Always create dynsym section with dynamic sections
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990-2016 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Symbols
25
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 Reading symbols
61
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
65
66 | long storage_needed;
67 | asymbol **symbol_table;
68 | long number_of_symbols;
69 | long i;
70 |
71 | storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 | if (storage_needed < 0)
74 | FAIL
75 |
76 | if (storage_needed == 0)
77 | return;
78 |
79 | symbol_table = xmalloc (storage_needed);
80 | ...
81 | number_of_symbols =
82 | bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 | if (number_of_symbols < 0)
85 | FAIL
86 |
87 | for (i = 0; i < number_of_symbols; i++)
88 | process_symbol (symbol_table[i]);
89
90 All storage for the symbols themselves is in an objalloc
91 connected to the BFD; it is freed when the BFD is closed.
92
93 INODE
94 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
95 SUBSECTION
96 Writing symbols
97
98 Writing of a symbol table is automatic when a BFD open for
99 writing is closed. The application attaches a vector of
100 pointers to pointers to symbols to the BFD being written, and
101 fills in the symbol count. The close and cleanup code reads
102 through the table provided and performs all the necessary
103 operations. The BFD output code must always be provided with an
104 ``owned'' symbol: one which has come from another BFD, or one
105 which has been created using <<bfd_make_empty_symbol>>. Here is an
106 example showing the creation of a symbol table with only one element:
107
108 | #include "sysdep.h"
109 | #include "bfd.h"
110 | int main (void)
111 | {
112 | bfd *abfd;
113 | asymbol *ptrs[2];
114 | asymbol *new;
115 |
116 | abfd = bfd_openw ("foo","a.out-sunos-big");
117 | bfd_set_format (abfd, bfd_object);
118 | new = bfd_make_empty_symbol (abfd);
119 | new->name = "dummy_symbol";
120 | new->section = bfd_make_section_old_way (abfd, ".text");
121 | new->flags = BSF_GLOBAL;
122 | new->value = 0x12345;
123 |
124 | ptrs[0] = new;
125 | ptrs[1] = 0;
126 |
127 | bfd_set_symtab (abfd, ptrs, 1);
128 | bfd_close (abfd);
129 | return 0;
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitrary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitrary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171 */
172 /*
173 SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178 */
179
180 /*
181 CODE_FRAGMENT
182
183 .
184 .typedef struct bfd_symbol
185 .{
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
190 .
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
196 .
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
199 . const char *name;
200 .
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
204 . symvalue value;
205 .
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0x00
208 .
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL (1 << 0)
212 .
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL (1 << 1)
216 .
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
220 .
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_UNDEFINED>> or <<BSF_GLOBAL>>. *}
223 .
224 . {* The symbol is a debugging record. The value has an arbitrary
225 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
226 .#define BSF_DEBUGGING (1 << 2)
227 .
228 . {* The symbol denotes a function entry point. Used in ELF,
229 . perhaps others someday. *}
230 .#define BSF_FUNCTION (1 << 3)
231 .
232 . {* Used by the linker. *}
233 .#define BSF_KEEP (1 << 5)
234 .#define BSF_KEEP_G (1 << 6)
235 .
236 . {* A weak global symbol, overridable without warnings by
237 . a regular global symbol of the same name. *}
238 .#define BSF_WEAK (1 << 7)
239 .
240 . {* This symbol was created to point to a section, e.g. ELF's
241 . STT_SECTION symbols. *}
242 .#define BSF_SECTION_SYM (1 << 8)
243 .
244 . {* The symbol used to be a common symbol, but now it is
245 . allocated. *}
246 .#define BSF_OLD_COMMON (1 << 9)
247 .
248 . {* In some files the type of a symbol sometimes alters its
249 . location in an output file - ie in coff a <<ISFCN>> symbol
250 . which is also <<C_EXT>> symbol appears where it was
251 . declared and not at the end of a section. This bit is set
252 . by the target BFD part to convey this information. *}
253 .#define BSF_NOT_AT_END (1 << 10)
254 .
255 . {* Signal that the symbol is the label of constructor section. *}
256 .#define BSF_CONSTRUCTOR (1 << 11)
257 .
258 . {* Signal that the symbol is a warning symbol. The name is a
259 . warning. The name of the next symbol is the one to warn about;
260 . if a reference is made to a symbol with the same name as the next
261 . symbol, a warning is issued by the linker. *}
262 .#define BSF_WARNING (1 << 12)
263 .
264 . {* Signal that the symbol is indirect. This symbol is an indirect
265 . pointer to the symbol with the same name as the next symbol. *}
266 .#define BSF_INDIRECT (1 << 13)
267 .
268 . {* BSF_FILE marks symbols that contain a file name. This is used
269 . for ELF STT_FILE symbols. *}
270 .#define BSF_FILE (1 << 14)
271 .
272 . {* Symbol is from dynamic linking information. *}
273 .#define BSF_DYNAMIC (1 << 15)
274 .
275 . {* The symbol denotes a data object. Used in ELF, and perhaps
276 . others someday. *}
277 .#define BSF_OBJECT (1 << 16)
278 .
279 . {* This symbol is a debugging symbol. The value is the offset
280 . into the section of the data. BSF_DEBUGGING should be set
281 . as well. *}
282 .#define BSF_DEBUGGING_RELOC (1 << 17)
283 .
284 . {* This symbol is thread local. Used in ELF. *}
285 .#define BSF_THREAD_LOCAL (1 << 18)
286 .
287 . {* This symbol represents a complex relocation expression,
288 . with the expression tree serialized in the symbol name. *}
289 .#define BSF_RELC (1 << 19)
290 .
291 . {* This symbol represents a signed complex relocation expression,
292 . with the expression tree serialized in the symbol name. *}
293 .#define BSF_SRELC (1 << 20)
294 .
295 . {* This symbol was created by bfd_get_synthetic_symtab. *}
296 .#define BSF_SYNTHETIC (1 << 21)
297 .
298 . {* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.
299 . The dynamic linker will compute the value of this symbol by
300 . calling the function that it points to. BSF_FUNCTION must
301 . also be also set. *}
302 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
303 . {* This symbol is a globally unique data object. The dynamic linker
304 . will make sure that in the entire process there is just one symbol
305 . with this name and type in use. BSF_OBJECT must also be set. *}
306 .#define BSF_GNU_UNIQUE (1 << 23)
307 .
308 . flagword flags;
309 .
310 . {* A pointer to the section to which this symbol is
311 . relative. This will always be non NULL, there are special
312 . sections for undefined and absolute symbols. *}
313 . struct bfd_section *section;
314 .
315 . {* Back end special data. *}
316 . union
317 . {
318 . void *p;
319 . bfd_vma i;
320 . }
321 . udata;
322 .}
323 .asymbol;
324 .
325 */
326
327 #include "sysdep.h"
328 #include "bfd.h"
329 #include "libbfd.h"
330 #include "safe-ctype.h"
331 #include "bfdlink.h"
332 #include "aout/stab_gnu.h"
333
334 /*
335 DOCDD
336 INODE
337 symbol handling functions, , typedef asymbol, Symbols
338 SUBSECTION
339 Symbol handling functions
340 */
341
342 /*
343 FUNCTION
344 bfd_get_symtab_upper_bound
345
346 DESCRIPTION
347 Return the number of bytes required to store a vector of pointers
348 to <<asymbols>> for all the symbols in the BFD @var{abfd},
349 including a terminal NULL pointer. If there are no symbols in
350 the BFD, then return 0. If an error occurs, return -1.
351
352 .#define bfd_get_symtab_upper_bound(abfd) \
353 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
354 .
355 */
356
357 /*
358 FUNCTION
359 bfd_is_local_label
360
361 SYNOPSIS
362 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
363
364 DESCRIPTION
365 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
366 a compiler generated local label, else return FALSE.
367 */
368
369 bfd_boolean
370 bfd_is_local_label (bfd *abfd, asymbol *sym)
371 {
372 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
373 starts with '.' is local. This would accidentally catch section names
374 if we didn't reject them here. */
375 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
376 return FALSE;
377 if (sym->name == NULL)
378 return FALSE;
379 return bfd_is_local_label_name (abfd, sym->name);
380 }
381
382 /*
383 FUNCTION
384 bfd_is_local_label_name
385
386 SYNOPSIS
387 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
388
389 DESCRIPTION
390 Return TRUE if a symbol with the name @var{name} in the BFD
391 @var{abfd} is a compiler generated local label, else return
392 FALSE. This just checks whether the name has the form of a
393 local label.
394
395 .#define bfd_is_local_label_name(abfd, name) \
396 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
397 .
398 */
399
400 /*
401 FUNCTION
402 bfd_is_target_special_symbol
403
404 SYNOPSIS
405 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
406
407 DESCRIPTION
408 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
409 special to the particular target represented by the BFD. Such symbols
410 should normally not be mentioned to the user.
411
412 .#define bfd_is_target_special_symbol(abfd, sym) \
413 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
414 .
415 */
416
417 /*
418 FUNCTION
419 bfd_canonicalize_symtab
420
421 DESCRIPTION
422 Read the symbols from the BFD @var{abfd}, and fills in
423 the vector @var{location} with pointers to the symbols and
424 a trailing NULL.
425 Return the actual number of symbol pointers, not
426 including the NULL.
427
428 .#define bfd_canonicalize_symtab(abfd, location) \
429 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
430 .
431 */
432
433 /*
434 FUNCTION
435 bfd_set_symtab
436
437 SYNOPSIS
438 bfd_boolean bfd_set_symtab
439 (bfd *abfd, asymbol **location, unsigned int count);
440
441 DESCRIPTION
442 Arrange that when the output BFD @var{abfd} is closed,
443 the table @var{location} of @var{count} pointers to symbols
444 will be written.
445 */
446
447 bfd_boolean
448 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
449 {
450 if (abfd->format != bfd_object || bfd_read_p (abfd))
451 {
452 bfd_set_error (bfd_error_invalid_operation);
453 return FALSE;
454 }
455
456 bfd_get_outsymbols (abfd) = location;
457 bfd_get_symcount (abfd) = symcount;
458 return TRUE;
459 }
460
461 /*
462 FUNCTION
463 bfd_print_symbol_vandf
464
465 SYNOPSIS
466 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
467
468 DESCRIPTION
469 Print the value and flags of the @var{symbol} supplied to the
470 stream @var{file}.
471 */
472 void
473 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
474 {
475 FILE *file = (FILE *) arg;
476
477 flagword type = symbol->flags;
478
479 if (symbol->section != NULL)
480 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
481 else
482 bfd_fprintf_vma (abfd, file, symbol->value);
483
484 /* This presumes that a symbol can not be both BSF_DEBUGGING and
485 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
486 BSF_OBJECT. */
487 fprintf (file, " %c%c%c%c%c%c%c",
488 ((type & BSF_LOCAL)
489 ? (type & BSF_GLOBAL) ? '!' : 'l'
490 : (type & BSF_GLOBAL) ? 'g'
491 : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
492 (type & BSF_WEAK) ? 'w' : ' ',
493 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
494 (type & BSF_WARNING) ? 'W' : ' ',
495 (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
496 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
497 ((type & BSF_FUNCTION)
498 ? 'F'
499 : ((type & BSF_FILE)
500 ? 'f'
501 : ((type & BSF_OBJECT) ? 'O' : ' '))));
502 }
503
504 /*
505 FUNCTION
506 bfd_make_empty_symbol
507
508 DESCRIPTION
509 Create a new <<asymbol>> structure for the BFD @var{abfd}
510 and return a pointer to it.
511
512 This routine is necessary because each back end has private
513 information surrounding the <<asymbol>>. Building your own
514 <<asymbol>> and pointing to it will not create the private
515 information, and will cause problems later on.
516
517 .#define bfd_make_empty_symbol(abfd) \
518 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
519 .
520 */
521
522 /*
523 FUNCTION
524 _bfd_generic_make_empty_symbol
525
526 SYNOPSIS
527 asymbol *_bfd_generic_make_empty_symbol (bfd *);
528
529 DESCRIPTION
530 Create a new <<asymbol>> structure for the BFD @var{abfd}
531 and return a pointer to it. Used by core file routines,
532 binary back-end and anywhere else where no private info
533 is needed.
534 */
535
536 asymbol *
537 _bfd_generic_make_empty_symbol (bfd *abfd)
538 {
539 bfd_size_type amt = sizeof (asymbol);
540 asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
541 if (new_symbol)
542 new_symbol->the_bfd = abfd;
543 return new_symbol;
544 }
545
546 /*
547 FUNCTION
548 bfd_make_debug_symbol
549
550 DESCRIPTION
551 Create a new <<asymbol>> structure for the BFD @var{abfd},
552 to be used as a debugging symbol. Further details of its use have
553 yet to be worked out.
554
555 .#define bfd_make_debug_symbol(abfd,ptr,size) \
556 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
557 .
558 */
559
560 struct section_to_type
561 {
562 const char *section;
563 char type;
564 };
565
566 /* Map section names to POSIX/BSD single-character symbol types.
567 This table is probably incomplete. It is sorted for convenience of
568 adding entries. Since it is so short, a linear search is used. */
569 static const struct section_to_type stt[] =
570 {
571 {".bss", 'b'},
572 {"code", 't'}, /* MRI .text */
573 {".data", 'd'},
574 {"*DEBUG*", 'N'},
575 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
576 {".drectve", 'i'}, /* MSVC's .drective section */
577 {".edata", 'e'}, /* MSVC's .edata (export) section */
578 {".fini", 't'}, /* ELF fini section */
579 {".idata", 'i'}, /* MSVC's .idata (import) section */
580 {".init", 't'}, /* ELF init section */
581 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
582 {".rdata", 'r'}, /* Read only data. */
583 {".rodata", 'r'}, /* Read only data. */
584 {".sbss", 's'}, /* Small BSS (uninitialized data). */
585 {".scommon", 'c'}, /* Small common. */
586 {".sdata", 'g'}, /* Small initialized data. */
587 {".text", 't'},
588 {"vars", 'd'}, /* MRI .data */
589 {"zerovars", 'b'}, /* MRI .bss */
590 {0, 0}
591 };
592
593 /* Return the single-character symbol type corresponding to
594 section S, or '?' for an unknown COFF section.
595
596 Check for any leading string which matches, so .text5 returns
597 't' as well as .text */
598
599 static char
600 coff_section_type (const char *s)
601 {
602 const struct section_to_type *t;
603
604 for (t = &stt[0]; t->section; t++)
605 if (!strncmp (s, t->section, strlen (t->section)))
606 return t->type;
607
608 return '?';
609 }
610
611 /* Return the single-character symbol type corresponding to section
612 SECTION, or '?' for an unknown section. This uses section flags to
613 identify sections.
614
615 FIXME These types are unhandled: c, i, e, p. If we handled these also,
616 we could perhaps obsolete coff_section_type. */
617
618 static char
619 decode_section_type (const struct bfd_section *section)
620 {
621 if (section->flags & SEC_CODE)
622 return 't';
623 if (section->flags & SEC_DATA)
624 {
625 if (section->flags & SEC_READONLY)
626 return 'r';
627 else if (section->flags & SEC_SMALL_DATA)
628 return 'g';
629 else
630 return 'd';
631 }
632 if ((section->flags & SEC_HAS_CONTENTS) == 0)
633 {
634 if (section->flags & SEC_SMALL_DATA)
635 return 's';
636 else
637 return 'b';
638 }
639 if (section->flags & SEC_DEBUGGING)
640 return 'N';
641 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
642 return 'n';
643
644 return '?';
645 }
646
647 /*
648 FUNCTION
649 bfd_decode_symclass
650
651 DESCRIPTION
652 Return a character corresponding to the symbol
653 class of @var{symbol}, or '?' for an unknown class.
654
655 SYNOPSIS
656 int bfd_decode_symclass (asymbol *symbol);
657 */
658 int
659 bfd_decode_symclass (asymbol *symbol)
660 {
661 char c;
662
663 if (symbol->section && bfd_is_com_section (symbol->section))
664 return 'C';
665 if (bfd_is_und_section (symbol->section))
666 {
667 if (symbol->flags & BSF_WEAK)
668 {
669 /* If weak, determine if it's specifically an object
670 or non-object weak. */
671 if (symbol->flags & BSF_OBJECT)
672 return 'v';
673 else
674 return 'w';
675 }
676 else
677 return 'U';
678 }
679 if (bfd_is_ind_section (symbol->section))
680 return 'I';
681 if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
682 return 'i';
683 if (symbol->flags & BSF_WEAK)
684 {
685 /* If weak, determine if it's specifically an object
686 or non-object weak. */
687 if (symbol->flags & BSF_OBJECT)
688 return 'V';
689 else
690 return 'W';
691 }
692 if (symbol->flags & BSF_GNU_UNIQUE)
693 return 'u';
694 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
695 return '?';
696
697 if (bfd_is_abs_section (symbol->section))
698 c = 'a';
699 else if (symbol->section)
700 {
701 c = coff_section_type (symbol->section->name);
702 if (c == '?')
703 c = decode_section_type (symbol->section);
704 }
705 else
706 return '?';
707 if (symbol->flags & BSF_GLOBAL)
708 c = TOUPPER (c);
709 return c;
710
711 /* We don't have to handle these cases just yet, but we will soon:
712 N_SETV: 'v';
713 N_SETA: 'l';
714 N_SETT: 'x';
715 N_SETD: 'z';
716 N_SETB: 's';
717 N_INDR: 'i';
718 */
719 }
720
721 /*
722 FUNCTION
723 bfd_is_undefined_symclass
724
725 DESCRIPTION
726 Returns non-zero if the class symbol returned by
727 bfd_decode_symclass represents an undefined symbol.
728 Returns zero otherwise.
729
730 SYNOPSIS
731 bfd_boolean bfd_is_undefined_symclass (int symclass);
732 */
733
734 bfd_boolean
735 bfd_is_undefined_symclass (int symclass)
736 {
737 return symclass == 'U' || symclass == 'w' || symclass == 'v';
738 }
739
740 /*
741 FUNCTION
742 bfd_symbol_info
743
744 DESCRIPTION
745 Fill in the basic info about symbol that nm needs.
746 Additional info may be added by the back-ends after
747 calling this function.
748
749 SYNOPSIS
750 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
751 */
752
753 void
754 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
755 {
756 ret->type = bfd_decode_symclass (symbol);
757
758 if (bfd_is_undefined_symclass (ret->type))
759 ret->value = 0;
760 else
761 ret->value = symbol->value + symbol->section->vma;
762
763 ret->name = symbol->name;
764 }
765
766 /*
767 FUNCTION
768 bfd_copy_private_symbol_data
769
770 SYNOPSIS
771 bfd_boolean bfd_copy_private_symbol_data
772 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
773
774 DESCRIPTION
775 Copy private symbol information from @var{isym} in the BFD
776 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
777 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
778 returns are:
779
780 o <<bfd_error_no_memory>> -
781 Not enough memory exists to create private data for @var{osec}.
782
783 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
784 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
785 . (ibfd, isymbol, obfd, osymbol))
786 .
787 */
788
789 /* The generic version of the function which returns mini symbols.
790 This is used when the backend does not provide a more efficient
791 version. It just uses BFD asymbol structures as mini symbols. */
792
793 long
794 _bfd_generic_read_minisymbols (bfd *abfd,
795 bfd_boolean dynamic,
796 void **minisymsp,
797 unsigned int *sizep)
798 {
799 long storage;
800 asymbol **syms = NULL;
801 long symcount;
802
803 if (dynamic)
804 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
805 else
806 storage = bfd_get_symtab_upper_bound (abfd);
807 if (storage < 0)
808 goto error_return;
809 if (storage == 0)
810 return 0;
811
812 syms = (asymbol **) bfd_malloc (storage);
813 if (syms == NULL)
814 goto error_return;
815
816 if (dynamic)
817 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
818 else
819 symcount = bfd_canonicalize_symtab (abfd, syms);
820 if (symcount < 0)
821 goto error_return;
822
823 *minisymsp = syms;
824 *sizep = sizeof (asymbol *);
825
826 return symcount;
827
828 error_return:
829 bfd_set_error (bfd_error_no_symbols);
830 if (syms != NULL)
831 free (syms);
832 return -1;
833 }
834
835 /* The generic version of the function which converts a minisymbol to
836 an asymbol. We don't worry about the sym argument we are passed;
837 we just return the asymbol the minisymbol points to. */
838
839 asymbol *
840 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
841 bfd_boolean dynamic ATTRIBUTE_UNUSED,
842 const void *minisym,
843 asymbol *sym ATTRIBUTE_UNUSED)
844 {
845 return *(asymbol **) minisym;
846 }
847
848 /* Look through stabs debugging information in .stab and .stabstr
849 sections to find the source file and line closest to a desired
850 location. This is used by COFF and ELF targets. It sets *pfound
851 to TRUE if it finds some information. The *pinfo field is used to
852 pass cached information in and out of this routine; this first time
853 the routine is called for a BFD, *pinfo should be NULL. The value
854 placed in *pinfo should be saved with the BFD, and passed back each
855 time this function is called. */
856
857 /* We use a cache by default. */
858
859 #define ENABLE_CACHING
860
861 /* We keep an array of indexentry structures to record where in the
862 stabs section we should look to find line number information for a
863 particular address. */
864
865 struct indexentry
866 {
867 bfd_vma val;
868 bfd_byte *stab;
869 bfd_byte *str;
870 char *directory_name;
871 char *file_name;
872 char *function_name;
873 };
874
875 /* Compare two indexentry structures. This is called via qsort. */
876
877 static int
878 cmpindexentry (const void *a, const void *b)
879 {
880 const struct indexentry *contestantA = (const struct indexentry *) a;
881 const struct indexentry *contestantB = (const struct indexentry *) b;
882
883 if (contestantA->val < contestantB->val)
884 return -1;
885 else if (contestantA->val > contestantB->val)
886 return 1;
887 else
888 return 0;
889 }
890
891 /* A pointer to this structure is stored in *pinfo. */
892
893 struct stab_find_info
894 {
895 /* The .stab section. */
896 asection *stabsec;
897 /* The .stabstr section. */
898 asection *strsec;
899 /* The contents of the .stab section. */
900 bfd_byte *stabs;
901 /* The contents of the .stabstr section. */
902 bfd_byte *strs;
903
904 /* A table that indexes stabs by memory address. */
905 struct indexentry *indextable;
906 /* The number of entries in indextable. */
907 int indextablesize;
908
909 #ifdef ENABLE_CACHING
910 /* Cached values to restart quickly. */
911 struct indexentry *cached_indexentry;
912 bfd_vma cached_offset;
913 bfd_byte *cached_stab;
914 char *cached_file_name;
915 #endif
916
917 /* Saved ptr to malloc'ed filename. */
918 char *filename;
919 };
920
921 bfd_boolean
922 _bfd_stab_section_find_nearest_line (bfd *abfd,
923 asymbol **symbols,
924 asection *section,
925 bfd_vma offset,
926 bfd_boolean *pfound,
927 const char **pfilename,
928 const char **pfnname,
929 unsigned int *pline,
930 void **pinfo)
931 {
932 struct stab_find_info *info;
933 bfd_size_type stabsize, strsize;
934 bfd_byte *stab, *str;
935 bfd_byte *nul_fun, *nul_str;
936 bfd_size_type stroff;
937 struct indexentry *indexentry;
938 char *file_name;
939 char *directory_name;
940 bfd_boolean saw_line, saw_func;
941
942 *pfound = FALSE;
943 *pfilename = bfd_get_filename (abfd);
944 *pfnname = NULL;
945 *pline = 0;
946
947 /* Stabs entries use a 12 byte format:
948 4 byte string table index
949 1 byte stab type
950 1 byte stab other field
951 2 byte stab desc field
952 4 byte stab value
953 FIXME: This will have to change for a 64 bit object format.
954
955 The stabs symbols are divided into compilation units. For the
956 first entry in each unit, the type of 0, the value is the length
957 of the string table for this unit, and the desc field is the
958 number of stabs symbols for this unit. */
959
960 #define STRDXOFF (0)
961 #define TYPEOFF (4)
962 #define OTHEROFF (5)
963 #define DESCOFF (6)
964 #define VALOFF (8)
965 #define STABSIZE (12)
966
967 info = (struct stab_find_info *) *pinfo;
968 if (info != NULL)
969 {
970 if (info->stabsec == NULL || info->strsec == NULL)
971 {
972 /* No stabs debugging information. */
973 return TRUE;
974 }
975
976 stabsize = (info->stabsec->rawsize
977 ? info->stabsec->rawsize
978 : info->stabsec->size);
979 strsize = (info->strsec->rawsize
980 ? info->strsec->rawsize
981 : info->strsec->size);
982 }
983 else
984 {
985 long reloc_size, reloc_count;
986 arelent **reloc_vector;
987 int i;
988 char *function_name;
989 bfd_size_type amt = sizeof *info;
990
991 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
992 if (info == NULL)
993 return FALSE;
994
995 /* FIXME: When using the linker --split-by-file or
996 --split-by-reloc options, it is possible for the .stab and
997 .stabstr sections to be split. We should handle that. */
998
999 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1000 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1001
1002 if (info->stabsec == NULL || info->strsec == NULL)
1003 {
1004 /* Try SOM section names. */
1005 info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1006 info->strsec = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1007
1008 if (info->stabsec == NULL || info->strsec == NULL)
1009 {
1010 /* No stabs debugging information. Set *pinfo so that we
1011 can return quickly in the info != NULL case above. */
1012 *pinfo = info;
1013 return TRUE;
1014 }
1015 }
1016
1017 stabsize = (info->stabsec->rawsize
1018 ? info->stabsec->rawsize
1019 : info->stabsec->size);
1020 stabsize = (stabsize / STABSIZE) * STABSIZE;
1021 strsize = (info->strsec->rawsize
1022 ? info->strsec->rawsize
1023 : info->strsec->size);
1024
1025 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1026 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1027 if (info->stabs == NULL || info->strs == NULL)
1028 return FALSE;
1029
1030 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1031 0, stabsize)
1032 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1033 0, strsize))
1034 return FALSE;
1035
1036 /* If this is a relocatable object file, we have to relocate
1037 the entries in .stab. This should always be simple 32 bit
1038 relocations against symbols defined in this object file, so
1039 this should be no big deal. */
1040 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1041 if (reloc_size < 0)
1042 return FALSE;
1043 reloc_vector = (arelent **) bfd_malloc (reloc_size);
1044 if (reloc_vector == NULL && reloc_size != 0)
1045 return FALSE;
1046 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1047 symbols);
1048 if (reloc_count < 0)
1049 {
1050 if (reloc_vector != NULL)
1051 free (reloc_vector);
1052 return FALSE;
1053 }
1054 if (reloc_count > 0)
1055 {
1056 arelent **pr;
1057
1058 for (pr = reloc_vector; *pr != NULL; pr++)
1059 {
1060 arelent *r;
1061 unsigned long val;
1062 asymbol *sym;
1063
1064 r = *pr;
1065 /* Ignore R_*_NONE relocs. */
1066 if (r->howto->dst_mask == 0)
1067 continue;
1068
1069 if (r->howto->rightshift != 0
1070 || r->howto->size != 2
1071 || r->howto->bitsize != 32
1072 || r->howto->pc_relative
1073 || r->howto->bitpos != 0
1074 || r->howto->dst_mask != 0xffffffff)
1075 {
1076 (*_bfd_error_handler)
1077 (_("Unsupported .stab relocation"));
1078 bfd_set_error (bfd_error_invalid_operation);
1079 if (reloc_vector != NULL)
1080 free (reloc_vector);
1081 return FALSE;
1082 }
1083
1084 val = bfd_get_32 (abfd, info->stabs + r->address);
1085 val &= r->howto->src_mask;
1086 sym = *r->sym_ptr_ptr;
1087 val += sym->value + sym->section->vma + r->addend;
1088 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1089 }
1090 }
1091
1092 if (reloc_vector != NULL)
1093 free (reloc_vector);
1094
1095 /* First time through this function, build a table matching
1096 function VM addresses to stabs, then sort based on starting
1097 VM address. Do this in two passes: once to count how many
1098 table entries we'll need, and a second to actually build the
1099 table. */
1100
1101 info->indextablesize = 0;
1102 nul_fun = NULL;
1103 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1104 {
1105 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1106 {
1107 /* if we did not see a function def, leave space for one. */
1108 if (nul_fun != NULL)
1109 ++info->indextablesize;
1110
1111 /* N_SO with null name indicates EOF */
1112 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1113 nul_fun = NULL;
1114 else
1115 {
1116 nul_fun = stab;
1117
1118 /* two N_SO's in a row is a filename and directory. Skip */
1119 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1120 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1121 stab += STABSIZE;
1122 }
1123 }
1124 else if (stab[TYPEOFF] == (bfd_byte) N_FUN
1125 && bfd_get_32 (abfd, stab + STRDXOFF) != 0)
1126 {
1127 nul_fun = NULL;
1128 ++info->indextablesize;
1129 }
1130 }
1131
1132 if (nul_fun != NULL)
1133 ++info->indextablesize;
1134
1135 if (info->indextablesize == 0)
1136 return TRUE;
1137 ++info->indextablesize;
1138
1139 amt = info->indextablesize;
1140 amt *= sizeof (struct indexentry);
1141 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1142 if (info->indextable == NULL)
1143 return FALSE;
1144
1145 file_name = NULL;
1146 directory_name = NULL;
1147 nul_fun = NULL;
1148 stroff = 0;
1149
1150 for (i = 0, stab = info->stabs, nul_str = str = info->strs;
1151 i < info->indextablesize && stab < info->stabs + stabsize;
1152 stab += STABSIZE)
1153 {
1154 switch (stab[TYPEOFF])
1155 {
1156 case 0:
1157 /* This is the first entry in a compilation unit. */
1158 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1159 break;
1160 str += stroff;
1161 stroff = bfd_get_32 (abfd, stab + VALOFF);
1162 break;
1163
1164 case N_SO:
1165 /* The main file name. */
1166
1167 /* The following code creates a new indextable entry with
1168 a NULL function name if there were no N_FUNs in a file.
1169 Note that a N_SO without a file name is an EOF and
1170 there could be 2 N_SO following it with the new filename
1171 and directory. */
1172 if (nul_fun != NULL)
1173 {
1174 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1175 info->indextable[i].stab = nul_fun;
1176 info->indextable[i].str = nul_str;
1177 info->indextable[i].directory_name = directory_name;
1178 info->indextable[i].file_name = file_name;
1179 info->indextable[i].function_name = NULL;
1180 ++i;
1181 }
1182
1183 directory_name = NULL;
1184 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1185 if (file_name == (char *) str)
1186 {
1187 file_name = NULL;
1188 nul_fun = NULL;
1189 }
1190 else
1191 {
1192 nul_fun = stab;
1193 nul_str = str;
1194 if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1195 file_name = NULL;
1196 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1197 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1198 {
1199 /* Two consecutive N_SOs are a directory and a
1200 file name. */
1201 stab += STABSIZE;
1202 directory_name = file_name;
1203 file_name = ((char *) str
1204 + bfd_get_32 (abfd, stab + STRDXOFF));
1205 if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1206 file_name = NULL;
1207 }
1208 }
1209 break;
1210
1211 case N_SOL:
1212 /* The name of an include file. */
1213 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1214 /* PR 17512: file: 0c680a1f. */
1215 /* PR 17512: file: 5da8aec4. */
1216 if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1217 file_name = NULL;
1218 break;
1219
1220 case N_FUN:
1221 /* A function name. */
1222 function_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1223 if (function_name == (char *) str)
1224 continue;
1225 if (function_name >= (char *) info->strs + strsize)
1226 function_name = NULL;
1227
1228 nul_fun = NULL;
1229 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1230 info->indextable[i].stab = stab;
1231 info->indextable[i].str = str;
1232 info->indextable[i].directory_name = directory_name;
1233 info->indextable[i].file_name = file_name;
1234 info->indextable[i].function_name = function_name;
1235 ++i;
1236 break;
1237 }
1238 }
1239
1240 if (nul_fun != NULL)
1241 {
1242 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1243 info->indextable[i].stab = nul_fun;
1244 info->indextable[i].str = nul_str;
1245 info->indextable[i].directory_name = directory_name;
1246 info->indextable[i].file_name = file_name;
1247 info->indextable[i].function_name = NULL;
1248 ++i;
1249 }
1250
1251 info->indextable[i].val = (bfd_vma) -1;
1252 info->indextable[i].stab = info->stabs + stabsize;
1253 info->indextable[i].str = str;
1254 info->indextable[i].directory_name = NULL;
1255 info->indextable[i].file_name = NULL;
1256 info->indextable[i].function_name = NULL;
1257 ++i;
1258
1259 info->indextablesize = i;
1260 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1261 cmpindexentry);
1262
1263 *pinfo = info;
1264 }
1265
1266 /* We are passed a section relative offset. The offsets in the
1267 stabs information are absolute. */
1268 offset += bfd_get_section_vma (abfd, section);
1269
1270 #ifdef ENABLE_CACHING
1271 if (info->cached_indexentry != NULL
1272 && offset >= info->cached_offset
1273 && offset < (info->cached_indexentry + 1)->val)
1274 {
1275 stab = info->cached_stab;
1276 indexentry = info->cached_indexentry;
1277 file_name = info->cached_file_name;
1278 }
1279 else
1280 #endif
1281 {
1282 long low, high;
1283 long mid = -1;
1284
1285 /* Cache non-existent or invalid. Do binary search on
1286 indextable. */
1287 indexentry = NULL;
1288
1289 low = 0;
1290 high = info->indextablesize - 1;
1291 while (low != high)
1292 {
1293 mid = (high + low) / 2;
1294 if (offset >= info->indextable[mid].val
1295 && offset < info->indextable[mid + 1].val)
1296 {
1297 indexentry = &info->indextable[mid];
1298 break;
1299 }
1300
1301 if (info->indextable[mid].val > offset)
1302 high = mid;
1303 else
1304 low = mid + 1;
1305 }
1306
1307 if (indexentry == NULL)
1308 return TRUE;
1309
1310 stab = indexentry->stab + STABSIZE;
1311 file_name = indexentry->file_name;
1312 }
1313
1314 directory_name = indexentry->directory_name;
1315 str = indexentry->str;
1316
1317 saw_line = FALSE;
1318 saw_func = FALSE;
1319 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1320 {
1321 bfd_boolean done;
1322 bfd_vma val;
1323
1324 done = FALSE;
1325
1326 switch (stab[TYPEOFF])
1327 {
1328 case N_SOL:
1329 /* The name of an include file. */
1330 val = bfd_get_32 (abfd, stab + VALOFF);
1331 if (val <= offset)
1332 {
1333 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1334 if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1335 file_name = NULL;
1336 *pline = 0;
1337 }
1338 break;
1339
1340 case N_SLINE:
1341 case N_DSLINE:
1342 case N_BSLINE:
1343 /* A line number. If the function was specified, then the value
1344 is relative to the start of the function. Otherwise, the
1345 value is an absolute address. */
1346 val = ((indexentry->function_name ? indexentry->val : 0)
1347 + bfd_get_32 (abfd, stab + VALOFF));
1348 /* If this line starts before our desired offset, or if it's
1349 the first line we've been able to find, use it. The
1350 !saw_line check works around a bug in GCC 2.95.3, which emits
1351 the first N_SLINE late. */
1352 if (!saw_line || val <= offset)
1353 {
1354 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1355
1356 #ifdef ENABLE_CACHING
1357 info->cached_stab = stab;
1358 info->cached_offset = val;
1359 info->cached_file_name = file_name;
1360 info->cached_indexentry = indexentry;
1361 #endif
1362 }
1363 if (val > offset)
1364 done = TRUE;
1365 saw_line = TRUE;
1366 break;
1367
1368 case N_FUN:
1369 case N_SO:
1370 if (saw_func || saw_line)
1371 done = TRUE;
1372 saw_func = TRUE;
1373 break;
1374 }
1375
1376 if (done)
1377 break;
1378 }
1379
1380 *pfound = TRUE;
1381
1382 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1383 || directory_name == NULL)
1384 *pfilename = file_name;
1385 else
1386 {
1387 size_t dirlen;
1388
1389 dirlen = strlen (directory_name);
1390 if (info->filename == NULL
1391 || filename_ncmp (info->filename, directory_name, dirlen) != 0
1392 || filename_cmp (info->filename + dirlen, file_name) != 0)
1393 {
1394 size_t len;
1395
1396 /* Don't free info->filename here. objdump and other
1397 apps keep a copy of a previously returned file name
1398 pointer. */
1399 len = strlen (file_name) + 1;
1400 info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1401 if (info->filename == NULL)
1402 return FALSE;
1403 memcpy (info->filename, directory_name, dirlen);
1404 memcpy (info->filename + dirlen, file_name, len);
1405 }
1406
1407 *pfilename = info->filename;
1408 }
1409
1410 if (indexentry->function_name != NULL)
1411 {
1412 char *s;
1413
1414 /* This will typically be something like main:F(0,1), so we want
1415 to clobber the colon. It's OK to change the name, since the
1416 string is in our own local storage anyhow. */
1417 s = strchr (indexentry->function_name, ':');
1418 if (s != NULL)
1419 *s = '\0';
1420
1421 *pfnname = indexentry->function_name;
1422 }
1423
1424 return TRUE;
1425 }
This page took 0.063383 seconds and 4 git commands to generate.