d8489188576dd5dd52215ff544408c06f89e7bb8
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24 SECTION
25 Symbols
26
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
50 @menu
51 @* Reading Symbols::
52 @* Writing Symbols::
53 @* Mini Symbols::
54 @* typedef asymbol::
55 @* symbol handling functions::
56 @end menu
57
58 INODE
59 Reading Symbols, Writing Symbols, Symbols, Symbols
60 SUBSECTION
61 Reading symbols
62
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
66
67 | long storage_needed;
68 | asymbol **symbol_table;
69 | long number_of_symbols;
70 | long i;
71 |
72 | storage_needed = bfd_get_symtab_upper_bound (abfd);
73 |
74 | if (storage_needed < 0)
75 | FAIL
76 |
77 | if (storage_needed == 0) {
78 | return ;
79 | }
80 | symbol_table = (asymbol **) xmalloc (storage_needed);
81 | ...
82 | number_of_symbols =
83 | bfd_canonicalize_symtab (abfd, symbol_table);
84 |
85 | if (number_of_symbols < 0)
86 | FAIL
87 |
88 | for (i = 0; i < number_of_symbols; i++) {
89 | process_symbol (symbol_table[i]);
90 | }
91
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
94
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 Writing symbols
99
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
109
110 | #include "bfd.h"
111 | main()
112 | {
113 | bfd *abfd;
114 | asymbol *ptrs[2];
115 | asymbol *new;
116 |
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
124 |
125 | ptrs[0] = new;
126 | ptrs[1] = (asymbol *)0;
127 |
128 | bfd_set_symtab(abfd, ptrs, 1);
129 | bfd_close(abfd);
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171 */
172 /*
173 SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178 */
179
180 /*
181 CODE_FRAGMENT
182
183 .
184 .typedef struct symbol_cache_entry
185 .{
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
190 .
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 .
196 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
197 .
198 . {* The text of the symbol. The name is left alone, and not copied; the
199 . application may not alter it. *}
200 . CONST char *name;
201 .
202 . {* The value of the symbol. This really should be a union of a
203 . numeric value with a pointer, since some flags indicate that
204 . a pointer to another symbol is stored here. *}
205 . symvalue value;
206 .
207 . {* Attributes of a symbol: *}
208 .
209 .#define BSF_NO_FLAGS 0x00
210 .
211 . {* The symbol has local scope; <<static>> in <<C>>. The value
212 . is the offset into the section of the data. *}
213 .#define BSF_LOCAL 0x01
214 .
215 . {* The symbol has global scope; initialized data in <<C>>. The
216 . value is the offset into the section of the data. *}
217 .#define BSF_GLOBAL 0x02
218 .
219 . {* The symbol has global scope and is exported. The value is
220 . the offset into the section of the data. *}
221 .#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
222 .
223 . {* A normal C symbol would be one of:
224 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
225 . <<BSF_GLOBAL>> *}
226 .
227 . {* The symbol is a debugging record. The value has an arbitary
228 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
229 .#define BSF_DEBUGGING 0x08
230 .
231 . {* The symbol denotes a function entry point. Used in ELF,
232 . perhaps others someday. *}
233 .#define BSF_FUNCTION 0x10
234 .
235 . {* Used by the linker. *}
236 .#define BSF_KEEP 0x20
237 .#define BSF_KEEP_G 0x40
238 .
239 . {* A weak global symbol, overridable without warnings by
240 . a regular global symbol of the same name. *}
241 .#define BSF_WEAK 0x80
242 .
243 . {* This symbol was created to point to a section, e.g. ELF's
244 . STT_SECTION symbols. *}
245 .#define BSF_SECTION_SYM 0x100
246 .
247 . {* The symbol used to be a common symbol, but now it is
248 . allocated. *}
249 .#define BSF_OLD_COMMON 0x200
250 .
251 . {* The default value for common data. *}
252 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
253 .
254 . {* In some files the type of a symbol sometimes alters its
255 . location in an output file - ie in coff a <<ISFCN>> symbol
256 . which is also <<C_EXT>> symbol appears where it was
257 . declared and not at the end of a section. This bit is set
258 . by the target BFD part to convey this information. *}
259 .
260 .#define BSF_NOT_AT_END 0x400
261 .
262 . {* Signal that the symbol is the label of constructor section. *}
263 .#define BSF_CONSTRUCTOR 0x800
264 .
265 . {* Signal that the symbol is a warning symbol. The name is a
266 . warning. The name of the next symbol is the one to warn about;
267 . if a reference is made to a symbol with the same name as the next
268 . symbol, a warning is issued by the linker. *}
269 .#define BSF_WARNING 0x1000
270 .
271 . {* Signal that the symbol is indirect. This symbol is an indirect
272 . pointer to the symbol with the same name as the next symbol. *}
273 .#define BSF_INDIRECT 0x2000
274 .
275 . {* BSF_FILE marks symbols that contain a file name. This is used
276 . for ELF STT_FILE symbols. *}
277 .#define BSF_FILE 0x4000
278 .
279 . {* Symbol is from dynamic linking information. *}
280 .#define BSF_DYNAMIC 0x8000
281 .
282 . {* The symbol denotes a data object. Used in ELF, and perhaps
283 . others someday. *}
284 .#define BSF_OBJECT 0x10000
285 .
286 . {* This symbol is a debugging symbol. The value is the offset
287 . into the section of the data. BSF_DEBUGGING should be set
288 . as well. *}
289 .#define BSF_DEBUGGING_RELOC 0x20000
290 .
291 . flagword flags;
292 .
293 . {* A pointer to the section to which this symbol is
294 . relative. This will always be non NULL, there are special
295 . sections for undefined and absolute symbols. *}
296 . struct sec *section;
297 .
298 . {* Back end special data. *}
299 . union
300 . {
301 . PTR p;
302 . bfd_vma i;
303 . } udata;
304 .
305 .} asymbol;
306 */
307
308 #include "bfd.h"
309 #include "sysdep.h"
310 #include "libbfd.h"
311 #include "bfdlink.h"
312 #include "aout/stab_gnu.h"
313
314 static char coff_section_type PARAMS ((const char *));
315
316 /*
317 DOCDD
318 INODE
319 symbol handling functions, , typedef asymbol, Symbols
320 SUBSECTION
321 Symbol handling functions
322 */
323
324 /*
325 FUNCTION
326 bfd_get_symtab_upper_bound
327
328 DESCRIPTION
329 Return the number of bytes required to store a vector of pointers
330 to <<asymbols>> for all the symbols in the BFD @var{abfd},
331 including a terminal NULL pointer. If there are no symbols in
332 the BFD, then return 0. If an error occurs, return -1.
333
334 .#define bfd_get_symtab_upper_bound(abfd) \
335 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
336
337 */
338
339 /*
340 FUNCTION
341 bfd_is_local_label
342
343 SYNOPSIS
344 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
345
346 DESCRIPTION
347 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
348 a compiler generated local label, else return false.
349 */
350
351 boolean
352 bfd_is_local_label (abfd, sym)
353 bfd *abfd;
354 asymbol *sym;
355 {
356 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
357 starts with '.' is local. This would accidentally catch section names
358 if we didn't reject them here. */
359 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_SECTION_SYM)) != 0)
360 return false;
361 if (sym->name == NULL)
362 return false;
363 return bfd_is_local_label_name (abfd, sym->name);
364 }
365
366 /*
367 FUNCTION
368 bfd_is_local_label_name
369
370 SYNOPSIS
371 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
372
373 DESCRIPTION
374 Return true if a symbol with the name @var{name} in the BFD
375 @var{abfd} is a compiler generated local label, else return
376 false. This just checks whether the name has the form of a
377 local label.
378
379 .#define bfd_is_local_label_name(abfd, name) \
380 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
381 */
382
383 /*
384 FUNCTION
385 bfd_canonicalize_symtab
386
387 DESCRIPTION
388 Read the symbols from the BFD @var{abfd}, and fills in
389 the vector @var{location} with pointers to the symbols and
390 a trailing NULL.
391 Return the actual number of symbol pointers, not
392 including the NULL.
393
394 .#define bfd_canonicalize_symtab(abfd, location) \
395 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
396 . (abfd, location))
397
398 */
399
400 /*
401 FUNCTION
402 bfd_set_symtab
403
404 SYNOPSIS
405 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
406
407 DESCRIPTION
408 Arrange that when the output BFD @var{abfd} is closed,
409 the table @var{location} of @var{count} pointers to symbols
410 will be written.
411 */
412
413 boolean
414 bfd_set_symtab (abfd, location, symcount)
415 bfd *abfd;
416 asymbol **location;
417 unsigned int symcount;
418 {
419 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
420 {
421 bfd_set_error (bfd_error_invalid_operation);
422 return false;
423 }
424
425 bfd_get_outsymbols (abfd) = location;
426 bfd_get_symcount (abfd) = symcount;
427 return true;
428 }
429
430 /*
431 FUNCTION
432 bfd_print_symbol_vandf
433
434 SYNOPSIS
435 void bfd_print_symbol_vandf(PTR file, asymbol *symbol);
436
437 DESCRIPTION
438 Print the value and flags of the @var{symbol} supplied to the
439 stream @var{file}.
440 */
441 void
442 bfd_print_symbol_vandf (arg, symbol)
443 PTR arg;
444 asymbol *symbol;
445 {
446 FILE *file = (FILE *) arg;
447 flagword type = symbol->flags;
448 if (symbol->section != (asection *) NULL)
449 {
450 fprintf_vma (file, symbol->value + symbol->section->vma);
451 }
452 else
453 {
454 fprintf_vma (file, symbol->value);
455 }
456
457 /* This presumes that a symbol can not be both BSF_DEBUGGING and
458 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
459 BSF_OBJECT. */
460 fprintf (file, " %c%c%c%c%c%c%c",
461 ((type & BSF_LOCAL)
462 ? (type & BSF_GLOBAL) ? '!' : 'l'
463 : (type & BSF_GLOBAL) ? 'g' : ' '),
464 (type & BSF_WEAK) ? 'w' : ' ',
465 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
466 (type & BSF_WARNING) ? 'W' : ' ',
467 (type & BSF_INDIRECT) ? 'I' : ' ',
468 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
469 ((type & BSF_FUNCTION)
470 ? 'F'
471 : ((type & BSF_FILE)
472 ? 'f'
473 : ((type & BSF_OBJECT) ? 'O' : ' '))));
474 }
475
476 /*
477 FUNCTION
478 bfd_make_empty_symbol
479
480 DESCRIPTION
481 Create a new <<asymbol>> structure for the BFD @var{abfd}
482 and return a pointer to it.
483
484 This routine is necessary because each back end has private
485 information surrounding the <<asymbol>>. Building your own
486 <<asymbol>> and pointing to it will not create the private
487 information, and will cause problems later on.
488
489 .#define bfd_make_empty_symbol(abfd) \
490 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
491 */
492
493 /*
494 FUNCTION
495 bfd_make_debug_symbol
496
497 DESCRIPTION
498 Create a new <<asymbol>> structure for the BFD @var{abfd},
499 to be used as a debugging symbol. Further details of its use have
500 yet to be worked out.
501
502 .#define bfd_make_debug_symbol(abfd,ptr,size) \
503 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
504 */
505
506 struct section_to_type
507 {
508 CONST char *section;
509 char type;
510 };
511
512 /* Map section names to POSIX/BSD single-character symbol types.
513 This table is probably incomplete. It is sorted for convenience of
514 adding entries. Since it is so short, a linear search is used. */
515 static CONST struct section_to_type stt[] =
516 {
517 {"*DEBUG*", 'N'},
518 {".bss", 'b'},
519 {"zerovars", 'b'}, /* MRI .bss */
520 {".data", 'd'},
521 {"vars", 'd'}, /* MRI .data */
522 {".rdata", 'r'}, /* Read only data. */
523 {".rodata", 'r'}, /* Read only data. */
524 {".sbss", 's'}, /* Small BSS (uninitialized data). */
525 {".scommon", 'c'}, /* Small common. */
526 {".sdata", 'g'}, /* Small initialized data. */
527 {".text", 't'},
528 {"code", 't'}, /* MRI .text */
529 {".drectve", 'i'}, /* MSVC's .drective section */
530 {".idata", 'i'}, /* MSVC's .idata (import) section */
531 {".edata", 'e'}, /* MSVC's .edata (export) section */
532 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
533 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
534 {0, 0}
535 };
536
537 /* Return the single-character symbol type corresponding to
538 section S, or '?' for an unknown COFF section.
539
540 Check for any leading string which matches, so .text5 returns
541 't' as well as .text */
542
543 static char
544 coff_section_type (s)
545 const char *s;
546 {
547 CONST struct section_to_type *t;
548
549 for (t = &stt[0]; t->section; t++)
550 if (!strncmp (s, t->section, strlen (t->section)))
551 return t->type;
552
553 return '?';
554 }
555
556 #ifndef islower
557 #define islower(c) ((c) >= 'a' && (c) <= 'z')
558 #endif
559 #ifndef toupper
560 #define toupper(c) (islower(c) ? ((c) & ~0x20) : (c))
561 #endif
562
563 /*
564 FUNCTION
565 bfd_decode_symclass
566
567 DESCRIPTION
568 Return a character corresponding to the symbol
569 class of @var{symbol}, or '?' for an unknown class.
570
571 SYNOPSIS
572 int bfd_decode_symclass(asymbol *symbol);
573 */
574 int
575 bfd_decode_symclass (symbol)
576 asymbol *symbol;
577 {
578 char c;
579
580 if (bfd_is_com_section (symbol->section))
581 return 'C';
582 if (bfd_is_und_section (symbol->section))
583 {
584 if (symbol->flags & BSF_WEAK)
585 {
586 /* If weak, determine if it's specifically an object
587 or non-object weak. */
588 if (symbol->flags & BSF_OBJECT)
589 return 'v';
590 else
591 return 'w';
592 }
593 else
594 return 'U';
595 }
596 if (bfd_is_ind_section (symbol->section))
597 return 'I';
598 if (symbol->flags & BSF_WEAK)
599 {
600 /* If weak, determine if it's specifically an object
601 or non-object weak. */
602 if (symbol->flags & BSF_OBJECT)
603 return 'V';
604 else
605 return 'W';
606 }
607 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
608 return '?';
609
610 if (bfd_is_abs_section (symbol->section))
611 c = 'a';
612 else if (symbol->section)
613 c = coff_section_type (symbol->section->name);
614 else
615 return '?';
616 if (symbol->flags & BSF_GLOBAL)
617 c = toupper (c);
618 return c;
619
620 /* We don't have to handle these cases just yet, but we will soon:
621 N_SETV: 'v';
622 N_SETA: 'l';
623 N_SETT: 'x';
624 N_SETD: 'z';
625 N_SETB: 's';
626 N_INDR: 'i';
627 */
628 }
629
630 /*
631 FUNCTION
632 bfd_is_undefined_symclass
633
634 DESCRIPTION
635 Returns non-zero if the class symbol returned by
636 bfd_decode_symclass represents an undefined symbol.
637 Returns zero otherwise.
638
639 SYNOPSIS
640 boolean bfd_is_undefined_symclass (int symclass);
641 */
642
643 boolean
644 bfd_is_undefined_symclass (symclass)
645 int symclass;
646 {
647 return symclass == 'U' || symclass == 'w' || symclass == 'v';
648 }
649
650 /*
651 FUNCTION
652 bfd_symbol_info
653
654 DESCRIPTION
655 Fill in the basic info about symbol that nm needs.
656 Additional info may be added by the back-ends after
657 calling this function.
658
659 SYNOPSIS
660 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
661 */
662
663 void
664 bfd_symbol_info (symbol, ret)
665 asymbol *symbol;
666 symbol_info *ret;
667 {
668 ret->type = bfd_decode_symclass (symbol);
669
670 if (bfd_is_undefined_symclass (ret->type))
671 ret->value = 0;
672 else
673 ret->value = symbol->value + symbol->section->vma;
674
675 ret->name = symbol->name;
676 }
677
678 /*
679 FUNCTION
680 bfd_copy_private_symbol_data
681
682 SYNOPSIS
683 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
684
685 DESCRIPTION
686 Copy private symbol information from @var{isym} in the BFD
687 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
688 Return <<true>> on success, <<false>> on error. Possible error
689 returns are:
690
691 o <<bfd_error_no_memory>> -
692 Not enough memory exists to create private data for @var{osec}.
693
694 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
695 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
696 . (ibfd, isymbol, obfd, osymbol))
697
698 */
699
700 /* The generic version of the function which returns mini symbols.
701 This is used when the backend does not provide a more efficient
702 version. It just uses BFD asymbol structures as mini symbols. */
703
704 long
705 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
706 bfd *abfd;
707 boolean dynamic;
708 PTR *minisymsp;
709 unsigned int *sizep;
710 {
711 long storage;
712 asymbol **syms = NULL;
713 long symcount;
714
715 if (dynamic)
716 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
717 else
718 storage = bfd_get_symtab_upper_bound (abfd);
719 if (storage < 0)
720 goto error_return;
721
722 syms = (asymbol **) bfd_malloc ((size_t) storage);
723 if (syms == NULL)
724 goto error_return;
725
726 if (dynamic)
727 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
728 else
729 symcount = bfd_canonicalize_symtab (abfd, syms);
730 if (symcount < 0)
731 goto error_return;
732
733 *minisymsp = (PTR) syms;
734 *sizep = sizeof (asymbol *);
735 return symcount;
736
737 error_return:
738 if (syms != NULL)
739 free (syms);
740 return -1;
741 }
742
743 /* The generic version of the function which converts a minisymbol to
744 an asymbol. We don't worry about the sym argument we are passed;
745 we just return the asymbol the minisymbol points to. */
746
747 /*ARGSUSED*/
748 asymbol *
749 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
750 bfd *abfd ATTRIBUTE_UNUSED;
751 boolean dynamic ATTRIBUTE_UNUSED;
752 const PTR minisym;
753 asymbol *sym ATTRIBUTE_UNUSED;
754 {
755 return *(asymbol **) minisym;
756 }
757
758 /* Look through stabs debugging information in .stab and .stabstr
759 sections to find the source file and line closest to a desired
760 location. This is used by COFF and ELF targets. It sets *pfound
761 to true if it finds some information. The *pinfo field is used to
762 pass cached information in and out of this routine; this first time
763 the routine is called for a BFD, *pinfo should be NULL. The value
764 placed in *pinfo should be saved with the BFD, and passed back each
765 time this function is called. */
766
767 /* We use a cache by default. */
768
769 #define ENABLE_CACHING
770
771 /* We keep an array of indexentry structures to record where in the
772 stabs section we should look to find line number information for a
773 particular address. */
774
775 struct indexentry
776 {
777 bfd_vma val;
778 bfd_byte *stab;
779 bfd_byte *str;
780 char *directory_name;
781 char *file_name;
782 char *function_name;
783 };
784
785 /* Compare two indexentry structures. This is called via qsort. */
786
787 static int
788 cmpindexentry (a, b)
789 const PTR a;
790 const PTR b;
791 {
792 const struct indexentry *contestantA = (const struct indexentry *) a;
793 const struct indexentry *contestantB = (const struct indexentry *) b;
794
795 if (contestantA->val < contestantB->val)
796 return -1;
797 else if (contestantA->val > contestantB->val)
798 return 1;
799 else
800 return 0;
801 }
802
803 /* A pointer to this structure is stored in *pinfo. */
804
805 struct stab_find_info
806 {
807 /* The .stab section. */
808 asection *stabsec;
809 /* The .stabstr section. */
810 asection *strsec;
811 /* The contents of the .stab section. */
812 bfd_byte *stabs;
813 /* The contents of the .stabstr section. */
814 bfd_byte *strs;
815
816 /* A table that indexes stabs by memory address. */
817 struct indexentry *indextable;
818 /* The number of entries in indextable. */
819 int indextablesize;
820
821 #ifdef ENABLE_CACHING
822 /* Cached values to restart quickly. */
823 struct indexentry *cached_indexentry;
824 bfd_vma cached_offset;
825 bfd_byte *cached_stab;
826 char *cached_file_name;
827 #endif
828
829 /* Saved ptr to malloc'ed filename. */
830 char *filename;
831 };
832
833 boolean
834 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
835 pfilename, pfnname, pline, pinfo)
836 bfd *abfd;
837 asymbol **symbols;
838 asection *section;
839 bfd_vma offset;
840 boolean *pfound;
841 const char **pfilename;
842 const char **pfnname;
843 unsigned int *pline;
844 PTR *pinfo;
845 {
846 struct stab_find_info *info;
847 bfd_size_type stabsize, strsize;
848 bfd_byte *stab, *str;
849 bfd_byte *last_stab = NULL;
850 bfd_size_type stroff;
851 struct indexentry *indexentry;
852 char *directory_name, *file_name;
853 int saw_fun;
854
855 *pfound = false;
856 *pfilename = bfd_get_filename (abfd);
857 *pfnname = NULL;
858 *pline = 0;
859
860 /* Stabs entries use a 12 byte format:
861 4 byte string table index
862 1 byte stab type
863 1 byte stab other field
864 2 byte stab desc field
865 4 byte stab value
866 FIXME: This will have to change for a 64 bit object format.
867
868 The stabs symbols are divided into compilation units. For the
869 first entry in each unit, the type of 0, the value is the length
870 of the string table for this unit, and the desc field is the
871 number of stabs symbols for this unit. */
872
873 #define STRDXOFF (0)
874 #define TYPEOFF (4)
875 #define OTHEROFF (5)
876 #define DESCOFF (6)
877 #define VALOFF (8)
878 #define STABSIZE (12)
879
880 info = (struct stab_find_info *) *pinfo;
881 if (info != NULL)
882 {
883 if (info->stabsec == NULL || info->strsec == NULL)
884 {
885 /* No stabs debugging information. */
886 return true;
887 }
888
889 stabsize = info->stabsec->_raw_size;
890 strsize = info->strsec->_raw_size;
891 }
892 else
893 {
894 long reloc_size, reloc_count;
895 arelent **reloc_vector;
896 int i;
897 char *name;
898 char *file_name;
899 char *directory_name;
900 char *function_name;
901
902 info = (struct stab_find_info *) bfd_zalloc (abfd, sizeof *info);
903 if (info == NULL)
904 return false;
905
906 /* FIXME: When using the linker --split-by-file or
907 --split-by-reloc options, it is possible for the .stab and
908 .stabstr sections to be split. We should handle that. */
909
910 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
911 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
912
913 if (info->stabsec == NULL || info->strsec == NULL)
914 {
915 /* No stabs debugging information. Set *pinfo so that we
916 can return quickly in the info != NULL case above. */
917 *pinfo = (PTR) info;
918 return true;
919 }
920
921 stabsize = info->stabsec->_raw_size;
922 strsize = info->strsec->_raw_size;
923
924 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
925 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
926 if (info->stabs == NULL || info->strs == NULL)
927 return false;
928
929 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs, 0,
930 stabsize)
931 || ! bfd_get_section_contents (abfd, info->strsec, info->strs, 0,
932 strsize))
933 return false;
934
935 /* If this is a relocateable object file, we have to relocate
936 the entries in .stab. This should always be simple 32 bit
937 relocations against symbols defined in this object file, so
938 this should be no big deal. */
939 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
940 if (reloc_size < 0)
941 return false;
942 reloc_vector = (arelent **) bfd_malloc (reloc_size);
943 if (reloc_vector == NULL && reloc_size != 0)
944 return false;
945 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
946 symbols);
947 if (reloc_count < 0)
948 {
949 if (reloc_vector != NULL)
950 free (reloc_vector);
951 return false;
952 }
953 if (reloc_count > 0)
954 {
955 arelent **pr;
956
957 for (pr = reloc_vector; *pr != NULL; pr++)
958 {
959 arelent *r;
960 unsigned long val;
961 asymbol *sym;
962
963 r = *pr;
964 if (r->howto->rightshift != 0
965 || r->howto->size != 2
966 || r->howto->bitsize != 32
967 || r->howto->pc_relative
968 || r->howto->bitpos != 0
969 || r->howto->dst_mask != 0xffffffff)
970 {
971 (*_bfd_error_handler)
972 (_("Unsupported .stab relocation"));
973 bfd_set_error (bfd_error_invalid_operation);
974 if (reloc_vector != NULL)
975 free (reloc_vector);
976 return false;
977 }
978
979 val = bfd_get_32 (abfd, info->stabs + r->address);
980 val &= r->howto->src_mask;
981 sym = *r->sym_ptr_ptr;
982 val += sym->value + sym->section->vma + r->addend;
983 bfd_put_32 (abfd, val, info->stabs + r->address);
984 }
985 }
986
987 if (reloc_vector != NULL)
988 free (reloc_vector);
989
990 /* First time through this function, build a table matching
991 function VM addresses to stabs, then sort based on starting
992 VM address. Do this in two passes: once to count how many
993 table entries we'll need, and a second to actually build the
994 table. */
995
996 info->indextablesize = 0;
997 saw_fun = 1;
998 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
999 {
1000 if (stab[TYPEOFF] == N_SO)
1001 {
1002 /* N_SO with null name indicates EOF */
1003 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1004 continue;
1005
1006 /* if we did not see a function def, leave space for one. */
1007 if (saw_fun == 0)
1008 ++info->indextablesize;
1009
1010 saw_fun = 0;
1011
1012 /* two N_SO's in a row is a filename and directory. Skip */
1013 if (stab + STABSIZE < info->stabs + stabsize
1014 && *(stab + STABSIZE + TYPEOFF) == N_SO)
1015 {
1016 stab += STABSIZE;
1017 }
1018 }
1019 else if (stab[TYPEOFF] == N_FUN)
1020 {
1021 saw_fun = 1;
1022 ++info->indextablesize;
1023 }
1024 }
1025
1026 if (saw_fun == 0)
1027 ++info->indextablesize;
1028
1029 if (info->indextablesize == 0)
1030 return true;
1031 ++info->indextablesize;
1032
1033 info->indextable = ((struct indexentry *)
1034 bfd_alloc (abfd,
1035 (sizeof (struct indexentry)
1036 * info->indextablesize)));
1037 if (info->indextable == NULL)
1038 return false;
1039
1040 file_name = NULL;
1041 directory_name = NULL;
1042 saw_fun = 1;
1043
1044 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1045 i < info->indextablesize && stab < info->stabs + stabsize;
1046 stab += STABSIZE)
1047 {
1048 switch (stab[TYPEOFF])
1049 {
1050 case 0:
1051 /* This is the first entry in a compilation unit. */
1052 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1053 break;
1054 str += stroff;
1055 stroff = bfd_get_32 (abfd, stab + VALOFF);
1056 break;
1057
1058 case N_SO:
1059 /* The main file name. */
1060
1061 /* The following code creates a new indextable entry with
1062 a NULL function name if there were no N_FUNs in a file.
1063 Note that a N_SO without a file name is an EOF and
1064 there could be 2 N_SO following it with the new filename
1065 and directory. */
1066 if (saw_fun == 0)
1067 {
1068 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1069 info->indextable[i].stab = last_stab;
1070 info->indextable[i].str = str;
1071 info->indextable[i].directory_name = directory_name;
1072 info->indextable[i].file_name = file_name;
1073 info->indextable[i].function_name = NULL;
1074 ++i;
1075 }
1076 saw_fun = 0;
1077
1078 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1079 if (*file_name == '\0')
1080 {
1081 directory_name = NULL;
1082 file_name = NULL;
1083 saw_fun = 1;
1084 }
1085 else
1086 {
1087 last_stab = stab;
1088 if (stab + STABSIZE >= info->stabs + stabsize
1089 || *(stab + STABSIZE + TYPEOFF) != N_SO)
1090 {
1091 directory_name = NULL;
1092 }
1093 else
1094 {
1095 /* Two consecutive N_SOs are a directory and a
1096 file name. */
1097 stab += STABSIZE;
1098 directory_name = file_name;
1099 file_name = ((char *) str
1100 + bfd_get_32 (abfd, stab + STRDXOFF));
1101 }
1102 }
1103 break;
1104
1105 case N_SOL:
1106 /* The name of an include file. */
1107 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1108 break;
1109
1110 case N_FUN:
1111 /* A function name. */
1112 saw_fun = 1;
1113 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1114
1115 if (*name == '\0')
1116 name = NULL;
1117
1118 function_name = name;
1119
1120 if (name == NULL)
1121 continue;
1122
1123 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1124 info->indextable[i].stab = stab;
1125 info->indextable[i].str = str;
1126 info->indextable[i].directory_name = directory_name;
1127 info->indextable[i].file_name = file_name;
1128 info->indextable[i].function_name = function_name;
1129 ++i;
1130 break;
1131 }
1132 }
1133
1134 if (saw_fun == 0)
1135 {
1136 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1137 info->indextable[i].stab = last_stab;
1138 info->indextable[i].str = str;
1139 info->indextable[i].directory_name = directory_name;
1140 info->indextable[i].file_name = file_name;
1141 info->indextable[i].function_name = NULL;
1142 ++i;
1143 }
1144
1145 info->indextable[i].val = (bfd_vma) -1;
1146 info->indextable[i].stab = info->stabs + stabsize;
1147 info->indextable[i].str = str;
1148 info->indextable[i].directory_name = NULL;
1149 info->indextable[i].file_name = NULL;
1150 info->indextable[i].function_name = NULL;
1151 ++i;
1152
1153 info->indextablesize = i;
1154 qsort (info->indextable, i, sizeof (struct indexentry), cmpindexentry);
1155
1156 *pinfo = (PTR) info;
1157 }
1158
1159 /* We are passed a section relative offset. The offsets in the
1160 stabs information are absolute. */
1161 offset += bfd_get_section_vma (abfd, section);
1162
1163 #ifdef ENABLE_CACHING
1164 if (info->cached_indexentry != NULL
1165 && offset >= info->cached_offset
1166 && offset < (info->cached_indexentry + 1)->val)
1167 {
1168 stab = info->cached_stab;
1169 indexentry = info->cached_indexentry;
1170 file_name = info->cached_file_name;
1171 }
1172 else
1173 #endif
1174 {
1175 /* Cache non-existant or invalid. Do binary search on
1176 indextable. */
1177
1178 long low, high;
1179 long mid = -1;
1180
1181 indexentry = NULL;
1182
1183 low = 0;
1184 high = info->indextablesize - 1;
1185 while (low != high)
1186 {
1187 mid = (high + low) / 2;
1188 if (offset >= info->indextable[mid].val
1189 && offset < info->indextable[mid + 1].val)
1190 {
1191 indexentry = &info->indextable[mid];
1192 break;
1193 }
1194
1195 if (info->indextable[mid].val > offset)
1196 high = mid;
1197 else
1198 low = mid + 1;
1199 }
1200
1201 if (indexentry == NULL)
1202 return true;
1203
1204 stab = indexentry->stab + STABSIZE;
1205 file_name = indexentry->file_name;
1206 }
1207
1208 directory_name = indexentry->directory_name;
1209 str = indexentry->str;
1210
1211 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1212 {
1213 boolean done;
1214 bfd_vma val;
1215
1216 done = false;
1217
1218 switch (stab[TYPEOFF])
1219 {
1220 case N_SOL:
1221 /* The name of an include file. */
1222 val = bfd_get_32 (abfd, stab + VALOFF);
1223 if (val <= offset)
1224 {
1225 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1226 *pline = 0;
1227 }
1228 break;
1229
1230 case N_SLINE:
1231 case N_DSLINE:
1232 case N_BSLINE:
1233 /* A line number. The value is relative to the start of the
1234 current function. */
1235 val = indexentry->val + bfd_get_32 (abfd, stab + VALOFF);
1236 if (val <= offset)
1237 {
1238 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1239
1240 #ifdef ENABLE_CACHING
1241 info->cached_stab = stab;
1242 info->cached_offset = val;
1243 info->cached_file_name = file_name;
1244 info->cached_indexentry = indexentry;
1245 #endif
1246 }
1247 if (val > offset)
1248 done = true;
1249 break;
1250
1251 case N_FUN:
1252 case N_SO:
1253 done = true;
1254 break;
1255 }
1256
1257 if (done)
1258 break;
1259 }
1260
1261 *pfound = true;
1262
1263 if (IS_ABSOLUTE_PATH(file_name) || directory_name == NULL)
1264 *pfilename = file_name;
1265 else
1266 {
1267 size_t dirlen;
1268
1269 dirlen = strlen (directory_name);
1270 if (info->filename == NULL
1271 || strncmp (info->filename, directory_name, dirlen) != 0
1272 || strcmp (info->filename + dirlen, file_name) != 0)
1273 {
1274 if (info->filename != NULL)
1275 free (info->filename);
1276 info->filename = (char *) bfd_malloc (dirlen +
1277 strlen (file_name)
1278 + 1);
1279 if (info->filename == NULL)
1280 return false;
1281 strcpy (info->filename, directory_name);
1282 strcpy (info->filename + dirlen, file_name);
1283 }
1284
1285 *pfilename = info->filename;
1286 }
1287
1288 if (indexentry->function_name != NULL)
1289 {
1290 char *s;
1291
1292 /* This will typically be something like main:F(0,1), so we want
1293 to clobber the colon. It's OK to change the name, since the
1294 string is in our own local storage anyhow. */
1295
1296 s = strchr (indexentry->function_name, ':');
1297 if (s != NULL)
1298 *s = '\0';
1299
1300 *pfnname = indexentry->function_name;
1301 }
1302
1303 return true;
1304 }
This page took 0.058649 seconds and 3 git commands to generate.