* elf32-m68hc11.c (elf_m68hc11_howto_table): Add the new relocs;
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24 SECTION
25 Symbols
26
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
50 @menu
51 @* Reading Symbols::
52 @* Writing Symbols::
53 @* Mini Symbols::
54 @* typedef asymbol::
55 @* symbol handling functions::
56 @end menu
57
58 INODE
59 Reading Symbols, Writing Symbols, Symbols, Symbols
60 SUBSECTION
61 Reading symbols
62
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
66
67 | long storage_needed;
68 | asymbol **symbol_table;
69 | long number_of_symbols;
70 | long i;
71 |
72 | storage_needed = bfd_get_symtab_upper_bound (abfd);
73 |
74 | if (storage_needed < 0)
75 | FAIL
76 |
77 | if (storage_needed == 0) {
78 | return ;
79 | }
80 | symbol_table = (asymbol **) xmalloc (storage_needed);
81 | ...
82 | number_of_symbols =
83 | bfd_canonicalize_symtab (abfd, symbol_table);
84 |
85 | if (number_of_symbols < 0)
86 | FAIL
87 |
88 | for (i = 0; i < number_of_symbols; i++) {
89 | process_symbol (symbol_table[i]);
90 | }
91
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
94
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 Writing symbols
99
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
109
110 | #include "bfd.h"
111 | main()
112 | {
113 | bfd *abfd;
114 | asymbol *ptrs[2];
115 | asymbol *new;
116 |
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
124 |
125 | ptrs[0] = new;
126 | ptrs[1] = (asymbol *)0;
127 |
128 | bfd_set_symtab(abfd, ptrs, 1);
129 | bfd_close(abfd);
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171 */
172 /*
173 SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178 */
179
180 /*
181 CODE_FRAGMENT
182
183 .
184 .typedef struct symbol_cache_entry
185 .{
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
190 .
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
196 .
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
199 . const char *name;
200 .
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
204 . symvalue value;
205 .
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0x00
208 .
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL 0x01
212 .
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL 0x02
216 .
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
220 .
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
223 . <<BSF_GLOBAL>>. *}
224 .
225 . {* The symbol is a debugging record. The value has an arbitary
226 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
227 .#define BSF_DEBUGGING 0x08
228 .
229 . {* The symbol denotes a function entry point. Used in ELF,
230 . perhaps others someday. *}
231 .#define BSF_FUNCTION 0x10
232 .
233 . {* Used by the linker. *}
234 .#define BSF_KEEP 0x20
235 .#define BSF_KEEP_G 0x40
236 .
237 . {* A weak global symbol, overridable without warnings by
238 . a regular global symbol of the same name. *}
239 .#define BSF_WEAK 0x80
240 .
241 . {* This symbol was created to point to a section, e.g. ELF's
242 . STT_SECTION symbols. *}
243 .#define BSF_SECTION_SYM 0x100
244 .
245 . {* The symbol used to be a common symbol, but now it is
246 . allocated. *}
247 .#define BSF_OLD_COMMON 0x200
248 .
249 . {* The default value for common data. *}
250 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
251 .
252 . {* In some files the type of a symbol sometimes alters its
253 . location in an output file - ie in coff a <<ISFCN>> symbol
254 . which is also <<C_EXT>> symbol appears where it was
255 . declared and not at the end of a section. This bit is set
256 . by the target BFD part to convey this information. *}
257 .#define BSF_NOT_AT_END 0x400
258 .
259 . {* Signal that the symbol is the label of constructor section. *}
260 .#define BSF_CONSTRUCTOR 0x800
261 .
262 . {* Signal that the symbol is a warning symbol. The name is a
263 . warning. The name of the next symbol is the one to warn about;
264 . if a reference is made to a symbol with the same name as the next
265 . symbol, a warning is issued by the linker. *}
266 .#define BSF_WARNING 0x1000
267 .
268 . {* Signal that the symbol is indirect. This symbol is an indirect
269 . pointer to the symbol with the same name as the next symbol. *}
270 .#define BSF_INDIRECT 0x2000
271 .
272 . {* BSF_FILE marks symbols that contain a file name. This is used
273 . for ELF STT_FILE symbols. *}
274 .#define BSF_FILE 0x4000
275 .
276 . {* Symbol is from dynamic linking information. *}
277 .#define BSF_DYNAMIC 0x8000
278 .
279 . {* The symbol denotes a data object. Used in ELF, and perhaps
280 . others someday. *}
281 .#define BSF_OBJECT 0x10000
282 .
283 . {* This symbol is a debugging symbol. The value is the offset
284 . into the section of the data. BSF_DEBUGGING should be set
285 . as well. *}
286 .#define BSF_DEBUGGING_RELOC 0x20000
287 .
288 . {* This symbol is thread local. Used in ELF. *}
289 .#define BSF_THREAD_LOCAL 0x40000
290 .
291 . flagword flags;
292 .
293 . {* A pointer to the section to which this symbol is
294 . relative. This will always be non NULL, there are special
295 . sections for undefined and absolute symbols. *}
296 . struct sec *section;
297 .
298 . {* Back end special data. *}
299 . union
300 . {
301 . PTR p;
302 . bfd_vma i;
303 . }
304 . udata;
305 .}
306 .asymbol;
307 .
308 */
309
310 #include "bfd.h"
311 #include "sysdep.h"
312 #include "libbfd.h"
313 #include "safe-ctype.h"
314 #include "bfdlink.h"
315 #include "aout/stab_gnu.h"
316
317 static char coff_section_type PARAMS ((const char *));
318 static char decode_section_type PARAMS ((const struct sec *));
319 static int cmpindexentry PARAMS ((const PTR, const PTR));
320
321 /*
322 DOCDD
323 INODE
324 symbol handling functions, , typedef asymbol, Symbols
325 SUBSECTION
326 Symbol handling functions
327 */
328
329 /*
330 FUNCTION
331 bfd_get_symtab_upper_bound
332
333 DESCRIPTION
334 Return the number of bytes required to store a vector of pointers
335 to <<asymbols>> for all the symbols in the BFD @var{abfd},
336 including a terminal NULL pointer. If there are no symbols in
337 the BFD, then return 0. If an error occurs, return -1.
338
339 .#define bfd_get_symtab_upper_bound(abfd) \
340 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
341 .
342 */
343
344 /*
345 FUNCTION
346 bfd_is_local_label
347
348 SYNOPSIS
349 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
350
351 DESCRIPTION
352 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
353 a compiler generated local label, else return false.
354 */
355
356 boolean
357 bfd_is_local_label (abfd, sym)
358 bfd *abfd;
359 asymbol *sym;
360 {
361 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
362 starts with '.' is local. This would accidentally catch section names
363 if we didn't reject them here. */
364 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_SECTION_SYM)) != 0)
365 return false;
366 if (sym->name == NULL)
367 return false;
368 return bfd_is_local_label_name (abfd, sym->name);
369 }
370
371 /*
372 FUNCTION
373 bfd_is_local_label_name
374
375 SYNOPSIS
376 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
377
378 DESCRIPTION
379 Return true if a symbol with the name @var{name} in the BFD
380 @var{abfd} is a compiler generated local label, else return
381 false. This just checks whether the name has the form of a
382 local label.
383
384 .#define bfd_is_local_label_name(abfd, name) \
385 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
386 .
387 */
388
389 /*
390 FUNCTION
391 bfd_canonicalize_symtab
392
393 DESCRIPTION
394 Read the symbols from the BFD @var{abfd}, and fills in
395 the vector @var{location} with pointers to the symbols and
396 a trailing NULL.
397 Return the actual number of symbol pointers, not
398 including the NULL.
399
400 .#define bfd_canonicalize_symtab(abfd, location) \
401 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
402 . (abfd, location))
403 .
404 */
405
406 /*
407 FUNCTION
408 bfd_set_symtab
409
410 SYNOPSIS
411 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
412
413 DESCRIPTION
414 Arrange that when the output BFD @var{abfd} is closed,
415 the table @var{location} of @var{count} pointers to symbols
416 will be written.
417 */
418
419 boolean
420 bfd_set_symtab (abfd, location, symcount)
421 bfd *abfd;
422 asymbol **location;
423 unsigned int symcount;
424 {
425 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
426 {
427 bfd_set_error (bfd_error_invalid_operation);
428 return false;
429 }
430
431 bfd_get_outsymbols (abfd) = location;
432 bfd_get_symcount (abfd) = symcount;
433 return true;
434 }
435
436 /*
437 FUNCTION
438 bfd_print_symbol_vandf
439
440 SYNOPSIS
441 void bfd_print_symbol_vandf(bfd *abfd, PTR file, asymbol *symbol);
442
443 DESCRIPTION
444 Print the value and flags of the @var{symbol} supplied to the
445 stream @var{file}.
446 */
447 void
448 bfd_print_symbol_vandf (abfd, arg, symbol)
449 bfd *abfd;
450 PTR arg;
451 asymbol *symbol;
452 {
453 FILE *file = (FILE *) arg;
454 flagword type = symbol->flags;
455 if (symbol->section != (asection *) NULL)
456 {
457 bfd_fprintf_vma (abfd, file,
458 symbol->value + symbol->section->vma);
459 }
460 else
461 {
462 bfd_fprintf_vma (abfd, file, symbol->value);
463 }
464
465 /* This presumes that a symbol can not be both BSF_DEBUGGING and
466 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
467 BSF_OBJECT. */
468 fprintf (file, " %c%c%c%c%c%c%c",
469 ((type & BSF_LOCAL)
470 ? (type & BSF_GLOBAL) ? '!' : 'l'
471 : (type & BSF_GLOBAL) ? 'g' : ' '),
472 (type & BSF_WEAK) ? 'w' : ' ',
473 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
474 (type & BSF_WARNING) ? 'W' : ' ',
475 (type & BSF_INDIRECT) ? 'I' : ' ',
476 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
477 ((type & BSF_FUNCTION)
478 ? 'F'
479 : ((type & BSF_FILE)
480 ? 'f'
481 : ((type & BSF_OBJECT) ? 'O' : ' '))));
482 }
483
484 /*
485 FUNCTION
486 bfd_make_empty_symbol
487
488 DESCRIPTION
489 Create a new <<asymbol>> structure for the BFD @var{abfd}
490 and return a pointer to it.
491
492 This routine is necessary because each back end has private
493 information surrounding the <<asymbol>>. Building your own
494 <<asymbol>> and pointing to it will not create the private
495 information, and will cause problems later on.
496
497 .#define bfd_make_empty_symbol(abfd) \
498 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
499 .
500 */
501
502 /*
503 FUNCTION
504 _bfd_generic_make_empty_symbol
505
506 SYNOPSIS
507 asymbol *_bfd_generic_make_empty_symbol (bfd *);
508
509 DESCRIPTION
510 Create a new <<asymbol>> structure for the BFD @var{abfd}
511 and return a pointer to it. Used by core file routines,
512 binary back-end and anywhere else where no private info
513 is needed.
514 */
515
516 asymbol *
517 _bfd_generic_make_empty_symbol (abfd)
518 bfd *abfd;
519 {
520 bfd_size_type amt = sizeof (asymbol);
521 asymbol *new = (asymbol *) bfd_zalloc (abfd, amt);
522 if (new)
523 new->the_bfd = abfd;
524 return new;
525 }
526
527 /*
528 FUNCTION
529 bfd_make_debug_symbol
530
531 DESCRIPTION
532 Create a new <<asymbol>> structure for the BFD @var{abfd},
533 to be used as a debugging symbol. Further details of its use have
534 yet to be worked out.
535
536 .#define bfd_make_debug_symbol(abfd,ptr,size) \
537 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
538 .
539 */
540
541 struct section_to_type
542 {
543 const char *section;
544 char type;
545 };
546
547 /* Map section names to POSIX/BSD single-character symbol types.
548 This table is probably incomplete. It is sorted for convenience of
549 adding entries. Since it is so short, a linear search is used. */
550 static const struct section_to_type stt[] =
551 {
552 {".bss", 'b'},
553 {"code", 't'}, /* MRI .text */
554 {".data", 'd'},
555 {"*DEBUG*", 'N'},
556 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
557 {".drectve", 'i'}, /* MSVC's .drective section */
558 {".edata", 'e'}, /* MSVC's .edata (export) section */
559 {".fini", 't'}, /* ELF fini section */
560 {".idata", 'i'}, /* MSVC's .idata (import) section */
561 {".init", 't'}, /* ELF init section */
562 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
563 {".rdata", 'r'}, /* Read only data. */
564 {".rodata", 'r'}, /* Read only data. */
565 {".sbss", 's'}, /* Small BSS (uninitialized data). */
566 {".scommon", 'c'}, /* Small common. */
567 {".sdata", 'g'}, /* Small initialized data. */
568 {".text", 't'},
569 {"vars", 'd'}, /* MRI .data */
570 {"zerovars", 'b'}, /* MRI .bss */
571 {0, 0}
572 };
573
574 /* Return the single-character symbol type corresponding to
575 section S, or '?' for an unknown COFF section.
576
577 Check for any leading string which matches, so .text5 returns
578 't' as well as .text */
579
580 static char
581 coff_section_type (s)
582 const char *s;
583 {
584 const struct section_to_type *t;
585
586 for (t = &stt[0]; t->section; t++)
587 if (!strncmp (s, t->section, strlen (t->section)))
588 return t->type;
589
590 return '?';
591 }
592
593 /* Return the single-character symbol type corresponding to section
594 SECTION, or '?' for an unknown section. This uses section flags to
595 identify sections.
596
597 FIXME These types are unhandled: c, i, e, p. If we handled these also,
598 we could perhaps obsolete coff_section_type. */
599
600 static char
601 decode_section_type (section)
602 const struct sec *section;
603 {
604 if (section->flags & SEC_CODE)
605 return 't';
606 if (section->flags & SEC_DATA)
607 {
608 if (section->flags & SEC_READONLY)
609 return 'r';
610 else if (section->flags & SEC_SMALL_DATA)
611 return 'g';
612 else
613 return 'd';
614 }
615 if ((section->flags & SEC_HAS_CONTENTS) == 0)
616 {
617 if (section->flags & SEC_SMALL_DATA)
618 return 's';
619 else
620 return 'b';
621 }
622 if (section->flags & SEC_DEBUGGING)
623 return 'N';
624
625 return '?';
626 }
627
628 /*
629 FUNCTION
630 bfd_decode_symclass
631
632 DESCRIPTION
633 Return a character corresponding to the symbol
634 class of @var{symbol}, or '?' for an unknown class.
635
636 SYNOPSIS
637 int bfd_decode_symclass(asymbol *symbol);
638 */
639 int
640 bfd_decode_symclass (symbol)
641 asymbol *symbol;
642 {
643 char c;
644
645 if (bfd_is_com_section (symbol->section))
646 return 'C';
647 if (bfd_is_und_section (symbol->section))
648 {
649 if (symbol->flags & BSF_WEAK)
650 {
651 /* If weak, determine if it's specifically an object
652 or non-object weak. */
653 if (symbol->flags & BSF_OBJECT)
654 return 'v';
655 else
656 return 'w';
657 }
658 else
659 return 'U';
660 }
661 if (bfd_is_ind_section (symbol->section))
662 return 'I';
663 if (symbol->flags & BSF_WEAK)
664 {
665 /* If weak, determine if it's specifically an object
666 or non-object weak. */
667 if (symbol->flags & BSF_OBJECT)
668 return 'V';
669 else
670 return 'W';
671 }
672 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
673 return '?';
674
675 if (bfd_is_abs_section (symbol->section))
676 c = 'a';
677 else if (symbol->section)
678 {
679 c = coff_section_type (symbol->section->name);
680 if (c == '?')
681 c = decode_section_type (symbol->section);
682 }
683 else
684 return '?';
685 if (symbol->flags & BSF_GLOBAL)
686 c = TOUPPER (c);
687 return c;
688
689 /* We don't have to handle these cases just yet, but we will soon:
690 N_SETV: 'v';
691 N_SETA: 'l';
692 N_SETT: 'x';
693 N_SETD: 'z';
694 N_SETB: 's';
695 N_INDR: 'i';
696 */
697 }
698
699 /*
700 FUNCTION
701 bfd_is_undefined_symclass
702
703 DESCRIPTION
704 Returns non-zero if the class symbol returned by
705 bfd_decode_symclass represents an undefined symbol.
706 Returns zero otherwise.
707
708 SYNOPSIS
709 boolean bfd_is_undefined_symclass (int symclass);
710 */
711
712 boolean
713 bfd_is_undefined_symclass (symclass)
714 int symclass;
715 {
716 return symclass == 'U' || symclass == 'w' || symclass == 'v';
717 }
718
719 /*
720 FUNCTION
721 bfd_symbol_info
722
723 DESCRIPTION
724 Fill in the basic info about symbol that nm needs.
725 Additional info may be added by the back-ends after
726 calling this function.
727
728 SYNOPSIS
729 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
730 */
731
732 void
733 bfd_symbol_info (symbol, ret)
734 asymbol *symbol;
735 symbol_info *ret;
736 {
737 ret->type = bfd_decode_symclass (symbol);
738
739 if (bfd_is_undefined_symclass (ret->type))
740 ret->value = 0;
741 else
742 ret->value = symbol->value + symbol->section->vma;
743
744 ret->name = symbol->name;
745 }
746
747 /*
748 FUNCTION
749 bfd_copy_private_symbol_data
750
751 SYNOPSIS
752 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
753
754 DESCRIPTION
755 Copy private symbol information from @var{isym} in the BFD
756 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
757 Return <<true>> on success, <<false>> on error. Possible error
758 returns are:
759
760 o <<bfd_error_no_memory>> -
761 Not enough memory exists to create private data for @var{osec}.
762
763 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
764 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
765 . (ibfd, isymbol, obfd, osymbol))
766 .
767 */
768
769 /* The generic version of the function which returns mini symbols.
770 This is used when the backend does not provide a more efficient
771 version. It just uses BFD asymbol structures as mini symbols. */
772
773 long
774 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
775 bfd *abfd;
776 boolean dynamic;
777 PTR *minisymsp;
778 unsigned int *sizep;
779 {
780 long storage;
781 asymbol **syms = NULL;
782 long symcount;
783
784 if (dynamic)
785 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
786 else
787 storage = bfd_get_symtab_upper_bound (abfd);
788 if (storage < 0)
789 goto error_return;
790 if (storage == 0)
791 return 0;
792
793 syms = (asymbol **) bfd_malloc ((bfd_size_type) storage);
794 if (syms == NULL)
795 goto error_return;
796
797 if (dynamic)
798 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
799 else
800 symcount = bfd_canonicalize_symtab (abfd, syms);
801 if (symcount < 0)
802 goto error_return;
803
804 *minisymsp = (PTR) syms;
805 *sizep = sizeof (asymbol *);
806 return symcount;
807
808 error_return:
809 if (syms != NULL)
810 free (syms);
811 return -1;
812 }
813
814 /* The generic version of the function which converts a minisymbol to
815 an asymbol. We don't worry about the sym argument we are passed;
816 we just return the asymbol the minisymbol points to. */
817
818 /*ARGSUSED*/
819 asymbol *
820 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
821 bfd *abfd ATTRIBUTE_UNUSED;
822 boolean dynamic ATTRIBUTE_UNUSED;
823 const PTR minisym;
824 asymbol *sym ATTRIBUTE_UNUSED;
825 {
826 return *(asymbol **) minisym;
827 }
828
829 /* Look through stabs debugging information in .stab and .stabstr
830 sections to find the source file and line closest to a desired
831 location. This is used by COFF and ELF targets. It sets *pfound
832 to true if it finds some information. The *pinfo field is used to
833 pass cached information in and out of this routine; this first time
834 the routine is called for a BFD, *pinfo should be NULL. The value
835 placed in *pinfo should be saved with the BFD, and passed back each
836 time this function is called. */
837
838 /* We use a cache by default. */
839
840 #define ENABLE_CACHING
841
842 /* We keep an array of indexentry structures to record where in the
843 stabs section we should look to find line number information for a
844 particular address. */
845
846 struct indexentry
847 {
848 bfd_vma val;
849 bfd_byte *stab;
850 bfd_byte *str;
851 char *directory_name;
852 char *file_name;
853 char *function_name;
854 };
855
856 /* Compare two indexentry structures. This is called via qsort. */
857
858 static int
859 cmpindexentry (a, b)
860 const PTR a;
861 const PTR b;
862 {
863 const struct indexentry *contestantA = (const struct indexentry *) a;
864 const struct indexentry *contestantB = (const struct indexentry *) b;
865
866 if (contestantA->val < contestantB->val)
867 return -1;
868 else if (contestantA->val > contestantB->val)
869 return 1;
870 else
871 return 0;
872 }
873
874 /* A pointer to this structure is stored in *pinfo. */
875
876 struct stab_find_info
877 {
878 /* The .stab section. */
879 asection *stabsec;
880 /* The .stabstr section. */
881 asection *strsec;
882 /* The contents of the .stab section. */
883 bfd_byte *stabs;
884 /* The contents of the .stabstr section. */
885 bfd_byte *strs;
886
887 /* A table that indexes stabs by memory address. */
888 struct indexentry *indextable;
889 /* The number of entries in indextable. */
890 int indextablesize;
891
892 #ifdef ENABLE_CACHING
893 /* Cached values to restart quickly. */
894 struct indexentry *cached_indexentry;
895 bfd_vma cached_offset;
896 bfd_byte *cached_stab;
897 char *cached_file_name;
898 #endif
899
900 /* Saved ptr to malloc'ed filename. */
901 char *filename;
902 };
903
904 boolean
905 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
906 pfilename, pfnname, pline, pinfo)
907 bfd *abfd;
908 asymbol **symbols;
909 asection *section;
910 bfd_vma offset;
911 boolean *pfound;
912 const char **pfilename;
913 const char **pfnname;
914 unsigned int *pline;
915 PTR *pinfo;
916 {
917 struct stab_find_info *info;
918 bfd_size_type stabsize, strsize;
919 bfd_byte *stab, *str;
920 bfd_byte *last_stab = NULL;
921 bfd_size_type stroff;
922 struct indexentry *indexentry;
923 char *file_name;
924 char *directory_name;
925 int saw_fun;
926 boolean saw_line, saw_func;
927
928 *pfound = false;
929 *pfilename = bfd_get_filename (abfd);
930 *pfnname = NULL;
931 *pline = 0;
932
933 /* Stabs entries use a 12 byte format:
934 4 byte string table index
935 1 byte stab type
936 1 byte stab other field
937 2 byte stab desc field
938 4 byte stab value
939 FIXME: This will have to change for a 64 bit object format.
940
941 The stabs symbols are divided into compilation units. For the
942 first entry in each unit, the type of 0, the value is the length
943 of the string table for this unit, and the desc field is the
944 number of stabs symbols for this unit. */
945
946 #define STRDXOFF (0)
947 #define TYPEOFF (4)
948 #define OTHEROFF (5)
949 #define DESCOFF (6)
950 #define VALOFF (8)
951 #define STABSIZE (12)
952
953 info = (struct stab_find_info *) *pinfo;
954 if (info != NULL)
955 {
956 if (info->stabsec == NULL || info->strsec == NULL)
957 {
958 /* No stabs debugging information. */
959 return true;
960 }
961
962 stabsize = info->stabsec->_raw_size;
963 strsize = info->strsec->_raw_size;
964 }
965 else
966 {
967 long reloc_size, reloc_count;
968 arelent **reloc_vector;
969 int i;
970 char *name;
971 char *function_name;
972 bfd_size_type amt = sizeof *info;
973
974 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
975 if (info == NULL)
976 return false;
977
978 /* FIXME: When using the linker --split-by-file or
979 --split-by-reloc options, it is possible for the .stab and
980 .stabstr sections to be split. We should handle that. */
981
982 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
983 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
984
985 if (info->stabsec == NULL || info->strsec == NULL)
986 {
987 /* No stabs debugging information. Set *pinfo so that we
988 can return quickly in the info != NULL case above. */
989 *pinfo = (PTR) info;
990 return true;
991 }
992
993 stabsize = info->stabsec->_raw_size;
994 strsize = info->strsec->_raw_size;
995
996 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
997 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
998 if (info->stabs == NULL || info->strs == NULL)
999 return false;
1000
1001 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1002 (bfd_vma) 0, stabsize)
1003 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1004 (bfd_vma) 0, strsize))
1005 return false;
1006
1007 /* If this is a relocateable object file, we have to relocate
1008 the entries in .stab. This should always be simple 32 bit
1009 relocations against symbols defined in this object file, so
1010 this should be no big deal. */
1011 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1012 if (reloc_size < 0)
1013 return false;
1014 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1015 if (reloc_vector == NULL && reloc_size != 0)
1016 return false;
1017 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1018 symbols);
1019 if (reloc_count < 0)
1020 {
1021 if (reloc_vector != NULL)
1022 free (reloc_vector);
1023 return false;
1024 }
1025 if (reloc_count > 0)
1026 {
1027 arelent **pr;
1028
1029 for (pr = reloc_vector; *pr != NULL; pr++)
1030 {
1031 arelent *r;
1032 unsigned long val;
1033 asymbol *sym;
1034
1035 r = *pr;
1036 if (r->howto->rightshift != 0
1037 || r->howto->size != 2
1038 || r->howto->bitsize != 32
1039 || r->howto->pc_relative
1040 || r->howto->bitpos != 0
1041 || r->howto->dst_mask != 0xffffffff)
1042 {
1043 (*_bfd_error_handler)
1044 (_("Unsupported .stab relocation"));
1045 bfd_set_error (bfd_error_invalid_operation);
1046 if (reloc_vector != NULL)
1047 free (reloc_vector);
1048 return false;
1049 }
1050
1051 val = bfd_get_32 (abfd, info->stabs + r->address);
1052 val &= r->howto->src_mask;
1053 sym = *r->sym_ptr_ptr;
1054 val += sym->value + sym->section->vma + r->addend;
1055 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1056 }
1057 }
1058
1059 if (reloc_vector != NULL)
1060 free (reloc_vector);
1061
1062 /* First time through this function, build a table matching
1063 function VM addresses to stabs, then sort based on starting
1064 VM address. Do this in two passes: once to count how many
1065 table entries we'll need, and a second to actually build the
1066 table. */
1067
1068 info->indextablesize = 0;
1069 saw_fun = 1;
1070 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1071 {
1072 if (stab[TYPEOFF] == N_SO)
1073 {
1074 /* N_SO with null name indicates EOF */
1075 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1076 continue;
1077
1078 /* if we did not see a function def, leave space for one. */
1079 if (saw_fun == 0)
1080 ++info->indextablesize;
1081
1082 saw_fun = 0;
1083
1084 /* two N_SO's in a row is a filename and directory. Skip */
1085 if (stab + STABSIZE < info->stabs + stabsize
1086 && *(stab + STABSIZE + TYPEOFF) == N_SO)
1087 {
1088 stab += STABSIZE;
1089 }
1090 }
1091 else if (stab[TYPEOFF] == N_FUN)
1092 {
1093 saw_fun = 1;
1094 ++info->indextablesize;
1095 }
1096 }
1097
1098 if (saw_fun == 0)
1099 ++info->indextablesize;
1100
1101 if (info->indextablesize == 0)
1102 return true;
1103 ++info->indextablesize;
1104
1105 amt = info->indextablesize;
1106 amt *= sizeof (struct indexentry);
1107 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1108 if (info->indextable == NULL)
1109 return false;
1110
1111 file_name = NULL;
1112 directory_name = NULL;
1113 saw_fun = 1;
1114
1115 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1116 i < info->indextablesize && stab < info->stabs + stabsize;
1117 stab += STABSIZE)
1118 {
1119 switch (stab[TYPEOFF])
1120 {
1121 case 0:
1122 /* This is the first entry in a compilation unit. */
1123 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1124 break;
1125 str += stroff;
1126 stroff = bfd_get_32 (abfd, stab + VALOFF);
1127 break;
1128
1129 case N_SO:
1130 /* The main file name. */
1131
1132 /* The following code creates a new indextable entry with
1133 a NULL function name if there were no N_FUNs in a file.
1134 Note that a N_SO without a file name is an EOF and
1135 there could be 2 N_SO following it with the new filename
1136 and directory. */
1137 if (saw_fun == 0)
1138 {
1139 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1140 info->indextable[i].stab = last_stab;
1141 info->indextable[i].str = str;
1142 info->indextable[i].directory_name = directory_name;
1143 info->indextable[i].file_name = file_name;
1144 info->indextable[i].function_name = NULL;
1145 ++i;
1146 }
1147 saw_fun = 0;
1148
1149 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1150 if (*file_name == '\0')
1151 {
1152 directory_name = NULL;
1153 file_name = NULL;
1154 saw_fun = 1;
1155 }
1156 else
1157 {
1158 last_stab = stab;
1159 if (stab + STABSIZE >= info->stabs + stabsize
1160 || *(stab + STABSIZE + TYPEOFF) != N_SO)
1161 {
1162 directory_name = NULL;
1163 }
1164 else
1165 {
1166 /* Two consecutive N_SOs are a directory and a
1167 file name. */
1168 stab += STABSIZE;
1169 directory_name = file_name;
1170 file_name = ((char *) str
1171 + bfd_get_32 (abfd, stab + STRDXOFF));
1172 }
1173 }
1174 break;
1175
1176 case N_SOL:
1177 /* The name of an include file. */
1178 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1179 break;
1180
1181 case N_FUN:
1182 /* A function name. */
1183 saw_fun = 1;
1184 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1185
1186 if (*name == '\0')
1187 name = NULL;
1188
1189 function_name = name;
1190
1191 if (name == NULL)
1192 continue;
1193
1194 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1195 info->indextable[i].stab = stab;
1196 info->indextable[i].str = str;
1197 info->indextable[i].directory_name = directory_name;
1198 info->indextable[i].file_name = file_name;
1199 info->indextable[i].function_name = function_name;
1200 ++i;
1201 break;
1202 }
1203 }
1204
1205 if (saw_fun == 0)
1206 {
1207 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1208 info->indextable[i].stab = last_stab;
1209 info->indextable[i].str = str;
1210 info->indextable[i].directory_name = directory_name;
1211 info->indextable[i].file_name = file_name;
1212 info->indextable[i].function_name = NULL;
1213 ++i;
1214 }
1215
1216 info->indextable[i].val = (bfd_vma) -1;
1217 info->indextable[i].stab = info->stabs + stabsize;
1218 info->indextable[i].str = str;
1219 info->indextable[i].directory_name = NULL;
1220 info->indextable[i].file_name = NULL;
1221 info->indextable[i].function_name = NULL;
1222 ++i;
1223
1224 info->indextablesize = i;
1225 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1226 cmpindexentry);
1227
1228 *pinfo = (PTR) info;
1229 }
1230
1231 /* We are passed a section relative offset. The offsets in the
1232 stabs information are absolute. */
1233 offset += bfd_get_section_vma (abfd, section);
1234
1235 #ifdef ENABLE_CACHING
1236 if (info->cached_indexentry != NULL
1237 && offset >= info->cached_offset
1238 && offset < (info->cached_indexentry + 1)->val)
1239 {
1240 stab = info->cached_stab;
1241 indexentry = info->cached_indexentry;
1242 file_name = info->cached_file_name;
1243 }
1244 else
1245 #endif
1246 {
1247 /* Cache non-existant or invalid. Do binary search on
1248 indextable. */
1249
1250 long low, high;
1251 long mid = -1;
1252
1253 indexentry = NULL;
1254
1255 low = 0;
1256 high = info->indextablesize - 1;
1257 while (low != high)
1258 {
1259 mid = (high + low) / 2;
1260 if (offset >= info->indextable[mid].val
1261 && offset < info->indextable[mid + 1].val)
1262 {
1263 indexentry = &info->indextable[mid];
1264 break;
1265 }
1266
1267 if (info->indextable[mid].val > offset)
1268 high = mid;
1269 else
1270 low = mid + 1;
1271 }
1272
1273 if (indexentry == NULL)
1274 return true;
1275
1276 stab = indexentry->stab + STABSIZE;
1277 file_name = indexentry->file_name;
1278 }
1279
1280 directory_name = indexentry->directory_name;
1281 str = indexentry->str;
1282
1283 saw_line = false;
1284 saw_func = false;
1285 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1286 {
1287 boolean done;
1288 bfd_vma val;
1289
1290 done = false;
1291
1292 switch (stab[TYPEOFF])
1293 {
1294 case N_SOL:
1295 /* The name of an include file. */
1296 val = bfd_get_32 (abfd, stab + VALOFF);
1297 if (val <= offset)
1298 {
1299 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1300 *pline = 0;
1301 }
1302 break;
1303
1304 case N_SLINE:
1305 case N_DSLINE:
1306 case N_BSLINE:
1307 /* A line number. The value is relative to the start of the
1308 current function. */
1309 val = indexentry->val + bfd_get_32 (abfd, stab + VALOFF);
1310 /* If this line starts before our desired offset, or if it's
1311 the first line we've been able to find, use it. The
1312 !saw_line check works around a bug in GCC 2.95.3, which emits
1313 the first N_SLINE late. */
1314 if (!saw_line || val <= offset)
1315 {
1316 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1317
1318 #ifdef ENABLE_CACHING
1319 info->cached_stab = stab;
1320 info->cached_offset = val;
1321 info->cached_file_name = file_name;
1322 info->cached_indexentry = indexentry;
1323 #endif
1324 }
1325 if (val > offset)
1326 done = true;
1327 saw_line = true;
1328 break;
1329
1330 case N_FUN:
1331 case N_SO:
1332 if (saw_func || saw_line)
1333 done = true;
1334 saw_func = true;
1335 break;
1336 }
1337
1338 if (done)
1339 break;
1340 }
1341
1342 *pfound = true;
1343
1344 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1345 || directory_name == NULL)
1346 *pfilename = file_name;
1347 else
1348 {
1349 size_t dirlen;
1350
1351 dirlen = strlen (directory_name);
1352 if (info->filename == NULL
1353 || strncmp (info->filename, directory_name, dirlen) != 0
1354 || strcmp (info->filename + dirlen, file_name) != 0)
1355 {
1356 size_t len;
1357
1358 if (info->filename != NULL)
1359 free (info->filename);
1360 len = strlen (file_name) + 1;
1361 info->filename = (char *) bfd_malloc ((bfd_size_type) dirlen + len);
1362 if (info->filename == NULL)
1363 return false;
1364 memcpy (info->filename, directory_name, dirlen);
1365 memcpy (info->filename + dirlen, file_name, len);
1366 }
1367
1368 *pfilename = info->filename;
1369 }
1370
1371 if (indexentry->function_name != NULL)
1372 {
1373 char *s;
1374
1375 /* This will typically be something like main:F(0,1), so we want
1376 to clobber the colon. It's OK to change the name, since the
1377 string is in our own local storage anyhow. */
1378
1379 s = strchr (indexentry->function_name, ':');
1380 if (s != NULL)
1381 *s = '\0';
1382
1383 *pfnname = indexentry->function_name;
1384 }
1385
1386 return true;
1387 }
This page took 0.071804 seconds and 4 git commands to generate.