* cache.c (cache_bread): Set bfd_error_file_truncated if EOF
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2007
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 /*
25 SECTION
26 Symbols
27
28 BFD tries to maintain as much symbol information as it can when
29 it moves information from file to file. BFD passes information
30 to applications though the <<asymbol>> structure. When the
31 application requests the symbol table, BFD reads the table in
32 the native form and translates parts of it into the internal
33 format. To maintain more than the information passed to
34 applications, some targets keep some information ``behind the
35 scenes'' in a structure only the particular back end knows
36 about. For example, the coff back end keeps the original
37 symbol table structure as well as the canonical structure when
38 a BFD is read in. On output, the coff back end can reconstruct
39 the output symbol table so that no information is lost, even
40 information unique to coff which BFD doesn't know or
41 understand. If a coff symbol table were read, but were written
42 through an a.out back end, all the coff specific information
43 would be lost. The symbol table of a BFD
44 is not necessarily read in until a canonicalize request is
45 made. Then the BFD back end fills in a table provided by the
46 application with pointers to the canonical information. To
47 output symbols, the application provides BFD with a table of
48 pointers to pointers to <<asymbol>>s. This allows applications
49 like the linker to output a symbol as it was read, since the ``behind
50 the scenes'' information will be still available.
51 @menu
52 @* Reading Symbols::
53 @* Writing Symbols::
54 @* Mini Symbols::
55 @* typedef asymbol::
56 @* symbol handling functions::
57 @end menu
58
59 INODE
60 Reading Symbols, Writing Symbols, Symbols, Symbols
61 SUBSECTION
62 Reading symbols
63
64 There are two stages to reading a symbol table from a BFD:
65 allocating storage, and the actual reading process. This is an
66 excerpt from an application which reads the symbol table:
67
68 | long storage_needed;
69 | asymbol **symbol_table;
70 | long number_of_symbols;
71 | long i;
72 |
73 | storage_needed = bfd_get_symtab_upper_bound (abfd);
74 |
75 | if (storage_needed < 0)
76 | FAIL
77 |
78 | if (storage_needed == 0)
79 | return;
80 |
81 | symbol_table = xmalloc (storage_needed);
82 | ...
83 | number_of_symbols =
84 | bfd_canonicalize_symtab (abfd, symbol_table);
85 |
86 | if (number_of_symbols < 0)
87 | FAIL
88 |
89 | for (i = 0; i < number_of_symbols; i++)
90 | process_symbol (symbol_table[i]);
91
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
94
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 Writing symbols
99
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
109
110 | #include "bfd.h"
111 | int main (void)
112 | {
113 | bfd *abfd;
114 | asymbol *ptrs[2];
115 | asymbol *new;
116 |
117 | abfd = bfd_openw ("foo","a.out-sunos-big");
118 | bfd_set_format (abfd, bfd_object);
119 | new = bfd_make_empty_symbol (abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way (abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
124 |
125 | ptrs[0] = new;
126 | ptrs[1] = 0;
127 |
128 | bfd_set_symtab (abfd, ptrs, 1);
129 | bfd_close (abfd);
130 | return 0;
131 | }
132 |
133 | ./makesym
134 | nm foo
135 | 00012345 A dummy_symbol
136
137 Many formats cannot represent arbitrary symbol information; for
138 instance, the <<a.out>> object format does not allow an
139 arbitrary number of sections. A symbol pointing to a section
140 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
141 be described.
142
143 INODE
144 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
145 SUBSECTION
146 Mini Symbols
147
148 Mini symbols provide read-only access to the symbol table.
149 They use less memory space, but require more time to access.
150 They can be useful for tools like nm or objdump, which may
151 have to handle symbol tables of extremely large executables.
152
153 The <<bfd_read_minisymbols>> function will read the symbols
154 into memory in an internal form. It will return a <<void *>>
155 pointer to a block of memory, a symbol count, and the size of
156 each symbol. The pointer is allocated using <<malloc>>, and
157 should be freed by the caller when it is no longer needed.
158
159 The function <<bfd_minisymbol_to_symbol>> will take a pointer
160 to a minisymbol, and a pointer to a structure returned by
161 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
162 The return value may or may not be the same as the value from
163 <<bfd_make_empty_symbol>> which was passed in.
164
165 */
166
167 /*
168 DOCDD
169 INODE
170 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
171
172 */
173 /*
174 SUBSECTION
175 typedef asymbol
176
177 An <<asymbol>> has the form:
178
179 */
180
181 /*
182 CODE_FRAGMENT
183
184 .
185 .typedef struct bfd_symbol
186 .{
187 . {* A pointer to the BFD which owns the symbol. This information
188 . is necessary so that a back end can work out what additional
189 . information (invisible to the application writer) is carried
190 . with the symbol.
191 .
192 . This field is *almost* redundant, since you can use section->owner
193 . instead, except that some symbols point to the global sections
194 . bfd_{abs,com,und}_section. This could be fixed by making
195 . these globals be per-bfd (or per-target-flavor). FIXME. *}
196 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
197 .
198 . {* The text of the symbol. The name is left alone, and not copied; the
199 . application may not alter it. *}
200 . const char *name;
201 .
202 . {* The value of the symbol. This really should be a union of a
203 . numeric value with a pointer, since some flags indicate that
204 . a pointer to another symbol is stored here. *}
205 . symvalue value;
206 .
207 . {* Attributes of a symbol. *}
208 .#define BSF_NO_FLAGS 0x00
209 .
210 . {* The symbol has local scope; <<static>> in <<C>>. The value
211 . is the offset into the section of the data. *}
212 .#define BSF_LOCAL 0x01
213 .
214 . {* The symbol has global scope; initialized data in <<C>>. The
215 . value is the offset into the section of the data. *}
216 .#define BSF_GLOBAL 0x02
217 .
218 . {* The symbol has global scope and is exported. The value is
219 . the offset into the section of the data. *}
220 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
221 .
222 . {* A normal C symbol would be one of:
223 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
224 . <<BSF_GLOBAL>>. *}
225 .
226 . {* The symbol is a debugging record. The value has an arbitrary
227 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
228 .#define BSF_DEBUGGING 0x08
229 .
230 . {* The symbol denotes a function entry point. Used in ELF,
231 . perhaps others someday. *}
232 .#define BSF_FUNCTION 0x10
233 .
234 . {* Used by the linker. *}
235 .#define BSF_KEEP 0x20
236 .#define BSF_KEEP_G 0x40
237 .
238 . {* A weak global symbol, overridable without warnings by
239 . a regular global symbol of the same name. *}
240 .#define BSF_WEAK 0x80
241 .
242 . {* This symbol was created to point to a section, e.g. ELF's
243 . STT_SECTION symbols. *}
244 .#define BSF_SECTION_SYM 0x100
245 .
246 . {* The symbol used to be a common symbol, but now it is
247 . allocated. *}
248 .#define BSF_OLD_COMMON 0x200
249 .
250 . {* The default value for common data. *}
251 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
252 .
253 . {* In some files the type of a symbol sometimes alters its
254 . location in an output file - ie in coff a <<ISFCN>> symbol
255 . which is also <<C_EXT>> symbol appears where it was
256 . declared and not at the end of a section. This bit is set
257 . by the target BFD part to convey this information. *}
258 .#define BSF_NOT_AT_END 0x400
259 .
260 . {* Signal that the symbol is the label of constructor section. *}
261 .#define BSF_CONSTRUCTOR 0x800
262 .
263 . {* Signal that the symbol is a warning symbol. The name is a
264 . warning. The name of the next symbol is the one to warn about;
265 . if a reference is made to a symbol with the same name as the next
266 . symbol, a warning is issued by the linker. *}
267 .#define BSF_WARNING 0x1000
268 .
269 . {* Signal that the symbol is indirect. This symbol is an indirect
270 . pointer to the symbol with the same name as the next symbol. *}
271 .#define BSF_INDIRECT 0x2000
272 .
273 . {* BSF_FILE marks symbols that contain a file name. This is used
274 . for ELF STT_FILE symbols. *}
275 .#define BSF_FILE 0x4000
276 .
277 . {* Symbol is from dynamic linking information. *}
278 .#define BSF_DYNAMIC 0x8000
279 .
280 . {* The symbol denotes a data object. Used in ELF, and perhaps
281 . others someday. *}
282 .#define BSF_OBJECT 0x10000
283 .
284 . {* This symbol is a debugging symbol. The value is the offset
285 . into the section of the data. BSF_DEBUGGING should be set
286 . as well. *}
287 .#define BSF_DEBUGGING_RELOC 0x20000
288 .
289 . {* This symbol is thread local. Used in ELF. *}
290 .#define BSF_THREAD_LOCAL 0x40000
291 .
292 . {* This symbol represents a complex relocation expression,
293 . with the expression tree serialized in the symbol name. *}
294 .#define BSF_RELC 0x80000
295 .
296 . {* This symbol represents a signed complex relocation expression,
297 . with the expression tree serialized in the symbol name. *}
298 .#define BSF_SRELC 0x100000
299 .
300 . flagword flags;
301 .
302 . {* A pointer to the section to which this symbol is
303 . relative. This will always be non NULL, there are special
304 . sections for undefined and absolute symbols. *}
305 . struct bfd_section *section;
306 .
307 . {* Back end special data. *}
308 . union
309 . {
310 . void *p;
311 . bfd_vma i;
312 . }
313 . udata;
314 .}
315 .asymbol;
316 .
317 */
318
319 #include "sysdep.h"
320 #include "bfd.h"
321 #include "libbfd.h"
322 #include "safe-ctype.h"
323 #include "bfdlink.h"
324 #include "aout/stab_gnu.h"
325
326 /*
327 DOCDD
328 INODE
329 symbol handling functions, , typedef asymbol, Symbols
330 SUBSECTION
331 Symbol handling functions
332 */
333
334 /*
335 FUNCTION
336 bfd_get_symtab_upper_bound
337
338 DESCRIPTION
339 Return the number of bytes required to store a vector of pointers
340 to <<asymbols>> for all the symbols in the BFD @var{abfd},
341 including a terminal NULL pointer. If there are no symbols in
342 the BFD, then return 0. If an error occurs, return -1.
343
344 .#define bfd_get_symtab_upper_bound(abfd) \
345 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
346 .
347 */
348
349 /*
350 FUNCTION
351 bfd_is_local_label
352
353 SYNOPSIS
354 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
355
356 DESCRIPTION
357 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
358 a compiler generated local label, else return FALSE.
359 */
360
361 bfd_boolean
362 bfd_is_local_label (bfd *abfd, asymbol *sym)
363 {
364 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
365 starts with '.' is local. This would accidentally catch section names
366 if we didn't reject them here. */
367 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
368 return FALSE;
369 if (sym->name == NULL)
370 return FALSE;
371 return bfd_is_local_label_name (abfd, sym->name);
372 }
373
374 /*
375 FUNCTION
376 bfd_is_local_label_name
377
378 SYNOPSIS
379 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
380
381 DESCRIPTION
382 Return TRUE if a symbol with the name @var{name} in the BFD
383 @var{abfd} is a compiler generated local label, else return
384 FALSE. This just checks whether the name has the form of a
385 local label.
386
387 .#define bfd_is_local_label_name(abfd, name) \
388 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
389 .
390 */
391
392 /*
393 FUNCTION
394 bfd_is_target_special_symbol
395
396 SYNOPSIS
397 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
398
399 DESCRIPTION
400 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
401 special to the particular target represented by the BFD. Such symbols
402 should normally not be mentioned to the user.
403
404 .#define bfd_is_target_special_symbol(abfd, sym) \
405 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
406 .
407 */
408
409 /*
410 FUNCTION
411 bfd_canonicalize_symtab
412
413 DESCRIPTION
414 Read the symbols from the BFD @var{abfd}, and fills in
415 the vector @var{location} with pointers to the symbols and
416 a trailing NULL.
417 Return the actual number of symbol pointers, not
418 including the NULL.
419
420 .#define bfd_canonicalize_symtab(abfd, location) \
421 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
422 .
423 */
424
425 /*
426 FUNCTION
427 bfd_set_symtab
428
429 SYNOPSIS
430 bfd_boolean bfd_set_symtab
431 (bfd *abfd, asymbol **location, unsigned int count);
432
433 DESCRIPTION
434 Arrange that when the output BFD @var{abfd} is closed,
435 the table @var{location} of @var{count} pointers to symbols
436 will be written.
437 */
438
439 bfd_boolean
440 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
441 {
442 if (abfd->format != bfd_object || bfd_read_p (abfd))
443 {
444 bfd_set_error (bfd_error_invalid_operation);
445 return FALSE;
446 }
447
448 bfd_get_outsymbols (abfd) = location;
449 bfd_get_symcount (abfd) = symcount;
450 return TRUE;
451 }
452
453 /*
454 FUNCTION
455 bfd_print_symbol_vandf
456
457 SYNOPSIS
458 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
459
460 DESCRIPTION
461 Print the value and flags of the @var{symbol} supplied to the
462 stream @var{file}.
463 */
464 void
465 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
466 {
467 FILE *file = arg;
468
469 flagword type = symbol->flags;
470
471 if (symbol->section != NULL)
472 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
473 else
474 bfd_fprintf_vma (abfd, file, symbol->value);
475
476 /* This presumes that a symbol can not be both BSF_DEBUGGING and
477 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
478 BSF_OBJECT. */
479 fprintf (file, " %c%c%c%c%c%c%c",
480 ((type & BSF_LOCAL)
481 ? (type & BSF_GLOBAL) ? '!' : 'l'
482 : (type & BSF_GLOBAL) ? 'g' : ' '),
483 (type & BSF_WEAK) ? 'w' : ' ',
484 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
485 (type & BSF_WARNING) ? 'W' : ' ',
486 (type & BSF_INDIRECT) ? 'I' : ' ',
487 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
488 ((type & BSF_FUNCTION)
489 ? 'F'
490 : ((type & BSF_FILE)
491 ? 'f'
492 : ((type & BSF_OBJECT) ? 'O' : ' '))));
493 }
494
495 /*
496 FUNCTION
497 bfd_make_empty_symbol
498
499 DESCRIPTION
500 Create a new <<asymbol>> structure for the BFD @var{abfd}
501 and return a pointer to it.
502
503 This routine is necessary because each back end has private
504 information surrounding the <<asymbol>>. Building your own
505 <<asymbol>> and pointing to it will not create the private
506 information, and will cause problems later on.
507
508 .#define bfd_make_empty_symbol(abfd) \
509 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
510 .
511 */
512
513 /*
514 FUNCTION
515 _bfd_generic_make_empty_symbol
516
517 SYNOPSIS
518 asymbol *_bfd_generic_make_empty_symbol (bfd *);
519
520 DESCRIPTION
521 Create a new <<asymbol>> structure for the BFD @var{abfd}
522 and return a pointer to it. Used by core file routines,
523 binary back-end and anywhere else where no private info
524 is needed.
525 */
526
527 asymbol *
528 _bfd_generic_make_empty_symbol (bfd *abfd)
529 {
530 bfd_size_type amt = sizeof (asymbol);
531 asymbol *new = bfd_zalloc (abfd, amt);
532 if (new)
533 new->the_bfd = abfd;
534 return new;
535 }
536
537 /*
538 FUNCTION
539 bfd_make_debug_symbol
540
541 DESCRIPTION
542 Create a new <<asymbol>> structure for the BFD @var{abfd},
543 to be used as a debugging symbol. Further details of its use have
544 yet to be worked out.
545
546 .#define bfd_make_debug_symbol(abfd,ptr,size) \
547 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
548 .
549 */
550
551 struct section_to_type
552 {
553 const char *section;
554 char type;
555 };
556
557 /* Map section names to POSIX/BSD single-character symbol types.
558 This table is probably incomplete. It is sorted for convenience of
559 adding entries. Since it is so short, a linear search is used. */
560 static const struct section_to_type stt[] =
561 {
562 {".bss", 'b'},
563 {"code", 't'}, /* MRI .text */
564 {".data", 'd'},
565 {"*DEBUG*", 'N'},
566 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
567 {".drectve", 'i'}, /* MSVC's .drective section */
568 {".edata", 'e'}, /* MSVC's .edata (export) section */
569 {".fini", 't'}, /* ELF fini section */
570 {".idata", 'i'}, /* MSVC's .idata (import) section */
571 {".init", 't'}, /* ELF init section */
572 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
573 {".rdata", 'r'}, /* Read only data. */
574 {".rodata", 'r'}, /* Read only data. */
575 {".sbss", 's'}, /* Small BSS (uninitialized data). */
576 {".scommon", 'c'}, /* Small common. */
577 {".sdata", 'g'}, /* Small initialized data. */
578 {".text", 't'},
579 {"vars", 'd'}, /* MRI .data */
580 {"zerovars", 'b'}, /* MRI .bss */
581 {0, 0}
582 };
583
584 /* Return the single-character symbol type corresponding to
585 section S, or '?' for an unknown COFF section.
586
587 Check for any leading string which matches, so .text5 returns
588 't' as well as .text */
589
590 static char
591 coff_section_type (const char *s)
592 {
593 const struct section_to_type *t;
594
595 for (t = &stt[0]; t->section; t++)
596 if (!strncmp (s, t->section, strlen (t->section)))
597 return t->type;
598
599 return '?';
600 }
601
602 /* Return the single-character symbol type corresponding to section
603 SECTION, or '?' for an unknown section. This uses section flags to
604 identify sections.
605
606 FIXME These types are unhandled: c, i, e, p. If we handled these also,
607 we could perhaps obsolete coff_section_type. */
608
609 static char
610 decode_section_type (const struct bfd_section *section)
611 {
612 if (section->flags & SEC_CODE)
613 return 't';
614 if (section->flags & SEC_DATA)
615 {
616 if (section->flags & SEC_READONLY)
617 return 'r';
618 else if (section->flags & SEC_SMALL_DATA)
619 return 'g';
620 else
621 return 'd';
622 }
623 if ((section->flags & SEC_HAS_CONTENTS) == 0)
624 {
625 if (section->flags & SEC_SMALL_DATA)
626 return 's';
627 else
628 return 'b';
629 }
630 if (section->flags & SEC_DEBUGGING)
631 return 'N';
632 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
633 return 'n';
634
635 return '?';
636 }
637
638 /*
639 FUNCTION
640 bfd_decode_symclass
641
642 DESCRIPTION
643 Return a character corresponding to the symbol
644 class of @var{symbol}, or '?' for an unknown class.
645
646 SYNOPSIS
647 int bfd_decode_symclass (asymbol *symbol);
648 */
649 int
650 bfd_decode_symclass (asymbol *symbol)
651 {
652 char c;
653
654 if (symbol->section && bfd_is_com_section (symbol->section))
655 return 'C';
656 if (bfd_is_und_section (symbol->section))
657 {
658 if (symbol->flags & BSF_WEAK)
659 {
660 /* If weak, determine if it's specifically an object
661 or non-object weak. */
662 if (symbol->flags & BSF_OBJECT)
663 return 'v';
664 else
665 return 'w';
666 }
667 else
668 return 'U';
669 }
670 if (bfd_is_ind_section (symbol->section))
671 return 'I';
672 if (symbol->flags & BSF_WEAK)
673 {
674 /* If weak, determine if it's specifically an object
675 or non-object weak. */
676 if (symbol->flags & BSF_OBJECT)
677 return 'V';
678 else
679 return 'W';
680 }
681 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
682 return '?';
683
684 if (bfd_is_abs_section (symbol->section))
685 c = 'a';
686 else if (symbol->section)
687 {
688 c = coff_section_type (symbol->section->name);
689 if (c == '?')
690 c = decode_section_type (symbol->section);
691 }
692 else
693 return '?';
694 if (symbol->flags & BSF_GLOBAL)
695 c = TOUPPER (c);
696 return c;
697
698 /* We don't have to handle these cases just yet, but we will soon:
699 N_SETV: 'v';
700 N_SETA: 'l';
701 N_SETT: 'x';
702 N_SETD: 'z';
703 N_SETB: 's';
704 N_INDR: 'i';
705 */
706 }
707
708 /*
709 FUNCTION
710 bfd_is_undefined_symclass
711
712 DESCRIPTION
713 Returns non-zero if the class symbol returned by
714 bfd_decode_symclass represents an undefined symbol.
715 Returns zero otherwise.
716
717 SYNOPSIS
718 bfd_boolean bfd_is_undefined_symclass (int symclass);
719 */
720
721 bfd_boolean
722 bfd_is_undefined_symclass (int symclass)
723 {
724 return symclass == 'U' || symclass == 'w' || symclass == 'v';
725 }
726
727 /*
728 FUNCTION
729 bfd_symbol_info
730
731 DESCRIPTION
732 Fill in the basic info about symbol that nm needs.
733 Additional info may be added by the back-ends after
734 calling this function.
735
736 SYNOPSIS
737 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
738 */
739
740 void
741 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
742 {
743 ret->type = bfd_decode_symclass (symbol);
744
745 if (bfd_is_undefined_symclass (ret->type))
746 ret->value = 0;
747 else
748 ret->value = symbol->value + symbol->section->vma;
749
750 ret->name = symbol->name;
751 }
752
753 /*
754 FUNCTION
755 bfd_copy_private_symbol_data
756
757 SYNOPSIS
758 bfd_boolean bfd_copy_private_symbol_data
759 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
760
761 DESCRIPTION
762 Copy private symbol information from @var{isym} in the BFD
763 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
764 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
765 returns are:
766
767 o <<bfd_error_no_memory>> -
768 Not enough memory exists to create private data for @var{osec}.
769
770 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
771 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
772 . (ibfd, isymbol, obfd, osymbol))
773 .
774 */
775
776 /* The generic version of the function which returns mini symbols.
777 This is used when the backend does not provide a more efficient
778 version. It just uses BFD asymbol structures as mini symbols. */
779
780 long
781 _bfd_generic_read_minisymbols (bfd *abfd,
782 bfd_boolean dynamic,
783 void **minisymsp,
784 unsigned int *sizep)
785 {
786 long storage;
787 asymbol **syms = NULL;
788 long symcount;
789
790 if (dynamic)
791 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
792 else
793 storage = bfd_get_symtab_upper_bound (abfd);
794 if (storage < 0)
795 goto error_return;
796 if (storage == 0)
797 return 0;
798
799 syms = bfd_malloc (storage);
800 if (syms == NULL)
801 goto error_return;
802
803 if (dynamic)
804 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
805 else
806 symcount = bfd_canonicalize_symtab (abfd, syms);
807 if (symcount < 0)
808 goto error_return;
809
810 *minisymsp = syms;
811 *sizep = sizeof (asymbol *);
812 return symcount;
813
814 error_return:
815 bfd_set_error (bfd_error_no_symbols);
816 if (syms != NULL)
817 free (syms);
818 return -1;
819 }
820
821 /* The generic version of the function which converts a minisymbol to
822 an asymbol. We don't worry about the sym argument we are passed;
823 we just return the asymbol the minisymbol points to. */
824
825 asymbol *
826 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
827 bfd_boolean dynamic ATTRIBUTE_UNUSED,
828 const void *minisym,
829 asymbol *sym ATTRIBUTE_UNUSED)
830 {
831 return *(asymbol **) minisym;
832 }
833
834 /* Look through stabs debugging information in .stab and .stabstr
835 sections to find the source file and line closest to a desired
836 location. This is used by COFF and ELF targets. It sets *pfound
837 to TRUE if it finds some information. The *pinfo field is used to
838 pass cached information in and out of this routine; this first time
839 the routine is called for a BFD, *pinfo should be NULL. The value
840 placed in *pinfo should be saved with the BFD, and passed back each
841 time this function is called. */
842
843 /* We use a cache by default. */
844
845 #define ENABLE_CACHING
846
847 /* We keep an array of indexentry structures to record where in the
848 stabs section we should look to find line number information for a
849 particular address. */
850
851 struct indexentry
852 {
853 bfd_vma val;
854 bfd_byte *stab;
855 bfd_byte *str;
856 char *directory_name;
857 char *file_name;
858 char *function_name;
859 };
860
861 /* Compare two indexentry structures. This is called via qsort. */
862
863 static int
864 cmpindexentry (const void *a, const void *b)
865 {
866 const struct indexentry *contestantA = a;
867 const struct indexentry *contestantB = b;
868
869 if (contestantA->val < contestantB->val)
870 return -1;
871 else if (contestantA->val > contestantB->val)
872 return 1;
873 else
874 return 0;
875 }
876
877 /* A pointer to this structure is stored in *pinfo. */
878
879 struct stab_find_info
880 {
881 /* The .stab section. */
882 asection *stabsec;
883 /* The .stabstr section. */
884 asection *strsec;
885 /* The contents of the .stab section. */
886 bfd_byte *stabs;
887 /* The contents of the .stabstr section. */
888 bfd_byte *strs;
889
890 /* A table that indexes stabs by memory address. */
891 struct indexentry *indextable;
892 /* The number of entries in indextable. */
893 int indextablesize;
894
895 #ifdef ENABLE_CACHING
896 /* Cached values to restart quickly. */
897 struct indexentry *cached_indexentry;
898 bfd_vma cached_offset;
899 bfd_byte *cached_stab;
900 char *cached_file_name;
901 #endif
902
903 /* Saved ptr to malloc'ed filename. */
904 char *filename;
905 };
906
907 bfd_boolean
908 _bfd_stab_section_find_nearest_line (bfd *abfd,
909 asymbol **symbols,
910 asection *section,
911 bfd_vma offset,
912 bfd_boolean *pfound,
913 const char **pfilename,
914 const char **pfnname,
915 unsigned int *pline,
916 void **pinfo)
917 {
918 struct stab_find_info *info;
919 bfd_size_type stabsize, strsize;
920 bfd_byte *stab, *str;
921 bfd_byte *last_stab = NULL;
922 bfd_size_type stroff;
923 struct indexentry *indexentry;
924 char *file_name;
925 char *directory_name;
926 int saw_fun;
927 bfd_boolean saw_line, saw_func;
928
929 *pfound = FALSE;
930 *pfilename = bfd_get_filename (abfd);
931 *pfnname = NULL;
932 *pline = 0;
933
934 /* Stabs entries use a 12 byte format:
935 4 byte string table index
936 1 byte stab type
937 1 byte stab other field
938 2 byte stab desc field
939 4 byte stab value
940 FIXME: This will have to change for a 64 bit object format.
941
942 The stabs symbols are divided into compilation units. For the
943 first entry in each unit, the type of 0, the value is the length
944 of the string table for this unit, and the desc field is the
945 number of stabs symbols for this unit. */
946
947 #define STRDXOFF (0)
948 #define TYPEOFF (4)
949 #define OTHEROFF (5)
950 #define DESCOFF (6)
951 #define VALOFF (8)
952 #define STABSIZE (12)
953
954 info = *pinfo;
955 if (info != NULL)
956 {
957 if (info->stabsec == NULL || info->strsec == NULL)
958 {
959 /* No stabs debugging information. */
960 return TRUE;
961 }
962
963 stabsize = (info->stabsec->rawsize
964 ? info->stabsec->rawsize
965 : info->stabsec->size);
966 strsize = (info->strsec->rawsize
967 ? info->strsec->rawsize
968 : info->strsec->size);
969 }
970 else
971 {
972 long reloc_size, reloc_count;
973 arelent **reloc_vector;
974 int i;
975 char *name;
976 char *function_name;
977 bfd_size_type amt = sizeof *info;
978
979 info = bfd_zalloc (abfd, amt);
980 if (info == NULL)
981 return FALSE;
982
983 /* FIXME: When using the linker --split-by-file or
984 --split-by-reloc options, it is possible for the .stab and
985 .stabstr sections to be split. We should handle that. */
986
987 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
988 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
989
990 if (info->stabsec == NULL || info->strsec == NULL)
991 {
992 /* Try SOM section names. */
993 info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
994 info->strsec = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
995
996 if (info->stabsec == NULL || info->strsec == NULL)
997 {
998 /* No stabs debugging information. Set *pinfo so that we
999 can return quickly in the info != NULL case above. */
1000 *pinfo = info;
1001 return TRUE;
1002 }
1003 }
1004
1005 stabsize = (info->stabsec->rawsize
1006 ? info->stabsec->rawsize
1007 : info->stabsec->size);
1008 strsize = (info->strsec->rawsize
1009 ? info->strsec->rawsize
1010 : info->strsec->size);
1011
1012 info->stabs = bfd_alloc (abfd, stabsize);
1013 info->strs = bfd_alloc (abfd, strsize);
1014 if (info->stabs == NULL || info->strs == NULL)
1015 return FALSE;
1016
1017 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1018 0, stabsize)
1019 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1020 0, strsize))
1021 return FALSE;
1022
1023 /* If this is a relocatable object file, we have to relocate
1024 the entries in .stab. This should always be simple 32 bit
1025 relocations against symbols defined in this object file, so
1026 this should be no big deal. */
1027 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1028 if (reloc_size < 0)
1029 return FALSE;
1030 reloc_vector = bfd_malloc (reloc_size);
1031 if (reloc_vector == NULL && reloc_size != 0)
1032 return FALSE;
1033 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1034 symbols);
1035 if (reloc_count < 0)
1036 {
1037 if (reloc_vector != NULL)
1038 free (reloc_vector);
1039 return FALSE;
1040 }
1041 if (reloc_count > 0)
1042 {
1043 arelent **pr;
1044
1045 for (pr = reloc_vector; *pr != NULL; pr++)
1046 {
1047 arelent *r;
1048 unsigned long val;
1049 asymbol *sym;
1050
1051 r = *pr;
1052 /* Ignore R_*_NONE relocs. */
1053 if (r->howto->dst_mask == 0)
1054 continue;
1055
1056 if (r->howto->rightshift != 0
1057 || r->howto->size != 2
1058 || r->howto->bitsize != 32
1059 || r->howto->pc_relative
1060 || r->howto->bitpos != 0
1061 || r->howto->dst_mask != 0xffffffff)
1062 {
1063 (*_bfd_error_handler)
1064 (_("Unsupported .stab relocation"));
1065 bfd_set_error (bfd_error_invalid_operation);
1066 if (reloc_vector != NULL)
1067 free (reloc_vector);
1068 return FALSE;
1069 }
1070
1071 val = bfd_get_32 (abfd, info->stabs + r->address);
1072 val &= r->howto->src_mask;
1073 sym = *r->sym_ptr_ptr;
1074 val += sym->value + sym->section->vma + r->addend;
1075 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1076 }
1077 }
1078
1079 if (reloc_vector != NULL)
1080 free (reloc_vector);
1081
1082 /* First time through this function, build a table matching
1083 function VM addresses to stabs, then sort based on starting
1084 VM address. Do this in two passes: once to count how many
1085 table entries we'll need, and a second to actually build the
1086 table. */
1087
1088 info->indextablesize = 0;
1089 saw_fun = 1;
1090 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1091 {
1092 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1093 {
1094 /* N_SO with null name indicates EOF */
1095 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1096 continue;
1097
1098 /* if we did not see a function def, leave space for one. */
1099 if (saw_fun == 0)
1100 ++info->indextablesize;
1101
1102 saw_fun = 0;
1103
1104 /* two N_SO's in a row is a filename and directory. Skip */
1105 if (stab + STABSIZE < info->stabs + stabsize
1106 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1107 {
1108 stab += STABSIZE;
1109 }
1110 }
1111 else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1112 {
1113 saw_fun = 1;
1114 ++info->indextablesize;
1115 }
1116 }
1117
1118 if (saw_fun == 0)
1119 ++info->indextablesize;
1120
1121 if (info->indextablesize == 0)
1122 return TRUE;
1123 ++info->indextablesize;
1124
1125 amt = info->indextablesize;
1126 amt *= sizeof (struct indexentry);
1127 info->indextable = bfd_alloc (abfd, amt);
1128 if (info->indextable == NULL)
1129 return FALSE;
1130
1131 file_name = NULL;
1132 directory_name = NULL;
1133 saw_fun = 1;
1134
1135 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1136 i < info->indextablesize && stab < info->stabs + stabsize;
1137 stab += STABSIZE)
1138 {
1139 switch (stab[TYPEOFF])
1140 {
1141 case 0:
1142 /* This is the first entry in a compilation unit. */
1143 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1144 break;
1145 str += stroff;
1146 stroff = bfd_get_32 (abfd, stab + VALOFF);
1147 break;
1148
1149 case N_SO:
1150 /* The main file name. */
1151
1152 /* The following code creates a new indextable entry with
1153 a NULL function name if there were no N_FUNs in a file.
1154 Note that a N_SO without a file name is an EOF and
1155 there could be 2 N_SO following it with the new filename
1156 and directory. */
1157 if (saw_fun == 0)
1158 {
1159 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1160 info->indextable[i].stab = last_stab;
1161 info->indextable[i].str = str;
1162 info->indextable[i].directory_name = directory_name;
1163 info->indextable[i].file_name = file_name;
1164 info->indextable[i].function_name = NULL;
1165 ++i;
1166 }
1167 saw_fun = 0;
1168
1169 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1170 if (*file_name == '\0')
1171 {
1172 directory_name = NULL;
1173 file_name = NULL;
1174 saw_fun = 1;
1175 }
1176 else
1177 {
1178 last_stab = stab;
1179 if (stab + STABSIZE >= info->stabs + stabsize
1180 || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1181 {
1182 directory_name = NULL;
1183 }
1184 else
1185 {
1186 /* Two consecutive N_SOs are a directory and a
1187 file name. */
1188 stab += STABSIZE;
1189 directory_name = file_name;
1190 file_name = ((char *) str
1191 + bfd_get_32 (abfd, stab + STRDXOFF));
1192 }
1193 }
1194 break;
1195
1196 case N_SOL:
1197 /* The name of an include file. */
1198 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1199 break;
1200
1201 case N_FUN:
1202 /* A function name. */
1203 saw_fun = 1;
1204 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1205
1206 if (*name == '\0')
1207 name = NULL;
1208
1209 function_name = name;
1210
1211 if (name == NULL)
1212 continue;
1213
1214 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1215 info->indextable[i].stab = stab;
1216 info->indextable[i].str = str;
1217 info->indextable[i].directory_name = directory_name;
1218 info->indextable[i].file_name = file_name;
1219 info->indextable[i].function_name = function_name;
1220 ++i;
1221 break;
1222 }
1223 }
1224
1225 if (saw_fun == 0)
1226 {
1227 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1228 info->indextable[i].stab = last_stab;
1229 info->indextable[i].str = str;
1230 info->indextable[i].directory_name = directory_name;
1231 info->indextable[i].file_name = file_name;
1232 info->indextable[i].function_name = NULL;
1233 ++i;
1234 }
1235
1236 info->indextable[i].val = (bfd_vma) -1;
1237 info->indextable[i].stab = info->stabs + stabsize;
1238 info->indextable[i].str = str;
1239 info->indextable[i].directory_name = NULL;
1240 info->indextable[i].file_name = NULL;
1241 info->indextable[i].function_name = NULL;
1242 ++i;
1243
1244 info->indextablesize = i;
1245 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1246 cmpindexentry);
1247
1248 *pinfo = info;
1249 }
1250
1251 /* We are passed a section relative offset. The offsets in the
1252 stabs information are absolute. */
1253 offset += bfd_get_section_vma (abfd, section);
1254
1255 #ifdef ENABLE_CACHING
1256 if (info->cached_indexentry != NULL
1257 && offset >= info->cached_offset
1258 && offset < (info->cached_indexentry + 1)->val)
1259 {
1260 stab = info->cached_stab;
1261 indexentry = info->cached_indexentry;
1262 file_name = info->cached_file_name;
1263 }
1264 else
1265 #endif
1266 {
1267 long low, high;
1268 long mid = -1;
1269
1270 /* Cache non-existent or invalid. Do binary search on
1271 indextable. */
1272 indexentry = NULL;
1273
1274 low = 0;
1275 high = info->indextablesize - 1;
1276 while (low != high)
1277 {
1278 mid = (high + low) / 2;
1279 if (offset >= info->indextable[mid].val
1280 && offset < info->indextable[mid + 1].val)
1281 {
1282 indexentry = &info->indextable[mid];
1283 break;
1284 }
1285
1286 if (info->indextable[mid].val > offset)
1287 high = mid;
1288 else
1289 low = mid + 1;
1290 }
1291
1292 if (indexentry == NULL)
1293 return TRUE;
1294
1295 stab = indexentry->stab + STABSIZE;
1296 file_name = indexentry->file_name;
1297 }
1298
1299 directory_name = indexentry->directory_name;
1300 str = indexentry->str;
1301
1302 saw_line = FALSE;
1303 saw_func = FALSE;
1304 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1305 {
1306 bfd_boolean done;
1307 bfd_vma val;
1308
1309 done = FALSE;
1310
1311 switch (stab[TYPEOFF])
1312 {
1313 case N_SOL:
1314 /* The name of an include file. */
1315 val = bfd_get_32 (abfd, stab + VALOFF);
1316 if (val <= offset)
1317 {
1318 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1319 *pline = 0;
1320 }
1321 break;
1322
1323 case N_SLINE:
1324 case N_DSLINE:
1325 case N_BSLINE:
1326 /* A line number. If the function was specified, then the value
1327 is relative to the start of the function. Otherwise, the
1328 value is an absolute address. */
1329 val = ((indexentry->function_name ? indexentry->val : 0)
1330 + bfd_get_32 (abfd, stab + VALOFF));
1331 /* If this line starts before our desired offset, or if it's
1332 the first line we've been able to find, use it. The
1333 !saw_line check works around a bug in GCC 2.95.3, which emits
1334 the first N_SLINE late. */
1335 if (!saw_line || val <= offset)
1336 {
1337 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1338
1339 #ifdef ENABLE_CACHING
1340 info->cached_stab = stab;
1341 info->cached_offset = val;
1342 info->cached_file_name = file_name;
1343 info->cached_indexentry = indexentry;
1344 #endif
1345 }
1346 if (val > offset)
1347 done = TRUE;
1348 saw_line = TRUE;
1349 break;
1350
1351 case N_FUN:
1352 case N_SO:
1353 if (saw_func || saw_line)
1354 done = TRUE;
1355 saw_func = TRUE;
1356 break;
1357 }
1358
1359 if (done)
1360 break;
1361 }
1362
1363 *pfound = TRUE;
1364
1365 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1366 || directory_name == NULL)
1367 *pfilename = file_name;
1368 else
1369 {
1370 size_t dirlen;
1371
1372 dirlen = strlen (directory_name);
1373 if (info->filename == NULL
1374 || strncmp (info->filename, directory_name, dirlen) != 0
1375 || strcmp (info->filename + dirlen, file_name) != 0)
1376 {
1377 size_t len;
1378
1379 if (info->filename != NULL)
1380 free (info->filename);
1381 len = strlen (file_name) + 1;
1382 info->filename = bfd_malloc (dirlen + len);
1383 if (info->filename == NULL)
1384 return FALSE;
1385 memcpy (info->filename, directory_name, dirlen);
1386 memcpy (info->filename + dirlen, file_name, len);
1387 }
1388
1389 *pfilename = info->filename;
1390 }
1391
1392 if (indexentry->function_name != NULL)
1393 {
1394 char *s;
1395
1396 /* This will typically be something like main:F(0,1), so we want
1397 to clobber the colon. It's OK to change the name, since the
1398 string is in our own local storage anyhow. */
1399 s = strchr (indexentry->function_name, ':');
1400 if (s != NULL)
1401 *s = '\0';
1402
1403 *pfnname = indexentry->function_name;
1404 }
1405
1406 return TRUE;
1407 }
This page took 0.056944 seconds and 4 git commands to generate.