Remove trailing white spaces in bfd
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2012
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 /*
25 SECTION
26 Symbols
27
28 BFD tries to maintain as much symbol information as it can when
29 it moves information from file to file. BFD passes information
30 to applications though the <<asymbol>> structure. When the
31 application requests the symbol table, BFD reads the table in
32 the native form and translates parts of it into the internal
33 format. To maintain more than the information passed to
34 applications, some targets keep some information ``behind the
35 scenes'' in a structure only the particular back end knows
36 about. For example, the coff back end keeps the original
37 symbol table structure as well as the canonical structure when
38 a BFD is read in. On output, the coff back end can reconstruct
39 the output symbol table so that no information is lost, even
40 information unique to coff which BFD doesn't know or
41 understand. If a coff symbol table were read, but were written
42 through an a.out back end, all the coff specific information
43 would be lost. The symbol table of a BFD
44 is not necessarily read in until a canonicalize request is
45 made. Then the BFD back end fills in a table provided by the
46 application with pointers to the canonical information. To
47 output symbols, the application provides BFD with a table of
48 pointers to pointers to <<asymbol>>s. This allows applications
49 like the linker to output a symbol as it was read, since the ``behind
50 the scenes'' information will be still available.
51 @menu
52 @* Reading Symbols::
53 @* Writing Symbols::
54 @* Mini Symbols::
55 @* typedef asymbol::
56 @* symbol handling functions::
57 @end menu
58
59 INODE
60 Reading Symbols, Writing Symbols, Symbols, Symbols
61 SUBSECTION
62 Reading symbols
63
64 There are two stages to reading a symbol table from a BFD:
65 allocating storage, and the actual reading process. This is an
66 excerpt from an application which reads the symbol table:
67
68 | long storage_needed;
69 | asymbol **symbol_table;
70 | long number_of_symbols;
71 | long i;
72 |
73 | storage_needed = bfd_get_symtab_upper_bound (abfd);
74 |
75 | if (storage_needed < 0)
76 | FAIL
77 |
78 | if (storage_needed == 0)
79 | return;
80 |
81 | symbol_table = xmalloc (storage_needed);
82 | ...
83 | number_of_symbols =
84 | bfd_canonicalize_symtab (abfd, symbol_table);
85 |
86 | if (number_of_symbols < 0)
87 | FAIL
88 |
89 | for (i = 0; i < number_of_symbols; i++)
90 | process_symbol (symbol_table[i]);
91
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
94
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 Writing symbols
99
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
109
110 | #include "sysdep.h"
111 | #include "bfd.h"
112 | int main (void)
113 | {
114 | bfd *abfd;
115 | asymbol *ptrs[2];
116 | asymbol *new;
117 |
118 | abfd = bfd_openw ("foo","a.out-sunos-big");
119 | bfd_set_format (abfd, bfd_object);
120 | new = bfd_make_empty_symbol (abfd);
121 | new->name = "dummy_symbol";
122 | new->section = bfd_make_section_old_way (abfd, ".text");
123 | new->flags = BSF_GLOBAL;
124 | new->value = 0x12345;
125 |
126 | ptrs[0] = new;
127 | ptrs[1] = 0;
128 |
129 | bfd_set_symtab (abfd, ptrs, 1);
130 | bfd_close (abfd);
131 | return 0;
132 | }
133 |
134 | ./makesym
135 | nm foo
136 | 00012345 A dummy_symbol
137
138 Many formats cannot represent arbitrary symbol information; for
139 instance, the <<a.out>> object format does not allow an
140 arbitrary number of sections. A symbol pointing to a section
141 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
142 be described.
143
144 INODE
145 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
146 SUBSECTION
147 Mini Symbols
148
149 Mini symbols provide read-only access to the symbol table.
150 They use less memory space, but require more time to access.
151 They can be useful for tools like nm or objdump, which may
152 have to handle symbol tables of extremely large executables.
153
154 The <<bfd_read_minisymbols>> function will read the symbols
155 into memory in an internal form. It will return a <<void *>>
156 pointer to a block of memory, a symbol count, and the size of
157 each symbol. The pointer is allocated using <<malloc>>, and
158 should be freed by the caller when it is no longer needed.
159
160 The function <<bfd_minisymbol_to_symbol>> will take a pointer
161 to a minisymbol, and a pointer to a structure returned by
162 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
163 The return value may or may not be the same as the value from
164 <<bfd_make_empty_symbol>> which was passed in.
165
166 */
167
168 /*
169 DOCDD
170 INODE
171 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
172
173 */
174 /*
175 SUBSECTION
176 typedef asymbol
177
178 An <<asymbol>> has the form:
179
180 */
181
182 /*
183 CODE_FRAGMENT
184
185 .
186 .typedef struct bfd_symbol
187 .{
188 . {* A pointer to the BFD which owns the symbol. This information
189 . is necessary so that a back end can work out what additional
190 . information (invisible to the application writer) is carried
191 . with the symbol.
192 .
193 . This field is *almost* redundant, since you can use section->owner
194 . instead, except that some symbols point to the global sections
195 . bfd_{abs,com,und}_section. This could be fixed by making
196 . these globals be per-bfd (or per-target-flavor). FIXME. *}
197 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
198 .
199 . {* The text of the symbol. The name is left alone, and not copied; the
200 . application may not alter it. *}
201 . const char *name;
202 .
203 . {* The value of the symbol. This really should be a union of a
204 . numeric value with a pointer, since some flags indicate that
205 . a pointer to another symbol is stored here. *}
206 . symvalue value;
207 .
208 . {* Attributes of a symbol. *}
209 .#define BSF_NO_FLAGS 0x00
210 .
211 . {* The symbol has local scope; <<static>> in <<C>>. The value
212 . is the offset into the section of the data. *}
213 .#define BSF_LOCAL (1 << 0)
214 .
215 . {* The symbol has global scope; initialized data in <<C>>. The
216 . value is the offset into the section of the data. *}
217 .#define BSF_GLOBAL (1 << 1)
218 .
219 . {* The symbol has global scope and is exported. The value is
220 . the offset into the section of the data. *}
221 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
222 .
223 . {* A normal C symbol would be one of:
224 . <<BSF_LOCAL>>, <<BSF_COMMON>>, <<BSF_UNDEFINED>> or
225 . <<BSF_GLOBAL>>. *}
226 .
227 . {* The symbol is a debugging record. The value has an arbitrary
228 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
229 .#define BSF_DEBUGGING (1 << 2)
230 .
231 . {* The symbol denotes a function entry point. Used in ELF,
232 . perhaps others someday. *}
233 .#define BSF_FUNCTION (1 << 3)
234 .
235 . {* Used by the linker. *}
236 .#define BSF_KEEP (1 << 5)
237 .#define BSF_KEEP_G (1 << 6)
238 .
239 . {* A weak global symbol, overridable without warnings by
240 . a regular global symbol of the same name. *}
241 .#define BSF_WEAK (1 << 7)
242 .
243 . {* This symbol was created to point to a section, e.g. ELF's
244 . STT_SECTION symbols. *}
245 .#define BSF_SECTION_SYM (1 << 8)
246 .
247 . {* The symbol used to be a common symbol, but now it is
248 . allocated. *}
249 .#define BSF_OLD_COMMON (1 << 9)
250 .
251 . {* In some files the type of a symbol sometimes alters its
252 . location in an output file - ie in coff a <<ISFCN>> symbol
253 . which is also <<C_EXT>> symbol appears where it was
254 . declared and not at the end of a section. This bit is set
255 . by the target BFD part to convey this information. *}
256 .#define BSF_NOT_AT_END (1 << 10)
257 .
258 . {* Signal that the symbol is the label of constructor section. *}
259 .#define BSF_CONSTRUCTOR (1 << 11)
260 .
261 . {* Signal that the symbol is a warning symbol. The name is a
262 . warning. The name of the next symbol is the one to warn about;
263 . if a reference is made to a symbol with the same name as the next
264 . symbol, a warning is issued by the linker. *}
265 .#define BSF_WARNING (1 << 12)
266 .
267 . {* Signal that the symbol is indirect. This symbol is an indirect
268 . pointer to the symbol with the same name as the next symbol. *}
269 .#define BSF_INDIRECT (1 << 13)
270 .
271 . {* BSF_FILE marks symbols that contain a file name. This is used
272 . for ELF STT_FILE symbols. *}
273 .#define BSF_FILE (1 << 14)
274 .
275 . {* Symbol is from dynamic linking information. *}
276 .#define BSF_DYNAMIC (1 << 15)
277 .
278 . {* The symbol denotes a data object. Used in ELF, and perhaps
279 . others someday. *}
280 .#define BSF_OBJECT (1 << 16)
281 .
282 . {* This symbol is a debugging symbol. The value is the offset
283 . into the section of the data. BSF_DEBUGGING should be set
284 . as well. *}
285 .#define BSF_DEBUGGING_RELOC (1 << 17)
286 .
287 . {* This symbol is thread local. Used in ELF. *}
288 .#define BSF_THREAD_LOCAL (1 << 18)
289 .
290 . {* This symbol represents a complex relocation expression,
291 . with the expression tree serialized in the symbol name. *}
292 .#define BSF_RELC (1 << 19)
293 .
294 . {* This symbol represents a signed complex relocation expression,
295 . with the expression tree serialized in the symbol name. *}
296 .#define BSF_SRELC (1 << 20)
297 .
298 . {* This symbol was created by bfd_get_synthetic_symtab. *}
299 .#define BSF_SYNTHETIC (1 << 21)
300 .
301 . {* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.
302 . The dynamic linker will compute the value of this symbol by
303 . calling the function that it points to. BSF_FUNCTION must
304 . also be also set. *}
305 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
306 . {* This symbol is a globally unique data object. The dynamic linker
307 . will make sure that in the entire process there is just one symbol
308 . with this name and type in use. BSF_OBJECT must also be set. *}
309 .#define BSF_GNU_UNIQUE (1 << 23)
310 .
311 . flagword flags;
312 .
313 . {* A pointer to the section to which this symbol is
314 . relative. This will always be non NULL, there are special
315 . sections for undefined and absolute symbols. *}
316 . struct bfd_section *section;
317 .
318 . {* Back end special data. *}
319 . union
320 . {
321 . void *p;
322 . bfd_vma i;
323 . }
324 . udata;
325 .}
326 .asymbol;
327 .
328 */
329
330 #include "sysdep.h"
331 #include "bfd.h"
332 #include "libbfd.h"
333 #include "safe-ctype.h"
334 #include "bfdlink.h"
335 #include "aout/stab_gnu.h"
336
337 /*
338 DOCDD
339 INODE
340 symbol handling functions, , typedef asymbol, Symbols
341 SUBSECTION
342 Symbol handling functions
343 */
344
345 /*
346 FUNCTION
347 bfd_get_symtab_upper_bound
348
349 DESCRIPTION
350 Return the number of bytes required to store a vector of pointers
351 to <<asymbols>> for all the symbols in the BFD @var{abfd},
352 including a terminal NULL pointer. If there are no symbols in
353 the BFD, then return 0. If an error occurs, return -1.
354
355 .#define bfd_get_symtab_upper_bound(abfd) \
356 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
357 .
358 */
359
360 /*
361 FUNCTION
362 bfd_is_local_label
363
364 SYNOPSIS
365 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
366
367 DESCRIPTION
368 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
369 a compiler generated local label, else return FALSE.
370 */
371
372 bfd_boolean
373 bfd_is_local_label (bfd *abfd, asymbol *sym)
374 {
375 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
376 starts with '.' is local. This would accidentally catch section names
377 if we didn't reject them here. */
378 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
379 return FALSE;
380 if (sym->name == NULL)
381 return FALSE;
382 return bfd_is_local_label_name (abfd, sym->name);
383 }
384
385 /*
386 FUNCTION
387 bfd_is_local_label_name
388
389 SYNOPSIS
390 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
391
392 DESCRIPTION
393 Return TRUE if a symbol with the name @var{name} in the BFD
394 @var{abfd} is a compiler generated local label, else return
395 FALSE. This just checks whether the name has the form of a
396 local label.
397
398 .#define bfd_is_local_label_name(abfd, name) \
399 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
400 .
401 */
402
403 /*
404 FUNCTION
405 bfd_is_target_special_symbol
406
407 SYNOPSIS
408 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
409
410 DESCRIPTION
411 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
412 special to the particular target represented by the BFD. Such symbols
413 should normally not be mentioned to the user.
414
415 .#define bfd_is_target_special_symbol(abfd, sym) \
416 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
417 .
418 */
419
420 /*
421 FUNCTION
422 bfd_canonicalize_symtab
423
424 DESCRIPTION
425 Read the symbols from the BFD @var{abfd}, and fills in
426 the vector @var{location} with pointers to the symbols and
427 a trailing NULL.
428 Return the actual number of symbol pointers, not
429 including the NULL.
430
431 .#define bfd_canonicalize_symtab(abfd, location) \
432 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
433 .
434 */
435
436 /*
437 FUNCTION
438 bfd_set_symtab
439
440 SYNOPSIS
441 bfd_boolean bfd_set_symtab
442 (bfd *abfd, asymbol **location, unsigned int count);
443
444 DESCRIPTION
445 Arrange that when the output BFD @var{abfd} is closed,
446 the table @var{location} of @var{count} pointers to symbols
447 will be written.
448 */
449
450 bfd_boolean
451 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
452 {
453 if (abfd->format != bfd_object || bfd_read_p (abfd))
454 {
455 bfd_set_error (bfd_error_invalid_operation);
456 return FALSE;
457 }
458
459 bfd_get_outsymbols (abfd) = location;
460 bfd_get_symcount (abfd) = symcount;
461 return TRUE;
462 }
463
464 /*
465 FUNCTION
466 bfd_print_symbol_vandf
467
468 SYNOPSIS
469 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
470
471 DESCRIPTION
472 Print the value and flags of the @var{symbol} supplied to the
473 stream @var{file}.
474 */
475 void
476 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
477 {
478 FILE *file = (FILE *) arg;
479
480 flagword type = symbol->flags;
481
482 if (symbol->section != NULL)
483 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
484 else
485 bfd_fprintf_vma (abfd, file, symbol->value);
486
487 /* This presumes that a symbol can not be both BSF_DEBUGGING and
488 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
489 BSF_OBJECT. */
490 fprintf (file, " %c%c%c%c%c%c%c",
491 ((type & BSF_LOCAL)
492 ? (type & BSF_GLOBAL) ? '!' : 'l'
493 : (type & BSF_GLOBAL) ? 'g'
494 : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
495 (type & BSF_WEAK) ? 'w' : ' ',
496 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
497 (type & BSF_WARNING) ? 'W' : ' ',
498 (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
499 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
500 ((type & BSF_FUNCTION)
501 ? 'F'
502 : ((type & BSF_FILE)
503 ? 'f'
504 : ((type & BSF_OBJECT) ? 'O' : ' '))));
505 }
506
507 /*
508 FUNCTION
509 bfd_make_empty_symbol
510
511 DESCRIPTION
512 Create a new <<asymbol>> structure for the BFD @var{abfd}
513 and return a pointer to it.
514
515 This routine is necessary because each back end has private
516 information surrounding the <<asymbol>>. Building your own
517 <<asymbol>> and pointing to it will not create the private
518 information, and will cause problems later on.
519
520 .#define bfd_make_empty_symbol(abfd) \
521 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
522 .
523 */
524
525 /*
526 FUNCTION
527 _bfd_generic_make_empty_symbol
528
529 SYNOPSIS
530 asymbol *_bfd_generic_make_empty_symbol (bfd *);
531
532 DESCRIPTION
533 Create a new <<asymbol>> structure for the BFD @var{abfd}
534 and return a pointer to it. Used by core file routines,
535 binary back-end and anywhere else where no private info
536 is needed.
537 */
538
539 asymbol *
540 _bfd_generic_make_empty_symbol (bfd *abfd)
541 {
542 bfd_size_type amt = sizeof (asymbol);
543 asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
544 if (new_symbol)
545 new_symbol->the_bfd = abfd;
546 return new_symbol;
547 }
548
549 /*
550 FUNCTION
551 bfd_make_debug_symbol
552
553 DESCRIPTION
554 Create a new <<asymbol>> structure for the BFD @var{abfd},
555 to be used as a debugging symbol. Further details of its use have
556 yet to be worked out.
557
558 .#define bfd_make_debug_symbol(abfd,ptr,size) \
559 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
560 .
561 */
562
563 struct section_to_type
564 {
565 const char *section;
566 char type;
567 };
568
569 /* Map section names to POSIX/BSD single-character symbol types.
570 This table is probably incomplete. It is sorted for convenience of
571 adding entries. Since it is so short, a linear search is used. */
572 static const struct section_to_type stt[] =
573 {
574 {".bss", 'b'},
575 {"code", 't'}, /* MRI .text */
576 {".data", 'd'},
577 {"*DEBUG*", 'N'},
578 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
579 {".drectve", 'i'}, /* MSVC's .drective section */
580 {".edata", 'e'}, /* MSVC's .edata (export) section */
581 {".fini", 't'}, /* ELF fini section */
582 {".idata", 'i'}, /* MSVC's .idata (import) section */
583 {".init", 't'}, /* ELF init section */
584 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
585 {".rdata", 'r'}, /* Read only data. */
586 {".rodata", 'r'}, /* Read only data. */
587 {".sbss", 's'}, /* Small BSS (uninitialized data). */
588 {".scommon", 'c'}, /* Small common. */
589 {".sdata", 'g'}, /* Small initialized data. */
590 {".text", 't'},
591 {"vars", 'd'}, /* MRI .data */
592 {"zerovars", 'b'}, /* MRI .bss */
593 {0, 0}
594 };
595
596 /* Return the single-character symbol type corresponding to
597 section S, or '?' for an unknown COFF section.
598
599 Check for any leading string which matches, so .text5 returns
600 't' as well as .text */
601
602 static char
603 coff_section_type (const char *s)
604 {
605 const struct section_to_type *t;
606
607 for (t = &stt[0]; t->section; t++)
608 if (!strncmp (s, t->section, strlen (t->section)))
609 return t->type;
610
611 return '?';
612 }
613
614 /* Return the single-character symbol type corresponding to section
615 SECTION, or '?' for an unknown section. This uses section flags to
616 identify sections.
617
618 FIXME These types are unhandled: c, i, e, p. If we handled these also,
619 we could perhaps obsolete coff_section_type. */
620
621 static char
622 decode_section_type (const struct bfd_section *section)
623 {
624 if (section->flags & SEC_CODE)
625 return 't';
626 if (section->flags & SEC_DATA)
627 {
628 if (section->flags & SEC_READONLY)
629 return 'r';
630 else if (section->flags & SEC_SMALL_DATA)
631 return 'g';
632 else
633 return 'd';
634 }
635 if ((section->flags & SEC_HAS_CONTENTS) == 0)
636 {
637 if (section->flags & SEC_SMALL_DATA)
638 return 's';
639 else
640 return 'b';
641 }
642 if (section->flags & SEC_DEBUGGING)
643 return 'N';
644 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
645 return 'n';
646
647 return '?';
648 }
649
650 /*
651 FUNCTION
652 bfd_decode_symclass
653
654 DESCRIPTION
655 Return a character corresponding to the symbol
656 class of @var{symbol}, or '?' for an unknown class.
657
658 SYNOPSIS
659 int bfd_decode_symclass (asymbol *symbol);
660 */
661 int
662 bfd_decode_symclass (asymbol *symbol)
663 {
664 char c;
665
666 if (symbol->section && bfd_is_com_section (symbol->section))
667 return 'C';
668 if (bfd_is_und_section (symbol->section))
669 {
670 if (symbol->flags & BSF_WEAK)
671 {
672 /* If weak, determine if it's specifically an object
673 or non-object weak. */
674 if (symbol->flags & BSF_OBJECT)
675 return 'v';
676 else
677 return 'w';
678 }
679 else
680 return 'U';
681 }
682 if (bfd_is_ind_section (symbol->section))
683 return 'I';
684 if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
685 return 'i';
686 if (symbol->flags & BSF_WEAK)
687 {
688 /* If weak, determine if it's specifically an object
689 or non-object weak. */
690 if (symbol->flags & BSF_OBJECT)
691 return 'V';
692 else
693 return 'W';
694 }
695 if (symbol->flags & BSF_GNU_UNIQUE)
696 return 'u';
697 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
698 return '?';
699
700 if (bfd_is_abs_section (symbol->section))
701 c = 'a';
702 else if (symbol->section)
703 {
704 c = coff_section_type (symbol->section->name);
705 if (c == '?')
706 c = decode_section_type (symbol->section);
707 }
708 else
709 return '?';
710 if (symbol->flags & BSF_GLOBAL)
711 c = TOUPPER (c);
712 return c;
713
714 /* We don't have to handle these cases just yet, but we will soon:
715 N_SETV: 'v';
716 N_SETA: 'l';
717 N_SETT: 'x';
718 N_SETD: 'z';
719 N_SETB: 's';
720 N_INDR: 'i';
721 */
722 }
723
724 /*
725 FUNCTION
726 bfd_is_undefined_symclass
727
728 DESCRIPTION
729 Returns non-zero if the class symbol returned by
730 bfd_decode_symclass represents an undefined symbol.
731 Returns zero otherwise.
732
733 SYNOPSIS
734 bfd_boolean bfd_is_undefined_symclass (int symclass);
735 */
736
737 bfd_boolean
738 bfd_is_undefined_symclass (int symclass)
739 {
740 return symclass == 'U' || symclass == 'w' || symclass == 'v';
741 }
742
743 /*
744 FUNCTION
745 bfd_symbol_info
746
747 DESCRIPTION
748 Fill in the basic info about symbol that nm needs.
749 Additional info may be added by the back-ends after
750 calling this function.
751
752 SYNOPSIS
753 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
754 */
755
756 void
757 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
758 {
759 ret->type = bfd_decode_symclass (symbol);
760
761 if (bfd_is_undefined_symclass (ret->type))
762 ret->value = 0;
763 else
764 ret->value = symbol->value + symbol->section->vma;
765
766 ret->name = symbol->name;
767 }
768
769 /*
770 FUNCTION
771 bfd_copy_private_symbol_data
772
773 SYNOPSIS
774 bfd_boolean bfd_copy_private_symbol_data
775 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
776
777 DESCRIPTION
778 Copy private symbol information from @var{isym} in the BFD
779 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
780 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
781 returns are:
782
783 o <<bfd_error_no_memory>> -
784 Not enough memory exists to create private data for @var{osec}.
785
786 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
787 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
788 . (ibfd, isymbol, obfd, osymbol))
789 .
790 */
791
792 /* The generic version of the function which returns mini symbols.
793 This is used when the backend does not provide a more efficient
794 version. It just uses BFD asymbol structures as mini symbols. */
795
796 long
797 _bfd_generic_read_minisymbols (bfd *abfd,
798 bfd_boolean dynamic,
799 void **minisymsp,
800 unsigned int *sizep)
801 {
802 long storage;
803 asymbol **syms = NULL;
804 long symcount;
805
806 if (dynamic)
807 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
808 else
809 storage = bfd_get_symtab_upper_bound (abfd);
810 if (storage < 0)
811 goto error_return;
812 if (storage == 0)
813 return 0;
814
815 syms = (asymbol **) bfd_malloc (storage);
816 if (syms == NULL)
817 goto error_return;
818
819 if (dynamic)
820 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
821 else
822 symcount = bfd_canonicalize_symtab (abfd, syms);
823 if (symcount < 0)
824 goto error_return;
825
826 *minisymsp = syms;
827 *sizep = sizeof (asymbol *);
828 return symcount;
829
830 error_return:
831 bfd_set_error (bfd_error_no_symbols);
832 if (syms != NULL)
833 free (syms);
834 return -1;
835 }
836
837 /* The generic version of the function which converts a minisymbol to
838 an asymbol. We don't worry about the sym argument we are passed;
839 we just return the asymbol the minisymbol points to. */
840
841 asymbol *
842 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
843 bfd_boolean dynamic ATTRIBUTE_UNUSED,
844 const void *minisym,
845 asymbol *sym ATTRIBUTE_UNUSED)
846 {
847 return *(asymbol **) minisym;
848 }
849
850 /* Look through stabs debugging information in .stab and .stabstr
851 sections to find the source file and line closest to a desired
852 location. This is used by COFF and ELF targets. It sets *pfound
853 to TRUE if it finds some information. The *pinfo field is used to
854 pass cached information in and out of this routine; this first time
855 the routine is called for a BFD, *pinfo should be NULL. The value
856 placed in *pinfo should be saved with the BFD, and passed back each
857 time this function is called. */
858
859 /* We use a cache by default. */
860
861 #define ENABLE_CACHING
862
863 /* We keep an array of indexentry structures to record where in the
864 stabs section we should look to find line number information for a
865 particular address. */
866
867 struct indexentry
868 {
869 bfd_vma val;
870 bfd_byte *stab;
871 bfd_byte *str;
872 char *directory_name;
873 char *file_name;
874 char *function_name;
875 };
876
877 /* Compare two indexentry structures. This is called via qsort. */
878
879 static int
880 cmpindexentry (const void *a, const void *b)
881 {
882 const struct indexentry *contestantA = (const struct indexentry *) a;
883 const struct indexentry *contestantB = (const struct indexentry *) b;
884
885 if (contestantA->val < contestantB->val)
886 return -1;
887 else if (contestantA->val > contestantB->val)
888 return 1;
889 else
890 return 0;
891 }
892
893 /* A pointer to this structure is stored in *pinfo. */
894
895 struct stab_find_info
896 {
897 /* The .stab section. */
898 asection *stabsec;
899 /* The .stabstr section. */
900 asection *strsec;
901 /* The contents of the .stab section. */
902 bfd_byte *stabs;
903 /* The contents of the .stabstr section. */
904 bfd_byte *strs;
905
906 /* A table that indexes stabs by memory address. */
907 struct indexentry *indextable;
908 /* The number of entries in indextable. */
909 int indextablesize;
910
911 #ifdef ENABLE_CACHING
912 /* Cached values to restart quickly. */
913 struct indexentry *cached_indexentry;
914 bfd_vma cached_offset;
915 bfd_byte *cached_stab;
916 char *cached_file_name;
917 #endif
918
919 /* Saved ptr to malloc'ed filename. */
920 char *filename;
921 };
922
923 bfd_boolean
924 _bfd_stab_section_find_nearest_line (bfd *abfd,
925 asymbol **symbols,
926 asection *section,
927 bfd_vma offset,
928 bfd_boolean *pfound,
929 const char **pfilename,
930 const char **pfnname,
931 unsigned int *pline,
932 void **pinfo)
933 {
934 struct stab_find_info *info;
935 bfd_size_type stabsize, strsize;
936 bfd_byte *stab, *str;
937 bfd_byte *last_stab = NULL;
938 bfd_size_type stroff;
939 struct indexentry *indexentry;
940 char *file_name;
941 char *directory_name;
942 int saw_fun;
943 bfd_boolean saw_line, saw_func;
944
945 *pfound = FALSE;
946 *pfilename = bfd_get_filename (abfd);
947 *pfnname = NULL;
948 *pline = 0;
949
950 /* Stabs entries use a 12 byte format:
951 4 byte string table index
952 1 byte stab type
953 1 byte stab other field
954 2 byte stab desc field
955 4 byte stab value
956 FIXME: This will have to change for a 64 bit object format.
957
958 The stabs symbols are divided into compilation units. For the
959 first entry in each unit, the type of 0, the value is the length
960 of the string table for this unit, and the desc field is the
961 number of stabs symbols for this unit. */
962
963 #define STRDXOFF (0)
964 #define TYPEOFF (4)
965 #define OTHEROFF (5)
966 #define DESCOFF (6)
967 #define VALOFF (8)
968 #define STABSIZE (12)
969
970 info = (struct stab_find_info *) *pinfo;
971 if (info != NULL)
972 {
973 if (info->stabsec == NULL || info->strsec == NULL)
974 {
975 /* No stabs debugging information. */
976 return TRUE;
977 }
978
979 stabsize = (info->stabsec->rawsize
980 ? info->stabsec->rawsize
981 : info->stabsec->size);
982 strsize = (info->strsec->rawsize
983 ? info->strsec->rawsize
984 : info->strsec->size);
985 }
986 else
987 {
988 long reloc_size, reloc_count;
989 arelent **reloc_vector;
990 int i;
991 char *name;
992 char *function_name;
993 bfd_size_type amt = sizeof *info;
994
995 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
996 if (info == NULL)
997 return FALSE;
998
999 /* FIXME: When using the linker --split-by-file or
1000 --split-by-reloc options, it is possible for the .stab and
1001 .stabstr sections to be split. We should handle that. */
1002
1003 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1004 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1005
1006 if (info->stabsec == NULL || info->strsec == NULL)
1007 {
1008 /* Try SOM section names. */
1009 info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1010 info->strsec = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1011
1012 if (info->stabsec == NULL || info->strsec == NULL)
1013 {
1014 /* No stabs debugging information. Set *pinfo so that we
1015 can return quickly in the info != NULL case above. */
1016 *pinfo = info;
1017 return TRUE;
1018 }
1019 }
1020
1021 stabsize = (info->stabsec->rawsize
1022 ? info->stabsec->rawsize
1023 : info->stabsec->size);
1024 strsize = (info->strsec->rawsize
1025 ? info->strsec->rawsize
1026 : info->strsec->size);
1027
1028 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1029 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1030 if (info->stabs == NULL || info->strs == NULL)
1031 return FALSE;
1032
1033 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1034 0, stabsize)
1035 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1036 0, strsize))
1037 return FALSE;
1038
1039 /* If this is a relocatable object file, we have to relocate
1040 the entries in .stab. This should always be simple 32 bit
1041 relocations against symbols defined in this object file, so
1042 this should be no big deal. */
1043 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1044 if (reloc_size < 0)
1045 return FALSE;
1046 reloc_vector = (arelent **) bfd_malloc (reloc_size);
1047 if (reloc_vector == NULL && reloc_size != 0)
1048 return FALSE;
1049 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1050 symbols);
1051 if (reloc_count < 0)
1052 {
1053 if (reloc_vector != NULL)
1054 free (reloc_vector);
1055 return FALSE;
1056 }
1057 if (reloc_count > 0)
1058 {
1059 arelent **pr;
1060
1061 for (pr = reloc_vector; *pr != NULL; pr++)
1062 {
1063 arelent *r;
1064 unsigned long val;
1065 asymbol *sym;
1066
1067 r = *pr;
1068 /* Ignore R_*_NONE relocs. */
1069 if (r->howto->dst_mask == 0)
1070 continue;
1071
1072 if (r->howto->rightshift != 0
1073 || r->howto->size != 2
1074 || r->howto->bitsize != 32
1075 || r->howto->pc_relative
1076 || r->howto->bitpos != 0
1077 || r->howto->dst_mask != 0xffffffff)
1078 {
1079 (*_bfd_error_handler)
1080 (_("Unsupported .stab relocation"));
1081 bfd_set_error (bfd_error_invalid_operation);
1082 if (reloc_vector != NULL)
1083 free (reloc_vector);
1084 return FALSE;
1085 }
1086
1087 val = bfd_get_32 (abfd, info->stabs + r->address);
1088 val &= r->howto->src_mask;
1089 sym = *r->sym_ptr_ptr;
1090 val += sym->value + sym->section->vma + r->addend;
1091 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1092 }
1093 }
1094
1095 if (reloc_vector != NULL)
1096 free (reloc_vector);
1097
1098 /* First time through this function, build a table matching
1099 function VM addresses to stabs, then sort based on starting
1100 VM address. Do this in two passes: once to count how many
1101 table entries we'll need, and a second to actually build the
1102 table. */
1103
1104 info->indextablesize = 0;
1105 saw_fun = 1;
1106 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1107 {
1108 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1109 {
1110 /* N_SO with null name indicates EOF */
1111 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1112 continue;
1113
1114 /* if we did not see a function def, leave space for one. */
1115 if (saw_fun == 0)
1116 ++info->indextablesize;
1117
1118 saw_fun = 0;
1119
1120 /* two N_SO's in a row is a filename and directory. Skip */
1121 if (stab + STABSIZE < info->stabs + stabsize
1122 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1123 {
1124 stab += STABSIZE;
1125 }
1126 }
1127 else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1128 {
1129 saw_fun = 1;
1130 ++info->indextablesize;
1131 }
1132 }
1133
1134 if (saw_fun == 0)
1135 ++info->indextablesize;
1136
1137 if (info->indextablesize == 0)
1138 return TRUE;
1139 ++info->indextablesize;
1140
1141 amt = info->indextablesize;
1142 amt *= sizeof (struct indexentry);
1143 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1144 if (info->indextable == NULL)
1145 return FALSE;
1146
1147 file_name = NULL;
1148 directory_name = NULL;
1149 saw_fun = 1;
1150
1151 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1152 i < info->indextablesize && stab < info->stabs + stabsize;
1153 stab += STABSIZE)
1154 {
1155 switch (stab[TYPEOFF])
1156 {
1157 case 0:
1158 /* This is the first entry in a compilation unit. */
1159 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1160 break;
1161 str += stroff;
1162 stroff = bfd_get_32 (abfd, stab + VALOFF);
1163 break;
1164
1165 case N_SO:
1166 /* The main file name. */
1167
1168 /* The following code creates a new indextable entry with
1169 a NULL function name if there were no N_FUNs in a file.
1170 Note that a N_SO without a file name is an EOF and
1171 there could be 2 N_SO following it with the new filename
1172 and directory. */
1173 if (saw_fun == 0)
1174 {
1175 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1176 info->indextable[i].stab = last_stab;
1177 info->indextable[i].str = str;
1178 info->indextable[i].directory_name = directory_name;
1179 info->indextable[i].file_name = file_name;
1180 info->indextable[i].function_name = NULL;
1181 ++i;
1182 }
1183 saw_fun = 0;
1184
1185 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1186 if (*file_name == '\0')
1187 {
1188 directory_name = NULL;
1189 file_name = NULL;
1190 saw_fun = 1;
1191 }
1192 else
1193 {
1194 last_stab = stab;
1195 if (stab + STABSIZE >= info->stabs + stabsize
1196 || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1197 {
1198 directory_name = NULL;
1199 }
1200 else
1201 {
1202 /* Two consecutive N_SOs are a directory and a
1203 file name. */
1204 stab += STABSIZE;
1205 directory_name = file_name;
1206 file_name = ((char *) str
1207 + bfd_get_32 (abfd, stab + STRDXOFF));
1208 }
1209 }
1210 break;
1211
1212 case N_SOL:
1213 /* The name of an include file. */
1214 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1215 break;
1216
1217 case N_FUN:
1218 /* A function name. */
1219 saw_fun = 1;
1220 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1221
1222 if (*name == '\0')
1223 name = NULL;
1224
1225 function_name = name;
1226
1227 if (name == NULL)
1228 continue;
1229
1230 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1231 info->indextable[i].stab = stab;
1232 info->indextable[i].str = str;
1233 info->indextable[i].directory_name = directory_name;
1234 info->indextable[i].file_name = file_name;
1235 info->indextable[i].function_name = function_name;
1236 ++i;
1237 break;
1238 }
1239 }
1240
1241 if (saw_fun == 0)
1242 {
1243 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1244 info->indextable[i].stab = last_stab;
1245 info->indextable[i].str = str;
1246 info->indextable[i].directory_name = directory_name;
1247 info->indextable[i].file_name = file_name;
1248 info->indextable[i].function_name = NULL;
1249 ++i;
1250 }
1251
1252 info->indextable[i].val = (bfd_vma) -1;
1253 info->indextable[i].stab = info->stabs + stabsize;
1254 info->indextable[i].str = str;
1255 info->indextable[i].directory_name = NULL;
1256 info->indextable[i].file_name = NULL;
1257 info->indextable[i].function_name = NULL;
1258 ++i;
1259
1260 info->indextablesize = i;
1261 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1262 cmpindexentry);
1263
1264 *pinfo = info;
1265 }
1266
1267 /* We are passed a section relative offset. The offsets in the
1268 stabs information are absolute. */
1269 offset += bfd_get_section_vma (abfd, section);
1270
1271 #ifdef ENABLE_CACHING
1272 if (info->cached_indexentry != NULL
1273 && offset >= info->cached_offset
1274 && offset < (info->cached_indexentry + 1)->val)
1275 {
1276 stab = info->cached_stab;
1277 indexentry = info->cached_indexentry;
1278 file_name = info->cached_file_name;
1279 }
1280 else
1281 #endif
1282 {
1283 long low, high;
1284 long mid = -1;
1285
1286 /* Cache non-existent or invalid. Do binary search on
1287 indextable. */
1288 indexentry = NULL;
1289
1290 low = 0;
1291 high = info->indextablesize - 1;
1292 while (low != high)
1293 {
1294 mid = (high + low) / 2;
1295 if (offset >= info->indextable[mid].val
1296 && offset < info->indextable[mid + 1].val)
1297 {
1298 indexentry = &info->indextable[mid];
1299 break;
1300 }
1301
1302 if (info->indextable[mid].val > offset)
1303 high = mid;
1304 else
1305 low = mid + 1;
1306 }
1307
1308 if (indexentry == NULL)
1309 return TRUE;
1310
1311 stab = indexentry->stab + STABSIZE;
1312 file_name = indexentry->file_name;
1313 }
1314
1315 directory_name = indexentry->directory_name;
1316 str = indexentry->str;
1317
1318 saw_line = FALSE;
1319 saw_func = FALSE;
1320 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1321 {
1322 bfd_boolean done;
1323 bfd_vma val;
1324
1325 done = FALSE;
1326
1327 switch (stab[TYPEOFF])
1328 {
1329 case N_SOL:
1330 /* The name of an include file. */
1331 val = bfd_get_32 (abfd, stab + VALOFF);
1332 if (val <= offset)
1333 {
1334 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1335 *pline = 0;
1336 }
1337 break;
1338
1339 case N_SLINE:
1340 case N_DSLINE:
1341 case N_BSLINE:
1342 /* A line number. If the function was specified, then the value
1343 is relative to the start of the function. Otherwise, the
1344 value is an absolute address. */
1345 val = ((indexentry->function_name ? indexentry->val : 0)
1346 + bfd_get_32 (abfd, stab + VALOFF));
1347 /* If this line starts before our desired offset, or if it's
1348 the first line we've been able to find, use it. The
1349 !saw_line check works around a bug in GCC 2.95.3, which emits
1350 the first N_SLINE late. */
1351 if (!saw_line || val <= offset)
1352 {
1353 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1354
1355 #ifdef ENABLE_CACHING
1356 info->cached_stab = stab;
1357 info->cached_offset = val;
1358 info->cached_file_name = file_name;
1359 info->cached_indexentry = indexentry;
1360 #endif
1361 }
1362 if (val > offset)
1363 done = TRUE;
1364 saw_line = TRUE;
1365 break;
1366
1367 case N_FUN:
1368 case N_SO:
1369 if (saw_func || saw_line)
1370 done = TRUE;
1371 saw_func = TRUE;
1372 break;
1373 }
1374
1375 if (done)
1376 break;
1377 }
1378
1379 *pfound = TRUE;
1380
1381 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1382 || directory_name == NULL)
1383 *pfilename = file_name;
1384 else
1385 {
1386 size_t dirlen;
1387
1388 dirlen = strlen (directory_name);
1389 if (info->filename == NULL
1390 || filename_ncmp (info->filename, directory_name, dirlen) != 0
1391 || filename_cmp (info->filename + dirlen, file_name) != 0)
1392 {
1393 size_t len;
1394
1395 /* Don't free info->filename here. objdump and other
1396 apps keep a copy of a previously returned file name
1397 pointer. */
1398 len = strlen (file_name) + 1;
1399 info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1400 if (info->filename == NULL)
1401 return FALSE;
1402 memcpy (info->filename, directory_name, dirlen);
1403 memcpy (info->filename + dirlen, file_name, len);
1404 }
1405
1406 *pfilename = info->filename;
1407 }
1408
1409 if (indexentry->function_name != NULL)
1410 {
1411 char *s;
1412
1413 /* This will typically be something like main:F(0,1), so we want
1414 to clobber the colon. It's OK to change the name, since the
1415 string is in our own local storage anyhow. */
1416 s = strchr (indexentry->function_name, ':');
1417 if (s != NULL)
1418 *s = '\0';
1419
1420 *pfnname = indexentry->function_name;
1421 }
1422
1423 return TRUE;
1424 }
This page took 0.05906 seconds and 5 git commands to generate.