* gdb.texinfo: Add some credits, mention bug monitor.
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 1997
3 Free Software Foundation, Inc.
4 Written by Cygnus Support.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /*
23 SECTION
24 Symbols
25
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 Reading symbols
61
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
65
66 | long storage_needed;
67 | asymbol **symbol_table;
68 | long number_of_symbols;
69 | long i;
70 |
71 | storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 | if (storage_needed < 0)
74 | FAIL
75 |
76 | if (storage_needed == 0) {
77 | return ;
78 | }
79 | symbol_table = (asymbol **) xmalloc (storage_needed);
80 | ...
81 | number_of_symbols =
82 | bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 | if (number_of_symbols < 0)
85 | FAIL
86 |
87 | for (i = 0; i < number_of_symbols; i++) {
88 | process_symbol (symbol_table[i]);
89 | }
90
91 All storage for the symbols themselves is in an objalloc
92 connected to the BFD; it is freed when the BFD is closed.
93
94
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 Writing symbols
99
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
109
110 | #include "bfd.h"
111 | main()
112 | {
113 | bfd *abfd;
114 | asymbol *ptrs[2];
115 | asymbol *new;
116 |
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
124 |
125 | ptrs[0] = new;
126 | ptrs[1] = (asymbol *)0;
127 |
128 | bfd_set_symtab(abfd, ptrs, 1);
129 | bfd_close(abfd);
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166
167
168 /*
169 DOCDD
170 INODE
171 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
172
173 */
174 /*
175 SUBSECTION
176 typedef asymbol
177
178 An <<asymbol>> has the form:
179
180 */
181
182 /*
183 CODE_FRAGMENT
184
185 .
186 .typedef struct symbol_cache_entry
187 .{
188 . {* A pointer to the BFD which owns the symbol. This information
189 . is necessary so that a back end can work out what additional
190 . information (invisible to the application writer) is carried
191 . with the symbol.
192 .
193 . This field is *almost* redundant, since you can use section->owner
194 . instead, except that some symbols point to the global sections
195 . bfd_{abs,com,und}_section. This could be fixed by making
196 . these globals be per-bfd (or per-target-flavor). FIXME. *}
197 .
198 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
199 .
200 . {* The text of the symbol. The name is left alone, and not copied; the
201 . application may not alter it. *}
202 . CONST char *name;
203 .
204 . {* The value of the symbol. This really should be a union of a
205 . numeric value with a pointer, since some flags indicate that
206 . a pointer to another symbol is stored here. *}
207 . symvalue value;
208 .
209 . {* Attributes of a symbol: *}
210 .
211 .#define BSF_NO_FLAGS 0x00
212 .
213 . {* The symbol has local scope; <<static>> in <<C>>. The value
214 . is the offset into the section of the data. *}
215 .#define BSF_LOCAL 0x01
216 .
217 . {* The symbol has global scope; initialized data in <<C>>. The
218 . value is the offset into the section of the data. *}
219 .#define BSF_GLOBAL 0x02
220 .
221 . {* The symbol has global scope and is exported. The value is
222 . the offset into the section of the data. *}
223 .#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
224 .
225 . {* A normal C symbol would be one of:
226 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
227 . <<BSF_GLOBAL>> *}
228 .
229 . {* The symbol is a debugging record. The value has an arbitary
230 . meaning. *}
231 .#define BSF_DEBUGGING 0x08
232 .
233 . {* The symbol denotes a function entry point. Used in ELF,
234 . perhaps others someday. *}
235 .#define BSF_FUNCTION 0x10
236 .
237 . {* Used by the linker. *}
238 .#define BSF_KEEP 0x20
239 .#define BSF_KEEP_G 0x40
240 .
241 . {* A weak global symbol, overridable without warnings by
242 . a regular global symbol of the same name. *}
243 .#define BSF_WEAK 0x80
244 .
245 . {* This symbol was created to point to a section, e.g. ELF's
246 . STT_SECTION symbols. *}
247 .#define BSF_SECTION_SYM 0x100
248 .
249 . {* The symbol used to be a common symbol, but now it is
250 . allocated. *}
251 .#define BSF_OLD_COMMON 0x200
252 .
253 . {* The default value for common data. *}
254 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
255 .
256 . {* In some files the type of a symbol sometimes alters its
257 . location in an output file - ie in coff a <<ISFCN>> symbol
258 . which is also <<C_EXT>> symbol appears where it was
259 . declared and not at the end of a section. This bit is set
260 . by the target BFD part to convey this information. *}
261 .
262 .#define BSF_NOT_AT_END 0x400
263 .
264 . {* Signal that the symbol is the label of constructor section. *}
265 .#define BSF_CONSTRUCTOR 0x800
266 .
267 . {* Signal that the symbol is a warning symbol. The name is a
268 . warning. The name of the next symbol is the one to warn about;
269 . if a reference is made to a symbol with the same name as the next
270 . symbol, a warning is issued by the linker. *}
271 .#define BSF_WARNING 0x1000
272 .
273 . {* Signal that the symbol is indirect. This symbol is an indirect
274 . pointer to the symbol with the same name as the next symbol. *}
275 .#define BSF_INDIRECT 0x2000
276 .
277 . {* BSF_FILE marks symbols that contain a file name. This is used
278 . for ELF STT_FILE symbols. *}
279 .#define BSF_FILE 0x4000
280 .
281 . {* Symbol is from dynamic linking information. *}
282 .#define BSF_DYNAMIC 0x8000
283 .
284 . {* The symbol denotes a data object. Used in ELF, and perhaps
285 . others someday. *}
286 .#define BSF_OBJECT 0x10000
287 .
288 . flagword flags;
289 .
290 . {* A pointer to the section to which this symbol is
291 . relative. This will always be non NULL, there are special
292 . sections for undefined and absolute symbols. *}
293 . struct sec *section;
294 .
295 . {* Back end special data. *}
296 . union
297 . {
298 . PTR p;
299 . bfd_vma i;
300 . } udata;
301 .
302 .} asymbol;
303 */
304
305 #include "bfd.h"
306 #include "sysdep.h"
307 #include "libbfd.h"
308 #include "bfdlink.h"
309 #include "aout/stab_gnu.h"
310
311 static char coff_section_type PARAMS ((const char *));
312
313 /*
314 DOCDD
315 INODE
316 symbol handling functions, , typedef asymbol, Symbols
317 SUBSECTION
318 Symbol handling functions
319 */
320
321 /*
322 FUNCTION
323 bfd_get_symtab_upper_bound
324
325 DESCRIPTION
326 Return the number of bytes required to store a vector of pointers
327 to <<asymbols>> for all the symbols in the BFD @var{abfd},
328 including a terminal NULL pointer. If there are no symbols in
329 the BFD, then return 0. If an error occurs, return -1.
330
331 .#define bfd_get_symtab_upper_bound(abfd) \
332 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
333
334 */
335
336 /*
337 FUNCTION
338 bfd_is_local_label
339
340 SYNOPSIS
341 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
342
343 DESCRIPTION
344 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
345 a compiler generated local label, else return false.
346 */
347
348 boolean
349 bfd_is_local_label (abfd, sym)
350 bfd *abfd;
351 asymbol *sym;
352 {
353 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
354 return false;
355 if (sym->name == NULL)
356 return false;
357 return bfd_is_local_label_name (abfd, sym->name);
358 }
359
360 /*
361 FUNCTION
362 bfd_is_local_label_name
363
364 SYNOPSIS
365 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
366
367 DESCRIPTION
368 Return true if a symbol with the name @var{name} in the BFD
369 @var{abfd} is a compiler generated local label, else return
370 false. This just checks whether the name has the form of a
371 local label.
372
373 .#define bfd_is_local_label_name(abfd, name) \
374 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
375 */
376
377 /*
378 FUNCTION
379 bfd_canonicalize_symtab
380
381 DESCRIPTION
382 Read the symbols from the BFD @var{abfd}, and fills in
383 the vector @var{location} with pointers to the symbols and
384 a trailing NULL.
385 Return the actual number of symbol pointers, not
386 including the NULL.
387
388
389 .#define bfd_canonicalize_symtab(abfd, location) \
390 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
391 . (abfd, location))
392
393 */
394
395
396 /*
397 FUNCTION
398 bfd_set_symtab
399
400 SYNOPSIS
401 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
402
403 DESCRIPTION
404 Arrange that when the output BFD @var{abfd} is closed,
405 the table @var{location} of @var{count} pointers to symbols
406 will be written.
407 */
408
409 boolean
410 bfd_set_symtab (abfd, location, symcount)
411 bfd *abfd;
412 asymbol **location;
413 unsigned int symcount;
414 {
415 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
416 {
417 bfd_set_error (bfd_error_invalid_operation);
418 return false;
419 }
420
421 bfd_get_outsymbols (abfd) = location;
422 bfd_get_symcount (abfd) = symcount;
423 return true;
424 }
425
426 /*
427 FUNCTION
428 bfd_print_symbol_vandf
429
430 SYNOPSIS
431 void bfd_print_symbol_vandf(PTR file, asymbol *symbol);
432
433 DESCRIPTION
434 Print the value and flags of the @var{symbol} supplied to the
435 stream @var{file}.
436 */
437 void
438 bfd_print_symbol_vandf (arg, symbol)
439 PTR arg;
440 asymbol *symbol;
441 {
442 FILE *file = (FILE *) arg;
443 flagword type = symbol->flags;
444 if (symbol->section != (asection *) NULL)
445 {
446 fprintf_vma (file, symbol->value + symbol->section->vma);
447 }
448 else
449 {
450 fprintf_vma (file, symbol->value);
451 }
452
453 /* This presumes that a symbol can not be both BSF_DEBUGGING and
454 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
455 BSF_OBJECT. */
456 fprintf (file, " %c%c%c%c%c%c%c",
457 ((type & BSF_LOCAL)
458 ? (type & BSF_GLOBAL) ? '!' : 'l'
459 : (type & BSF_GLOBAL) ? 'g' : ' '),
460 (type & BSF_WEAK) ? 'w' : ' ',
461 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
462 (type & BSF_WARNING) ? 'W' : ' ',
463 (type & BSF_INDIRECT) ? 'I' : ' ',
464 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
465 ((type & BSF_FUNCTION)
466 ? 'F'
467 : ((type & BSF_FILE)
468 ? 'f'
469 : ((type & BSF_OBJECT) ? 'O' : ' '))));
470 }
471
472
473 /*
474 FUNCTION
475 bfd_make_empty_symbol
476
477 DESCRIPTION
478 Create a new <<asymbol>> structure for the BFD @var{abfd}
479 and return a pointer to it.
480
481 This routine is necessary because each back end has private
482 information surrounding the <<asymbol>>. Building your own
483 <<asymbol>> and pointing to it will not create the private
484 information, and will cause problems later on.
485
486 .#define bfd_make_empty_symbol(abfd) \
487 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
488 */
489
490 /*
491 FUNCTION
492 bfd_make_debug_symbol
493
494 DESCRIPTION
495 Create a new <<asymbol>> structure for the BFD @var{abfd},
496 to be used as a debugging symbol. Further details of its use have
497 yet to be worked out.
498
499 .#define bfd_make_debug_symbol(abfd,ptr,size) \
500 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
501 */
502
503 struct section_to_type
504 {
505 CONST char *section;
506 char type;
507 };
508
509 /* Map section names to POSIX/BSD single-character symbol types.
510 This table is probably incomplete. It is sorted for convenience of
511 adding entries. Since it is so short, a linear search is used. */
512 static CONST struct section_to_type stt[] =
513 {
514 {"*DEBUG*", 'N'},
515 {".bss", 'b'},
516 {"zerovars", 'b'}, /* MRI .bss */
517 {".data", 'd'},
518 {"vars", 'd'}, /* MRI .data */
519 {".rdata", 'r'}, /* Read only data. */
520 {".rodata", 'r'}, /* Read only data. */
521 {".sbss", 's'}, /* Small BSS (uninitialized data). */
522 {".scommon", 'c'}, /* Small common. */
523 {".sdata", 'g'}, /* Small initialized data. */
524 {".text", 't'},
525 {"code", 't'}, /* MRI .text */
526 {0, 0}
527 };
528
529 /* Return the single-character symbol type corresponding to
530 section S, or '?' for an unknown COFF section.
531
532 Check for any leading string which matches, so .text5 returns
533 't' as well as .text */
534
535 static char
536 coff_section_type (s)
537 const char *s;
538 {
539 CONST struct section_to_type *t;
540
541 for (t = &stt[0]; t->section; t++)
542 if (!strncmp (s, t->section, strlen (t->section)))
543 return t->type;
544
545 return '?';
546 }
547
548 #ifndef islower
549 #define islower(c) ((c) >= 'a' && (c) <= 'z')
550 #endif
551 #ifndef toupper
552 #define toupper(c) (islower(c) ? ((c) & ~0x20) : (c))
553 #endif
554
555 /*
556 FUNCTION
557 bfd_decode_symclass
558
559 DESCRIPTION
560 Return a character corresponding to the symbol
561 class of @var{symbol}, or '?' for an unknown class.
562
563 SYNOPSIS
564 int bfd_decode_symclass(asymbol *symbol);
565 */
566 int
567 bfd_decode_symclass (symbol)
568 asymbol *symbol;
569 {
570 char c;
571
572 if (bfd_is_com_section (symbol->section))
573 return 'C';
574 if (bfd_is_und_section (symbol->section))
575 return 'U';
576 if (bfd_is_ind_section (symbol->section))
577 return 'I';
578 if (symbol->flags & BSF_WEAK)
579 return 'W';
580 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
581 return '?';
582
583 if (bfd_is_abs_section (symbol->section))
584 c = 'a';
585 else if (symbol->section)
586 c = coff_section_type (symbol->section->name);
587 else
588 return '?';
589 if (symbol->flags & BSF_GLOBAL)
590 c = toupper (c);
591 return c;
592
593 /* We don't have to handle these cases just yet, but we will soon:
594 N_SETV: 'v';
595 N_SETA: 'l';
596 N_SETT: 'x';
597 N_SETD: 'z';
598 N_SETB: 's';
599 N_INDR: 'i';
600 */
601 }
602
603 /*
604 FUNCTION
605 bfd_symbol_info
606
607 DESCRIPTION
608 Fill in the basic info about symbol that nm needs.
609 Additional info may be added by the back-ends after
610 calling this function.
611
612 SYNOPSIS
613 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
614 */
615
616 void
617 bfd_symbol_info (symbol, ret)
618 asymbol *symbol;
619 symbol_info *ret;
620 {
621 ret->type = bfd_decode_symclass (symbol);
622 if (ret->type != 'U')
623 ret->value = symbol->value + symbol->section->vma;
624 else
625 ret->value = 0;
626 ret->name = symbol->name;
627 }
628
629 void
630 bfd_symbol_is_absolute ()
631 {
632 abort ();
633 }
634
635 /*
636 FUNCTION
637 bfd_copy_private_symbol_data
638
639 SYNOPSIS
640 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
641
642 DESCRIPTION
643 Copy private symbol information from @var{isym} in the BFD
644 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
645 Return <<true>> on success, <<false>> on error. Possible error
646 returns are:
647
648 o <<bfd_error_no_memory>> -
649 Not enough memory exists to create private data for @var{osec}.
650
651 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
652 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
653 . (ibfd, isymbol, obfd, osymbol))
654
655 */
656
657 /* The generic version of the function which returns mini symbols.
658 This is used when the backend does not provide a more efficient
659 version. It just uses BFD asymbol structures as mini symbols. */
660
661 long
662 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
663 bfd *abfd;
664 boolean dynamic;
665 PTR *minisymsp;
666 unsigned int *sizep;
667 {
668 long storage;
669 asymbol **syms = NULL;
670 long symcount;
671
672 if (dynamic)
673 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
674 else
675 storage = bfd_get_symtab_upper_bound (abfd);
676 if (storage < 0)
677 goto error_return;
678
679 syms = (asymbol **) bfd_malloc ((size_t) storage);
680 if (syms == NULL)
681 goto error_return;
682
683 if (dynamic)
684 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
685 else
686 symcount = bfd_canonicalize_symtab (abfd, syms);
687 if (symcount < 0)
688 goto error_return;
689
690 *minisymsp = (PTR) syms;
691 *sizep = sizeof (asymbol *);
692 return symcount;
693
694 error_return:
695 if (syms != NULL)
696 free (syms);
697 return -1;
698 }
699
700 /* The generic version of the function which converts a minisymbol to
701 an asymbol. We don't worry about the sym argument we are passed;
702 we just return the asymbol the minisymbol points to. */
703
704 /*ARGSUSED*/
705 asymbol *
706 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
707 bfd *abfd;
708 boolean dynamic;
709 const PTR minisym;
710 asymbol *sym;
711 {
712 return *(asymbol **) minisym;
713 }
714
715 /* Look through stabs debugging information in .stab and .stabstr
716 sections to find the source file and line closest to a desired
717 location. This is used by COFF and ELF targets. It sets *pfound
718 to true if it finds some information. The *pinfo field is used to
719 pass cached information in and out of this routine; this first time
720 the routine is called for a BFD, *pinfo should be NULL. The value
721 placed in *pinfo should be saved with the BFD, and passed back each
722 time this function is called. */
723
724 /* A pointer to this structure is stored in *pinfo. */
725
726 struct stab_find_info
727 {
728 /* The .stab section. */
729 asection *stabsec;
730 /* The .stabstr section. */
731 asection *strsec;
732 /* The contents of the .stab section. */
733 bfd_byte *stabs;
734 /* The contents of the .stabstr section. */
735 bfd_byte *strs;
736 /* An malloc buffer to hold the file name. */
737 char *filename;
738 /* Cached values to restart quickly. */
739 bfd_vma cached_offset;
740 bfd_byte *cached_stab;
741 bfd_byte *cached_str;
742 bfd_size_type cached_stroff;
743 };
744
745 boolean
746 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
747 pfilename, pfnname, pline, pinfo)
748 bfd *abfd;
749 asymbol **symbols;
750 asection *section;
751 bfd_vma offset;
752 boolean *pfound;
753 const char **pfilename;
754 const char **pfnname;
755 unsigned int *pline;
756 PTR *pinfo;
757 {
758 struct stab_find_info *info;
759 bfd_size_type stabsize, strsize;
760 bfd_byte *stab, *stabend, *str;
761 bfd_size_type stroff;
762 bfd_vma fnaddr;
763 char *directory_name, *main_file_name, *current_file_name, *line_file_name;
764 char *fnname;
765 bfd_vma low_func_vma, low_line_vma;
766
767 *pfound = false;
768 *pfilename = bfd_get_filename (abfd);
769 *pfnname = NULL;
770 *pline = 0;
771
772 info = (struct stab_find_info *) *pinfo;
773 if (info != NULL)
774 {
775 if (info->stabsec == NULL || info->strsec == NULL)
776 {
777 /* No stabs debugging information. */
778 return true;
779 }
780
781 stabsize = info->stabsec->_raw_size;
782 strsize = info->strsec->_raw_size;
783 }
784 else
785 {
786 long reloc_size, reloc_count;
787 arelent **reloc_vector;
788
789 info = (struct stab_find_info *) bfd_zalloc (abfd, sizeof *info);
790 if (info == NULL)
791 return false;
792
793 /* FIXME: When using the linker --split-by-file or
794 --split-by-reloc options, it is possible for the .stab and
795 .stabstr sections to be split. We should handle that. */
796
797 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
798 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
799
800 if (info->stabsec == NULL || info->strsec == NULL)
801 {
802 /* No stabs debugging information. Set *pinfo so that we
803 can return quickly in the info != NULL case above. */
804 *pinfo = (PTR) info;
805 return true;
806 }
807
808 stabsize = info->stabsec->_raw_size;
809 strsize = info->strsec->_raw_size;
810
811 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
812 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
813 if (info->stabs == NULL || info->strs == NULL)
814 return false;
815
816 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs, 0,
817 stabsize)
818 || ! bfd_get_section_contents (abfd, info->strsec, info->strs, 0,
819 strsize))
820 return false;
821
822 /* If this is a relocateable object file, we have to relocate
823 the entries in .stab. This should always be simple 32 bit
824 relocations against symbols defined in this object file, so
825 this should be no big deal. */
826 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
827 if (reloc_size < 0)
828 return false;
829 reloc_vector = (arelent **) bfd_malloc (reloc_size);
830 if (reloc_vector == NULL && reloc_size != 0)
831 return false;
832 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
833 symbols);
834 if (reloc_count < 0)
835 {
836 if (reloc_vector != NULL)
837 free (reloc_vector);
838 return false;
839 }
840 if (reloc_count > 0)
841 {
842 arelent **pr;
843
844 for (pr = reloc_vector; *pr != NULL; pr++)
845 {
846 arelent *r;
847 unsigned long val;
848 asymbol *sym;
849
850 r = *pr;
851 if (r->howto->rightshift != 0
852 || r->howto->size != 2
853 || r->howto->bitsize != 32
854 || r->howto->pc_relative
855 || r->howto->bitpos != 0
856 || r->howto->dst_mask != 0xffffffff)
857 {
858 (*_bfd_error_handler)
859 ("Unsupported .stab relocation");
860 bfd_set_error (bfd_error_invalid_operation);
861 if (reloc_vector != NULL)
862 free (reloc_vector);
863 return false;
864 }
865
866 val = bfd_get_32 (abfd, info->stabs + r->address);
867 val &= r->howto->src_mask;
868 sym = *r->sym_ptr_ptr;
869 val += sym->value + sym->section->vma + r->addend;
870 bfd_put_32 (abfd, val, info->stabs + r->address);
871 }
872 }
873
874 if (reloc_vector != NULL)
875 free (reloc_vector);
876
877 *pinfo = (PTR) info;
878 }
879
880 /* We are passed a section relative offset. The offsets in the
881 stabs information are absolute. */
882 offset += bfd_get_section_vma (abfd, section);
883
884 /* Stabs entries use a 12 byte format:
885 4 byte string table index
886 1 byte stab type
887 1 byte stab other field
888 2 byte stab desc field
889 4 byte stab value
890 FIXME: This will have to change for a 64 bit object format.
891
892 The stabs symbols are divided into compilation units. For the
893 first entry in each unit, the type of 0, the value is the length
894 of the string table for this unit, and the desc field is the
895 number of stabs symbols for this unit. */
896
897 #define STRDXOFF (0)
898 #define TYPEOFF (4)
899 #define OTHEROFF (5)
900 #define DESCOFF (6)
901 #define VALOFF (8)
902 #define STABSIZE (12)
903
904 /* It would be nice if we could skip ahead to the stabs symbols for
905 the next compilation unit to quickly scan through the compilation
906 units. Unfortunately, since each line number gets a separate
907 stabs entry, it is entirely plausible that a large source file
908 will overflow the 16 bit count of stabs entries. */
909 fnaddr = 0;
910 directory_name = NULL;
911 main_file_name = NULL;
912 current_file_name = NULL;
913 line_file_name = NULL;
914 fnname = NULL;
915 low_func_vma = 0;
916 low_line_vma = 0;
917
918 stabend = info->stabs + stabsize;
919
920 if (info->cached_stab == NULL || offset < info->cached_offset)
921 {
922 stab = info->stabs;
923 str = info->strs;
924 stroff = 0;
925 }
926 else
927 {
928 stab = info->cached_stab;
929 str = info->cached_str;
930 stroff = info->cached_stroff;
931 }
932
933 info->cached_offset = offset;
934
935 for (; stab < stabend; stab += STABSIZE)
936 {
937 boolean done;
938 bfd_vma val;
939 char *name;
940
941 done = false;
942
943 switch (stab[TYPEOFF])
944 {
945 case 0:
946 /* This is the first entry in a compilation unit. */
947 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
948 {
949 done = true;
950 break;
951 }
952 str += stroff;
953 stroff = bfd_get_32 (abfd, stab + VALOFF);
954 break;
955
956 case N_SO:
957 /* The main file name. */
958
959 val = bfd_get_32 (abfd, stab + VALOFF);
960 if (val > offset)
961 {
962 done = true;
963 break;
964 }
965
966 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
967
968 /* An empty string indicates the end of the compilation
969 unit. */
970 if (*name == '\0')
971 {
972 /* If there are functions in different sections, they
973 may have addresses larger than val, but we don't want
974 to forget the file name. When there are functions in
975 different cases, there is supposed to be an N_FUN at
976 the end of the function indicating where it ends. */
977 if (low_func_vma < val || fnname == NULL)
978 main_file_name = NULL;
979 break;
980 }
981
982 /* We know that we have to get to at least this point in the
983 stabs entries for this offset. */
984 info->cached_stab = stab;
985 info->cached_str = str;
986 info->cached_stroff = stroff;
987
988 current_file_name = name;
989
990 /* Look ahead to the next symbol. Two consecutive N_SO
991 symbols are a directory and a file name. */
992 if (stab + STABSIZE >= stabend
993 || *(stab + STABSIZE + TYPEOFF) != N_SO)
994 directory_name = NULL;
995 else
996 {
997 stab += STABSIZE;
998 directory_name = current_file_name;
999 current_file_name = ((char *) str
1000 + bfd_get_32 (abfd, stab + STRDXOFF));
1001 }
1002
1003 main_file_name = current_file_name;
1004
1005 break;
1006
1007 case N_SOL:
1008 /* The name of an include file. */
1009 current_file_name = ((char *) str
1010 + bfd_get_32 (abfd, stab + STRDXOFF));
1011 break;
1012
1013 case N_SLINE:
1014 case N_DSLINE:
1015 case N_BSLINE:
1016 /* A line number. The value is relative to the start of the
1017 current function. */
1018 val = fnaddr + bfd_get_32 (abfd, stab + VALOFF);
1019 if (val >= low_line_vma && val <= offset)
1020 {
1021 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1022 low_line_vma = val;
1023 line_file_name = current_file_name;
1024 }
1025 break;
1026
1027 case N_FUN:
1028 /* A function name. */
1029 val = bfd_get_32 (abfd, stab + VALOFF);
1030 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1031
1032 /* An empty string here indicates the end of a function, and
1033 the value is relative to fnaddr. */
1034
1035 if (*name == '\0')
1036 {
1037 val += fnaddr;
1038 if (val >= low_func_vma && val < offset)
1039 fnname = NULL;
1040 }
1041 else
1042 {
1043 if (val >= low_func_vma && val <= offset)
1044 {
1045 fnname = name;
1046 low_func_vma = val;
1047 }
1048
1049 fnaddr = val;
1050 }
1051
1052 break;
1053 }
1054
1055 if (done)
1056 break;
1057 }
1058
1059 if (main_file_name == NULL)
1060 {
1061 /* No information found. */
1062 return true;
1063 }
1064
1065 *pfound = true;
1066
1067 if (*pline != 0)
1068 main_file_name = line_file_name;
1069
1070 if (main_file_name != NULL)
1071 {
1072 if (main_file_name[0] == '/' || directory_name == NULL)
1073 *pfilename = main_file_name;
1074 else
1075 {
1076 size_t dirlen;
1077
1078 dirlen = strlen (directory_name);
1079 if (info->filename == NULL
1080 || strncmp (info->filename, directory_name, dirlen) != 0
1081 || strcmp (info->filename + dirlen, main_file_name) != 0)
1082 {
1083 if (info->filename != NULL)
1084 free (info->filename);
1085 info->filename = (char *) bfd_malloc (dirlen +
1086 strlen (main_file_name)
1087 + 1);
1088 if (info->filename == NULL)
1089 return false;
1090 strcpy (info->filename, directory_name);
1091 strcpy (info->filename + dirlen, main_file_name);
1092 }
1093
1094 *pfilename = info->filename;
1095 }
1096 }
1097
1098 if (fnname != NULL)
1099 {
1100 char *s;
1101
1102 /* This will typically be something like main:F(0,1), so we want
1103 to clobber the colon. It's OK to change the name, since the
1104 string is in our own local storage anyhow. */
1105
1106 s = strchr (fnname, ':');
1107 if (s != NULL)
1108 *s = '\0';
1109
1110 *pfnname = fnname;
1111 }
1112
1113 return true;
1114 }
This page took 0.053869 seconds and 4 git commands to generate.