bfd_boolean dynamic_sections_needed;
620
621 /* Whether we need the .got table. */
622 bfd_boolean got_needed;
623
624 /* The number of dynamic symbols. */
625 size_t dynsymcount;
626
627 /* The number of buckets in the hash table. */
628 size_t bucketcount;
629
630 /* The list of dynamic objects needed by dynamic objects included in
631 the link. */
632 struct bfd_link_needed_list *needed;
633
634 /* The offset of __GLOBAL_OFFSET_TABLE_ into the .got section. */
635 bfd_vma got_base;
636 };
637
638 /* Routine to create an entry in an SunOS link hash table. */
639
640 static struct bfd_hash_entry *
641 sunos_link_hash_newfunc (struct bfd_hash_entry *entry,
642 struct bfd_hash_table *table,
643 const char *string)
644 {
645 struct sunos_link_hash_entry *ret = (struct sunos_link_hash_entry *) entry;
646
647 /* Allocate the structure if it has not already been allocated by a
648 subclass. */
649 if (ret == NULL)
650 ret = bfd_hash_allocate (table, sizeof (* ret));
651 if (ret == NULL)
652 return NULL;
653
654 /* Call the allocation method of the superclass. */
655 ret = ((struct sunos_link_hash_entry *)
656 NAME (aout, link_hash_newfunc) ((struct bfd_hash_entry *) ret,
657 table, string));
658 if (ret != NULL)
659 {
660 /* Set local fields. */
661 ret->dynindx = -1;
662 ret->dynstr_index = -1;
663 ret->got_offset = 0;
664 ret->plt_offset = 0;
665 ret->flags = 0;
666 }
667
668 return (struct bfd_hash_entry *) ret;
669 }
670
671 /* Create a SunOS link hash table. */
672
673 static struct bfd_link_hash_table *
674 sunos_link_hash_table_create (bfd *abfd)
675 {
676 struct sunos_link_hash_table *ret;
677 bfd_size_type amt = sizeof (struct sunos_link_hash_table);
678
679 ret = bfd_malloc (amt);
680 if (ret == NULL)
681 return NULL;
682 if (!NAME (aout, link_hash_table_init) (&ret->root, abfd,
683 sunos_link_hash_newfunc,
684 sizeof (struct sunos_link_hash_entry)))
685 {
686 free (ret);
687 return NULL;
688 }
689
690 ret->dynobj = NULL;
691 ret->dynamic_sections_created = FALSE;
692 ret->dynamic_sections_needed = FALSE;
693 ret->got_needed = FALSE;
694 ret->dynsymcount = 0;
695 ret->bucketcount = 0;
696 ret->needed = NULL;
697 ret->got_base = 0;
698
699 return &ret->root.root;
700 }
701
702 /* Look up an entry in an SunOS link hash table. */
703
704 #define sunos_link_hash_lookup(table, string, create, copy, follow) \
705 ((struct sunos_link_hash_entry *) \
706 aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\
707 (follow)))
708
709 /* Traverse a SunOS link hash table. */
710
711 #define sunos_link_hash_traverse(table, func, info) \
712 (aout_link_hash_traverse \
713 (&(table)->root, \
714 (bfd_boolean (*) (struct aout_link_hash_entry *, void *)) (func), \
715 (info)))
716
717 /* Get the SunOS link hash table from the info structure. This is
718 just a cast. */
719
720 #define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash))
721
722 /* Create the dynamic sections needed if we are linking against a
723 dynamic object, or if we are linking PIC compiled code. ABFD is a
724 bfd we can attach the dynamic sections to. The linker script will
725 look for these special sections names and put them in the right
726 place in the output file. See include/aout/sun4.h for more details
727 of the dynamic linking information. */
728
729 static bfd_boolean
730 sunos_create_dynamic_sections (bfd *abfd,
731 struct bfd_link_info *info,
732 bfd_boolean needed)
733 {
734 asection *s;
735
736 if (! sunos_hash_table (info)->dynamic_sections_created)
737 {
738 flagword flags;
739
740 sunos_hash_table (info)->dynobj = abfd;
741
742 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
743 | SEC_LINKER_CREATED);
744
745 /* The .dynamic section holds the basic dynamic information: the
746 sun4_dynamic structure, the dynamic debugger information, and
747 the sun4_dynamic_link structure. */
748 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
749 if (s == NULL
750 || ! bfd_set_section_alignment (abfd, s, 2))
751 return FALSE;
752
753 /* The .got section holds the global offset table. The address
754 is put in the ld_got field. */
755 s = bfd_make_section_with_flags (abfd, ".got", flags);
756 if (s == NULL
757 || ! bfd_set_section_alignment (abfd, s, 2))
758 return FALSE;
759
760 /* The .plt section holds the procedure linkage table. The
761 address is put in the ld_plt field. */
762 s = bfd_make_section_with_flags (abfd, ".plt", flags | SEC_CODE);
763 if (s == NULL
764 || ! bfd_set_section_alignment (abfd, s, 2))
765 return FALSE;
766
767 /* The .dynrel section holds the dynamic relocs. The address is
768 put in the ld_rel field. */
769 s = bfd_make_section_with_flags (abfd, ".dynrel", flags | SEC_READONLY);
770 if (s == NULL
771 || ! bfd_set_section_alignment (abfd, s, 2))
772 return FALSE;
773
774 /* The .hash section holds the dynamic hash table. The address
775 is put in the ld_hash field. */
776 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
777 if (s == NULL
778 || ! bfd_set_section_alignment (abfd, s, 2))
779 return FALSE;
780
781 /* The .dynsym section holds the dynamic symbols. The address
782 is put in the ld_stab field. */
783 s = bfd_make_section_with_flags (abfd, ".dynsym", flags | SEC_READONLY);
784 if (s == NULL
785 || ! bfd_set_section_alignment (abfd, s, 2))
786 return FALSE;
787
788 /* The .dynstr section holds the dynamic symbol string table.
789 The address is put in the ld_symbols field. */
790 s = bfd_make_section_with_flags (abfd, ".dynstr", flags | SEC_READONLY);
791 if (s == NULL
792 || ! bfd_set_section_alignment (abfd, s, 2))
793 return FALSE;
794
795 sunos_hash_table (info)->dynamic_sections_created = TRUE;
796 }
797
798 if ((needed && ! sunos_hash_table (info)->dynamic_sections_needed)
799 || info->shared)
800 {
801 bfd *dynobj;
802
803 dynobj = sunos_hash_table (info)->dynobj;
804
805 s = bfd_get_section_by_name (dynobj, ".got");
806 if (s->size == 0)
807 s->size = BYTES_IN_WORD;
808
809 sunos_hash_table (info)->dynamic_sections_needed = TRUE;
810 sunos_hash_table (info)->got_needed = TRUE;
811 }
812
813 return TRUE;
814 }
815
816 /* Add dynamic symbols during a link. This is called by the a.out
817 backend linker for each object it encounters. */
818
819 static bfd_boolean
820 sunos_add_dynamic_symbols (bfd *abfd,
821 struct bfd_link_info *info,
822 struct external_nlist **symsp,
823 bfd_size_type *sym_countp,
824 char **stringsp)
825 {
826 bfd *dynobj;
827 struct sunos_dynamic_info *dinfo;
828 unsigned long need;
829
830 /* Make sure we have all the required sections. */
831 if (info->hash->creator == abfd->xvec)
832 {
833 if (! sunos_create_dynamic_sections (abfd, info,
834 ((abfd->flags & DYNAMIC) != 0
835 && !info->relocatable)))
836 return FALSE;
837 }
838
839 /* There is nothing else to do for a normal object. */
840 if ((abfd->flags & DYNAMIC) == 0)
841 return TRUE;
842
843 dynobj = sunos_hash_table (info)->dynobj;
844
845 /* We do not want to include the sections in a dynamic object in the
846 output file. We hack by simply clobbering the list of sections
847 in the BFD. This could be handled more cleanly by, say, a new
848 section flag; the existing SEC_NEVER_LOAD flag is not the one we
849 want, because that one still implies that the section takes up
850 space in the output file. If this is the first object we have
851 seen, we must preserve the dynamic sections we just created. */
852 if (abfd != dynobj)
853 abfd->sections = NULL;
854 else
855 {
856 asection *s;
857
858 for (s = abfd->sections; s != NULL; s = s->next)
859 {
860 if ((s->flags & SEC_LINKER_CREATED) == 0)
861 bfd_section_list_remove (abfd, s);
862 }
863 }
864
865 /* The native linker seems to just ignore dynamic objects when -r is
866 used. */
867 if (info->relocatable)
868 return TRUE;
869
870 /* There's no hope of using a dynamic object which does not exactly
871 match the format of the output file. */
872 if (info->hash->creator != abfd->xvec)
873 {
874 bfd_set_error (bfd_error_invalid_operation);
875 return FALSE;
876 }
877
878 /* Make sure we have a .need and a .rules sections. These are only
879 needed if there really is a dynamic object in the link, so they
880 are not added by sunos_create_dynamic_sections. */
881 if (bfd_get_section_by_name (dynobj, ".need") == NULL)
882 {
883 /* The .need section holds the list of names of shared objets
884 which must be included at runtime. The address of this
885 section is put in the ld_need field. */
886 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
887 | SEC_IN_MEMORY | SEC_READONLY);
888 asection *s = bfd_make_section_with_flags (dynobj, ".need", flags);
889 if (s == NULL
890 || ! bfd_set_section_alignment (dynobj, s, 2))
891 return FALSE;
892 }
893
894 if (bfd_get_section_by_name (dynobj, ".rules") == NULL)
895 {
896 /* The .rules section holds the path to search for shared
897 objects. The address of this section is put in the ld_rules
898 field. */
899 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
900 | SEC_IN_MEMORY | SEC_READONLY);
901 asection *s = bfd_make_section_with_flags (dynobj, ".rules", flags);
902 if (s == NULL
903 || ! bfd_set_section_alignment (dynobj, s, 2))
904 return FALSE;
905 }
906
907 /* Pick up the dynamic symbols and return them to the caller. */
908 if (! sunos_slurp_dynamic_symtab (abfd))
909 return FALSE;
910
911 dinfo = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
912 *symsp = dinfo->dynsym;
913 *sym_countp = dinfo->dynsym_count;
914 *stringsp = dinfo->dynstr;
915
916 /* Record information about any other objects needed by this one. */
917 need = dinfo->dyninfo.ld_need;
918 while (need != 0)
919 {
920 bfd_byte buf[16];
921 unsigned long name, flags;
922 unsigned short major_vno, minor_vno;
923 struct bfd_link_needed_list *needed, **pp;
924 char *namebuf, *p;
925 bfd_size_type alc;
926 bfd_byte b;
927 char *namecopy;
928
929 if (bfd_seek (abfd, (file_ptr) need, SEEK_SET) != 0
930 || bfd_bread (buf, (bfd_size_type) 16, abfd) != 16)
931 return FALSE;
932
933 /* For the format of an ld_need entry, see aout/sun4.h. We
934 should probably define structs for this manipulation. */
935 name = bfd_get_32 (abfd, buf);
936 flags = bfd_get_32 (abfd, buf + 4);
937 major_vno = (unsigned short) bfd_get_16 (abfd, buf + 8);
938 minor_vno = (unsigned short) bfd_get_16 (abfd, buf + 10);
939 need = bfd_get_32 (abfd, buf + 12);
940
941 alc = sizeof (struct bfd_link_needed_list);
942 needed = bfd_alloc (abfd, alc);
943 if (needed == NULL)
944 return FALSE;
945 needed->by = abfd;
946
947 /* We return the name as [-l]name[.maj][.min]. */
948 alc = 30;
949 namebuf = bfd_malloc (alc + 1);
950 if (namebuf == NULL)
951 return FALSE;
952 p = namebuf;
953
954 if ((flags & 0x80000000) != 0)
955 {
956 *p++ = '-';
957 *p++ = 'l';
958 }
959 if (bfd_seek (abfd, (file_ptr) name, SEEK_SET) != 0)
960 {
961 free (namebuf);
962 return FALSE;
963 }
964
965 do
966 {
967 if (bfd_bread (&b, (bfd_size_type) 1, abfd) != 1)
968 {
969 free (namebuf);
970 return FALSE;
971 }
972
973 if ((bfd_size_type) (p - namebuf) >= alc)
974 {
975 char *n;
976
977 alc *= 2;
978 n = bfd_realloc (namebuf, alc + 1);
979 if (n == NULL)
980 {
981 free (namebuf);
982 return FALSE;
983 }
984 p = n + (p - namebuf);
985 namebuf = n;
986 }
987
988 *p++ = b;
989 }
990 while (b != '\0');
991
992 if (major_vno == 0)
993 *p = '\0';
994 else
995 {
996 char majbuf[30];
997 char minbuf[30];
998
999 sprintf (majbuf, ".%d", major_vno);
1000 if (minor_vno == 0)
1001 minbuf[0] = '\0';
1002 else
1003 sprintf (minbuf, ".%d", minor_vno);
1004
1005 if ((p - namebuf) + strlen (majbuf) + strlen (minbuf) >= alc)
1006 {
1007 char *n;
1008
1009 alc = (p - namebuf) + strlen (majbuf) + strlen (minbuf);
1010 n = bfd_realloc (namebuf, alc + 1);
1011 if (n == NULL)
1012 {
1013 free (namebuf);
1014 return FALSE;
1015 }
1016 p = n + (p - namebuf);
1017 namebuf = n;
1018 }
1019
1020 strcpy (p, majbuf);
1021 strcat (p, minbuf);
1022 }
1023
1024 namecopy = bfd_alloc (abfd, (bfd_size_type) strlen (namebuf) + 1);
1025 if (namecopy == NULL)
1026 {
1027 free (namebuf);
1028 return FALSE;
1029 }
1030 strcpy (namecopy, namebuf);
1031 free (namebuf);
1032 needed->name = namecopy;
1033
1034 needed->next = NULL;
1035
1036 for (pp = &sunos_hash_table (info)->needed;
1037 *pp != NULL;
1038 pp = &(*pp)->next)
1039 ;
1040 *pp = needed;
1041 }
1042
1043 return TRUE;
1044 }
1045
1046 /* Function to add a single symbol to the linker hash table. This is
1047 a wrapper around _bfd_generic_link_add_one_symbol which handles the
1048 tweaking needed for dynamic linking support. */
1049
1050 static bfd_boolean
1051 sunos_add_one_symbol (struct bfd_link_info *info,
1052 bfd *abfd,
1053 const char *name,
1054 flagword flags,
1055 asection *section,
1056 bfd_vma value,
1057 const char *string,
1058 bfd_boolean copy,
1059 bfd_boolean collect,
1060 struct bfd_link_hash_entry **hashp)
1061 {
1062 struct sunos_link_hash_entry *h;
1063 int new_flag;
1064
1065 if ((flags & (BSF_INDIRECT | BSF_WARNING | BSF_CONSTRUCTOR)) != 0
1066 || ! bfd_is_und_section (section))
1067 h = sunos_link_hash_lookup (sunos_hash_table (info), name, TRUE, copy,
1068 FALSE);
1069 else
1070 h = ((struct sunos_link_hash_entry *)
1071 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE));
1072 if (h == NULL)
1073 return FALSE;
1074
1075 if (hashp != NULL)
1076 *hashp = (struct bfd_link_hash_entry *) h;
1077
1078 /* Treat a common symbol in a dynamic object as defined in the .bss
1079 section of the dynamic object. We don't want to allocate space
1080 for it in our process image. */
1081 if ((abfd->flags & DYNAMIC) != 0
1082 && bfd_is_com_section (section))
1083 section = obj_bsssec (abfd);
1084
1085 if (! bfd_is_und_section (section)
1086 && h->root.root.type != bfd_link_hash_new
1087 && h->root.root.type != bfd_link_hash_undefined
1088 && h->root.root.type != bfd_link_hash_defweak)
1089 {
1090 /* We are defining the symbol, and it is already defined. This
1091 is a potential multiple definition error. */
1092 if ((abfd->flags & DYNAMIC) != 0)
1093 {
1094 /* The definition we are adding is from a dynamic object.
1095 We do not want this new definition to override the
1096 existing definition, so we pretend it is just a
1097 reference. */
1098 section = bfd_und_section_ptr;
1099 }
1100 else if (h->root.root.type == bfd_link_hash_defined
1101 && h->root.root.u.def.section->owner != NULL
1102 && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1103 {
1104 /* The existing definition is from a dynamic object. We
1105 want to override it with the definition we just found.
1106 Clobber the existing definition. */
1107 h->root.root.type = bfd_link_hash_undefined;
1108 h->root.root.u.undef.abfd = h->root.root.u.def.section->owner;
1109 }
1110 else if (h->root.root.type == bfd_link_hash_common
1111 && (h->root.root.u.c.p->section->owner->flags & DYNAMIC) != 0)
1112 {
1113 /* The existing definition is from a dynamic object. We
1114 want to override it with the definition we just found.
1115 Clobber the existing definition. We can't set it to new,
1116 because it is on the undefined list. */
1117 h->root.root.type = bfd_link_hash_undefined;
1118 h->root.root.u.undef.abfd = h->root.root.u.c.p->section->owner;
1119 }
1120 }
1121
1122 if ((abfd->flags & DYNAMIC) != 0
1123 && abfd->xvec == info->hash->creator
1124 && (h->flags & SUNOS_CONSTRUCTOR) != 0)
1125 /* The existing symbol is a constructor symbol, and this symbol
1126 is from a dynamic object. A constructor symbol is actually a
1127 definition, although the type will be bfd_link_hash_undefined
1128 at this point. We want to ignore the definition from the
1129 dynamic object. */
1130 section = bfd_und_section_ptr;
1131 else if ((flags & BSF_CONSTRUCTOR) != 0
1132 && (abfd->flags & DYNAMIC) == 0
1133 && h->root.root.type == bfd_link_hash_defined
1134 && h->root.root.u.def.section->owner != NULL
1135 && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1136 /* The existing symbol is defined by a dynamic object, and this
1137 is a constructor symbol. As above, we want to force the use
1138 of the constructor symbol from the regular object. */
1139 h->root.root.type = bfd_link_hash_new;
1140
1141 /* Do the usual procedure for adding a symbol. */
1142 if (! _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section,
1143 value, string, copy, collect,
1144 hashp))
1145 return FALSE;
1146
1147 if (abfd->xvec == info->hash->creator)
1148 {
1149 /* Set a flag in the hash table entry indicating the type of
1150 reference or definition we just found. Keep a count of the
1151 number of dynamic symbols we find. A dynamic symbol is one
1152 which is referenced or defined by both a regular object and a
1153 shared object. */
1154 if ((abfd->flags & DYNAMIC) == 0)
1155 {
1156 if (bfd_is_und_section (section))
1157 new_flag = SUNOS_REF_REGULAR;
1158 else
1159 new_flag = SUNOS_DEF_REGULAR;
1160 }
1161 else
1162 {
1163 if (bfd_is_und_section (section))
1164 new_flag = SUNOS_REF_DYNAMIC;
1165 else
1166 new_flag = SUNOS_DEF_DYNAMIC;
1167 }
1168 h->flags |= new_flag;
1169
1170 if (h->dynindx == -1
1171 && (h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
1172 {
1173 ++sunos_hash_table (info)->dynsymcount;
1174 h->dynindx = -2;
1175 }
1176
1177 if ((flags & BSF_CONSTRUCTOR) != 0
1178 && (abfd->flags & DYNAMIC) == 0)
1179 h->flags |= SUNOS_CONSTRUCTOR;
1180 }
1181
1182 return TRUE;
1183 }
1184
1185 extern const bfd_target MY (vec);
1186
1187 /* Return the list of objects needed by BFD. */
1188
1189 struct bfd_link_needed_list *
1190 bfd_sunos_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1191 struct bfd_link_info *info)
1192 {
1193 if (info->hash->creator != &MY (vec))
1194 return NULL;
1195 return sunos_hash_table (info)->needed;
1196 }
1197
1198 /* Record an assignment made to a symbol by a linker script. We need
1199 this in case some dynamic object refers to this symbol. */
1200
1201 bfd_boolean
1202 bfd_sunos_record_link_assignment (bfd *output_bfd,
1203 struct bfd_link_info *info,
1204 const char *name)
1205 {
1206 struct sunos_link_hash_entry *h;
1207
1208 if (output_bfd->xvec != &MY(vec))
1209 return TRUE;
1210
1211 /* This is called after we have examined all the input objects. If
1212 the symbol does not exist, it merely means that no object refers
1213 to it, and we can just ignore it at this point. */
1214 h = sunos_link_hash_lookup (sunos_hash_table (info), name,
1215 FALSE, FALSE, FALSE);
1216 if (h == NULL)
1217 return TRUE;
1218
1219 /* In a shared library, the __DYNAMIC symbol does not appear in the
1220 dynamic symbol table. */
1221 if (! info->shared || strcmp (name, "__DYNAMIC") != 0)
1222 {
1223 h->flags |= SUNOS_DEF_REGULAR;
1224
1225 if (h->dynindx == -1)
1226 {
1227 ++sunos_hash_table (info)->dynsymcount;
1228 h->dynindx = -2;
1229 }
1230 }
1231
1232 return TRUE;
1233 }
1234
1235 /* Scan the relocs for an input section using standard relocs. We
1236 need to figure out what to do for each reloc against a dynamic
1237 symbol. If the symbol is in the .text section, an entry is made in
1238 the procedure linkage table. Note that this will do the wrong
1239 thing if the symbol is actually data; I don't think the Sun 3
1240 native linker handles this case correctly either. If the symbol is
1241 not in the .text section, we must preserve the reloc as a dynamic
1242 reloc. FIXME: We should also handle the PIC relocs here by
1243 building global offset table entries. */
1244
1245 static bfd_boolean
1246 sunos_scan_std_relocs (struct bfd_link_info *info,
1247 bfd *abfd,
1248 asection *sec ATTRIBUTE_UNUSED,
1249 const struct reloc_std_external *relocs,
1250 bfd_size_type rel_size)
1251 {
1252 bfd *dynobj;
1253 asection *splt = NULL;
1254 asection *srel = NULL;
1255 struct sunos_link_hash_entry **sym_hashes;
1256 const struct reloc_std_external *rel, *relend;
1257
1258 /* We only know how to handle m68k plt entries. */
1259 if (bfd_get_arch (abfd) != bfd_arch_m68k)
1260 {
1261 bfd_set_error (bfd_error_invalid_target);
1262 return FALSE;
1263 }
1264
1265 dynobj = NULL;
1266
1267 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1268
1269 relend = relocs + rel_size / RELOC_STD_SIZE;
1270 for (rel = relocs; rel < relend; rel++)
1271 {
1272 int r_index;
1273 struct sunos_link_hash_entry *h;
1274
1275 /* We only want relocs against external symbols. */
1276 if (bfd_header_big_endian (abfd))
1277 {
1278 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG) == 0)
1279 continue;
1280 }
1281 else
1282 {
1283 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE) == 0)
1284 continue;
1285 }
1286
1287 /* Get the symbol index. */
1288 if (bfd_header_big_endian (abfd))
1289 r_index = ((rel->r_index[0] << 16)
1290 | (rel->r_index[1] << 8)
1291 | rel->r_index[2]);
1292 else
1293 r_index = ((rel->r_index[2] << 16)
1294 | (rel->r_index[1] << 8)
1295 | rel->r_index[0]);
1296
1297 /* Get the hash table entry. */
1298 h = sym_hashes[r_index];
1299 if (h == NULL)
1300 /* This should not normally happen, but it will in any case
1301 be caught in the relocation phase. */
1302 continue;
1303
1304 /* At this point common symbols have already been allocated, so
1305 we don't have to worry about them. We need to consider that
1306 we may have already seen this symbol and marked it undefined;
1307 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1308 will be zero. */
1309 if (h->root.root.type != bfd_link_hash_defined
1310 && h->root.root.type != bfd_link_hash_defweak
1311 && h->root.root.type != bfd_link_hash_undefined)
1312 continue;
1313
1314 if ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1315 || (h->flags & SUNOS_DEF_REGULAR) != 0)
1316 continue;
1317
1318 if (dynobj == NULL)
1319 {
1320 asection *sgot;
1321
1322 if (! sunos_create_dynamic_sections (abfd, info, FALSE))
1323 return FALSE;
1324 dynobj = sunos_hash_table (info)->dynobj;
1325 splt = bfd_get_section_by_name (dynobj, ".plt");
1326 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1327 BFD_ASSERT (splt != NULL && srel != NULL);
1328
1329 sgot = bfd_get_section_by_name (dynobj, ".got");
1330 BFD_ASSERT (sgot != NULL);
1331 if (sgot->size == 0)
1332 sgot->size = BYTES_IN_WORD;
1333 sunos_hash_table (info)->got_needed = TRUE;
1334 }
1335
1336 BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0);
1337 BFD_ASSERT (h->plt_offset != 0
1338 || ((h->root.root.type == bfd_link_hash_defined
1339 || h->root.root.type == bfd_link_hash_defweak)
1340 ? (h->root.root.u.def.section->owner->flags
1341 & DYNAMIC) != 0
1342 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
1343
1344 /* This reloc is against a symbol defined only by a dynamic
1345 object. */
1346 if (h->root.root.type == bfd_link_hash_undefined)
1347 /* Presumably this symbol was marked as being undefined by
1348 an earlier reloc. */
1349 srel->size += RELOC_STD_SIZE;
1350 else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0)
1351 {
1352 bfd *sub;
1353
1354 /* This reloc is not in the .text section. It must be
1355 copied into the dynamic relocs. We mark the symbol as
1356 being undefined. */
1357 srel->size += RELOC_STD_SIZE;
1358 sub = h->root.root.u.def.section->owner;
1359 h->root.root.type = bfd_link_hash_undefined;
1360 h->root.root.u.undef.abfd = sub;
1361 }
1362 else
1363 {
1364 /* This symbol is in the .text section. We must give it an
1365 entry in the procedure linkage table, if we have not
1366 already done so. We change the definition of the symbol
1367 to the .plt section; this will cause relocs against it to
1368 be handled correctly. */
1369 if (h->plt_offset == 0)
1370 {
1371 if (splt->size == 0)
1372 splt->size = M68K_PLT_ENTRY_SIZE;
1373 h->plt_offset = splt->size;
1374
1375 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1376 {
1377 h->root.root.u.def.section = splt;
1378 h->root.root.u.def.value = splt->size;
1379 }
1380
1381 splt->size += M68K_PLT_ENTRY_SIZE;
1382
1383 /* We may also need a dynamic reloc entry. */
1384 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1385 srel->size += RELOC_STD_SIZE;
1386 }
1387 }
1388 }
1389
1390 return TRUE;
1391 }
1392
1393 /* Scan the relocs for an input section using extended relocs. We
1394 need to figure out what to do for each reloc against a dynamic
1395 symbol. If the reloc is a WDISP30, and the symbol is in the .text
1396 section, an entry is made in the procedure linkage table.
1397 Otherwise, we must preserve the reloc as a dynamic reloc. */
1398
1399 static bfd_boolean
1400 sunos_scan_ext_relocs (struct bfd_link_info *info,
1401 bfd *abfd,
1402 asection *sec ATTRIBUTE_UNUSED,
1403 const struct reloc_ext_external *relocs,
1404 bfd_size_type rel_size)
1405 {
1406 bfd *dynobj;
1407 struct sunos_link_hash_entry **sym_hashes;
1408 const struct reloc_ext_external *rel, *relend;
1409 asection *splt = NULL;
1410 asection *sgot = NULL;
1411 asection *srel = NULL;
1412 bfd_size_type amt;
1413
1414 /* We only know how to handle SPARC plt entries. */
1415 if (bfd_get_arch (abfd) != bfd_arch_sparc)
1416 {
1417 bfd_set_error (bfd_error_invalid_target);
1418 return FALSE;
1419 }
1420
1421 dynobj = NULL;
1422
1423 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1424
1425 relend = relocs + rel_size / RELOC_EXT_SIZE;
1426 for (rel = relocs; rel < relend; rel++)
1427 {
1428 unsigned int r_index;
1429 int r_extern;
1430 int r_type;
1431 struct sunos_link_hash_entry *h = NULL;
1432
1433 /* Swap in the reloc information. */
1434 if (bfd_header_big_endian (abfd))
1435 {
1436 r_index = ((rel->r_index[0] << 16)
1437 | (rel->r_index[1] << 8)
1438 | rel->r_index[2]);
1439 r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
1440 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
1441 >> RELOC_EXT_BITS_TYPE_SH_BIG);
1442 }
1443 else
1444 {
1445 r_index = ((rel->r_index[2] << 16)
1446 | (rel->r_index[1] << 8)
1447 | rel->r_index[0]);
1448 r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
1449 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
1450 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
1451 }
1452
1453 if (r_extern)
1454 {
1455 h = sym_hashes[r_index];
1456 if (h == NULL)
1457 {
1458 /* This should not normally happen, but it will in any
1459 case be caught in the relocation phase. */
1460 continue;
1461 }
1462 }
1463
1464 /* If this is a base relative reloc, we need to make an entry in
1465 the .got section. */
1466 if (r_type == RELOC_BASE10
1467 || r_type == RELOC_BASE13
1468 || r_type == RELOC_BASE22)
1469 {
1470 if (dynobj == NULL)
1471 {
1472 if (! sunos_create_dynamic_sections (abfd, info, FALSE))
1473 return FALSE;
1474 dynobj = sunos_hash_table (info)->dynobj;
1475 splt = bfd_get_section_by_name (dynobj, ".plt");
1476 sgot = bfd_get_section_by_name (dynobj, ".got");
1477 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1478 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1479
1480 /* Make sure we have an initial entry in the .got table. */
1481 if (sgot->size == 0)
1482 sgot->size = BYTES_IN_WORD;
1483 sunos_hash_table (info)->got_needed = TRUE;
1484 }
1485
1486 if (r_extern)
1487 {
1488 if (h->got_offset != 0)
1489 continue;
1490
1491 h->got_offset = sgot->size;
1492 }
1493 else
1494 {
1495 if (r_index >= bfd_get_symcount (abfd))
1496 /* This is abnormal, but should be caught in the
1497 relocation phase. */
1498 continue;
1499
1500 if (adata (abfd).local_got_offsets == NULL)
1501 {
1502 amt = bfd_get_symcount (abfd);
1503 amt *= sizeof (bfd_vma);
1504 adata (abfd).local_got_offsets = bfd_zalloc (abfd, amt);
1505 if (adata (abfd).local_got_offsets == NULL)
1506 return FALSE;
1507 }
1508
1509 if (adata (abfd).local_got_offsets[r_index] != 0)
1510 continue;
1511
1512 adata (abfd).local_got_offsets[r_index] = sgot->size;
1513 }
1514
1515 sgot->size += BYTES_IN_WORD;
1516
1517 /* If we are making a shared library, or if the symbol is
1518 defined by a dynamic object, we will need a dynamic reloc
1519 entry. */
1520 if (info->shared
1521 || (h != NULL
1522 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1523 && (h->flags & SUNOS_DEF_REGULAR) == 0))
1524 srel->size += RELOC_EXT_SIZE;
1525
1526 continue;
1527 }
1528
1529 /* Otherwise, we are only interested in relocs against symbols
1530 defined in dynamic objects but not in regular objects. We
1531 only need to consider relocs against external symbols. */
1532 if (! r_extern)
1533 {
1534 /* But, if we are creating a shared library, we need to
1535 generate an absolute reloc. */
1536 if (info->shared)
1537 {
1538 if (dynobj == NULL)
1539 {
1540 if (! sunos_create_dynamic_sections (abfd, info, TRUE))
1541 return FALSE;
1542 dynobj = sunos_hash_table (info)->dynobj;
1543 splt = bfd_get_section_by_name (dynobj, ".plt");
1544 sgot = bfd_get_section_by_name (dynobj, ".got");
1545 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1546 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1547 }
1548
1549 srel->size += RELOC_EXT_SIZE;
1550 }
1551
1552 continue;
1553 }
1554
1555 /* At this point common symbols have already been allocated, so
1556 we don't have to worry about them. We need to consider that
1557 we may have already seen this symbol and marked it undefined;
1558 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1559 will be zero. */
1560 if (h->root.root.type != bfd_link_hash_defined
1561 && h->root.root.type != bfd_link_hash_defweak
1562 && h->root.root.type != bfd_link_hash_undefined)
1563 continue;
1564
1565 if (r_type != RELOC_JMP_TBL
1566 && ! info->shared
1567 && ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1568 || (h->flags & SUNOS_DEF_REGULAR) != 0))
1569 continue;
1570
1571 if (r_type == RELOC_JMP_TBL
1572 && ! info->shared
1573 && (h->flags & SUNOS_DEF_DYNAMIC) == 0
1574 && (h->flags & SUNOS_DEF_REGULAR) == 0)
1575 {
1576 /* This symbol is apparently undefined. Don't do anything
1577 here; just let the relocation routine report an undefined
1578 symbol. */
1579 continue;
1580 }
1581
1582 if (strcmp (h->root.root.root.string, "__GLOBAL_OFFSET_TABLE_") == 0)
1583 continue;
1584
1585 if (dynobj == NULL)
1586 {
1587 if (! sunos_create_dynamic_sections (abfd, info, FALSE))
1588 return FALSE;
1589 dynobj = sunos_hash_table (info)->dynobj;
1590 splt = bfd_get_section_by_name (dynobj, ".plt");
1591 sgot = bfd_get_section_by_name (dynobj, ".got");
1592 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1593 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1594
1595 /* Make sure we have an initial entry in the .got table. */
1596 if (sgot->size == 0)
1597 sgot->size = BYTES_IN_WORD;
1598 sunos_hash_table (info)->got_needed = TRUE;
1599 }
1600
1601 BFD_ASSERT (r_type == RELOC_JMP_TBL
1602 || info->shared
1603 || (h->flags & SUNOS_REF_REGULAR) != 0);
1604 BFD_ASSERT (r_type == RELOC_JMP_TBL
1605 || info->shared
1606 || h->plt_offset != 0
1607 || ((h->root.root.type == bfd_link_hash_defined
1608 || h->root.root.type == bfd_link_hash_defweak)
1609 ? (h->root.root.u.def.section->owner->flags
1610 & DYNAMIC) != 0
1611 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
1612
1613 /* This reloc is against a symbol defined only by a dynamic
1614 object, or it is a jump table reloc from PIC compiled code. */
1615
1616 if (r_type != RELOC_JMP_TBL
1617 && h->root.root.type == bfd_link_hash_undefined)
1618 /* Presumably this symbol was marked as being undefined by
1619 an earlier reloc. */
1620 srel->size += RELOC_EXT_SIZE;
1621
1622 else if (r_type != RELOC_JMP_TBL
1623 && (h->root.root.u.def.section->flags & SEC_CODE) == 0)
1624 {
1625 bfd *sub;
1626
1627 /* This reloc is not in the .text section. It must be
1628 copied into the dynamic relocs. We mark the symbol as
1629 being undefined. */
1630 srel->size += RELOC_EXT_SIZE;
1631 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1632 {
1633 sub = h->root.root.u.def.section->owner;
1634 h->root.root.type = bfd_link_hash_undefined;
1635 h->root.root.u.undef.abfd = sub;
1636 }
1637 }
1638 else
1639 {
1640 /* This symbol is in the .text section. We must give it an
1641 entry in the procedure linkage table, if we have not
1642 already done so. We change the definition of the symbol
1643 to the .plt section; this will cause relocs against it to
1644 be handled correctly. */
1645 if (h->plt_offset == 0)
1646 {
1647 if (splt->size == 0)
1648 splt->size = SPARC_PLT_ENTRY_SIZE;
1649 h->plt_offset = splt->size;
1650
1651 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1652 {
1653 if (h->root.root.type == bfd_link_hash_undefined)
1654 h->root.root.type = bfd_link_hash_defined;
1655 h->root.root.u.def.section = splt;
1656 h->root.root.u.def.value = splt->size;
1657 }
1658
1659 splt->size += SPARC_PLT_ENTRY_SIZE;
1660
1661 /* We will also need a dynamic reloc entry, unless this
1662 is a JMP_TBL reloc produced by linking PIC compiled
1663 code, and we are not making a shared library. */
1664 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
1665 srel->size += RELOC_EXT_SIZE;
1666 }
1667
1668 /* If we are creating a shared library, we need to copy over
1669 any reloc other than a jump table reloc. */
1670 if (info->shared && r_type != RELOC_JMP_TBL)
1671 srel->size += RELOC_EXT_SIZE;
1672 }
1673 }
1674
1675 return TRUE;
1676 }
1677
1678 /* Scan the relocs for an input section. */
1679
1680 static bfd_boolean
1681 sunos_scan_relocs (struct bfd_link_info *info,
1682 bfd *abfd,
1683 asection *sec,
1684 bfd_size_type rel_size)
1685 {
1686 void * relocs;
1687 void * free_relocs = NULL;
1688
1689 if (rel_size == 0)
1690 return TRUE;
1691
1692 if (! info->keep_memory)
1693 relocs = free_relocs = bfd_malloc (rel_size);
1694 else
1695 {
1696 struct aout_section_data_struct *n;
1697 bfd_size_type amt = sizeof (struct aout_section_data_struct);
1698
1699 n = bfd_alloc (abfd, amt);
1700 if (n == NULL)
1701 relocs = NULL;
1702 else
1703 {
1704 set_aout_section_data (sec, n);
1705 relocs = bfd_malloc (rel_size);
1706 aout_section_data (sec)->relocs = relocs;
1707 }
1708 }
1709 if (relocs == NULL)
1710 return FALSE;
1711
1712 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
1713 || bfd_bread (relocs, rel_size, abfd) != rel_size)
1714 goto error_return;
1715
1716 if (obj_reloc_entry_size (abfd) == RELOC_STD_SIZE)
1717 {
1718 if (! sunos_scan_std_relocs (info, abfd, sec,
1719 (struct reloc_std_external *) relocs,
1720 rel_size))
1721 goto error_return;
1722 }
1723 else
1724 {
1725 if (! sunos_scan_ext_relocs (info, abfd, sec,
1726 (struct reloc_ext_external *) relocs,
1727 rel_size))
1728 goto error_return;
1729 }
1730
1731 if (free_relocs != NULL)
1732 free (free_relocs);
1733
1734 return TRUE;
1735
1736 error_return:
1737 if (free_relocs != NULL)
1738 free (free_relocs);
1739 return FALSE;
1740 }
1741
1742 /* Build the hash table of dynamic symbols, and to mark as written all
1743 symbols from dynamic objects which we do not plan to write out. */
1744
1745 static bfd_boolean
1746 sunos_scan_dynamic_symbol (struct sunos_link_hash_entry *h, void * data)
1747 {
1748 struct bfd_link_info *info = (struct bfd_link_info *) data;
1749
1750 if (h->root.root.type == bfd_link_hash_warning)
1751 h = (struct sunos_link_hash_entry *) h->root.root.u.i.link;
1752
1753 /* Set the written flag for symbols we do not want to write out as
1754 part of the regular symbol table. This is all symbols which are
1755 not defined in a regular object file. For some reason symbols
1756 which are referenced by a regular object and defined by a dynamic
1757 object do not seem to show up in the regular symbol table. It is
1758 possible for a symbol to have only SUNOS_REF_REGULAR set here, it
1759 is an undefined symbol which was turned into a common symbol
1760 because it was found in an archive object which was not included
1761 in the link. */
1762 if ((h->flags & SUNOS_DEF_REGULAR) == 0
1763 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1764 && strcmp (h->root.root.root.string, "__DYNAMIC") != 0)
1765 h->root.written = TRUE;
1766
1767 /* If this symbol is defined by a dynamic object and referenced by a
1768 regular object, see whether we gave it a reasonable value while
1769 scanning the relocs. */
1770 if ((h->flags & SUNOS_DEF_REGULAR) == 0
1771 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1772 && (h->flags & SUNOS_REF_REGULAR) != 0)
1773 {
1774 if ((h->root.root.type == bfd_link_hash_defined
1775 || h->root.root.type == bfd_link_hash_defweak)
1776 && ((h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1777 && h->root.root.u.def.section->output_section == NULL)
1778 {
1779 bfd *sub;
1780
1781 /* This symbol is currently defined in a dynamic section
1782 which is not being put into the output file. This
1783 implies that there is no reloc against the symbol. I'm
1784 not sure why this case would ever occur. In any case, we
1785 change the symbol to be undefined. */
1786 sub = h->root.root.u.def.section->owner;
1787 h->root.root.type = bfd_link_hash_undefined;
1788 h->root.root.u.undef.abfd = sub;
1789 }
1790 }
1791
1792 /* If this symbol is defined or referenced by a regular file, add it
1793 to the dynamic symbols. */
1794 if ((h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
1795 {
1796 asection *s;
1797 size_t len;
1798 bfd_byte *contents;
1799 unsigned char *name;
1800 unsigned long hash;
1801 bfd *dynobj;
1802
1803 BFD_ASSERT (h->dynindx == -2);
1804
1805 dynobj = sunos_hash_table (info)->dynobj;
1806
1807 h->dynindx = sunos_hash_table (info)->dynsymcount;
1808 ++sunos_hash_table (info)->dynsymcount;
1809
1810 len = strlen (h->root.root.root.string);
1811
1812 /* We don't bother to construct a BFD hash table for the strings
1813 which are the names of the dynamic symbols. Using a hash
1814 table for the regular symbols is beneficial, because the
1815 regular symbols includes the debugging symbols, which have
1816 long names and are often duplicated in several object files.
1817 There are no debugging symbols in the dynamic symbols. */
1818 s = bfd_get_section_by_name (dynobj, ".dynstr");
1819 BFD_ASSERT (s != NULL);
1820 contents = bfd_realloc (s->contents, s->size + len + 1);
1821 if (contents == NULL)
1822 return FALSE;
1823 s->contents = contents;
1824
1825 h->dynstr_index = s->size;
1826 strcpy ((char *) contents + s->size, h->root.root.root.string);
1827 s->size += len + 1;
1828
1829 /* Add it to the dynamic hash table. */
1830 name = (unsigned char *) h->root.root.root.string;
1831 hash = 0;
1832 while (*name != '\0')
1833 hash = (hash << 1) + *name++;
1834 hash &= 0x7fffffff;
1835 hash %= sunos_hash_table (info)->bucketcount;
1836
1837 s = bfd_get_section_by_name (dynobj, ".hash");
1838 BFD_ASSERT (s != NULL);
1839
1840 if (GET_SWORD (dynobj, s->contents + hash * HASH_ENTRY_SIZE) == -1)
1841 PUT_WORD (dynobj, h->dynindx, s->contents + hash * HASH_ENTRY_SIZE);
1842 else
1843 {
1844 bfd_vma next;
1845
1846 next = GET_WORD (dynobj,
1847 (s->contents
1848 + hash * HASH_ENTRY_SIZE
1849 + BYTES_IN_WORD));
1850 PUT_WORD (dynobj, s->size / HASH_ENTRY_SIZE,
1851 s->contents + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
1852 PUT_WORD (dynobj, h->dynindx, s->contents + s->size);
1853 PUT_WORD (dynobj, next, s->contents + s->size + BYTES_IN_WORD);
1854 s->size += HASH_ENTRY_SIZE;
1855 }
1856 }
1857
1858 return TRUE;
1859 }
1860
1861 /* Set up the sizes and contents of the dynamic sections created in
1862 sunos_add_dynamic_symbols. This is called by the SunOS linker
1863 emulation before_allocation routine. We must set the sizes of the
1864 sections before the linker sets the addresses of the various
1865 sections. This unfortunately requires reading all the relocs so
1866 that we can work out which ones need to become dynamic relocs. If
1867 info->keep_memory is TRUE, we keep the relocs in memory; otherwise,
1868 we discard them, and will read them again later. */
1869
1870 bfd_boolean
1871 bfd_sunos_size_dynamic_sections (bfd *output_bfd,
1872 struct bfd_link_info *info,
1873 asection **sdynptr,
1874 asection **sneedptr,
1875 asection **srulesptr)
1876 {
1877 bfd *dynobj;
1878 bfd_size_type dynsymcount;
1879 struct sunos_link_hash_entry *h;
1880 asection *s;
1881 size_t bucketcount;
1882 bfd_size_type hashalloc;
1883 size_t i;
1884 bfd *sub;
1885
1886 *sdynptr = NULL;
1887 *sneedptr = NULL;
1888 *srulesptr = NULL;
1889
1890 if (info->relocatable)
1891 return TRUE;
1892
1893 if (output_bfd->xvec != &MY(vec))
1894 return TRUE;
1895
1896 /* Look through all the input BFD's and read their relocs. It would
1897 be better if we didn't have to do this, but there is no other way
1898 to determine the number of dynamic relocs we need, and, more
1899 importantly, there is no other way to know which symbols should
1900 get an entry in the procedure linkage table. */
1901 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
1902 {
1903 if ((sub->flags & DYNAMIC) == 0
1904 && sub->xvec == output_bfd->xvec)
1905 {
1906 if (! sunos_scan_relocs (info, sub, obj_textsec (sub),
1907 exec_hdr (sub)->a_trsize)
1908 || ! sunos_scan_relocs (info, sub, obj_datasec (sub),
1909 exec_hdr (sub)->a_drsize))
1910 return FALSE;
1911 }
1912 }
1913
1914 dynobj = sunos_hash_table (info)->dynobj;
1915 dynsymcount = sunos_hash_table (info)->dynsymcount;
1916
1917 /* If there were no dynamic objects in the link, and we don't need
1918 to build a global offset table, there is nothing to do here. */
1919 if (! sunos_hash_table (info)->dynamic_sections_needed
1920 && ! sunos_hash_table (info)->got_needed)
1921 return TRUE;
1922
1923 /* If __GLOBAL_OFFSET_TABLE_ was mentioned, define it. */
1924 h = sunos_link_hash_lookup (sunos_hash_table (info),
1925 "__GLOBAL_OFFSET_TABLE_", FALSE, FALSE, FALSE);
1926 if (h != NULL && (h->flags & SUNOS_REF_REGULAR) != 0)
1927 {
1928 h->flags |= SUNOS_DEF_REGULAR;
1929 if (h->dynindx == -1)
1930 {
1931 ++sunos_hash_table (info)->dynsymcount;
1932 h->dynindx = -2;
1933 }
1934 h->root.root.type = bfd_link_hash_defined;
1935 h->root.root.u.def.section = bfd_get_section_by_name (dynobj, ".got");
1936
1937 /* If the .got section is more than 0x1000 bytes, we set
1938 __GLOBAL_OFFSET_TABLE_ to be 0x1000 bytes into the section,
1939 so that 13 bit relocations have a greater chance of working. */
1940 s = bfd_get_section_by_name (dynobj, ".got");
1941 BFD_ASSERT (s != NULL);
1942 if (s->size >= 0x1000)
1943 h->root.root.u.def.value = 0x1000;
1944 else
1945 h->root.root.u.def.value = 0;
1946
1947 sunos_hash_table (info)->got_base = h->root.root.u.def.value;
1948 }
1949
1950 /* If there are any shared objects in the link, then we need to set
1951 up the dynamic linking information. */
1952 if (sunos_hash_table (info)->dynamic_sections_needed)
1953 {
1954 *sdynptr = bfd_get_section_by_name (dynobj, ".dynamic");
1955
1956 /* The .dynamic section is always the same size. */
1957 s = *sdynptr;
1958 BFD_ASSERT (s != NULL);
1959 s->size = (sizeof (struct external_sun4_dynamic)
1960 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE
1961 + sizeof (struct external_sun4_dynamic_link));
1962
1963 /* Set the size of the .dynsym and .hash sections. We counted
1964 the number of dynamic symbols as we read the input files. We
1965 will build the dynamic symbol table (.dynsym) and the hash
1966 table (.hash) when we build the final symbol table, because
1967 until then we do not know the correct value to give the
1968 symbols. We build the dynamic symbol string table (.dynstr)
1969 in a traversal of the symbol table using
1970 sunos_scan_dynamic_symbol. */
1971 s = bfd_get_section_by_name (dynobj, ".dynsym");
1972 BFD_ASSERT (s != NULL);
1973 s->size = dynsymcount * sizeof (struct external_nlist);
1974 s->contents = bfd_alloc (output_bfd, s->size);
1975 if (s->contents == NULL && s->size != 0)
1976 return FALSE;
1977
1978 /* The number of buckets is just the number of symbols divided
1979 by four. To compute the final size of the hash table, we
1980 must actually compute the hash table. Normally we need
1981 exactly as many entries in the hash table as there are
1982 dynamic symbols, but if some of the buckets are not used we
1983 will need additional entries. In the worst case, every
1984 symbol will hash to the same bucket, and we will need
1985 BUCKETCOUNT - 1 extra entries. */
1986 if (dynsymcount >= 4)
1987 bucketcount = dynsymcount / 4;
1988 else if (dynsymcount > 0)
1989 bucketcount = dynsymcount;
1990 else
1991 bucketcount = 1;
1992 s = bfd_get_section_by_name (dynobj, ".hash");
1993 BFD_ASSERT (s != NULL);
1994 hashalloc = (dynsymcount + bucketcount - 1) * HASH_ENTRY_SIZE;
1995 s->contents = bfd_zalloc (dynobj, hashalloc);
1996 if (s->contents == NULL && dynsymcount > 0)
1997 return FALSE;
1998 for (i = 0; i < bucketcount; i++)
1999 PUT_WORD (output_bfd, (bfd_vma) -1, s->contents + i * HASH_ENTRY_SIZE);
2000 s->size = bucketcount * HASH_ENTRY_SIZE;
2001
2002 sunos_hash_table (info)->bucketcount = bucketcount;
2003
2004 /* Scan all the symbols, place them in the dynamic symbol table,
2005 and build the dynamic hash table. We reuse dynsymcount as a
2006 counter for the number of symbols we have added so far. */
2007 sunos_hash_table (info)->dynsymcount = 0;
2008 sunos_link_hash_traverse (sunos_hash_table (info),
2009 sunos_scan_dynamic_symbol,
2010 (void *) info);
2011 BFD_ASSERT (sunos_hash_table (info)->dynsymcount == dynsymcount);
2012
2013 /* The SunOS native linker seems to align the total size of the
2014 symbol strings to a multiple of 8. I don't know if this is
2015 important, but it can't hurt much. */
2016 s = bfd_get_section_by_name (dynobj, ".dynstr");
2017 BFD_ASSERT (s != NULL);
2018 if ((s->size & 7) != 0)
2019 {
2020 bfd_size_type add;
2021 bfd_byte *contents;
2022
2023 add = 8 - (s->size & 7);
2024 contents = bfd_realloc (s->contents, s->size + add);
2025 if (contents == NULL)
2026 return FALSE;
2027 memset (contents + s->size, 0, (size_t) add);
2028 s->contents = contents;
2029 s->size += add;
2030 }
2031 }
2032
2033 /* Now that we have worked out the sizes of the procedure linkage
2034 table and the dynamic relocs, allocate storage for them. */
2035 s = bfd_get_section_by_name (dynobj, ".plt");
2036 BFD_ASSERT (s != NULL);
2037 if (s->size != 0)
2038 {
2039 s->contents = bfd_alloc (dynobj, s->size);
2040 if (s->contents == NULL)
2041 return FALSE;
2042
2043 /* Fill in the first entry in the table. */
2044 switch (bfd_get_arch (dynobj))
2045 {
2046 case bfd_arch_sparc:
2047 memcpy (s->contents, sparc_plt_first_entry, SPARC_PLT_ENTRY_SIZE);
2048 break;
2049
2050 case bfd_arch_m68k:
2051 memcpy (s->contents, m68k_plt_first_entry, M68K_PLT_ENTRY_SIZE);
2052 break;
2053
2054 default:
2055 abort ();
2056 }
2057 }
2058
2059 s = bfd_get_section_by_name (dynobj, ".dynrel");
2060 if (s->size != 0)
2061 {
2062 s->contents = bfd_alloc (dynobj, s->size);
2063 if (s->contents == NULL)
2064 return FALSE;
2065 }
2066 /* We use the reloc_count field to keep track of how many of the
2067 relocs we have output so far. */
2068 s->reloc_count = 0;
2069
2070 /* Make space for the global offset table. */
2071 s = bfd_get_section_by_name (dynobj, ".got");
2072 s->contents = bfd_alloc (dynobj, s->size);
2073 if (s->contents == NULL)
2074 return FALSE;
2075
2076 *sneedptr = bfd_get_section_by_name (dynobj, ".need");
2077 *srulesptr = bfd_get_section_by_name (dynobj, ".rules");
2078
2079 return TRUE;
2080 }
2081
2082 /* Link a dynamic object. We actually don't have anything to do at
2083 this point. This entry point exists to prevent the regular linker
2084 code from doing anything with the object. */
2085
2086 static bfd_boolean
2087 sunos_link_dynamic_object (struct bfd_link_info *info ATTRIBUTE_UNUSED,
2088 bfd *abfd ATTRIBUTE_UNUSED)
2089 {
2090 return TRUE;
2091 }
2092
2093 /* Write out a dynamic symbol. This is called by the final traversal
2094 over the symbol table. */
2095
2096 static bfd_boolean
2097 sunos_write_dynamic_symbol (bfd *output_bfd,
2098 struct bfd_link_info *info,
2099 struct aout_link_hash_entry *harg)
2100 {
2101 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
2102 int type;
2103 bfd_vma val;
2104 asection *s;
2105 struct external_nlist *outsym;
2106
2107 /* If this symbol is in the procedure linkage table, fill in the
2108 table entry. */
2109 if (h->plt_offset != 0)
2110 {
2111 bfd *dynobj;
2112 asection *splt;
2113 bfd_byte *p;
2114 bfd_vma r_address;
2115
2116 dynobj = sunos_hash_table (info)->dynobj;
2117 splt = bfd_get_section_by_name (dynobj, ".plt");
2118 p = splt->contents + h->plt_offset;
2119
2120 s = bfd_get_section_by_name (dynobj, ".dynrel");
2121
2122 r_address = (splt->output_section->vma
2123 + splt->output_offset
2124 + h->plt_offset);
2125
2126 switch (bfd_get_arch (output_bfd))
2127 {
2128 case bfd_arch_sparc:
2129 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
2130 {
2131 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD0, p);
2132 bfd_put_32 (output_bfd,
2133 (SPARC_PLT_ENTRY_WORD1
2134 + (((- (h->plt_offset + 4) >> 2)
2135 & 0x3fffffff))),
2136 p + 4);
2137 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD2 + s->reloc_count,
2138 p + 8);
2139 }
2140 else
2141 {
2142 val = (h->root.root.u.def.section->output_section->vma
2143 + h->root.root.u.def.section->output_offset
2144 + h->root.root.u.def.value);
2145 bfd_put_32 (output_bfd,
2146 SPARC_PLT_PIC_WORD0 + ((val >> 10) & 0x3fffff),
2147 p);
2148 bfd_put_32 (output_bfd,
2149 SPARC_PLT_PIC_WORD1 + (val & 0x3ff),
2150 p + 4);
2151 bfd_put_32 (output_bfd, SPARC_PLT_PIC_WORD2, p + 8);
2152 }
2153 break;
2154
2155 case bfd_arch_m68k:
2156 if (! info->shared && (h->flags & SUNOS_DEF_REGULAR) != 0)
2157 abort ();
2158 bfd_put_16 (output_bfd, M68K_PLT_ENTRY_WORD0, p);
2159 bfd_put_32 (output_bfd, (- (h->plt_offset + 2)), p + 2);
2160 bfd_put_16 (output_bfd, (bfd_vma) s->reloc_count, p + 6);
2161 r_address += 2;
2162 break;
2163
2164 default:
2165 abort ();
2166 }
2167
2168 /* We also need to add a jump table reloc, unless this is the
2169 result of a JMP_TBL reloc from PIC compiled code. */
2170 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
2171 {
2172 BFD_ASSERT (h->dynindx >= 0);
2173 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
2174 < s->size);
2175 p = s->contents + s->reloc_count * obj_reloc_entry_size (output_bfd);
2176 if (obj_reloc_entry_size (output_bfd) == RELOC_STD_SIZE)
2177 {
2178 struct reloc_std_external *srel;
2179
2180 srel = (struct reloc_std_external *) p;
2181 PUT_WORD (output_bfd, r_address, srel->r_address);
2182 if (bfd_header_big_endian (output_bfd))
2183 {
2184 srel->r_index[0] = (bfd_byte) (h->dynindx >> 16);
2185 srel->r_index[1] = (bfd_byte) (h->dynindx >> 8);
2186 srel->r_index[2] = (bfd_byte) (h->dynindx);
2187 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_BIG
2188 | RELOC_STD_BITS_JMPTABLE_BIG);
2189 }
2190 else
2191 {
2192 srel->r_index[2] = (bfd_byte) (h->dynindx >> 16);
2193 srel->r_index[1] = (bfd_byte) (h->dynindx >> 8);
2194 srel->r_index[0] = (bfd_byte)h->dynindx;
2195 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_LITTLE
2196 | RELOC_STD_BITS_JMPTABLE_LITTLE);
2197 }
2198 }
2199 else
2200 {
2201 struct reloc_ext_external *erel;
2202
2203 erel = (struct reloc_ext_external *) p;
2204 PUT_WORD (output_bfd, r_address, erel->r_address);
2205 if (bfd_header_big_endian (output_bfd))
2206 {
2207 erel->r_index[0] = (bfd_byte) (h->dynindx >> 16);
2208 erel->r_index[1] = (bfd_byte) (h->dynindx >> 8);
2209 erel->r_index[2] = (bfd_byte)h->dynindx;
2210 erel->r_type[0] =
2211 (RELOC_EXT_BITS_EXTERN_BIG
2212 | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_BIG));
2213 }
2214 else
2215 {
2216 erel->r_index[2] = (bfd_byte) (h->dynindx >> 16);
2217 erel->r_index[1] = (bfd_byte) (h->dynindx >> 8);
2218 erel->r_index[0] = (bfd_byte)h->dynindx;
2219 erel->r_type[0] =
2220 (RELOC_EXT_BITS_EXTERN_LITTLE
2221 | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_LITTLE));
2222 }
2223 PUT_WORD (output_bfd, (bfd_vma) 0, erel->r_addend);
2224 }
2225
2226 ++s->reloc_count;
2227 }
2228 }
2229
2230 /* If this is not a dynamic symbol, we don't have to do anything
2231 else. We only check this after handling the PLT entry, because
2232 we can have a PLT entry for a nondynamic symbol when linking PIC
2233 compiled code from a regular object. */
2234 if (h->dynindx < 0)
2235 return TRUE;
2236
2237 switch (h->root.root.type)
2238 {
2239 default:
2240 case bfd_link_hash_new:
2241 abort ();
2242 /* Avoid variable not initialized warnings. */
2243 return TRUE;
2244 case bfd_link_hash_undefined:
2245 type = N_UNDF | N_EXT;
2246 val = 0;
2247 break;
2248 case bfd_link_hash_defined:
2249 case bfd_link_hash_defweak:
2250 {
2251 asection *sec;
2252 asection *output_section;
2253
2254 sec = h->root.root.u.def.section;
2255 output_section = sec->output_section;
2256 BFD_ASSERT (bfd_is_abs_section (output_section)
2257 || output_section->owner == output_bfd);
2258 if (h->plt_offset != 0
2259 && (h->flags & SUNOS_DEF_REGULAR) == 0)
2260 {
2261 type = N_UNDF | N_EXT;
2262 val = 0;
2263 }
2264 else
2265 {
2266 if (output_section == obj_textsec (output_bfd))
2267 type = (h->root.root.type == bfd_link_hash_defined
2268 ? N_TEXT
2269 : N_WEAKT);
2270 else if (output_section == obj_datasec (output_bfd))
2271 type = (h->root.root.type == bfd_link_hash_defined
2272 ? N_DATA
2273 : N_WEAKD);
2274 else if (output_section == obj_bsssec (output_bfd))
2275 type = (h->root.root.type == bfd_link_hash_defined
2276 ? N_BSS
2277 : N_WEAKB);
2278 else
2279 type = (h->root.root.type == bfd_link_hash_defined
2280 ? N_ABS
2281 : N_WEAKA);
2282 type |= N_EXT;
2283 val = (h->root.root.u.def.value
2284 + output_section->vma
2285 + sec->output_offset);
2286 }
2287 }
2288 break;
2289 case bfd_link_hash_common:
2290 type = N_UNDF | N_EXT;
2291 val = h->root.root.u.c.size;
2292 break;
2293 case bfd_link_hash_undefweak:
2294 type = N_WEAKU;
2295 val = 0;
2296 break;
2297 case bfd_link_hash_indirect:
2298 case bfd_link_hash_warning:
2299 /* FIXME: Ignore these for now. The circumstances under which
2300 they should be written out are not clear to me. */
2301 return TRUE;
2302 }
2303
2304 s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynsym");
2305 BFD_ASSERT (s != NULL);
2306 outsym = ((struct external_nlist *)
2307 (s->contents + h->dynindx * EXTERNAL_NLIST_SIZE));
2308
2309 H_PUT_8 (output_bfd, type, outsym->e_type);
2310 H_PUT_8 (output_bfd, 0, outsym->e_other);
2311
2312 /* FIXME: The native linker doesn't use 0 for desc. It seems to use
2313 one less than the desc value in the shared library, although that
2314 seems unlikely. */
2315 H_PUT_16 (output_bfd, 0, outsym->e_desc);
2316
2317 PUT_WORD (output_bfd, h->dynstr_index, outsym->e_strx);
2318 PUT_WORD (output_bfd, val, outsym->e_value);
2319
2320 return TRUE;
2321 }
2322
2323 /* This is called for each reloc against an external symbol. If this
2324 is a reloc which are are going to copy as a dynamic reloc, then
2325 copy it over, and tell the caller to not bother processing this
2326 reloc. */
2327
2328 static bfd_boolean
2329 sunos_check_dynamic_reloc (struct bfd_link_info *info,
2330 bfd *input_bfd,
2331 asection *input_section,
2332 struct aout_link_hash_entry *harg,
2333 void * reloc,
2334 bfd_byte *contents ATTRIBUTE_UNUSED,
2335 bfd_boolean *skip,
2336 bfd_vma *relocationp)
2337 {
2338 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
2339 bfd *dynobj;
2340 bfd_boolean baserel;
2341 bfd_boolean jmptbl;
2342 bfd_boolean pcrel;
2343 asection *s;
2344 bfd_byte *p;
2345 long indx;
2346
2347 *skip = FALSE;
2348
2349 dynobj = sunos_hash_table (info)->dynobj;
2350
2351 if (h != NULL
2352 && h->plt_offset != 0
2353 && (info->shared
2354 || (h->flags & SUNOS_DEF_REGULAR) == 0))
2355 {
2356 asection *splt;
2357
2358 /* Redirect the relocation to the PLT entry. */
2359 splt = bfd_get_section_by_name (dynobj, ".plt");
2360 *relocationp = (splt->output_section->vma
2361 + splt->output_offset
2362 + h->plt_offset);
2363 }
2364
2365 if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
2366 {
2367 struct reloc_std_external *srel;
2368
2369 srel = (struct reloc_std_external *) reloc;
2370 if (bfd_header_big_endian (input_bfd))
2371 {
2372 baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
2373 jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
2374 pcrel = (0 != (srel->r_type[0] & RELOC_STD_BITS_PCREL_BIG));
2375 }
2376 else
2377 {
2378 baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
2379 jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE));
2380 pcrel = (0 != (srel->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE));
2381 }
2382 }
2383 else
2384 {
2385 struct reloc_ext_external *erel;
2386 int r_type;
2387
2388 erel = (struct reloc_ext_external *) reloc;
2389 if (bfd_header_big_endian (input_bfd))
2390 r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
2391 >> RELOC_EXT_BITS_TYPE_SH_BIG);
2392 else
2393 r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
2394 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
2395 baserel = (r_type == RELOC_BASE10
2396 || r_type == RELOC_BASE13
2397 || r_type == RELOC_BASE22);
2398 jmptbl = r_type == RELOC_JMP_TBL;
2399 pcrel = (r_type == RELOC_DISP8
2400 || r_type == RELOC_DISP16
2401 || r_type == RELOC_DISP32
2402 || r_type == RELOC_WDISP30
2403 || r_type == RELOC_WDISP22);
2404 /* We don't consider the PC10 and PC22 types to be PC relative,
2405 because they are pcrel_offset. */
2406 }
2407
2408 if (baserel)
2409 {
2410 bfd_vma *got_offsetp;
2411 asection *sgot;
2412
2413 if (h != NULL)
2414 got_offsetp = &h->got_offset;
2415 else if (adata (input_bfd).local_got_offsets == NULL)
2416 got_offsetp = NULL;
2417 else
2418 {
2419 struct reloc_std_external *srel;
2420 int r_index;
2421
2422 srel = (struct reloc_std_external *) reloc;
2423 if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
2424 {
2425 if (bfd_header_big_endian (input_bfd))
2426 r_index = ((srel->r_index[0] << 16)
2427 | (srel->r_index[1] << 8)
2428 | srel->r_index[2]);
2429 else
2430 r_index = ((srel->r_index[2] << 16)
2431 | (srel->r_index[1] << 8)
2432 | srel->r_index[0]);
2433 }
2434 else
2435 {
2436 struct reloc_ext_external *erel;
2437
2438 erel = (struct reloc_ext_external *) reloc;
2439 if (bfd_header_big_endian (input_bfd))
2440 r_index = ((erel->r_index[0] << 16)
2441 | (erel->r_index[1] << 8)
2442 | erel->r_index[2]);
2443 else
2444 r_index = ((erel->r_index[2] << 16)
2445 | (erel->r_index[1] << 8)
2446 | erel->r_index[0]);
2447 }
2448
2449 got_offsetp = adata (input_bfd).local_got_offsets + r_index;
2450 }
2451
2452 BFD_ASSERT (got_offsetp != NULL && *got_offsetp != 0);
2453
2454 sgot = bfd_get_section_by_name (dynobj, ".got");
2455
2456 /* We set the least significant bit to indicate whether we have
2457 already initialized the GOT entry. */
2458 if ((*got_offsetp & 1) == 0)
2459 {
2460 if (h == NULL
2461 || (! info->shared
2462 && ((h->flags & SUNOS_DEF_DYNAMIC) == 0
2463 || (h->flags & SUNOS_DEF_REGULAR) != 0)))
2464 PUT_WORD (dynobj, *relocationp, sgot->contents + *got_offsetp);
2465 else
2466 PUT_WORD (dynobj, 0, sgot->contents + *got_offsetp);
2467
2468 if (info->shared
2469 || (h != NULL
2470 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
2471 && (h->flags & SUNOS_DEF_REGULAR) == 0))
2472 {
2473 /* We need to create a GLOB_DAT or 32 reloc to tell the
2474 dynamic linker to fill in this entry in the table. */
2475
2476 s = bfd_get_section_by_name (dynobj, ".dynrel");
2477 BFD_ASSERT (s != NULL);
2478 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
2479 < s->size);
2480
2481 p = (s->contents
2482 + s->reloc_count * obj_reloc_entry_size (dynobj));
2483
2484 if (h != NULL)
2485 indx = h->dynindx;
2486 else
2487 indx = 0;
2488
2489 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
2490 {
2491 struct reloc_std_external *srel;
2492
2493 srel = (struct reloc_std_external *) p;
2494 PUT_WORD (dynobj,
2495 (*got_offsetp
2496 + sgot->output_section->vma
2497 + sgot->output_offset),
2498 srel->r_address);
2499 if (bfd_header_big_endian (dynobj))
2500 {
2501 srel->r_index[0] = (bfd_byte) (indx >> 16);
2502 srel->r_index[1] = (bfd_byte) (indx >> 8);
2503 srel->r_index[2] = (bfd_byte)indx;
2504 if (h == NULL)
2505 srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_BIG;
2506 else
2507 srel->r_type[0] =
2508 (RELOC_STD_BITS_EXTERN_BIG
2509 | RELOC_STD_BITS_BASEREL_BIG
2510 | RELOC_STD_BITS_RELATIVE_BIG
2511 | (2 << RELOC_STD_BITS_LENGTH_SH_BIG));
2512 }
2513 else
2514 {
2515 srel->r_index[2] = (bfd_byte) (indx >> 16);
2516 srel->r_index[1] = (bfd_byte) (indx >> 8);
2517 srel->r_index[0] = (bfd_byte)indx;
2518 if (h == NULL)
2519 srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_LITTLE;
2520 else
2521 srel->r_type[0] =
2522 (RELOC_STD_BITS_EXTERN_LITTLE
2523 | RELOC_STD_BITS_BASEREL_LITTLE
2524 | RELOC_STD_BITS_RELATIVE_LITTLE
2525 | (2 << RELOC_STD_BITS_LENGTH_SH_LITTLE));
2526 }
2527 }
2528 else
2529 {
2530 struct reloc_ext_external *erel;
2531
2532 erel = (struct reloc_ext_external *) p;
2533 PUT_WORD (dynobj,
2534 (*got_offsetp
2535 + sgot->output_section->vma
2536 + sgot->output_offset),
2537 erel->r_address);
2538 if (bfd_header_big_endian (dynobj))
2539 {
2540 erel->r_index[0] = (bfd_byte) (indx >> 16);
2541 erel->r_index[1] = (bfd_byte) (indx >> 8);
2542 erel->r_index[2] = (bfd_byte)indx;
2543 if (h == NULL)
2544 erel->r_type[0] =
2545 RELOC_32 << RELOC_EXT_BITS_TYPE_SH_BIG;
2546 else
2547 erel->r_type[0] =
2548 (RELOC_EXT_BITS_EXTERN_BIG
2549 | (RELOC_GLOB_DAT << RELOC_EXT_BITS_TYPE_SH_BIG));
2550 }
2551 else
2552 {
2553 erel->r_index[2] = (bfd_byte) (indx >> 16);
2554 erel->r_index[1] = (bfd_byte) (indx >> 8);
2555 erel->r_index[0] = (bfd_byte)indx;
2556 if (h == NULL)
2557 erel->r_type[0] =
2558 RELOC_32 << RELOC_EXT_BITS_TYPE_SH_LITTLE;
2559 else
2560 erel->r_type[0] =
2561 (RELOC_EXT_BITS_EXTERN_LITTLE
2562 | (RELOC_GLOB_DAT
2563 << RELOC_EXT_BITS_TYPE_SH_LITTLE));
2564 }
2565 PUT_WORD (dynobj, 0, erel->r_addend);
2566 }
2567
2568 ++s->reloc_count;
2569 }
2570
2571 *got_offsetp |= 1;
2572 }
2573
2574 *relocationp = (sgot->vma
2575 + (*got_offsetp &~ (bfd_vma) 1)
2576 - sunos_hash_table (info)->got_base);
2577
2578 /* There is nothing else to do for a base relative reloc. */
2579 return TRUE;
2580 }
2581
2582 if (! sunos_hash_table (info)->dynamic_sections_needed)
2583 return TRUE;
2584 if (! info->shared)
2585 {
2586 if (h == NULL
2587 || h->dynindx == -1
2588 || h->root.root.type != bfd_link_hash_undefined
2589 || (h->flags & SUNOS_DEF_REGULAR) != 0
2590 || (h->flags & SUNOS_DEF_DYNAMIC) == 0
2591 || (h->root.root.u.undef.abfd->flags & DYNAMIC) == 0)
2592 return TRUE;
2593 }
2594 else
2595 {
2596 if (h != NULL
2597 && (h->dynindx == -1
2598 || jmptbl
2599 || strcmp (h->root.root.root.string,
2600 "__GLOBAL_OFFSET_TABLE_") == 0))
2601 return TRUE;
2602 }
2603
2604 /* It looks like this is a reloc we are supposed to copy. */
2605
2606 s = bfd_get_section_by_name (dynobj, ".dynrel");
2607 BFD_ASSERT (s != NULL);
2608 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) < s->size);
2609
2610 p = s->contents + s->reloc_count * obj_reloc_entry_size (dynobj);
2611
2612 /* Copy the reloc over. */
2613 memcpy (p, reloc, obj_reloc_entry_size (dynobj));
2614
2615 if (h != NULL)
2616 indx = h->dynindx;
2617 else
2618 indx = 0;
2619
2620 /* Adjust the address and symbol index. */
2621 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
2622 {
2623 struct reloc_std_external *srel;
2624
2625 srel = (struct reloc_std_external *) p;
2626 PUT_WORD (dynobj,
2627 (GET_WORD (dynobj, srel->r_address)
2628 + input_section->output_section->vma
2629 + input_section->output_offset),
2630 srel->r_address);
2631 if (bfd_header_big_endian (dynobj))
2632 {
2633 srel->r_index[0] = (bfd_byte) (indx >> 16);
2634 srel->r_index[1] = (bfd_byte) (indx >> 8);
2635 srel->r_index[2] = (bfd_byte)indx;
2636 }
2637 else
2638 {
2639 srel->r_index[2] = (bfd_byte) (indx >> 16);
2640 srel->r_index[1] = (bfd_byte) (indx >> 8);
2641 srel->r_index[0] = (bfd_byte)indx;
2642 }
2643 /* FIXME: We may have to change the addend for a PC relative
2644 reloc. */
2645 }
2646 else
2647 {
2648 struct reloc_ext_external *erel;
2649
2650 erel = (struct reloc_ext_external *) p;
2651 PUT_WORD (dynobj,
2652 (GET_WORD (dynobj, erel->r_address)
2653 + input_section->output_section->vma
2654 + input_section->output_offset),
2655 erel->r_address);
2656 if (bfd_header_big_endian (dynobj))
2657 {
2658 erel->r_index[0] = (bfd_byte) (indx >> 16);
2659 erel->r_index[1] = (bfd_byte) (indx >> 8);
2660 erel->r_index[2] = (bfd_byte)indx;
2661 }
2662 else
2663 {
2664 erel->r_index[2] = (bfd_byte) (indx >> 16);
2665 erel->r_index[1] = (bfd_byte) (indx >> 8);
2666 erel->r_index[0] = (bfd_byte)indx;
2667 }
2668 if (pcrel && h != NULL)
2669 {
2670 /* Adjust the addend for the change in address. */
2671 PUT_WORD (dynobj,
2672 (GET_WORD (dynobj, erel->r_addend)
2673 - (input_section->output_section->vma
2674 + input_section->output_offset
2675 - input_section->vma)),
2676 erel->r_addend);
2677 }
2678 }
2679
2680 ++s->reloc_count;
2681
2682 if (h != NULL)
2683 *skip = TRUE;
2684
2685 return TRUE;
2686 }
2687
2688 /* Finish up the dynamic linking information. */
2689
2690 static bfd_boolean
2691 sunos_finish_dynamic_link (bfd *abfd, struct bfd_link_info *info)
2692 {
2693 bfd *dynobj;
2694 asection *o;
2695 asection *s;
2696 asection *sdyn;
2697
2698 if (! sunos_hash_table (info)->dynamic_sections_needed
2699 && ! sunos_hash_table (info)->got_needed)
2700 return TRUE;
2701
2702 dynobj = sunos_hash_table (info)->dynobj;
2703
2704 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2705 BFD_ASSERT (sdyn != NULL);
2706
2707 /* Finish up the .need section. The linker emulation code filled it
2708 in, but with offsets from the start of the section instead of
2709 real addresses. Now that we know the section location, we can
2710 fill in the final values. */
2711 s = bfd_get_section_by_name (dynobj, ".need");
2712 if (s != NULL && s->size != 0)
2713 {
2714 file_ptr filepos;
2715 bfd_byte *p;
2716
2717 filepos = s->output_section->filepos + s->output_offset;
2718 p = s->contents;
2719 while (1)
2720 {
2721 bfd_vma val;
2722
2723 PUT_WORD (dynobj, GET_WORD (dynobj, p) + filepos, p);
2724 val = GET_WORD (dynobj, p + 12);
2725 if (val == 0)
2726 break;
2727 PUT_WORD (dynobj, val + filepos, p + 12);
2728 p += 16;
2729 }
2730 }
2731
2732 /* The first entry in the .got section is the address of the
2733 dynamic information, unless this is a shared library. */
2734 s = bfd_get_section_by_name (dynobj, ".got");
2735 BFD_ASSERT (s != NULL);
2736 if (info->shared || sdyn->size == 0)
2737 PUT_WORD (dynobj, 0, s->contents);
2738 else
2739 PUT_WORD (dynobj, sdyn->output_section->vma + sdyn->output_offset,
2740 s->contents);
2741
2742 for (o = dynobj->sections; o != NULL; o = o->next)
2743 {
2744 if ((o->flags & SEC_HAS_CONTENTS) != 0
2745 && o->contents != NULL)
2746 {
2747 BFD_ASSERT (o->output_section != NULL
2748 && o->output_section->owner == abfd);
2749 if (! bfd_set_section_contents (abfd, o->output_section,
2750 o->contents,
2751 (file_ptr) o->output_offset,
2752 o->size))
2753 return FALSE;
2754 }
2755 }
2756
2757 if (sdyn->size > 0)
2758 {
2759 struct external_sun4_dynamic esd;
2760 struct external_sun4_dynamic_link esdl;
2761 file_ptr pos;
2762
2763 /* Finish up the dynamic link information. */
2764 PUT_WORD (dynobj, (bfd_vma) 3, esd.ld_version);
2765 PUT_WORD (dynobj,
2766 sdyn->output_section->vma + sdyn->output_offset + sizeof esd,
2767 esd.ldd);
2768 PUT_WORD (dynobj,
2769 (sdyn->output_section->vma
2770 + sdyn->output_offset
2771 + sizeof esd
2772 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
2773 esd.ld);
2774
2775 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esd,
2776 (file_ptr) sdyn->output_offset,
2777 (bfd_size_type) sizeof esd))
2778 return FALSE;
2779
2780 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_loaded);
2781
2782 s = bfd_get_section_by_name (dynobj, ".need");
2783 if (s == NULL || s->size == 0)
2784 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_need);
2785 else
2786 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2787 esdl.ld_need);
2788
2789 s = bfd_get_section_by_name (dynobj, ".rules");
2790 if (s == NULL || s->size == 0)
2791 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_rules);
2792 else
2793 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2794 esdl.ld_rules);
2795
2796 s = bfd_get_section_by_name (dynobj, ".got");
2797 BFD_ASSERT (s != NULL);
2798 PUT_WORD (dynobj, s->output_section->vma + s->output_offset,
2799 esdl.ld_got);
2800
2801 s = bfd_get_section_by_name (dynobj, ".plt");
2802 BFD_ASSERT (s != NULL);
2803 PUT_WORD (dynobj, s->output_section->vma + s->output_offset,
2804 esdl.ld_plt);
2805 PUT_WORD (dynobj, s->size, esdl.ld_plt_sz);
2806
2807 s = bfd_get_section_by_name (dynobj, ".dynrel");
2808 BFD_ASSERT (s != NULL);
2809 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
2810 == s->size);
2811 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2812 esdl.ld_rel);
2813
2814 s = bfd_get_section_by_name (dynobj, ".hash");
2815 BFD_ASSERT (s != NULL);
2816 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2817 esdl.ld_hash);
2818
2819 s = bfd_get_section_by_name (dynobj, ".dynsym");
2820 BFD_ASSERT (s != NULL);
2821 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2822 esdl.ld_stab);
2823
2824 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_stab_hash);
2825
2826 PUT_WORD (dynobj, (bfd_vma) sunos_hash_table (info)->bucketcount,
2827 esdl.ld_buckets);
2828
2829 s = bfd_get_section_by_name (dynobj, ".dynstr");
2830 BFD_ASSERT (s != NULL);
2831 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2832 esdl.ld_symbols);
2833 PUT_WORD (dynobj, s->size, esdl.ld_symb_size);
2834
2835 /* The size of the text area is the size of the .text section
2836 rounded up to a page boundary. FIXME: Should the page size be
2837 conditional on something? */
2838 PUT_WORD (dynobj,
2839 BFD_ALIGN (obj_textsec (abfd)->size, 0x2000),
2840 esdl.ld_text);
2841
2842 pos = sdyn->output_offset;
2843 pos += sizeof esd + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE;
2844 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esdl,
2845 pos, (bfd_size_type) sizeof esdl))
2846 return FALSE;
2847
2848 abfd->flags |= DYNAMIC;
2849 }
2850
2851 return TRUE;
2852 }
This page took 0.120658 seconds and 4 git commands to generate.