1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990-2014 Free Software Foundation, Inc.
3 Written by Cygnus Support.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
54 @* symbol handling functions::
58 Reading Symbols, Writing Symbols, Symbols, Symbols
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
66 | long storage_needed;
67 | asymbol **symbol_table;
68 | long number_of_symbols;
71 | storage_needed = bfd_get_symtab_upper_bound (abfd);
73 | if (storage_needed < 0)
76 | if (storage_needed == 0)
79 | symbol_table = xmalloc (storage_needed);
82 | bfd_canonicalize_symtab (abfd, symbol_table);
84 | if (number_of_symbols < 0)
87 | for (i = 0; i < number_of_symbols; i++)
88 | process_symbol (symbol_table[i]);
90 All storage for the symbols themselves is in an objalloc
91 connected to the BFD; it is freed when the BFD is closed.
94 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
98 Writing of a symbol table is automatic when a BFD open for
99 writing is closed. The application attaches a vector of
100 pointers to pointers to symbols to the BFD being written, and
101 fills in the symbol count. The close and cleanup code reads
102 through the table provided and performs all the necessary
103 operations. The BFD output code must always be provided with an
104 ``owned'' symbol: one which has come from another BFD, or one
105 which has been created using <<bfd_make_empty_symbol>>. Here is an
106 example showing the creation of a symbol table with only one element:
108 | #include "sysdep.h"
116 | abfd = bfd_openw ("foo","a.out-sunos-big");
117 | bfd_set_format (abfd, bfd_object);
118 | new = bfd_make_empty_symbol (abfd);
119 | new->name = "dummy_symbol";
120 | new->section = bfd_make_section_old_way (abfd, ".text");
121 | new->flags = BSF_GLOBAL;
122 | new->value = 0x12345;
127 | bfd_set_symtab (abfd, ptrs, 1);
134 | 00012345 A dummy_symbol
136 Many formats cannot represent arbitrary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitrary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
176 An <<asymbol>> has the form:
184 .typedef struct bfd_symbol
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0x00
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL (1 << 0)
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL (1 << 1)
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_COMMON>>, <<BSF_UNDEFINED>> or
225 . {* The symbol is a debugging record. The value has an arbitrary
226 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
227 .#define BSF_DEBUGGING (1 << 2)
229 . {* The symbol denotes a function entry point. Used in ELF,
230 . perhaps others someday. *}
231 .#define BSF_FUNCTION (1 << 3)
233 . {* Used by the linker. *}
234 .#define BSF_KEEP (1 << 5)
235 .#define BSF_KEEP_G (1 << 6)
237 . {* A weak global symbol, overridable without warnings by
238 . a regular global symbol of the same name. *}
239 .#define BSF_WEAK (1 << 7)
241 . {* This symbol was created to point to a section, e.g. ELF's
242 . STT_SECTION symbols. *}
243 .#define BSF_SECTION_SYM (1 << 8)
245 . {* The symbol used to be a common symbol, but now it is
247 .#define BSF_OLD_COMMON (1 << 9)
249 . {* In some files the type of a symbol sometimes alters its
250 . location in an output file - ie in coff a <<ISFCN>> symbol
251 . which is also <<C_EXT>> symbol appears where it was
252 . declared and not at the end of a section. This bit is set
253 . by the target BFD part to convey this information. *}
254 .#define BSF_NOT_AT_END (1 << 10)
256 . {* Signal that the symbol is the label of constructor section. *}
257 .#define BSF_CONSTRUCTOR (1 << 11)
259 . {* Signal that the symbol is a warning symbol. The name is a
260 . warning. The name of the next symbol is the one to warn about;
261 . if a reference is made to a symbol with the same name as the next
262 . symbol, a warning is issued by the linker. *}
263 .#define BSF_WARNING (1 << 12)
265 . {* Signal that the symbol is indirect. This symbol is an indirect
266 . pointer to the symbol with the same name as the next symbol. *}
267 .#define BSF_INDIRECT (1 << 13)
269 . {* BSF_FILE marks symbols that contain a file name. This is used
270 . for ELF STT_FILE symbols. *}
271 .#define BSF_FILE (1 << 14)
273 . {* Symbol is from dynamic linking information. *}
274 .#define BSF_DYNAMIC (1 << 15)
276 . {* The symbol denotes a data object. Used in ELF, and perhaps
278 .#define BSF_OBJECT (1 << 16)
280 . {* This symbol is a debugging symbol. The value is the offset
281 . into the section of the data. BSF_DEBUGGING should be set
283 .#define BSF_DEBUGGING_RELOC (1 << 17)
285 . {* This symbol is thread local. Used in ELF. *}
286 .#define BSF_THREAD_LOCAL (1 << 18)
288 . {* This symbol represents a complex relocation expression,
289 . with the expression tree serialized in the symbol name. *}
290 .#define BSF_RELC (1 << 19)
292 . {* This symbol represents a signed complex relocation expression,
293 . with the expression tree serialized in the symbol name. *}
294 .#define BSF_SRELC (1 << 20)
296 . {* This symbol was created by bfd_get_synthetic_symtab. *}
297 .#define BSF_SYNTHETIC (1 << 21)
299 . {* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.
300 . The dynamic linker will compute the value of this symbol by
301 . calling the function that it points to. BSF_FUNCTION must
302 . also be also set. *}
303 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
304 . {* This symbol is a globally unique data object. The dynamic linker
305 . will make sure that in the entire process there is just one symbol
306 . with this name and type in use. BSF_OBJECT must also be set. *}
307 .#define BSF_GNU_UNIQUE (1 << 23)
311 . {* A pointer to the section to which this symbol is
312 . relative. This will always be non NULL, there are special
313 . sections for undefined and absolute symbols. *}
314 . struct bfd_section *section;
316 . {* Back end special data. *}
331 #include "safe-ctype.h"
333 #include "aout/stab_gnu.h"
338 symbol handling functions, , typedef asymbol, Symbols
340 Symbol handling functions
345 bfd_get_symtab_upper_bound
348 Return the number of bytes required to store a vector of pointers
349 to <<asymbols>> for all the symbols in the BFD @var{abfd},
350 including a terminal NULL pointer. If there are no symbols in
351 the BFD, then return 0. If an error occurs, return -1.
353 .#define bfd_get_symtab_upper_bound(abfd) \
354 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
363 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
366 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
367 a compiler generated local label, else return FALSE.
371 bfd_is_local_label (bfd
*abfd
, asymbol
*sym
)
373 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
374 starts with '.' is local. This would accidentally catch section names
375 if we didn't reject them here. */
376 if ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
| BSF_FILE
| BSF_SECTION_SYM
)) != 0)
378 if (sym
->name
== NULL
)
380 return bfd_is_local_label_name (abfd
, sym
->name
);
385 bfd_is_local_label_name
388 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
391 Return TRUE if a symbol with the name @var{name} in the BFD
392 @var{abfd} is a compiler generated local label, else return
393 FALSE. This just checks whether the name has the form of a
396 .#define bfd_is_local_label_name(abfd, name) \
397 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
403 bfd_is_target_special_symbol
406 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
409 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
410 special to the particular target represented by the BFD. Such symbols
411 should normally not be mentioned to the user.
413 .#define bfd_is_target_special_symbol(abfd, sym) \
414 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
420 bfd_canonicalize_symtab
423 Read the symbols from the BFD @var{abfd}, and fills in
424 the vector @var{location} with pointers to the symbols and
426 Return the actual number of symbol pointers, not
429 .#define bfd_canonicalize_symtab(abfd, location) \
430 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
439 bfd_boolean bfd_set_symtab
440 (bfd *abfd, asymbol **location, unsigned int count);
443 Arrange that when the output BFD @var{abfd} is closed,
444 the table @var{location} of @var{count} pointers to symbols
449 bfd_set_symtab (bfd
*abfd
, asymbol
**location
, unsigned int symcount
)
451 if (abfd
->format
!= bfd_object
|| bfd_read_p (abfd
))
453 bfd_set_error (bfd_error_invalid_operation
);
457 bfd_get_outsymbols (abfd
) = location
;
458 bfd_get_symcount (abfd
) = symcount
;
464 bfd_print_symbol_vandf
467 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
470 Print the value and flags of the @var{symbol} supplied to the
474 bfd_print_symbol_vandf (bfd
*abfd
, void *arg
, asymbol
*symbol
)
476 FILE *file
= (FILE *) arg
;
478 flagword type
= symbol
->flags
;
480 if (symbol
->section
!= NULL
)
481 bfd_fprintf_vma (abfd
, file
, symbol
->value
+ symbol
->section
->vma
);
483 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
485 /* This presumes that a symbol can not be both BSF_DEBUGGING and
486 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
488 fprintf (file
, " %c%c%c%c%c%c%c",
490 ? (type
& BSF_GLOBAL
) ? '!' : 'l'
491 : (type
& BSF_GLOBAL
) ? 'g'
492 : (type
& BSF_GNU_UNIQUE
) ? 'u' : ' '),
493 (type
& BSF_WEAK
) ? 'w' : ' ',
494 (type
& BSF_CONSTRUCTOR
) ? 'C' : ' ',
495 (type
& BSF_WARNING
) ? 'W' : ' ',
496 (type
& BSF_INDIRECT
) ? 'I' : (type
& BSF_GNU_INDIRECT_FUNCTION
) ? 'i' : ' ',
497 (type
& BSF_DEBUGGING
) ? 'd' : (type
& BSF_DYNAMIC
) ? 'D' : ' ',
498 ((type
& BSF_FUNCTION
)
502 : ((type
& BSF_OBJECT
) ? 'O' : ' '))));
507 bfd_make_empty_symbol
510 Create a new <<asymbol>> structure for the BFD @var{abfd}
511 and return a pointer to it.
513 This routine is necessary because each back end has private
514 information surrounding the <<asymbol>>. Building your own
515 <<asymbol>> and pointing to it will not create the private
516 information, and will cause problems later on.
518 .#define bfd_make_empty_symbol(abfd) \
519 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
525 _bfd_generic_make_empty_symbol
528 asymbol *_bfd_generic_make_empty_symbol (bfd *);
531 Create a new <<asymbol>> structure for the BFD @var{abfd}
532 and return a pointer to it. Used by core file routines,
533 binary back-end and anywhere else where no private info
538 _bfd_generic_make_empty_symbol (bfd
*abfd
)
540 bfd_size_type amt
= sizeof (asymbol
);
541 asymbol
*new_symbol
= (asymbol
*) bfd_zalloc (abfd
, amt
);
543 new_symbol
->the_bfd
= abfd
;
549 bfd_make_debug_symbol
552 Create a new <<asymbol>> structure for the BFD @var{abfd},
553 to be used as a debugging symbol. Further details of its use have
554 yet to be worked out.
556 .#define bfd_make_debug_symbol(abfd,ptr,size) \
557 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
561 struct section_to_type
567 /* Map section names to POSIX/BSD single-character symbol types.
568 This table is probably incomplete. It is sorted for convenience of
569 adding entries. Since it is so short, a linear search is used. */
570 static const struct section_to_type stt
[] =
573 {"code", 't'}, /* MRI .text */
576 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
577 {".drectve", 'i'}, /* MSVC's .drective section */
578 {".edata", 'e'}, /* MSVC's .edata (export) section */
579 {".fini", 't'}, /* ELF fini section */
580 {".idata", 'i'}, /* MSVC's .idata (import) section */
581 {".init", 't'}, /* ELF init section */
582 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
583 {".rdata", 'r'}, /* Read only data. */
584 {".rodata", 'r'}, /* Read only data. */
585 {".sbss", 's'}, /* Small BSS (uninitialized data). */
586 {".scommon", 'c'}, /* Small common. */
587 {".sdata", 'g'}, /* Small initialized data. */
589 {"vars", 'd'}, /* MRI .data */
590 {"zerovars", 'b'}, /* MRI .bss */
594 /* Return the single-character symbol type corresponding to
595 section S, or '?' for an unknown COFF section.
597 Check for any leading string which matches, so .text5 returns
598 't' as well as .text */
601 coff_section_type (const char *s
)
603 const struct section_to_type
*t
;
605 for (t
= &stt
[0]; t
->section
; t
++)
606 if (!strncmp (s
, t
->section
, strlen (t
->section
)))
612 /* Return the single-character symbol type corresponding to section
613 SECTION, or '?' for an unknown section. This uses section flags to
616 FIXME These types are unhandled: c, i, e, p. If we handled these also,
617 we could perhaps obsolete coff_section_type. */
620 decode_section_type (const struct bfd_section
*section
)
622 if (section
->flags
& SEC_CODE
)
624 if (section
->flags
& SEC_DATA
)
626 if (section
->flags
& SEC_READONLY
)
628 else if (section
->flags
& SEC_SMALL_DATA
)
633 if ((section
->flags
& SEC_HAS_CONTENTS
) == 0)
635 if (section
->flags
& SEC_SMALL_DATA
)
640 if (section
->flags
& SEC_DEBUGGING
)
642 if ((section
->flags
& SEC_HAS_CONTENTS
) && (section
->flags
& SEC_READONLY
))
653 Return a character corresponding to the symbol
654 class of @var{symbol}, or '?' for an unknown class.
657 int bfd_decode_symclass (asymbol *symbol);
660 bfd_decode_symclass (asymbol
*symbol
)
664 if (symbol
->section
&& bfd_is_com_section (symbol
->section
))
666 if (bfd_is_und_section (symbol
->section
))
668 if (symbol
->flags
& BSF_WEAK
)
670 /* If weak, determine if it's specifically an object
671 or non-object weak. */
672 if (symbol
->flags
& BSF_OBJECT
)
680 if (bfd_is_ind_section (symbol
->section
))
682 if (symbol
->flags
& BSF_GNU_INDIRECT_FUNCTION
)
684 if (symbol
->flags
& BSF_WEAK
)
686 /* If weak, determine if it's specifically an object
687 or non-object weak. */
688 if (symbol
->flags
& BSF_OBJECT
)
693 if (symbol
->flags
& BSF_GNU_UNIQUE
)
695 if (!(symbol
->flags
& (BSF_GLOBAL
| BSF_LOCAL
)))
698 if (bfd_is_abs_section (symbol
->section
))
700 else if (symbol
->section
)
702 c
= coff_section_type (symbol
->section
->name
);
704 c
= decode_section_type (symbol
->section
);
708 if (symbol
->flags
& BSF_GLOBAL
)
712 /* We don't have to handle these cases just yet, but we will soon:
724 bfd_is_undefined_symclass
727 Returns non-zero if the class symbol returned by
728 bfd_decode_symclass represents an undefined symbol.
729 Returns zero otherwise.
732 bfd_boolean bfd_is_undefined_symclass (int symclass);
736 bfd_is_undefined_symclass (int symclass
)
738 return symclass
== 'U' || symclass
== 'w' || symclass
== 'v';
746 Fill in the basic info about symbol that nm needs.
747 Additional info may be added by the back-ends after
748 calling this function.
751 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
755 bfd_symbol_info (asymbol
*symbol
, symbol_info
*ret
)
757 ret
->type
= bfd_decode_symclass (symbol
);
759 if (bfd_is_undefined_symclass (ret
->type
))
762 ret
->value
= symbol
->value
+ symbol
->section
->vma
;
764 ret
->name
= symbol
->name
;
769 bfd_copy_private_symbol_data
772 bfd_boolean bfd_copy_private_symbol_data
773 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
776 Copy private symbol information from @var{isym} in the BFD
777 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
778 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
781 o <<bfd_error_no_memory>> -
782 Not enough memory exists to create private data for @var{osec}.
784 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
785 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
786 . (ibfd, isymbol, obfd, osymbol))
790 /* The generic version of the function which returns mini symbols.
791 This is used when the backend does not provide a more efficient
792 version. It just uses BFD asymbol structures as mini symbols. */
795 _bfd_generic_read_minisymbols (bfd
*abfd
,
801 asymbol
**syms
= NULL
;
805 storage
= bfd_get_dynamic_symtab_upper_bound (abfd
);
807 storage
= bfd_get_symtab_upper_bound (abfd
);
813 syms
= (asymbol
**) bfd_malloc (storage
);
818 symcount
= bfd_canonicalize_dynamic_symtab (abfd
, syms
);
820 symcount
= bfd_canonicalize_symtab (abfd
, syms
);
825 *sizep
= sizeof (asymbol
*);
829 bfd_set_error (bfd_error_no_symbols
);
835 /* The generic version of the function which converts a minisymbol to
836 an asymbol. We don't worry about the sym argument we are passed;
837 we just return the asymbol the minisymbol points to. */
840 _bfd_generic_minisymbol_to_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
841 bfd_boolean dynamic ATTRIBUTE_UNUSED
,
843 asymbol
*sym ATTRIBUTE_UNUSED
)
845 return *(asymbol
**) minisym
;
848 /* Look through stabs debugging information in .stab and .stabstr
849 sections to find the source file and line closest to a desired
850 location. This is used by COFF and ELF targets. It sets *pfound
851 to TRUE if it finds some information. The *pinfo field is used to
852 pass cached information in and out of this routine; this first time
853 the routine is called for a BFD, *pinfo should be NULL. The value
854 placed in *pinfo should be saved with the BFD, and passed back each
855 time this function is called. */
857 /* We use a cache by default. */
859 #define ENABLE_CACHING
861 /* We keep an array of indexentry structures to record where in the
862 stabs section we should look to find line number information for a
863 particular address. */
870 char *directory_name
;
875 /* Compare two indexentry structures. This is called via qsort. */
878 cmpindexentry (const void *a
, const void *b
)
880 const struct indexentry
*contestantA
= (const struct indexentry
*) a
;
881 const struct indexentry
*contestantB
= (const struct indexentry
*) b
;
883 if (contestantA
->val
< contestantB
->val
)
885 else if (contestantA
->val
> contestantB
->val
)
891 /* A pointer to this structure is stored in *pinfo. */
893 struct stab_find_info
895 /* The .stab section. */
897 /* The .stabstr section. */
899 /* The contents of the .stab section. */
901 /* The contents of the .stabstr section. */
904 /* A table that indexes stabs by memory address. */
905 struct indexentry
*indextable
;
906 /* The number of entries in indextable. */
909 #ifdef ENABLE_CACHING
910 /* Cached values to restart quickly. */
911 struct indexentry
*cached_indexentry
;
912 bfd_vma cached_offset
;
913 bfd_byte
*cached_stab
;
914 char *cached_file_name
;
917 /* Saved ptr to malloc'ed filename. */
922 _bfd_stab_section_find_nearest_line (bfd
*abfd
,
927 const char **pfilename
,
928 const char **pfnname
,
932 struct stab_find_info
*info
;
933 bfd_size_type stabsize
, strsize
;
934 bfd_byte
*stab
, *str
;
935 bfd_byte
*nul_fun
, *nul_str
;
936 bfd_size_type stroff
;
937 struct indexentry
*indexentry
;
939 char *directory_name
;
940 bfd_boolean saw_line
, saw_func
;
943 *pfilename
= bfd_get_filename (abfd
);
947 /* Stabs entries use a 12 byte format:
948 4 byte string table index
950 1 byte stab other field
951 2 byte stab desc field
953 FIXME: This will have to change for a 64 bit object format.
955 The stabs symbols are divided into compilation units. For the
956 first entry in each unit, the type of 0, the value is the length
957 of the string table for this unit, and the desc field is the
958 number of stabs symbols for this unit. */
965 #define STABSIZE (12)
967 info
= (struct stab_find_info
*) *pinfo
;
970 if (info
->stabsec
== NULL
|| info
->strsec
== NULL
)
972 /* No stabs debugging information. */
976 stabsize
= (info
->stabsec
->rawsize
977 ? info
->stabsec
->rawsize
978 : info
->stabsec
->size
);
979 strsize
= (info
->strsec
->rawsize
980 ? info
->strsec
->rawsize
981 : info
->strsec
->size
);
985 long reloc_size
, reloc_count
;
986 arelent
**reloc_vector
;
989 bfd_size_type amt
= sizeof *info
;
991 info
= (struct stab_find_info
*) bfd_zalloc (abfd
, amt
);
995 /* FIXME: When using the linker --split-by-file or
996 --split-by-reloc options, it is possible for the .stab and
997 .stabstr sections to be split. We should handle that. */
999 info
->stabsec
= bfd_get_section_by_name (abfd
, ".stab");
1000 info
->strsec
= bfd_get_section_by_name (abfd
, ".stabstr");
1002 if (info
->stabsec
== NULL
|| info
->strsec
== NULL
)
1004 /* Try SOM section names. */
1005 info
->stabsec
= bfd_get_section_by_name (abfd
, "$GDB_SYMBOLS$");
1006 info
->strsec
= bfd_get_section_by_name (abfd
, "$GDB_STRINGS$");
1008 if (info
->stabsec
== NULL
|| info
->strsec
== NULL
)
1010 /* No stabs debugging information. Set *pinfo so that we
1011 can return quickly in the info != NULL case above. */
1017 stabsize
= (info
->stabsec
->rawsize
1018 ? info
->stabsec
->rawsize
1019 : info
->stabsec
->size
);
1020 stabsize
= (stabsize
/ STABSIZE
) * STABSIZE
;
1021 strsize
= (info
->strsec
->rawsize
1022 ? info
->strsec
->rawsize
1023 : info
->strsec
->size
);
1025 info
->stabs
= (bfd_byte
*) bfd_alloc (abfd
, stabsize
);
1026 info
->strs
= (bfd_byte
*) bfd_alloc (abfd
, strsize
);
1027 if (info
->stabs
== NULL
|| info
->strs
== NULL
)
1030 if (! bfd_get_section_contents (abfd
, info
->stabsec
, info
->stabs
,
1032 || ! bfd_get_section_contents (abfd
, info
->strsec
, info
->strs
,
1036 /* If this is a relocatable object file, we have to relocate
1037 the entries in .stab. This should always be simple 32 bit
1038 relocations against symbols defined in this object file, so
1039 this should be no big deal. */
1040 reloc_size
= bfd_get_reloc_upper_bound (abfd
, info
->stabsec
);
1043 reloc_vector
= (arelent
**) bfd_malloc (reloc_size
);
1044 if (reloc_vector
== NULL
&& reloc_size
!= 0)
1046 reloc_count
= bfd_canonicalize_reloc (abfd
, info
->stabsec
, reloc_vector
,
1048 if (reloc_count
< 0)
1050 if (reloc_vector
!= NULL
)
1051 free (reloc_vector
);
1054 if (reloc_count
> 0)
1058 for (pr
= reloc_vector
; *pr
!= NULL
; pr
++)
1065 /* Ignore R_*_NONE relocs. */
1066 if (r
->howto
->dst_mask
== 0)
1069 if (r
->howto
->rightshift
!= 0
1070 || r
->howto
->size
!= 2
1071 || r
->howto
->bitsize
!= 32
1072 || r
->howto
->pc_relative
1073 || r
->howto
->bitpos
!= 0
1074 || r
->howto
->dst_mask
!= 0xffffffff)
1076 (*_bfd_error_handler
)
1077 (_("Unsupported .stab relocation"));
1078 bfd_set_error (bfd_error_invalid_operation
);
1079 if (reloc_vector
!= NULL
)
1080 free (reloc_vector
);
1084 val
= bfd_get_32 (abfd
, info
->stabs
+ r
->address
);
1085 val
&= r
->howto
->src_mask
;
1086 sym
= *r
->sym_ptr_ptr
;
1087 val
+= sym
->value
+ sym
->section
->vma
+ r
->addend
;
1088 bfd_put_32 (abfd
, (bfd_vma
) val
, info
->stabs
+ r
->address
);
1092 if (reloc_vector
!= NULL
)
1093 free (reloc_vector
);
1095 /* First time through this function, build a table matching
1096 function VM addresses to stabs, then sort based on starting
1097 VM address. Do this in two passes: once to count how many
1098 table entries we'll need, and a second to actually build the
1101 info
->indextablesize
= 0;
1103 for (stab
= info
->stabs
; stab
< info
->stabs
+ stabsize
; stab
+= STABSIZE
)
1105 if (stab
[TYPEOFF
] == (bfd_byte
) N_SO
)
1107 /* if we did not see a function def, leave space for one. */
1108 if (nul_fun
!= NULL
)
1109 ++info
->indextablesize
;
1111 /* N_SO with null name indicates EOF */
1112 if (bfd_get_32 (abfd
, stab
+ STRDXOFF
) == 0)
1118 /* two N_SO's in a row is a filename and directory. Skip */
1119 if (stab
+ STABSIZE
+ TYPEOFF
< info
->stabs
+ stabsize
1120 && *(stab
+ STABSIZE
+ TYPEOFF
) == (bfd_byte
) N_SO
)
1124 else if (stab
[TYPEOFF
] == (bfd_byte
) N_FUN
1125 && bfd_get_32 (abfd
, stab
+ STRDXOFF
) != 0)
1128 ++info
->indextablesize
;
1132 if (nul_fun
!= NULL
)
1133 ++info
->indextablesize
;
1135 if (info
->indextablesize
== 0)
1137 ++info
->indextablesize
;
1139 amt
= info
->indextablesize
;
1140 amt
*= sizeof (struct indexentry
);
1141 info
->indextable
= (struct indexentry
*) bfd_alloc (abfd
, amt
);
1142 if (info
->indextable
== NULL
)
1146 directory_name
= NULL
;
1150 for (i
= 0, stab
= info
->stabs
, nul_str
= str
= info
->strs
;
1151 i
< info
->indextablesize
&& stab
< info
->stabs
+ stabsize
;
1154 switch (stab
[TYPEOFF
])
1157 /* This is the first entry in a compilation unit. */
1158 if ((bfd_size_type
) ((info
->strs
+ strsize
) - str
) < stroff
)
1161 stroff
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1165 /* The main file name. */
1167 /* The following code creates a new indextable entry with
1168 a NULL function name if there were no N_FUNs in a file.
1169 Note that a N_SO without a file name is an EOF and
1170 there could be 2 N_SO following it with the new filename
1172 if (nul_fun
!= NULL
)
1174 info
->indextable
[i
].val
= bfd_get_32 (abfd
, nul_fun
+ VALOFF
);
1175 info
->indextable
[i
].stab
= nul_fun
;
1176 info
->indextable
[i
].str
= nul_str
;
1177 info
->indextable
[i
].directory_name
= directory_name
;
1178 info
->indextable
[i
].file_name
= file_name
;
1179 info
->indextable
[i
].function_name
= NULL
;
1183 directory_name
= NULL
;
1184 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1185 if (file_name
== (char *) str
)
1194 if (stab
+ STABSIZE
+ TYPEOFF
< info
->stabs
+ stabsize
1195 && *(stab
+ STABSIZE
+ TYPEOFF
) == (bfd_byte
) N_SO
)
1197 /* Two consecutive N_SOs are a directory and a
1200 directory_name
= file_name
;
1201 file_name
= ((char *) str
1202 + bfd_get_32 (abfd
, stab
+ STRDXOFF
));
1208 /* The name of an include file. */
1209 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1213 /* A function name. */
1214 function_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1215 if (function_name
== (char *) str
)
1219 info
->indextable
[i
].val
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1220 info
->indextable
[i
].stab
= stab
;
1221 info
->indextable
[i
].str
= str
;
1222 info
->indextable
[i
].directory_name
= directory_name
;
1223 info
->indextable
[i
].file_name
= file_name
;
1224 info
->indextable
[i
].function_name
= function_name
;
1230 if (nul_fun
!= NULL
)
1232 info
->indextable
[i
].val
= bfd_get_32 (abfd
, nul_fun
+ VALOFF
);
1233 info
->indextable
[i
].stab
= nul_fun
;
1234 info
->indextable
[i
].str
= nul_str
;
1235 info
->indextable
[i
].directory_name
= directory_name
;
1236 info
->indextable
[i
].file_name
= file_name
;
1237 info
->indextable
[i
].function_name
= NULL
;
1241 info
->indextable
[i
].val
= (bfd_vma
) -1;
1242 info
->indextable
[i
].stab
= info
->stabs
+ stabsize
;
1243 info
->indextable
[i
].str
= str
;
1244 info
->indextable
[i
].directory_name
= NULL
;
1245 info
->indextable
[i
].file_name
= NULL
;
1246 info
->indextable
[i
].function_name
= NULL
;
1249 info
->indextablesize
= i
;
1250 qsort (info
->indextable
, (size_t) i
, sizeof (struct indexentry
),
1256 /* We are passed a section relative offset. The offsets in the
1257 stabs information are absolute. */
1258 offset
+= bfd_get_section_vma (abfd
, section
);
1260 #ifdef ENABLE_CACHING
1261 if (info
->cached_indexentry
!= NULL
1262 && offset
>= info
->cached_offset
1263 && offset
< (info
->cached_indexentry
+ 1)->val
)
1265 stab
= info
->cached_stab
;
1266 indexentry
= info
->cached_indexentry
;
1267 file_name
= info
->cached_file_name
;
1275 /* Cache non-existent or invalid. Do binary search on
1280 high
= info
->indextablesize
- 1;
1283 mid
= (high
+ low
) / 2;
1284 if (offset
>= info
->indextable
[mid
].val
1285 && offset
< info
->indextable
[mid
+ 1].val
)
1287 indexentry
= &info
->indextable
[mid
];
1291 if (info
->indextable
[mid
].val
> offset
)
1297 if (indexentry
== NULL
)
1300 stab
= indexentry
->stab
+ STABSIZE
;
1301 file_name
= indexentry
->file_name
;
1304 directory_name
= indexentry
->directory_name
;
1305 str
= indexentry
->str
;
1309 for (; stab
< (indexentry
+1)->stab
; stab
+= STABSIZE
)
1316 switch (stab
[TYPEOFF
])
1319 /* The name of an include file. */
1320 val
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1323 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1331 /* A line number. If the function was specified, then the value
1332 is relative to the start of the function. Otherwise, the
1333 value is an absolute address. */
1334 val
= ((indexentry
->function_name
? indexentry
->val
: 0)
1335 + bfd_get_32 (abfd
, stab
+ VALOFF
));
1336 /* If this line starts before our desired offset, or if it's
1337 the first line we've been able to find, use it. The
1338 !saw_line check works around a bug in GCC 2.95.3, which emits
1339 the first N_SLINE late. */
1340 if (!saw_line
|| val
<= offset
)
1342 *pline
= bfd_get_16 (abfd
, stab
+ DESCOFF
);
1344 #ifdef ENABLE_CACHING
1345 info
->cached_stab
= stab
;
1346 info
->cached_offset
= val
;
1347 info
->cached_file_name
= file_name
;
1348 info
->cached_indexentry
= indexentry
;
1358 if (saw_func
|| saw_line
)
1370 if (file_name
== NULL
|| IS_ABSOLUTE_PATH (file_name
)
1371 || directory_name
== NULL
)
1372 *pfilename
= file_name
;
1377 dirlen
= strlen (directory_name
);
1378 if (info
->filename
== NULL
1379 || filename_ncmp (info
->filename
, directory_name
, dirlen
) != 0
1380 || filename_cmp (info
->filename
+ dirlen
, file_name
) != 0)
1384 /* Don't free info->filename here. objdump and other
1385 apps keep a copy of a previously returned file name
1387 len
= strlen (file_name
) + 1;
1388 info
->filename
= (char *) bfd_alloc (abfd
, dirlen
+ len
);
1389 if (info
->filename
== NULL
)
1391 memcpy (info
->filename
, directory_name
, dirlen
);
1392 memcpy (info
->filename
+ dirlen
, file_name
, len
);
1395 *pfilename
= info
->filename
;
1398 if (indexentry
->function_name
!= NULL
)
1402 /* This will typically be something like main:F(0,1), so we want
1403 to clobber the colon. It's OK to change the name, since the
1404 string is in our own local storage anyhow. */
1405 s
= strchr (indexentry
->function_name
, ':');
1409 *pfnname
= indexentry
->function_name
;