0a5ded780cb5dc8352e892c183582d09bf25e2f4
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990-2016 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Symbols
25
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 Reading symbols
61
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
65
66 | long storage_needed;
67 | asymbol **symbol_table;
68 | long number_of_symbols;
69 | long i;
70 |
71 | storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 | if (storage_needed < 0)
74 | FAIL
75 |
76 | if (storage_needed == 0)
77 | return;
78 |
79 | symbol_table = xmalloc (storage_needed);
80 | ...
81 | number_of_symbols =
82 | bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 | if (number_of_symbols < 0)
85 | FAIL
86 |
87 | for (i = 0; i < number_of_symbols; i++)
88 | process_symbol (symbol_table[i]);
89
90 All storage for the symbols themselves is in an objalloc
91 connected to the BFD; it is freed when the BFD is closed.
92
93 INODE
94 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
95 SUBSECTION
96 Writing symbols
97
98 Writing of a symbol table is automatic when a BFD open for
99 writing is closed. The application attaches a vector of
100 pointers to pointers to symbols to the BFD being written, and
101 fills in the symbol count. The close and cleanup code reads
102 through the table provided and performs all the necessary
103 operations. The BFD output code must always be provided with an
104 ``owned'' symbol: one which has come from another BFD, or one
105 which has been created using <<bfd_make_empty_symbol>>. Here is an
106 example showing the creation of a symbol table with only one element:
107
108 | #include "sysdep.h"
109 | #include "bfd.h"
110 | int main (void)
111 | {
112 | bfd *abfd;
113 | asymbol *ptrs[2];
114 | asymbol *new;
115 |
116 | abfd = bfd_openw ("foo","a.out-sunos-big");
117 | bfd_set_format (abfd, bfd_object);
118 | new = bfd_make_empty_symbol (abfd);
119 | new->name = "dummy_symbol";
120 | new->section = bfd_make_section_old_way (abfd, ".text");
121 | new->flags = BSF_GLOBAL;
122 | new->value = 0x12345;
123 |
124 | ptrs[0] = new;
125 | ptrs[1] = 0;
126 |
127 | bfd_set_symtab (abfd, ptrs, 1);
128 | bfd_close (abfd);
129 | return 0;
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitrary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitrary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171 */
172 /*
173 SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178 */
179
180 /*
181 CODE_FRAGMENT
182
183 .
184 .typedef struct bfd_symbol
185 .{
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
190 .
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
196 .
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
199 . const char *name;
200 .
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
204 . symvalue value;
205 .
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0x00
208 .
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL (1 << 0)
212 .
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL (1 << 1)
216 .
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
220 .
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_COMMON>>, <<BSF_UNDEFINED>> or
223 . <<BSF_GLOBAL>>. *}
224 .
225 . {* The symbol is a debugging record. The value has an arbitrary
226 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
227 .#define BSF_DEBUGGING (1 << 2)
228 .
229 . {* The symbol denotes a function entry point. Used in ELF,
230 . perhaps others someday. *}
231 .#define BSF_FUNCTION (1 << 3)
232 .
233 . {* Used by the linker. *}
234 .#define BSF_KEEP (1 << 5)
235 .#define BSF_KEEP_G (1 << 6)
236 .
237 . {* A weak global symbol, overridable without warnings by
238 . a regular global symbol of the same name. *}
239 .#define BSF_WEAK (1 << 7)
240 .
241 . {* This symbol was created to point to a section, e.g. ELF's
242 . STT_SECTION symbols. *}
243 .#define BSF_SECTION_SYM (1 << 8)
244 .
245 . {* The symbol used to be a common symbol, but now it is
246 . allocated. *}
247 .#define BSF_OLD_COMMON (1 << 9)
248 .
249 . {* In some files the type of a symbol sometimes alters its
250 . location in an output file - ie in coff a <<ISFCN>> symbol
251 . which is also <<C_EXT>> symbol appears where it was
252 . declared and not at the end of a section. This bit is set
253 . by the target BFD part to convey this information. *}
254 .#define BSF_NOT_AT_END (1 << 10)
255 .
256 . {* Signal that the symbol is the label of constructor section. *}
257 .#define BSF_CONSTRUCTOR (1 << 11)
258 .
259 . {* Signal that the symbol is a warning symbol. The name is a
260 . warning. The name of the next symbol is the one to warn about;
261 . if a reference is made to a symbol with the same name as the next
262 . symbol, a warning is issued by the linker. *}
263 .#define BSF_WARNING (1 << 12)
264 .
265 . {* Signal that the symbol is indirect. This symbol is an indirect
266 . pointer to the symbol with the same name as the next symbol. *}
267 .#define BSF_INDIRECT (1 << 13)
268 .
269 . {* BSF_FILE marks symbols that contain a file name. This is used
270 . for ELF STT_FILE symbols. *}
271 .#define BSF_FILE (1 << 14)
272 .
273 . {* Symbol is from dynamic linking information. *}
274 .#define BSF_DYNAMIC (1 << 15)
275 .
276 . {* The symbol denotes a data object. Used in ELF, and perhaps
277 . others someday. *}
278 .#define BSF_OBJECT (1 << 16)
279 .
280 . {* This symbol is a debugging symbol. The value is the offset
281 . into the section of the data. BSF_DEBUGGING should be set
282 . as well. *}
283 .#define BSF_DEBUGGING_RELOC (1 << 17)
284 .
285 . {* This symbol is thread local. Used in ELF. *}
286 .#define BSF_THREAD_LOCAL (1 << 18)
287 .
288 . {* This symbol represents a complex relocation expression,
289 . with the expression tree serialized in the symbol name. *}
290 .#define BSF_RELC (1 << 19)
291 .
292 . {* This symbol represents a signed complex relocation expression,
293 . with the expression tree serialized in the symbol name. *}
294 .#define BSF_SRELC (1 << 20)
295 .
296 . {* This symbol was created by bfd_get_synthetic_symtab. *}
297 .#define BSF_SYNTHETIC (1 << 21)
298 .
299 . {* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.
300 . The dynamic linker will compute the value of this symbol by
301 . calling the function that it points to. BSF_FUNCTION must
302 . also be also set. *}
303 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
304 . {* This symbol is a globally unique data object. The dynamic linker
305 . will make sure that in the entire process there is just one symbol
306 . with this name and type in use. BSF_OBJECT must also be set. *}
307 .#define BSF_GNU_UNIQUE (1 << 23)
308 .
309 . flagword flags;
310 .
311 . {* A pointer to the section to which this symbol is
312 . relative. This will always be non NULL, there are special
313 . sections for undefined and absolute symbols. *}
314 . struct bfd_section *section;
315 .
316 . {* Back end special data. *}
317 . union
318 . {
319 . void *p;
320 . bfd_vma i;
321 . }
322 . udata;
323 .}
324 .asymbol;
325 .
326 */
327
328 #include "sysdep.h"
329 #include "bfd.h"
330 #include "libbfd.h"
331 #include "safe-ctype.h"
332 #include "bfdlink.h"
333 #include "aout/stab_gnu.h"
334
335 /*
336 DOCDD
337 INODE
338 symbol handling functions, , typedef asymbol, Symbols
339 SUBSECTION
340 Symbol handling functions
341 */
342
343 /*
344 FUNCTION
345 bfd_get_symtab_upper_bound
346
347 DESCRIPTION
348 Return the number of bytes required to store a vector of pointers
349 to <<asymbols>> for all the symbols in the BFD @var{abfd},
350 including a terminal NULL pointer. If there are no symbols in
351 the BFD, then return 0. If an error occurs, return -1.
352
353 .#define bfd_get_symtab_upper_bound(abfd) \
354 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
355 .
356 */
357
358 /*
359 FUNCTION
360 bfd_is_local_label
361
362 SYNOPSIS
363 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
364
365 DESCRIPTION
366 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
367 a compiler generated local label, else return FALSE.
368 */
369
370 bfd_boolean
371 bfd_is_local_label (bfd *abfd, asymbol *sym)
372 {
373 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
374 starts with '.' is local. This would accidentally catch section names
375 if we didn't reject them here. */
376 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
377 return FALSE;
378 if (sym->name == NULL)
379 return FALSE;
380 return bfd_is_local_label_name (abfd, sym->name);
381 }
382
383 /*
384 FUNCTION
385 bfd_is_local_label_name
386
387 SYNOPSIS
388 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
389
390 DESCRIPTION
391 Return TRUE if a symbol with the name @var{name} in the BFD
392 @var{abfd} is a compiler generated local label, else return
393 FALSE. This just checks whether the name has the form of a
394 local label.
395
396 .#define bfd_is_local_label_name(abfd, name) \
397 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
398 .
399 */
400
401 /*
402 FUNCTION
403 bfd_is_target_special_symbol
404
405 SYNOPSIS
406 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
407
408 DESCRIPTION
409 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
410 special to the particular target represented by the BFD. Such symbols
411 should normally not be mentioned to the user.
412
413 .#define bfd_is_target_special_symbol(abfd, sym) \
414 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
415 .
416 */
417
418 /*
419 FUNCTION
420 bfd_canonicalize_symtab
421
422 DESCRIPTION
423 Read the symbols from the BFD @var{abfd}, and fills in
424 the vector @var{location} with pointers to the symbols and
425 a trailing NULL.
426 Return the actual number of symbol pointers, not
427 including the NULL.
428
429 .#define bfd_canonicalize_symtab(abfd, location) \
430 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
431 .
432 */
433
434 /*
435 FUNCTION
436 bfd_set_symtab
437
438 SYNOPSIS
439 bfd_boolean bfd_set_symtab
440 (bfd *abfd, asymbol **location, unsigned int count);
441
442 DESCRIPTION
443 Arrange that when the output BFD @var{abfd} is closed,
444 the table @var{location} of @var{count} pointers to symbols
445 will be written.
446 */
447
448 bfd_boolean
449 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
450 {
451 if (abfd->format != bfd_object || bfd_read_p (abfd))
452 {
453 bfd_set_error (bfd_error_invalid_operation);
454 return FALSE;
455 }
456
457 bfd_get_outsymbols (abfd) = location;
458 bfd_get_symcount (abfd) = symcount;
459 return TRUE;
460 }
461
462 /*
463 FUNCTION
464 bfd_print_symbol_vandf
465
466 SYNOPSIS
467 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
468
469 DESCRIPTION
470 Print the value and flags of the @var{symbol} supplied to the
471 stream @var{file}.
472 */
473 void
474 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
475 {
476 FILE *file = (FILE *) arg;
477
478 flagword type = symbol->flags;
479
480 if (symbol->section != NULL)
481 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
482 else
483 bfd_fprintf_vma (abfd, file, symbol->value);
484
485 /* This presumes that a symbol can not be both BSF_DEBUGGING and
486 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
487 BSF_OBJECT. */
488 fprintf (file, " %c%c%c%c%c%c%c",
489 ((type & BSF_LOCAL)
490 ? (type & BSF_GLOBAL) ? '!' : 'l'
491 : (type & BSF_GLOBAL) ? 'g'
492 : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
493 (type & BSF_WEAK) ? 'w' : ' ',
494 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
495 (type & BSF_WARNING) ? 'W' : ' ',
496 (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
497 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
498 ((type & BSF_FUNCTION)
499 ? 'F'
500 : ((type & BSF_FILE)
501 ? 'f'
502 : ((type & BSF_OBJECT) ? 'O' : ' '))));
503 }
504
505 /*
506 FUNCTION
507 bfd_make_empty_symbol
508
509 DESCRIPTION
510 Create a new <<asymbol>> structure for the BFD @var{abfd}
511 and return a pointer to it.
512
513 This routine is necessary because each back end has private
514 information surrounding the <<asymbol>>. Building your own
515 <<asymbol>> and pointing to it will not create the private
516 information, and will cause problems later on.
517
518 .#define bfd_make_empty_symbol(abfd) \
519 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
520 .
521 */
522
523 /*
524 FUNCTION
525 _bfd_generic_make_empty_symbol
526
527 SYNOPSIS
528 asymbol *_bfd_generic_make_empty_symbol (bfd *);
529
530 DESCRIPTION
531 Create a new <<asymbol>> structure for the BFD @var{abfd}
532 and return a pointer to it. Used by core file routines,
533 binary back-end and anywhere else where no private info
534 is needed.
535 */
536
537 asymbol *
538 _bfd_generic_make_empty_symbol (bfd *abfd)
539 {
540 bfd_size_type amt = sizeof (asymbol);
541 asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
542 if (new_symbol)
543 new_symbol->the_bfd = abfd;
544 return new_symbol;
545 }
546
547 /*
548 FUNCTION
549 bfd_make_debug_symbol
550
551 DESCRIPTION
552 Create a new <<asymbol>> structure for the BFD @var{abfd},
553 to be used as a debugging symbol. Further details of its use have
554 yet to be worked out.
555
556 .#define bfd_make_debug_symbol(abfd,ptr,size) \
557 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
558 .
559 */
560
561 struct section_to_type
562 {
563 const char *section;
564 char type;
565 };
566
567 /* Map section names to POSIX/BSD single-character symbol types.
568 This table is probably incomplete. It is sorted for convenience of
569 adding entries. Since it is so short, a linear search is used. */
570 static const struct section_to_type stt[] =
571 {
572 {".bss", 'b'},
573 {"code", 't'}, /* MRI .text */
574 {".data", 'd'},
575 {"*DEBUG*", 'N'},
576 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
577 {".drectve", 'i'}, /* MSVC's .drective section */
578 {".edata", 'e'}, /* MSVC's .edata (export) section */
579 {".fini", 't'}, /* ELF fini section */
580 {".idata", 'i'}, /* MSVC's .idata (import) section */
581 {".init", 't'}, /* ELF init section */
582 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
583 {".rdata", 'r'}, /* Read only data. */
584 {".rodata", 'r'}, /* Read only data. */
585 {".sbss", 's'}, /* Small BSS (uninitialized data). */
586 {".scommon", 'c'}, /* Small common. */
587 {".sdata", 'g'}, /* Small initialized data. */
588 {".text", 't'},
589 {"vars", 'd'}, /* MRI .data */
590 {"zerovars", 'b'}, /* MRI .bss */
591 {0, 0}
592 };
593
594 /* Return the single-character symbol type corresponding to
595 section S, or '?' for an unknown COFF section.
596
597 Check for any leading string which matches, so .text5 returns
598 't' as well as .text */
599
600 static char
601 coff_section_type (const char *s)
602 {
603 const struct section_to_type *t;
604
605 for (t = &stt[0]; t->section; t++)
606 if (!strncmp (s, t->section, strlen (t->section)))
607 return t->type;
608
609 return '?';
610 }
611
612 /* Return the single-character symbol type corresponding to section
613 SECTION, or '?' for an unknown section. This uses section flags to
614 identify sections.
615
616 FIXME These types are unhandled: c, i, e, p. If we handled these also,
617 we could perhaps obsolete coff_section_type. */
618
619 static char
620 decode_section_type (const struct bfd_section *section)
621 {
622 if (section->flags & SEC_CODE)
623 return 't';
624 if (section->flags & SEC_DATA)
625 {
626 if (section->flags & SEC_READONLY)
627 return 'r';
628 else if (section->flags & SEC_SMALL_DATA)
629 return 'g';
630 else
631 return 'd';
632 }
633 if ((section->flags & SEC_HAS_CONTENTS) == 0)
634 {
635 if (section->flags & SEC_SMALL_DATA)
636 return 's';
637 else
638 return 'b';
639 }
640 if (section->flags & SEC_DEBUGGING)
641 return 'N';
642 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
643 return 'n';
644
645 return '?';
646 }
647
648 /*
649 FUNCTION
650 bfd_decode_symclass
651
652 DESCRIPTION
653 Return a character corresponding to the symbol
654 class of @var{symbol}, or '?' for an unknown class.
655
656 SYNOPSIS
657 int bfd_decode_symclass (asymbol *symbol);
658 */
659 int
660 bfd_decode_symclass (asymbol *symbol)
661 {
662 char c;
663
664 if (symbol->section && bfd_is_com_section (symbol->section))
665 return 'C';
666 if (bfd_is_und_section (symbol->section))
667 {
668 if (symbol->flags & BSF_WEAK)
669 {
670 /* If weak, determine if it's specifically an object
671 or non-object weak. */
672 if (symbol->flags & BSF_OBJECT)
673 return 'v';
674 else
675 return 'w';
676 }
677 else
678 return 'U';
679 }
680 if (bfd_is_ind_section (symbol->section))
681 return 'I';
682 if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
683 return 'i';
684 if (symbol->flags & BSF_WEAK)
685 {
686 /* If weak, determine if it's specifically an object
687 or non-object weak. */
688 if (symbol->flags & BSF_OBJECT)
689 return 'V';
690 else
691 return 'W';
692 }
693 if (symbol->flags & BSF_GNU_UNIQUE)
694 return 'u';
695 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
696 return '?';
697
698 if (bfd_is_abs_section (symbol->section))
699 c = 'a';
700 else if (symbol->section)
701 {
702 c = coff_section_type (symbol->section->name);
703 if (c == '?')
704 c = decode_section_type (symbol->section);
705 }
706 else
707 return '?';
708 if (symbol->flags & BSF_GLOBAL)
709 c = TOUPPER (c);
710 return c;
711
712 /* We don't have to handle these cases just yet, but we will soon:
713 N_SETV: 'v';
714 N_SETA: 'l';
715 N_SETT: 'x';
716 N_SETD: 'z';
717 N_SETB: 's';
718 N_INDR: 'i';
719 */
720 }
721
722 /*
723 FUNCTION
724 bfd_is_undefined_symclass
725
726 DESCRIPTION
727 Returns non-zero if the class symbol returned by
728 bfd_decode_symclass represents an undefined symbol.
729 Returns zero otherwise.
730
731 SYNOPSIS
732 bfd_boolean bfd_is_undefined_symclass (int symclass);
733 */
734
735 bfd_boolean
736 bfd_is_undefined_symclass (int symclass)
737 {
738 return symclass == 'U' || symclass == 'w' || symclass == 'v';
739 }
740
741 /*
742 FUNCTION
743 bfd_symbol_info
744
745 DESCRIPTION
746 Fill in the basic info about symbol that nm needs.
747 Additional info may be added by the back-ends after
748 calling this function.
749
750 SYNOPSIS
751 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
752 */
753
754 void
755 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
756 {
757 ret->type = bfd_decode_symclass (symbol);
758
759 if (bfd_is_undefined_symclass (ret->type))
760 ret->value = 0;
761 else
762 ret->value = symbol->value + symbol->section->vma;
763
764 ret->name = symbol->name;
765 }
766
767 /*
768 FUNCTION
769 bfd_copy_private_symbol_data
770
771 SYNOPSIS
772 bfd_boolean bfd_copy_private_symbol_data
773 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
774
775 DESCRIPTION
776 Copy private symbol information from @var{isym} in the BFD
777 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
778 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
779 returns are:
780
781 o <<bfd_error_no_memory>> -
782 Not enough memory exists to create private data for @var{osec}.
783
784 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
785 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
786 . (ibfd, isymbol, obfd, osymbol))
787 .
788 */
789
790 /* The generic version of the function which returns mini symbols.
791 This is used when the backend does not provide a more efficient
792 version. It just uses BFD asymbol structures as mini symbols. */
793
794 long
795 _bfd_generic_read_minisymbols (bfd *abfd,
796 bfd_boolean dynamic,
797 void **minisymsp,
798 unsigned int *sizep)
799 {
800 long storage;
801 asymbol **syms = NULL;
802 long symcount;
803
804 if (dynamic)
805 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
806 else
807 storage = bfd_get_symtab_upper_bound (abfd);
808 if (storage < 0)
809 goto error_return;
810 if (storage == 0)
811 return 0;
812
813 syms = (asymbol **) bfd_malloc (storage);
814 if (syms == NULL)
815 goto error_return;
816
817 if (dynamic)
818 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
819 else
820 symcount = bfd_canonicalize_symtab (abfd, syms);
821 if (symcount < 0)
822 goto error_return;
823
824 *minisymsp = syms;
825 *sizep = sizeof (asymbol *);
826
827 return symcount;
828
829 error_return:
830 bfd_set_error (bfd_error_no_symbols);
831 if (syms != NULL)
832 free (syms);
833 return -1;
834 }
835
836 /* The generic version of the function which converts a minisymbol to
837 an asymbol. We don't worry about the sym argument we are passed;
838 we just return the asymbol the minisymbol points to. */
839
840 asymbol *
841 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
842 bfd_boolean dynamic ATTRIBUTE_UNUSED,
843 const void *minisym,
844 asymbol *sym ATTRIBUTE_UNUSED)
845 {
846 return *(asymbol **) minisym;
847 }
848
849 /* Look through stabs debugging information in .stab and .stabstr
850 sections to find the source file and line closest to a desired
851 location. This is used by COFF and ELF targets. It sets *pfound
852 to TRUE if it finds some information. The *pinfo field is used to
853 pass cached information in and out of this routine; this first time
854 the routine is called for a BFD, *pinfo should be NULL. The value
855 placed in *pinfo should be saved with the BFD, and passed back each
856 time this function is called. */
857
858 /* We use a cache by default. */
859
860 #define ENABLE_CACHING
861
862 /* We keep an array of indexentry structures to record where in the
863 stabs section we should look to find line number information for a
864 particular address. */
865
866 struct indexentry
867 {
868 bfd_vma val;
869 bfd_byte *stab;
870 bfd_byte *str;
871 char *directory_name;
872 char *file_name;
873 char *function_name;
874 };
875
876 /* Compare two indexentry structures. This is called via qsort. */
877
878 static int
879 cmpindexentry (const void *a, const void *b)
880 {
881 const struct indexentry *contestantA = (const struct indexentry *) a;
882 const struct indexentry *contestantB = (const struct indexentry *) b;
883
884 if (contestantA->val < contestantB->val)
885 return -1;
886 else if (contestantA->val > contestantB->val)
887 return 1;
888 else
889 return 0;
890 }
891
892 /* A pointer to this structure is stored in *pinfo. */
893
894 struct stab_find_info
895 {
896 /* The .stab section. */
897 asection *stabsec;
898 /* The .stabstr section. */
899 asection *strsec;
900 /* The contents of the .stab section. */
901 bfd_byte *stabs;
902 /* The contents of the .stabstr section. */
903 bfd_byte *strs;
904
905 /* A table that indexes stabs by memory address. */
906 struct indexentry *indextable;
907 /* The number of entries in indextable. */
908 int indextablesize;
909
910 #ifdef ENABLE_CACHING
911 /* Cached values to restart quickly. */
912 struct indexentry *cached_indexentry;
913 bfd_vma cached_offset;
914 bfd_byte *cached_stab;
915 char *cached_file_name;
916 #endif
917
918 /* Saved ptr to malloc'ed filename. */
919 char *filename;
920 };
921
922 bfd_boolean
923 _bfd_stab_section_find_nearest_line (bfd *abfd,
924 asymbol **symbols,
925 asection *section,
926 bfd_vma offset,
927 bfd_boolean *pfound,
928 const char **pfilename,
929 const char **pfnname,
930 unsigned int *pline,
931 void **pinfo)
932 {
933 struct stab_find_info *info;
934 bfd_size_type stabsize, strsize;
935 bfd_byte *stab, *str;
936 bfd_byte *nul_fun, *nul_str;
937 bfd_size_type stroff;
938 struct indexentry *indexentry;
939 char *file_name;
940 char *directory_name;
941 bfd_boolean saw_line, saw_func;
942
943 *pfound = FALSE;
944 *pfilename = bfd_get_filename (abfd);
945 *pfnname = NULL;
946 *pline = 0;
947
948 /* Stabs entries use a 12 byte format:
949 4 byte string table index
950 1 byte stab type
951 1 byte stab other field
952 2 byte stab desc field
953 4 byte stab value
954 FIXME: This will have to change for a 64 bit object format.
955
956 The stabs symbols are divided into compilation units. For the
957 first entry in each unit, the type of 0, the value is the length
958 of the string table for this unit, and the desc field is the
959 number of stabs symbols for this unit. */
960
961 #define STRDXOFF (0)
962 #define TYPEOFF (4)
963 #define OTHEROFF (5)
964 #define DESCOFF (6)
965 #define VALOFF (8)
966 #define STABSIZE (12)
967
968 info = (struct stab_find_info *) *pinfo;
969 if (info != NULL)
970 {
971 if (info->stabsec == NULL || info->strsec == NULL)
972 {
973 /* No stabs debugging information. */
974 return TRUE;
975 }
976
977 stabsize = (info->stabsec->rawsize
978 ? info->stabsec->rawsize
979 : info->stabsec->size);
980 strsize = (info->strsec->rawsize
981 ? info->strsec->rawsize
982 : info->strsec->size);
983 }
984 else
985 {
986 long reloc_size, reloc_count;
987 arelent **reloc_vector;
988 int i;
989 char *function_name;
990 bfd_size_type amt = sizeof *info;
991
992 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
993 if (info == NULL)
994 return FALSE;
995
996 /* FIXME: When using the linker --split-by-file or
997 --split-by-reloc options, it is possible for the .stab and
998 .stabstr sections to be split. We should handle that. */
999
1000 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1001 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1002
1003 if (info->stabsec == NULL || info->strsec == NULL)
1004 {
1005 /* Try SOM section names. */
1006 info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1007 info->strsec = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1008
1009 if (info->stabsec == NULL || info->strsec == NULL)
1010 {
1011 /* No stabs debugging information. Set *pinfo so that we
1012 can return quickly in the info != NULL case above. */
1013 *pinfo = info;
1014 return TRUE;
1015 }
1016 }
1017
1018 stabsize = (info->stabsec->rawsize
1019 ? info->stabsec->rawsize
1020 : info->stabsec->size);
1021 stabsize = (stabsize / STABSIZE) * STABSIZE;
1022 strsize = (info->strsec->rawsize
1023 ? info->strsec->rawsize
1024 : info->strsec->size);
1025
1026 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1027 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1028 if (info->stabs == NULL || info->strs == NULL)
1029 return FALSE;
1030
1031 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1032 0, stabsize)
1033 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1034 0, strsize))
1035 return FALSE;
1036
1037 /* If this is a relocatable object file, we have to relocate
1038 the entries in .stab. This should always be simple 32 bit
1039 relocations against symbols defined in this object file, so
1040 this should be no big deal. */
1041 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1042 if (reloc_size < 0)
1043 return FALSE;
1044 reloc_vector = (arelent **) bfd_malloc (reloc_size);
1045 if (reloc_vector == NULL && reloc_size != 0)
1046 return FALSE;
1047 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1048 symbols);
1049 if (reloc_count < 0)
1050 {
1051 if (reloc_vector != NULL)
1052 free (reloc_vector);
1053 return FALSE;
1054 }
1055 if (reloc_count > 0)
1056 {
1057 arelent **pr;
1058
1059 for (pr = reloc_vector; *pr != NULL; pr++)
1060 {
1061 arelent *r;
1062 unsigned long val;
1063 asymbol *sym;
1064
1065 r = *pr;
1066 /* Ignore R_*_NONE relocs. */
1067 if (r->howto->dst_mask == 0)
1068 continue;
1069
1070 if (r->howto->rightshift != 0
1071 || r->howto->size != 2
1072 || r->howto->bitsize != 32
1073 || r->howto->pc_relative
1074 || r->howto->bitpos != 0
1075 || r->howto->dst_mask != 0xffffffff)
1076 {
1077 (*_bfd_error_handler)
1078 (_("Unsupported .stab relocation"));
1079 bfd_set_error (bfd_error_invalid_operation);
1080 if (reloc_vector != NULL)
1081 free (reloc_vector);
1082 return FALSE;
1083 }
1084
1085 val = bfd_get_32 (abfd, info->stabs + r->address);
1086 val &= r->howto->src_mask;
1087 sym = *r->sym_ptr_ptr;
1088 val += sym->value + sym->section->vma + r->addend;
1089 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1090 }
1091 }
1092
1093 if (reloc_vector != NULL)
1094 free (reloc_vector);
1095
1096 /* First time through this function, build a table matching
1097 function VM addresses to stabs, then sort based on starting
1098 VM address. Do this in two passes: once to count how many
1099 table entries we'll need, and a second to actually build the
1100 table. */
1101
1102 info->indextablesize = 0;
1103 nul_fun = NULL;
1104 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1105 {
1106 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1107 {
1108 /* if we did not see a function def, leave space for one. */
1109 if (nul_fun != NULL)
1110 ++info->indextablesize;
1111
1112 /* N_SO with null name indicates EOF */
1113 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1114 nul_fun = NULL;
1115 else
1116 {
1117 nul_fun = stab;
1118
1119 /* two N_SO's in a row is a filename and directory. Skip */
1120 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1121 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1122 stab += STABSIZE;
1123 }
1124 }
1125 else if (stab[TYPEOFF] == (bfd_byte) N_FUN
1126 && bfd_get_32 (abfd, stab + STRDXOFF) != 0)
1127 {
1128 nul_fun = NULL;
1129 ++info->indextablesize;
1130 }
1131 }
1132
1133 if (nul_fun != NULL)
1134 ++info->indextablesize;
1135
1136 if (info->indextablesize == 0)
1137 return TRUE;
1138 ++info->indextablesize;
1139
1140 amt = info->indextablesize;
1141 amt *= sizeof (struct indexentry);
1142 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1143 if (info->indextable == NULL)
1144 return FALSE;
1145
1146 file_name = NULL;
1147 directory_name = NULL;
1148 nul_fun = NULL;
1149 stroff = 0;
1150
1151 for (i = 0, stab = info->stabs, nul_str = str = info->strs;
1152 i < info->indextablesize && stab < info->stabs + stabsize;
1153 stab += STABSIZE)
1154 {
1155 switch (stab[TYPEOFF])
1156 {
1157 case 0:
1158 /* This is the first entry in a compilation unit. */
1159 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1160 break;
1161 str += stroff;
1162 stroff = bfd_get_32 (abfd, stab + VALOFF);
1163 break;
1164
1165 case N_SO:
1166 /* The main file name. */
1167
1168 /* The following code creates a new indextable entry with
1169 a NULL function name if there were no N_FUNs in a file.
1170 Note that a N_SO without a file name is an EOF and
1171 there could be 2 N_SO following it with the new filename
1172 and directory. */
1173 if (nul_fun != NULL)
1174 {
1175 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1176 info->indextable[i].stab = nul_fun;
1177 info->indextable[i].str = nul_str;
1178 info->indextable[i].directory_name = directory_name;
1179 info->indextable[i].file_name = file_name;
1180 info->indextable[i].function_name = NULL;
1181 ++i;
1182 }
1183
1184 directory_name = NULL;
1185 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1186 if (file_name == (char *) str)
1187 {
1188 file_name = NULL;
1189 nul_fun = NULL;
1190 }
1191 else
1192 {
1193 nul_fun = stab;
1194 nul_str = str;
1195 if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1196 file_name = NULL;
1197 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1198 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1199 {
1200 /* Two consecutive N_SOs are a directory and a
1201 file name. */
1202 stab += STABSIZE;
1203 directory_name = file_name;
1204 file_name = ((char *) str
1205 + bfd_get_32 (abfd, stab + STRDXOFF));
1206 if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1207 file_name = NULL;
1208 }
1209 }
1210 break;
1211
1212 case N_SOL:
1213 /* The name of an include file. */
1214 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1215 /* PR 17512: file: 0c680a1f. */
1216 /* PR 17512: file: 5da8aec4. */
1217 if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1218 file_name = NULL;
1219 break;
1220
1221 case N_FUN:
1222 /* A function name. */
1223 function_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1224 if (function_name == (char *) str)
1225 continue;
1226 if (function_name >= (char *) info->strs + strsize)
1227 function_name = NULL;
1228
1229 nul_fun = NULL;
1230 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1231 info->indextable[i].stab = stab;
1232 info->indextable[i].str = str;
1233 info->indextable[i].directory_name = directory_name;
1234 info->indextable[i].file_name = file_name;
1235 info->indextable[i].function_name = function_name;
1236 ++i;
1237 break;
1238 }
1239 }
1240
1241 if (nul_fun != NULL)
1242 {
1243 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1244 info->indextable[i].stab = nul_fun;
1245 info->indextable[i].str = nul_str;
1246 info->indextable[i].directory_name = directory_name;
1247 info->indextable[i].file_name = file_name;
1248 info->indextable[i].function_name = NULL;
1249 ++i;
1250 }
1251
1252 info->indextable[i].val = (bfd_vma) -1;
1253 info->indextable[i].stab = info->stabs + stabsize;
1254 info->indextable[i].str = str;
1255 info->indextable[i].directory_name = NULL;
1256 info->indextable[i].file_name = NULL;
1257 info->indextable[i].function_name = NULL;
1258 ++i;
1259
1260 info->indextablesize = i;
1261 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1262 cmpindexentry);
1263
1264 *pinfo = info;
1265 }
1266
1267 /* We are passed a section relative offset. The offsets in the
1268 stabs information are absolute. */
1269 offset += bfd_get_section_vma (abfd, section);
1270
1271 #ifdef ENABLE_CACHING
1272 if (info->cached_indexentry != NULL
1273 && offset >= info->cached_offset
1274 && offset < (info->cached_indexentry + 1)->val)
1275 {
1276 stab = info->cached_stab;
1277 indexentry = info->cached_indexentry;
1278 file_name = info->cached_file_name;
1279 }
1280 else
1281 #endif
1282 {
1283 long low, high;
1284 long mid = -1;
1285
1286 /* Cache non-existent or invalid. Do binary search on
1287 indextable. */
1288 indexentry = NULL;
1289
1290 low = 0;
1291 high = info->indextablesize - 1;
1292 while (low != high)
1293 {
1294 mid = (high + low) / 2;
1295 if (offset >= info->indextable[mid].val
1296 && offset < info->indextable[mid + 1].val)
1297 {
1298 indexentry = &info->indextable[mid];
1299 break;
1300 }
1301
1302 if (info->indextable[mid].val > offset)
1303 high = mid;
1304 else
1305 low = mid + 1;
1306 }
1307
1308 if (indexentry == NULL)
1309 return TRUE;
1310
1311 stab = indexentry->stab + STABSIZE;
1312 file_name = indexentry->file_name;
1313 }
1314
1315 directory_name = indexentry->directory_name;
1316 str = indexentry->str;
1317
1318 saw_line = FALSE;
1319 saw_func = FALSE;
1320 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1321 {
1322 bfd_boolean done;
1323 bfd_vma val;
1324
1325 done = FALSE;
1326
1327 switch (stab[TYPEOFF])
1328 {
1329 case N_SOL:
1330 /* The name of an include file. */
1331 val = bfd_get_32 (abfd, stab + VALOFF);
1332 if (val <= offset)
1333 {
1334 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1335 if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1336 file_name = NULL;
1337 *pline = 0;
1338 }
1339 break;
1340
1341 case N_SLINE:
1342 case N_DSLINE:
1343 case N_BSLINE:
1344 /* A line number. If the function was specified, then the value
1345 is relative to the start of the function. Otherwise, the
1346 value is an absolute address. */
1347 val = ((indexentry->function_name ? indexentry->val : 0)
1348 + bfd_get_32 (abfd, stab + VALOFF));
1349 /* If this line starts before our desired offset, or if it's
1350 the first line we've been able to find, use it. The
1351 !saw_line check works around a bug in GCC 2.95.3, which emits
1352 the first N_SLINE late. */
1353 if (!saw_line || val <= offset)
1354 {
1355 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1356
1357 #ifdef ENABLE_CACHING
1358 info->cached_stab = stab;
1359 info->cached_offset = val;
1360 info->cached_file_name = file_name;
1361 info->cached_indexentry = indexentry;
1362 #endif
1363 }
1364 if (val > offset)
1365 done = TRUE;
1366 saw_line = TRUE;
1367 break;
1368
1369 case N_FUN:
1370 case N_SO:
1371 if (saw_func || saw_line)
1372 done = TRUE;
1373 saw_func = TRUE;
1374 break;
1375 }
1376
1377 if (done)
1378 break;
1379 }
1380
1381 *pfound = TRUE;
1382
1383 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1384 || directory_name == NULL)
1385 *pfilename = file_name;
1386 else
1387 {
1388 size_t dirlen;
1389
1390 dirlen = strlen (directory_name);
1391 if (info->filename == NULL
1392 || filename_ncmp (info->filename, directory_name, dirlen) != 0
1393 || filename_cmp (info->filename + dirlen, file_name) != 0)
1394 {
1395 size_t len;
1396
1397 /* Don't free info->filename here. objdump and other
1398 apps keep a copy of a previously returned file name
1399 pointer. */
1400 len = strlen (file_name) + 1;
1401 info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1402 if (info->filename == NULL)
1403 return FALSE;
1404 memcpy (info->filename, directory_name, dirlen);
1405 memcpy (info->filename + dirlen, file_name, len);
1406 }
1407
1408 *pfilename = info->filename;
1409 }
1410
1411 if (indexentry->function_name != NULL)
1412 {
1413 char *s;
1414
1415 /* This will typically be something like main:F(0,1), so we want
1416 to clobber the colon. It's OK to change the name, since the
1417 string is in our own local storage anyhow. */
1418 s = strchr (indexentry->function_name, ':');
1419 if (s != NULL)
1420 *s = '\0';
1421
1422 *pfnname = indexentry->function_name;
1423 }
1424
1425 return TRUE;
1426 }
This page took 0.055815 seconds and 3 git commands to generate.