This commit was generated by cvs2svn to track changes on a CVS vendor
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4 Written by Cygnus Support.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /*
23 SECTION
24 Symbols
25
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 Reading symbols
61
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
65
66 | long storage_needed;
67 | asymbol **symbol_table;
68 | long number_of_symbols;
69 | long i;
70 |
71 | storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 | if (storage_needed < 0)
74 | FAIL
75 |
76 | if (storage_needed == 0) {
77 | return ;
78 | }
79 | symbol_table = (asymbol **) xmalloc (storage_needed);
80 | ...
81 | number_of_symbols =
82 | bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 | if (number_of_symbols < 0)
85 | FAIL
86 |
87 | for (i = 0; i < number_of_symbols; i++) {
88 | process_symbol (symbol_table[i]);
89 | }
90
91 All storage for the symbols themselves is in an objalloc
92 connected to the BFD; it is freed when the BFD is closed.
93
94
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 Writing symbols
99
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
109
110 | #include "bfd.h"
111 | main()
112 | {
113 | bfd *abfd;
114 | asymbol *ptrs[2];
115 | asymbol *new;
116 |
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
124 |
125 | ptrs[0] = new;
126 | ptrs[1] = (asymbol *)0;
127 |
128 | bfd_set_symtab(abfd, ptrs, 1);
129 | bfd_close(abfd);
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166
167
168 /*
169 DOCDD
170 INODE
171 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
172
173 */
174 /*
175 SUBSECTION
176 typedef asymbol
177
178 An <<asymbol>> has the form:
179
180 */
181
182 /*
183 CODE_FRAGMENT
184
185 .
186 .typedef struct symbol_cache_entry
187 .{
188 . {* A pointer to the BFD which owns the symbol. This information
189 . is necessary so that a back end can work out what additional
190 . information (invisible to the application writer) is carried
191 . with the symbol.
192 .
193 . This field is *almost* redundant, since you can use section->owner
194 . instead, except that some symbols point to the global sections
195 . bfd_{abs,com,und}_section. This could be fixed by making
196 . these globals be per-bfd (or per-target-flavor). FIXME. *}
197 .
198 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
199 .
200 . {* The text of the symbol. The name is left alone, and not copied; the
201 . application may not alter it. *}
202 . CONST char *name;
203 .
204 . {* The value of the symbol. This really should be a union of a
205 . numeric value with a pointer, since some flags indicate that
206 . a pointer to another symbol is stored here. *}
207 . symvalue value;
208 .
209 . {* Attributes of a symbol: *}
210 .
211 .#define BSF_NO_FLAGS 0x00
212 .
213 . {* The symbol has local scope; <<static>> in <<C>>. The value
214 . is the offset into the section of the data. *}
215 .#define BSF_LOCAL 0x01
216 .
217 . {* The symbol has global scope; initialized data in <<C>>. The
218 . value is the offset into the section of the data. *}
219 .#define BSF_GLOBAL 0x02
220 .
221 . {* The symbol has global scope and is exported. The value is
222 . the offset into the section of the data. *}
223 .#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
224 .
225 . {* A normal C symbol would be one of:
226 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
227 . <<BSF_GLOBAL>> *}
228 .
229 . {* The symbol is a debugging record. The value has an arbitary
230 . meaning. *}
231 .#define BSF_DEBUGGING 0x08
232 .
233 . {* The symbol denotes a function entry point. Used in ELF,
234 . perhaps others someday. *}
235 .#define BSF_FUNCTION 0x10
236 .
237 . {* Used by the linker. *}
238 .#define BSF_KEEP 0x20
239 .#define BSF_KEEP_G 0x40
240 .
241 . {* A weak global symbol, overridable without warnings by
242 . a regular global symbol of the same name. *}
243 .#define BSF_WEAK 0x80
244 .
245 . {* This symbol was created to point to a section, e.g. ELF's
246 . STT_SECTION symbols. *}
247 .#define BSF_SECTION_SYM 0x100
248 .
249 . {* The symbol used to be a common symbol, but now it is
250 . allocated. *}
251 .#define BSF_OLD_COMMON 0x200
252 .
253 . {* The default value for common data. *}
254 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
255 .
256 . {* In some files the type of a symbol sometimes alters its
257 . location in an output file - ie in coff a <<ISFCN>> symbol
258 . which is also <<C_EXT>> symbol appears where it was
259 . declared and not at the end of a section. This bit is set
260 . by the target BFD part to convey this information. *}
261 .
262 .#define BSF_NOT_AT_END 0x400
263 .
264 . {* Signal that the symbol is the label of constructor section. *}
265 .#define BSF_CONSTRUCTOR 0x800
266 .
267 . {* Signal that the symbol is a warning symbol. The name is a
268 . warning. The name of the next symbol is the one to warn about;
269 . if a reference is made to a symbol with the same name as the next
270 . symbol, a warning is issued by the linker. *}
271 .#define BSF_WARNING 0x1000
272 .
273 . {* Signal that the symbol is indirect. This symbol is an indirect
274 . pointer to the symbol with the same name as the next symbol. *}
275 .#define BSF_INDIRECT 0x2000
276 .
277 . {* BSF_FILE marks symbols that contain a file name. This is used
278 . for ELF STT_FILE symbols. *}
279 .#define BSF_FILE 0x4000
280 .
281 . {* Symbol is from dynamic linking information. *}
282 .#define BSF_DYNAMIC 0x8000
283 .
284 . {* The symbol denotes a data object. Used in ELF, and perhaps
285 . others someday. *}
286 .#define BSF_OBJECT 0x10000
287 .
288 . flagword flags;
289 .
290 . {* A pointer to the section to which this symbol is
291 . relative. This will always be non NULL, there are special
292 . sections for undefined and absolute symbols. *}
293 . struct sec *section;
294 .
295 . {* Back end special data. *}
296 . union
297 . {
298 . PTR p;
299 . bfd_vma i;
300 . } udata;
301 .
302 .} asymbol;
303 */
304
305 #include "bfd.h"
306 #include "sysdep.h"
307 #include "libbfd.h"
308 #include "bfdlink.h"
309 #include "aout/stab_gnu.h"
310
311 static char coff_section_type PARAMS ((const char *));
312
313 /*
314 DOCDD
315 INODE
316 symbol handling functions, , typedef asymbol, Symbols
317 SUBSECTION
318 Symbol handling functions
319 */
320
321 /*
322 FUNCTION
323 bfd_get_symtab_upper_bound
324
325 DESCRIPTION
326 Return the number of bytes required to store a vector of pointers
327 to <<asymbols>> for all the symbols in the BFD @var{abfd},
328 including a terminal NULL pointer. If there are no symbols in
329 the BFD, then return 0. If an error occurs, return -1.
330
331 .#define bfd_get_symtab_upper_bound(abfd) \
332 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
333
334 */
335
336 /*
337 FUNCTION
338 bfd_is_local_label
339
340 SYNOPSIS
341 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
342
343 DESCRIPTION
344 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
345 a compiler generated local label, else return false.
346 */
347
348 boolean
349 bfd_is_local_label (abfd, sym)
350 bfd *abfd;
351 asymbol *sym;
352 {
353 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
354 return false;
355 if (sym->name == NULL)
356 return false;
357 if (sym->flags & BSF_DEBUGGING)
358 return true;
359 return bfd_is_local_label_name (abfd, sym->name);
360 }
361
362 /*
363 FUNCTION
364 bfd_is_local_label_name
365
366 SYNOPSIS
367 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
368
369 DESCRIPTION
370 Return true if a symbol with the name @var{name} in the BFD
371 @var{abfd} is a compiler generated local label, else return
372 false. This just checks whether the name has the form of a
373 local label.
374
375 .#define bfd_is_local_label_name(abfd, name) \
376 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
377 */
378
379 /*
380 FUNCTION
381 bfd_canonicalize_symtab
382
383 DESCRIPTION
384 Read the symbols from the BFD @var{abfd}, and fills in
385 the vector @var{location} with pointers to the symbols and
386 a trailing NULL.
387 Return the actual number of symbol pointers, not
388 including the NULL.
389
390
391 .#define bfd_canonicalize_symtab(abfd, location) \
392 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
393 . (abfd, location))
394
395 */
396
397
398 /*
399 FUNCTION
400 bfd_set_symtab
401
402 SYNOPSIS
403 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
404
405 DESCRIPTION
406 Arrange that when the output BFD @var{abfd} is closed,
407 the table @var{location} of @var{count} pointers to symbols
408 will be written.
409 */
410
411 boolean
412 bfd_set_symtab (abfd, location, symcount)
413 bfd *abfd;
414 asymbol **location;
415 unsigned int symcount;
416 {
417 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
418 {
419 bfd_set_error (bfd_error_invalid_operation);
420 return false;
421 }
422
423 bfd_get_outsymbols (abfd) = location;
424 bfd_get_symcount (abfd) = symcount;
425 return true;
426 }
427
428 /*
429 FUNCTION
430 bfd_print_symbol_vandf
431
432 SYNOPSIS
433 void bfd_print_symbol_vandf(PTR file, asymbol *symbol);
434
435 DESCRIPTION
436 Print the value and flags of the @var{symbol} supplied to the
437 stream @var{file}.
438 */
439 void
440 bfd_print_symbol_vandf (arg, symbol)
441 PTR arg;
442 asymbol *symbol;
443 {
444 FILE *file = (FILE *) arg;
445 flagword type = symbol->flags;
446 if (symbol->section != (asection *) NULL)
447 {
448 fprintf_vma (file, symbol->value + symbol->section->vma);
449 }
450 else
451 {
452 fprintf_vma (file, symbol->value);
453 }
454
455 /* This presumes that a symbol can not be both BSF_DEBUGGING and
456 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
457 BSF_OBJECT. */
458 fprintf (file, " %c%c%c%c%c%c%c",
459 ((type & BSF_LOCAL)
460 ? (type & BSF_GLOBAL) ? '!' : 'l'
461 : (type & BSF_GLOBAL) ? 'g' : ' '),
462 (type & BSF_WEAK) ? 'w' : ' ',
463 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
464 (type & BSF_WARNING) ? 'W' : ' ',
465 (type & BSF_INDIRECT) ? 'I' : ' ',
466 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
467 ((type & BSF_FUNCTION)
468 ? 'F'
469 : ((type & BSF_FILE)
470 ? 'f'
471 : ((type & BSF_OBJECT) ? 'O' : ' '))));
472 }
473
474
475 /*
476 FUNCTION
477 bfd_make_empty_symbol
478
479 DESCRIPTION
480 Create a new <<asymbol>> structure for the BFD @var{abfd}
481 and return a pointer to it.
482
483 This routine is necessary because each back end has private
484 information surrounding the <<asymbol>>. Building your own
485 <<asymbol>> and pointing to it will not create the private
486 information, and will cause problems later on.
487
488 .#define bfd_make_empty_symbol(abfd) \
489 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
490 */
491
492 /*
493 FUNCTION
494 bfd_make_debug_symbol
495
496 DESCRIPTION
497 Create a new <<asymbol>> structure for the BFD @var{abfd},
498 to be used as a debugging symbol. Further details of its use have
499 yet to be worked out.
500
501 .#define bfd_make_debug_symbol(abfd,ptr,size) \
502 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
503 */
504
505 struct section_to_type
506 {
507 CONST char *section;
508 char type;
509 };
510
511 /* Map section names to POSIX/BSD single-character symbol types.
512 This table is probably incomplete. It is sorted for convenience of
513 adding entries. Since it is so short, a linear search is used. */
514 static CONST struct section_to_type stt[] =
515 {
516 {"*DEBUG*", 'N'},
517 {".bss", 'b'},
518 {"zerovars", 'b'}, /* MRI .bss */
519 {".data", 'd'},
520 {"vars", 'd'}, /* MRI .data */
521 {".rdata", 'r'}, /* Read only data. */
522 {".rodata", 'r'}, /* Read only data. */
523 {".sbss", 's'}, /* Small BSS (uninitialized data). */
524 {".scommon", 'c'}, /* Small common. */
525 {".sdata", 'g'}, /* Small initialized data. */
526 {".text", 't'},
527 {"code", 't'}, /* MRI .text */
528 {0, 0}
529 };
530
531 /* Return the single-character symbol type corresponding to
532 section S, or '?' for an unknown COFF section.
533
534 Check for any leading string which matches, so .text5 returns
535 't' as well as .text */
536
537 static char
538 coff_section_type (s)
539 const char *s;
540 {
541 CONST struct section_to_type *t;
542
543 for (t = &stt[0]; t->section; t++)
544 if (!strncmp (s, t->section, strlen (t->section)))
545 return t->type;
546
547 return '?';
548 }
549
550 #ifndef islower
551 #define islower(c) ((c) >= 'a' && (c) <= 'z')
552 #endif
553 #ifndef toupper
554 #define toupper(c) (islower(c) ? ((c) & ~0x20) : (c))
555 #endif
556
557 /*
558 FUNCTION
559 bfd_decode_symclass
560
561 DESCRIPTION
562 Return a character corresponding to the symbol
563 class of @var{symbol}, or '?' for an unknown class.
564
565 SYNOPSIS
566 int bfd_decode_symclass(asymbol *symbol);
567 */
568 int
569 bfd_decode_symclass (symbol)
570 asymbol *symbol;
571 {
572 char c;
573
574 if (bfd_is_com_section (symbol->section))
575 return 'C';
576 if (bfd_is_und_section (symbol->section))
577 return 'U';
578 if (bfd_is_ind_section (symbol->section))
579 return 'I';
580 if (symbol->flags & BSF_WEAK)
581 return 'W';
582 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
583 return '?';
584
585 if (bfd_is_abs_section (symbol->section))
586 c = 'a';
587 else if (symbol->section)
588 c = coff_section_type (symbol->section->name);
589 else
590 return '?';
591 if (symbol->flags & BSF_GLOBAL)
592 c = toupper (c);
593 return c;
594
595 /* We don't have to handle these cases just yet, but we will soon:
596 N_SETV: 'v';
597 N_SETA: 'l';
598 N_SETT: 'x';
599 N_SETD: 'z';
600 N_SETB: 's';
601 N_INDR: 'i';
602 */
603 }
604
605 /*
606 FUNCTION
607 bfd_symbol_info
608
609 DESCRIPTION
610 Fill in the basic info about symbol that nm needs.
611 Additional info may be added by the back-ends after
612 calling this function.
613
614 SYNOPSIS
615 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
616 */
617
618 void
619 bfd_symbol_info (symbol, ret)
620 asymbol *symbol;
621 symbol_info *ret;
622 {
623 ret->type = bfd_decode_symclass (symbol);
624 if (ret->type != 'U')
625 ret->value = symbol->value + symbol->section->vma;
626 else
627 ret->value = 0;
628 ret->name = symbol->name;
629 }
630
631 /*
632 FUNCTION
633 bfd_copy_private_symbol_data
634
635 SYNOPSIS
636 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
637
638 DESCRIPTION
639 Copy private symbol information from @var{isym} in the BFD
640 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
641 Return <<true>> on success, <<false>> on error. Possible error
642 returns are:
643
644 o <<bfd_error_no_memory>> -
645 Not enough memory exists to create private data for @var{osec}.
646
647 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
648 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
649 . (ibfd, isymbol, obfd, osymbol))
650
651 */
652
653 /* The generic version of the function which returns mini symbols.
654 This is used when the backend does not provide a more efficient
655 version. It just uses BFD asymbol structures as mini symbols. */
656
657 long
658 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
659 bfd *abfd;
660 boolean dynamic;
661 PTR *minisymsp;
662 unsigned int *sizep;
663 {
664 long storage;
665 asymbol **syms = NULL;
666 long symcount;
667
668 if (dynamic)
669 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
670 else
671 storage = bfd_get_symtab_upper_bound (abfd);
672 if (storage < 0)
673 goto error_return;
674
675 syms = (asymbol **) bfd_malloc ((size_t) storage);
676 if (syms == NULL)
677 goto error_return;
678
679 if (dynamic)
680 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
681 else
682 symcount = bfd_canonicalize_symtab (abfd, syms);
683 if (symcount < 0)
684 goto error_return;
685
686 *minisymsp = (PTR) syms;
687 *sizep = sizeof (asymbol *);
688 return symcount;
689
690 error_return:
691 if (syms != NULL)
692 free (syms);
693 return -1;
694 }
695
696 /* The generic version of the function which converts a minisymbol to
697 an asymbol. We don't worry about the sym argument we are passed;
698 we just return the asymbol the minisymbol points to. */
699
700 /*ARGSUSED*/
701 asymbol *
702 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
703 bfd *abfd;
704 boolean dynamic;
705 const PTR minisym;
706 asymbol *sym;
707 {
708 return *(asymbol **) minisym;
709 }
710
711 /* Look through stabs debugging information in .stab and .stabstr
712 sections to find the source file and line closest to a desired
713 location. This is used by COFF and ELF targets. It sets *pfound
714 to true if it finds some information. The *pinfo field is used to
715 pass cached information in and out of this routine; this first time
716 the routine is called for a BFD, *pinfo should be NULL. The value
717 placed in *pinfo should be saved with the BFD, and passed back each
718 time this function is called. */
719
720 /* We use a cache by default. */
721
722 #define ENABLE_CACHING
723
724 /* We keep an array of indexentry structures to record where in the
725 stabs section we should look to find line number information for a
726 particular address. */
727
728 struct indexentry
729 {
730 bfd_vma val;
731 bfd_byte *stab;
732 bfd_byte *str;
733 char *directory_name;
734 char *file_name;
735 char *function_name;
736 };
737
738 /* Compare two indexentry structures. This is called via qsort. */
739
740 static int
741 cmpindexentry (a, b)
742 const PTR *a;
743 const PTR *b;
744 {
745 const struct indexentry *contestantA = (const struct indexentry *) a;
746 const struct indexentry *contestantB = (const struct indexentry *) b;
747
748 if (contestantA->val < contestantB->val)
749 return -1;
750 else if (contestantA->val > contestantB->val)
751 return 1;
752 else
753 return 0;
754 }
755
756 /* A pointer to this structure is stored in *pinfo. */
757
758 struct stab_find_info
759 {
760 /* The .stab section. */
761 asection *stabsec;
762 /* The .stabstr section. */
763 asection *strsec;
764 /* The contents of the .stab section. */
765 bfd_byte *stabs;
766 /* The contents of the .stabstr section. */
767 bfd_byte *strs;
768
769 /* A table that indexes stabs by memory address. */
770 struct indexentry *indextable;
771 /* The number of entries in indextable. */
772 int indextablesize;
773
774 #ifdef ENABLE_CACHING
775 /* Cached values to restart quickly. */
776 struct indexentry *cached_indexentry;
777 bfd_vma cached_offset;
778 bfd_byte *cached_stab;
779 char *cached_file_name;
780 #endif
781
782 /* Saved ptr to malloc'ed filename. */
783 char *filename;
784 };
785
786 boolean
787 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
788 pfilename, pfnname, pline, pinfo)
789 bfd *abfd;
790 asymbol **symbols;
791 asection *section;
792 bfd_vma offset;
793 boolean *pfound;
794 const char **pfilename;
795 const char **pfnname;
796 unsigned int *pline;
797 PTR *pinfo;
798 {
799 struct stab_find_info *info;
800 bfd_size_type stabsize, strsize;
801 bfd_byte *stab, *str;
802 bfd_size_type stroff;
803 struct indexentry *indexentry;
804 char *directory_name, *file_name;
805
806 *pfound = false;
807 *pfilename = bfd_get_filename (abfd);
808 *pfnname = NULL;
809 *pline = 0;
810
811 /* Stabs entries use a 12 byte format:
812 4 byte string table index
813 1 byte stab type
814 1 byte stab other field
815 2 byte stab desc field
816 4 byte stab value
817 FIXME: This will have to change for a 64 bit object format.
818
819 The stabs symbols are divided into compilation units. For the
820 first entry in each unit, the type of 0, the value is the length
821 of the string table for this unit, and the desc field is the
822 number of stabs symbols for this unit. */
823
824 #define STRDXOFF (0)
825 #define TYPEOFF (4)
826 #define OTHEROFF (5)
827 #define DESCOFF (6)
828 #define VALOFF (8)
829 #define STABSIZE (12)
830
831 info = (struct stab_find_info *) *pinfo;
832 if (info != NULL)
833 {
834 if (info->stabsec == NULL || info->strsec == NULL)
835 {
836 /* No stabs debugging information. */
837 return true;
838 }
839
840 stabsize = info->stabsec->_raw_size;
841 strsize = info->strsec->_raw_size;
842 }
843 else
844 {
845 long reloc_size, reloc_count;
846 arelent **reloc_vector;
847 bfd_vma val;
848 int i;
849 char *name;
850 char *file_name;
851 char *directory_name;
852 char *function_name;
853
854 info = (struct stab_find_info *) bfd_zalloc (abfd, sizeof *info);
855 if (info == NULL)
856 return false;
857
858 /* FIXME: When using the linker --split-by-file or
859 --split-by-reloc options, it is possible for the .stab and
860 .stabstr sections to be split. We should handle that. */
861
862 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
863 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
864
865 if (info->stabsec == NULL || info->strsec == NULL)
866 {
867 /* No stabs debugging information. Set *pinfo so that we
868 can return quickly in the info != NULL case above. */
869 *pinfo = (PTR) info;
870 return true;
871 }
872
873 stabsize = info->stabsec->_raw_size;
874 strsize = info->strsec->_raw_size;
875
876 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
877 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
878 if (info->stabs == NULL || info->strs == NULL)
879 return false;
880
881 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs, 0,
882 stabsize)
883 || ! bfd_get_section_contents (abfd, info->strsec, info->strs, 0,
884 strsize))
885 return false;
886
887 /* If this is a relocateable object file, we have to relocate
888 the entries in .stab. This should always be simple 32 bit
889 relocations against symbols defined in this object file, so
890 this should be no big deal. */
891 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
892 if (reloc_size < 0)
893 return false;
894 reloc_vector = (arelent **) bfd_malloc (reloc_size);
895 if (reloc_vector == NULL && reloc_size != 0)
896 return false;
897 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
898 symbols);
899 if (reloc_count < 0)
900 {
901 if (reloc_vector != NULL)
902 free (reloc_vector);
903 return false;
904 }
905 if (reloc_count > 0)
906 {
907 arelent **pr;
908
909 for (pr = reloc_vector; *pr != NULL; pr++)
910 {
911 arelent *r;
912 unsigned long val;
913 asymbol *sym;
914
915 r = *pr;
916 if (r->howto->rightshift != 0
917 || r->howto->size != 2
918 || r->howto->bitsize != 32
919 || r->howto->pc_relative
920 || r->howto->bitpos != 0
921 || r->howto->dst_mask != 0xffffffff)
922 {
923 (*_bfd_error_handler)
924 (_("Unsupported .stab relocation"));
925 bfd_set_error (bfd_error_invalid_operation);
926 if (reloc_vector != NULL)
927 free (reloc_vector);
928 return false;
929 }
930
931 val = bfd_get_32 (abfd, info->stabs + r->address);
932 val &= r->howto->src_mask;
933 sym = *r->sym_ptr_ptr;
934 val += sym->value + sym->section->vma + r->addend;
935 bfd_put_32 (abfd, val, info->stabs + r->address);
936 }
937 }
938
939 if (reloc_vector != NULL)
940 free (reloc_vector);
941
942 /* First time through this function, build a table matching
943 function VM addresses to stabs, then sort based on starting
944 VM address. Do this in two passes: once to count how many
945 table entries we'll need, and a second to actually build the
946 table. */
947
948 info->indextablesize = 0;
949 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
950 {
951 if (stab[TYPEOFF] == N_FUN)
952 ++info->indextablesize;
953 }
954
955 if (info->indextablesize == 0)
956 return true;
957 ++info->indextablesize;
958
959 info->indextable = ((struct indexentry *)
960 bfd_alloc (abfd,
961 (sizeof (struct indexentry)
962 * info->indextablesize)));
963 if (info->indextable == NULL)
964 return false;
965
966 file_name = NULL;
967 directory_name = NULL;
968
969 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
970 i < info->indextablesize && stab < info->stabs + stabsize;
971 stab += STABSIZE)
972 {
973 switch (stab[TYPEOFF])
974 {
975 case 0:
976 /* This is the first entry in a compilation unit. */
977 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
978 break;
979 str += stroff;
980 stroff = bfd_get_32 (abfd, stab + VALOFF);
981 break;
982
983 case N_SO:
984 /* The main file name. */
985
986 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
987
988 if (*file_name == '\0')
989 {
990 directory_name = NULL;
991 file_name = NULL;
992 }
993 else if (stab + STABSIZE >= info->stabs + stabsize
994 || *(stab + STABSIZE + TYPEOFF) != N_SO)
995 {
996 directory_name = NULL;
997 }
998 else
999 {
1000 /* Two consecutive N_SOs are a directory and a file
1001 name. */
1002 stab += STABSIZE;
1003 directory_name = file_name;
1004 file_name = ((char *) str
1005 + bfd_get_32 (abfd, stab + STRDXOFF));
1006 }
1007 break;
1008
1009 case N_SOL:
1010 /* The name of an include file. */
1011 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1012 break;
1013
1014 case N_FUN:
1015 /* A function name. */
1016
1017 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1018
1019 if (*name == '\0')
1020 name = NULL;
1021
1022 function_name = name;
1023
1024 if (name == NULL)
1025 continue;
1026
1027 val = bfd_get_32 (abfd, stab + VALOFF);
1028
1029 info->indextable[i].val = val;
1030 info->indextable[i].stab = stab;
1031 info->indextable[i].str = str;
1032 info->indextable[i].directory_name = directory_name;
1033 info->indextable[i].file_name = file_name;
1034 info->indextable[i].function_name = function_name;
1035
1036 ++i;
1037 break;
1038 }
1039 }
1040
1041 info->indextable[i].val = (bfd_vma) -1;
1042 info->indextable[i].stab = info->stabs + stabsize;
1043 info->indextable[i].str = str;
1044 info->indextable[i].directory_name = NULL;
1045 info->indextable[i].file_name = NULL;
1046 info->indextable[i].function_name = NULL;
1047 ++i;
1048
1049 info->indextablesize = i;
1050
1051 qsort (info->indextable, i, sizeof (struct indexentry), cmpindexentry);
1052
1053 *pinfo = (PTR) info;
1054 }
1055
1056 /* We are passed a section relative offset. The offsets in the
1057 stabs information are absolute. */
1058 offset += bfd_get_section_vma (abfd, section);
1059
1060 #ifdef ENABLE_CACHING
1061 if (info->cached_indexentry != NULL
1062 && offset >= info->cached_offset
1063 && offset < (info->cached_indexentry + 1)->val)
1064 {
1065 stab = info->cached_stab;
1066 indexentry = info->cached_indexentry;
1067 file_name = info->cached_file_name;
1068 }
1069 else
1070 #endif
1071 {
1072 /* Cache non-existant or invalid. Do binary search on
1073 indextable. */
1074
1075 long low, high;
1076 long mid = -1;
1077
1078 indexentry = NULL;
1079
1080 low = 0;
1081 high = info->indextablesize - 1;
1082 while (low != high)
1083 {
1084 mid = (high + low) / 2;
1085 if (offset >= info->indextable[mid].val
1086 && offset < info->indextable[mid + 1].val)
1087 {
1088 indexentry = &info->indextable[mid];
1089 break;
1090 }
1091
1092 if (info->indextable[mid].val > offset)
1093 high = mid;
1094 else
1095 low = mid + 1;
1096 }
1097
1098 if (indexentry == NULL)
1099 return true;
1100
1101 stab = indexentry->stab + STABSIZE;
1102 file_name = indexentry->file_name;
1103 }
1104
1105 directory_name = indexentry->directory_name;
1106 str = indexentry->str;
1107
1108 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1109 {
1110 boolean done;
1111 bfd_vma val;
1112
1113 done = false;
1114
1115 switch (stab[TYPEOFF])
1116 {
1117 case N_SOL:
1118 /* The name of an include file. */
1119 val = bfd_get_32 (abfd, stab + VALOFF);
1120 if (val <= offset)
1121 {
1122 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1123 *pline = 0;
1124 }
1125 break;
1126
1127 case N_SLINE:
1128 case N_DSLINE:
1129 case N_BSLINE:
1130 /* A line number. The value is relative to the start of the
1131 current function. */
1132 val = indexentry->val + bfd_get_32 (abfd, stab + VALOFF);
1133 if (val <= offset)
1134 {
1135 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1136
1137 #ifdef ENABLE_CACHING
1138 info->cached_stab = stab;
1139 info->cached_offset = val;
1140 info->cached_file_name = file_name;
1141 info->cached_indexentry = indexentry;
1142 #endif
1143 }
1144 if (val > offset)
1145 done = true;
1146 break;
1147
1148 case N_FUN:
1149 case N_SO:
1150 done = true;
1151 break;
1152 }
1153
1154 if (done)
1155 break;
1156 }
1157
1158 *pfound = true;
1159
1160 if (file_name[0] == '/' || directory_name == NULL)
1161 *pfilename = file_name;
1162 else
1163 {
1164 size_t dirlen;
1165
1166 dirlen = strlen (directory_name);
1167 if (info->filename == NULL
1168 || strncmp (info->filename, directory_name, dirlen) != 0
1169 || strcmp (info->filename + dirlen, file_name) != 0)
1170 {
1171 if (info->filename != NULL)
1172 free (info->filename);
1173 info->filename = (char *) bfd_malloc (dirlen +
1174 strlen (file_name)
1175 + 1);
1176 if (info->filename == NULL)
1177 return false;
1178 strcpy (info->filename, directory_name);
1179 strcpy (info->filename + dirlen, file_name);
1180 }
1181
1182 *pfilename = info->filename;
1183 }
1184
1185 if (indexentry->function_name != NULL)
1186 {
1187 char *s;
1188
1189 /* This will typically be something like main:F(0,1), so we want
1190 to clobber the colon. It's OK to change the name, since the
1191 string is in our own local storage anyhow. */
1192
1193 s = strchr (indexentry->function_name, ':');
1194 if (s != NULL)
1195 *s = '\0';
1196
1197 *pfnname = indexentry->function_name;
1198 }
1199
1200 return true;
1201 }
This page took 0.083213 seconds and 5 git commands to generate.