Introduce new section flag: SEC_ELF_OCTETS
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990-2019 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Symbols
25
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 Reading symbols
61
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
65
66 | long storage_needed;
67 | asymbol **symbol_table;
68 | long number_of_symbols;
69 | long i;
70 |
71 | storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 | if (storage_needed < 0)
74 | FAIL
75 |
76 | if (storage_needed == 0)
77 | return;
78 |
79 | symbol_table = xmalloc (storage_needed);
80 | ...
81 | number_of_symbols =
82 | bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 | if (number_of_symbols < 0)
85 | FAIL
86 |
87 | for (i = 0; i < number_of_symbols; i++)
88 | process_symbol (symbol_table[i]);
89
90 All storage for the symbols themselves is in an objalloc
91 connected to the BFD; it is freed when the BFD is closed.
92
93 INODE
94 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
95 SUBSECTION
96 Writing symbols
97
98 Writing of a symbol table is automatic when a BFD open for
99 writing is closed. The application attaches a vector of
100 pointers to pointers to symbols to the BFD being written, and
101 fills in the symbol count. The close and cleanup code reads
102 through the table provided and performs all the necessary
103 operations. The BFD output code must always be provided with an
104 ``owned'' symbol: one which has come from another BFD, or one
105 which has been created using <<bfd_make_empty_symbol>>. Here is an
106 example showing the creation of a symbol table with only one element:
107
108 | #include "sysdep.h"
109 | #include "bfd.h"
110 | int main (void)
111 | {
112 | bfd *abfd;
113 | asymbol *ptrs[2];
114 | asymbol *new;
115 |
116 | abfd = bfd_openw ("foo","a.out-sunos-big");
117 | bfd_set_format (abfd, bfd_object);
118 | new = bfd_make_empty_symbol (abfd);
119 | new->name = "dummy_symbol";
120 | new->section = bfd_make_section_old_way (abfd, ".text");
121 | new->flags = BSF_GLOBAL;
122 | new->value = 0x12345;
123 |
124 | ptrs[0] = new;
125 | ptrs[1] = 0;
126 |
127 | bfd_set_symtab (abfd, ptrs, 1);
128 | bfd_close (abfd);
129 | return 0;
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitrary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitrary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171 */
172 /*
173 SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178 */
179
180 /*
181 CODE_FRAGMENT
182
183 .
184 .typedef struct bfd_symbol
185 .{
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
190 .
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
196 .
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
199 . const char *name;
200 .
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
204 . symvalue value;
205 .
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0
208 .
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL (1 << 0)
212 .
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL (1 << 1)
216 .
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
220 .
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_UNDEFINED>> or <<BSF_GLOBAL>>. *}
223 .
224 . {* The symbol is a debugging record. The value has an arbitrary
225 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
226 .#define BSF_DEBUGGING (1 << 2)
227 .
228 . {* The symbol denotes a function entry point. Used in ELF,
229 . perhaps others someday. *}
230 .#define BSF_FUNCTION (1 << 3)
231 .
232 . {* Used by the linker. *}
233 .#define BSF_KEEP (1 << 5)
234 .
235 . {* An ELF common symbol. *}
236 .#define BSF_ELF_COMMON (1 << 6)
237 .
238 . {* A weak global symbol, overridable without warnings by
239 . a regular global symbol of the same name. *}
240 .#define BSF_WEAK (1 << 7)
241 .
242 . {* This symbol was created to point to a section, e.g. ELF's
243 . STT_SECTION symbols. *}
244 .#define BSF_SECTION_SYM (1 << 8)
245 .
246 . {* The symbol used to be a common symbol, but now it is
247 . allocated. *}
248 .#define BSF_OLD_COMMON (1 << 9)
249 .
250 . {* In some files the type of a symbol sometimes alters its
251 . location in an output file - ie in coff a <<ISFCN>> symbol
252 . which is also <<C_EXT>> symbol appears where it was
253 . declared and not at the end of a section. This bit is set
254 . by the target BFD part to convey this information. *}
255 .#define BSF_NOT_AT_END (1 << 10)
256 .
257 . {* Signal that the symbol is the label of constructor section. *}
258 .#define BSF_CONSTRUCTOR (1 << 11)
259 .
260 . {* Signal that the symbol is a warning symbol. The name is a
261 . warning. The name of the next symbol is the one to warn about;
262 . if a reference is made to a symbol with the same name as the next
263 . symbol, a warning is issued by the linker. *}
264 .#define BSF_WARNING (1 << 12)
265 .
266 . {* Signal that the symbol is indirect. This symbol is an indirect
267 . pointer to the symbol with the same name as the next symbol. *}
268 .#define BSF_INDIRECT (1 << 13)
269 .
270 . {* BSF_FILE marks symbols that contain a file name. This is used
271 . for ELF STT_FILE symbols. *}
272 .#define BSF_FILE (1 << 14)
273 .
274 . {* Symbol is from dynamic linking information. *}
275 .#define BSF_DYNAMIC (1 << 15)
276 .
277 . {* The symbol denotes a data object. Used in ELF, and perhaps
278 . others someday. *}
279 .#define BSF_OBJECT (1 << 16)
280 .
281 . {* This symbol is a debugging symbol. The value is the offset
282 . into the section of the data. BSF_DEBUGGING should be set
283 . as well. *}
284 .#define BSF_DEBUGGING_RELOC (1 << 17)
285 .
286 . {* This symbol is thread local. Used in ELF. *}
287 .#define BSF_THREAD_LOCAL (1 << 18)
288 .
289 . {* This symbol represents a complex relocation expression,
290 . with the expression tree serialized in the symbol name. *}
291 .#define BSF_RELC (1 << 19)
292 .
293 . {* This symbol represents a signed complex relocation expression,
294 . with the expression tree serialized in the symbol name. *}
295 .#define BSF_SRELC (1 << 20)
296 .
297 . {* This symbol was created by bfd_get_synthetic_symtab. *}
298 .#define BSF_SYNTHETIC (1 << 21)
299 .
300 . {* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.
301 . The dynamic linker will compute the value of this symbol by
302 . calling the function that it points to. BSF_FUNCTION must
303 . also be also set. *}
304 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
305 . {* This symbol is a globally unique data object. The dynamic linker
306 . will make sure that in the entire process there is just one symbol
307 . with this name and type in use. BSF_OBJECT must also be set. *}
308 .#define BSF_GNU_UNIQUE (1 << 23)
309 .
310 . flagword flags;
311 .
312 . {* A pointer to the section to which this symbol is
313 . relative. This will always be non NULL, there are special
314 . sections for undefined and absolute symbols. *}
315 . struct bfd_section *section;
316 .
317 . {* Back end special data. *}
318 . union
319 . {
320 . void *p;
321 . bfd_vma i;
322 . }
323 . udata;
324 .}
325 .asymbol;
326 .
327 */
328
329 #include "sysdep.h"
330 #include "bfd.h"
331 #include "libbfd.h"
332 #include "safe-ctype.h"
333 #include "bfdlink.h"
334 #include "aout/stab_gnu.h"
335
336 /*
337 DOCDD
338 INODE
339 symbol handling functions, , typedef asymbol, Symbols
340 SUBSECTION
341 Symbol handling functions
342 */
343
344 /*
345 FUNCTION
346 bfd_get_symtab_upper_bound
347
348 DESCRIPTION
349 Return the number of bytes required to store a vector of pointers
350 to <<asymbols>> for all the symbols in the BFD @var{abfd},
351 including a terminal NULL pointer. If there are no symbols in
352 the BFD, then return 0. If an error occurs, return -1.
353
354 .#define bfd_get_symtab_upper_bound(abfd) \
355 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
356 .
357 */
358
359 /*
360 FUNCTION
361 bfd_is_local_label
362
363 SYNOPSIS
364 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
365
366 DESCRIPTION
367 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
368 a compiler generated local label, else return FALSE.
369 */
370
371 bfd_boolean
372 bfd_is_local_label (bfd *abfd, asymbol *sym)
373 {
374 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
375 starts with '.' is local. This would accidentally catch section names
376 if we didn't reject them here. */
377 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
378 return FALSE;
379 if (sym->name == NULL)
380 return FALSE;
381 return bfd_is_local_label_name (abfd, sym->name);
382 }
383
384 /*
385 FUNCTION
386 bfd_is_local_label_name
387
388 SYNOPSIS
389 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
390
391 DESCRIPTION
392 Return TRUE if a symbol with the name @var{name} in the BFD
393 @var{abfd} is a compiler generated local label, else return
394 FALSE. This just checks whether the name has the form of a
395 local label.
396
397 .#define bfd_is_local_label_name(abfd, name) \
398 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
399 .
400 */
401
402 /*
403 FUNCTION
404 bfd_is_target_special_symbol
405
406 SYNOPSIS
407 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
408
409 DESCRIPTION
410 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
411 special to the particular target represented by the BFD. Such symbols
412 should normally not be mentioned to the user.
413
414 .#define bfd_is_target_special_symbol(abfd, sym) \
415 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
416 .
417 */
418
419 /*
420 FUNCTION
421 bfd_canonicalize_symtab
422
423 DESCRIPTION
424 Read the symbols from the BFD @var{abfd}, and fills in
425 the vector @var{location} with pointers to the symbols and
426 a trailing NULL.
427 Return the actual number of symbol pointers, not
428 including the NULL.
429
430 .#define bfd_canonicalize_symtab(abfd, location) \
431 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
432 .
433 */
434
435 /*
436 FUNCTION
437 bfd_set_symtab
438
439 SYNOPSIS
440 bfd_boolean bfd_set_symtab
441 (bfd *abfd, asymbol **location, unsigned int count);
442
443 DESCRIPTION
444 Arrange that when the output BFD @var{abfd} is closed,
445 the table @var{location} of @var{count} pointers to symbols
446 will be written.
447 */
448
449 bfd_boolean
450 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
451 {
452 if (abfd->format != bfd_object || bfd_read_p (abfd))
453 {
454 bfd_set_error (bfd_error_invalid_operation);
455 return FALSE;
456 }
457
458 abfd->outsymbols = location;
459 abfd->symcount = symcount;
460 return TRUE;
461 }
462
463 /*
464 FUNCTION
465 bfd_print_symbol_vandf
466
467 SYNOPSIS
468 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
469
470 DESCRIPTION
471 Print the value and flags of the @var{symbol} supplied to the
472 stream @var{file}.
473 */
474 void
475 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
476 {
477 FILE *file = (FILE *) arg;
478
479 flagword type = symbol->flags;
480
481 if (symbol->section != NULL)
482 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
483 else
484 bfd_fprintf_vma (abfd, file, symbol->value);
485
486 /* This presumes that a symbol can not be both BSF_DEBUGGING and
487 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
488 BSF_OBJECT. */
489 fprintf (file, " %c%c%c%c%c%c%c",
490 ((type & BSF_LOCAL)
491 ? (type & BSF_GLOBAL) ? '!' : 'l'
492 : (type & BSF_GLOBAL) ? 'g'
493 : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
494 (type & BSF_WEAK) ? 'w' : ' ',
495 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
496 (type & BSF_WARNING) ? 'W' : ' ',
497 (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
498 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
499 ((type & BSF_FUNCTION)
500 ? 'F'
501 : ((type & BSF_FILE)
502 ? 'f'
503 : ((type & BSF_OBJECT) ? 'O' : ' '))));
504 }
505
506 /*
507 FUNCTION
508 bfd_make_empty_symbol
509
510 DESCRIPTION
511 Create a new <<asymbol>> structure for the BFD @var{abfd}
512 and return a pointer to it.
513
514 This routine is necessary because each back end has private
515 information surrounding the <<asymbol>>. Building your own
516 <<asymbol>> and pointing to it will not create the private
517 information, and will cause problems later on.
518
519 .#define bfd_make_empty_symbol(abfd) \
520 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
521 .
522 */
523
524 /*
525 FUNCTION
526 _bfd_generic_make_empty_symbol
527
528 SYNOPSIS
529 asymbol *_bfd_generic_make_empty_symbol (bfd *);
530
531 DESCRIPTION
532 Create a new <<asymbol>> structure for the BFD @var{abfd}
533 and return a pointer to it. Used by core file routines,
534 binary back-end and anywhere else where no private info
535 is needed.
536 */
537
538 asymbol *
539 _bfd_generic_make_empty_symbol (bfd *abfd)
540 {
541 bfd_size_type amt = sizeof (asymbol);
542 asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
543 if (new_symbol)
544 new_symbol->the_bfd = abfd;
545 return new_symbol;
546 }
547
548 /*
549 FUNCTION
550 bfd_make_debug_symbol
551
552 DESCRIPTION
553 Create a new <<asymbol>> structure for the BFD @var{abfd},
554 to be used as a debugging symbol. Further details of its use have
555 yet to be worked out.
556
557 .#define bfd_make_debug_symbol(abfd,ptr,size) \
558 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
559 .
560 */
561
562 struct section_to_type
563 {
564 const char *section;
565 char type;
566 };
567
568 /* Map section names to POSIX/BSD single-character symbol types.
569 This table is probably incomplete. It is sorted for convenience of
570 adding entries. Since it is so short, a linear search is used. */
571 static const struct section_to_type stt[] =
572 {
573 {".bss", 'b'},
574 {"code", 't'}, /* MRI .text */
575 {".data", 'd'},
576 {"*DEBUG*", 'N'},
577 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
578 {".drectve", 'i'}, /* MSVC's .drective section */
579 {".edata", 'e'}, /* MSVC's .edata (export) section */
580 {".fini", 't'}, /* ELF fini section */
581 {".idata", 'i'}, /* MSVC's .idata (import) section */
582 {".init", 't'}, /* ELF init section */
583 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
584 {".rdata", 'r'}, /* Read only data. */
585 {".rodata", 'r'}, /* Read only data. */
586 {".sbss", 's'}, /* Small BSS (uninitialized data). */
587 {".scommon", 'c'}, /* Small common. */
588 {".sdata", 'g'}, /* Small initialized data. */
589 {".text", 't'},
590 {"vars", 'd'}, /* MRI .data */
591 {"zerovars", 'b'}, /* MRI .bss */
592 {0, 0}
593 };
594
595 /* Return the single-character symbol type corresponding to
596 section S, or '?' for an unknown COFF section.
597
598 Check for leading strings which match, followed by a number, '.',
599 or '$' so .text5 matches the .text entry, but .init_array doesn't
600 match the .init entry. */
601
602 static char
603 coff_section_type (const char *s)
604 {
605 const struct section_to_type *t;
606
607 for (t = &stt[0]; t->section; t++)
608 {
609 size_t len = strlen (t->section);
610 if (strncmp (s, t->section, len) == 0
611 && memchr (".$0123456789", s[len], 13) != 0)
612 return t->type;
613 }
614
615 return '?';
616 }
617
618 /* Return the single-character symbol type corresponding to section
619 SECTION, or '?' for an unknown section. This uses section flags to
620 identify sections.
621
622 FIXME These types are unhandled: c, i, e, p. If we handled these also,
623 we could perhaps obsolete coff_section_type. */
624
625 static char
626 decode_section_type (const struct bfd_section *section)
627 {
628 if (section->flags & SEC_CODE)
629 return 't';
630 if (section->flags & SEC_DATA)
631 {
632 if (section->flags & SEC_READONLY)
633 return 'r';
634 else if (section->flags & SEC_SMALL_DATA)
635 return 'g';
636 else
637 return 'd';
638 }
639 if ((section->flags & SEC_HAS_CONTENTS) == 0)
640 {
641 if (section->flags & SEC_SMALL_DATA)
642 return 's';
643 else
644 return 'b';
645 }
646 if (section->flags & SEC_DEBUGGING)
647 return 'N';
648 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
649 return 'n';
650
651 return '?';
652 }
653
654 /*
655 FUNCTION
656 bfd_decode_symclass
657
658 DESCRIPTION
659 Return a character corresponding to the symbol
660 class of @var{symbol}, or '?' for an unknown class.
661
662 SYNOPSIS
663 int bfd_decode_symclass (asymbol *symbol);
664 */
665 int
666 bfd_decode_symclass (asymbol *symbol)
667 {
668 char c;
669
670 if (symbol->section && bfd_is_com_section (symbol->section))
671 return 'C';
672 if (bfd_is_und_section (symbol->section))
673 {
674 if (symbol->flags & BSF_WEAK)
675 {
676 /* If weak, determine if it's specifically an object
677 or non-object weak. */
678 if (symbol->flags & BSF_OBJECT)
679 return 'v';
680 else
681 return 'w';
682 }
683 else
684 return 'U';
685 }
686 if (bfd_is_ind_section (symbol->section))
687 return 'I';
688 if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
689 return 'i';
690 if (symbol->flags & BSF_WEAK)
691 {
692 /* If weak, determine if it's specifically an object
693 or non-object weak. */
694 if (symbol->flags & BSF_OBJECT)
695 return 'V';
696 else
697 return 'W';
698 }
699 if (symbol->flags & BSF_GNU_UNIQUE)
700 return 'u';
701 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
702 return '?';
703
704 if (bfd_is_abs_section (symbol->section))
705 c = 'a';
706 else if (symbol->section)
707 {
708 c = decode_section_type (symbol->section);
709 if (c == '?')
710 c = coff_section_type (symbol->section->name);
711 }
712 else
713 return '?';
714 if (symbol->flags & BSF_GLOBAL)
715 c = TOUPPER (c);
716 return c;
717
718 /* We don't have to handle these cases just yet, but we will soon:
719 N_SETV: 'v';
720 N_SETA: 'l';
721 N_SETT: 'x';
722 N_SETD: 'z';
723 N_SETB: 's';
724 N_INDR: 'i';
725 */
726 }
727
728 /*
729 FUNCTION
730 bfd_is_undefined_symclass
731
732 DESCRIPTION
733 Returns non-zero if the class symbol returned by
734 bfd_decode_symclass represents an undefined symbol.
735 Returns zero otherwise.
736
737 SYNOPSIS
738 bfd_boolean bfd_is_undefined_symclass (int symclass);
739 */
740
741 bfd_boolean
742 bfd_is_undefined_symclass (int symclass)
743 {
744 return symclass == 'U' || symclass == 'w' || symclass == 'v';
745 }
746
747 /*
748 FUNCTION
749 bfd_symbol_info
750
751 DESCRIPTION
752 Fill in the basic info about symbol that nm needs.
753 Additional info may be added by the back-ends after
754 calling this function.
755
756 SYNOPSIS
757 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
758 */
759
760 void
761 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
762 {
763 ret->type = bfd_decode_symclass (symbol);
764
765 if (bfd_is_undefined_symclass (ret->type))
766 ret->value = 0;
767 else
768 ret->value = symbol->value + symbol->section->vma;
769
770 ret->name = symbol->name;
771 }
772
773 /*
774 FUNCTION
775 bfd_copy_private_symbol_data
776
777 SYNOPSIS
778 bfd_boolean bfd_copy_private_symbol_data
779 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
780
781 DESCRIPTION
782 Copy private symbol information from @var{isym} in the BFD
783 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
784 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
785 returns are:
786
787 o <<bfd_error_no_memory>> -
788 Not enough memory exists to create private data for @var{osec}.
789
790 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
791 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
792 . (ibfd, isymbol, obfd, osymbol))
793 .
794 */
795
796 /* The generic version of the function which returns mini symbols.
797 This is used when the backend does not provide a more efficient
798 version. It just uses BFD asymbol structures as mini symbols. */
799
800 long
801 _bfd_generic_read_minisymbols (bfd *abfd,
802 bfd_boolean dynamic,
803 void **minisymsp,
804 unsigned int *sizep)
805 {
806 long storage;
807 asymbol **syms = NULL;
808 long symcount;
809
810 if (dynamic)
811 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
812 else
813 storage = bfd_get_symtab_upper_bound (abfd);
814 if (storage < 0)
815 goto error_return;
816 if (storage == 0)
817 return 0;
818
819 syms = (asymbol **) bfd_malloc (storage);
820 if (syms == NULL)
821 goto error_return;
822
823 if (dynamic)
824 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
825 else
826 symcount = bfd_canonicalize_symtab (abfd, syms);
827 if (symcount < 0)
828 goto error_return;
829
830 if (symcount == 0)
831 /* We return 0 above when storage is 0. Exit in the same state
832 here, so as to not complicate callers with having to deal with
833 freeing memory for zero symcount. */
834 free (syms);
835 else
836 {
837 *minisymsp = syms;
838 *sizep = sizeof (asymbol *);
839 }
840 return symcount;
841
842 error_return:
843 bfd_set_error (bfd_error_no_symbols);
844 if (syms != NULL)
845 free (syms);
846 return -1;
847 }
848
849 /* The generic version of the function which converts a minisymbol to
850 an asymbol. We don't worry about the sym argument we are passed;
851 we just return the asymbol the minisymbol points to. */
852
853 asymbol *
854 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
855 bfd_boolean dynamic ATTRIBUTE_UNUSED,
856 const void *minisym,
857 asymbol *sym ATTRIBUTE_UNUSED)
858 {
859 return *(asymbol **) minisym;
860 }
861
862 /* Look through stabs debugging information in .stab and .stabstr
863 sections to find the source file and line closest to a desired
864 location. This is used by COFF and ELF targets. It sets *pfound
865 to TRUE if it finds some information. The *pinfo field is used to
866 pass cached information in and out of this routine; this first time
867 the routine is called for a BFD, *pinfo should be NULL. The value
868 placed in *pinfo should be saved with the BFD, and passed back each
869 time this function is called. */
870
871 /* We use a cache by default. */
872
873 #define ENABLE_CACHING
874
875 /* We keep an array of indexentry structures to record where in the
876 stabs section we should look to find line number information for a
877 particular address. */
878
879 struct indexentry
880 {
881 bfd_vma val;
882 bfd_byte *stab;
883 bfd_byte *str;
884 char *directory_name;
885 char *file_name;
886 char *function_name;
887 int idx;
888 };
889
890 /* Compare two indexentry structures. This is called via qsort. */
891
892 static int
893 cmpindexentry (const void *a, const void *b)
894 {
895 const struct indexentry *contestantA = (const struct indexentry *) a;
896 const struct indexentry *contestantB = (const struct indexentry *) b;
897
898 if (contestantA->val < contestantB->val)
899 return -1;
900 if (contestantA->val > contestantB->val)
901 return 1;
902 return contestantA->idx - contestantB->idx;
903 }
904
905 /* A pointer to this structure is stored in *pinfo. */
906
907 struct stab_find_info
908 {
909 /* The .stab section. */
910 asection *stabsec;
911 /* The .stabstr section. */
912 asection *strsec;
913 /* The contents of the .stab section. */
914 bfd_byte *stabs;
915 /* The contents of the .stabstr section. */
916 bfd_byte *strs;
917
918 /* A table that indexes stabs by memory address. */
919 struct indexentry *indextable;
920 /* The number of entries in indextable. */
921 int indextablesize;
922
923 #ifdef ENABLE_CACHING
924 /* Cached values to restart quickly. */
925 struct indexentry *cached_indexentry;
926 bfd_vma cached_offset;
927 bfd_byte *cached_stab;
928 char *cached_file_name;
929 #endif
930
931 /* Saved ptr to malloc'ed filename. */
932 char *filename;
933 };
934
935 bfd_boolean
936 _bfd_stab_section_find_nearest_line (bfd *abfd,
937 asymbol **symbols,
938 asection *section,
939 bfd_vma offset,
940 bfd_boolean *pfound,
941 const char **pfilename,
942 const char **pfnname,
943 unsigned int *pline,
944 void **pinfo)
945 {
946 struct stab_find_info *info;
947 bfd_size_type stabsize, strsize;
948 bfd_byte *stab, *str;
949 bfd_byte *nul_fun, *nul_str;
950 bfd_size_type stroff;
951 struct indexentry *indexentry;
952 char *file_name;
953 char *directory_name;
954 bfd_boolean saw_line, saw_func;
955
956 *pfound = FALSE;
957 *pfilename = bfd_get_filename (abfd);
958 *pfnname = NULL;
959 *pline = 0;
960
961 /* Stabs entries use a 12 byte format:
962 4 byte string table index
963 1 byte stab type
964 1 byte stab other field
965 2 byte stab desc field
966 4 byte stab value
967 FIXME: This will have to change for a 64 bit object format.
968
969 The stabs symbols are divided into compilation units. For the
970 first entry in each unit, the type of 0, the value is the length
971 of the string table for this unit, and the desc field is the
972 number of stabs symbols for this unit. */
973
974 #define STRDXOFF (0)
975 #define TYPEOFF (4)
976 #define OTHEROFF (5)
977 #define DESCOFF (6)
978 #define VALOFF (8)
979 #define STABSIZE (12)
980
981 info = (struct stab_find_info *) *pinfo;
982 if (info != NULL)
983 {
984 if (info->stabsec == NULL || info->strsec == NULL)
985 {
986 /* No stabs debugging information. */
987 return TRUE;
988 }
989
990 stabsize = (info->stabsec->rawsize
991 ? info->stabsec->rawsize
992 : info->stabsec->size);
993 strsize = (info->strsec->rawsize
994 ? info->strsec->rawsize
995 : info->strsec->size);
996 }
997 else
998 {
999 long reloc_size, reloc_count;
1000 arelent **reloc_vector;
1001 int i;
1002 char *function_name;
1003 bfd_size_type amt = sizeof *info;
1004
1005 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
1006 if (info == NULL)
1007 return FALSE;
1008
1009 /* FIXME: When using the linker --split-by-file or
1010 --split-by-reloc options, it is possible for the .stab and
1011 .stabstr sections to be split. We should handle that. */
1012
1013 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1014 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1015
1016 if (info->stabsec == NULL || info->strsec == NULL)
1017 {
1018 /* Try SOM section names. */
1019 info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1020 info->strsec = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1021
1022 if (info->stabsec == NULL || info->strsec == NULL)
1023 {
1024 /* No stabs debugging information. Set *pinfo so that we
1025 can return quickly in the info != NULL case above. */
1026 *pinfo = info;
1027 return TRUE;
1028 }
1029 }
1030
1031 stabsize = (info->stabsec->rawsize
1032 ? info->stabsec->rawsize
1033 : info->stabsec->size);
1034 stabsize = (stabsize / STABSIZE) * STABSIZE;
1035 strsize = (info->strsec->rawsize
1036 ? info->strsec->rawsize
1037 : info->strsec->size);
1038
1039 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1040 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1041 if (info->stabs == NULL || info->strs == NULL)
1042 return FALSE;
1043
1044 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1045 0, stabsize)
1046 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1047 0, strsize))
1048 return FALSE;
1049
1050 /* Stab strings ought to be nul terminated. Ensure the last one
1051 is, to prevent running off the end of the buffer. */
1052 info->strs[strsize - 1] = 0;
1053
1054 /* If this is a relocatable object file, we have to relocate
1055 the entries in .stab. This should always be simple 32 bit
1056 relocations against symbols defined in this object file, so
1057 this should be no big deal. */
1058 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1059 if (reloc_size < 0)
1060 return FALSE;
1061 reloc_vector = (arelent **) bfd_malloc (reloc_size);
1062 if (reloc_vector == NULL && reloc_size != 0)
1063 return FALSE;
1064 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1065 symbols);
1066 if (reloc_count < 0)
1067 {
1068 if (reloc_vector != NULL)
1069 free (reloc_vector);
1070 return FALSE;
1071 }
1072 if (reloc_count > 0)
1073 {
1074 arelent **pr;
1075
1076 for (pr = reloc_vector; *pr != NULL; pr++)
1077 {
1078 arelent *r;
1079 unsigned long val;
1080 asymbol *sym;
1081
1082 r = *pr;
1083 /* Ignore R_*_NONE relocs. */
1084 if (r->howto->dst_mask == 0)
1085 continue;
1086
1087 if (r->howto->rightshift != 0
1088 || r->howto->size != 2
1089 || r->howto->bitsize != 32
1090 || r->howto->pc_relative
1091 || r->howto->bitpos != 0
1092 || r->howto->dst_mask != 0xffffffff
1093 || (r->address * bfd_octets_per_byte (abfd, NULL) + 4
1094 > stabsize))
1095 {
1096 _bfd_error_handler
1097 (_("unsupported .stab relocation"));
1098 bfd_set_error (bfd_error_invalid_operation);
1099 if (reloc_vector != NULL)
1100 free (reloc_vector);
1101 return FALSE;
1102 }
1103
1104 val = bfd_get_32 (abfd, info->stabs
1105 + (r->address
1106 * bfd_octets_per_byte (abfd, NULL)));
1107 val &= r->howto->src_mask;
1108 sym = *r->sym_ptr_ptr;
1109 val += sym->value + sym->section->vma + r->addend;
1110 bfd_put_32 (abfd, (bfd_vma) val, info->stabs
1111 + r->address * bfd_octets_per_byte (abfd, NULL));
1112 }
1113 }
1114
1115 if (reloc_vector != NULL)
1116 free (reloc_vector);
1117
1118 /* First time through this function, build a table matching
1119 function VM addresses to stabs, then sort based on starting
1120 VM address. Do this in two passes: once to count how many
1121 table entries we'll need, and a second to actually build the
1122 table. */
1123
1124 info->indextablesize = 0;
1125 nul_fun = NULL;
1126 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1127 {
1128 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1129 {
1130 /* if we did not see a function def, leave space for one. */
1131 if (nul_fun != NULL)
1132 ++info->indextablesize;
1133
1134 /* N_SO with null name indicates EOF */
1135 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1136 nul_fun = NULL;
1137 else
1138 {
1139 nul_fun = stab;
1140
1141 /* two N_SO's in a row is a filename and directory. Skip */
1142 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1143 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1144 stab += STABSIZE;
1145 }
1146 }
1147 else if (stab[TYPEOFF] == (bfd_byte) N_FUN
1148 && bfd_get_32 (abfd, stab + STRDXOFF) != 0)
1149 {
1150 nul_fun = NULL;
1151 ++info->indextablesize;
1152 }
1153 }
1154
1155 if (nul_fun != NULL)
1156 ++info->indextablesize;
1157
1158 if (info->indextablesize == 0)
1159 return TRUE;
1160 ++info->indextablesize;
1161
1162 amt = info->indextablesize;
1163 amt *= sizeof (struct indexentry);
1164 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1165 if (info->indextable == NULL)
1166 return FALSE;
1167
1168 file_name = NULL;
1169 directory_name = NULL;
1170 nul_fun = NULL;
1171 stroff = 0;
1172
1173 for (i = 0, stab = info->stabs, nul_str = str = info->strs;
1174 i < info->indextablesize && stab < info->stabs + stabsize;
1175 stab += STABSIZE)
1176 {
1177 switch (stab[TYPEOFF])
1178 {
1179 case 0:
1180 /* This is the first entry in a compilation unit. */
1181 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1182 break;
1183 str += stroff;
1184 stroff = bfd_get_32 (abfd, stab + VALOFF);
1185 break;
1186
1187 case N_SO:
1188 /* The main file name. */
1189
1190 /* The following code creates a new indextable entry with
1191 a NULL function name if there were no N_FUNs in a file.
1192 Note that a N_SO without a file name is an EOF and
1193 there could be 2 N_SO following it with the new filename
1194 and directory. */
1195 if (nul_fun != NULL)
1196 {
1197 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1198 info->indextable[i].stab = nul_fun;
1199 info->indextable[i].str = nul_str;
1200 info->indextable[i].directory_name = directory_name;
1201 info->indextable[i].file_name = file_name;
1202 info->indextable[i].function_name = NULL;
1203 info->indextable[i].idx = i;
1204 ++i;
1205 }
1206
1207 directory_name = NULL;
1208 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1209 if (file_name == (char *) str)
1210 {
1211 file_name = NULL;
1212 nul_fun = NULL;
1213 }
1214 else
1215 {
1216 nul_fun = stab;
1217 nul_str = str;
1218 if (file_name >= (char *) info->strs + strsize
1219 || file_name < (char *) str)
1220 file_name = NULL;
1221 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1222 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1223 {
1224 /* Two consecutive N_SOs are a directory and a
1225 file name. */
1226 stab += STABSIZE;
1227 directory_name = file_name;
1228 file_name = ((char *) str
1229 + bfd_get_32 (abfd, stab + STRDXOFF));
1230 if (file_name >= (char *) info->strs + strsize
1231 || file_name < (char *) str)
1232 file_name = NULL;
1233 }
1234 }
1235 break;
1236
1237 case N_SOL:
1238 /* The name of an include file. */
1239 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1240 /* PR 17512: file: 0c680a1f. */
1241 /* PR 17512: file: 5da8aec4. */
1242 if (file_name >= (char *) info->strs + strsize
1243 || file_name < (char *) str)
1244 file_name = NULL;
1245 break;
1246
1247 case N_FUN:
1248 /* A function name. */
1249 function_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1250 if (function_name == (char *) str)
1251 continue;
1252 if (function_name >= (char *) info->strs + strsize
1253 || function_name < (char *) str)
1254 function_name = NULL;
1255
1256 nul_fun = NULL;
1257 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1258 info->indextable[i].stab = stab;
1259 info->indextable[i].str = str;
1260 info->indextable[i].directory_name = directory_name;
1261 info->indextable[i].file_name = file_name;
1262 info->indextable[i].function_name = function_name;
1263 info->indextable[i].idx = i;
1264 ++i;
1265 break;
1266 }
1267 }
1268
1269 if (nul_fun != NULL)
1270 {
1271 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1272 info->indextable[i].stab = nul_fun;
1273 info->indextable[i].str = nul_str;
1274 info->indextable[i].directory_name = directory_name;
1275 info->indextable[i].file_name = file_name;
1276 info->indextable[i].function_name = NULL;
1277 info->indextable[i].idx = i;
1278 ++i;
1279 }
1280
1281 info->indextable[i].val = (bfd_vma) -1;
1282 info->indextable[i].stab = info->stabs + stabsize;
1283 info->indextable[i].str = str;
1284 info->indextable[i].directory_name = NULL;
1285 info->indextable[i].file_name = NULL;
1286 info->indextable[i].function_name = NULL;
1287 info->indextable[i].idx = i;
1288 ++i;
1289
1290 info->indextablesize = i;
1291 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1292 cmpindexentry);
1293
1294 *pinfo = info;
1295 }
1296
1297 /* We are passed a section relative offset. The offsets in the
1298 stabs information are absolute. */
1299 offset += bfd_section_vma (section);
1300
1301 #ifdef ENABLE_CACHING
1302 if (info->cached_indexentry != NULL
1303 && offset >= info->cached_offset
1304 && offset < (info->cached_indexentry + 1)->val)
1305 {
1306 stab = info->cached_stab;
1307 indexentry = info->cached_indexentry;
1308 file_name = info->cached_file_name;
1309 }
1310 else
1311 #endif
1312 {
1313 long low, high;
1314 long mid = -1;
1315
1316 /* Cache non-existent or invalid. Do binary search on
1317 indextable. */
1318 indexentry = NULL;
1319
1320 low = 0;
1321 high = info->indextablesize - 1;
1322 while (low != high)
1323 {
1324 mid = (high + low) / 2;
1325 if (offset >= info->indextable[mid].val
1326 && offset < info->indextable[mid + 1].val)
1327 {
1328 indexentry = &info->indextable[mid];
1329 break;
1330 }
1331
1332 if (info->indextable[mid].val > offset)
1333 high = mid;
1334 else
1335 low = mid + 1;
1336 }
1337
1338 if (indexentry == NULL)
1339 return TRUE;
1340
1341 stab = indexentry->stab + STABSIZE;
1342 file_name = indexentry->file_name;
1343 }
1344
1345 directory_name = indexentry->directory_name;
1346 str = indexentry->str;
1347
1348 saw_line = FALSE;
1349 saw_func = FALSE;
1350 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1351 {
1352 bfd_boolean done;
1353 bfd_vma val;
1354
1355 done = FALSE;
1356
1357 switch (stab[TYPEOFF])
1358 {
1359 case N_SOL:
1360 /* The name of an include file. */
1361 val = bfd_get_32 (abfd, stab + VALOFF);
1362 if (val <= offset)
1363 {
1364 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1365 if (file_name >= (char *) info->strs + strsize
1366 || file_name < (char *) str)
1367 file_name = NULL;
1368 *pline = 0;
1369 }
1370 break;
1371
1372 case N_SLINE:
1373 case N_DSLINE:
1374 case N_BSLINE:
1375 /* A line number. If the function was specified, then the value
1376 is relative to the start of the function. Otherwise, the
1377 value is an absolute address. */
1378 val = ((indexentry->function_name ? indexentry->val : 0)
1379 + bfd_get_32 (abfd, stab + VALOFF));
1380 /* If this line starts before our desired offset, or if it's
1381 the first line we've been able to find, use it. The
1382 !saw_line check works around a bug in GCC 2.95.3, which emits
1383 the first N_SLINE late. */
1384 if (!saw_line || val <= offset)
1385 {
1386 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1387
1388 #ifdef ENABLE_CACHING
1389 info->cached_stab = stab;
1390 info->cached_offset = val;
1391 info->cached_file_name = file_name;
1392 info->cached_indexentry = indexentry;
1393 #endif
1394 }
1395 if (val > offset)
1396 done = TRUE;
1397 saw_line = TRUE;
1398 break;
1399
1400 case N_FUN:
1401 case N_SO:
1402 if (saw_func || saw_line)
1403 done = TRUE;
1404 saw_func = TRUE;
1405 break;
1406 }
1407
1408 if (done)
1409 break;
1410 }
1411
1412 *pfound = TRUE;
1413
1414 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1415 || directory_name == NULL)
1416 *pfilename = file_name;
1417 else
1418 {
1419 size_t dirlen;
1420
1421 dirlen = strlen (directory_name);
1422 if (info->filename == NULL
1423 || filename_ncmp (info->filename, directory_name, dirlen) != 0
1424 || filename_cmp (info->filename + dirlen, file_name) != 0)
1425 {
1426 size_t len;
1427
1428 /* Don't free info->filename here. objdump and other
1429 apps keep a copy of a previously returned file name
1430 pointer. */
1431 len = strlen (file_name) + 1;
1432 info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1433 if (info->filename == NULL)
1434 return FALSE;
1435 memcpy (info->filename, directory_name, dirlen);
1436 memcpy (info->filename + dirlen, file_name, len);
1437 }
1438
1439 *pfilename = info->filename;
1440 }
1441
1442 if (indexentry->function_name != NULL)
1443 {
1444 char *s;
1445
1446 /* This will typically be something like main:F(0,1), so we want
1447 to clobber the colon. It's OK to change the name, since the
1448 string is in our own local storage anyhow. */
1449 s = strchr (indexentry->function_name, ':');
1450 if (s != NULL)
1451 *s = '\0';
1452
1453 *pfnname = indexentry->function_name;
1454 }
1455
1456 return TRUE;
1457 }
1458
1459 long
1460 _bfd_nosymbols_canonicalize_symtab (bfd *abfd ATTRIBUTE_UNUSED,
1461 asymbol **location ATTRIBUTE_UNUSED)
1462 {
1463 return 0;
1464 }
1465
1466 void
1467 _bfd_nosymbols_print_symbol (bfd *abfd ATTRIBUTE_UNUSED,
1468 void *afile ATTRIBUTE_UNUSED,
1469 asymbol *symbol ATTRIBUTE_UNUSED,
1470 bfd_print_symbol_type how ATTRIBUTE_UNUSED)
1471 {
1472 }
1473
1474 void
1475 _bfd_nosymbols_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
1476 asymbol *sym ATTRIBUTE_UNUSED,
1477 symbol_info *ret ATTRIBUTE_UNUSED)
1478 {
1479 }
1480
1481 const char *
1482 _bfd_nosymbols_get_symbol_version_string (bfd *abfd,
1483 asymbol *symbol ATTRIBUTE_UNUSED,
1484 bfd_boolean *hidden ATTRIBUTE_UNUSED)
1485 {
1486 return (const char *) _bfd_ptr_bfd_null_error (abfd);
1487 }
1488
1489 bfd_boolean
1490 _bfd_nosymbols_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
1491 const char *name ATTRIBUTE_UNUSED)
1492 {
1493 return FALSE;
1494 }
1495
1496 alent *
1497 _bfd_nosymbols_get_lineno (bfd *abfd, asymbol *sym ATTRIBUTE_UNUSED)
1498 {
1499 return (alent *) _bfd_ptr_bfd_null_error (abfd);
1500 }
1501
1502 bfd_boolean
1503 _bfd_nosymbols_find_nearest_line
1504 (bfd *abfd,
1505 asymbol **symbols ATTRIBUTE_UNUSED,
1506 asection *section ATTRIBUTE_UNUSED,
1507 bfd_vma offset ATTRIBUTE_UNUSED,
1508 const char **filename_ptr ATTRIBUTE_UNUSED,
1509 const char **functionname_ptr ATTRIBUTE_UNUSED,
1510 unsigned int *line_ptr ATTRIBUTE_UNUSED,
1511 unsigned int *discriminator_ptr ATTRIBUTE_UNUSED)
1512 {
1513 return _bfd_bool_bfd_false_error (abfd);
1514 }
1515
1516 bfd_boolean
1517 _bfd_nosymbols_find_line (bfd *abfd,
1518 asymbol **symbols ATTRIBUTE_UNUSED,
1519 asymbol *symbol ATTRIBUTE_UNUSED,
1520 const char **filename_ptr ATTRIBUTE_UNUSED,
1521 unsigned int *line_ptr ATTRIBUTE_UNUSED)
1522 {
1523 return _bfd_bool_bfd_false_error (abfd);
1524 }
1525
1526 bfd_boolean
1527 _bfd_nosymbols_find_inliner_info
1528 (bfd *abfd,
1529 const char **filename_ptr ATTRIBUTE_UNUSED,
1530 const char **functionname_ptr ATTRIBUTE_UNUSED,
1531 unsigned int *line_ptr ATTRIBUTE_UNUSED)
1532 {
1533 return _bfd_bool_bfd_false_error (abfd);
1534 }
1535
1536 asymbol *
1537 _bfd_nosymbols_bfd_make_debug_symbol (bfd *abfd,
1538 void *ptr ATTRIBUTE_UNUSED,
1539 unsigned long sz ATTRIBUTE_UNUSED)
1540 {
1541 return (asymbol *) _bfd_ptr_bfd_null_error (abfd);
1542 }
1543
1544 long
1545 _bfd_nosymbols_read_minisymbols (bfd *abfd,
1546 bfd_boolean dynamic ATTRIBUTE_UNUSED,
1547 void **minisymsp ATTRIBUTE_UNUSED,
1548 unsigned int *sizep ATTRIBUTE_UNUSED)
1549 {
1550 return _bfd_long_bfd_n1_error (abfd);
1551 }
1552
1553 asymbol *
1554 _bfd_nosymbols_minisymbol_to_symbol (bfd *abfd,
1555 bfd_boolean dynamic ATTRIBUTE_UNUSED,
1556 const void *minisym ATTRIBUTE_UNUSED,
1557 asymbol *sym ATTRIBUTE_UNUSED)
1558 {
1559 return (asymbol *) _bfd_ptr_bfd_null_error (abfd);
1560 }
1561
1562 long
1563 _bfd_nodynamic_get_synthetic_symtab (bfd *abfd,
1564 long symcount ATTRIBUTE_UNUSED,
1565 asymbol **syms ATTRIBUTE_UNUSED,
1566 long dynsymcount ATTRIBUTE_UNUSED,
1567 asymbol **dynsyms ATTRIBUTE_UNUSED,
1568 asymbol **ret ATTRIBUTE_UNUSED)
1569 {
1570 return _bfd_long_bfd_n1_error (abfd);
1571 }
This page took 0.058991 seconds and 5 git commands to generate.