03c41a5286220cb0aa7f0cbb2af8e3d7a9abc3c4
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24 SECTION
25 Symbols
26
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
50 @menu
51 @* Reading Symbols::
52 @* Writing Symbols::
53 @* Mini Symbols::
54 @* typedef asymbol::
55 @* symbol handling functions::
56 @end menu
57
58 INODE
59 Reading Symbols, Writing Symbols, Symbols, Symbols
60 SUBSECTION
61 Reading symbols
62
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
66
67 | long storage_needed;
68 | asymbol **symbol_table;
69 | long number_of_symbols;
70 | long i;
71 |
72 | storage_needed = bfd_get_symtab_upper_bound (abfd);
73 |
74 | if (storage_needed < 0)
75 | FAIL
76 |
77 | if (storage_needed == 0) {
78 | return ;
79 | }
80 | symbol_table = (asymbol **) xmalloc (storage_needed);
81 | ...
82 | number_of_symbols =
83 | bfd_canonicalize_symtab (abfd, symbol_table);
84 |
85 | if (number_of_symbols < 0)
86 | FAIL
87 |
88 | for (i = 0; i < number_of_symbols; i++) {
89 | process_symbol (symbol_table[i]);
90 | }
91
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
94
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 Writing symbols
99
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
109
110 | #include "bfd.h"
111 | main()
112 | {
113 | bfd *abfd;
114 | asymbol *ptrs[2];
115 | asymbol *new;
116 |
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
124 |
125 | ptrs[0] = new;
126 | ptrs[1] = (asymbol *)0;
127 |
128 | bfd_set_symtab(abfd, ptrs, 1);
129 | bfd_close(abfd);
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171 */
172 /*
173 SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178 */
179
180 /*
181 CODE_FRAGMENT
182
183 .
184 .typedef struct symbol_cache_entry
185 .{
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
190 .
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 .
196 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
197 .
198 . {* The text of the symbol. The name is left alone, and not copied; the
199 . application may not alter it. *}
200 . const char *name;
201 .
202 . {* The value of the symbol. This really should be a union of a
203 . numeric value with a pointer, since some flags indicate that
204 . a pointer to another symbol is stored here. *}
205 . symvalue value;
206 .
207 . {* Attributes of a symbol: *}
208 .
209 .#define BSF_NO_FLAGS 0x00
210 .
211 . {* The symbol has local scope; <<static>> in <<C>>. The value
212 . is the offset into the section of the data. *}
213 .#define BSF_LOCAL 0x01
214 .
215 . {* The symbol has global scope; initialized data in <<C>>. The
216 . value is the offset into the section of the data. *}
217 .#define BSF_GLOBAL 0x02
218 .
219 . {* The symbol has global scope and is exported. The value is
220 . the offset into the section of the data. *}
221 .#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
222 .
223 . {* A normal C symbol would be one of:
224 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
225 . <<BSF_GLOBAL>> *}
226 .
227 . {* The symbol is a debugging record. The value has an arbitary
228 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
229 .#define BSF_DEBUGGING 0x08
230 .
231 . {* The symbol denotes a function entry point. Used in ELF,
232 . perhaps others someday. *}
233 .#define BSF_FUNCTION 0x10
234 .
235 . {* Used by the linker. *}
236 .#define BSF_KEEP 0x20
237 .#define BSF_KEEP_G 0x40
238 .
239 . {* A weak global symbol, overridable without warnings by
240 . a regular global symbol of the same name. *}
241 .#define BSF_WEAK 0x80
242 .
243 . {* This symbol was created to point to a section, e.g. ELF's
244 . STT_SECTION symbols. *}
245 .#define BSF_SECTION_SYM 0x100
246 .
247 . {* The symbol used to be a common symbol, but now it is
248 . allocated. *}
249 .#define BSF_OLD_COMMON 0x200
250 .
251 . {* The default value for common data. *}
252 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
253 .
254 . {* In some files the type of a symbol sometimes alters its
255 . location in an output file - ie in coff a <<ISFCN>> symbol
256 . which is also <<C_EXT>> symbol appears where it was
257 . declared and not at the end of a section. This bit is set
258 . by the target BFD part to convey this information. *}
259 .
260 .#define BSF_NOT_AT_END 0x400
261 .
262 . {* Signal that the symbol is the label of constructor section. *}
263 .#define BSF_CONSTRUCTOR 0x800
264 .
265 . {* Signal that the symbol is a warning symbol. The name is a
266 . warning. The name of the next symbol is the one to warn about;
267 . if a reference is made to a symbol with the same name as the next
268 . symbol, a warning is issued by the linker. *}
269 .#define BSF_WARNING 0x1000
270 .
271 . {* Signal that the symbol is indirect. This symbol is an indirect
272 . pointer to the symbol with the same name as the next symbol. *}
273 .#define BSF_INDIRECT 0x2000
274 .
275 . {* BSF_FILE marks symbols that contain a file name. This is used
276 . for ELF STT_FILE symbols. *}
277 .#define BSF_FILE 0x4000
278 .
279 . {* Symbol is from dynamic linking information. *}
280 .#define BSF_DYNAMIC 0x8000
281 .
282 . {* The symbol denotes a data object. Used in ELF, and perhaps
283 . others someday. *}
284 .#define BSF_OBJECT 0x10000
285 .
286 . {* This symbol is a debugging symbol. The value is the offset
287 . into the section of the data. BSF_DEBUGGING should be set
288 . as well. *}
289 .#define BSF_DEBUGGING_RELOC 0x20000
290 .
291 . flagword flags;
292 .
293 . {* A pointer to the section to which this symbol is
294 . relative. This will always be non NULL, there are special
295 . sections for undefined and absolute symbols. *}
296 . struct sec *section;
297 .
298 . {* Back end special data. *}
299 . union
300 . {
301 . PTR p;
302 . bfd_vma i;
303 . } udata;
304 .
305 .} asymbol;
306 */
307
308 #include "bfd.h"
309 #include "sysdep.h"
310 #include "libbfd.h"
311 #include "safe-ctype.h"
312 #include "bfdlink.h"
313 #include "aout/stab_gnu.h"
314
315 static char coff_section_type PARAMS ((const char *));
316 static int cmpindexentry PARAMS ((const PTR, const PTR));
317
318 /*
319 DOCDD
320 INODE
321 symbol handling functions, , typedef asymbol, Symbols
322 SUBSECTION
323 Symbol handling functions
324 */
325
326 /*
327 FUNCTION
328 bfd_get_symtab_upper_bound
329
330 DESCRIPTION
331 Return the number of bytes required to store a vector of pointers
332 to <<asymbols>> for all the symbols in the BFD @var{abfd},
333 including a terminal NULL pointer. If there are no symbols in
334 the BFD, then return 0. If an error occurs, return -1.
335
336 .#define bfd_get_symtab_upper_bound(abfd) \
337 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
338
339 */
340
341 /*
342 FUNCTION
343 bfd_is_local_label
344
345 SYNOPSIS
346 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
347
348 DESCRIPTION
349 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
350 a compiler generated local label, else return false.
351 */
352
353 boolean
354 bfd_is_local_label (abfd, sym)
355 bfd *abfd;
356 asymbol *sym;
357 {
358 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
359 starts with '.' is local. This would accidentally catch section names
360 if we didn't reject them here. */
361 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_SECTION_SYM)) != 0)
362 return false;
363 if (sym->name == NULL)
364 return false;
365 return bfd_is_local_label_name (abfd, sym->name);
366 }
367
368 /*
369 FUNCTION
370 bfd_is_local_label_name
371
372 SYNOPSIS
373 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
374
375 DESCRIPTION
376 Return true if a symbol with the name @var{name} in the BFD
377 @var{abfd} is a compiler generated local label, else return
378 false. This just checks whether the name has the form of a
379 local label.
380
381 .#define bfd_is_local_label_name(abfd, name) \
382 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
383 */
384
385 /*
386 FUNCTION
387 bfd_canonicalize_symtab
388
389 DESCRIPTION
390 Read the symbols from the BFD @var{abfd}, and fills in
391 the vector @var{location} with pointers to the symbols and
392 a trailing NULL.
393 Return the actual number of symbol pointers, not
394 including the NULL.
395
396 .#define bfd_canonicalize_symtab(abfd, location) \
397 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
398 . (abfd, location))
399
400 */
401
402 /*
403 FUNCTION
404 bfd_set_symtab
405
406 SYNOPSIS
407 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
408
409 DESCRIPTION
410 Arrange that when the output BFD @var{abfd} is closed,
411 the table @var{location} of @var{count} pointers to symbols
412 will be written.
413 */
414
415 boolean
416 bfd_set_symtab (abfd, location, symcount)
417 bfd *abfd;
418 asymbol **location;
419 unsigned int symcount;
420 {
421 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
422 {
423 bfd_set_error (bfd_error_invalid_operation);
424 return false;
425 }
426
427 bfd_get_outsymbols (abfd) = location;
428 bfd_get_symcount (abfd) = symcount;
429 return true;
430 }
431
432 /*
433 FUNCTION
434 bfd_print_symbol_vandf
435
436 SYNOPSIS
437 void bfd_print_symbol_vandf(bfd *abfd, PTR file, asymbol *symbol);
438
439 DESCRIPTION
440 Print the value and flags of the @var{symbol} supplied to the
441 stream @var{file}.
442 */
443 void
444 bfd_print_symbol_vandf (abfd, arg, symbol)
445 bfd *abfd;
446 PTR arg;
447 asymbol *symbol;
448 {
449 FILE *file = (FILE *) arg;
450 flagword type = symbol->flags;
451 if (symbol->section != (asection *) NULL)
452 {
453 bfd_fprintf_vma (abfd, file,
454 symbol->value + symbol->section->vma);
455 }
456 else
457 {
458 bfd_fprintf_vma (abfd, file, symbol->value);
459 }
460
461 /* This presumes that a symbol can not be both BSF_DEBUGGING and
462 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
463 BSF_OBJECT. */
464 fprintf (file, " %c%c%c%c%c%c%c",
465 ((type & BSF_LOCAL)
466 ? (type & BSF_GLOBAL) ? '!' : 'l'
467 : (type & BSF_GLOBAL) ? 'g' : ' '),
468 (type & BSF_WEAK) ? 'w' : ' ',
469 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
470 (type & BSF_WARNING) ? 'W' : ' ',
471 (type & BSF_INDIRECT) ? 'I' : ' ',
472 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
473 ((type & BSF_FUNCTION)
474 ? 'F'
475 : ((type & BSF_FILE)
476 ? 'f'
477 : ((type & BSF_OBJECT) ? 'O' : ' '))));
478 }
479
480 /*
481 FUNCTION
482 bfd_make_empty_symbol
483
484 DESCRIPTION
485 Create a new <<asymbol>> structure for the BFD @var{abfd}
486 and return a pointer to it.
487
488 This routine is necessary because each back end has private
489 information surrounding the <<asymbol>>. Building your own
490 <<asymbol>> and pointing to it will not create the private
491 information, and will cause problems later on.
492
493 .#define bfd_make_empty_symbol(abfd) \
494 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
495 */
496
497 /*
498 FUNCTION
499 bfd_make_debug_symbol
500
501 DESCRIPTION
502 Create a new <<asymbol>> structure for the BFD @var{abfd},
503 to be used as a debugging symbol. Further details of its use have
504 yet to be worked out.
505
506 .#define bfd_make_debug_symbol(abfd,ptr,size) \
507 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
508 */
509
510 struct section_to_type
511 {
512 const char *section;
513 char type;
514 };
515
516 /* Map section names to POSIX/BSD single-character symbol types.
517 This table is probably incomplete. It is sorted for convenience of
518 adding entries. Since it is so short, a linear search is used. */
519 static const struct section_to_type stt[] =
520 {
521 {"*DEBUG*", 'N'},
522 {".bss", 'b'},
523 {"zerovars", 'b'}, /* MRI .bss */
524 {".data", 'd'},
525 {"vars", 'd'}, /* MRI .data */
526 {".rdata", 'r'}, /* Read only data. */
527 {".rodata", 'r'}, /* Read only data. */
528 {".sbss", 's'}, /* Small BSS (uninitialized data). */
529 {".scommon", 'c'}, /* Small common. */
530 {".sdata", 'g'}, /* Small initialized data. */
531 {".text", 't'},
532 {"code", 't'}, /* MRI .text */
533 {".drectve", 'i'}, /* MSVC's .drective section */
534 {".idata", 'i'}, /* MSVC's .idata (import) section */
535 {".edata", 'e'}, /* MSVC's .edata (export) section */
536 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
537 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
538 {0, 0}
539 };
540
541 /* Return the single-character symbol type corresponding to
542 section S, or '?' for an unknown COFF section.
543
544 Check for any leading string which matches, so .text5 returns
545 't' as well as .text */
546
547 static char
548 coff_section_type (s)
549 const char *s;
550 {
551 const struct section_to_type *t;
552
553 for (t = &stt[0]; t->section; t++)
554 if (!strncmp (s, t->section, strlen (t->section)))
555 return t->type;
556
557 return '?';
558 }
559
560 /*
561 FUNCTION
562 bfd_decode_symclass
563
564 DESCRIPTION
565 Return a character corresponding to the symbol
566 class of @var{symbol}, or '?' for an unknown class.
567
568 SYNOPSIS
569 int bfd_decode_symclass(asymbol *symbol);
570 */
571 int
572 bfd_decode_symclass (symbol)
573 asymbol *symbol;
574 {
575 char c;
576
577 if (bfd_is_com_section (symbol->section))
578 return 'C';
579 if (bfd_is_und_section (symbol->section))
580 {
581 if (symbol->flags & BSF_WEAK)
582 {
583 /* If weak, determine if it's specifically an object
584 or non-object weak. */
585 if (symbol->flags & BSF_OBJECT)
586 return 'v';
587 else
588 return 'w';
589 }
590 else
591 return 'U';
592 }
593 if (bfd_is_ind_section (symbol->section))
594 return 'I';
595 if (symbol->flags & BSF_WEAK)
596 {
597 /* If weak, determine if it's specifically an object
598 or non-object weak. */
599 if (symbol->flags & BSF_OBJECT)
600 return 'V';
601 else
602 return 'W';
603 }
604 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
605 return '?';
606
607 if (bfd_is_abs_section (symbol->section))
608 c = 'a';
609 else if (symbol->section)
610 c = coff_section_type (symbol->section->name);
611 else
612 return '?';
613 if (symbol->flags & BSF_GLOBAL)
614 c = TOUPPER (c);
615 return c;
616
617 /* We don't have to handle these cases just yet, but we will soon:
618 N_SETV: 'v';
619 N_SETA: 'l';
620 N_SETT: 'x';
621 N_SETD: 'z';
622 N_SETB: 's';
623 N_INDR: 'i';
624 */
625 }
626
627 /*
628 FUNCTION
629 bfd_is_undefined_symclass
630
631 DESCRIPTION
632 Returns non-zero if the class symbol returned by
633 bfd_decode_symclass represents an undefined symbol.
634 Returns zero otherwise.
635
636 SYNOPSIS
637 boolean bfd_is_undefined_symclass (int symclass);
638 */
639
640 boolean
641 bfd_is_undefined_symclass (symclass)
642 int symclass;
643 {
644 return symclass == 'U' || symclass == 'w' || symclass == 'v';
645 }
646
647 /*
648 FUNCTION
649 bfd_symbol_info
650
651 DESCRIPTION
652 Fill in the basic info about symbol that nm needs.
653 Additional info may be added by the back-ends after
654 calling this function.
655
656 SYNOPSIS
657 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
658 */
659
660 void
661 bfd_symbol_info (symbol, ret)
662 asymbol *symbol;
663 symbol_info *ret;
664 {
665 ret->type = bfd_decode_symclass (symbol);
666
667 if (bfd_is_undefined_symclass (ret->type))
668 ret->value = 0;
669 else
670 ret->value = symbol->value + symbol->section->vma;
671
672 ret->name = symbol->name;
673 }
674
675 /*
676 FUNCTION
677 bfd_copy_private_symbol_data
678
679 SYNOPSIS
680 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
681
682 DESCRIPTION
683 Copy private symbol information from @var{isym} in the BFD
684 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
685 Return <<true>> on success, <<false>> on error. Possible error
686 returns are:
687
688 o <<bfd_error_no_memory>> -
689 Not enough memory exists to create private data for @var{osec}.
690
691 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
692 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
693 . (ibfd, isymbol, obfd, osymbol))
694
695 */
696
697 /* The generic version of the function which returns mini symbols.
698 This is used when the backend does not provide a more efficient
699 version. It just uses BFD asymbol structures as mini symbols. */
700
701 long
702 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
703 bfd *abfd;
704 boolean dynamic;
705 PTR *minisymsp;
706 unsigned int *sizep;
707 {
708 long storage;
709 asymbol **syms = NULL;
710 long symcount;
711
712 if (dynamic)
713 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
714 else
715 storage = bfd_get_symtab_upper_bound (abfd);
716 if (storage < 0)
717 goto error_return;
718 if (storage == 0)
719 return 0;
720
721 syms = (asymbol **) bfd_malloc ((bfd_size_type) storage);
722 if (syms == NULL)
723 goto error_return;
724
725 if (dynamic)
726 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
727 else
728 symcount = bfd_canonicalize_symtab (abfd, syms);
729 if (symcount < 0)
730 goto error_return;
731
732 *minisymsp = (PTR) syms;
733 *sizep = sizeof (asymbol *);
734 return symcount;
735
736 error_return:
737 if (syms != NULL)
738 free (syms);
739 return -1;
740 }
741
742 /* The generic version of the function which converts a minisymbol to
743 an asymbol. We don't worry about the sym argument we are passed;
744 we just return the asymbol the minisymbol points to. */
745
746 /*ARGSUSED*/
747 asymbol *
748 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
749 bfd *abfd ATTRIBUTE_UNUSED;
750 boolean dynamic ATTRIBUTE_UNUSED;
751 const PTR minisym;
752 asymbol *sym ATTRIBUTE_UNUSED;
753 {
754 return *(asymbol **) minisym;
755 }
756
757 /* Look through stabs debugging information in .stab and .stabstr
758 sections to find the source file and line closest to a desired
759 location. This is used by COFF and ELF targets. It sets *pfound
760 to true if it finds some information. The *pinfo field is used to
761 pass cached information in and out of this routine; this first time
762 the routine is called for a BFD, *pinfo should be NULL. The value
763 placed in *pinfo should be saved with the BFD, and passed back each
764 time this function is called. */
765
766 /* We use a cache by default. */
767
768 #define ENABLE_CACHING
769
770 /* We keep an array of indexentry structures to record where in the
771 stabs section we should look to find line number information for a
772 particular address. */
773
774 struct indexentry
775 {
776 bfd_vma val;
777 bfd_byte *stab;
778 bfd_byte *str;
779 char *directory_name;
780 char *file_name;
781 char *function_name;
782 };
783
784 /* Compare two indexentry structures. This is called via qsort. */
785
786 static int
787 cmpindexentry (a, b)
788 const PTR a;
789 const PTR b;
790 {
791 const struct indexentry *contestantA = (const struct indexentry *) a;
792 const struct indexentry *contestantB = (const struct indexentry *) b;
793
794 if (contestantA->val < contestantB->val)
795 return -1;
796 else if (contestantA->val > contestantB->val)
797 return 1;
798 else
799 return 0;
800 }
801
802 /* A pointer to this structure is stored in *pinfo. */
803
804 struct stab_find_info
805 {
806 /* The .stab section. */
807 asection *stabsec;
808 /* The .stabstr section. */
809 asection *strsec;
810 /* The contents of the .stab section. */
811 bfd_byte *stabs;
812 /* The contents of the .stabstr section. */
813 bfd_byte *strs;
814
815 /* A table that indexes stabs by memory address. */
816 struct indexentry *indextable;
817 /* The number of entries in indextable. */
818 int indextablesize;
819
820 #ifdef ENABLE_CACHING
821 /* Cached values to restart quickly. */
822 struct indexentry *cached_indexentry;
823 bfd_vma cached_offset;
824 bfd_byte *cached_stab;
825 char *cached_file_name;
826 #endif
827
828 /* Saved ptr to malloc'ed filename. */
829 char *filename;
830 };
831
832 boolean
833 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
834 pfilename, pfnname, pline, pinfo)
835 bfd *abfd;
836 asymbol **symbols;
837 asection *section;
838 bfd_vma offset;
839 boolean *pfound;
840 const char **pfilename;
841 const char **pfnname;
842 unsigned int *pline;
843 PTR *pinfo;
844 {
845 struct stab_find_info *info;
846 bfd_size_type stabsize, strsize;
847 bfd_byte *stab, *str;
848 bfd_byte *last_stab = NULL;
849 bfd_size_type stroff;
850 struct indexentry *indexentry;
851 char *file_name;
852 char *directory_name;
853 int saw_fun;
854
855 *pfound = false;
856 *pfilename = bfd_get_filename (abfd);
857 *pfnname = NULL;
858 *pline = 0;
859
860 /* Stabs entries use a 12 byte format:
861 4 byte string table index
862 1 byte stab type
863 1 byte stab other field
864 2 byte stab desc field
865 4 byte stab value
866 FIXME: This will have to change for a 64 bit object format.
867
868 The stabs symbols are divided into compilation units. For the
869 first entry in each unit, the type of 0, the value is the length
870 of the string table for this unit, and the desc field is the
871 number of stabs symbols for this unit. */
872
873 #define STRDXOFF (0)
874 #define TYPEOFF (4)
875 #define OTHEROFF (5)
876 #define DESCOFF (6)
877 #define VALOFF (8)
878 #define STABSIZE (12)
879
880 info = (struct stab_find_info *) *pinfo;
881 if (info != NULL)
882 {
883 if (info->stabsec == NULL || info->strsec == NULL)
884 {
885 /* No stabs debugging information. */
886 return true;
887 }
888
889 stabsize = info->stabsec->_raw_size;
890 strsize = info->strsec->_raw_size;
891 }
892 else
893 {
894 long reloc_size, reloc_count;
895 arelent **reloc_vector;
896 int i;
897 char *name;
898 char *function_name;
899 bfd_size_type amt = sizeof *info;
900
901 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
902 if (info == NULL)
903 return false;
904
905 /* FIXME: When using the linker --split-by-file or
906 --split-by-reloc options, it is possible for the .stab and
907 .stabstr sections to be split. We should handle that. */
908
909 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
910 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
911
912 if (info->stabsec == NULL || info->strsec == NULL)
913 {
914 /* No stabs debugging information. Set *pinfo so that we
915 can return quickly in the info != NULL case above. */
916 *pinfo = (PTR) info;
917 return true;
918 }
919
920 stabsize = info->stabsec->_raw_size;
921 strsize = info->strsec->_raw_size;
922
923 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
924 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
925 if (info->stabs == NULL || info->strs == NULL)
926 return false;
927
928 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
929 (bfd_vma) 0, stabsize)
930 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
931 (bfd_vma) 0, strsize))
932 return false;
933
934 /* If this is a relocateable object file, we have to relocate
935 the entries in .stab. This should always be simple 32 bit
936 relocations against symbols defined in this object file, so
937 this should be no big deal. */
938 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
939 if (reloc_size < 0)
940 return false;
941 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
942 if (reloc_vector == NULL && reloc_size != 0)
943 return false;
944 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
945 symbols);
946 if (reloc_count < 0)
947 {
948 if (reloc_vector != NULL)
949 free (reloc_vector);
950 return false;
951 }
952 if (reloc_count > 0)
953 {
954 arelent **pr;
955
956 for (pr = reloc_vector; *pr != NULL; pr++)
957 {
958 arelent *r;
959 unsigned long val;
960 asymbol *sym;
961
962 r = *pr;
963 if (r->howto->rightshift != 0
964 || r->howto->size != 2
965 || r->howto->bitsize != 32
966 || r->howto->pc_relative
967 || r->howto->bitpos != 0
968 || r->howto->dst_mask != 0xffffffff)
969 {
970 (*_bfd_error_handler)
971 (_("Unsupported .stab relocation"));
972 bfd_set_error (bfd_error_invalid_operation);
973 if (reloc_vector != NULL)
974 free (reloc_vector);
975 return false;
976 }
977
978 val = bfd_get_32 (abfd, info->stabs + r->address);
979 val &= r->howto->src_mask;
980 sym = *r->sym_ptr_ptr;
981 val += sym->value + sym->section->vma + r->addend;
982 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
983 }
984 }
985
986 if (reloc_vector != NULL)
987 free (reloc_vector);
988
989 /* First time through this function, build a table matching
990 function VM addresses to stabs, then sort based on starting
991 VM address. Do this in two passes: once to count how many
992 table entries we'll need, and a second to actually build the
993 table. */
994
995 info->indextablesize = 0;
996 saw_fun = 1;
997 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
998 {
999 if (stab[TYPEOFF] == N_SO)
1000 {
1001 /* N_SO with null name indicates EOF */
1002 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1003 continue;
1004
1005 /* if we did not see a function def, leave space for one. */
1006 if (saw_fun == 0)
1007 ++info->indextablesize;
1008
1009 saw_fun = 0;
1010
1011 /* two N_SO's in a row is a filename and directory. Skip */
1012 if (stab + STABSIZE < info->stabs + stabsize
1013 && *(stab + STABSIZE + TYPEOFF) == N_SO)
1014 {
1015 stab += STABSIZE;
1016 }
1017 }
1018 else if (stab[TYPEOFF] == N_FUN)
1019 {
1020 saw_fun = 1;
1021 ++info->indextablesize;
1022 }
1023 }
1024
1025 if (saw_fun == 0)
1026 ++info->indextablesize;
1027
1028 if (info->indextablesize == 0)
1029 return true;
1030 ++info->indextablesize;
1031
1032 amt = info->indextablesize;
1033 amt *= sizeof (struct indexentry);
1034 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1035 if (info->indextable == NULL)
1036 return false;
1037
1038 file_name = NULL;
1039 directory_name = NULL;
1040 saw_fun = 1;
1041
1042 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1043 i < info->indextablesize && stab < info->stabs + stabsize;
1044 stab += STABSIZE)
1045 {
1046 switch (stab[TYPEOFF])
1047 {
1048 case 0:
1049 /* This is the first entry in a compilation unit. */
1050 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1051 break;
1052 str += stroff;
1053 stroff = bfd_get_32 (abfd, stab + VALOFF);
1054 break;
1055
1056 case N_SO:
1057 /* The main file name. */
1058
1059 /* The following code creates a new indextable entry with
1060 a NULL function name if there were no N_FUNs in a file.
1061 Note that a N_SO without a file name is an EOF and
1062 there could be 2 N_SO following it with the new filename
1063 and directory. */
1064 if (saw_fun == 0)
1065 {
1066 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1067 info->indextable[i].stab = last_stab;
1068 info->indextable[i].str = str;
1069 info->indextable[i].directory_name = directory_name;
1070 info->indextable[i].file_name = file_name;
1071 info->indextable[i].function_name = NULL;
1072 ++i;
1073 }
1074 saw_fun = 0;
1075
1076 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1077 if (*file_name == '\0')
1078 {
1079 directory_name = NULL;
1080 file_name = NULL;
1081 saw_fun = 1;
1082 }
1083 else
1084 {
1085 last_stab = stab;
1086 if (stab + STABSIZE >= info->stabs + stabsize
1087 || *(stab + STABSIZE + TYPEOFF) != N_SO)
1088 {
1089 directory_name = NULL;
1090 }
1091 else
1092 {
1093 /* Two consecutive N_SOs are a directory and a
1094 file name. */
1095 stab += STABSIZE;
1096 directory_name = file_name;
1097 file_name = ((char *) str
1098 + bfd_get_32 (abfd, stab + STRDXOFF));
1099 }
1100 }
1101 break;
1102
1103 case N_SOL:
1104 /* The name of an include file. */
1105 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1106 break;
1107
1108 case N_FUN:
1109 /* A function name. */
1110 saw_fun = 1;
1111 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1112
1113 if (*name == '\0')
1114 name = NULL;
1115
1116 function_name = name;
1117
1118 if (name == NULL)
1119 continue;
1120
1121 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1122 info->indextable[i].stab = stab;
1123 info->indextable[i].str = str;
1124 info->indextable[i].directory_name = directory_name;
1125 info->indextable[i].file_name = file_name;
1126 info->indextable[i].function_name = function_name;
1127 ++i;
1128 break;
1129 }
1130 }
1131
1132 if (saw_fun == 0)
1133 {
1134 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1135 info->indextable[i].stab = last_stab;
1136 info->indextable[i].str = str;
1137 info->indextable[i].directory_name = directory_name;
1138 info->indextable[i].file_name = file_name;
1139 info->indextable[i].function_name = NULL;
1140 ++i;
1141 }
1142
1143 info->indextable[i].val = (bfd_vma) -1;
1144 info->indextable[i].stab = info->stabs + stabsize;
1145 info->indextable[i].str = str;
1146 info->indextable[i].directory_name = NULL;
1147 info->indextable[i].file_name = NULL;
1148 info->indextable[i].function_name = NULL;
1149 ++i;
1150
1151 info->indextablesize = i;
1152 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1153 cmpindexentry);
1154
1155 *pinfo = (PTR) info;
1156 }
1157
1158 /* We are passed a section relative offset. The offsets in the
1159 stabs information are absolute. */
1160 offset += bfd_get_section_vma (abfd, section);
1161
1162 #ifdef ENABLE_CACHING
1163 if (info->cached_indexentry != NULL
1164 && offset >= info->cached_offset
1165 && offset < (info->cached_indexentry + 1)->val)
1166 {
1167 stab = info->cached_stab;
1168 indexentry = info->cached_indexentry;
1169 file_name = info->cached_file_name;
1170 }
1171 else
1172 #endif
1173 {
1174 /* Cache non-existant or invalid. Do binary search on
1175 indextable. */
1176
1177 long low, high;
1178 long mid = -1;
1179
1180 indexentry = NULL;
1181
1182 low = 0;
1183 high = info->indextablesize - 1;
1184 while (low != high)
1185 {
1186 mid = (high + low) / 2;
1187 if (offset >= info->indextable[mid].val
1188 && offset < info->indextable[mid + 1].val)
1189 {
1190 indexentry = &info->indextable[mid];
1191 break;
1192 }
1193
1194 if (info->indextable[mid].val > offset)
1195 high = mid;
1196 else
1197 low = mid + 1;
1198 }
1199
1200 if (indexentry == NULL)
1201 return true;
1202
1203 stab = indexentry->stab + STABSIZE;
1204 file_name = indexentry->file_name;
1205 }
1206
1207 directory_name = indexentry->directory_name;
1208 str = indexentry->str;
1209
1210 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1211 {
1212 boolean done;
1213 bfd_vma val;
1214
1215 done = false;
1216
1217 switch (stab[TYPEOFF])
1218 {
1219 case N_SOL:
1220 /* The name of an include file. */
1221 val = bfd_get_32 (abfd, stab + VALOFF);
1222 if (val <= offset)
1223 {
1224 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1225 *pline = 0;
1226 }
1227 break;
1228
1229 case N_SLINE:
1230 case N_DSLINE:
1231 case N_BSLINE:
1232 /* A line number. The value is relative to the start of the
1233 current function. */
1234 val = indexentry->val + bfd_get_32 (abfd, stab + VALOFF);
1235 if (val <= offset)
1236 {
1237 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1238
1239 #ifdef ENABLE_CACHING
1240 info->cached_stab = stab;
1241 info->cached_offset = val;
1242 info->cached_file_name = file_name;
1243 info->cached_indexentry = indexentry;
1244 #endif
1245 }
1246 if (val > offset)
1247 done = true;
1248 break;
1249
1250 case N_FUN:
1251 case N_SO:
1252 done = true;
1253 break;
1254 }
1255
1256 if (done)
1257 break;
1258 }
1259
1260 *pfound = true;
1261
1262 if (IS_ABSOLUTE_PATH(file_name) || directory_name == NULL)
1263 *pfilename = file_name;
1264 else
1265 {
1266 size_t dirlen;
1267
1268 dirlen = strlen (directory_name);
1269 if (info->filename == NULL
1270 || strncmp (info->filename, directory_name, dirlen) != 0
1271 || strcmp (info->filename + dirlen, file_name) != 0)
1272 {
1273 if (info->filename != NULL)
1274 free (info->filename);
1275 info->filename = (char *) bfd_malloc ((bfd_size_type) dirlen
1276 + strlen (file_name) + 1);
1277 if (info->filename == NULL)
1278 return false;
1279 strcpy (info->filename, directory_name);
1280 strcpy (info->filename + dirlen, file_name);
1281 }
1282
1283 *pfilename = info->filename;
1284 }
1285
1286 if (indexentry->function_name != NULL)
1287 {
1288 char *s;
1289
1290 /* This will typically be something like main:F(0,1), so we want
1291 to clobber the colon. It's OK to change the name, since the
1292 string is in our own local storage anyhow. */
1293
1294 s = strchr (indexentry->function_name, ':');
1295 if (s != NULL)
1296 *s = '\0';
1297
1298 *pfnname = indexentry->function_name;
1299 }
1300
1301 return true;
1302 }
This page took 0.067819 seconds and 4 git commands to generate.