347b6b96923b76eb96c1dc8448fa360f5a0a0e8e
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2016 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63
64 #include "elf/common.h"
65 #include "elf/external.h"
66 #include "elf/internal.h"
67
68
69 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
70 we can obtain the H8 reloc numbers. We need these for the
71 get_reloc_size() function. We include h8.h again after defining
72 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
73
74 #include "elf/h8.h"
75 #undef _ELF_H8_H
76
77 /* Undo the effects of #including reloc-macros.h. */
78
79 #undef START_RELOC_NUMBERS
80 #undef RELOC_NUMBER
81 #undef FAKE_RELOC
82 #undef EMPTY_RELOC
83 #undef END_RELOC_NUMBERS
84 #undef _RELOC_MACROS_H
85
86 /* The following headers use the elf/reloc-macros.h file to
87 automatically generate relocation recognition functions
88 such as elf_mips_reloc_type() */
89
90 #define RELOC_MACROS_GEN_FUNC
91
92 #include "elf/aarch64.h"
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/d10v.h"
102 #include "elf/d30v.h"
103 #include "elf/dlx.h"
104 #include "elf/epiphany.h"
105 #include "elf/fr30.h"
106 #include "elf/frv.h"
107 #include "elf/ft32.h"
108 #include "elf/h8.h"
109 #include "elf/hppa.h"
110 #include "elf/i386.h"
111 #include "elf/i370.h"
112 #include "elf/i860.h"
113 #include "elf/i960.h"
114 #include "elf/ia64.h"
115 #include "elf/ip2k.h"
116 #include "elf/lm32.h"
117 #include "elf/iq2000.h"
118 #include "elf/m32c.h"
119 #include "elf/m32r.h"
120 #include "elf/m68k.h"
121 #include "elf/m68hc11.h"
122 #include "elf/mcore.h"
123 #include "elf/mep.h"
124 #include "elf/metag.h"
125 #include "elf/microblaze.h"
126 #include "elf/mips.h"
127 #include "elf/riscv.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/rl78.h"
141 #include "elf/rx.h"
142 #include "elf/s390.h"
143 #include "elf/score.h"
144 #include "elf/sh.h"
145 #include "elf/sparc.h"
146 #include "elf/spu.h"
147 #include "elf/tic6x.h"
148 #include "elf/tilegx.h"
149 #include "elf/tilepro.h"
150 #include "elf/v850.h"
151 #include "elf/vax.h"
152 #include "elf/visium.h"
153 #include "elf/x86-64.h"
154 #include "elf/xc16x.h"
155 #include "elf/xgate.h"
156 #include "elf/xstormy16.h"
157 #include "elf/xtensa.h"
158
159 #include "getopt.h"
160 #include "libiberty.h"
161 #include "safe-ctype.h"
162 #include "filenames.h"
163
164 #ifndef offsetof
165 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
166 #endif
167
168 typedef struct elf_section_list
169 {
170 Elf_Internal_Shdr * hdr;
171 struct elf_section_list * next;
172 } elf_section_list;
173
174 char * program_name = "readelf";
175 static unsigned long archive_file_offset;
176 static unsigned long archive_file_size;
177 static bfd_size_type current_file_size;
178 static unsigned long dynamic_addr;
179 static bfd_size_type dynamic_size;
180 static size_t dynamic_nent;
181 static char * dynamic_strings;
182 static unsigned long dynamic_strings_length;
183 static char * string_table;
184 static unsigned long string_table_length;
185 static unsigned long num_dynamic_syms;
186 static Elf_Internal_Sym * dynamic_symbols;
187 static Elf_Internal_Syminfo * dynamic_syminfo;
188 static unsigned long dynamic_syminfo_offset;
189 static unsigned int dynamic_syminfo_nent;
190 static char program_interpreter[PATH_MAX];
191 static bfd_vma dynamic_info[DT_ENCODING];
192 static bfd_vma dynamic_info_DT_GNU_HASH;
193 static bfd_vma version_info[16];
194 static Elf_Internal_Ehdr elf_header;
195 static Elf_Internal_Shdr * section_headers;
196 static Elf_Internal_Phdr * program_headers;
197 static Elf_Internal_Dyn * dynamic_section;
198 static elf_section_list * symtab_shndx_list;
199 static int show_name;
200 static int do_dynamic;
201 static int do_syms;
202 static int do_dyn_syms;
203 static int do_reloc;
204 static int do_sections;
205 static int do_section_groups;
206 static int do_section_details;
207 static int do_segments;
208 static int do_unwind;
209 static int do_using_dynamic;
210 static int do_header;
211 static int do_dump;
212 static int do_version;
213 static int do_histogram;
214 static int do_debugging;
215 static int do_arch;
216 static int do_notes;
217 static int do_archive_index;
218 static int is_32bit_elf;
219 static int decompress_dumps;
220
221 struct group_list
222 {
223 struct group_list * next;
224 unsigned int section_index;
225 };
226
227 struct group
228 {
229 struct group_list * root;
230 unsigned int group_index;
231 };
232
233 static size_t group_count;
234 static struct group * section_groups;
235 static struct group ** section_headers_groups;
236
237
238 /* Flag bits indicating particular types of dump. */
239 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
240 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
241 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
242 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
243 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
244
245 typedef unsigned char dump_type;
246
247 /* A linked list of the section names for which dumps were requested. */
248 struct dump_list_entry
249 {
250 char * name;
251 dump_type type;
252 struct dump_list_entry * next;
253 };
254 static struct dump_list_entry * dump_sects_byname;
255
256 /* A dynamic array of flags indicating for which sections a dump
257 has been requested via command line switches. */
258 static dump_type * cmdline_dump_sects = NULL;
259 static unsigned int num_cmdline_dump_sects = 0;
260
261 /* A dynamic array of flags indicating for which sections a dump of
262 some kind has been requested. It is reset on a per-object file
263 basis and then initialised from the cmdline_dump_sects array,
264 the results of interpreting the -w switch, and the
265 dump_sects_byname list. */
266 static dump_type * dump_sects = NULL;
267 static unsigned int num_dump_sects = 0;
268
269
270 /* How to print a vma value. */
271 typedef enum print_mode
272 {
273 HEX,
274 DEC,
275 DEC_5,
276 UNSIGNED,
277 PREFIX_HEX,
278 FULL_HEX,
279 LONG_HEX
280 }
281 print_mode;
282
283 /* Versioned symbol info. */
284 enum versioned_symbol_info
285 {
286 symbol_undefined,
287 symbol_hidden,
288 symbol_public
289 };
290
291 static const char *get_symbol_version_string
292 (FILE *file, int is_dynsym, const char *strtab,
293 unsigned long int strtab_size, unsigned int si,
294 Elf_Internal_Sym *psym, enum versioned_symbol_info *sym_info,
295 unsigned short *vna_other);
296
297 #define UNKNOWN -1
298
299 #define SECTION_NAME(X) \
300 ((X) == NULL ? _("<none>") \
301 : string_table == NULL ? _("<no-name>") \
302 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
303 : string_table + (X)->sh_name))
304
305 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
306
307 #define GET_ELF_SYMBOLS(file, section, sym_count) \
308 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
309 : get_64bit_elf_symbols (file, section, sym_count))
310
311 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
312 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
313 already been called and verified that the string exists. */
314 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
315
316 #define REMOVE_ARCH_BITS(ADDR) \
317 do \
318 { \
319 if (elf_header.e_machine == EM_ARM) \
320 (ADDR) &= ~1; \
321 } \
322 while (0)
323 \f
324 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET +
325 the offset of the current archive member, if we are examining an archive.
326 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
327 using malloc and fill that. In either case return the pointer to the start of
328 the retrieved data or NULL if something went wrong. If something does go wrong
329 and REASON is not NULL then emit an error message using REASON as part of the
330 context. */
331
332 static void *
333 get_data (void * var, FILE * file, unsigned long offset, bfd_size_type size,
334 bfd_size_type nmemb, const char * reason)
335 {
336 void * mvar;
337 bfd_size_type amt = size * nmemb;
338
339 if (size == 0 || nmemb == 0)
340 return NULL;
341
342 /* If the size_t type is smaller than the bfd_size_type, eg because
343 you are building a 32-bit tool on a 64-bit host, then make sure
344 that when the sizes are cast to (size_t) no information is lost. */
345 if (sizeof (size_t) < sizeof (bfd_size_type)
346 && ( (bfd_size_type) ((size_t) size) != size
347 || (bfd_size_type) ((size_t) nmemb) != nmemb))
348 {
349 if (reason)
350 error (_("Size truncation prevents reading 0x%" BFD_VMA_FMT "x"
351 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
352 nmemb, size, reason);
353 return NULL;
354 }
355
356 /* Check for size overflow. */
357 if (amt < nmemb)
358 {
359 if (reason)
360 error (_("Size overflow prevents reading 0x%" BFD_VMA_FMT "x"
361 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
362 nmemb, size, reason);
363 return NULL;
364 }
365
366 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
367 attempting to allocate memory when the read is bound to fail. */
368 if (amt > current_file_size
369 || offset + archive_file_offset + amt > current_file_size)
370 {
371 if (reason)
372 error (_("Reading 0x%" BFD_VMA_FMT "x"
373 " bytes extends past end of file for %s\n"),
374 amt, reason);
375 return NULL;
376 }
377
378 if (fseek (file, archive_file_offset + offset, SEEK_SET))
379 {
380 if (reason)
381 error (_("Unable to seek to 0x%lx for %s\n"),
382 archive_file_offset + offset, reason);
383 return NULL;
384 }
385
386 mvar = var;
387 if (mvar == NULL)
388 {
389 /* Check for overflow. */
390 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
391 /* + 1 so that we can '\0' terminate invalid string table sections. */
392 mvar = malloc ((size_t) amt + 1);
393
394 if (mvar == NULL)
395 {
396 if (reason)
397 error (_("Out of memory allocating 0x%" BFD_VMA_FMT "x"
398 " bytes for %s\n"),
399 amt, reason);
400 return NULL;
401 }
402
403 ((char *) mvar)[amt] = '\0';
404 }
405
406 if (fread (mvar, (size_t) size, (size_t) nmemb, file) != nmemb)
407 {
408 if (reason)
409 error (_("Unable to read in 0x%" BFD_VMA_FMT "x bytes of %s\n"),
410 amt, reason);
411 if (mvar != var)
412 free (mvar);
413 return NULL;
414 }
415
416 return mvar;
417 }
418
419 /* Print a VMA value. */
420
421 static int
422 print_vma (bfd_vma vma, print_mode mode)
423 {
424 int nc = 0;
425
426 switch (mode)
427 {
428 case FULL_HEX:
429 nc = printf ("0x");
430 /* Fall through. */
431
432 case LONG_HEX:
433 #ifdef BFD64
434 if (is_32bit_elf)
435 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
436 #endif
437 printf_vma (vma);
438 return nc + 16;
439
440 case DEC_5:
441 if (vma <= 99999)
442 return printf ("%5" BFD_VMA_FMT "d", vma);
443 /* Fall through. */
444
445 case PREFIX_HEX:
446 nc = printf ("0x");
447 /* Fall through. */
448
449 case HEX:
450 return nc + printf ("%" BFD_VMA_FMT "x", vma);
451
452 case DEC:
453 return printf ("%" BFD_VMA_FMT "d", vma);
454
455 case UNSIGNED:
456 return printf ("%" BFD_VMA_FMT "u", vma);
457 }
458 return 0;
459 }
460
461 /* Display a symbol on stdout. Handles the display of control characters and
462 multibye characters (assuming the host environment supports them).
463
464 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
465
466 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
467 padding as necessary.
468
469 Returns the number of emitted characters. */
470
471 static unsigned int
472 print_symbol (int width, const char *symbol)
473 {
474 bfd_boolean extra_padding = FALSE;
475 int num_printed = 0;
476 #ifdef HAVE_MBSTATE_T
477 mbstate_t state;
478 #endif
479 int width_remaining;
480
481 if (width < 0)
482 {
483 /* Keep the width positive. This also helps. */
484 width = - width;
485 extra_padding = TRUE;
486 }
487 assert (width != 0);
488
489 if (do_wide)
490 /* Set the remaining width to a very large value.
491 This simplifies the code below. */
492 width_remaining = INT_MAX;
493 else
494 width_remaining = width;
495
496 #ifdef HAVE_MBSTATE_T
497 /* Initialise the multibyte conversion state. */
498 memset (& state, 0, sizeof (state));
499 #endif
500
501 while (width_remaining)
502 {
503 size_t n;
504 const char c = *symbol++;
505
506 if (c == 0)
507 break;
508
509 /* Do not print control characters directly as they can affect terminal
510 settings. Such characters usually appear in the names generated
511 by the assembler for local labels. */
512 if (ISCNTRL (c))
513 {
514 if (width_remaining < 2)
515 break;
516
517 printf ("^%c", c + 0x40);
518 width_remaining -= 2;
519 num_printed += 2;
520 }
521 else if (ISPRINT (c))
522 {
523 putchar (c);
524 width_remaining --;
525 num_printed ++;
526 }
527 else
528 {
529 #ifdef HAVE_MBSTATE_T
530 wchar_t w;
531 #endif
532 /* Let printf do the hard work of displaying multibyte characters. */
533 printf ("%.1s", symbol - 1);
534 width_remaining --;
535 num_printed ++;
536
537 #ifdef HAVE_MBSTATE_T
538 /* Try to find out how many bytes made up the character that was
539 just printed. Advance the symbol pointer past the bytes that
540 were displayed. */
541 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
542 #else
543 n = 1;
544 #endif
545 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
546 symbol += (n - 1);
547 }
548 }
549
550 if (extra_padding && num_printed < width)
551 {
552 /* Fill in the remaining spaces. */
553 printf ("%-*s", width - num_printed, " ");
554 num_printed = width;
555 }
556
557 return num_printed;
558 }
559
560 /* Returns a pointer to a static buffer containing a printable version of
561 the given section's name. Like print_symbol, except that it does not try
562 to print multibyte characters, it just interprets them as hex values. */
563
564 static const char *
565 printable_section_name (const Elf_Internal_Shdr * sec)
566 {
567 #define MAX_PRINT_SEC_NAME_LEN 128
568 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
569 const char * name = SECTION_NAME (sec);
570 char * buf = sec_name_buf;
571 char c;
572 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
573
574 while ((c = * name ++) != 0)
575 {
576 if (ISCNTRL (c))
577 {
578 if (remaining < 2)
579 break;
580
581 * buf ++ = '^';
582 * buf ++ = c + 0x40;
583 remaining -= 2;
584 }
585 else if (ISPRINT (c))
586 {
587 * buf ++ = c;
588 remaining -= 1;
589 }
590 else
591 {
592 static char hex[17] = "0123456789ABCDEF";
593
594 if (remaining < 4)
595 break;
596 * buf ++ = '<';
597 * buf ++ = hex[(c & 0xf0) >> 4];
598 * buf ++ = hex[c & 0x0f];
599 * buf ++ = '>';
600 remaining -= 4;
601 }
602
603 if (remaining == 0)
604 break;
605 }
606
607 * buf = 0;
608 return sec_name_buf;
609 }
610
611 static const char *
612 printable_section_name_from_index (unsigned long ndx)
613 {
614 if (ndx >= elf_header.e_shnum)
615 return _("<corrupt>");
616
617 return printable_section_name (section_headers + ndx);
618 }
619
620 /* Return a pointer to section NAME, or NULL if no such section exists. */
621
622 static Elf_Internal_Shdr *
623 find_section (const char * name)
624 {
625 unsigned int i;
626
627 for (i = 0; i < elf_header.e_shnum; i++)
628 if (streq (SECTION_NAME (section_headers + i), name))
629 return section_headers + i;
630
631 return NULL;
632 }
633
634 /* Return a pointer to a section containing ADDR, or NULL if no such
635 section exists. */
636
637 static Elf_Internal_Shdr *
638 find_section_by_address (bfd_vma addr)
639 {
640 unsigned int i;
641
642 for (i = 0; i < elf_header.e_shnum; i++)
643 {
644 Elf_Internal_Shdr *sec = section_headers + i;
645 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
646 return sec;
647 }
648
649 return NULL;
650 }
651
652 static Elf_Internal_Shdr *
653 find_section_by_type (unsigned int type)
654 {
655 unsigned int i;
656
657 for (i = 0; i < elf_header.e_shnum; i++)
658 {
659 Elf_Internal_Shdr *sec = section_headers + i;
660 if (sec->sh_type == type)
661 return sec;
662 }
663
664 return NULL;
665 }
666
667 /* Return a pointer to section NAME, or NULL if no such section exists,
668 restricted to the list of sections given in SET. */
669
670 static Elf_Internal_Shdr *
671 find_section_in_set (const char * name, unsigned int * set)
672 {
673 unsigned int i;
674
675 if (set != NULL)
676 {
677 while ((i = *set++) > 0)
678 if (streq (SECTION_NAME (section_headers + i), name))
679 return section_headers + i;
680 }
681
682 return find_section (name);
683 }
684
685 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
686 bytes read. */
687
688 static inline unsigned long
689 read_uleb128 (unsigned char *data,
690 unsigned int *length_return,
691 const unsigned char * const end)
692 {
693 return read_leb128 (data, length_return, FALSE, end);
694 }
695
696 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
697 This OS has so many departures from the ELF standard that we test it at
698 many places. */
699
700 static inline int
701 is_ia64_vms (void)
702 {
703 return elf_header.e_machine == EM_IA_64
704 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
705 }
706
707 /* Guess the relocation size commonly used by the specific machines. */
708
709 static int
710 guess_is_rela (unsigned int e_machine)
711 {
712 switch (e_machine)
713 {
714 /* Targets that use REL relocations. */
715 case EM_386:
716 case EM_IAMCU:
717 case EM_960:
718 case EM_ARM:
719 case EM_D10V:
720 case EM_CYGNUS_D10V:
721 case EM_DLX:
722 case EM_MIPS:
723 case EM_MIPS_RS3_LE:
724 case EM_CYGNUS_M32R:
725 case EM_SCORE:
726 case EM_XGATE:
727 return FALSE;
728
729 /* Targets that use RELA relocations. */
730 case EM_68K:
731 case EM_860:
732 case EM_AARCH64:
733 case EM_ADAPTEVA_EPIPHANY:
734 case EM_ALPHA:
735 case EM_ALTERA_NIOS2:
736 case EM_ARC:
737 case EM_ARC_COMPACT:
738 case EM_ARC_COMPACT2:
739 case EM_AVR:
740 case EM_AVR_OLD:
741 case EM_BLACKFIN:
742 case EM_CR16:
743 case EM_CRIS:
744 case EM_CRX:
745 case EM_D30V:
746 case EM_CYGNUS_D30V:
747 case EM_FR30:
748 case EM_FT32:
749 case EM_CYGNUS_FR30:
750 case EM_CYGNUS_FRV:
751 case EM_H8S:
752 case EM_H8_300:
753 case EM_H8_300H:
754 case EM_IA_64:
755 case EM_IP2K:
756 case EM_IP2K_OLD:
757 case EM_IQ2000:
758 case EM_LATTICEMICO32:
759 case EM_M32C_OLD:
760 case EM_M32C:
761 case EM_M32R:
762 case EM_MCORE:
763 case EM_CYGNUS_MEP:
764 case EM_METAG:
765 case EM_MMIX:
766 case EM_MN10200:
767 case EM_CYGNUS_MN10200:
768 case EM_MN10300:
769 case EM_CYGNUS_MN10300:
770 case EM_MOXIE:
771 case EM_MSP430:
772 case EM_MSP430_OLD:
773 case EM_MT:
774 case EM_NDS32:
775 case EM_NIOS32:
776 case EM_OR1K:
777 case EM_PPC64:
778 case EM_PPC:
779 case EM_RISCV:
780 case EM_RL78:
781 case EM_RX:
782 case EM_S390:
783 case EM_S390_OLD:
784 case EM_SH:
785 case EM_SPARC:
786 case EM_SPARC32PLUS:
787 case EM_SPARCV9:
788 case EM_SPU:
789 case EM_TI_C6000:
790 case EM_TILEGX:
791 case EM_TILEPRO:
792 case EM_V800:
793 case EM_V850:
794 case EM_CYGNUS_V850:
795 case EM_VAX:
796 case EM_VISIUM:
797 case EM_X86_64:
798 case EM_L1OM:
799 case EM_K1OM:
800 case EM_XSTORMY16:
801 case EM_XTENSA:
802 case EM_XTENSA_OLD:
803 case EM_MICROBLAZE:
804 case EM_MICROBLAZE_OLD:
805 return TRUE;
806
807 case EM_68HC05:
808 case EM_68HC08:
809 case EM_68HC11:
810 case EM_68HC16:
811 case EM_FX66:
812 case EM_ME16:
813 case EM_MMA:
814 case EM_NCPU:
815 case EM_NDR1:
816 case EM_PCP:
817 case EM_ST100:
818 case EM_ST19:
819 case EM_ST7:
820 case EM_ST9PLUS:
821 case EM_STARCORE:
822 case EM_SVX:
823 case EM_TINYJ:
824 default:
825 warn (_("Don't know about relocations on this machine architecture\n"));
826 return FALSE;
827 }
828 }
829
830 static int
831 slurp_rela_relocs (FILE * file,
832 unsigned long rel_offset,
833 unsigned long rel_size,
834 Elf_Internal_Rela ** relasp,
835 unsigned long * nrelasp)
836 {
837 Elf_Internal_Rela * relas;
838 size_t nrelas;
839 unsigned int i;
840
841 if (is_32bit_elf)
842 {
843 Elf32_External_Rela * erelas;
844
845 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
846 rel_size, _("32-bit relocation data"));
847 if (!erelas)
848 return 0;
849
850 nrelas = rel_size / sizeof (Elf32_External_Rela);
851
852 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
853 sizeof (Elf_Internal_Rela));
854
855 if (relas == NULL)
856 {
857 free (erelas);
858 error (_("out of memory parsing relocs\n"));
859 return 0;
860 }
861
862 for (i = 0; i < nrelas; i++)
863 {
864 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
865 relas[i].r_info = BYTE_GET (erelas[i].r_info);
866 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
867 }
868
869 free (erelas);
870 }
871 else
872 {
873 Elf64_External_Rela * erelas;
874
875 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
876 rel_size, _("64-bit relocation data"));
877 if (!erelas)
878 return 0;
879
880 nrelas = rel_size / sizeof (Elf64_External_Rela);
881
882 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
883 sizeof (Elf_Internal_Rela));
884
885 if (relas == NULL)
886 {
887 free (erelas);
888 error (_("out of memory parsing relocs\n"));
889 return 0;
890 }
891
892 for (i = 0; i < nrelas; i++)
893 {
894 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
895 relas[i].r_info = BYTE_GET (erelas[i].r_info);
896 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
897
898 /* The #ifdef BFD64 below is to prevent a compile time
899 warning. We know that if we do not have a 64 bit data
900 type that we will never execute this code anyway. */
901 #ifdef BFD64
902 if (elf_header.e_machine == EM_MIPS
903 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
904 {
905 /* In little-endian objects, r_info isn't really a
906 64-bit little-endian value: it has a 32-bit
907 little-endian symbol index followed by four
908 individual byte fields. Reorder INFO
909 accordingly. */
910 bfd_vma inf = relas[i].r_info;
911 inf = (((inf & 0xffffffff) << 32)
912 | ((inf >> 56) & 0xff)
913 | ((inf >> 40) & 0xff00)
914 | ((inf >> 24) & 0xff0000)
915 | ((inf >> 8) & 0xff000000));
916 relas[i].r_info = inf;
917 }
918 #endif /* BFD64 */
919 }
920
921 free (erelas);
922 }
923 *relasp = relas;
924 *nrelasp = nrelas;
925 return 1;
926 }
927
928 static int
929 slurp_rel_relocs (FILE * file,
930 unsigned long rel_offset,
931 unsigned long rel_size,
932 Elf_Internal_Rela ** relsp,
933 unsigned long * nrelsp)
934 {
935 Elf_Internal_Rela * rels;
936 size_t nrels;
937 unsigned int i;
938
939 if (is_32bit_elf)
940 {
941 Elf32_External_Rel * erels;
942
943 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
944 rel_size, _("32-bit relocation data"));
945 if (!erels)
946 return 0;
947
948 nrels = rel_size / sizeof (Elf32_External_Rel);
949
950 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
951
952 if (rels == NULL)
953 {
954 free (erels);
955 error (_("out of memory parsing relocs\n"));
956 return 0;
957 }
958
959 for (i = 0; i < nrels; i++)
960 {
961 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
962 rels[i].r_info = BYTE_GET (erels[i].r_info);
963 rels[i].r_addend = 0;
964 }
965
966 free (erels);
967 }
968 else
969 {
970 Elf64_External_Rel * erels;
971
972 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
973 rel_size, _("64-bit relocation data"));
974 if (!erels)
975 return 0;
976
977 nrels = rel_size / sizeof (Elf64_External_Rel);
978
979 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
980
981 if (rels == NULL)
982 {
983 free (erels);
984 error (_("out of memory parsing relocs\n"));
985 return 0;
986 }
987
988 for (i = 0; i < nrels; i++)
989 {
990 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
991 rels[i].r_info = BYTE_GET (erels[i].r_info);
992 rels[i].r_addend = 0;
993
994 /* The #ifdef BFD64 below is to prevent a compile time
995 warning. We know that if we do not have a 64 bit data
996 type that we will never execute this code anyway. */
997 #ifdef BFD64
998 if (elf_header.e_machine == EM_MIPS
999 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
1000 {
1001 /* In little-endian objects, r_info isn't really a
1002 64-bit little-endian value: it has a 32-bit
1003 little-endian symbol index followed by four
1004 individual byte fields. Reorder INFO
1005 accordingly. */
1006 bfd_vma inf = rels[i].r_info;
1007 inf = (((inf & 0xffffffff) << 32)
1008 | ((inf >> 56) & 0xff)
1009 | ((inf >> 40) & 0xff00)
1010 | ((inf >> 24) & 0xff0000)
1011 | ((inf >> 8) & 0xff000000));
1012 rels[i].r_info = inf;
1013 }
1014 #endif /* BFD64 */
1015 }
1016
1017 free (erels);
1018 }
1019 *relsp = rels;
1020 *nrelsp = nrels;
1021 return 1;
1022 }
1023
1024 /* Returns the reloc type extracted from the reloc info field. */
1025
1026 static unsigned int
1027 get_reloc_type (bfd_vma reloc_info)
1028 {
1029 if (is_32bit_elf)
1030 return ELF32_R_TYPE (reloc_info);
1031
1032 switch (elf_header.e_machine)
1033 {
1034 case EM_MIPS:
1035 /* Note: We assume that reloc_info has already been adjusted for us. */
1036 return ELF64_MIPS_R_TYPE (reloc_info);
1037
1038 case EM_SPARCV9:
1039 return ELF64_R_TYPE_ID (reloc_info);
1040
1041 default:
1042 return ELF64_R_TYPE (reloc_info);
1043 }
1044 }
1045
1046 /* Return the symbol index extracted from the reloc info field. */
1047
1048 static bfd_vma
1049 get_reloc_symindex (bfd_vma reloc_info)
1050 {
1051 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1052 }
1053
1054 static inline bfd_boolean
1055 uses_msp430x_relocs (void)
1056 {
1057 return
1058 elf_header.e_machine == EM_MSP430 /* Paranoia. */
1059 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1060 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1061 /* TI compiler uses ELFOSABI_NONE. */
1062 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1063 }
1064
1065 /* Display the contents of the relocation data found at the specified
1066 offset. */
1067
1068 static void
1069 dump_relocations (FILE * file,
1070 unsigned long rel_offset,
1071 unsigned long rel_size,
1072 Elf_Internal_Sym * symtab,
1073 unsigned long nsyms,
1074 char * strtab,
1075 unsigned long strtablen,
1076 int is_rela,
1077 int is_dynsym)
1078 {
1079 unsigned int i;
1080 Elf_Internal_Rela * rels;
1081
1082 if (is_rela == UNKNOWN)
1083 is_rela = guess_is_rela (elf_header.e_machine);
1084
1085 if (is_rela)
1086 {
1087 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1088 return;
1089 }
1090 else
1091 {
1092 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1093 return;
1094 }
1095
1096 if (is_32bit_elf)
1097 {
1098 if (is_rela)
1099 {
1100 if (do_wide)
1101 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1102 else
1103 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1104 }
1105 else
1106 {
1107 if (do_wide)
1108 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1109 else
1110 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1111 }
1112 }
1113 else
1114 {
1115 if (is_rela)
1116 {
1117 if (do_wide)
1118 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1119 else
1120 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1121 }
1122 else
1123 {
1124 if (do_wide)
1125 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1126 else
1127 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1128 }
1129 }
1130
1131 for (i = 0; i < rel_size; i++)
1132 {
1133 const char * rtype;
1134 bfd_vma offset;
1135 bfd_vma inf;
1136 bfd_vma symtab_index;
1137 bfd_vma type;
1138
1139 offset = rels[i].r_offset;
1140 inf = rels[i].r_info;
1141
1142 type = get_reloc_type (inf);
1143 symtab_index = get_reloc_symindex (inf);
1144
1145 if (is_32bit_elf)
1146 {
1147 printf ("%8.8lx %8.8lx ",
1148 (unsigned long) offset & 0xffffffff,
1149 (unsigned long) inf & 0xffffffff);
1150 }
1151 else
1152 {
1153 #if BFD_HOST_64BIT_LONG
1154 printf (do_wide
1155 ? "%16.16lx %16.16lx "
1156 : "%12.12lx %12.12lx ",
1157 offset, inf);
1158 #elif BFD_HOST_64BIT_LONG_LONG
1159 #ifndef __MSVCRT__
1160 printf (do_wide
1161 ? "%16.16llx %16.16llx "
1162 : "%12.12llx %12.12llx ",
1163 offset, inf);
1164 #else
1165 printf (do_wide
1166 ? "%16.16I64x %16.16I64x "
1167 : "%12.12I64x %12.12I64x ",
1168 offset, inf);
1169 #endif
1170 #else
1171 printf (do_wide
1172 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1173 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1174 _bfd_int64_high (offset),
1175 _bfd_int64_low (offset),
1176 _bfd_int64_high (inf),
1177 _bfd_int64_low (inf));
1178 #endif
1179 }
1180
1181 switch (elf_header.e_machine)
1182 {
1183 default:
1184 rtype = NULL;
1185 break;
1186
1187 case EM_AARCH64:
1188 rtype = elf_aarch64_reloc_type (type);
1189 break;
1190
1191 case EM_M32R:
1192 case EM_CYGNUS_M32R:
1193 rtype = elf_m32r_reloc_type (type);
1194 break;
1195
1196 case EM_386:
1197 case EM_IAMCU:
1198 rtype = elf_i386_reloc_type (type);
1199 break;
1200
1201 case EM_68HC11:
1202 case EM_68HC12:
1203 rtype = elf_m68hc11_reloc_type (type);
1204 break;
1205
1206 case EM_68K:
1207 rtype = elf_m68k_reloc_type (type);
1208 break;
1209
1210 case EM_960:
1211 rtype = elf_i960_reloc_type (type);
1212 break;
1213
1214 case EM_AVR:
1215 case EM_AVR_OLD:
1216 rtype = elf_avr_reloc_type (type);
1217 break;
1218
1219 case EM_OLD_SPARCV9:
1220 case EM_SPARC32PLUS:
1221 case EM_SPARCV9:
1222 case EM_SPARC:
1223 rtype = elf_sparc_reloc_type (type);
1224 break;
1225
1226 case EM_SPU:
1227 rtype = elf_spu_reloc_type (type);
1228 break;
1229
1230 case EM_V800:
1231 rtype = v800_reloc_type (type);
1232 break;
1233 case EM_V850:
1234 case EM_CYGNUS_V850:
1235 rtype = v850_reloc_type (type);
1236 break;
1237
1238 case EM_D10V:
1239 case EM_CYGNUS_D10V:
1240 rtype = elf_d10v_reloc_type (type);
1241 break;
1242
1243 case EM_D30V:
1244 case EM_CYGNUS_D30V:
1245 rtype = elf_d30v_reloc_type (type);
1246 break;
1247
1248 case EM_DLX:
1249 rtype = elf_dlx_reloc_type (type);
1250 break;
1251
1252 case EM_SH:
1253 rtype = elf_sh_reloc_type (type);
1254 break;
1255
1256 case EM_MN10300:
1257 case EM_CYGNUS_MN10300:
1258 rtype = elf_mn10300_reloc_type (type);
1259 break;
1260
1261 case EM_MN10200:
1262 case EM_CYGNUS_MN10200:
1263 rtype = elf_mn10200_reloc_type (type);
1264 break;
1265
1266 case EM_FR30:
1267 case EM_CYGNUS_FR30:
1268 rtype = elf_fr30_reloc_type (type);
1269 break;
1270
1271 case EM_CYGNUS_FRV:
1272 rtype = elf_frv_reloc_type (type);
1273 break;
1274
1275 case EM_FT32:
1276 rtype = elf_ft32_reloc_type (type);
1277 break;
1278
1279 case EM_MCORE:
1280 rtype = elf_mcore_reloc_type (type);
1281 break;
1282
1283 case EM_MMIX:
1284 rtype = elf_mmix_reloc_type (type);
1285 break;
1286
1287 case EM_MOXIE:
1288 rtype = elf_moxie_reloc_type (type);
1289 break;
1290
1291 case EM_MSP430:
1292 if (uses_msp430x_relocs ())
1293 {
1294 rtype = elf_msp430x_reloc_type (type);
1295 break;
1296 }
1297 /* Fall through. */
1298 case EM_MSP430_OLD:
1299 rtype = elf_msp430_reloc_type (type);
1300 break;
1301
1302 case EM_NDS32:
1303 rtype = elf_nds32_reloc_type (type);
1304 break;
1305
1306 case EM_PPC:
1307 rtype = elf_ppc_reloc_type (type);
1308 break;
1309
1310 case EM_PPC64:
1311 rtype = elf_ppc64_reloc_type (type);
1312 break;
1313
1314 case EM_MIPS:
1315 case EM_MIPS_RS3_LE:
1316 rtype = elf_mips_reloc_type (type);
1317 break;
1318
1319 case EM_RISCV:
1320 rtype = elf_riscv_reloc_type (type);
1321 break;
1322
1323 case EM_ALPHA:
1324 rtype = elf_alpha_reloc_type (type);
1325 break;
1326
1327 case EM_ARM:
1328 rtype = elf_arm_reloc_type (type);
1329 break;
1330
1331 case EM_ARC:
1332 case EM_ARC_COMPACT:
1333 case EM_ARC_COMPACT2:
1334 rtype = elf_arc_reloc_type (type);
1335 break;
1336
1337 case EM_PARISC:
1338 rtype = elf_hppa_reloc_type (type);
1339 break;
1340
1341 case EM_H8_300:
1342 case EM_H8_300H:
1343 case EM_H8S:
1344 rtype = elf_h8_reloc_type (type);
1345 break;
1346
1347 case EM_OR1K:
1348 rtype = elf_or1k_reloc_type (type);
1349 break;
1350
1351 case EM_PJ:
1352 case EM_PJ_OLD:
1353 rtype = elf_pj_reloc_type (type);
1354 break;
1355 case EM_IA_64:
1356 rtype = elf_ia64_reloc_type (type);
1357 break;
1358
1359 case EM_CRIS:
1360 rtype = elf_cris_reloc_type (type);
1361 break;
1362
1363 case EM_860:
1364 rtype = elf_i860_reloc_type (type);
1365 break;
1366
1367 case EM_X86_64:
1368 case EM_L1OM:
1369 case EM_K1OM:
1370 rtype = elf_x86_64_reloc_type (type);
1371 break;
1372
1373 case EM_S370:
1374 rtype = i370_reloc_type (type);
1375 break;
1376
1377 case EM_S390_OLD:
1378 case EM_S390:
1379 rtype = elf_s390_reloc_type (type);
1380 break;
1381
1382 case EM_SCORE:
1383 rtype = elf_score_reloc_type (type);
1384 break;
1385
1386 case EM_XSTORMY16:
1387 rtype = elf_xstormy16_reloc_type (type);
1388 break;
1389
1390 case EM_CRX:
1391 rtype = elf_crx_reloc_type (type);
1392 break;
1393
1394 case EM_VAX:
1395 rtype = elf_vax_reloc_type (type);
1396 break;
1397
1398 case EM_VISIUM:
1399 rtype = elf_visium_reloc_type (type);
1400 break;
1401
1402 case EM_ADAPTEVA_EPIPHANY:
1403 rtype = elf_epiphany_reloc_type (type);
1404 break;
1405
1406 case EM_IP2K:
1407 case EM_IP2K_OLD:
1408 rtype = elf_ip2k_reloc_type (type);
1409 break;
1410
1411 case EM_IQ2000:
1412 rtype = elf_iq2000_reloc_type (type);
1413 break;
1414
1415 case EM_XTENSA_OLD:
1416 case EM_XTENSA:
1417 rtype = elf_xtensa_reloc_type (type);
1418 break;
1419
1420 case EM_LATTICEMICO32:
1421 rtype = elf_lm32_reloc_type (type);
1422 break;
1423
1424 case EM_M32C_OLD:
1425 case EM_M32C:
1426 rtype = elf_m32c_reloc_type (type);
1427 break;
1428
1429 case EM_MT:
1430 rtype = elf_mt_reloc_type (type);
1431 break;
1432
1433 case EM_BLACKFIN:
1434 rtype = elf_bfin_reloc_type (type);
1435 break;
1436
1437 case EM_CYGNUS_MEP:
1438 rtype = elf_mep_reloc_type (type);
1439 break;
1440
1441 case EM_CR16:
1442 rtype = elf_cr16_reloc_type (type);
1443 break;
1444
1445 case EM_MICROBLAZE:
1446 case EM_MICROBLAZE_OLD:
1447 rtype = elf_microblaze_reloc_type (type);
1448 break;
1449
1450 case EM_RL78:
1451 rtype = elf_rl78_reloc_type (type);
1452 break;
1453
1454 case EM_RX:
1455 rtype = elf_rx_reloc_type (type);
1456 break;
1457
1458 case EM_METAG:
1459 rtype = elf_metag_reloc_type (type);
1460 break;
1461
1462 case EM_XC16X:
1463 case EM_C166:
1464 rtype = elf_xc16x_reloc_type (type);
1465 break;
1466
1467 case EM_TI_C6000:
1468 rtype = elf_tic6x_reloc_type (type);
1469 break;
1470
1471 case EM_TILEGX:
1472 rtype = elf_tilegx_reloc_type (type);
1473 break;
1474
1475 case EM_TILEPRO:
1476 rtype = elf_tilepro_reloc_type (type);
1477 break;
1478
1479 case EM_XGATE:
1480 rtype = elf_xgate_reloc_type (type);
1481 break;
1482
1483 case EM_ALTERA_NIOS2:
1484 rtype = elf_nios2_reloc_type (type);
1485 break;
1486 }
1487
1488 if (rtype == NULL)
1489 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1490 else
1491 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1492
1493 if (elf_header.e_machine == EM_ALPHA
1494 && rtype != NULL
1495 && streq (rtype, "R_ALPHA_LITUSE")
1496 && is_rela)
1497 {
1498 switch (rels[i].r_addend)
1499 {
1500 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1501 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1502 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1503 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1504 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1505 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1506 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1507 default: rtype = NULL;
1508 }
1509 if (rtype)
1510 printf (" (%s)", rtype);
1511 else
1512 {
1513 putchar (' ');
1514 printf (_("<unknown addend: %lx>"),
1515 (unsigned long) rels[i].r_addend);
1516 }
1517 }
1518 else if (symtab_index)
1519 {
1520 if (symtab == NULL || symtab_index >= nsyms)
1521 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1522 else
1523 {
1524 Elf_Internal_Sym * psym;
1525 const char * version_string;
1526 enum versioned_symbol_info sym_info;
1527 unsigned short vna_other;
1528
1529 psym = symtab + symtab_index;
1530
1531 version_string
1532 = get_symbol_version_string (file, is_dynsym,
1533 strtab, strtablen,
1534 symtab_index,
1535 psym,
1536 &sym_info,
1537 &vna_other);
1538
1539 printf (" ");
1540
1541 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1542 {
1543 const char * name;
1544 unsigned int len;
1545 unsigned int width = is_32bit_elf ? 8 : 14;
1546
1547 /* Relocations against GNU_IFUNC symbols do not use the value
1548 of the symbol as the address to relocate against. Instead
1549 they invoke the function named by the symbol and use its
1550 result as the address for relocation.
1551
1552 To indicate this to the user, do not display the value of
1553 the symbol in the "Symbols's Value" field. Instead show
1554 its name followed by () as a hint that the symbol is
1555 invoked. */
1556
1557 if (strtab == NULL
1558 || psym->st_name == 0
1559 || psym->st_name >= strtablen)
1560 name = "??";
1561 else
1562 name = strtab + psym->st_name;
1563
1564 len = print_symbol (width, name);
1565 if (version_string)
1566 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1567 version_string);
1568 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1569 }
1570 else
1571 {
1572 print_vma (psym->st_value, LONG_HEX);
1573
1574 printf (is_32bit_elf ? " " : " ");
1575 }
1576
1577 if (psym->st_name == 0)
1578 {
1579 const char * sec_name = "<null>";
1580 char name_buf[40];
1581
1582 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1583 {
1584 if (psym->st_shndx < elf_header.e_shnum)
1585 sec_name = SECTION_NAME (section_headers + psym->st_shndx);
1586 else if (psym->st_shndx == SHN_ABS)
1587 sec_name = "ABS";
1588 else if (psym->st_shndx == SHN_COMMON)
1589 sec_name = "COMMON";
1590 else if ((elf_header.e_machine == EM_MIPS
1591 && psym->st_shndx == SHN_MIPS_SCOMMON)
1592 || (elf_header.e_machine == EM_TI_C6000
1593 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1594 sec_name = "SCOMMON";
1595 else if (elf_header.e_machine == EM_MIPS
1596 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1597 sec_name = "SUNDEF";
1598 else if ((elf_header.e_machine == EM_X86_64
1599 || elf_header.e_machine == EM_L1OM
1600 || elf_header.e_machine == EM_K1OM)
1601 && psym->st_shndx == SHN_X86_64_LCOMMON)
1602 sec_name = "LARGE_COMMON";
1603 else if (elf_header.e_machine == EM_IA_64
1604 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1605 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1606 sec_name = "ANSI_COM";
1607 else if (is_ia64_vms ()
1608 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1609 sec_name = "VMS_SYMVEC";
1610 else
1611 {
1612 sprintf (name_buf, "<section 0x%x>",
1613 (unsigned int) psym->st_shndx);
1614 sec_name = name_buf;
1615 }
1616 }
1617 print_symbol (22, sec_name);
1618 }
1619 else if (strtab == NULL)
1620 printf (_("<string table index: %3ld>"), psym->st_name);
1621 else if (psym->st_name >= strtablen)
1622 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1623 else
1624 {
1625 print_symbol (22, strtab + psym->st_name);
1626 if (version_string)
1627 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1628 version_string);
1629 }
1630
1631 if (is_rela)
1632 {
1633 bfd_vma off = rels[i].r_addend;
1634
1635 if ((bfd_signed_vma) off < 0)
1636 printf (" - %" BFD_VMA_FMT "x", - off);
1637 else
1638 printf (" + %" BFD_VMA_FMT "x", off);
1639 }
1640 }
1641 }
1642 else if (is_rela)
1643 {
1644 bfd_vma off = rels[i].r_addend;
1645
1646 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1647 if ((bfd_signed_vma) off < 0)
1648 printf ("-%" BFD_VMA_FMT "x", - off);
1649 else
1650 printf ("%" BFD_VMA_FMT "x", off);
1651 }
1652
1653 if (elf_header.e_machine == EM_SPARCV9
1654 && rtype != NULL
1655 && streq (rtype, "R_SPARC_OLO10"))
1656 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1657
1658 putchar ('\n');
1659
1660 #ifdef BFD64
1661 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1662 {
1663 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1664 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1665 const char * rtype2 = elf_mips_reloc_type (type2);
1666 const char * rtype3 = elf_mips_reloc_type (type3);
1667
1668 printf (" Type2: ");
1669
1670 if (rtype2 == NULL)
1671 printf (_("unrecognized: %-7lx"),
1672 (unsigned long) type2 & 0xffffffff);
1673 else
1674 printf ("%-17.17s", rtype2);
1675
1676 printf ("\n Type3: ");
1677
1678 if (rtype3 == NULL)
1679 printf (_("unrecognized: %-7lx"),
1680 (unsigned long) type3 & 0xffffffff);
1681 else
1682 printf ("%-17.17s", rtype3);
1683
1684 putchar ('\n');
1685 }
1686 #endif /* BFD64 */
1687 }
1688
1689 free (rels);
1690 }
1691
1692 static const char *
1693 get_mips_dynamic_type (unsigned long type)
1694 {
1695 switch (type)
1696 {
1697 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1698 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1699 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1700 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1701 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1702 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1703 case DT_MIPS_MSYM: return "MIPS_MSYM";
1704 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1705 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1706 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1707 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1708 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1709 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1710 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1711 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1712 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1713 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1714 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1715 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1716 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1717 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1718 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1719 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1720 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1721 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1722 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1723 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1724 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1725 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1726 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1727 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1728 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1729 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1730 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1731 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1732 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1733 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1734 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1735 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1736 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1737 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1738 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1739 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1740 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1741 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1742 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1743 default:
1744 return NULL;
1745 }
1746 }
1747
1748 static const char *
1749 get_sparc64_dynamic_type (unsigned long type)
1750 {
1751 switch (type)
1752 {
1753 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1754 default:
1755 return NULL;
1756 }
1757 }
1758
1759 static const char *
1760 get_ppc_dynamic_type (unsigned long type)
1761 {
1762 switch (type)
1763 {
1764 case DT_PPC_GOT: return "PPC_GOT";
1765 case DT_PPC_OPT: return "PPC_OPT";
1766 default:
1767 return NULL;
1768 }
1769 }
1770
1771 static const char *
1772 get_ppc64_dynamic_type (unsigned long type)
1773 {
1774 switch (type)
1775 {
1776 case DT_PPC64_GLINK: return "PPC64_GLINK";
1777 case DT_PPC64_OPD: return "PPC64_OPD";
1778 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1779 case DT_PPC64_OPT: return "PPC64_OPT";
1780 default:
1781 return NULL;
1782 }
1783 }
1784
1785 static const char *
1786 get_parisc_dynamic_type (unsigned long type)
1787 {
1788 switch (type)
1789 {
1790 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1791 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1792 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1793 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1794 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1795 case DT_HP_PREINIT: return "HP_PREINIT";
1796 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1797 case DT_HP_NEEDED: return "HP_NEEDED";
1798 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1799 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1800 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1801 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1802 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1803 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1804 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1805 case DT_HP_FILTERED: return "HP_FILTERED";
1806 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1807 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1808 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1809 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1810 case DT_PLT: return "PLT";
1811 case DT_PLT_SIZE: return "PLT_SIZE";
1812 case DT_DLT: return "DLT";
1813 case DT_DLT_SIZE: return "DLT_SIZE";
1814 default:
1815 return NULL;
1816 }
1817 }
1818
1819 static const char *
1820 get_ia64_dynamic_type (unsigned long type)
1821 {
1822 switch (type)
1823 {
1824 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1825 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1826 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1827 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1828 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1829 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1830 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1831 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1832 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1833 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1834 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1835 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1836 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1837 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1838 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1839 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1840 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1841 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1842 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1843 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1844 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1845 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1846 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1847 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1848 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1849 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1850 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1851 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1852 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1853 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1854 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1855 default:
1856 return NULL;
1857 }
1858 }
1859
1860 static const char *
1861 get_solaris_section_type (unsigned long type)
1862 {
1863 switch (type)
1864 {
1865 case 0x6fffffee: return "SUNW_ancillary";
1866 case 0x6fffffef: return "SUNW_capchain";
1867 case 0x6ffffff0: return "SUNW_capinfo";
1868 case 0x6ffffff1: return "SUNW_symsort";
1869 case 0x6ffffff2: return "SUNW_tlssort";
1870 case 0x6ffffff3: return "SUNW_LDYNSYM";
1871 case 0x6ffffff4: return "SUNW_dof";
1872 case 0x6ffffff5: return "SUNW_cap";
1873 case 0x6ffffff6: return "SUNW_SIGNATURE";
1874 case 0x6ffffff7: return "SUNW_ANNOTATE";
1875 case 0x6ffffff8: return "SUNW_DEBUGSTR";
1876 case 0x6ffffff9: return "SUNW_DEBUG";
1877 case 0x6ffffffa: return "SUNW_move";
1878 case 0x6ffffffb: return "SUNW_COMDAT";
1879 case 0x6ffffffc: return "SUNW_syminfo";
1880 case 0x6ffffffd: return "SUNW_verdef";
1881 case 0x6ffffffe: return "SUNW_verneed";
1882 case 0x6fffffff: return "SUNW_versym";
1883 case 0x70000000: return "SPARC_GOTDATA";
1884 default: return NULL;
1885 }
1886 }
1887
1888 static const char *
1889 get_alpha_dynamic_type (unsigned long type)
1890 {
1891 switch (type)
1892 {
1893 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1894 default:
1895 return NULL;
1896 }
1897 }
1898
1899 static const char *
1900 get_score_dynamic_type (unsigned long type)
1901 {
1902 switch (type)
1903 {
1904 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1905 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1906 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1907 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1908 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1909 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1910 default:
1911 return NULL;
1912 }
1913 }
1914
1915 static const char *
1916 get_tic6x_dynamic_type (unsigned long type)
1917 {
1918 switch (type)
1919 {
1920 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1921 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1922 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1923 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1924 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1925 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1926 default:
1927 return NULL;
1928 }
1929 }
1930
1931 static const char *
1932 get_nios2_dynamic_type (unsigned long type)
1933 {
1934 switch (type)
1935 {
1936 case DT_NIOS2_GP: return "NIOS2_GP";
1937 default:
1938 return NULL;
1939 }
1940 }
1941
1942 static const char *
1943 get_solaris_dynamic_type (unsigned long type)
1944 {
1945 switch (type)
1946 {
1947 case 0x6000000d: return "SUNW_AUXILIARY";
1948 case 0x6000000e: return "SUNW_RTLDINF";
1949 case 0x6000000f: return "SUNW_FILTER";
1950 case 0x60000010: return "SUNW_CAP";
1951 case 0x60000011: return "SUNW_SYMTAB";
1952 case 0x60000012: return "SUNW_SYMSZ";
1953 case 0x60000013: return "SUNW_SORTENT";
1954 case 0x60000014: return "SUNW_SYMSORT";
1955 case 0x60000015: return "SUNW_SYMSORTSZ";
1956 case 0x60000016: return "SUNW_TLSSORT";
1957 case 0x60000017: return "SUNW_TLSSORTSZ";
1958 case 0x60000018: return "SUNW_CAPINFO";
1959 case 0x60000019: return "SUNW_STRPAD";
1960 case 0x6000001a: return "SUNW_CAPCHAIN";
1961 case 0x6000001b: return "SUNW_LDMACH";
1962 case 0x6000001d: return "SUNW_CAPCHAINENT";
1963 case 0x6000001f: return "SUNW_CAPCHAINSZ";
1964 case 0x60000021: return "SUNW_PARENT";
1965 case 0x60000023: return "SUNW_ASLR";
1966 case 0x60000025: return "SUNW_RELAX";
1967 case 0x60000029: return "SUNW_NXHEAP";
1968 case 0x6000002b: return "SUNW_NXSTACK";
1969
1970 case 0x70000001: return "SPARC_REGISTER";
1971 case 0x7ffffffd: return "AUXILIARY";
1972 case 0x7ffffffe: return "USED";
1973 case 0x7fffffff: return "FILTER";
1974
1975 default: return NULL;
1976 }
1977 }
1978
1979 static const char *
1980 get_dynamic_type (unsigned long type)
1981 {
1982 static char buff[64];
1983
1984 switch (type)
1985 {
1986 case DT_NULL: return "NULL";
1987 case DT_NEEDED: return "NEEDED";
1988 case DT_PLTRELSZ: return "PLTRELSZ";
1989 case DT_PLTGOT: return "PLTGOT";
1990 case DT_HASH: return "HASH";
1991 case DT_STRTAB: return "STRTAB";
1992 case DT_SYMTAB: return "SYMTAB";
1993 case DT_RELA: return "RELA";
1994 case DT_RELASZ: return "RELASZ";
1995 case DT_RELAENT: return "RELAENT";
1996 case DT_STRSZ: return "STRSZ";
1997 case DT_SYMENT: return "SYMENT";
1998 case DT_INIT: return "INIT";
1999 case DT_FINI: return "FINI";
2000 case DT_SONAME: return "SONAME";
2001 case DT_RPATH: return "RPATH";
2002 case DT_SYMBOLIC: return "SYMBOLIC";
2003 case DT_REL: return "REL";
2004 case DT_RELSZ: return "RELSZ";
2005 case DT_RELENT: return "RELENT";
2006 case DT_PLTREL: return "PLTREL";
2007 case DT_DEBUG: return "DEBUG";
2008 case DT_TEXTREL: return "TEXTREL";
2009 case DT_JMPREL: return "JMPREL";
2010 case DT_BIND_NOW: return "BIND_NOW";
2011 case DT_INIT_ARRAY: return "INIT_ARRAY";
2012 case DT_FINI_ARRAY: return "FINI_ARRAY";
2013 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2014 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2015 case DT_RUNPATH: return "RUNPATH";
2016 case DT_FLAGS: return "FLAGS";
2017
2018 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2019 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2020 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2021
2022 case DT_CHECKSUM: return "CHECKSUM";
2023 case DT_PLTPADSZ: return "PLTPADSZ";
2024 case DT_MOVEENT: return "MOVEENT";
2025 case DT_MOVESZ: return "MOVESZ";
2026 case DT_FEATURE: return "FEATURE";
2027 case DT_POSFLAG_1: return "POSFLAG_1";
2028 case DT_SYMINSZ: return "SYMINSZ";
2029 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2030
2031 case DT_ADDRRNGLO: return "ADDRRNGLO";
2032 case DT_CONFIG: return "CONFIG";
2033 case DT_DEPAUDIT: return "DEPAUDIT";
2034 case DT_AUDIT: return "AUDIT";
2035 case DT_PLTPAD: return "PLTPAD";
2036 case DT_MOVETAB: return "MOVETAB";
2037 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2038
2039 case DT_VERSYM: return "VERSYM";
2040
2041 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2042 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2043 case DT_RELACOUNT: return "RELACOUNT";
2044 case DT_RELCOUNT: return "RELCOUNT";
2045 case DT_FLAGS_1: return "FLAGS_1";
2046 case DT_VERDEF: return "VERDEF";
2047 case DT_VERDEFNUM: return "VERDEFNUM";
2048 case DT_VERNEED: return "VERNEED";
2049 case DT_VERNEEDNUM: return "VERNEEDNUM";
2050
2051 case DT_AUXILIARY: return "AUXILIARY";
2052 case DT_USED: return "USED";
2053 case DT_FILTER: return "FILTER";
2054
2055 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2056 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2057 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2058 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2059 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2060 case DT_GNU_HASH: return "GNU_HASH";
2061
2062 default:
2063 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2064 {
2065 const char * result;
2066
2067 switch (elf_header.e_machine)
2068 {
2069 case EM_MIPS:
2070 case EM_MIPS_RS3_LE:
2071 result = get_mips_dynamic_type (type);
2072 break;
2073 case EM_SPARCV9:
2074 result = get_sparc64_dynamic_type (type);
2075 break;
2076 case EM_PPC:
2077 result = get_ppc_dynamic_type (type);
2078 break;
2079 case EM_PPC64:
2080 result = get_ppc64_dynamic_type (type);
2081 break;
2082 case EM_IA_64:
2083 result = get_ia64_dynamic_type (type);
2084 break;
2085 case EM_ALPHA:
2086 result = get_alpha_dynamic_type (type);
2087 break;
2088 case EM_SCORE:
2089 result = get_score_dynamic_type (type);
2090 break;
2091 case EM_TI_C6000:
2092 result = get_tic6x_dynamic_type (type);
2093 break;
2094 case EM_ALTERA_NIOS2:
2095 result = get_nios2_dynamic_type (type);
2096 break;
2097 default:
2098 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2099 result = get_solaris_dynamic_type (type);
2100 else
2101 result = NULL;
2102 break;
2103 }
2104
2105 if (result != NULL)
2106 return result;
2107
2108 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2109 }
2110 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2111 || (elf_header.e_machine == EM_PARISC
2112 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2113 {
2114 const char * result;
2115
2116 switch (elf_header.e_machine)
2117 {
2118 case EM_PARISC:
2119 result = get_parisc_dynamic_type (type);
2120 break;
2121 case EM_IA_64:
2122 result = get_ia64_dynamic_type (type);
2123 break;
2124 default:
2125 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2126 result = get_solaris_dynamic_type (type);
2127 else
2128 result = NULL;
2129 break;
2130 }
2131
2132 if (result != NULL)
2133 return result;
2134
2135 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2136 type);
2137 }
2138 else
2139 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2140
2141 return buff;
2142 }
2143 }
2144
2145 static char *
2146 get_file_type (unsigned e_type)
2147 {
2148 static char buff[32];
2149
2150 switch (e_type)
2151 {
2152 case ET_NONE: return _("NONE (None)");
2153 case ET_REL: return _("REL (Relocatable file)");
2154 case ET_EXEC: return _("EXEC (Executable file)");
2155 case ET_DYN: return _("DYN (Shared object file)");
2156 case ET_CORE: return _("CORE (Core file)");
2157
2158 default:
2159 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2160 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2161 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2162 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2163 else
2164 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2165 return buff;
2166 }
2167 }
2168
2169 static char *
2170 get_machine_name (unsigned e_machine)
2171 {
2172 static char buff[64]; /* XXX */
2173
2174 switch (e_machine)
2175 {
2176 case EM_NONE: return _("None");
2177 case EM_AARCH64: return "AArch64";
2178 case EM_M32: return "WE32100";
2179 case EM_SPARC: return "Sparc";
2180 case EM_SPU: return "SPU";
2181 case EM_386: return "Intel 80386";
2182 case EM_68K: return "MC68000";
2183 case EM_88K: return "MC88000";
2184 case EM_IAMCU: return "Intel MCU";
2185 case EM_860: return "Intel 80860";
2186 case EM_MIPS: return "MIPS R3000";
2187 case EM_S370: return "IBM System/370";
2188 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2189 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2190 case EM_PARISC: return "HPPA";
2191 case EM_PPC_OLD: return "Power PC (old)";
2192 case EM_SPARC32PLUS: return "Sparc v8+" ;
2193 case EM_960: return "Intel 90860";
2194 case EM_PPC: return "PowerPC";
2195 case EM_PPC64: return "PowerPC64";
2196 case EM_FR20: return "Fujitsu FR20";
2197 case EM_FT32: return "FTDI FT32";
2198 case EM_RH32: return "TRW RH32";
2199 case EM_MCORE: return "MCORE";
2200 case EM_ARM: return "ARM";
2201 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2202 case EM_SH: return "Renesas / SuperH SH";
2203 case EM_SPARCV9: return "Sparc v9";
2204 case EM_TRICORE: return "Siemens Tricore";
2205 case EM_ARC: return "ARC";
2206 case EM_ARC_COMPACT: return "ARCompact";
2207 case EM_ARC_COMPACT2: return "ARCv2";
2208 case EM_H8_300: return "Renesas H8/300";
2209 case EM_H8_300H: return "Renesas H8/300H";
2210 case EM_H8S: return "Renesas H8S";
2211 case EM_H8_500: return "Renesas H8/500";
2212 case EM_IA_64: return "Intel IA-64";
2213 case EM_MIPS_X: return "Stanford MIPS-X";
2214 case EM_COLDFIRE: return "Motorola Coldfire";
2215 case EM_ALPHA: return "Alpha";
2216 case EM_CYGNUS_D10V:
2217 case EM_D10V: return "d10v";
2218 case EM_CYGNUS_D30V:
2219 case EM_D30V: return "d30v";
2220 case EM_CYGNUS_M32R:
2221 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2222 case EM_CYGNUS_V850:
2223 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2224 case EM_V850: return "Renesas V850";
2225 case EM_CYGNUS_MN10300:
2226 case EM_MN10300: return "mn10300";
2227 case EM_CYGNUS_MN10200:
2228 case EM_MN10200: return "mn10200";
2229 case EM_MOXIE: return "Moxie";
2230 case EM_CYGNUS_FR30:
2231 case EM_FR30: return "Fujitsu FR30";
2232 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2233 case EM_PJ_OLD:
2234 case EM_PJ: return "picoJava";
2235 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2236 case EM_PCP: return "Siemens PCP";
2237 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2238 case EM_NDR1: return "Denso NDR1 microprocesspr";
2239 case EM_STARCORE: return "Motorola Star*Core processor";
2240 case EM_ME16: return "Toyota ME16 processor";
2241 case EM_ST100: return "STMicroelectronics ST100 processor";
2242 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2243 case EM_PDSP: return "Sony DSP processor";
2244 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2245 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2246 case EM_FX66: return "Siemens FX66 microcontroller";
2247 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2248 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2249 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2250 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2251 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2252 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2253 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2254 case EM_SVX: return "Silicon Graphics SVx";
2255 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2256 case EM_VAX: return "Digital VAX";
2257 case EM_VISIUM: return "CDS VISIUMcore processor";
2258 case EM_AVR_OLD:
2259 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2260 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2261 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2262 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2263 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2264 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2265 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2266 case EM_PRISM: return "Vitesse Prism";
2267 case EM_X86_64: return "Advanced Micro Devices X86-64";
2268 case EM_L1OM: return "Intel L1OM";
2269 case EM_K1OM: return "Intel K1OM";
2270 case EM_S390_OLD:
2271 case EM_S390: return "IBM S/390";
2272 case EM_SCORE: return "SUNPLUS S+Core";
2273 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2274 case EM_OR1K: return "OpenRISC 1000";
2275 case EM_CRX: return "National Semiconductor CRX microprocessor";
2276 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2277 case EM_DLX: return "OpenDLX";
2278 case EM_IP2K_OLD:
2279 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2280 case EM_IQ2000: return "Vitesse IQ2000";
2281 case EM_XTENSA_OLD:
2282 case EM_XTENSA: return "Tensilica Xtensa Processor";
2283 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2284 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2285 case EM_NS32K: return "National Semiconductor 32000 series";
2286 case EM_TPC: return "Tenor Network TPC processor";
2287 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2288 case EM_MAX: return "MAX Processor";
2289 case EM_CR: return "National Semiconductor CompactRISC";
2290 case EM_F2MC16: return "Fujitsu F2MC16";
2291 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2292 case EM_LATTICEMICO32: return "Lattice Mico32";
2293 case EM_M32C_OLD:
2294 case EM_M32C: return "Renesas M32c";
2295 case EM_MT: return "Morpho Techologies MT processor";
2296 case EM_BLACKFIN: return "Analog Devices Blackfin";
2297 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2298 case EM_SEP: return "Sharp embedded microprocessor";
2299 case EM_ARCA: return "Arca RISC microprocessor";
2300 case EM_UNICORE: return "Unicore";
2301 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2302 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2303 case EM_NIOS32: return "Altera Nios";
2304 case EM_ALTERA_NIOS2: return "Altera Nios II";
2305 case EM_C166:
2306 case EM_XC16X: return "Infineon Technologies xc16x";
2307 case EM_M16C: return "Renesas M16C series microprocessors";
2308 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2309 case EM_CE: return "Freescale Communication Engine RISC core";
2310 case EM_TSK3000: return "Altium TSK3000 core";
2311 case EM_RS08: return "Freescale RS08 embedded processor";
2312 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2313 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2314 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2315 case EM_SE_C17: return "Seiko Epson C17 family";
2316 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2317 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2318 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2319 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2320 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2321 case EM_R32C: return "Renesas R32C series microprocessors";
2322 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2323 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2324 case EM_8051: return "Intel 8051 and variants";
2325 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2326 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2327 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2328 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2329 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2330 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2331 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2332 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2333 case EM_CR16:
2334 case EM_MICROBLAZE:
2335 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2336 case EM_RISCV: return "RISC-V";
2337 case EM_RL78: return "Renesas RL78";
2338 case EM_RX: return "Renesas RX";
2339 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2340 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2341 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2342 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2343 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2344 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
2345 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2346 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2347 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2348 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2349 case EM_CUDA: return "NVIDIA CUDA architecture";
2350 case EM_XGATE: return "Motorola XGATE embedded processor";
2351 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2352 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2353 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2354 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2355 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2356 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2357 case EM_BA1: return "Beyond BA1 CPU architecture";
2358 case EM_BA2: return "Beyond BA2 CPU architecture";
2359 case EM_XCORE: return "XMOS xCORE processor family";
2360 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2361 case EM_KM32: return "KM211 KM32 32-bit processor";
2362 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2363 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2364 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2365 case EM_KVARC: return "KM211 KVARC processor";
2366 case EM_CDP: return "Paneve CDP architecture family";
2367 case EM_COGE: return "Cognitive Smart Memory Processor";
2368 case EM_COOL: return "Bluechip Systems CoolEngine";
2369 case EM_NORC: return "Nanoradio Optimized RISC";
2370 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2371 case EM_Z80: return "Zilog Z80";
2372 case EM_AMDGPU: return "AMD GPU architecture";
2373 default:
2374 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2375 return buff;
2376 }
2377 }
2378
2379 static void
2380 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2381 {
2382 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2383 other compilers don't a specific architecture type in the e_flags, and
2384 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2385 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2386 architectures.
2387
2388 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2389 but also sets a specific architecture type in the e_flags field.
2390
2391 However, when decoding the flags we don't worry if we see an
2392 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2393 ARCEM architecture type. */
2394
2395 switch (e_flags & EF_ARC_MACH_MSK)
2396 {
2397 /* We only expect these to occur for EM_ARC_COMPACT2. */
2398 case EF_ARC_CPU_ARCV2EM:
2399 strcat (buf, ", ARC EM");
2400 break;
2401 case EF_ARC_CPU_ARCV2HS:
2402 strcat (buf, ", ARC HS");
2403 break;
2404
2405 /* We only expect these to occur for EM_ARC_COMPACT. */
2406 case E_ARC_MACH_ARC600:
2407 strcat (buf, ", ARC600");
2408 break;
2409 case E_ARC_MACH_ARC601:
2410 strcat (buf, ", ARC601");
2411 break;
2412 case E_ARC_MACH_ARC700:
2413 strcat (buf, ", ARC700");
2414 break;
2415
2416 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2417 new ELF with new architecture being read by an old version of
2418 readelf, or (c) An ELF built with non-GNU compiler that does not
2419 set the architecture in the e_flags. */
2420 default:
2421 if (e_machine == EM_ARC_COMPACT)
2422 strcat (buf, ", Unknown ARCompact");
2423 else
2424 strcat (buf, ", Unknown ARC");
2425 break;
2426 }
2427
2428 switch (e_flags & EF_ARC_OSABI_MSK)
2429 {
2430 case E_ARC_OSABI_ORIG:
2431 strcat (buf, ", (ABI:legacy)");
2432 break;
2433 case E_ARC_OSABI_V2:
2434 strcat (buf, ", (ABI:v2)");
2435 break;
2436 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2437 case E_ARC_OSABI_V3:
2438 strcat (buf, ", v3 no-legacy-syscalls ABI");
2439 break;
2440 default:
2441 strcat (buf, ", unrecognised ARC OSABI flag");
2442 break;
2443 }
2444 }
2445
2446 static void
2447 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2448 {
2449 unsigned eabi;
2450 int unknown = 0;
2451
2452 eabi = EF_ARM_EABI_VERSION (e_flags);
2453 e_flags &= ~ EF_ARM_EABIMASK;
2454
2455 /* Handle "generic" ARM flags. */
2456 if (e_flags & EF_ARM_RELEXEC)
2457 {
2458 strcat (buf, ", relocatable executable");
2459 e_flags &= ~ EF_ARM_RELEXEC;
2460 }
2461
2462 /* Now handle EABI specific flags. */
2463 switch (eabi)
2464 {
2465 default:
2466 strcat (buf, ", <unrecognized EABI>");
2467 if (e_flags)
2468 unknown = 1;
2469 break;
2470
2471 case EF_ARM_EABI_VER1:
2472 strcat (buf, ", Version1 EABI");
2473 while (e_flags)
2474 {
2475 unsigned flag;
2476
2477 /* Process flags one bit at a time. */
2478 flag = e_flags & - e_flags;
2479 e_flags &= ~ flag;
2480
2481 switch (flag)
2482 {
2483 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2484 strcat (buf, ", sorted symbol tables");
2485 break;
2486
2487 default:
2488 unknown = 1;
2489 break;
2490 }
2491 }
2492 break;
2493
2494 case EF_ARM_EABI_VER2:
2495 strcat (buf, ", Version2 EABI");
2496 while (e_flags)
2497 {
2498 unsigned flag;
2499
2500 /* Process flags one bit at a time. */
2501 flag = e_flags & - e_flags;
2502 e_flags &= ~ flag;
2503
2504 switch (flag)
2505 {
2506 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2507 strcat (buf, ", sorted symbol tables");
2508 break;
2509
2510 case EF_ARM_DYNSYMSUSESEGIDX:
2511 strcat (buf, ", dynamic symbols use segment index");
2512 break;
2513
2514 case EF_ARM_MAPSYMSFIRST:
2515 strcat (buf, ", mapping symbols precede others");
2516 break;
2517
2518 default:
2519 unknown = 1;
2520 break;
2521 }
2522 }
2523 break;
2524
2525 case EF_ARM_EABI_VER3:
2526 strcat (buf, ", Version3 EABI");
2527 break;
2528
2529 case EF_ARM_EABI_VER4:
2530 strcat (buf, ", Version4 EABI");
2531 while (e_flags)
2532 {
2533 unsigned flag;
2534
2535 /* Process flags one bit at a time. */
2536 flag = e_flags & - e_flags;
2537 e_flags &= ~ flag;
2538
2539 switch (flag)
2540 {
2541 case EF_ARM_BE8:
2542 strcat (buf, ", BE8");
2543 break;
2544
2545 case EF_ARM_LE8:
2546 strcat (buf, ", LE8");
2547 break;
2548
2549 default:
2550 unknown = 1;
2551 break;
2552 }
2553 break;
2554 }
2555 break;
2556
2557 case EF_ARM_EABI_VER5:
2558 strcat (buf, ", Version5 EABI");
2559 while (e_flags)
2560 {
2561 unsigned flag;
2562
2563 /* Process flags one bit at a time. */
2564 flag = e_flags & - e_flags;
2565 e_flags &= ~ flag;
2566
2567 switch (flag)
2568 {
2569 case EF_ARM_BE8:
2570 strcat (buf, ", BE8");
2571 break;
2572
2573 case EF_ARM_LE8:
2574 strcat (buf, ", LE8");
2575 break;
2576
2577 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2578 strcat (buf, ", soft-float ABI");
2579 break;
2580
2581 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2582 strcat (buf, ", hard-float ABI");
2583 break;
2584
2585 default:
2586 unknown = 1;
2587 break;
2588 }
2589 }
2590 break;
2591
2592 case EF_ARM_EABI_UNKNOWN:
2593 strcat (buf, ", GNU EABI");
2594 while (e_flags)
2595 {
2596 unsigned flag;
2597
2598 /* Process flags one bit at a time. */
2599 flag = e_flags & - e_flags;
2600 e_flags &= ~ flag;
2601
2602 switch (flag)
2603 {
2604 case EF_ARM_INTERWORK:
2605 strcat (buf, ", interworking enabled");
2606 break;
2607
2608 case EF_ARM_APCS_26:
2609 strcat (buf, ", uses APCS/26");
2610 break;
2611
2612 case EF_ARM_APCS_FLOAT:
2613 strcat (buf, ", uses APCS/float");
2614 break;
2615
2616 case EF_ARM_PIC:
2617 strcat (buf, ", position independent");
2618 break;
2619
2620 case EF_ARM_ALIGN8:
2621 strcat (buf, ", 8 bit structure alignment");
2622 break;
2623
2624 case EF_ARM_NEW_ABI:
2625 strcat (buf, ", uses new ABI");
2626 break;
2627
2628 case EF_ARM_OLD_ABI:
2629 strcat (buf, ", uses old ABI");
2630 break;
2631
2632 case EF_ARM_SOFT_FLOAT:
2633 strcat (buf, ", software FP");
2634 break;
2635
2636 case EF_ARM_VFP_FLOAT:
2637 strcat (buf, ", VFP");
2638 break;
2639
2640 case EF_ARM_MAVERICK_FLOAT:
2641 strcat (buf, ", Maverick FP");
2642 break;
2643
2644 default:
2645 unknown = 1;
2646 break;
2647 }
2648 }
2649 }
2650
2651 if (unknown)
2652 strcat (buf,_(", <unknown>"));
2653 }
2654
2655 static void
2656 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2657 {
2658 --size; /* Leave space for null terminator. */
2659
2660 switch (e_flags & EF_AVR_MACH)
2661 {
2662 case E_AVR_MACH_AVR1:
2663 strncat (buf, ", avr:1", size);
2664 break;
2665 case E_AVR_MACH_AVR2:
2666 strncat (buf, ", avr:2", size);
2667 break;
2668 case E_AVR_MACH_AVR25:
2669 strncat (buf, ", avr:25", size);
2670 break;
2671 case E_AVR_MACH_AVR3:
2672 strncat (buf, ", avr:3", size);
2673 break;
2674 case E_AVR_MACH_AVR31:
2675 strncat (buf, ", avr:31", size);
2676 break;
2677 case E_AVR_MACH_AVR35:
2678 strncat (buf, ", avr:35", size);
2679 break;
2680 case E_AVR_MACH_AVR4:
2681 strncat (buf, ", avr:4", size);
2682 break;
2683 case E_AVR_MACH_AVR5:
2684 strncat (buf, ", avr:5", size);
2685 break;
2686 case E_AVR_MACH_AVR51:
2687 strncat (buf, ", avr:51", size);
2688 break;
2689 case E_AVR_MACH_AVR6:
2690 strncat (buf, ", avr:6", size);
2691 break;
2692 case E_AVR_MACH_AVRTINY:
2693 strncat (buf, ", avr:100", size);
2694 break;
2695 case E_AVR_MACH_XMEGA1:
2696 strncat (buf, ", avr:101", size);
2697 break;
2698 case E_AVR_MACH_XMEGA2:
2699 strncat (buf, ", avr:102", size);
2700 break;
2701 case E_AVR_MACH_XMEGA3:
2702 strncat (buf, ", avr:103", size);
2703 break;
2704 case E_AVR_MACH_XMEGA4:
2705 strncat (buf, ", avr:104", size);
2706 break;
2707 case E_AVR_MACH_XMEGA5:
2708 strncat (buf, ", avr:105", size);
2709 break;
2710 case E_AVR_MACH_XMEGA6:
2711 strncat (buf, ", avr:106", size);
2712 break;
2713 case E_AVR_MACH_XMEGA7:
2714 strncat (buf, ", avr:107", size);
2715 break;
2716 default:
2717 strncat (buf, ", avr:<unknown>", size);
2718 break;
2719 }
2720
2721 size -= strlen (buf);
2722 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2723 strncat (buf, ", link-relax", size);
2724 }
2725
2726 static void
2727 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2728 {
2729 unsigned abi;
2730 unsigned arch;
2731 unsigned config;
2732 unsigned version;
2733 int has_fpu = 0;
2734 int r = 0;
2735
2736 static const char *ABI_STRINGS[] =
2737 {
2738 "ABI v0", /* use r5 as return register; only used in N1213HC */
2739 "ABI v1", /* use r0 as return register */
2740 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2741 "ABI v2fp", /* for FPU */
2742 "AABI",
2743 "ABI2 FP+"
2744 };
2745 static const char *VER_STRINGS[] =
2746 {
2747 "Andes ELF V1.3 or older",
2748 "Andes ELF V1.3.1",
2749 "Andes ELF V1.4"
2750 };
2751 static const char *ARCH_STRINGS[] =
2752 {
2753 "",
2754 "Andes Star v1.0",
2755 "Andes Star v2.0",
2756 "Andes Star v3.0",
2757 "Andes Star v3.0m"
2758 };
2759
2760 abi = EF_NDS_ABI & e_flags;
2761 arch = EF_NDS_ARCH & e_flags;
2762 config = EF_NDS_INST & e_flags;
2763 version = EF_NDS32_ELF_VERSION & e_flags;
2764
2765 memset (buf, 0, size);
2766
2767 switch (abi)
2768 {
2769 case E_NDS_ABI_V0:
2770 case E_NDS_ABI_V1:
2771 case E_NDS_ABI_V2:
2772 case E_NDS_ABI_V2FP:
2773 case E_NDS_ABI_AABI:
2774 case E_NDS_ABI_V2FP_PLUS:
2775 /* In case there are holes in the array. */
2776 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2777 break;
2778
2779 default:
2780 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2781 break;
2782 }
2783
2784 switch (version)
2785 {
2786 case E_NDS32_ELF_VER_1_2:
2787 case E_NDS32_ELF_VER_1_3:
2788 case E_NDS32_ELF_VER_1_4:
2789 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2790 break;
2791
2792 default:
2793 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2794 break;
2795 }
2796
2797 if (E_NDS_ABI_V0 == abi)
2798 {
2799 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2800 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2801 if (arch == E_NDS_ARCH_STAR_V1_0)
2802 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2803 return;
2804 }
2805
2806 switch (arch)
2807 {
2808 case E_NDS_ARCH_STAR_V1_0:
2809 case E_NDS_ARCH_STAR_V2_0:
2810 case E_NDS_ARCH_STAR_V3_0:
2811 case E_NDS_ARCH_STAR_V3_M:
2812 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2813 break;
2814
2815 default:
2816 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2817 /* ARCH version determines how the e_flags are interpreted.
2818 If it is unknown, we cannot proceed. */
2819 return;
2820 }
2821
2822 /* Newer ABI; Now handle architecture specific flags. */
2823 if (arch == E_NDS_ARCH_STAR_V1_0)
2824 {
2825 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2826 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2827
2828 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2829 r += snprintf (buf + r, size -r, ", MAC");
2830
2831 if (config & E_NDS32_HAS_DIV_INST)
2832 r += snprintf (buf + r, size -r, ", DIV");
2833
2834 if (config & E_NDS32_HAS_16BIT_INST)
2835 r += snprintf (buf + r, size -r, ", 16b");
2836 }
2837 else
2838 {
2839 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2840 {
2841 if (version <= E_NDS32_ELF_VER_1_3)
2842 r += snprintf (buf + r, size -r, ", [B8]");
2843 else
2844 r += snprintf (buf + r, size -r, ", EX9");
2845 }
2846
2847 if (config & E_NDS32_HAS_MAC_DX_INST)
2848 r += snprintf (buf + r, size -r, ", MAC_DX");
2849
2850 if (config & E_NDS32_HAS_DIV_DX_INST)
2851 r += snprintf (buf + r, size -r, ", DIV_DX");
2852
2853 if (config & E_NDS32_HAS_16BIT_INST)
2854 {
2855 if (version <= E_NDS32_ELF_VER_1_3)
2856 r += snprintf (buf + r, size -r, ", 16b");
2857 else
2858 r += snprintf (buf + r, size -r, ", IFC");
2859 }
2860 }
2861
2862 if (config & E_NDS32_HAS_EXT_INST)
2863 r += snprintf (buf + r, size -r, ", PERF1");
2864
2865 if (config & E_NDS32_HAS_EXT2_INST)
2866 r += snprintf (buf + r, size -r, ", PERF2");
2867
2868 if (config & E_NDS32_HAS_FPU_INST)
2869 {
2870 has_fpu = 1;
2871 r += snprintf (buf + r, size -r, ", FPU_SP");
2872 }
2873
2874 if (config & E_NDS32_HAS_FPU_DP_INST)
2875 {
2876 has_fpu = 1;
2877 r += snprintf (buf + r, size -r, ", FPU_DP");
2878 }
2879
2880 if (config & E_NDS32_HAS_FPU_MAC_INST)
2881 {
2882 has_fpu = 1;
2883 r += snprintf (buf + r, size -r, ", FPU_MAC");
2884 }
2885
2886 if (has_fpu)
2887 {
2888 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2889 {
2890 case E_NDS32_FPU_REG_8SP_4DP:
2891 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2892 break;
2893 case E_NDS32_FPU_REG_16SP_8DP:
2894 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2895 break;
2896 case E_NDS32_FPU_REG_32SP_16DP:
2897 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2898 break;
2899 case E_NDS32_FPU_REG_32SP_32DP:
2900 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2901 break;
2902 }
2903 }
2904
2905 if (config & E_NDS32_HAS_AUDIO_INST)
2906 r += snprintf (buf + r, size -r, ", AUDIO");
2907
2908 if (config & E_NDS32_HAS_STRING_INST)
2909 r += snprintf (buf + r, size -r, ", STR");
2910
2911 if (config & E_NDS32_HAS_REDUCED_REGS)
2912 r += snprintf (buf + r, size -r, ", 16REG");
2913
2914 if (config & E_NDS32_HAS_VIDEO_INST)
2915 {
2916 if (version <= E_NDS32_ELF_VER_1_3)
2917 r += snprintf (buf + r, size -r, ", VIDEO");
2918 else
2919 r += snprintf (buf + r, size -r, ", SATURATION");
2920 }
2921
2922 if (config & E_NDS32_HAS_ENCRIPT_INST)
2923 r += snprintf (buf + r, size -r, ", ENCRP");
2924
2925 if (config & E_NDS32_HAS_L2C_INST)
2926 r += snprintf (buf + r, size -r, ", L2C");
2927 }
2928
2929 static char *
2930 get_machine_flags (unsigned e_flags, unsigned e_machine)
2931 {
2932 static char buf[1024];
2933
2934 buf[0] = '\0';
2935
2936 if (e_flags)
2937 {
2938 switch (e_machine)
2939 {
2940 default:
2941 break;
2942
2943 case EM_ARC_COMPACT2:
2944 case EM_ARC_COMPACT:
2945 decode_ARC_machine_flags (e_flags, e_machine, buf);
2946 break;
2947
2948 case EM_ARM:
2949 decode_ARM_machine_flags (e_flags, buf);
2950 break;
2951
2952 case EM_AVR:
2953 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
2954 break;
2955
2956 case EM_BLACKFIN:
2957 if (e_flags & EF_BFIN_PIC)
2958 strcat (buf, ", PIC");
2959
2960 if (e_flags & EF_BFIN_FDPIC)
2961 strcat (buf, ", FDPIC");
2962
2963 if (e_flags & EF_BFIN_CODE_IN_L1)
2964 strcat (buf, ", code in L1");
2965
2966 if (e_flags & EF_BFIN_DATA_IN_L1)
2967 strcat (buf, ", data in L1");
2968
2969 break;
2970
2971 case EM_CYGNUS_FRV:
2972 switch (e_flags & EF_FRV_CPU_MASK)
2973 {
2974 case EF_FRV_CPU_GENERIC:
2975 break;
2976
2977 default:
2978 strcat (buf, ", fr???");
2979 break;
2980
2981 case EF_FRV_CPU_FR300:
2982 strcat (buf, ", fr300");
2983 break;
2984
2985 case EF_FRV_CPU_FR400:
2986 strcat (buf, ", fr400");
2987 break;
2988 case EF_FRV_CPU_FR405:
2989 strcat (buf, ", fr405");
2990 break;
2991
2992 case EF_FRV_CPU_FR450:
2993 strcat (buf, ", fr450");
2994 break;
2995
2996 case EF_FRV_CPU_FR500:
2997 strcat (buf, ", fr500");
2998 break;
2999 case EF_FRV_CPU_FR550:
3000 strcat (buf, ", fr550");
3001 break;
3002
3003 case EF_FRV_CPU_SIMPLE:
3004 strcat (buf, ", simple");
3005 break;
3006 case EF_FRV_CPU_TOMCAT:
3007 strcat (buf, ", tomcat");
3008 break;
3009 }
3010 break;
3011
3012 case EM_68K:
3013 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3014 strcat (buf, ", m68000");
3015 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3016 strcat (buf, ", cpu32");
3017 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3018 strcat (buf, ", fido_a");
3019 else
3020 {
3021 char const * isa = _("unknown");
3022 char const * mac = _("unknown mac");
3023 char const * additional = NULL;
3024
3025 switch (e_flags & EF_M68K_CF_ISA_MASK)
3026 {
3027 case EF_M68K_CF_ISA_A_NODIV:
3028 isa = "A";
3029 additional = ", nodiv";
3030 break;
3031 case EF_M68K_CF_ISA_A:
3032 isa = "A";
3033 break;
3034 case EF_M68K_CF_ISA_A_PLUS:
3035 isa = "A+";
3036 break;
3037 case EF_M68K_CF_ISA_B_NOUSP:
3038 isa = "B";
3039 additional = ", nousp";
3040 break;
3041 case EF_M68K_CF_ISA_B:
3042 isa = "B";
3043 break;
3044 case EF_M68K_CF_ISA_C:
3045 isa = "C";
3046 break;
3047 case EF_M68K_CF_ISA_C_NODIV:
3048 isa = "C";
3049 additional = ", nodiv";
3050 break;
3051 }
3052 strcat (buf, ", cf, isa ");
3053 strcat (buf, isa);
3054 if (additional)
3055 strcat (buf, additional);
3056 if (e_flags & EF_M68K_CF_FLOAT)
3057 strcat (buf, ", float");
3058 switch (e_flags & EF_M68K_CF_MAC_MASK)
3059 {
3060 case 0:
3061 mac = NULL;
3062 break;
3063 case EF_M68K_CF_MAC:
3064 mac = "mac";
3065 break;
3066 case EF_M68K_CF_EMAC:
3067 mac = "emac";
3068 break;
3069 case EF_M68K_CF_EMAC_B:
3070 mac = "emac_b";
3071 break;
3072 }
3073 if (mac)
3074 {
3075 strcat (buf, ", ");
3076 strcat (buf, mac);
3077 }
3078 }
3079 break;
3080
3081 case EM_CYGNUS_MEP:
3082 switch (e_flags & EF_MEP_CPU_MASK)
3083 {
3084 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3085 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3086 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3087 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3088 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3089 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3090 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3091 }
3092
3093 switch (e_flags & EF_MEP_COP_MASK)
3094 {
3095 case EF_MEP_COP_NONE: break;
3096 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3097 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3098 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3099 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3100 default: strcat (buf, _("<unknown MeP copro type>")); break;
3101 }
3102
3103 if (e_flags & EF_MEP_LIBRARY)
3104 strcat (buf, ", Built for Library");
3105
3106 if (e_flags & EF_MEP_INDEX_MASK)
3107 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3108 e_flags & EF_MEP_INDEX_MASK);
3109
3110 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3111 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3112 e_flags & ~ EF_MEP_ALL_FLAGS);
3113 break;
3114
3115 case EM_PPC:
3116 if (e_flags & EF_PPC_EMB)
3117 strcat (buf, ", emb");
3118
3119 if (e_flags & EF_PPC_RELOCATABLE)
3120 strcat (buf, _(", relocatable"));
3121
3122 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3123 strcat (buf, _(", relocatable-lib"));
3124 break;
3125
3126 case EM_PPC64:
3127 if (e_flags & EF_PPC64_ABI)
3128 {
3129 char abi[] = ", abiv0";
3130
3131 abi[6] += e_flags & EF_PPC64_ABI;
3132 strcat (buf, abi);
3133 }
3134 break;
3135
3136 case EM_V800:
3137 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3138 strcat (buf, ", RH850 ABI");
3139
3140 if (e_flags & EF_V800_850E3)
3141 strcat (buf, ", V3 architecture");
3142
3143 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3144 strcat (buf, ", FPU not used");
3145
3146 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3147 strcat (buf, ", regmode: COMMON");
3148
3149 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3150 strcat (buf, ", r4 not used");
3151
3152 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3153 strcat (buf, ", r30 not used");
3154
3155 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3156 strcat (buf, ", r5 not used");
3157
3158 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3159 strcat (buf, ", r2 not used");
3160
3161 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3162 {
3163 switch (e_flags & - e_flags)
3164 {
3165 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3166 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3167 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3168 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3169 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3170 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3171 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3172 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3173 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3174 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3175 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3176 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3177 default: break;
3178 }
3179 }
3180 break;
3181
3182 case EM_V850:
3183 case EM_CYGNUS_V850:
3184 switch (e_flags & EF_V850_ARCH)
3185 {
3186 case E_V850E3V5_ARCH:
3187 strcat (buf, ", v850e3v5");
3188 break;
3189 case E_V850E2V3_ARCH:
3190 strcat (buf, ", v850e2v3");
3191 break;
3192 case E_V850E2_ARCH:
3193 strcat (buf, ", v850e2");
3194 break;
3195 case E_V850E1_ARCH:
3196 strcat (buf, ", v850e1");
3197 break;
3198 case E_V850E_ARCH:
3199 strcat (buf, ", v850e");
3200 break;
3201 case E_V850_ARCH:
3202 strcat (buf, ", v850");
3203 break;
3204 default:
3205 strcat (buf, _(", unknown v850 architecture variant"));
3206 break;
3207 }
3208 break;
3209
3210 case EM_M32R:
3211 case EM_CYGNUS_M32R:
3212 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3213 strcat (buf, ", m32r");
3214 break;
3215
3216 case EM_MIPS:
3217 case EM_MIPS_RS3_LE:
3218 if (e_flags & EF_MIPS_NOREORDER)
3219 strcat (buf, ", noreorder");
3220
3221 if (e_flags & EF_MIPS_PIC)
3222 strcat (buf, ", pic");
3223
3224 if (e_flags & EF_MIPS_CPIC)
3225 strcat (buf, ", cpic");
3226
3227 if (e_flags & EF_MIPS_UCODE)
3228 strcat (buf, ", ugen_reserved");
3229
3230 if (e_flags & EF_MIPS_ABI2)
3231 strcat (buf, ", abi2");
3232
3233 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3234 strcat (buf, ", odk first");
3235
3236 if (e_flags & EF_MIPS_32BITMODE)
3237 strcat (buf, ", 32bitmode");
3238
3239 if (e_flags & EF_MIPS_NAN2008)
3240 strcat (buf, ", nan2008");
3241
3242 if (e_flags & EF_MIPS_FP64)
3243 strcat (buf, ", fp64");
3244
3245 switch ((e_flags & EF_MIPS_MACH))
3246 {
3247 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3248 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3249 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3250 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3251 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3252 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3253 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3254 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3255 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3256 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3257 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3258 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3259 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
3260 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3261 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3262 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3263 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3264 case 0:
3265 /* We simply ignore the field in this case to avoid confusion:
3266 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3267 extension. */
3268 break;
3269 default: strcat (buf, _(", unknown CPU")); break;
3270 }
3271
3272 switch ((e_flags & EF_MIPS_ABI))
3273 {
3274 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3275 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3276 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3277 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3278 case 0:
3279 /* We simply ignore the field in this case to avoid confusion:
3280 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3281 This means it is likely to be an o32 file, but not for
3282 sure. */
3283 break;
3284 default: strcat (buf, _(", unknown ABI")); break;
3285 }
3286
3287 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3288 strcat (buf, ", mdmx");
3289
3290 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3291 strcat (buf, ", mips16");
3292
3293 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3294 strcat (buf, ", micromips");
3295
3296 switch ((e_flags & EF_MIPS_ARCH))
3297 {
3298 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3299 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3300 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3301 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3302 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3303 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3304 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3305 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3306 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3307 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3308 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3309 default: strcat (buf, _(", unknown ISA")); break;
3310 }
3311 break;
3312
3313 case EM_NDS32:
3314 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3315 break;
3316
3317 case EM_RISCV:
3318 if (e_flags & EF_RISCV_RVC)
3319 strcat (buf, ", RVC");
3320 if (e_flags & EF_RISCV_SOFT_FLOAT)
3321 strcat (buf, ", soft-float ABI");
3322 break;
3323
3324 case EM_SH:
3325 switch ((e_flags & EF_SH_MACH_MASK))
3326 {
3327 case EF_SH1: strcat (buf, ", sh1"); break;
3328 case EF_SH2: strcat (buf, ", sh2"); break;
3329 case EF_SH3: strcat (buf, ", sh3"); break;
3330 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3331 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3332 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3333 case EF_SH3E: strcat (buf, ", sh3e"); break;
3334 case EF_SH4: strcat (buf, ", sh4"); break;
3335 case EF_SH5: strcat (buf, ", sh5"); break;
3336 case EF_SH2E: strcat (buf, ", sh2e"); break;
3337 case EF_SH4A: strcat (buf, ", sh4a"); break;
3338 case EF_SH2A: strcat (buf, ", sh2a"); break;
3339 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3340 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3341 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3342 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3343 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3344 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3345 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3346 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3347 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3348 default: strcat (buf, _(", unknown ISA")); break;
3349 }
3350
3351 if (e_flags & EF_SH_PIC)
3352 strcat (buf, ", pic");
3353
3354 if (e_flags & EF_SH_FDPIC)
3355 strcat (buf, ", fdpic");
3356 break;
3357
3358 case EM_OR1K:
3359 if (e_flags & EF_OR1K_NODELAY)
3360 strcat (buf, ", no delay");
3361 break;
3362
3363 case EM_SPARCV9:
3364 if (e_flags & EF_SPARC_32PLUS)
3365 strcat (buf, ", v8+");
3366
3367 if (e_flags & EF_SPARC_SUN_US1)
3368 strcat (buf, ", ultrasparcI");
3369
3370 if (e_flags & EF_SPARC_SUN_US3)
3371 strcat (buf, ", ultrasparcIII");
3372
3373 if (e_flags & EF_SPARC_HAL_R1)
3374 strcat (buf, ", halr1");
3375
3376 if (e_flags & EF_SPARC_LEDATA)
3377 strcat (buf, ", ledata");
3378
3379 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3380 strcat (buf, ", tso");
3381
3382 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3383 strcat (buf, ", pso");
3384
3385 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3386 strcat (buf, ", rmo");
3387 break;
3388
3389 case EM_PARISC:
3390 switch (e_flags & EF_PARISC_ARCH)
3391 {
3392 case EFA_PARISC_1_0:
3393 strcpy (buf, ", PA-RISC 1.0");
3394 break;
3395 case EFA_PARISC_1_1:
3396 strcpy (buf, ", PA-RISC 1.1");
3397 break;
3398 case EFA_PARISC_2_0:
3399 strcpy (buf, ", PA-RISC 2.0");
3400 break;
3401 default:
3402 break;
3403 }
3404 if (e_flags & EF_PARISC_TRAPNIL)
3405 strcat (buf, ", trapnil");
3406 if (e_flags & EF_PARISC_EXT)
3407 strcat (buf, ", ext");
3408 if (e_flags & EF_PARISC_LSB)
3409 strcat (buf, ", lsb");
3410 if (e_flags & EF_PARISC_WIDE)
3411 strcat (buf, ", wide");
3412 if (e_flags & EF_PARISC_NO_KABP)
3413 strcat (buf, ", no kabp");
3414 if (e_flags & EF_PARISC_LAZYSWAP)
3415 strcat (buf, ", lazyswap");
3416 break;
3417
3418 case EM_PJ:
3419 case EM_PJ_OLD:
3420 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3421 strcat (buf, ", new calling convention");
3422
3423 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3424 strcat (buf, ", gnu calling convention");
3425 break;
3426
3427 case EM_IA_64:
3428 if ((e_flags & EF_IA_64_ABI64))
3429 strcat (buf, ", 64-bit");
3430 else
3431 strcat (buf, ", 32-bit");
3432 if ((e_flags & EF_IA_64_REDUCEDFP))
3433 strcat (buf, ", reduced fp model");
3434 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3435 strcat (buf, ", no function descriptors, constant gp");
3436 else if ((e_flags & EF_IA_64_CONS_GP))
3437 strcat (buf, ", constant gp");
3438 if ((e_flags & EF_IA_64_ABSOLUTE))
3439 strcat (buf, ", absolute");
3440 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3441 {
3442 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3443 strcat (buf, ", vms_linkages");
3444 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3445 {
3446 case EF_IA_64_VMS_COMCOD_SUCCESS:
3447 break;
3448 case EF_IA_64_VMS_COMCOD_WARNING:
3449 strcat (buf, ", warning");
3450 break;
3451 case EF_IA_64_VMS_COMCOD_ERROR:
3452 strcat (buf, ", error");
3453 break;
3454 case EF_IA_64_VMS_COMCOD_ABORT:
3455 strcat (buf, ", abort");
3456 break;
3457 default:
3458 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3459 e_flags & EF_IA_64_VMS_COMCOD);
3460 strcat (buf, ", <unknown>");
3461 }
3462 }
3463 break;
3464
3465 case EM_VAX:
3466 if ((e_flags & EF_VAX_NONPIC))
3467 strcat (buf, ", non-PIC");
3468 if ((e_flags & EF_VAX_DFLOAT))
3469 strcat (buf, ", D-Float");
3470 if ((e_flags & EF_VAX_GFLOAT))
3471 strcat (buf, ", G-Float");
3472 break;
3473
3474 case EM_VISIUM:
3475 if (e_flags & EF_VISIUM_ARCH_MCM)
3476 strcat (buf, ", mcm");
3477 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3478 strcat (buf, ", mcm24");
3479 if (e_flags & EF_VISIUM_ARCH_GR6)
3480 strcat (buf, ", gr6");
3481 break;
3482
3483 case EM_RL78:
3484 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3485 {
3486 case E_FLAG_RL78_ANY_CPU: break;
3487 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3488 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3489 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3490 }
3491 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3492 strcat (buf, ", 64-bit doubles");
3493 break;
3494
3495 case EM_RX:
3496 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3497 strcat (buf, ", 64-bit doubles");
3498 if (e_flags & E_FLAG_RX_DSP)
3499 strcat (buf, ", dsp");
3500 if (e_flags & E_FLAG_RX_PID)
3501 strcat (buf, ", pid");
3502 if (e_flags & E_FLAG_RX_ABI)
3503 strcat (buf, ", RX ABI");
3504 if (e_flags & E_FLAG_RX_SINSNS_SET)
3505 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3506 ? ", uses String instructions" : ", bans String instructions");
3507 if (e_flags & E_FLAG_RX_V2)
3508 strcat (buf, ", V2");
3509 break;
3510
3511 case EM_S390:
3512 if (e_flags & EF_S390_HIGH_GPRS)
3513 strcat (buf, ", highgprs");
3514 break;
3515
3516 case EM_TI_C6000:
3517 if ((e_flags & EF_C6000_REL))
3518 strcat (buf, ", relocatable module");
3519 break;
3520
3521 case EM_MSP430:
3522 strcat (buf, _(": architecture variant: "));
3523 switch (e_flags & EF_MSP430_MACH)
3524 {
3525 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3526 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3527 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3528 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3529 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3530 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3531 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3532 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3533 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3534 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3535 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3536 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3537 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3538 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3539 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3540 default:
3541 strcat (buf, _(": unknown")); break;
3542 }
3543
3544 if (e_flags & ~ EF_MSP430_MACH)
3545 strcat (buf, _(": unknown extra flag bits also present"));
3546 }
3547 }
3548
3549 return buf;
3550 }
3551
3552 static const char *
3553 get_osabi_name (unsigned int osabi)
3554 {
3555 static char buff[32];
3556
3557 switch (osabi)
3558 {
3559 case ELFOSABI_NONE: return "UNIX - System V";
3560 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3561 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3562 case ELFOSABI_GNU: return "UNIX - GNU";
3563 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3564 case ELFOSABI_AIX: return "UNIX - AIX";
3565 case ELFOSABI_IRIX: return "UNIX - IRIX";
3566 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3567 case ELFOSABI_TRU64: return "UNIX - TRU64";
3568 case ELFOSABI_MODESTO: return "Novell - Modesto";
3569 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3570 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3571 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3572 case ELFOSABI_AROS: return "AROS";
3573 case ELFOSABI_FENIXOS: return "FenixOS";
3574 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3575 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3576 default:
3577 if (osabi >= 64)
3578 switch (elf_header.e_machine)
3579 {
3580 case EM_ARM:
3581 switch (osabi)
3582 {
3583 case ELFOSABI_ARM: return "ARM";
3584 default:
3585 break;
3586 }
3587 break;
3588
3589 case EM_MSP430:
3590 case EM_MSP430_OLD:
3591 case EM_VISIUM:
3592 switch (osabi)
3593 {
3594 case ELFOSABI_STANDALONE: return _("Standalone App");
3595 default:
3596 break;
3597 }
3598 break;
3599
3600 case EM_TI_C6000:
3601 switch (osabi)
3602 {
3603 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3604 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3605 default:
3606 break;
3607 }
3608 break;
3609
3610 default:
3611 break;
3612 }
3613 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3614 return buff;
3615 }
3616 }
3617
3618 static const char *
3619 get_aarch64_segment_type (unsigned long type)
3620 {
3621 switch (type)
3622 {
3623 case PT_AARCH64_ARCHEXT:
3624 return "AARCH64_ARCHEXT";
3625 default:
3626 break;
3627 }
3628
3629 return NULL;
3630 }
3631
3632 static const char *
3633 get_arm_segment_type (unsigned long type)
3634 {
3635 switch (type)
3636 {
3637 case PT_ARM_EXIDX:
3638 return "EXIDX";
3639 default:
3640 break;
3641 }
3642
3643 return NULL;
3644 }
3645
3646 static const char *
3647 get_mips_segment_type (unsigned long type)
3648 {
3649 switch (type)
3650 {
3651 case PT_MIPS_REGINFO:
3652 return "REGINFO";
3653 case PT_MIPS_RTPROC:
3654 return "RTPROC";
3655 case PT_MIPS_OPTIONS:
3656 return "OPTIONS";
3657 case PT_MIPS_ABIFLAGS:
3658 return "ABIFLAGS";
3659 default:
3660 break;
3661 }
3662
3663 return NULL;
3664 }
3665
3666 static const char *
3667 get_parisc_segment_type (unsigned long type)
3668 {
3669 switch (type)
3670 {
3671 case PT_HP_TLS: return "HP_TLS";
3672 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3673 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3674 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3675 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3676 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3677 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3678 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3679 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3680 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3681 case PT_HP_PARALLEL: return "HP_PARALLEL";
3682 case PT_HP_FASTBIND: return "HP_FASTBIND";
3683 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3684 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3685 case PT_HP_STACK: return "HP_STACK";
3686 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3687 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3688 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3689 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3690 default:
3691 break;
3692 }
3693
3694 return NULL;
3695 }
3696
3697 static const char *
3698 get_ia64_segment_type (unsigned long type)
3699 {
3700 switch (type)
3701 {
3702 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3703 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3704 case PT_HP_TLS: return "HP_TLS";
3705 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3706 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3707 case PT_IA_64_HP_STACK: return "HP_STACK";
3708 default:
3709 break;
3710 }
3711
3712 return NULL;
3713 }
3714
3715 static const char *
3716 get_tic6x_segment_type (unsigned long type)
3717 {
3718 switch (type)
3719 {
3720 case PT_C6000_PHATTR: return "C6000_PHATTR";
3721 default:
3722 break;
3723 }
3724
3725 return NULL;
3726 }
3727
3728 static const char *
3729 get_solaris_segment_type (unsigned long type)
3730 {
3731 switch (type)
3732 {
3733 case 0x6464e550: return "PT_SUNW_UNWIND";
3734 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3735 case 0x6ffffff7: return "PT_LOSUNW";
3736 case 0x6ffffffa: return "PT_SUNWBSS";
3737 case 0x6ffffffb: return "PT_SUNWSTACK";
3738 case 0x6ffffffc: return "PT_SUNWDTRACE";
3739 case 0x6ffffffd: return "PT_SUNWCAP";
3740 case 0x6fffffff: return "PT_HISUNW";
3741 default: return NULL;
3742 }
3743 }
3744
3745 static const char *
3746 get_segment_type (unsigned long p_type)
3747 {
3748 static char buff[32];
3749
3750 switch (p_type)
3751 {
3752 case PT_NULL: return "NULL";
3753 case PT_LOAD: return "LOAD";
3754 case PT_DYNAMIC: return "DYNAMIC";
3755 case PT_INTERP: return "INTERP";
3756 case PT_NOTE: return "NOTE";
3757 case PT_SHLIB: return "SHLIB";
3758 case PT_PHDR: return "PHDR";
3759 case PT_TLS: return "TLS";
3760
3761 case PT_GNU_EH_FRAME:
3762 return "GNU_EH_FRAME";
3763 case PT_GNU_STACK: return "GNU_STACK";
3764 case PT_GNU_RELRO: return "GNU_RELRO";
3765
3766 default:
3767 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3768 {
3769 const char * result;
3770
3771 switch (elf_header.e_machine)
3772 {
3773 case EM_AARCH64:
3774 result = get_aarch64_segment_type (p_type);
3775 break;
3776 case EM_ARM:
3777 result = get_arm_segment_type (p_type);
3778 break;
3779 case EM_MIPS:
3780 case EM_MIPS_RS3_LE:
3781 result = get_mips_segment_type (p_type);
3782 break;
3783 case EM_PARISC:
3784 result = get_parisc_segment_type (p_type);
3785 break;
3786 case EM_IA_64:
3787 result = get_ia64_segment_type (p_type);
3788 break;
3789 case EM_TI_C6000:
3790 result = get_tic6x_segment_type (p_type);
3791 break;
3792 default:
3793 result = NULL;
3794 break;
3795 }
3796
3797 if (result != NULL)
3798 return result;
3799
3800 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
3801 }
3802 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3803 {
3804 const char * result;
3805
3806 switch (elf_header.e_machine)
3807 {
3808 case EM_PARISC:
3809 result = get_parisc_segment_type (p_type);
3810 break;
3811 case EM_IA_64:
3812 result = get_ia64_segment_type (p_type);
3813 break;
3814 default:
3815 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
3816 result = get_solaris_segment_type (p_type);
3817 else
3818 result = NULL;
3819 break;
3820 }
3821
3822 if (result != NULL)
3823 return result;
3824
3825 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
3826 }
3827 else
3828 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3829
3830 return buff;
3831 }
3832 }
3833
3834 static const char *
3835 get_mips_section_type_name (unsigned int sh_type)
3836 {
3837 switch (sh_type)
3838 {
3839 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3840 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3841 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3842 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3843 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3844 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3845 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3846 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3847 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3848 case SHT_MIPS_RELD: return "MIPS_RELD";
3849 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3850 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3851 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3852 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3853 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3854 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3855 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3856 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3857 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3858 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3859 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3860 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3861 case SHT_MIPS_LINE: return "MIPS_LINE";
3862 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3863 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3864 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3865 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3866 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3867 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3868 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3869 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3870 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3871 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3872 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3873 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3874 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3875 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3876 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3877 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3878 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3879 default:
3880 break;
3881 }
3882 return NULL;
3883 }
3884
3885 static const char *
3886 get_parisc_section_type_name (unsigned int sh_type)
3887 {
3888 switch (sh_type)
3889 {
3890 case SHT_PARISC_EXT: return "PARISC_EXT";
3891 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3892 case SHT_PARISC_DOC: return "PARISC_DOC";
3893 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3894 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3895 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3896 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3897 default:
3898 break;
3899 }
3900 return NULL;
3901 }
3902
3903 static const char *
3904 get_ia64_section_type_name (unsigned int sh_type)
3905 {
3906 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3907 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3908 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3909
3910 switch (sh_type)
3911 {
3912 case SHT_IA_64_EXT: return "IA_64_EXT";
3913 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3914 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3915 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3916 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3917 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3918 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3919 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3920 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3921 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3922 default:
3923 break;
3924 }
3925 return NULL;
3926 }
3927
3928 static const char *
3929 get_x86_64_section_type_name (unsigned int sh_type)
3930 {
3931 switch (sh_type)
3932 {
3933 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3934 default:
3935 break;
3936 }
3937 return NULL;
3938 }
3939
3940 static const char *
3941 get_aarch64_section_type_name (unsigned int sh_type)
3942 {
3943 switch (sh_type)
3944 {
3945 case SHT_AARCH64_ATTRIBUTES:
3946 return "AARCH64_ATTRIBUTES";
3947 default:
3948 break;
3949 }
3950 return NULL;
3951 }
3952
3953 static const char *
3954 get_arm_section_type_name (unsigned int sh_type)
3955 {
3956 switch (sh_type)
3957 {
3958 case SHT_ARM_EXIDX: return "ARM_EXIDX";
3959 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
3960 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
3961 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
3962 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
3963 default:
3964 break;
3965 }
3966 return NULL;
3967 }
3968
3969 static const char *
3970 get_tic6x_section_type_name (unsigned int sh_type)
3971 {
3972 switch (sh_type)
3973 {
3974 case SHT_C6000_UNWIND:
3975 return "C6000_UNWIND";
3976 case SHT_C6000_PREEMPTMAP:
3977 return "C6000_PREEMPTMAP";
3978 case SHT_C6000_ATTRIBUTES:
3979 return "C6000_ATTRIBUTES";
3980 case SHT_TI_ICODE:
3981 return "TI_ICODE";
3982 case SHT_TI_XREF:
3983 return "TI_XREF";
3984 case SHT_TI_HANDLER:
3985 return "TI_HANDLER";
3986 case SHT_TI_INITINFO:
3987 return "TI_INITINFO";
3988 case SHT_TI_PHATTRS:
3989 return "TI_PHATTRS";
3990 default:
3991 break;
3992 }
3993 return NULL;
3994 }
3995
3996 static const char *
3997 get_msp430x_section_type_name (unsigned int sh_type)
3998 {
3999 switch (sh_type)
4000 {
4001 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4002 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4003 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4004 default: return NULL;
4005 }
4006 }
4007
4008 static const char *
4009 get_v850_section_type_name (unsigned int sh_type)
4010 {
4011 switch (sh_type)
4012 {
4013 case SHT_V850_SCOMMON: return "V850 Small Common";
4014 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4015 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4016 case SHT_RENESAS_IOP: return "RENESAS IOP";
4017 case SHT_RENESAS_INFO: return "RENESAS INFO";
4018 default: return NULL;
4019 }
4020 }
4021
4022 static const char *
4023 get_section_type_name (unsigned int sh_type)
4024 {
4025 static char buff[32];
4026 const char * result;
4027
4028 switch (sh_type)
4029 {
4030 case SHT_NULL: return "NULL";
4031 case SHT_PROGBITS: return "PROGBITS";
4032 case SHT_SYMTAB: return "SYMTAB";
4033 case SHT_STRTAB: return "STRTAB";
4034 case SHT_RELA: return "RELA";
4035 case SHT_HASH: return "HASH";
4036 case SHT_DYNAMIC: return "DYNAMIC";
4037 case SHT_NOTE: return "NOTE";
4038 case SHT_NOBITS: return "NOBITS";
4039 case SHT_REL: return "REL";
4040 case SHT_SHLIB: return "SHLIB";
4041 case SHT_DYNSYM: return "DYNSYM";
4042 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4043 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4044 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4045 case SHT_GNU_HASH: return "GNU_HASH";
4046 case SHT_GROUP: return "GROUP";
4047 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
4048 case SHT_GNU_verdef: return "VERDEF";
4049 case SHT_GNU_verneed: return "VERNEED";
4050 case SHT_GNU_versym: return "VERSYM";
4051 case 0x6ffffff0: return "VERSYM";
4052 case 0x6ffffffc: return "VERDEF";
4053 case 0x7ffffffd: return "AUXILIARY";
4054 case 0x7fffffff: return "FILTER";
4055 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4056
4057 default:
4058 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4059 {
4060 switch (elf_header.e_machine)
4061 {
4062 case EM_MIPS:
4063 case EM_MIPS_RS3_LE:
4064 result = get_mips_section_type_name (sh_type);
4065 break;
4066 case EM_PARISC:
4067 result = get_parisc_section_type_name (sh_type);
4068 break;
4069 case EM_IA_64:
4070 result = get_ia64_section_type_name (sh_type);
4071 break;
4072 case EM_X86_64:
4073 case EM_L1OM:
4074 case EM_K1OM:
4075 result = get_x86_64_section_type_name (sh_type);
4076 break;
4077 case EM_AARCH64:
4078 result = get_aarch64_section_type_name (sh_type);
4079 break;
4080 case EM_ARM:
4081 result = get_arm_section_type_name (sh_type);
4082 break;
4083 case EM_TI_C6000:
4084 result = get_tic6x_section_type_name (sh_type);
4085 break;
4086 case EM_MSP430:
4087 result = get_msp430x_section_type_name (sh_type);
4088 break;
4089 case EM_V800:
4090 case EM_V850:
4091 case EM_CYGNUS_V850:
4092 result = get_v850_section_type_name (sh_type);
4093 break;
4094 default:
4095 result = NULL;
4096 break;
4097 }
4098
4099 if (result != NULL)
4100 return result;
4101
4102 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4103 }
4104 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4105 {
4106 switch (elf_header.e_machine)
4107 {
4108 case EM_IA_64:
4109 result = get_ia64_section_type_name (sh_type);
4110 break;
4111 default:
4112 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4113 result = get_solaris_section_type (sh_type);
4114 else
4115 result = NULL;
4116 break;
4117 }
4118
4119 if (result != NULL)
4120 return result;
4121
4122 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4123 }
4124 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4125 {
4126 switch (elf_header.e_machine)
4127 {
4128 case EM_V800:
4129 case EM_V850:
4130 case EM_CYGNUS_V850:
4131 result = get_v850_section_type_name (sh_type);
4132 break;
4133 default:
4134 result = NULL;
4135 break;
4136 }
4137
4138 if (result != NULL)
4139 return result;
4140
4141 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4142 }
4143 else
4144 /* This message is probably going to be displayed in a 15
4145 character wide field, so put the hex value first. */
4146 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4147
4148 return buff;
4149 }
4150 }
4151
4152 #define OPTION_DEBUG_DUMP 512
4153 #define OPTION_DYN_SYMS 513
4154 #define OPTION_DWARF_DEPTH 514
4155 #define OPTION_DWARF_START 515
4156 #define OPTION_DWARF_CHECK 516
4157
4158 static struct option options[] =
4159 {
4160 {"all", no_argument, 0, 'a'},
4161 {"file-header", no_argument, 0, 'h'},
4162 {"program-headers", no_argument, 0, 'l'},
4163 {"headers", no_argument, 0, 'e'},
4164 {"histogram", no_argument, 0, 'I'},
4165 {"segments", no_argument, 0, 'l'},
4166 {"sections", no_argument, 0, 'S'},
4167 {"section-headers", no_argument, 0, 'S'},
4168 {"section-groups", no_argument, 0, 'g'},
4169 {"section-details", no_argument, 0, 't'},
4170 {"full-section-name",no_argument, 0, 'N'},
4171 {"symbols", no_argument, 0, 's'},
4172 {"syms", no_argument, 0, 's'},
4173 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4174 {"relocs", no_argument, 0, 'r'},
4175 {"notes", no_argument, 0, 'n'},
4176 {"dynamic", no_argument, 0, 'd'},
4177 {"arch-specific", no_argument, 0, 'A'},
4178 {"version-info", no_argument, 0, 'V'},
4179 {"use-dynamic", no_argument, 0, 'D'},
4180 {"unwind", no_argument, 0, 'u'},
4181 {"archive-index", no_argument, 0, 'c'},
4182 {"hex-dump", required_argument, 0, 'x'},
4183 {"relocated-dump", required_argument, 0, 'R'},
4184 {"string-dump", required_argument, 0, 'p'},
4185 {"decompress", no_argument, 0, 'z'},
4186 #ifdef SUPPORT_DISASSEMBLY
4187 {"instruction-dump", required_argument, 0, 'i'},
4188 #endif
4189 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4190
4191 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4192 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4193 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4194
4195 {"version", no_argument, 0, 'v'},
4196 {"wide", no_argument, 0, 'W'},
4197 {"help", no_argument, 0, 'H'},
4198 {0, no_argument, 0, 0}
4199 };
4200
4201 static void
4202 usage (FILE * stream)
4203 {
4204 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4205 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4206 fprintf (stream, _(" Options are:\n\
4207 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4208 -h --file-header Display the ELF file header\n\
4209 -l --program-headers Display the program headers\n\
4210 --segments An alias for --program-headers\n\
4211 -S --section-headers Display the sections' header\n\
4212 --sections An alias for --section-headers\n\
4213 -g --section-groups Display the section groups\n\
4214 -t --section-details Display the section details\n\
4215 -e --headers Equivalent to: -h -l -S\n\
4216 -s --syms Display the symbol table\n\
4217 --symbols An alias for --syms\n\
4218 --dyn-syms Display the dynamic symbol table\n\
4219 -n --notes Display the core notes (if present)\n\
4220 -r --relocs Display the relocations (if present)\n\
4221 -u --unwind Display the unwind info (if present)\n\
4222 -d --dynamic Display the dynamic section (if present)\n\
4223 -V --version-info Display the version sections (if present)\n\
4224 -A --arch-specific Display architecture specific information (if any)\n\
4225 -c --archive-index Display the symbol/file index in an archive\n\
4226 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4227 -x --hex-dump=<number|name>\n\
4228 Dump the contents of section <number|name> as bytes\n\
4229 -p --string-dump=<number|name>\n\
4230 Dump the contents of section <number|name> as strings\n\
4231 -R --relocated-dump=<number|name>\n\
4232 Dump the contents of section <number|name> as relocated bytes\n\
4233 -z --decompress Decompress section before dumping it\n\
4234 -w[lLiaprmfFsoRt] or\n\
4235 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4236 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4237 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4238 =addr,=cu_index]\n\
4239 Display the contents of DWARF2 debug sections\n"));
4240 fprintf (stream, _("\
4241 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4242 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4243 or deeper\n"));
4244 #ifdef SUPPORT_DISASSEMBLY
4245 fprintf (stream, _("\
4246 -i --instruction-dump=<number|name>\n\
4247 Disassemble the contents of section <number|name>\n"));
4248 #endif
4249 fprintf (stream, _("\
4250 -I --histogram Display histogram of bucket list lengths\n\
4251 -W --wide Allow output width to exceed 80 characters\n\
4252 @<file> Read options from <file>\n\
4253 -H --help Display this information\n\
4254 -v --version Display the version number of readelf\n"));
4255
4256 if (REPORT_BUGS_TO[0] && stream == stdout)
4257 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4258
4259 exit (stream == stdout ? 0 : 1);
4260 }
4261
4262 /* Record the fact that the user wants the contents of section number
4263 SECTION to be displayed using the method(s) encoded as flags bits
4264 in TYPE. Note, TYPE can be zero if we are creating the array for
4265 the first time. */
4266
4267 static void
4268 request_dump_bynumber (unsigned int section, dump_type type)
4269 {
4270 if (section >= num_dump_sects)
4271 {
4272 dump_type * new_dump_sects;
4273
4274 new_dump_sects = (dump_type *) calloc (section + 1,
4275 sizeof (* dump_sects));
4276
4277 if (new_dump_sects == NULL)
4278 error (_("Out of memory allocating dump request table.\n"));
4279 else
4280 {
4281 if (dump_sects)
4282 {
4283 /* Copy current flag settings. */
4284 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
4285
4286 free (dump_sects);
4287 }
4288
4289 dump_sects = new_dump_sects;
4290 num_dump_sects = section + 1;
4291 }
4292 }
4293
4294 if (dump_sects)
4295 dump_sects[section] |= type;
4296
4297 return;
4298 }
4299
4300 /* Request a dump by section name. */
4301
4302 static void
4303 request_dump_byname (const char * section, dump_type type)
4304 {
4305 struct dump_list_entry * new_request;
4306
4307 new_request = (struct dump_list_entry *)
4308 malloc (sizeof (struct dump_list_entry));
4309 if (!new_request)
4310 error (_("Out of memory allocating dump request table.\n"));
4311
4312 new_request->name = strdup (section);
4313 if (!new_request->name)
4314 error (_("Out of memory allocating dump request table.\n"));
4315
4316 new_request->type = type;
4317
4318 new_request->next = dump_sects_byname;
4319 dump_sects_byname = new_request;
4320 }
4321
4322 static inline void
4323 request_dump (dump_type type)
4324 {
4325 int section;
4326 char * cp;
4327
4328 do_dump++;
4329 section = strtoul (optarg, & cp, 0);
4330
4331 if (! *cp && section >= 0)
4332 request_dump_bynumber (section, type);
4333 else
4334 request_dump_byname (optarg, type);
4335 }
4336
4337
4338 static void
4339 parse_args (int argc, char ** argv)
4340 {
4341 int c;
4342
4343 if (argc < 2)
4344 usage (stderr);
4345
4346 while ((c = getopt_long
4347 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4348 {
4349 switch (c)
4350 {
4351 case 0:
4352 /* Long options. */
4353 break;
4354 case 'H':
4355 usage (stdout);
4356 break;
4357
4358 case 'a':
4359 do_syms++;
4360 do_reloc++;
4361 do_unwind++;
4362 do_dynamic++;
4363 do_header++;
4364 do_sections++;
4365 do_section_groups++;
4366 do_segments++;
4367 do_version++;
4368 do_histogram++;
4369 do_arch++;
4370 do_notes++;
4371 break;
4372 case 'g':
4373 do_section_groups++;
4374 break;
4375 case 't':
4376 case 'N':
4377 do_sections++;
4378 do_section_details++;
4379 break;
4380 case 'e':
4381 do_header++;
4382 do_sections++;
4383 do_segments++;
4384 break;
4385 case 'A':
4386 do_arch++;
4387 break;
4388 case 'D':
4389 do_using_dynamic++;
4390 break;
4391 case 'r':
4392 do_reloc++;
4393 break;
4394 case 'u':
4395 do_unwind++;
4396 break;
4397 case 'h':
4398 do_header++;
4399 break;
4400 case 'l':
4401 do_segments++;
4402 break;
4403 case 's':
4404 do_syms++;
4405 break;
4406 case 'S':
4407 do_sections++;
4408 break;
4409 case 'd':
4410 do_dynamic++;
4411 break;
4412 case 'I':
4413 do_histogram++;
4414 break;
4415 case 'n':
4416 do_notes++;
4417 break;
4418 case 'c':
4419 do_archive_index++;
4420 break;
4421 case 'x':
4422 request_dump (HEX_DUMP);
4423 break;
4424 case 'p':
4425 request_dump (STRING_DUMP);
4426 break;
4427 case 'R':
4428 request_dump (RELOC_DUMP);
4429 break;
4430 case 'z':
4431 decompress_dumps++;
4432 break;
4433 case 'w':
4434 do_dump++;
4435 if (optarg == 0)
4436 {
4437 do_debugging = 1;
4438 dwarf_select_sections_all ();
4439 }
4440 else
4441 {
4442 do_debugging = 0;
4443 dwarf_select_sections_by_letters (optarg);
4444 }
4445 break;
4446 case OPTION_DEBUG_DUMP:
4447 do_dump++;
4448 if (optarg == 0)
4449 do_debugging = 1;
4450 else
4451 {
4452 do_debugging = 0;
4453 dwarf_select_sections_by_names (optarg);
4454 }
4455 break;
4456 case OPTION_DWARF_DEPTH:
4457 {
4458 char *cp;
4459
4460 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4461 }
4462 break;
4463 case OPTION_DWARF_START:
4464 {
4465 char *cp;
4466
4467 dwarf_start_die = strtoul (optarg, & cp, 0);
4468 }
4469 break;
4470 case OPTION_DWARF_CHECK:
4471 dwarf_check = 1;
4472 break;
4473 case OPTION_DYN_SYMS:
4474 do_dyn_syms++;
4475 break;
4476 #ifdef SUPPORT_DISASSEMBLY
4477 case 'i':
4478 request_dump (DISASS_DUMP);
4479 break;
4480 #endif
4481 case 'v':
4482 print_version (program_name);
4483 break;
4484 case 'V':
4485 do_version++;
4486 break;
4487 case 'W':
4488 do_wide++;
4489 break;
4490 default:
4491 /* xgettext:c-format */
4492 error (_("Invalid option '-%c'\n"), c);
4493 /* Fall through. */
4494 case '?':
4495 usage (stderr);
4496 }
4497 }
4498
4499 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4500 && !do_segments && !do_header && !do_dump && !do_version
4501 && !do_histogram && !do_debugging && !do_arch && !do_notes
4502 && !do_section_groups && !do_archive_index
4503 && !do_dyn_syms)
4504 usage (stderr);
4505 }
4506
4507 static const char *
4508 get_elf_class (unsigned int elf_class)
4509 {
4510 static char buff[32];
4511
4512 switch (elf_class)
4513 {
4514 case ELFCLASSNONE: return _("none");
4515 case ELFCLASS32: return "ELF32";
4516 case ELFCLASS64: return "ELF64";
4517 default:
4518 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4519 return buff;
4520 }
4521 }
4522
4523 static const char *
4524 get_data_encoding (unsigned int encoding)
4525 {
4526 static char buff[32];
4527
4528 switch (encoding)
4529 {
4530 case ELFDATANONE: return _("none");
4531 case ELFDATA2LSB: return _("2's complement, little endian");
4532 case ELFDATA2MSB: return _("2's complement, big endian");
4533 default:
4534 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4535 return buff;
4536 }
4537 }
4538
4539 /* Decode the data held in 'elf_header'. */
4540
4541 static int
4542 process_file_header (void)
4543 {
4544 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4545 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4546 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4547 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4548 {
4549 error
4550 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4551 return 0;
4552 }
4553
4554 init_dwarf_regnames (elf_header.e_machine);
4555
4556 if (do_header)
4557 {
4558 int i;
4559
4560 printf (_("ELF Header:\n"));
4561 printf (_(" Magic: "));
4562 for (i = 0; i < EI_NIDENT; i++)
4563 printf ("%2.2x ", elf_header.e_ident[i]);
4564 printf ("\n");
4565 printf (_(" Class: %s\n"),
4566 get_elf_class (elf_header.e_ident[EI_CLASS]));
4567 printf (_(" Data: %s\n"),
4568 get_data_encoding (elf_header.e_ident[EI_DATA]));
4569 printf (_(" Version: %d %s\n"),
4570 elf_header.e_ident[EI_VERSION],
4571 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4572 ? "(current)"
4573 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4574 ? _("<unknown: %lx>")
4575 : "")));
4576 printf (_(" OS/ABI: %s\n"),
4577 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4578 printf (_(" ABI Version: %d\n"),
4579 elf_header.e_ident[EI_ABIVERSION]);
4580 printf (_(" Type: %s\n"),
4581 get_file_type (elf_header.e_type));
4582 printf (_(" Machine: %s\n"),
4583 get_machine_name (elf_header.e_machine));
4584 printf (_(" Version: 0x%lx\n"),
4585 (unsigned long) elf_header.e_version);
4586
4587 printf (_(" Entry point address: "));
4588 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4589 printf (_("\n Start of program headers: "));
4590 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4591 printf (_(" (bytes into file)\n Start of section headers: "));
4592 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4593 printf (_(" (bytes into file)\n"));
4594
4595 printf (_(" Flags: 0x%lx%s\n"),
4596 (unsigned long) elf_header.e_flags,
4597 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4598 printf (_(" Size of this header: %ld (bytes)\n"),
4599 (long) elf_header.e_ehsize);
4600 printf (_(" Size of program headers: %ld (bytes)\n"),
4601 (long) elf_header.e_phentsize);
4602 printf (_(" Number of program headers: %ld"),
4603 (long) elf_header.e_phnum);
4604 if (section_headers != NULL
4605 && elf_header.e_phnum == PN_XNUM
4606 && section_headers[0].sh_info != 0)
4607 printf (" (%ld)", (long) section_headers[0].sh_info);
4608 putc ('\n', stdout);
4609 printf (_(" Size of section headers: %ld (bytes)\n"),
4610 (long) elf_header.e_shentsize);
4611 printf (_(" Number of section headers: %ld"),
4612 (long) elf_header.e_shnum);
4613 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4614 printf (" (%ld)", (long) section_headers[0].sh_size);
4615 putc ('\n', stdout);
4616 printf (_(" Section header string table index: %ld"),
4617 (long) elf_header.e_shstrndx);
4618 if (section_headers != NULL
4619 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4620 printf (" (%u)", section_headers[0].sh_link);
4621 else if (elf_header.e_shstrndx != SHN_UNDEF
4622 && elf_header.e_shstrndx >= elf_header.e_shnum)
4623 printf (_(" <corrupt: out of range>"));
4624 putc ('\n', stdout);
4625 }
4626
4627 if (section_headers != NULL)
4628 {
4629 if (elf_header.e_phnum == PN_XNUM
4630 && section_headers[0].sh_info != 0)
4631 elf_header.e_phnum = section_headers[0].sh_info;
4632 if (elf_header.e_shnum == SHN_UNDEF)
4633 elf_header.e_shnum = section_headers[0].sh_size;
4634 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4635 elf_header.e_shstrndx = section_headers[0].sh_link;
4636 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4637 elf_header.e_shstrndx = SHN_UNDEF;
4638 free (section_headers);
4639 section_headers = NULL;
4640 }
4641
4642 return 1;
4643 }
4644
4645 static bfd_boolean
4646 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4647 {
4648 Elf32_External_Phdr * phdrs;
4649 Elf32_External_Phdr * external;
4650 Elf_Internal_Phdr * internal;
4651 unsigned int i;
4652 unsigned int size = elf_header.e_phentsize;
4653 unsigned int num = elf_header.e_phnum;
4654
4655 /* PR binutils/17531: Cope with unexpected section header sizes. */
4656 if (size == 0 || num == 0)
4657 return FALSE;
4658 if (size < sizeof * phdrs)
4659 {
4660 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4661 return FALSE;
4662 }
4663 if (size > sizeof * phdrs)
4664 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4665
4666 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4667 size, num, _("program headers"));
4668 if (phdrs == NULL)
4669 return FALSE;
4670
4671 for (i = 0, internal = pheaders, external = phdrs;
4672 i < elf_header.e_phnum;
4673 i++, internal++, external++)
4674 {
4675 internal->p_type = BYTE_GET (external->p_type);
4676 internal->p_offset = BYTE_GET (external->p_offset);
4677 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4678 internal->p_paddr = BYTE_GET (external->p_paddr);
4679 internal->p_filesz = BYTE_GET (external->p_filesz);
4680 internal->p_memsz = BYTE_GET (external->p_memsz);
4681 internal->p_flags = BYTE_GET (external->p_flags);
4682 internal->p_align = BYTE_GET (external->p_align);
4683 }
4684
4685 free (phdrs);
4686 return TRUE;
4687 }
4688
4689 static bfd_boolean
4690 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4691 {
4692 Elf64_External_Phdr * phdrs;
4693 Elf64_External_Phdr * external;
4694 Elf_Internal_Phdr * internal;
4695 unsigned int i;
4696 unsigned int size = elf_header.e_phentsize;
4697 unsigned int num = elf_header.e_phnum;
4698
4699 /* PR binutils/17531: Cope with unexpected section header sizes. */
4700 if (size == 0 || num == 0)
4701 return FALSE;
4702 if (size < sizeof * phdrs)
4703 {
4704 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4705 return FALSE;
4706 }
4707 if (size > sizeof * phdrs)
4708 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4709
4710 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4711 size, num, _("program headers"));
4712 if (!phdrs)
4713 return FALSE;
4714
4715 for (i = 0, internal = pheaders, external = phdrs;
4716 i < elf_header.e_phnum;
4717 i++, internal++, external++)
4718 {
4719 internal->p_type = BYTE_GET (external->p_type);
4720 internal->p_flags = BYTE_GET (external->p_flags);
4721 internal->p_offset = BYTE_GET (external->p_offset);
4722 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4723 internal->p_paddr = BYTE_GET (external->p_paddr);
4724 internal->p_filesz = BYTE_GET (external->p_filesz);
4725 internal->p_memsz = BYTE_GET (external->p_memsz);
4726 internal->p_align = BYTE_GET (external->p_align);
4727 }
4728
4729 free (phdrs);
4730 return TRUE;
4731 }
4732
4733 /* Returns 1 if the program headers were read into `program_headers'. */
4734
4735 static int
4736 get_program_headers (FILE * file)
4737 {
4738 Elf_Internal_Phdr * phdrs;
4739
4740 /* Check cache of prior read. */
4741 if (program_headers != NULL)
4742 return 1;
4743
4744 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4745 sizeof (Elf_Internal_Phdr));
4746
4747 if (phdrs == NULL)
4748 {
4749 error (_("Out of memory reading %u program headers\n"),
4750 elf_header.e_phnum);
4751 return 0;
4752 }
4753
4754 if (is_32bit_elf
4755 ? get_32bit_program_headers (file, phdrs)
4756 : get_64bit_program_headers (file, phdrs))
4757 {
4758 program_headers = phdrs;
4759 return 1;
4760 }
4761
4762 free (phdrs);
4763 return 0;
4764 }
4765
4766 /* Returns 1 if the program headers were loaded. */
4767
4768 static int
4769 process_program_headers (FILE * file)
4770 {
4771 Elf_Internal_Phdr * segment;
4772 unsigned int i;
4773 Elf_Internal_Phdr * previous_load = NULL;
4774
4775 if (elf_header.e_phnum == 0)
4776 {
4777 /* PR binutils/12467. */
4778 if (elf_header.e_phoff != 0)
4779 warn (_("possibly corrupt ELF header - it has a non-zero program"
4780 " header offset, but no program headers\n"));
4781 else if (do_segments)
4782 printf (_("\nThere are no program headers in this file.\n"));
4783 return 0;
4784 }
4785
4786 if (do_segments && !do_header)
4787 {
4788 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4789 printf (_("Entry point "));
4790 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4791 printf (_("\nThere are %d program headers, starting at offset "),
4792 elf_header.e_phnum);
4793 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4794 printf ("\n");
4795 }
4796
4797 if (! get_program_headers (file))
4798 return 0;
4799
4800 if (do_segments)
4801 {
4802 if (elf_header.e_phnum > 1)
4803 printf (_("\nProgram Headers:\n"));
4804 else
4805 printf (_("\nProgram Headers:\n"));
4806
4807 if (is_32bit_elf)
4808 printf
4809 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4810 else if (do_wide)
4811 printf
4812 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4813 else
4814 {
4815 printf
4816 (_(" Type Offset VirtAddr PhysAddr\n"));
4817 printf
4818 (_(" FileSiz MemSiz Flags Align\n"));
4819 }
4820 }
4821
4822 dynamic_addr = 0;
4823 dynamic_size = 0;
4824
4825 for (i = 0, segment = program_headers;
4826 i < elf_header.e_phnum;
4827 i++, segment++)
4828 {
4829 if (do_segments)
4830 {
4831 printf (" %-14.14s ", get_segment_type (segment->p_type));
4832
4833 if (is_32bit_elf)
4834 {
4835 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4836 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4837 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4838 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4839 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4840 printf ("%c%c%c ",
4841 (segment->p_flags & PF_R ? 'R' : ' '),
4842 (segment->p_flags & PF_W ? 'W' : ' '),
4843 (segment->p_flags & PF_X ? 'E' : ' '));
4844 printf ("%#lx", (unsigned long) segment->p_align);
4845 }
4846 else if (do_wide)
4847 {
4848 if ((unsigned long) segment->p_offset == segment->p_offset)
4849 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4850 else
4851 {
4852 print_vma (segment->p_offset, FULL_HEX);
4853 putchar (' ');
4854 }
4855
4856 print_vma (segment->p_vaddr, FULL_HEX);
4857 putchar (' ');
4858 print_vma (segment->p_paddr, FULL_HEX);
4859 putchar (' ');
4860
4861 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4862 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4863 else
4864 {
4865 print_vma (segment->p_filesz, FULL_HEX);
4866 putchar (' ');
4867 }
4868
4869 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4870 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4871 else
4872 {
4873 print_vma (segment->p_memsz, FULL_HEX);
4874 }
4875
4876 printf (" %c%c%c ",
4877 (segment->p_flags & PF_R ? 'R' : ' '),
4878 (segment->p_flags & PF_W ? 'W' : ' '),
4879 (segment->p_flags & PF_X ? 'E' : ' '));
4880
4881 if ((unsigned long) segment->p_align == segment->p_align)
4882 printf ("%#lx", (unsigned long) segment->p_align);
4883 else
4884 {
4885 print_vma (segment->p_align, PREFIX_HEX);
4886 }
4887 }
4888 else
4889 {
4890 print_vma (segment->p_offset, FULL_HEX);
4891 putchar (' ');
4892 print_vma (segment->p_vaddr, FULL_HEX);
4893 putchar (' ');
4894 print_vma (segment->p_paddr, FULL_HEX);
4895 printf ("\n ");
4896 print_vma (segment->p_filesz, FULL_HEX);
4897 putchar (' ');
4898 print_vma (segment->p_memsz, FULL_HEX);
4899 printf (" %c%c%c ",
4900 (segment->p_flags & PF_R ? 'R' : ' '),
4901 (segment->p_flags & PF_W ? 'W' : ' '),
4902 (segment->p_flags & PF_X ? 'E' : ' '));
4903 print_vma (segment->p_align, HEX);
4904 }
4905
4906 putc ('\n', stdout);
4907 }
4908
4909 switch (segment->p_type)
4910 {
4911 case PT_LOAD:
4912 if (previous_load
4913 && previous_load->p_vaddr > segment->p_vaddr)
4914 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
4915 if (segment->p_memsz < segment->p_filesz)
4916 error (_("the segment's file size is larger than its memory size\n"));
4917 previous_load = segment;
4918 break;
4919
4920 case PT_PHDR:
4921 /* PR 20815 - Verify that the program header is loaded into memory. */
4922 if (i > 0 && previous_load != NULL)
4923 error (_("the PHDR segment must occur before any LOAD segment\n"));
4924 if (elf_header.e_machine != EM_PARISC)
4925 {
4926 unsigned int j;
4927
4928 for (j = 1; j < elf_header.e_phnum; j++)
4929 if (program_headers[j].p_vaddr <= segment->p_vaddr
4930 && (program_headers[j].p_vaddr + program_headers[j].p_memsz)
4931 >= (segment->p_vaddr + segment->p_filesz))
4932 break;
4933 if (j == elf_header.e_phnum)
4934 error (_("the PHDR segment is not covered by a LOAD segment\n"));
4935 }
4936 break;
4937
4938 case PT_DYNAMIC:
4939 if (dynamic_addr)
4940 error (_("more than one dynamic segment\n"));
4941
4942 /* By default, assume that the .dynamic section is the first
4943 section in the DYNAMIC segment. */
4944 dynamic_addr = segment->p_offset;
4945 dynamic_size = segment->p_filesz;
4946 /* PR binutils/17512: Avoid corrupt dynamic section info in the segment. */
4947 if (dynamic_addr + dynamic_size >= current_file_size)
4948 {
4949 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
4950 dynamic_addr = dynamic_size = 0;
4951 }
4952
4953 /* Try to locate the .dynamic section. If there is
4954 a section header table, we can easily locate it. */
4955 if (section_headers != NULL)
4956 {
4957 Elf_Internal_Shdr * sec;
4958
4959 sec = find_section (".dynamic");
4960 if (sec == NULL || sec->sh_size == 0)
4961 {
4962 /* A corresponding .dynamic section is expected, but on
4963 IA-64/OpenVMS it is OK for it to be missing. */
4964 if (!is_ia64_vms ())
4965 error (_("no .dynamic section in the dynamic segment\n"));
4966 break;
4967 }
4968
4969 if (sec->sh_type == SHT_NOBITS)
4970 {
4971 dynamic_size = 0;
4972 break;
4973 }
4974
4975 dynamic_addr = sec->sh_offset;
4976 dynamic_size = sec->sh_size;
4977
4978 if (dynamic_addr < segment->p_offset
4979 || dynamic_addr > segment->p_offset + segment->p_filesz)
4980 warn (_("the .dynamic section is not contained"
4981 " within the dynamic segment\n"));
4982 else if (dynamic_addr > segment->p_offset)
4983 warn (_("the .dynamic section is not the first section"
4984 " in the dynamic segment.\n"));
4985 }
4986 break;
4987
4988 case PT_INTERP:
4989 if (fseek (file, archive_file_offset + (long) segment->p_offset,
4990 SEEK_SET))
4991 error (_("Unable to find program interpreter name\n"));
4992 else
4993 {
4994 char fmt [32];
4995 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
4996
4997 if (ret >= (int) sizeof (fmt) || ret < 0)
4998 error (_("Internal error: failed to create format string to display program interpreter\n"));
4999
5000 program_interpreter[0] = 0;
5001 if (fscanf (file, fmt, program_interpreter) <= 0)
5002 error (_("Unable to read program interpreter name\n"));
5003
5004 if (do_segments)
5005 printf (_(" [Requesting program interpreter: %s]\n"),
5006 program_interpreter);
5007 }
5008 break;
5009 }
5010 }
5011
5012 if (do_segments && section_headers != NULL && string_table != NULL)
5013 {
5014 printf (_("\n Section to Segment mapping:\n"));
5015 printf (_(" Segment Sections...\n"));
5016
5017 for (i = 0; i < elf_header.e_phnum; i++)
5018 {
5019 unsigned int j;
5020 Elf_Internal_Shdr * section;
5021
5022 segment = program_headers + i;
5023 section = section_headers + 1;
5024
5025 printf (" %2.2d ", i);
5026
5027 for (j = 1; j < elf_header.e_shnum; j++, section++)
5028 {
5029 if (!ELF_TBSS_SPECIAL (section, segment)
5030 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5031 printf ("%s ", printable_section_name (section));
5032 }
5033
5034 putc ('\n',stdout);
5035 }
5036 }
5037
5038 return 1;
5039 }
5040
5041
5042 /* Find the file offset corresponding to VMA by using the program headers. */
5043
5044 static long
5045 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
5046 {
5047 Elf_Internal_Phdr * seg;
5048
5049 if (! get_program_headers (file))
5050 {
5051 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5052 return (long) vma;
5053 }
5054
5055 for (seg = program_headers;
5056 seg < program_headers + elf_header.e_phnum;
5057 ++seg)
5058 {
5059 if (seg->p_type != PT_LOAD)
5060 continue;
5061
5062 if (vma >= (seg->p_vaddr & -seg->p_align)
5063 && vma + size <= seg->p_vaddr + seg->p_filesz)
5064 return vma - seg->p_vaddr + seg->p_offset;
5065 }
5066
5067 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5068 (unsigned long) vma);
5069 return (long) vma;
5070 }
5071
5072
5073 /* Allocate memory and load the sections headers into the global pointer
5074 SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
5075 generate any error messages if the load fails. */
5076
5077 static bfd_boolean
5078 get_32bit_section_headers (FILE * file, bfd_boolean probe)
5079 {
5080 Elf32_External_Shdr * shdrs;
5081 Elf_Internal_Shdr * internal;
5082 unsigned int i;
5083 unsigned int size = elf_header.e_shentsize;
5084 unsigned int num = probe ? 1 : elf_header.e_shnum;
5085
5086 /* PR binutils/17531: Cope with unexpected section header sizes. */
5087 if (size == 0 || num == 0)
5088 return FALSE;
5089 if (size < sizeof * shdrs)
5090 {
5091 if (! probe)
5092 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5093 return FALSE;
5094 }
5095 if (!probe && size > sizeof * shdrs)
5096 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5097
5098 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5099 size, num,
5100 probe ? NULL : _("section headers"));
5101 if (shdrs == NULL)
5102 return FALSE;
5103
5104 if (section_headers != NULL)
5105 free (section_headers);
5106 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5107 sizeof (Elf_Internal_Shdr));
5108 if (section_headers == NULL)
5109 {
5110 if (!probe)
5111 error (_("Out of memory reading %u section headers\n"), num);
5112 return FALSE;
5113 }
5114
5115 for (i = 0, internal = section_headers;
5116 i < num;
5117 i++, internal++)
5118 {
5119 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5120 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5121 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5122 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5123 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5124 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5125 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5126 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5127 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5128 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5129 if (!probe && internal->sh_link > num)
5130 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5131 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5132 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5133 }
5134
5135 free (shdrs);
5136 return TRUE;
5137 }
5138
5139 static bfd_boolean
5140 get_64bit_section_headers (FILE * file, bfd_boolean probe)
5141 {
5142 Elf64_External_Shdr * shdrs;
5143 Elf_Internal_Shdr * internal;
5144 unsigned int i;
5145 unsigned int size = elf_header.e_shentsize;
5146 unsigned int num = probe ? 1 : elf_header.e_shnum;
5147
5148 /* PR binutils/17531: Cope with unexpected section header sizes. */
5149 if (size == 0 || num == 0)
5150 return FALSE;
5151 if (size < sizeof * shdrs)
5152 {
5153 if (! probe)
5154 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5155 return FALSE;
5156 }
5157 if (! probe && size > sizeof * shdrs)
5158 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5159
5160 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5161 size, num,
5162 probe ? NULL : _("section headers"));
5163 if (shdrs == NULL)
5164 return FALSE;
5165
5166 if (section_headers != NULL)
5167 free (section_headers);
5168 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5169 sizeof (Elf_Internal_Shdr));
5170 if (section_headers == NULL)
5171 {
5172 if (! probe)
5173 error (_("Out of memory reading %u section headers\n"), num);
5174 return FALSE;
5175 }
5176
5177 for (i = 0, internal = section_headers;
5178 i < num;
5179 i++, internal++)
5180 {
5181 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5182 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5183 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5184 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5185 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5186 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5187 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5188 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5189 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5190 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5191 if (!probe && internal->sh_link > num)
5192 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5193 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5194 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5195 }
5196
5197 free (shdrs);
5198 return TRUE;
5199 }
5200
5201 static Elf_Internal_Sym *
5202 get_32bit_elf_symbols (FILE * file,
5203 Elf_Internal_Shdr * section,
5204 unsigned long * num_syms_return)
5205 {
5206 unsigned long number = 0;
5207 Elf32_External_Sym * esyms = NULL;
5208 Elf_External_Sym_Shndx * shndx = NULL;
5209 Elf_Internal_Sym * isyms = NULL;
5210 Elf_Internal_Sym * psym;
5211 unsigned int j;
5212
5213 if (section->sh_size == 0)
5214 {
5215 if (num_syms_return != NULL)
5216 * num_syms_return = 0;
5217 return NULL;
5218 }
5219
5220 /* Run some sanity checks first. */
5221 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5222 {
5223 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5224 printable_section_name (section), (unsigned long) section->sh_entsize);
5225 goto exit_point;
5226 }
5227
5228 if (section->sh_size > current_file_size)
5229 {
5230 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5231 printable_section_name (section), (unsigned long) section->sh_size);
5232 goto exit_point;
5233 }
5234
5235 number = section->sh_size / section->sh_entsize;
5236
5237 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5238 {
5239 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5240 (unsigned long) section->sh_size,
5241 printable_section_name (section),
5242 (unsigned long) section->sh_entsize);
5243 goto exit_point;
5244 }
5245
5246 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5247 section->sh_size, _("symbols"));
5248 if (esyms == NULL)
5249 goto exit_point;
5250
5251 {
5252 elf_section_list * entry;
5253
5254 shndx = NULL;
5255 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5256 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5257 {
5258 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5259 entry->hdr->sh_offset,
5260 1, entry->hdr->sh_size,
5261 _("symbol table section indicies"));
5262 if (shndx == NULL)
5263 goto exit_point;
5264 /* PR17531: file: heap-buffer-overflow */
5265 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5266 {
5267 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5268 printable_section_name (entry->hdr),
5269 (unsigned long) entry->hdr->sh_size,
5270 (unsigned long) section->sh_size);
5271 goto exit_point;
5272 }
5273 }
5274 }
5275
5276 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5277
5278 if (isyms == NULL)
5279 {
5280 error (_("Out of memory reading %lu symbols\n"),
5281 (unsigned long) number);
5282 goto exit_point;
5283 }
5284
5285 for (j = 0, psym = isyms; j < number; j++, psym++)
5286 {
5287 psym->st_name = BYTE_GET (esyms[j].st_name);
5288 psym->st_value = BYTE_GET (esyms[j].st_value);
5289 psym->st_size = BYTE_GET (esyms[j].st_size);
5290 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5291 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5292 psym->st_shndx
5293 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5294 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5295 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5296 psym->st_info = BYTE_GET (esyms[j].st_info);
5297 psym->st_other = BYTE_GET (esyms[j].st_other);
5298 }
5299
5300 exit_point:
5301 if (shndx != NULL)
5302 free (shndx);
5303 if (esyms != NULL)
5304 free (esyms);
5305
5306 if (num_syms_return != NULL)
5307 * num_syms_return = isyms == NULL ? 0 : number;
5308
5309 return isyms;
5310 }
5311
5312 static Elf_Internal_Sym *
5313 get_64bit_elf_symbols (FILE * file,
5314 Elf_Internal_Shdr * section,
5315 unsigned long * num_syms_return)
5316 {
5317 unsigned long number = 0;
5318 Elf64_External_Sym * esyms = NULL;
5319 Elf_External_Sym_Shndx * shndx = NULL;
5320 Elf_Internal_Sym * isyms = NULL;
5321 Elf_Internal_Sym * psym;
5322 unsigned int j;
5323
5324 if (section->sh_size == 0)
5325 {
5326 if (num_syms_return != NULL)
5327 * num_syms_return = 0;
5328 return NULL;
5329 }
5330
5331 /* Run some sanity checks first. */
5332 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5333 {
5334 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5335 printable_section_name (section),
5336 (unsigned long) section->sh_entsize);
5337 goto exit_point;
5338 }
5339
5340 if (section->sh_size > current_file_size)
5341 {
5342 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5343 printable_section_name (section),
5344 (unsigned long) section->sh_size);
5345 goto exit_point;
5346 }
5347
5348 number = section->sh_size / section->sh_entsize;
5349
5350 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5351 {
5352 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5353 (unsigned long) section->sh_size,
5354 printable_section_name (section),
5355 (unsigned long) section->sh_entsize);
5356 goto exit_point;
5357 }
5358
5359 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5360 section->sh_size, _("symbols"));
5361 if (!esyms)
5362 goto exit_point;
5363
5364 {
5365 elf_section_list * entry;
5366
5367 shndx = NULL;
5368 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5369 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5370 {
5371 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5372 entry->hdr->sh_offset,
5373 1, entry->hdr->sh_size,
5374 _("symbol table section indicies"));
5375 if (shndx == NULL)
5376 goto exit_point;
5377 /* PR17531: file: heap-buffer-overflow */
5378 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5379 {
5380 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5381 printable_section_name (entry->hdr),
5382 (unsigned long) entry->hdr->sh_size,
5383 (unsigned long) section->sh_size);
5384 goto exit_point;
5385 }
5386 }
5387 }
5388
5389 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5390
5391 if (isyms == NULL)
5392 {
5393 error (_("Out of memory reading %lu symbols\n"),
5394 (unsigned long) number);
5395 goto exit_point;
5396 }
5397
5398 for (j = 0, psym = isyms; j < number; j++, psym++)
5399 {
5400 psym->st_name = BYTE_GET (esyms[j].st_name);
5401 psym->st_info = BYTE_GET (esyms[j].st_info);
5402 psym->st_other = BYTE_GET (esyms[j].st_other);
5403 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5404
5405 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5406 psym->st_shndx
5407 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5408 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5409 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5410
5411 psym->st_value = BYTE_GET (esyms[j].st_value);
5412 psym->st_size = BYTE_GET (esyms[j].st_size);
5413 }
5414
5415 exit_point:
5416 if (shndx != NULL)
5417 free (shndx);
5418 if (esyms != NULL)
5419 free (esyms);
5420
5421 if (num_syms_return != NULL)
5422 * num_syms_return = isyms == NULL ? 0 : number;
5423
5424 return isyms;
5425 }
5426
5427 static const char *
5428 get_elf_section_flags (bfd_vma sh_flags)
5429 {
5430 static char buff[1024];
5431 char * p = buff;
5432 int field_size = is_32bit_elf ? 8 : 16;
5433 int sindex;
5434 int size = sizeof (buff) - (field_size + 4 + 1);
5435 bfd_vma os_flags = 0;
5436 bfd_vma proc_flags = 0;
5437 bfd_vma unknown_flags = 0;
5438 static const struct
5439 {
5440 const char * str;
5441 int len;
5442 }
5443 flags [] =
5444 {
5445 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5446 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5447 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5448 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5449 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5450 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5451 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5452 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5453 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5454 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5455 /* IA-64 specific. */
5456 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5457 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5458 /* IA-64 OpenVMS specific. */
5459 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5460 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5461 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5462 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5463 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5464 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5465 /* Generic. */
5466 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5467 /* SPARC specific. */
5468 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5469 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5470 /* ARM specific. */
5471 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5472 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5473 /* 23 */ { STRING_COMMA_LEN ("COMDEF") }
5474 };
5475
5476 if (do_section_details)
5477 {
5478 sprintf (buff, "[%*.*lx]: ",
5479 field_size, field_size, (unsigned long) sh_flags);
5480 p += field_size + 4;
5481 }
5482
5483 while (sh_flags)
5484 {
5485 bfd_vma flag;
5486
5487 flag = sh_flags & - sh_flags;
5488 sh_flags &= ~ flag;
5489
5490 if (do_section_details)
5491 {
5492 switch (flag)
5493 {
5494 case SHF_WRITE: sindex = 0; break;
5495 case SHF_ALLOC: sindex = 1; break;
5496 case SHF_EXECINSTR: sindex = 2; break;
5497 case SHF_MERGE: sindex = 3; break;
5498 case SHF_STRINGS: sindex = 4; break;
5499 case SHF_INFO_LINK: sindex = 5; break;
5500 case SHF_LINK_ORDER: sindex = 6; break;
5501 case SHF_OS_NONCONFORMING: sindex = 7; break;
5502 case SHF_GROUP: sindex = 8; break;
5503 case SHF_TLS: sindex = 9; break;
5504 case SHF_EXCLUDE: sindex = 18; break;
5505 case SHF_COMPRESSED: sindex = 20; break;
5506
5507 default:
5508 sindex = -1;
5509 switch (elf_header.e_machine)
5510 {
5511 case EM_IA_64:
5512 if (flag == SHF_IA_64_SHORT)
5513 sindex = 10;
5514 else if (flag == SHF_IA_64_NORECOV)
5515 sindex = 11;
5516 #ifdef BFD64
5517 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5518 switch (flag)
5519 {
5520 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5521 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5522 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5523 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5524 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5525 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5526 default: break;
5527 }
5528 #endif
5529 break;
5530
5531 case EM_386:
5532 case EM_IAMCU:
5533 case EM_X86_64:
5534 case EM_L1OM:
5535 case EM_K1OM:
5536 case EM_OLD_SPARCV9:
5537 case EM_SPARC32PLUS:
5538 case EM_SPARCV9:
5539 case EM_SPARC:
5540 if (flag == SHF_ORDERED)
5541 sindex = 19;
5542 break;
5543
5544 case EM_ARM:
5545 switch (flag)
5546 {
5547 case SHF_ENTRYSECT: sindex = 21; break;
5548 case SHF_ARM_PURECODE: sindex = 22; break;
5549 case SHF_COMDEF: sindex = 23; break;
5550 default: break;
5551 }
5552 break;
5553
5554 default:
5555 break;
5556 }
5557 }
5558
5559 if (sindex != -1)
5560 {
5561 if (p != buff + field_size + 4)
5562 {
5563 if (size < (10 + 2))
5564 {
5565 warn (_("Internal error: not enough buffer room for section flag info"));
5566 return _("<unknown>");
5567 }
5568 size -= 2;
5569 *p++ = ',';
5570 *p++ = ' ';
5571 }
5572
5573 size -= flags [sindex].len;
5574 p = stpcpy (p, flags [sindex].str);
5575 }
5576 else if (flag & SHF_MASKOS)
5577 os_flags |= flag;
5578 else if (flag & SHF_MASKPROC)
5579 proc_flags |= flag;
5580 else
5581 unknown_flags |= flag;
5582 }
5583 else
5584 {
5585 switch (flag)
5586 {
5587 case SHF_WRITE: *p = 'W'; break;
5588 case SHF_ALLOC: *p = 'A'; break;
5589 case SHF_EXECINSTR: *p = 'X'; break;
5590 case SHF_MERGE: *p = 'M'; break;
5591 case SHF_STRINGS: *p = 'S'; break;
5592 case SHF_INFO_LINK: *p = 'I'; break;
5593 case SHF_LINK_ORDER: *p = 'L'; break;
5594 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5595 case SHF_GROUP: *p = 'G'; break;
5596 case SHF_TLS: *p = 'T'; break;
5597 case SHF_EXCLUDE: *p = 'E'; break;
5598 case SHF_COMPRESSED: *p = 'C'; break;
5599
5600 default:
5601 if ((elf_header.e_machine == EM_X86_64
5602 || elf_header.e_machine == EM_L1OM
5603 || elf_header.e_machine == EM_K1OM)
5604 && flag == SHF_X86_64_LARGE)
5605 *p = 'l';
5606 else if (elf_header.e_machine == EM_ARM
5607 && flag == SHF_ARM_PURECODE)
5608 *p = 'y';
5609 else if (flag & SHF_MASKOS)
5610 {
5611 *p = 'o';
5612 sh_flags &= ~ SHF_MASKOS;
5613 }
5614 else if (flag & SHF_MASKPROC)
5615 {
5616 *p = 'p';
5617 sh_flags &= ~ SHF_MASKPROC;
5618 }
5619 else
5620 *p = 'x';
5621 break;
5622 }
5623 p++;
5624 }
5625 }
5626
5627 if (do_section_details)
5628 {
5629 if (os_flags)
5630 {
5631 size -= 5 + field_size;
5632 if (p != buff + field_size + 4)
5633 {
5634 if (size < (2 + 1))
5635 {
5636 warn (_("Internal error: not enough buffer room for section flag info"));
5637 return _("<unknown>");
5638 }
5639 size -= 2;
5640 *p++ = ',';
5641 *p++ = ' ';
5642 }
5643 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5644 (unsigned long) os_flags);
5645 p += 5 + field_size;
5646 }
5647 if (proc_flags)
5648 {
5649 size -= 7 + field_size;
5650 if (p != buff + field_size + 4)
5651 {
5652 if (size < (2 + 1))
5653 {
5654 warn (_("Internal error: not enough buffer room for section flag info"));
5655 return _("<unknown>");
5656 }
5657 size -= 2;
5658 *p++ = ',';
5659 *p++ = ' ';
5660 }
5661 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5662 (unsigned long) proc_flags);
5663 p += 7 + field_size;
5664 }
5665 if (unknown_flags)
5666 {
5667 size -= 10 + field_size;
5668 if (p != buff + field_size + 4)
5669 {
5670 if (size < (2 + 1))
5671 {
5672 warn (_("Internal error: not enough buffer room for section flag info"));
5673 return _("<unknown>");
5674 }
5675 size -= 2;
5676 *p++ = ',';
5677 *p++ = ' ';
5678 }
5679 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5680 (unsigned long) unknown_flags);
5681 p += 10 + field_size;
5682 }
5683 }
5684
5685 *p = '\0';
5686 return buff;
5687 }
5688
5689 static unsigned int
5690 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf)
5691 {
5692 if (is_32bit_elf)
5693 {
5694 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
5695
5696 chdr->ch_type = BYTE_GET (echdr->ch_type);
5697 chdr->ch_size = BYTE_GET (echdr->ch_size);
5698 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5699 return sizeof (*echdr);
5700 }
5701 else
5702 {
5703 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
5704
5705 chdr->ch_type = BYTE_GET (echdr->ch_type);
5706 chdr->ch_size = BYTE_GET (echdr->ch_size);
5707 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5708 return sizeof (*echdr);
5709 }
5710 }
5711
5712 static int
5713 process_section_headers (FILE * file)
5714 {
5715 Elf_Internal_Shdr * section;
5716 unsigned int i;
5717
5718 section_headers = NULL;
5719
5720 if (elf_header.e_shnum == 0)
5721 {
5722 /* PR binutils/12467. */
5723 if (elf_header.e_shoff != 0)
5724 warn (_("possibly corrupt ELF file header - it has a non-zero"
5725 " section header offset, but no section headers\n"));
5726 else if (do_sections)
5727 printf (_("\nThere are no sections in this file.\n"));
5728
5729 return 1;
5730 }
5731
5732 if (do_sections && !do_header)
5733 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
5734 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
5735
5736 if (is_32bit_elf)
5737 {
5738 if (! get_32bit_section_headers (file, FALSE))
5739 return 0;
5740 }
5741 else if (! get_64bit_section_headers (file, FALSE))
5742 return 0;
5743
5744 /* Read in the string table, so that we have names to display. */
5745 if (elf_header.e_shstrndx != SHN_UNDEF
5746 && elf_header.e_shstrndx < elf_header.e_shnum)
5747 {
5748 section = section_headers + elf_header.e_shstrndx;
5749
5750 if (section->sh_size != 0)
5751 {
5752 string_table = (char *) get_data (NULL, file, section->sh_offset,
5753 1, section->sh_size,
5754 _("string table"));
5755
5756 string_table_length = string_table != NULL ? section->sh_size : 0;
5757 }
5758 }
5759
5760 /* Scan the sections for the dynamic symbol table
5761 and dynamic string table and debug sections. */
5762 dynamic_symbols = NULL;
5763 dynamic_strings = NULL;
5764 dynamic_syminfo = NULL;
5765 symtab_shndx_list = NULL;
5766
5767 eh_addr_size = is_32bit_elf ? 4 : 8;
5768 switch (elf_header.e_machine)
5769 {
5770 case EM_MIPS:
5771 case EM_MIPS_RS3_LE:
5772 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5773 FDE addresses. However, the ABI also has a semi-official ILP32
5774 variant for which the normal FDE address size rules apply.
5775
5776 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5777 section, where XX is the size of longs in bits. Unfortunately,
5778 earlier compilers provided no way of distinguishing ILP32 objects
5779 from LP64 objects, so if there's any doubt, we should assume that
5780 the official LP64 form is being used. */
5781 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5782 && find_section (".gcc_compiled_long32") == NULL)
5783 eh_addr_size = 8;
5784 break;
5785
5786 case EM_H8_300:
5787 case EM_H8_300H:
5788 switch (elf_header.e_flags & EF_H8_MACH)
5789 {
5790 case E_H8_MACH_H8300:
5791 case E_H8_MACH_H8300HN:
5792 case E_H8_MACH_H8300SN:
5793 case E_H8_MACH_H8300SXN:
5794 eh_addr_size = 2;
5795 break;
5796 case E_H8_MACH_H8300H:
5797 case E_H8_MACH_H8300S:
5798 case E_H8_MACH_H8300SX:
5799 eh_addr_size = 4;
5800 break;
5801 }
5802 break;
5803
5804 case EM_M32C_OLD:
5805 case EM_M32C:
5806 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5807 {
5808 case EF_M32C_CPU_M16C:
5809 eh_addr_size = 2;
5810 break;
5811 }
5812 break;
5813 }
5814
5815 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5816 do \
5817 { \
5818 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5819 if (section->sh_entsize != expected_entsize) \
5820 { \
5821 char buf[40]; \
5822 sprintf_vma (buf, section->sh_entsize); \
5823 /* Note: coded this way so that there is a single string for \
5824 translation. */ \
5825 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5826 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5827 (unsigned) expected_entsize); \
5828 section->sh_entsize = expected_entsize; \
5829 } \
5830 } \
5831 while (0)
5832
5833 #define CHECK_ENTSIZE(section, i, type) \
5834 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5835 sizeof (Elf64_External_##type))
5836
5837 for (i = 0, section = section_headers;
5838 i < elf_header.e_shnum;
5839 i++, section++)
5840 {
5841 char * name = SECTION_NAME (section);
5842
5843 if (section->sh_type == SHT_DYNSYM)
5844 {
5845 if (dynamic_symbols != NULL)
5846 {
5847 error (_("File contains multiple dynamic symbol tables\n"));
5848 continue;
5849 }
5850
5851 CHECK_ENTSIZE (section, i, Sym);
5852 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5853 }
5854 else if (section->sh_type == SHT_STRTAB
5855 && streq (name, ".dynstr"))
5856 {
5857 if (dynamic_strings != NULL)
5858 {
5859 error (_("File contains multiple dynamic string tables\n"));
5860 continue;
5861 }
5862
5863 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5864 1, section->sh_size,
5865 _("dynamic strings"));
5866 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5867 }
5868 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5869 {
5870 elf_section_list * entry = xmalloc (sizeof * entry);
5871 entry->hdr = section;
5872 entry->next = symtab_shndx_list;
5873 symtab_shndx_list = entry;
5874 }
5875 else if (section->sh_type == SHT_SYMTAB)
5876 CHECK_ENTSIZE (section, i, Sym);
5877 else if (section->sh_type == SHT_GROUP)
5878 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5879 else if (section->sh_type == SHT_REL)
5880 CHECK_ENTSIZE (section, i, Rel);
5881 else if (section->sh_type == SHT_RELA)
5882 CHECK_ENTSIZE (section, i, Rela);
5883 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5884 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5885 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5886 || do_debug_str || do_debug_loc || do_debug_ranges
5887 || do_debug_addr || do_debug_cu_index)
5888 && (const_strneq (name, ".debug_")
5889 || const_strneq (name, ".zdebug_")))
5890 {
5891 if (name[1] == 'z')
5892 name += sizeof (".zdebug_") - 1;
5893 else
5894 name += sizeof (".debug_") - 1;
5895
5896 if (do_debugging
5897 || (do_debug_info && const_strneq (name, "info"))
5898 || (do_debug_info && const_strneq (name, "types"))
5899 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
5900 || (do_debug_lines && strcmp (name, "line") == 0)
5901 || (do_debug_lines && const_strneq (name, "line."))
5902 || (do_debug_pubnames && const_strneq (name, "pubnames"))
5903 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
5904 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
5905 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
5906 || (do_debug_aranges && const_strneq (name, "aranges"))
5907 || (do_debug_ranges && const_strneq (name, "ranges"))
5908 || (do_debug_frames && const_strneq (name, "frame"))
5909 || (do_debug_macinfo && const_strneq (name, "macinfo"))
5910 || (do_debug_macinfo && const_strneq (name, "macro"))
5911 || (do_debug_str && const_strneq (name, "str"))
5912 || (do_debug_loc && const_strneq (name, "loc"))
5913 || (do_debug_addr && const_strneq (name, "addr"))
5914 || (do_debug_cu_index && const_strneq (name, "cu_index"))
5915 || (do_debug_cu_index && const_strneq (name, "tu_index"))
5916 )
5917 request_dump_bynumber (i, DEBUG_DUMP);
5918 }
5919 /* Linkonce section to be combined with .debug_info at link time. */
5920 else if ((do_debugging || do_debug_info)
5921 && const_strneq (name, ".gnu.linkonce.wi."))
5922 request_dump_bynumber (i, DEBUG_DUMP);
5923 else if (do_debug_frames && streq (name, ".eh_frame"))
5924 request_dump_bynumber (i, DEBUG_DUMP);
5925 else if (do_gdb_index && streq (name, ".gdb_index"))
5926 request_dump_bynumber (i, DEBUG_DUMP);
5927 /* Trace sections for Itanium VMS. */
5928 else if ((do_debugging || do_trace_info || do_trace_abbrevs
5929 || do_trace_aranges)
5930 && const_strneq (name, ".trace_"))
5931 {
5932 name += sizeof (".trace_") - 1;
5933
5934 if (do_debugging
5935 || (do_trace_info && streq (name, "info"))
5936 || (do_trace_abbrevs && streq (name, "abbrev"))
5937 || (do_trace_aranges && streq (name, "aranges"))
5938 )
5939 request_dump_bynumber (i, DEBUG_DUMP);
5940 }
5941 }
5942
5943 if (! do_sections)
5944 return 1;
5945
5946 if (elf_header.e_shnum > 1)
5947 printf (_("\nSection Headers:\n"));
5948 else
5949 printf (_("\nSection Header:\n"));
5950
5951 if (is_32bit_elf)
5952 {
5953 if (do_section_details)
5954 {
5955 printf (_(" [Nr] Name\n"));
5956 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
5957 }
5958 else
5959 printf
5960 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
5961 }
5962 else if (do_wide)
5963 {
5964 if (do_section_details)
5965 {
5966 printf (_(" [Nr] Name\n"));
5967 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
5968 }
5969 else
5970 printf
5971 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
5972 }
5973 else
5974 {
5975 if (do_section_details)
5976 {
5977 printf (_(" [Nr] Name\n"));
5978 printf (_(" Type Address Offset Link\n"));
5979 printf (_(" Size EntSize Info Align\n"));
5980 }
5981 else
5982 {
5983 printf (_(" [Nr] Name Type Address Offset\n"));
5984 printf (_(" Size EntSize Flags Link Info Align\n"));
5985 }
5986 }
5987
5988 if (do_section_details)
5989 printf (_(" Flags\n"));
5990
5991 for (i = 0, section = section_headers;
5992 i < elf_header.e_shnum;
5993 i++, section++)
5994 {
5995 /* Run some sanity checks on the section header. */
5996
5997 /* Check the sh_link field. */
5998 switch (section->sh_type)
5999 {
6000 case SHT_SYMTAB_SHNDX:
6001 case SHT_GROUP:
6002 case SHT_HASH:
6003 case SHT_GNU_HASH:
6004 case SHT_GNU_versym:
6005 case SHT_REL:
6006 case SHT_RELA:
6007 if (section->sh_link < 1
6008 || section->sh_link >= elf_header.e_shnum
6009 || (section_headers[section->sh_link].sh_type != SHT_SYMTAB
6010 && section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6011 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6012 i, section->sh_link);
6013 break;
6014
6015 case SHT_DYNAMIC:
6016 case SHT_SYMTAB:
6017 case SHT_DYNSYM:
6018 case SHT_GNU_verneed:
6019 case SHT_GNU_verdef:
6020 case SHT_GNU_LIBLIST:
6021 if (section->sh_link < 1
6022 || section->sh_link >= elf_header.e_shnum
6023 || section_headers[section->sh_link].sh_type != SHT_STRTAB)
6024 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6025 i, section->sh_link);
6026 break;
6027
6028 case SHT_INIT_ARRAY:
6029 case SHT_FINI_ARRAY:
6030 case SHT_PREINIT_ARRAY:
6031 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6032 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6033 i, section->sh_link);
6034 break;
6035
6036 default:
6037 /* FIXME: Add support for target specific section types. */
6038 #if 0 /* Currently we do not check other section types as there are too
6039 many special cases. Stab sections for example have a type
6040 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6041 section. */
6042 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6043 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6044 i, section->sh_link);
6045 #endif
6046 break;
6047 }
6048
6049 /* Check the sh_info field. */
6050 switch (section->sh_type)
6051 {
6052 case SHT_REL:
6053 case SHT_RELA:
6054 if (section->sh_info < 1
6055 || section->sh_info >= elf_header.e_shnum
6056 || (section_headers[section->sh_info].sh_type != SHT_PROGBITS
6057 && section_headers[section->sh_info].sh_type != SHT_NOBITS
6058 && section_headers[section->sh_info].sh_type != SHT_NOTE
6059 && section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6060 /* FIXME: Are other section types valid ? */
6061 && section_headers[section->sh_info].sh_type < SHT_LOOS))
6062 {
6063 if (section->sh_info == 0
6064 && (streq (SECTION_NAME (section), ".rel.dyn")
6065 || streq (SECTION_NAME (section), ".rela.dyn")))
6066 /* The .rel.dyn and .rela.dyn sections have an sh_info field
6067 of zero. No idea why. I would have expected the index
6068 of the .plt section. */
6069 ;
6070 else
6071 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6072 i, section->sh_info);
6073 }
6074 break;
6075
6076 case SHT_DYNAMIC:
6077 case SHT_HASH:
6078 case SHT_SYMTAB_SHNDX:
6079 case SHT_INIT_ARRAY:
6080 case SHT_FINI_ARRAY:
6081 case SHT_PREINIT_ARRAY:
6082 if (section->sh_info != 0)
6083 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6084 i, section->sh_info);
6085 break;
6086
6087 case SHT_GROUP:
6088 case SHT_SYMTAB:
6089 case SHT_DYNSYM:
6090 /* A symbol index - we assume that it is valid. */
6091 break;
6092
6093 default:
6094 /* FIXME: Add support for target specific section types. */
6095 if (section->sh_type == SHT_NOBITS)
6096 /* NOBITS section headers with non-zero sh_info fields can be
6097 created when a binary is stripped of everything but its debug
6098 information. The stripped sections have their headers
6099 preserved but their types set to SHT_NOBITS. So do not check
6100 this type of section. */
6101 ;
6102 else if (section->sh_flags & SHF_INFO_LINK)
6103 {
6104 if (section->sh_info < 1 || section->sh_info >= elf_header.e_shnum)
6105 warn (_("[%2u]: Expected link to another section in info field"), i);
6106 }
6107 else if (section->sh_type < SHT_LOOS && section->sh_info != 0)
6108 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6109 i, section->sh_info);
6110 break;
6111 }
6112
6113 printf (" [%2u] ", i);
6114 if (do_section_details)
6115 printf ("%s\n ", printable_section_name (section));
6116 else
6117 print_symbol (-17, SECTION_NAME (section));
6118
6119 printf (do_wide ? " %-15s " : " %-15.15s ",
6120 get_section_type_name (section->sh_type));
6121
6122 if (is_32bit_elf)
6123 {
6124 const char * link_too_big = NULL;
6125
6126 print_vma (section->sh_addr, LONG_HEX);
6127
6128 printf ( " %6.6lx %6.6lx %2.2lx",
6129 (unsigned long) section->sh_offset,
6130 (unsigned long) section->sh_size,
6131 (unsigned long) section->sh_entsize);
6132
6133 if (do_section_details)
6134 fputs (" ", stdout);
6135 else
6136 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6137
6138 if (section->sh_link >= elf_header.e_shnum)
6139 {
6140 link_too_big = "";
6141 /* The sh_link value is out of range. Normally this indicates
6142 an error but it can have special values in Solaris binaries. */
6143 switch (elf_header.e_machine)
6144 {
6145 case EM_386:
6146 case EM_IAMCU:
6147 case EM_X86_64:
6148 case EM_L1OM:
6149 case EM_K1OM:
6150 case EM_OLD_SPARCV9:
6151 case EM_SPARC32PLUS:
6152 case EM_SPARCV9:
6153 case EM_SPARC:
6154 if (section->sh_link == (SHN_BEFORE & 0xffff))
6155 link_too_big = "BEFORE";
6156 else if (section->sh_link == (SHN_AFTER & 0xffff))
6157 link_too_big = "AFTER";
6158 break;
6159 default:
6160 break;
6161 }
6162 }
6163
6164 if (do_section_details)
6165 {
6166 if (link_too_big != NULL && * link_too_big)
6167 printf ("<%s> ", link_too_big);
6168 else
6169 printf ("%2u ", section->sh_link);
6170 printf ("%3u %2lu\n", section->sh_info,
6171 (unsigned long) section->sh_addralign);
6172 }
6173 else
6174 printf ("%2u %3u %2lu\n",
6175 section->sh_link,
6176 section->sh_info,
6177 (unsigned long) section->sh_addralign);
6178
6179 if (link_too_big && ! * link_too_big)
6180 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6181 i, section->sh_link);
6182 }
6183 else if (do_wide)
6184 {
6185 print_vma (section->sh_addr, LONG_HEX);
6186
6187 if ((long) section->sh_offset == section->sh_offset)
6188 printf (" %6.6lx", (unsigned long) section->sh_offset);
6189 else
6190 {
6191 putchar (' ');
6192 print_vma (section->sh_offset, LONG_HEX);
6193 }
6194
6195 if ((unsigned long) section->sh_size == section->sh_size)
6196 printf (" %6.6lx", (unsigned long) section->sh_size);
6197 else
6198 {
6199 putchar (' ');
6200 print_vma (section->sh_size, LONG_HEX);
6201 }
6202
6203 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6204 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6205 else
6206 {
6207 putchar (' ');
6208 print_vma (section->sh_entsize, LONG_HEX);
6209 }
6210
6211 if (do_section_details)
6212 fputs (" ", stdout);
6213 else
6214 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6215
6216 printf ("%2u %3u ", section->sh_link, section->sh_info);
6217
6218 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6219 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6220 else
6221 {
6222 print_vma (section->sh_addralign, DEC);
6223 putchar ('\n');
6224 }
6225 }
6226 else if (do_section_details)
6227 {
6228 printf (" %-15.15s ",
6229 get_section_type_name (section->sh_type));
6230 print_vma (section->sh_addr, LONG_HEX);
6231 if ((long) section->sh_offset == section->sh_offset)
6232 printf (" %16.16lx", (unsigned long) section->sh_offset);
6233 else
6234 {
6235 printf (" ");
6236 print_vma (section->sh_offset, LONG_HEX);
6237 }
6238 printf (" %u\n ", section->sh_link);
6239 print_vma (section->sh_size, LONG_HEX);
6240 putchar (' ');
6241 print_vma (section->sh_entsize, LONG_HEX);
6242
6243 printf (" %-16u %lu\n",
6244 section->sh_info,
6245 (unsigned long) section->sh_addralign);
6246 }
6247 else
6248 {
6249 putchar (' ');
6250 print_vma (section->sh_addr, LONG_HEX);
6251 if ((long) section->sh_offset == section->sh_offset)
6252 printf (" %8.8lx", (unsigned long) section->sh_offset);
6253 else
6254 {
6255 printf (" ");
6256 print_vma (section->sh_offset, LONG_HEX);
6257 }
6258 printf ("\n ");
6259 print_vma (section->sh_size, LONG_HEX);
6260 printf (" ");
6261 print_vma (section->sh_entsize, LONG_HEX);
6262
6263 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6264
6265 printf (" %2u %3u %lu\n",
6266 section->sh_link,
6267 section->sh_info,
6268 (unsigned long) section->sh_addralign);
6269 }
6270
6271 if (do_section_details)
6272 {
6273 printf (" %s\n", get_elf_section_flags (section->sh_flags));
6274 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6275 {
6276 /* Minimum section size is 12 bytes for 32-bit compression
6277 header + 12 bytes for compressed data header. */
6278 unsigned char buf[24];
6279
6280 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6281 if (get_data (&buf, (FILE *) file, section->sh_offset, 1,
6282 sizeof (buf), _("compression header")))
6283 {
6284 Elf_Internal_Chdr chdr;
6285
6286 (void) get_compression_header (&chdr, buf);
6287
6288 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6289 printf (" ZLIB, ");
6290 else
6291 printf (_(" [<unknown>: 0x%x], "),
6292 chdr.ch_type);
6293 print_vma (chdr.ch_size, LONG_HEX);
6294 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6295 }
6296 }
6297 }
6298 }
6299
6300 if (!do_section_details)
6301 {
6302 /* The ordering of the letters shown here matches the ordering of the
6303 corresponding SHF_xxx values, and hence the order in which these
6304 letters will be displayed to the user. */
6305 printf (_("Key to Flags:\n\
6306 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6307 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6308 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6309 if (elf_header.e_machine == EM_X86_64
6310 || elf_header.e_machine == EM_L1OM
6311 || elf_header.e_machine == EM_K1OM)
6312 printf (_("l (large), "));
6313 else if (elf_header.e_machine == EM_ARM)
6314 printf (_("y (purecode), "));
6315 printf ("p (processor specific)\n");
6316 }
6317
6318 return 1;
6319 }
6320
6321 static const char *
6322 get_group_flags (unsigned int flags)
6323 {
6324 static char buff[128];
6325
6326 if (flags == 0)
6327 return "";
6328 else if (flags == GRP_COMDAT)
6329 return "COMDAT ";
6330
6331 snprintf (buff, 14, _("[0x%x: "), flags);
6332
6333 flags &= ~ GRP_COMDAT;
6334 if (flags & GRP_MASKOS)
6335 {
6336 strcat (buff, "<OS specific>");
6337 flags &= ~ GRP_MASKOS;
6338 }
6339
6340 if (flags & GRP_MASKPROC)
6341 {
6342 strcat (buff, "<PROC specific>");
6343 flags &= ~ GRP_MASKPROC;
6344 }
6345
6346 if (flags)
6347 strcat (buff, "<unknown>");
6348
6349 strcat (buff, "]");
6350 return buff;
6351 }
6352
6353 static int
6354 process_section_groups (FILE * file)
6355 {
6356 Elf_Internal_Shdr * section;
6357 unsigned int i;
6358 struct group * group;
6359 Elf_Internal_Shdr * symtab_sec;
6360 Elf_Internal_Shdr * strtab_sec;
6361 Elf_Internal_Sym * symtab;
6362 unsigned long num_syms;
6363 char * strtab;
6364 size_t strtab_size;
6365
6366 /* Don't process section groups unless needed. */
6367 if (!do_unwind && !do_section_groups)
6368 return 1;
6369
6370 if (elf_header.e_shnum == 0)
6371 {
6372 if (do_section_groups)
6373 printf (_("\nThere are no sections to group in this file.\n"));
6374
6375 return 1;
6376 }
6377
6378 if (section_headers == NULL)
6379 {
6380 error (_("Section headers are not available!\n"));
6381 /* PR 13622: This can happen with a corrupt ELF header. */
6382 return 0;
6383 }
6384
6385 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
6386 sizeof (struct group *));
6387
6388 if (section_headers_groups == NULL)
6389 {
6390 error (_("Out of memory reading %u section group headers\n"),
6391 elf_header.e_shnum);
6392 return 0;
6393 }
6394
6395 /* Scan the sections for the group section. */
6396 group_count = 0;
6397 for (i = 0, section = section_headers;
6398 i < elf_header.e_shnum;
6399 i++, section++)
6400 if (section->sh_type == SHT_GROUP)
6401 group_count++;
6402
6403 if (group_count == 0)
6404 {
6405 if (do_section_groups)
6406 printf (_("\nThere are no section groups in this file.\n"));
6407
6408 return 1;
6409 }
6410
6411 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6412
6413 if (section_groups == NULL)
6414 {
6415 error (_("Out of memory reading %lu groups\n"),
6416 (unsigned long) group_count);
6417 return 0;
6418 }
6419
6420 symtab_sec = NULL;
6421 strtab_sec = NULL;
6422 symtab = NULL;
6423 num_syms = 0;
6424 strtab = NULL;
6425 strtab_size = 0;
6426 for (i = 0, section = section_headers, group = section_groups;
6427 i < elf_header.e_shnum;
6428 i++, section++)
6429 {
6430 if (section->sh_type == SHT_GROUP)
6431 {
6432 const char * name = printable_section_name (section);
6433 const char * group_name;
6434 unsigned char * start;
6435 unsigned char * indices;
6436 unsigned int entry, j, size;
6437 Elf_Internal_Shdr * sec;
6438 Elf_Internal_Sym * sym;
6439
6440 /* Get the symbol table. */
6441 if (section->sh_link >= elf_header.e_shnum
6442 || ((sec = section_headers + section->sh_link)->sh_type
6443 != SHT_SYMTAB))
6444 {
6445 error (_("Bad sh_link in group section `%s'\n"), name);
6446 continue;
6447 }
6448
6449 if (symtab_sec != sec)
6450 {
6451 symtab_sec = sec;
6452 if (symtab)
6453 free (symtab);
6454 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
6455 }
6456
6457 if (symtab == NULL)
6458 {
6459 error (_("Corrupt header in group section `%s'\n"), name);
6460 continue;
6461 }
6462
6463 if (section->sh_info >= num_syms)
6464 {
6465 error (_("Bad sh_info in group section `%s'\n"), name);
6466 continue;
6467 }
6468
6469 sym = symtab + section->sh_info;
6470
6471 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6472 {
6473 if (sym->st_shndx == 0
6474 || sym->st_shndx >= elf_header.e_shnum)
6475 {
6476 error (_("Bad sh_info in group section `%s'\n"), name);
6477 continue;
6478 }
6479
6480 group_name = SECTION_NAME (section_headers + sym->st_shndx);
6481 strtab_sec = NULL;
6482 if (strtab)
6483 free (strtab);
6484 strtab = NULL;
6485 strtab_size = 0;
6486 }
6487 else
6488 {
6489 /* Get the string table. */
6490 if (symtab_sec->sh_link >= elf_header.e_shnum)
6491 {
6492 strtab_sec = NULL;
6493 if (strtab)
6494 free (strtab);
6495 strtab = NULL;
6496 strtab_size = 0;
6497 }
6498 else if (strtab_sec
6499 != (sec = section_headers + symtab_sec->sh_link))
6500 {
6501 strtab_sec = sec;
6502 if (strtab)
6503 free (strtab);
6504
6505 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
6506 1, strtab_sec->sh_size,
6507 _("string table"));
6508 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6509 }
6510 group_name = sym->st_name < strtab_size
6511 ? strtab + sym->st_name : _("<corrupt>");
6512 }
6513
6514 /* PR 17531: file: loop. */
6515 if (section->sh_entsize > section->sh_size)
6516 {
6517 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6518 printable_section_name (section),
6519 (unsigned long) section->sh_entsize,
6520 (unsigned long) section->sh_size);
6521 break;
6522 }
6523
6524 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
6525 1, section->sh_size,
6526 _("section data"));
6527 if (start == NULL)
6528 continue;
6529
6530 indices = start;
6531 size = (section->sh_size / section->sh_entsize) - 1;
6532 entry = byte_get (indices, 4);
6533 indices += 4;
6534
6535 if (do_section_groups)
6536 {
6537 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6538 get_group_flags (entry), i, name, group_name, size);
6539
6540 printf (_(" [Index] Name\n"));
6541 }
6542
6543 group->group_index = i;
6544
6545 for (j = 0; j < size; j++)
6546 {
6547 struct group_list * g;
6548
6549 entry = byte_get (indices, 4);
6550 indices += 4;
6551
6552 if (entry >= elf_header.e_shnum)
6553 {
6554 static unsigned num_group_errors = 0;
6555
6556 if (num_group_errors ++ < 10)
6557 {
6558 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6559 entry, i, elf_header.e_shnum - 1);
6560 if (num_group_errors == 10)
6561 warn (_("Futher error messages about overlarge group section indicies suppressed\n"));
6562 }
6563 continue;
6564 }
6565
6566 if (section_headers_groups [entry] != NULL)
6567 {
6568 if (entry)
6569 {
6570 static unsigned num_errs = 0;
6571
6572 if (num_errs ++ < 10)
6573 {
6574 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6575 entry, i,
6576 section_headers_groups [entry]->group_index);
6577 if (num_errs == 10)
6578 warn (_("Further error messages about already contained group sections suppressed\n"));
6579 }
6580 continue;
6581 }
6582 else
6583 {
6584 /* Intel C/C++ compiler may put section 0 in a
6585 section group. We just warn it the first time
6586 and ignore it afterwards. */
6587 static int warned = 0;
6588 if (!warned)
6589 {
6590 error (_("section 0 in group section [%5u]\n"),
6591 section_headers_groups [entry]->group_index);
6592 warned++;
6593 }
6594 }
6595 }
6596
6597 section_headers_groups [entry] = group;
6598
6599 if (do_section_groups)
6600 {
6601 sec = section_headers + entry;
6602 printf (" [%5u] %s\n", entry, printable_section_name (sec));
6603 }
6604
6605 g = (struct group_list *) xmalloc (sizeof (struct group_list));
6606 g->section_index = entry;
6607 g->next = group->root;
6608 group->root = g;
6609 }
6610
6611 if (start)
6612 free (start);
6613
6614 group++;
6615 }
6616 }
6617
6618 if (symtab)
6619 free (symtab);
6620 if (strtab)
6621 free (strtab);
6622 return 1;
6623 }
6624
6625 /* Data used to display dynamic fixups. */
6626
6627 struct ia64_vms_dynfixup
6628 {
6629 bfd_vma needed_ident; /* Library ident number. */
6630 bfd_vma needed; /* Index in the dstrtab of the library name. */
6631 bfd_vma fixup_needed; /* Index of the library. */
6632 bfd_vma fixup_rela_cnt; /* Number of fixups. */
6633 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
6634 };
6635
6636 /* Data used to display dynamic relocations. */
6637
6638 struct ia64_vms_dynimgrela
6639 {
6640 bfd_vma img_rela_cnt; /* Number of relocations. */
6641 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
6642 };
6643
6644 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
6645 library). */
6646
6647 static void
6648 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
6649 const char *strtab, unsigned int strtab_sz)
6650 {
6651 Elf64_External_VMS_IMAGE_FIXUP *imfs;
6652 long i;
6653 const char *lib_name;
6654
6655 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
6656 1, fixup->fixup_rela_cnt * sizeof (*imfs),
6657 _("dynamic section image fixups"));
6658 if (!imfs)
6659 return;
6660
6661 if (fixup->needed < strtab_sz)
6662 lib_name = strtab + fixup->needed;
6663 else
6664 {
6665 warn ("corrupt library name index of 0x%lx found in dynamic entry",
6666 (unsigned long) fixup->needed);
6667 lib_name = "???";
6668 }
6669 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
6670 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
6671 printf
6672 (_("Seg Offset Type SymVec DataType\n"));
6673
6674 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
6675 {
6676 unsigned int type;
6677 const char *rtype;
6678
6679 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
6680 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
6681 type = BYTE_GET (imfs [i].type);
6682 rtype = elf_ia64_reloc_type (type);
6683 if (rtype == NULL)
6684 printf (" 0x%08x ", type);
6685 else
6686 printf (" %-32s ", rtype);
6687 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
6688 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
6689 }
6690
6691 free (imfs);
6692 }
6693
6694 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
6695
6696 static void
6697 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
6698 {
6699 Elf64_External_VMS_IMAGE_RELA *imrs;
6700 long i;
6701
6702 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
6703 1, imgrela->img_rela_cnt * sizeof (*imrs),
6704 _("dynamic section image relocations"));
6705 if (!imrs)
6706 return;
6707
6708 printf (_("\nImage relocs\n"));
6709 printf
6710 (_("Seg Offset Type Addend Seg Sym Off\n"));
6711
6712 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
6713 {
6714 unsigned int type;
6715 const char *rtype;
6716
6717 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
6718 printf ("%08" BFD_VMA_FMT "x ",
6719 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
6720 type = BYTE_GET (imrs [i].type);
6721 rtype = elf_ia64_reloc_type (type);
6722 if (rtype == NULL)
6723 printf ("0x%08x ", type);
6724 else
6725 printf ("%-31s ", rtype);
6726 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
6727 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
6728 printf ("%08" BFD_VMA_FMT "x\n",
6729 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
6730 }
6731
6732 free (imrs);
6733 }
6734
6735 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
6736
6737 static int
6738 process_ia64_vms_dynamic_relocs (FILE *file)
6739 {
6740 struct ia64_vms_dynfixup fixup;
6741 struct ia64_vms_dynimgrela imgrela;
6742 Elf_Internal_Dyn *entry;
6743 int res = 0;
6744 bfd_vma strtab_off = 0;
6745 bfd_vma strtab_sz = 0;
6746 char *strtab = NULL;
6747
6748 memset (&fixup, 0, sizeof (fixup));
6749 memset (&imgrela, 0, sizeof (imgrela));
6750
6751 /* Note: the order of the entries is specified by the OpenVMS specs. */
6752 for (entry = dynamic_section;
6753 entry < dynamic_section + dynamic_nent;
6754 entry++)
6755 {
6756 switch (entry->d_tag)
6757 {
6758 case DT_IA_64_VMS_STRTAB_OFFSET:
6759 strtab_off = entry->d_un.d_val;
6760 break;
6761 case DT_STRSZ:
6762 strtab_sz = entry->d_un.d_val;
6763 if (strtab == NULL)
6764 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
6765 1, strtab_sz, _("dynamic string section"));
6766 break;
6767
6768 case DT_IA_64_VMS_NEEDED_IDENT:
6769 fixup.needed_ident = entry->d_un.d_val;
6770 break;
6771 case DT_NEEDED:
6772 fixup.needed = entry->d_un.d_val;
6773 break;
6774 case DT_IA_64_VMS_FIXUP_NEEDED:
6775 fixup.fixup_needed = entry->d_un.d_val;
6776 break;
6777 case DT_IA_64_VMS_FIXUP_RELA_CNT:
6778 fixup.fixup_rela_cnt = entry->d_un.d_val;
6779 break;
6780 case DT_IA_64_VMS_FIXUP_RELA_OFF:
6781 fixup.fixup_rela_off = entry->d_un.d_val;
6782 res++;
6783 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
6784 break;
6785
6786 case DT_IA_64_VMS_IMG_RELA_CNT:
6787 imgrela.img_rela_cnt = entry->d_un.d_val;
6788 break;
6789 case DT_IA_64_VMS_IMG_RELA_OFF:
6790 imgrela.img_rela_off = entry->d_un.d_val;
6791 res++;
6792 dump_ia64_vms_dynamic_relocs (file, &imgrela);
6793 break;
6794
6795 default:
6796 break;
6797 }
6798 }
6799
6800 if (strtab != NULL)
6801 free (strtab);
6802
6803 return res;
6804 }
6805
6806 static struct
6807 {
6808 const char * name;
6809 int reloc;
6810 int size;
6811 int rela;
6812 } dynamic_relocations [] =
6813 {
6814 { "REL", DT_REL, DT_RELSZ, FALSE },
6815 { "RELA", DT_RELA, DT_RELASZ, TRUE },
6816 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
6817 };
6818
6819 /* Process the reloc section. */
6820
6821 static int
6822 process_relocs (FILE * file)
6823 {
6824 unsigned long rel_size;
6825 unsigned long rel_offset;
6826
6827
6828 if (!do_reloc)
6829 return 1;
6830
6831 if (do_using_dynamic)
6832 {
6833 int is_rela;
6834 const char * name;
6835 int has_dynamic_reloc;
6836 unsigned int i;
6837
6838 has_dynamic_reloc = 0;
6839
6840 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
6841 {
6842 is_rela = dynamic_relocations [i].rela;
6843 name = dynamic_relocations [i].name;
6844 rel_size = dynamic_info [dynamic_relocations [i].size];
6845 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
6846
6847 has_dynamic_reloc |= rel_size;
6848
6849 if (is_rela == UNKNOWN)
6850 {
6851 if (dynamic_relocations [i].reloc == DT_JMPREL)
6852 switch (dynamic_info[DT_PLTREL])
6853 {
6854 case DT_REL:
6855 is_rela = FALSE;
6856 break;
6857 case DT_RELA:
6858 is_rela = TRUE;
6859 break;
6860 }
6861 }
6862
6863 if (rel_size)
6864 {
6865 printf
6866 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
6867 name, rel_offset, rel_size);
6868
6869 dump_relocations (file,
6870 offset_from_vma (file, rel_offset, rel_size),
6871 rel_size,
6872 dynamic_symbols, num_dynamic_syms,
6873 dynamic_strings, dynamic_strings_length,
6874 is_rela, 1);
6875 }
6876 }
6877
6878 if (is_ia64_vms ())
6879 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
6880
6881 if (! has_dynamic_reloc)
6882 printf (_("\nThere are no dynamic relocations in this file.\n"));
6883 }
6884 else
6885 {
6886 Elf_Internal_Shdr * section;
6887 unsigned long i;
6888 int found = 0;
6889
6890 for (i = 0, section = section_headers;
6891 i < elf_header.e_shnum;
6892 i++, section++)
6893 {
6894 if ( section->sh_type != SHT_RELA
6895 && section->sh_type != SHT_REL)
6896 continue;
6897
6898 rel_offset = section->sh_offset;
6899 rel_size = section->sh_size;
6900
6901 if (rel_size)
6902 {
6903 Elf_Internal_Shdr * strsec;
6904 int is_rela;
6905
6906 printf (_("\nRelocation section "));
6907
6908 if (string_table == NULL)
6909 printf ("%d", section->sh_name);
6910 else
6911 printf ("'%s'", printable_section_name (section));
6912
6913 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6914 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
6915
6916 is_rela = section->sh_type == SHT_RELA;
6917
6918 if (section->sh_link != 0
6919 && section->sh_link < elf_header.e_shnum)
6920 {
6921 Elf_Internal_Shdr * symsec;
6922 Elf_Internal_Sym * symtab;
6923 unsigned long nsyms;
6924 unsigned long strtablen = 0;
6925 char * strtab = NULL;
6926
6927 symsec = section_headers + section->sh_link;
6928 if (symsec->sh_type != SHT_SYMTAB
6929 && symsec->sh_type != SHT_DYNSYM)
6930 continue;
6931
6932 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
6933
6934 if (symtab == NULL)
6935 continue;
6936
6937 if (symsec->sh_link != 0
6938 && symsec->sh_link < elf_header.e_shnum)
6939 {
6940 strsec = section_headers + symsec->sh_link;
6941
6942 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6943 1, strsec->sh_size,
6944 _("string table"));
6945 strtablen = strtab == NULL ? 0 : strsec->sh_size;
6946 }
6947
6948 dump_relocations (file, rel_offset, rel_size,
6949 symtab, nsyms, strtab, strtablen,
6950 is_rela,
6951 symsec->sh_type == SHT_DYNSYM);
6952 if (strtab)
6953 free (strtab);
6954 free (symtab);
6955 }
6956 else
6957 dump_relocations (file, rel_offset, rel_size,
6958 NULL, 0, NULL, 0, is_rela, 0);
6959
6960 found = 1;
6961 }
6962 }
6963
6964 if (! found)
6965 printf (_("\nThere are no relocations in this file.\n"));
6966 }
6967
6968 return 1;
6969 }
6970
6971 /* An absolute address consists of a section and an offset. If the
6972 section is NULL, the offset itself is the address, otherwise, the
6973 address equals to LOAD_ADDRESS(section) + offset. */
6974
6975 struct absaddr
6976 {
6977 unsigned short section;
6978 bfd_vma offset;
6979 };
6980
6981 #define ABSADDR(a) \
6982 ((a).section \
6983 ? section_headers [(a).section].sh_addr + (a).offset \
6984 : (a).offset)
6985
6986 /* Find the nearest symbol at or below ADDR. Returns the symbol
6987 name, if found, and the offset from the symbol to ADDR. */
6988
6989 static void
6990 find_symbol_for_address (Elf_Internal_Sym * symtab,
6991 unsigned long nsyms,
6992 const char * strtab,
6993 unsigned long strtab_size,
6994 struct absaddr addr,
6995 const char ** symname,
6996 bfd_vma * offset)
6997 {
6998 bfd_vma dist = 0x100000;
6999 Elf_Internal_Sym * sym;
7000 Elf_Internal_Sym * beg;
7001 Elf_Internal_Sym * end;
7002 Elf_Internal_Sym * best = NULL;
7003
7004 REMOVE_ARCH_BITS (addr.offset);
7005 beg = symtab;
7006 end = symtab + nsyms;
7007
7008 while (beg < end)
7009 {
7010 bfd_vma value;
7011
7012 sym = beg + (end - beg) / 2;
7013
7014 value = sym->st_value;
7015 REMOVE_ARCH_BITS (value);
7016
7017 if (sym->st_name != 0
7018 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7019 && addr.offset >= value
7020 && addr.offset - value < dist)
7021 {
7022 best = sym;
7023 dist = addr.offset - value;
7024 if (!dist)
7025 break;
7026 }
7027
7028 if (addr.offset < value)
7029 end = sym;
7030 else
7031 beg = sym + 1;
7032 }
7033
7034 if (best)
7035 {
7036 *symname = (best->st_name >= strtab_size
7037 ? _("<corrupt>") : strtab + best->st_name);
7038 *offset = dist;
7039 return;
7040 }
7041
7042 *symname = NULL;
7043 *offset = addr.offset;
7044 }
7045
7046 static int
7047 symcmp (const void *p, const void *q)
7048 {
7049 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7050 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7051
7052 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7053 }
7054
7055 /* Process the unwind section. */
7056
7057 #include "unwind-ia64.h"
7058
7059 struct ia64_unw_table_entry
7060 {
7061 struct absaddr start;
7062 struct absaddr end;
7063 struct absaddr info;
7064 };
7065
7066 struct ia64_unw_aux_info
7067 {
7068 struct ia64_unw_table_entry *table; /* Unwind table. */
7069 unsigned long table_len; /* Length of unwind table. */
7070 unsigned char * info; /* Unwind info. */
7071 unsigned long info_size; /* Size of unwind info. */
7072 bfd_vma info_addr; /* Starting address of unwind info. */
7073 bfd_vma seg_base; /* Starting address of segment. */
7074 Elf_Internal_Sym * symtab; /* The symbol table. */
7075 unsigned long nsyms; /* Number of symbols. */
7076 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7077 unsigned long nfuns; /* Number of entries in funtab. */
7078 char * strtab; /* The string table. */
7079 unsigned long strtab_size; /* Size of string table. */
7080 };
7081
7082 static void
7083 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
7084 {
7085 struct ia64_unw_table_entry * tp;
7086 unsigned long j, nfuns;
7087 int in_body;
7088
7089 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7090 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7091 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7092 aux->funtab[nfuns++] = aux->symtab[j];
7093 aux->nfuns = nfuns;
7094 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7095
7096 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7097 {
7098 bfd_vma stamp;
7099 bfd_vma offset;
7100 const unsigned char * dp;
7101 const unsigned char * head;
7102 const unsigned char * end;
7103 const char * procname;
7104
7105 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7106 aux->strtab_size, tp->start, &procname, &offset);
7107
7108 fputs ("\n<", stdout);
7109
7110 if (procname)
7111 {
7112 fputs (procname, stdout);
7113
7114 if (offset)
7115 printf ("+%lx", (unsigned long) offset);
7116 }
7117
7118 fputs (">: [", stdout);
7119 print_vma (tp->start.offset, PREFIX_HEX);
7120 fputc ('-', stdout);
7121 print_vma (tp->end.offset, PREFIX_HEX);
7122 printf ("], info at +0x%lx\n",
7123 (unsigned long) (tp->info.offset - aux->seg_base));
7124
7125 /* PR 17531: file: 86232b32. */
7126 if (aux->info == NULL)
7127 continue;
7128
7129 /* PR 17531: file: 0997b4d1. */
7130 if ((ABSADDR (tp->info) - aux->info_addr) >= aux->info_size)
7131 {
7132 warn (_("Invalid offset %lx in table entry %ld\n"),
7133 (long) tp->info.offset, (long) (tp - aux->table));
7134 continue;
7135 }
7136
7137 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
7138 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7139
7140 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7141 (unsigned) UNW_VER (stamp),
7142 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7143 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7144 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7145 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7146
7147 if (UNW_VER (stamp) != 1)
7148 {
7149 printf (_("\tUnknown version.\n"));
7150 continue;
7151 }
7152
7153 in_body = 0;
7154 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7155 /* PR 17531: file: 16ceda89. */
7156 if (end > aux->info + aux->info_size)
7157 end = aux->info + aux->info_size;
7158 for (dp = head + 8; dp < end;)
7159 dp = unw_decode (dp, in_body, & in_body, end);
7160 }
7161
7162 free (aux->funtab);
7163 }
7164
7165 static bfd_boolean
7166 slurp_ia64_unwind_table (FILE * file,
7167 struct ia64_unw_aux_info * aux,
7168 Elf_Internal_Shdr * sec)
7169 {
7170 unsigned long size, nrelas, i;
7171 Elf_Internal_Phdr * seg;
7172 struct ia64_unw_table_entry * tep;
7173 Elf_Internal_Shdr * relsec;
7174 Elf_Internal_Rela * rela;
7175 Elf_Internal_Rela * rp;
7176 unsigned char * table;
7177 unsigned char * tp;
7178 Elf_Internal_Sym * sym;
7179 const char * relname;
7180
7181 aux->table_len = 0;
7182
7183 /* First, find the starting address of the segment that includes
7184 this section: */
7185
7186 if (elf_header.e_phnum)
7187 {
7188 if (! get_program_headers (file))
7189 return FALSE;
7190
7191 for (seg = program_headers;
7192 seg < program_headers + elf_header.e_phnum;
7193 ++seg)
7194 {
7195 if (seg->p_type != PT_LOAD)
7196 continue;
7197
7198 if (sec->sh_addr >= seg->p_vaddr
7199 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7200 {
7201 aux->seg_base = seg->p_vaddr;
7202 break;
7203 }
7204 }
7205 }
7206
7207 /* Second, build the unwind table from the contents of the unwind section: */
7208 size = sec->sh_size;
7209 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7210 _("unwind table"));
7211 if (!table)
7212 return FALSE;
7213
7214 aux->table_len = size / (3 * eh_addr_size);
7215 aux->table = (struct ia64_unw_table_entry *)
7216 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7217 tep = aux->table;
7218
7219 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7220 {
7221 tep->start.section = SHN_UNDEF;
7222 tep->end.section = SHN_UNDEF;
7223 tep->info.section = SHN_UNDEF;
7224 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7225 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7226 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7227 tep->start.offset += aux->seg_base;
7228 tep->end.offset += aux->seg_base;
7229 tep->info.offset += aux->seg_base;
7230 }
7231 free (table);
7232
7233 /* Third, apply any relocations to the unwind table: */
7234 for (relsec = section_headers;
7235 relsec < section_headers + elf_header.e_shnum;
7236 ++relsec)
7237 {
7238 if (relsec->sh_type != SHT_RELA
7239 || relsec->sh_info >= elf_header.e_shnum
7240 || section_headers + relsec->sh_info != sec)
7241 continue;
7242
7243 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7244 & rela, & nrelas))
7245 {
7246 free (aux->table);
7247 aux->table = NULL;
7248 aux->table_len = 0;
7249 return FALSE;
7250 }
7251
7252 for (rp = rela; rp < rela + nrelas; ++rp)
7253 {
7254 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
7255 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7256
7257 /* PR 17531: file: 9fa67536. */
7258 if (relname == NULL)
7259 {
7260 warn (_("Skipping unknown relocation type: %u\n"), get_reloc_type (rp->r_info));
7261 continue;
7262 }
7263
7264 if (! const_strneq (relname, "R_IA64_SEGREL"))
7265 {
7266 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7267 continue;
7268 }
7269
7270 i = rp->r_offset / (3 * eh_addr_size);
7271
7272 /* PR 17531: file: 5bc8d9bf. */
7273 if (i >= aux->table_len)
7274 {
7275 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7276 continue;
7277 }
7278
7279 switch (rp->r_offset / eh_addr_size % 3)
7280 {
7281 case 0:
7282 aux->table[i].start.section = sym->st_shndx;
7283 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7284 break;
7285 case 1:
7286 aux->table[i].end.section = sym->st_shndx;
7287 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7288 break;
7289 case 2:
7290 aux->table[i].info.section = sym->st_shndx;
7291 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7292 break;
7293 default:
7294 break;
7295 }
7296 }
7297
7298 free (rela);
7299 }
7300
7301 return TRUE;
7302 }
7303
7304 static void
7305 ia64_process_unwind (FILE * file)
7306 {
7307 Elf_Internal_Shdr * sec;
7308 Elf_Internal_Shdr * unwsec = NULL;
7309 Elf_Internal_Shdr * strsec;
7310 unsigned long i, unwcount = 0, unwstart = 0;
7311 struct ia64_unw_aux_info aux;
7312
7313 memset (& aux, 0, sizeof (aux));
7314
7315 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7316 {
7317 if (sec->sh_type == SHT_SYMTAB
7318 && sec->sh_link < elf_header.e_shnum)
7319 {
7320 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7321
7322 strsec = section_headers + sec->sh_link;
7323 if (aux.strtab != NULL)
7324 {
7325 error (_("Multiple auxillary string tables encountered\n"));
7326 free (aux.strtab);
7327 }
7328 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7329 1, strsec->sh_size,
7330 _("string table"));
7331 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7332 }
7333 else if (sec->sh_type == SHT_IA_64_UNWIND)
7334 unwcount++;
7335 }
7336
7337 if (!unwcount)
7338 printf (_("\nThere are no unwind sections in this file.\n"));
7339
7340 while (unwcount-- > 0)
7341 {
7342 char * suffix;
7343 size_t len, len2;
7344
7345 for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
7346 i < elf_header.e_shnum; ++i, ++sec)
7347 if (sec->sh_type == SHT_IA_64_UNWIND)
7348 {
7349 unwsec = sec;
7350 break;
7351 }
7352 /* We have already counted the number of SHT_IA64_UNWIND
7353 sections so the loop above should never fail. */
7354 assert (unwsec != NULL);
7355
7356 unwstart = i + 1;
7357 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7358
7359 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7360 {
7361 /* We need to find which section group it is in. */
7362 struct group_list * g;
7363
7364 if (section_headers_groups == NULL
7365 || section_headers_groups [i] == NULL)
7366 i = elf_header.e_shnum;
7367 else
7368 {
7369 g = section_headers_groups [i]->root;
7370
7371 for (; g != NULL; g = g->next)
7372 {
7373 sec = section_headers + g->section_index;
7374
7375 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7376 break;
7377 }
7378
7379 if (g == NULL)
7380 i = elf_header.e_shnum;
7381 }
7382 }
7383 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7384 {
7385 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7386 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7387 suffix = SECTION_NAME (unwsec) + len;
7388 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7389 ++i, ++sec)
7390 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7391 && streq (SECTION_NAME (sec) + len2, suffix))
7392 break;
7393 }
7394 else
7395 {
7396 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7397 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7398 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7399 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7400 suffix = "";
7401 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7402 suffix = SECTION_NAME (unwsec) + len;
7403 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7404 ++i, ++sec)
7405 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7406 && streq (SECTION_NAME (sec) + len2, suffix))
7407 break;
7408 }
7409
7410 if (i == elf_header.e_shnum)
7411 {
7412 printf (_("\nCould not find unwind info section for "));
7413
7414 if (string_table == NULL)
7415 printf ("%d", unwsec->sh_name);
7416 else
7417 printf ("'%s'", printable_section_name (unwsec));
7418 }
7419 else
7420 {
7421 aux.info_addr = sec->sh_addr;
7422 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
7423 sec->sh_size,
7424 _("unwind info"));
7425 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7426
7427 printf (_("\nUnwind section "));
7428
7429 if (string_table == NULL)
7430 printf ("%d", unwsec->sh_name);
7431 else
7432 printf ("'%s'", printable_section_name (unwsec));
7433
7434 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7435 (unsigned long) unwsec->sh_offset,
7436 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7437
7438 if (slurp_ia64_unwind_table (file, & aux, unwsec)
7439 && aux.table_len > 0)
7440 dump_ia64_unwind (& aux);
7441
7442 if (aux.table)
7443 free ((char *) aux.table);
7444 if (aux.info)
7445 free ((char *) aux.info);
7446 aux.table = NULL;
7447 aux.info = NULL;
7448 }
7449 }
7450
7451 if (aux.symtab)
7452 free (aux.symtab);
7453 if (aux.strtab)
7454 free ((char *) aux.strtab);
7455 }
7456
7457 struct hppa_unw_table_entry
7458 {
7459 struct absaddr start;
7460 struct absaddr end;
7461 unsigned int Cannot_unwind:1; /* 0 */
7462 unsigned int Millicode:1; /* 1 */
7463 unsigned int Millicode_save_sr0:1; /* 2 */
7464 unsigned int Region_description:2; /* 3..4 */
7465 unsigned int reserved1:1; /* 5 */
7466 unsigned int Entry_SR:1; /* 6 */
7467 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
7468 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
7469 unsigned int Args_stored:1; /* 16 */
7470 unsigned int Variable_Frame:1; /* 17 */
7471 unsigned int Separate_Package_Body:1; /* 18 */
7472 unsigned int Frame_Extension_Millicode:1; /* 19 */
7473 unsigned int Stack_Overflow_Check:1; /* 20 */
7474 unsigned int Two_Instruction_SP_Increment:1;/* 21 */
7475 unsigned int Ada_Region:1; /* 22 */
7476 unsigned int cxx_info:1; /* 23 */
7477 unsigned int cxx_try_catch:1; /* 24 */
7478 unsigned int sched_entry_seq:1; /* 25 */
7479 unsigned int reserved2:1; /* 26 */
7480 unsigned int Save_SP:1; /* 27 */
7481 unsigned int Save_RP:1; /* 28 */
7482 unsigned int Save_MRP_in_frame:1; /* 29 */
7483 unsigned int extn_ptr_defined:1; /* 30 */
7484 unsigned int Cleanup_defined:1; /* 31 */
7485
7486 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7487 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7488 unsigned int Large_frame:1; /* 2 */
7489 unsigned int Pseudo_SP_Set:1; /* 3 */
7490 unsigned int reserved4:1; /* 4 */
7491 unsigned int Total_frame_size:27; /* 5..31 */
7492 };
7493
7494 struct hppa_unw_aux_info
7495 {
7496 struct hppa_unw_table_entry * table; /* Unwind table. */
7497 unsigned long table_len; /* Length of unwind table. */
7498 bfd_vma seg_base; /* Starting address of segment. */
7499 Elf_Internal_Sym * symtab; /* The symbol table. */
7500 unsigned long nsyms; /* Number of symbols. */
7501 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7502 unsigned long nfuns; /* Number of entries in funtab. */
7503 char * strtab; /* The string table. */
7504 unsigned long strtab_size; /* Size of string table. */
7505 };
7506
7507 static void
7508 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
7509 {
7510 struct hppa_unw_table_entry * tp;
7511 unsigned long j, nfuns;
7512
7513 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7514 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7515 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7516 aux->funtab[nfuns++] = aux->symtab[j];
7517 aux->nfuns = nfuns;
7518 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7519
7520 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7521 {
7522 bfd_vma offset;
7523 const char * procname;
7524
7525 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7526 aux->strtab_size, tp->start, &procname,
7527 &offset);
7528
7529 fputs ("\n<", stdout);
7530
7531 if (procname)
7532 {
7533 fputs (procname, stdout);
7534
7535 if (offset)
7536 printf ("+%lx", (unsigned long) offset);
7537 }
7538
7539 fputs (">: [", stdout);
7540 print_vma (tp->start.offset, PREFIX_HEX);
7541 fputc ('-', stdout);
7542 print_vma (tp->end.offset, PREFIX_HEX);
7543 printf ("]\n\t");
7544
7545 #define PF(_m) if (tp->_m) printf (#_m " ");
7546 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
7547 PF(Cannot_unwind);
7548 PF(Millicode);
7549 PF(Millicode_save_sr0);
7550 /* PV(Region_description); */
7551 PF(Entry_SR);
7552 PV(Entry_FR);
7553 PV(Entry_GR);
7554 PF(Args_stored);
7555 PF(Variable_Frame);
7556 PF(Separate_Package_Body);
7557 PF(Frame_Extension_Millicode);
7558 PF(Stack_Overflow_Check);
7559 PF(Two_Instruction_SP_Increment);
7560 PF(Ada_Region);
7561 PF(cxx_info);
7562 PF(cxx_try_catch);
7563 PF(sched_entry_seq);
7564 PF(Save_SP);
7565 PF(Save_RP);
7566 PF(Save_MRP_in_frame);
7567 PF(extn_ptr_defined);
7568 PF(Cleanup_defined);
7569 PF(MPE_XL_interrupt_marker);
7570 PF(HP_UX_interrupt_marker);
7571 PF(Large_frame);
7572 PF(Pseudo_SP_Set);
7573 PV(Total_frame_size);
7574 #undef PF
7575 #undef PV
7576 }
7577
7578 printf ("\n");
7579
7580 free (aux->funtab);
7581 }
7582
7583 static int
7584 slurp_hppa_unwind_table (FILE * file,
7585 struct hppa_unw_aux_info * aux,
7586 Elf_Internal_Shdr * sec)
7587 {
7588 unsigned long size, unw_ent_size, nentries, nrelas, i;
7589 Elf_Internal_Phdr * seg;
7590 struct hppa_unw_table_entry * tep;
7591 Elf_Internal_Shdr * relsec;
7592 Elf_Internal_Rela * rela;
7593 Elf_Internal_Rela * rp;
7594 unsigned char * table;
7595 unsigned char * tp;
7596 Elf_Internal_Sym * sym;
7597 const char * relname;
7598
7599 /* First, find the starting address of the segment that includes
7600 this section. */
7601
7602 if (elf_header.e_phnum)
7603 {
7604 if (! get_program_headers (file))
7605 return 0;
7606
7607 for (seg = program_headers;
7608 seg < program_headers + elf_header.e_phnum;
7609 ++seg)
7610 {
7611 if (seg->p_type != PT_LOAD)
7612 continue;
7613
7614 if (sec->sh_addr >= seg->p_vaddr
7615 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7616 {
7617 aux->seg_base = seg->p_vaddr;
7618 break;
7619 }
7620 }
7621 }
7622
7623 /* Second, build the unwind table from the contents of the unwind
7624 section. */
7625 size = sec->sh_size;
7626 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7627 _("unwind table"));
7628 if (!table)
7629 return 0;
7630
7631 unw_ent_size = 16;
7632 nentries = size / unw_ent_size;
7633 size = unw_ent_size * nentries;
7634
7635 tep = aux->table = (struct hppa_unw_table_entry *)
7636 xcmalloc (nentries, sizeof (aux->table[0]));
7637
7638 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
7639 {
7640 unsigned int tmp1, tmp2;
7641
7642 tep->start.section = SHN_UNDEF;
7643 tep->end.section = SHN_UNDEF;
7644
7645 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
7646 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
7647 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
7648 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
7649
7650 tep->start.offset += aux->seg_base;
7651 tep->end.offset += aux->seg_base;
7652
7653 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
7654 tep->Millicode = (tmp1 >> 30) & 0x1;
7655 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
7656 tep->Region_description = (tmp1 >> 27) & 0x3;
7657 tep->reserved1 = (tmp1 >> 26) & 0x1;
7658 tep->Entry_SR = (tmp1 >> 25) & 0x1;
7659 tep->Entry_FR = (tmp1 >> 21) & 0xf;
7660 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
7661 tep->Args_stored = (tmp1 >> 15) & 0x1;
7662 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
7663 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
7664 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
7665 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
7666 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
7667 tep->Ada_Region = (tmp1 >> 9) & 0x1;
7668 tep->cxx_info = (tmp1 >> 8) & 0x1;
7669 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
7670 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
7671 tep->reserved2 = (tmp1 >> 5) & 0x1;
7672 tep->Save_SP = (tmp1 >> 4) & 0x1;
7673 tep->Save_RP = (tmp1 >> 3) & 0x1;
7674 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
7675 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
7676 tep->Cleanup_defined = tmp1 & 0x1;
7677
7678 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
7679 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
7680 tep->Large_frame = (tmp2 >> 29) & 0x1;
7681 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
7682 tep->reserved4 = (tmp2 >> 27) & 0x1;
7683 tep->Total_frame_size = tmp2 & 0x7ffffff;
7684 }
7685 free (table);
7686
7687 /* Third, apply any relocations to the unwind table. */
7688 for (relsec = section_headers;
7689 relsec < section_headers + elf_header.e_shnum;
7690 ++relsec)
7691 {
7692 if (relsec->sh_type != SHT_RELA
7693 || relsec->sh_info >= elf_header.e_shnum
7694 || section_headers + relsec->sh_info != sec)
7695 continue;
7696
7697 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7698 & rela, & nrelas))
7699 return 0;
7700
7701 for (rp = rela; rp < rela + nrelas; ++rp)
7702 {
7703 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
7704 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7705
7706 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
7707 if (! const_strneq (relname, "R_PARISC_SEGREL"))
7708 {
7709 warn (_("Skipping unexpected relocation type %s\n"), relname);
7710 continue;
7711 }
7712
7713 i = rp->r_offset / unw_ent_size;
7714
7715 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
7716 {
7717 case 0:
7718 aux->table[i].start.section = sym->st_shndx;
7719 aux->table[i].start.offset = sym->st_value + rp->r_addend;
7720 break;
7721 case 1:
7722 aux->table[i].end.section = sym->st_shndx;
7723 aux->table[i].end.offset = sym->st_value + rp->r_addend;
7724 break;
7725 default:
7726 break;
7727 }
7728 }
7729
7730 free (rela);
7731 }
7732
7733 aux->table_len = nentries;
7734
7735 return 1;
7736 }
7737
7738 static void
7739 hppa_process_unwind (FILE * file)
7740 {
7741 struct hppa_unw_aux_info aux;
7742 Elf_Internal_Shdr * unwsec = NULL;
7743 Elf_Internal_Shdr * strsec;
7744 Elf_Internal_Shdr * sec;
7745 unsigned long i;
7746
7747 if (string_table == NULL)
7748 return;
7749
7750 memset (& aux, 0, sizeof (aux));
7751
7752 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7753 {
7754 if (sec->sh_type == SHT_SYMTAB
7755 && sec->sh_link < elf_header.e_shnum)
7756 {
7757 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7758
7759 strsec = section_headers + sec->sh_link;
7760 if (aux.strtab != NULL)
7761 {
7762 error (_("Multiple auxillary string tables encountered\n"));
7763 free (aux.strtab);
7764 }
7765 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7766 1, strsec->sh_size,
7767 _("string table"));
7768 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7769 }
7770 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7771 unwsec = sec;
7772 }
7773
7774 if (!unwsec)
7775 printf (_("\nThere are no unwind sections in this file.\n"));
7776
7777 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7778 {
7779 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7780 {
7781 printf (_("\nUnwind section '%s' at offset 0x%lx contains %lu entries:\n"),
7782 printable_section_name (sec),
7783 (unsigned long) sec->sh_offset,
7784 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
7785
7786 slurp_hppa_unwind_table (file, &aux, sec);
7787 if (aux.table_len > 0)
7788 dump_hppa_unwind (&aux);
7789
7790 if (aux.table)
7791 free ((char *) aux.table);
7792 aux.table = NULL;
7793 }
7794 }
7795
7796 if (aux.symtab)
7797 free (aux.symtab);
7798 if (aux.strtab)
7799 free ((char *) aux.strtab);
7800 }
7801
7802 struct arm_section
7803 {
7804 unsigned char * data; /* The unwind data. */
7805 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
7806 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
7807 unsigned long nrelas; /* The number of relocations. */
7808 unsigned int rel_type; /* REL or RELA ? */
7809 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
7810 };
7811
7812 struct arm_unw_aux_info
7813 {
7814 FILE * file; /* The file containing the unwind sections. */
7815 Elf_Internal_Sym * symtab; /* The file's symbol table. */
7816 unsigned long nsyms; /* Number of symbols. */
7817 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7818 unsigned long nfuns; /* Number of these symbols. */
7819 char * strtab; /* The file's string table. */
7820 unsigned long strtab_size; /* Size of string table. */
7821 };
7822
7823 static const char *
7824 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
7825 bfd_vma fn, struct absaddr addr)
7826 {
7827 const char *procname;
7828 bfd_vma sym_offset;
7829
7830 if (addr.section == SHN_UNDEF)
7831 addr.offset = fn;
7832
7833 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7834 aux->strtab_size, addr, &procname,
7835 &sym_offset);
7836
7837 print_vma (fn, PREFIX_HEX);
7838
7839 if (procname)
7840 {
7841 fputs (" <", stdout);
7842 fputs (procname, stdout);
7843
7844 if (sym_offset)
7845 printf ("+0x%lx", (unsigned long) sym_offset);
7846 fputc ('>', stdout);
7847 }
7848
7849 return procname;
7850 }
7851
7852 static void
7853 arm_free_section (struct arm_section *arm_sec)
7854 {
7855 if (arm_sec->data != NULL)
7856 free (arm_sec->data);
7857
7858 if (arm_sec->rela != NULL)
7859 free (arm_sec->rela);
7860 }
7861
7862 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
7863 cached section and install SEC instead.
7864 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
7865 and return its valued in * WORDP, relocating if necessary.
7866 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
7867 relocation's offset in ADDR.
7868 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
7869 into the string table of the symbol associated with the reloc. If no
7870 reloc was applied store -1 there.
7871 5) Return TRUE upon success, FALSE otherwise. */
7872
7873 static bfd_boolean
7874 get_unwind_section_word (struct arm_unw_aux_info * aux,
7875 struct arm_section * arm_sec,
7876 Elf_Internal_Shdr * sec,
7877 bfd_vma word_offset,
7878 unsigned int * wordp,
7879 struct absaddr * addr,
7880 bfd_vma * sym_name)
7881 {
7882 Elf_Internal_Rela *rp;
7883 Elf_Internal_Sym *sym;
7884 const char * relname;
7885 unsigned int word;
7886 bfd_boolean wrapped;
7887
7888 if (sec == NULL || arm_sec == NULL)
7889 return FALSE;
7890
7891 addr->section = SHN_UNDEF;
7892 addr->offset = 0;
7893
7894 if (sym_name != NULL)
7895 *sym_name = (bfd_vma) -1;
7896
7897 /* If necessary, update the section cache. */
7898 if (sec != arm_sec->sec)
7899 {
7900 Elf_Internal_Shdr *relsec;
7901
7902 arm_free_section (arm_sec);
7903
7904 arm_sec->sec = sec;
7905 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
7906 sec->sh_size, _("unwind data"));
7907 arm_sec->rela = NULL;
7908 arm_sec->nrelas = 0;
7909
7910 for (relsec = section_headers;
7911 relsec < section_headers + elf_header.e_shnum;
7912 ++relsec)
7913 {
7914 if (relsec->sh_info >= elf_header.e_shnum
7915 || section_headers + relsec->sh_info != sec
7916 /* PR 15745: Check the section type as well. */
7917 || (relsec->sh_type != SHT_REL
7918 && relsec->sh_type != SHT_RELA))
7919 continue;
7920
7921 arm_sec->rel_type = relsec->sh_type;
7922 if (relsec->sh_type == SHT_REL)
7923 {
7924 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
7925 relsec->sh_size,
7926 & arm_sec->rela, & arm_sec->nrelas))
7927 return FALSE;
7928 }
7929 else /* relsec->sh_type == SHT_RELA */
7930 {
7931 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
7932 relsec->sh_size,
7933 & arm_sec->rela, & arm_sec->nrelas))
7934 return FALSE;
7935 }
7936 break;
7937 }
7938
7939 arm_sec->next_rela = arm_sec->rela;
7940 }
7941
7942 /* If there is no unwind data we can do nothing. */
7943 if (arm_sec->data == NULL)
7944 return FALSE;
7945
7946 /* If the offset is invalid then fail. */
7947 if (word_offset > (sec->sh_size - 4)
7948 /* PR 18879 */
7949 || (sec->sh_size < 5 && word_offset >= sec->sh_size)
7950 || ((bfd_signed_vma) word_offset) < 0)
7951 return FALSE;
7952
7953 /* Get the word at the required offset. */
7954 word = byte_get (arm_sec->data + word_offset, 4);
7955
7956 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
7957 if (arm_sec->rela == NULL)
7958 {
7959 * wordp = word;
7960 return TRUE;
7961 }
7962
7963 /* Look through the relocs to find the one that applies to the provided offset. */
7964 wrapped = FALSE;
7965 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
7966 {
7967 bfd_vma prelval, offset;
7968
7969 if (rp->r_offset > word_offset && !wrapped)
7970 {
7971 rp = arm_sec->rela;
7972 wrapped = TRUE;
7973 }
7974 if (rp->r_offset > word_offset)
7975 break;
7976
7977 if (rp->r_offset & 3)
7978 {
7979 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
7980 (unsigned long) rp->r_offset);
7981 continue;
7982 }
7983
7984 if (rp->r_offset < word_offset)
7985 continue;
7986
7987 /* PR 17531: file: 027-161405-0.004 */
7988 if (aux->symtab == NULL)
7989 continue;
7990
7991 if (arm_sec->rel_type == SHT_REL)
7992 {
7993 offset = word & 0x7fffffff;
7994 if (offset & 0x40000000)
7995 offset |= ~ (bfd_vma) 0x7fffffff;
7996 }
7997 else if (arm_sec->rel_type == SHT_RELA)
7998 offset = rp->r_addend;
7999 else
8000 {
8001 error (_("Unknown section relocation type %d encountered\n"),
8002 arm_sec->rel_type);
8003 break;
8004 }
8005
8006 /* PR 17531 file: 027-1241568-0.004. */
8007 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8008 {
8009 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8010 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8011 break;
8012 }
8013
8014 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8015 offset += sym->st_value;
8016 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8017
8018 /* Check that we are processing the expected reloc type. */
8019 if (elf_header.e_machine == EM_ARM)
8020 {
8021 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8022 if (relname == NULL)
8023 {
8024 warn (_("Skipping unknown ARM relocation type: %d\n"),
8025 (int) ELF32_R_TYPE (rp->r_info));
8026 continue;
8027 }
8028
8029 if (streq (relname, "R_ARM_NONE"))
8030 continue;
8031
8032 if (! streq (relname, "R_ARM_PREL31"))
8033 {
8034 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8035 continue;
8036 }
8037 }
8038 else if (elf_header.e_machine == EM_TI_C6000)
8039 {
8040 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8041 if (relname == NULL)
8042 {
8043 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8044 (int) ELF32_R_TYPE (rp->r_info));
8045 continue;
8046 }
8047
8048 if (streq (relname, "R_C6000_NONE"))
8049 continue;
8050
8051 if (! streq (relname, "R_C6000_PREL31"))
8052 {
8053 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8054 continue;
8055 }
8056
8057 prelval >>= 1;
8058 }
8059 else
8060 {
8061 /* This function currently only supports ARM and TI unwinders. */
8062 warn (_("Only TI and ARM unwinders are currently supported\n"));
8063 break;
8064 }
8065
8066 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8067 addr->section = sym->st_shndx;
8068 addr->offset = offset;
8069
8070 if (sym_name)
8071 * sym_name = sym->st_name;
8072 break;
8073 }
8074
8075 *wordp = word;
8076 arm_sec->next_rela = rp;
8077
8078 return TRUE;
8079 }
8080
8081 static const char *tic6x_unwind_regnames[16] =
8082 {
8083 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8084 "A14", "A13", "A12", "A11", "A10",
8085 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8086 };
8087
8088 static void
8089 decode_tic6x_unwind_regmask (unsigned int mask)
8090 {
8091 int i;
8092
8093 for (i = 12; mask; mask >>= 1, i--)
8094 {
8095 if (mask & 1)
8096 {
8097 fputs (tic6x_unwind_regnames[i], stdout);
8098 if (mask > 1)
8099 fputs (", ", stdout);
8100 }
8101 }
8102 }
8103
8104 #define ADVANCE \
8105 if (remaining == 0 && more_words) \
8106 { \
8107 data_offset += 4; \
8108 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
8109 data_offset, & word, & addr, NULL)) \
8110 return; \
8111 remaining = 4; \
8112 more_words--; \
8113 } \
8114
8115 #define GET_OP(OP) \
8116 ADVANCE; \
8117 if (remaining) \
8118 { \
8119 remaining--; \
8120 (OP) = word >> 24; \
8121 word <<= 8; \
8122 } \
8123 else \
8124 { \
8125 printf (_("[Truncated opcode]\n")); \
8126 return; \
8127 } \
8128 printf ("0x%02x ", OP)
8129
8130 static void
8131 decode_arm_unwind_bytecode (struct arm_unw_aux_info * aux,
8132 unsigned int word,
8133 unsigned int remaining,
8134 unsigned int more_words,
8135 bfd_vma data_offset,
8136 Elf_Internal_Shdr * data_sec,
8137 struct arm_section * data_arm_sec)
8138 {
8139 struct absaddr addr;
8140
8141 /* Decode the unwinding instructions. */
8142 while (1)
8143 {
8144 unsigned int op, op2;
8145
8146 ADVANCE;
8147 if (remaining == 0)
8148 break;
8149 remaining--;
8150 op = word >> 24;
8151 word <<= 8;
8152
8153 printf (" 0x%02x ", op);
8154
8155 if ((op & 0xc0) == 0x00)
8156 {
8157 int offset = ((op & 0x3f) << 2) + 4;
8158
8159 printf (" vsp = vsp + %d", offset);
8160 }
8161 else if ((op & 0xc0) == 0x40)
8162 {
8163 int offset = ((op & 0x3f) << 2) + 4;
8164
8165 printf (" vsp = vsp - %d", offset);
8166 }
8167 else if ((op & 0xf0) == 0x80)
8168 {
8169 GET_OP (op2);
8170 if (op == 0x80 && op2 == 0)
8171 printf (_("Refuse to unwind"));
8172 else
8173 {
8174 unsigned int mask = ((op & 0x0f) << 8) | op2;
8175 int first = 1;
8176 int i;
8177
8178 printf ("pop {");
8179 for (i = 0; i < 12; i++)
8180 if (mask & (1 << i))
8181 {
8182 if (first)
8183 first = 0;
8184 else
8185 printf (", ");
8186 printf ("r%d", 4 + i);
8187 }
8188 printf ("}");
8189 }
8190 }
8191 else if ((op & 0xf0) == 0x90)
8192 {
8193 if (op == 0x9d || op == 0x9f)
8194 printf (_(" [Reserved]"));
8195 else
8196 printf (" vsp = r%d", op & 0x0f);
8197 }
8198 else if ((op & 0xf0) == 0xa0)
8199 {
8200 int end = 4 + (op & 0x07);
8201 int first = 1;
8202 int i;
8203
8204 printf (" pop {");
8205 for (i = 4; i <= end; i++)
8206 {
8207 if (first)
8208 first = 0;
8209 else
8210 printf (", ");
8211 printf ("r%d", i);
8212 }
8213 if (op & 0x08)
8214 {
8215 if (!first)
8216 printf (", ");
8217 printf ("r14");
8218 }
8219 printf ("}");
8220 }
8221 else if (op == 0xb0)
8222 printf (_(" finish"));
8223 else if (op == 0xb1)
8224 {
8225 GET_OP (op2);
8226 if (op2 == 0 || (op2 & 0xf0) != 0)
8227 printf (_("[Spare]"));
8228 else
8229 {
8230 unsigned int mask = op2 & 0x0f;
8231 int first = 1;
8232 int i;
8233
8234 printf ("pop {");
8235 for (i = 0; i < 12; i++)
8236 if (mask & (1 << i))
8237 {
8238 if (first)
8239 first = 0;
8240 else
8241 printf (", ");
8242 printf ("r%d", i);
8243 }
8244 printf ("}");
8245 }
8246 }
8247 else if (op == 0xb2)
8248 {
8249 unsigned char buf[9];
8250 unsigned int i, len;
8251 unsigned long offset;
8252
8253 for (i = 0; i < sizeof (buf); i++)
8254 {
8255 GET_OP (buf[i]);
8256 if ((buf[i] & 0x80) == 0)
8257 break;
8258 }
8259 if (i == sizeof (buf))
8260 printf (_("corrupt change to vsp"));
8261 else
8262 {
8263 offset = read_uleb128 (buf, &len, buf + i + 1);
8264 assert (len == i + 1);
8265 offset = offset * 4 + 0x204;
8266 printf ("vsp = vsp + %ld", offset);
8267 }
8268 }
8269 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8270 {
8271 unsigned int first, last;
8272
8273 GET_OP (op2);
8274 first = op2 >> 4;
8275 last = op2 & 0x0f;
8276 if (op == 0xc8)
8277 first = first + 16;
8278 printf ("pop {D%d", first);
8279 if (last)
8280 printf ("-D%d", first + last);
8281 printf ("}");
8282 }
8283 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8284 {
8285 unsigned int count = op & 0x07;
8286
8287 printf ("pop {D8");
8288 if (count)
8289 printf ("-D%d", 8 + count);
8290 printf ("}");
8291 }
8292 else if (op >= 0xc0 && op <= 0xc5)
8293 {
8294 unsigned int count = op & 0x07;
8295
8296 printf (" pop {wR10");
8297 if (count)
8298 printf ("-wR%d", 10 + count);
8299 printf ("}");
8300 }
8301 else if (op == 0xc6)
8302 {
8303 unsigned int first, last;
8304
8305 GET_OP (op2);
8306 first = op2 >> 4;
8307 last = op2 & 0x0f;
8308 printf ("pop {wR%d", first);
8309 if (last)
8310 printf ("-wR%d", first + last);
8311 printf ("}");
8312 }
8313 else if (op == 0xc7)
8314 {
8315 GET_OP (op2);
8316 if (op2 == 0 || (op2 & 0xf0) != 0)
8317 printf (_("[Spare]"));
8318 else
8319 {
8320 unsigned int mask = op2 & 0x0f;
8321 int first = 1;
8322 int i;
8323
8324 printf ("pop {");
8325 for (i = 0; i < 4; i++)
8326 if (mask & (1 << i))
8327 {
8328 if (first)
8329 first = 0;
8330 else
8331 printf (", ");
8332 printf ("wCGR%d", i);
8333 }
8334 printf ("}");
8335 }
8336 }
8337 else
8338 printf (_(" [unsupported opcode]"));
8339 printf ("\n");
8340 }
8341 }
8342
8343 static void
8344 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info * aux,
8345 unsigned int word,
8346 unsigned int remaining,
8347 unsigned int more_words,
8348 bfd_vma data_offset,
8349 Elf_Internal_Shdr * data_sec,
8350 struct arm_section * data_arm_sec)
8351 {
8352 struct absaddr addr;
8353
8354 /* Decode the unwinding instructions. */
8355 while (1)
8356 {
8357 unsigned int op, op2;
8358
8359 ADVANCE;
8360 if (remaining == 0)
8361 break;
8362 remaining--;
8363 op = word >> 24;
8364 word <<= 8;
8365
8366 printf (" 0x%02x ", op);
8367
8368 if ((op & 0xc0) == 0x00)
8369 {
8370 int offset = ((op & 0x3f) << 3) + 8;
8371 printf (" sp = sp + %d", offset);
8372 }
8373 else if ((op & 0xc0) == 0x80)
8374 {
8375 GET_OP (op2);
8376 if (op == 0x80 && op2 == 0)
8377 printf (_("Refuse to unwind"));
8378 else
8379 {
8380 unsigned int mask = ((op & 0x1f) << 8) | op2;
8381 if (op & 0x20)
8382 printf ("pop compact {");
8383 else
8384 printf ("pop {");
8385
8386 decode_tic6x_unwind_regmask (mask);
8387 printf("}");
8388 }
8389 }
8390 else if ((op & 0xf0) == 0xc0)
8391 {
8392 unsigned int reg;
8393 unsigned int nregs;
8394 unsigned int i;
8395 const char *name;
8396 struct
8397 {
8398 unsigned int offset;
8399 unsigned int reg;
8400 } regpos[16];
8401
8402 /* Scan entire instruction first so that GET_OP output is not
8403 interleaved with disassembly. */
8404 nregs = 0;
8405 for (i = 0; nregs < (op & 0xf); i++)
8406 {
8407 GET_OP (op2);
8408 reg = op2 >> 4;
8409 if (reg != 0xf)
8410 {
8411 regpos[nregs].offset = i * 2;
8412 regpos[nregs].reg = reg;
8413 nregs++;
8414 }
8415
8416 reg = op2 & 0xf;
8417 if (reg != 0xf)
8418 {
8419 regpos[nregs].offset = i * 2 + 1;
8420 regpos[nregs].reg = reg;
8421 nregs++;
8422 }
8423 }
8424
8425 printf (_("pop frame {"));
8426 reg = nregs - 1;
8427 for (i = i * 2; i > 0; i--)
8428 {
8429 if (regpos[reg].offset == i - 1)
8430 {
8431 name = tic6x_unwind_regnames[regpos[reg].reg];
8432 if (reg > 0)
8433 reg--;
8434 }
8435 else
8436 name = _("[pad]");
8437
8438 fputs (name, stdout);
8439 if (i > 1)
8440 printf (", ");
8441 }
8442
8443 printf ("}");
8444 }
8445 else if (op == 0xd0)
8446 printf (" MOV FP, SP");
8447 else if (op == 0xd1)
8448 printf (" __c6xabi_pop_rts");
8449 else if (op == 0xd2)
8450 {
8451 unsigned char buf[9];
8452 unsigned int i, len;
8453 unsigned long offset;
8454
8455 for (i = 0; i < sizeof (buf); i++)
8456 {
8457 GET_OP (buf[i]);
8458 if ((buf[i] & 0x80) == 0)
8459 break;
8460 }
8461 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8462 if (i == sizeof (buf))
8463 {
8464 printf ("<corrupt sp adjust>\n");
8465 warn (_("Corrupt stack pointer adjustment detected\n"));
8466 return;
8467 }
8468
8469 offset = read_uleb128 (buf, &len, buf + i + 1);
8470 assert (len == i + 1);
8471 offset = offset * 8 + 0x408;
8472 printf (_("sp = sp + %ld"), offset);
8473 }
8474 else if ((op & 0xf0) == 0xe0)
8475 {
8476 if ((op & 0x0f) == 7)
8477 printf (" RETURN");
8478 else
8479 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
8480 }
8481 else
8482 {
8483 printf (_(" [unsupported opcode]"));
8484 }
8485 putchar ('\n');
8486 }
8487 }
8488
8489 static bfd_vma
8490 arm_expand_prel31 (bfd_vma word, bfd_vma where)
8491 {
8492 bfd_vma offset;
8493
8494 offset = word & 0x7fffffff;
8495 if (offset & 0x40000000)
8496 offset |= ~ (bfd_vma) 0x7fffffff;
8497
8498 if (elf_header.e_machine == EM_TI_C6000)
8499 offset <<= 1;
8500
8501 return offset + where;
8502 }
8503
8504 static void
8505 decode_arm_unwind (struct arm_unw_aux_info * aux,
8506 unsigned int word,
8507 unsigned int remaining,
8508 bfd_vma data_offset,
8509 Elf_Internal_Shdr * data_sec,
8510 struct arm_section * data_arm_sec)
8511 {
8512 int per_index;
8513 unsigned int more_words = 0;
8514 struct absaddr addr;
8515 bfd_vma sym_name = (bfd_vma) -1;
8516
8517 if (remaining == 0)
8518 {
8519 /* Fetch the first word.
8520 Note - when decoding an object file the address extracted
8521 here will always be 0. So we also pass in the sym_name
8522 parameter so that we can find the symbol associated with
8523 the personality routine. */
8524 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
8525 & word, & addr, & sym_name))
8526 return;
8527
8528 remaining = 4;
8529 }
8530
8531 if ((word & 0x80000000) == 0)
8532 {
8533 /* Expand prel31 for personality routine. */
8534 bfd_vma fn;
8535 const char *procname;
8536
8537 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
8538 printf (_(" Personality routine: "));
8539 if (fn == 0
8540 && addr.section == SHN_UNDEF && addr.offset == 0
8541 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
8542 {
8543 procname = aux->strtab + sym_name;
8544 print_vma (fn, PREFIX_HEX);
8545 if (procname)
8546 {
8547 fputs (" <", stdout);
8548 fputs (procname, stdout);
8549 fputc ('>', stdout);
8550 }
8551 }
8552 else
8553 procname = arm_print_vma_and_name (aux, fn, addr);
8554 fputc ('\n', stdout);
8555
8556 /* The GCC personality routines use the standard compact
8557 encoding, starting with one byte giving the number of
8558 words. */
8559 if (procname != NULL
8560 && (const_strneq (procname, "__gcc_personality_v0")
8561 || const_strneq (procname, "__gxx_personality_v0")
8562 || const_strneq (procname, "__gcj_personality_v0")
8563 || const_strneq (procname, "__gnu_objc_personality_v0")))
8564 {
8565 remaining = 0;
8566 more_words = 1;
8567 ADVANCE;
8568 if (!remaining)
8569 {
8570 printf (_(" [Truncated data]\n"));
8571 return;
8572 }
8573 more_words = word >> 24;
8574 word <<= 8;
8575 remaining--;
8576 per_index = -1;
8577 }
8578 else
8579 return;
8580 }
8581 else
8582 {
8583 /* ARM EHABI Section 6.3:
8584
8585 An exception-handling table entry for the compact model looks like:
8586
8587 31 30-28 27-24 23-0
8588 -- ----- ----- ----
8589 1 0 index Data for personalityRoutine[index] */
8590
8591 if (elf_header.e_machine == EM_ARM
8592 && (word & 0x70000000))
8593 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
8594
8595 per_index = (word >> 24) & 0x7f;
8596 printf (_(" Compact model index: %d\n"), per_index);
8597 if (per_index == 0)
8598 {
8599 more_words = 0;
8600 word <<= 8;
8601 remaining--;
8602 }
8603 else if (per_index < 3)
8604 {
8605 more_words = (word >> 16) & 0xff;
8606 word <<= 16;
8607 remaining -= 2;
8608 }
8609 }
8610
8611 switch (elf_header.e_machine)
8612 {
8613 case EM_ARM:
8614 if (per_index < 3)
8615 {
8616 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
8617 data_offset, data_sec, data_arm_sec);
8618 }
8619 else
8620 {
8621 warn (_("Unknown ARM compact model index encountered\n"));
8622 printf (_(" [reserved]\n"));
8623 }
8624 break;
8625
8626 case EM_TI_C6000:
8627 if (per_index < 3)
8628 {
8629 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
8630 data_offset, data_sec, data_arm_sec);
8631 }
8632 else if (per_index < 5)
8633 {
8634 if (((word >> 17) & 0x7f) == 0x7f)
8635 printf (_(" Restore stack from frame pointer\n"));
8636 else
8637 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
8638 printf (_(" Registers restored: "));
8639 if (per_index == 4)
8640 printf (" (compact) ");
8641 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
8642 putchar ('\n');
8643 printf (_(" Return register: %s\n"),
8644 tic6x_unwind_regnames[word & 0xf]);
8645 }
8646 else
8647 printf (_(" [reserved (%d)]\n"), per_index);
8648 break;
8649
8650 default:
8651 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
8652 elf_header.e_machine);
8653 }
8654
8655 /* Decode the descriptors. Not implemented. */
8656 }
8657
8658 static void
8659 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
8660 {
8661 struct arm_section exidx_arm_sec, extab_arm_sec;
8662 unsigned int i, exidx_len;
8663 unsigned long j, nfuns;
8664
8665 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
8666 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
8667 exidx_len = exidx_sec->sh_size / 8;
8668
8669 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
8670 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
8671 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
8672 aux->funtab[nfuns++] = aux->symtab[j];
8673 aux->nfuns = nfuns;
8674 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
8675
8676 for (i = 0; i < exidx_len; i++)
8677 {
8678 unsigned int exidx_fn, exidx_entry;
8679 struct absaddr fn_addr, entry_addr;
8680 bfd_vma fn;
8681
8682 fputc ('\n', stdout);
8683
8684 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8685 8 * i, & exidx_fn, & fn_addr, NULL)
8686 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8687 8 * i + 4, & exidx_entry, & entry_addr, NULL))
8688 {
8689 free (aux->funtab);
8690 arm_free_section (& exidx_arm_sec);
8691 arm_free_section (& extab_arm_sec);
8692 return;
8693 }
8694
8695 /* ARM EHABI, Section 5:
8696 An index table entry consists of 2 words.
8697 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
8698 if (exidx_fn & 0x80000000)
8699 warn (_("corrupt index table entry: %x\n"), exidx_fn);
8700
8701 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
8702
8703 arm_print_vma_and_name (aux, fn, fn_addr);
8704 fputs (": ", stdout);
8705
8706 if (exidx_entry == 1)
8707 {
8708 print_vma (exidx_entry, PREFIX_HEX);
8709 fputs (" [cantunwind]\n", stdout);
8710 }
8711 else if (exidx_entry & 0x80000000)
8712 {
8713 print_vma (exidx_entry, PREFIX_HEX);
8714 fputc ('\n', stdout);
8715 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
8716 }
8717 else
8718 {
8719 bfd_vma table, table_offset = 0;
8720 Elf_Internal_Shdr *table_sec;
8721
8722 fputs ("@", stdout);
8723 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
8724 print_vma (table, PREFIX_HEX);
8725 printf ("\n");
8726
8727 /* Locate the matching .ARM.extab. */
8728 if (entry_addr.section != SHN_UNDEF
8729 && entry_addr.section < elf_header.e_shnum)
8730 {
8731 table_sec = section_headers + entry_addr.section;
8732 table_offset = entry_addr.offset;
8733 /* PR 18879 */
8734 if (table_offset > table_sec->sh_size
8735 || ((bfd_signed_vma) table_offset) < 0)
8736 {
8737 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
8738 (unsigned long) table_offset,
8739 printable_section_name (table_sec));
8740 continue;
8741 }
8742 }
8743 else
8744 {
8745 table_sec = find_section_by_address (table);
8746 if (table_sec != NULL)
8747 table_offset = table - table_sec->sh_addr;
8748 }
8749 if (table_sec == NULL)
8750 {
8751 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
8752 (unsigned long) table);
8753 continue;
8754 }
8755 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
8756 &extab_arm_sec);
8757 }
8758 }
8759
8760 printf ("\n");
8761
8762 free (aux->funtab);
8763 arm_free_section (&exidx_arm_sec);
8764 arm_free_section (&extab_arm_sec);
8765 }
8766
8767 /* Used for both ARM and C6X unwinding tables. */
8768
8769 static void
8770 arm_process_unwind (FILE *file)
8771 {
8772 struct arm_unw_aux_info aux;
8773 Elf_Internal_Shdr *unwsec = NULL;
8774 Elf_Internal_Shdr *strsec;
8775 Elf_Internal_Shdr *sec;
8776 unsigned long i;
8777 unsigned int sec_type;
8778
8779 switch (elf_header.e_machine)
8780 {
8781 case EM_ARM:
8782 sec_type = SHT_ARM_EXIDX;
8783 break;
8784
8785 case EM_TI_C6000:
8786 sec_type = SHT_C6000_UNWIND;
8787 break;
8788
8789 default:
8790 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
8791 elf_header.e_machine);
8792 return;
8793 }
8794
8795 if (string_table == NULL)
8796 return;
8797
8798 memset (& aux, 0, sizeof (aux));
8799 aux.file = file;
8800
8801 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8802 {
8803 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
8804 {
8805 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
8806
8807 strsec = section_headers + sec->sh_link;
8808
8809 /* PR binutils/17531 file: 011-12666-0.004. */
8810 if (aux.strtab != NULL)
8811 {
8812 error (_("Multiple string tables found in file.\n"));
8813 free (aux.strtab);
8814 }
8815 aux.strtab = get_data (NULL, file, strsec->sh_offset,
8816 1, strsec->sh_size, _("string table"));
8817 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
8818 }
8819 else if (sec->sh_type == sec_type)
8820 unwsec = sec;
8821 }
8822
8823 if (unwsec == NULL)
8824 printf (_("\nThere are no unwind sections in this file.\n"));
8825 else
8826 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8827 {
8828 if (sec->sh_type == sec_type)
8829 {
8830 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
8831 printable_section_name (sec),
8832 (unsigned long) sec->sh_offset,
8833 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
8834
8835 dump_arm_unwind (&aux, sec);
8836 }
8837 }
8838
8839 if (aux.symtab)
8840 free (aux.symtab);
8841 if (aux.strtab)
8842 free ((char *) aux.strtab);
8843 }
8844
8845 static void
8846 process_unwind (FILE * file)
8847 {
8848 struct unwind_handler
8849 {
8850 int machtype;
8851 void (* handler)(FILE *);
8852 } handlers[] =
8853 {
8854 { EM_ARM, arm_process_unwind },
8855 { EM_IA_64, ia64_process_unwind },
8856 { EM_PARISC, hppa_process_unwind },
8857 { EM_TI_C6000, arm_process_unwind },
8858 { 0, 0 }
8859 };
8860 int i;
8861
8862 if (!do_unwind)
8863 return;
8864
8865 for (i = 0; handlers[i].handler != NULL; i++)
8866 if (elf_header.e_machine == handlers[i].machtype)
8867 {
8868 handlers[i].handler (file);
8869 return;
8870 }
8871
8872 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
8873 get_machine_name (elf_header.e_machine));
8874 }
8875
8876 static void
8877 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
8878 {
8879 switch (entry->d_tag)
8880 {
8881 case DT_MIPS_FLAGS:
8882 if (entry->d_un.d_val == 0)
8883 printf (_("NONE"));
8884 else
8885 {
8886 static const char * opts[] =
8887 {
8888 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
8889 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
8890 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
8891 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
8892 "RLD_ORDER_SAFE"
8893 };
8894 unsigned int cnt;
8895 int first = 1;
8896
8897 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
8898 if (entry->d_un.d_val & (1 << cnt))
8899 {
8900 printf ("%s%s", first ? "" : " ", opts[cnt]);
8901 first = 0;
8902 }
8903 }
8904 break;
8905
8906 case DT_MIPS_IVERSION:
8907 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8908 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
8909 else
8910 {
8911 char buf[40];
8912 sprintf_vma (buf, entry->d_un.d_ptr);
8913 /* Note: coded this way so that there is a single string for translation. */
8914 printf (_("<corrupt: %s>"), buf);
8915 }
8916 break;
8917
8918 case DT_MIPS_TIME_STAMP:
8919 {
8920 char timebuf[128];
8921 struct tm * tmp;
8922 time_t atime = entry->d_un.d_val;
8923
8924 tmp = gmtime (&atime);
8925 /* PR 17531: file: 6accc532. */
8926 if (tmp == NULL)
8927 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
8928 else
8929 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
8930 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8931 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8932 printf (_("Time Stamp: %s"), timebuf);
8933 }
8934 break;
8935
8936 case DT_MIPS_RLD_VERSION:
8937 case DT_MIPS_LOCAL_GOTNO:
8938 case DT_MIPS_CONFLICTNO:
8939 case DT_MIPS_LIBLISTNO:
8940 case DT_MIPS_SYMTABNO:
8941 case DT_MIPS_UNREFEXTNO:
8942 case DT_MIPS_HIPAGENO:
8943 case DT_MIPS_DELTA_CLASS_NO:
8944 case DT_MIPS_DELTA_INSTANCE_NO:
8945 case DT_MIPS_DELTA_RELOC_NO:
8946 case DT_MIPS_DELTA_SYM_NO:
8947 case DT_MIPS_DELTA_CLASSSYM_NO:
8948 case DT_MIPS_COMPACT_SIZE:
8949 print_vma (entry->d_un.d_val, DEC);
8950 break;
8951
8952 default:
8953 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
8954 }
8955 putchar ('\n');
8956 }
8957
8958 static void
8959 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
8960 {
8961 switch (entry->d_tag)
8962 {
8963 case DT_HP_DLD_FLAGS:
8964 {
8965 static struct
8966 {
8967 long int bit;
8968 const char * str;
8969 }
8970 flags[] =
8971 {
8972 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
8973 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
8974 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
8975 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
8976 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
8977 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
8978 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
8979 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
8980 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
8981 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
8982 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
8983 { DT_HP_GST, "HP_GST" },
8984 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
8985 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
8986 { DT_HP_NODELETE, "HP_NODELETE" },
8987 { DT_HP_GROUP, "HP_GROUP" },
8988 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
8989 };
8990 int first = 1;
8991 size_t cnt;
8992 bfd_vma val = entry->d_un.d_val;
8993
8994 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
8995 if (val & flags[cnt].bit)
8996 {
8997 if (! first)
8998 putchar (' ');
8999 fputs (flags[cnt].str, stdout);
9000 first = 0;
9001 val ^= flags[cnt].bit;
9002 }
9003
9004 if (val != 0 || first)
9005 {
9006 if (! first)
9007 putchar (' ');
9008 print_vma (val, HEX);
9009 }
9010 }
9011 break;
9012
9013 default:
9014 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9015 break;
9016 }
9017 putchar ('\n');
9018 }
9019
9020 #ifdef BFD64
9021
9022 /* VMS vs Unix time offset and factor. */
9023
9024 #define VMS_EPOCH_OFFSET 35067168000000000LL
9025 #define VMS_GRANULARITY_FACTOR 10000000
9026
9027 /* Display a VMS time in a human readable format. */
9028
9029 static void
9030 print_vms_time (bfd_int64_t vmstime)
9031 {
9032 struct tm *tm;
9033 time_t unxtime;
9034
9035 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9036 tm = gmtime (&unxtime);
9037 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9038 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9039 tm->tm_hour, tm->tm_min, tm->tm_sec);
9040 }
9041 #endif /* BFD64 */
9042
9043 static void
9044 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9045 {
9046 switch (entry->d_tag)
9047 {
9048 case DT_IA_64_PLT_RESERVE:
9049 /* First 3 slots reserved. */
9050 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9051 printf (" -- ");
9052 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9053 break;
9054
9055 case DT_IA_64_VMS_LINKTIME:
9056 #ifdef BFD64
9057 print_vms_time (entry->d_un.d_val);
9058 #endif
9059 break;
9060
9061 case DT_IA_64_VMS_LNKFLAGS:
9062 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9063 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9064 printf (" CALL_DEBUG");
9065 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9066 printf (" NOP0BUFS");
9067 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9068 printf (" P0IMAGE");
9069 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9070 printf (" MKTHREADS");
9071 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9072 printf (" UPCALLS");
9073 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9074 printf (" IMGSTA");
9075 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9076 printf (" INITIALIZE");
9077 if (entry->d_un.d_val & VMS_LF_MAIN)
9078 printf (" MAIN");
9079 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9080 printf (" EXE_INIT");
9081 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9082 printf (" TBK_IN_IMG");
9083 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9084 printf (" DBG_IN_IMG");
9085 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9086 printf (" TBK_IN_DSF");
9087 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9088 printf (" DBG_IN_DSF");
9089 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9090 printf (" SIGNATURES");
9091 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9092 printf (" REL_SEG_OFF");
9093 break;
9094
9095 default:
9096 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9097 break;
9098 }
9099 putchar ('\n');
9100 }
9101
9102 static int
9103 get_32bit_dynamic_section (FILE * file)
9104 {
9105 Elf32_External_Dyn * edyn;
9106 Elf32_External_Dyn * ext;
9107 Elf_Internal_Dyn * entry;
9108
9109 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9110 dynamic_size, _("dynamic section"));
9111 if (!edyn)
9112 return 0;
9113
9114 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9115 might not have the luxury of section headers. Look for the DT_NULL
9116 terminator to determine the number of entries. */
9117 for (ext = edyn, dynamic_nent = 0;
9118 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9119 ext++)
9120 {
9121 dynamic_nent++;
9122 if (BYTE_GET (ext->d_tag) == DT_NULL)
9123 break;
9124 }
9125
9126 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9127 sizeof (* entry));
9128 if (dynamic_section == NULL)
9129 {
9130 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9131 (unsigned long) dynamic_nent);
9132 free (edyn);
9133 return 0;
9134 }
9135
9136 for (ext = edyn, entry = dynamic_section;
9137 entry < dynamic_section + dynamic_nent;
9138 ext++, entry++)
9139 {
9140 entry->d_tag = BYTE_GET (ext->d_tag);
9141 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9142 }
9143
9144 free (edyn);
9145
9146 return 1;
9147 }
9148
9149 static int
9150 get_64bit_dynamic_section (FILE * file)
9151 {
9152 Elf64_External_Dyn * edyn;
9153 Elf64_External_Dyn * ext;
9154 Elf_Internal_Dyn * entry;
9155
9156 /* Read in the data. */
9157 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9158 dynamic_size, _("dynamic section"));
9159 if (!edyn)
9160 return 0;
9161
9162 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9163 might not have the luxury of section headers. Look for the DT_NULL
9164 terminator to determine the number of entries. */
9165 for (ext = edyn, dynamic_nent = 0;
9166 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9167 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9168 ext++)
9169 {
9170 dynamic_nent++;
9171 if (BYTE_GET (ext->d_tag) == DT_NULL)
9172 break;
9173 }
9174
9175 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9176 sizeof (* entry));
9177 if (dynamic_section == NULL)
9178 {
9179 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9180 (unsigned long) dynamic_nent);
9181 free (edyn);
9182 return 0;
9183 }
9184
9185 /* Convert from external to internal formats. */
9186 for (ext = edyn, entry = dynamic_section;
9187 entry < dynamic_section + dynamic_nent;
9188 ext++, entry++)
9189 {
9190 entry->d_tag = BYTE_GET (ext->d_tag);
9191 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9192 }
9193
9194 free (edyn);
9195
9196 return 1;
9197 }
9198
9199 static void
9200 print_dynamic_flags (bfd_vma flags)
9201 {
9202 int first = 1;
9203
9204 while (flags)
9205 {
9206 bfd_vma flag;
9207
9208 flag = flags & - flags;
9209 flags &= ~ flag;
9210
9211 if (first)
9212 first = 0;
9213 else
9214 putc (' ', stdout);
9215
9216 switch (flag)
9217 {
9218 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9219 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9220 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9221 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9222 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9223 default: fputs (_("unknown"), stdout); break;
9224 }
9225 }
9226 puts ("");
9227 }
9228
9229 /* Parse and display the contents of the dynamic section. */
9230
9231 static int
9232 process_dynamic_section (FILE * file)
9233 {
9234 Elf_Internal_Dyn * entry;
9235
9236 if (dynamic_size == 0)
9237 {
9238 if (do_dynamic)
9239 printf (_("\nThere is no dynamic section in this file.\n"));
9240
9241 return 1;
9242 }
9243
9244 if (is_32bit_elf)
9245 {
9246 if (! get_32bit_dynamic_section (file))
9247 return 0;
9248 }
9249 else if (! get_64bit_dynamic_section (file))
9250 return 0;
9251
9252 /* Find the appropriate symbol table. */
9253 if (dynamic_symbols == NULL)
9254 {
9255 for (entry = dynamic_section;
9256 entry < dynamic_section + dynamic_nent;
9257 ++entry)
9258 {
9259 Elf_Internal_Shdr section;
9260
9261 if (entry->d_tag != DT_SYMTAB)
9262 continue;
9263
9264 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9265
9266 /* Since we do not know how big the symbol table is,
9267 we default to reading in the entire file (!) and
9268 processing that. This is overkill, I know, but it
9269 should work. */
9270 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
9271
9272 if (archive_file_offset != 0)
9273 section.sh_size = archive_file_size - section.sh_offset;
9274 else
9275 {
9276 if (fseek (file, 0, SEEK_END))
9277 error (_("Unable to seek to end of file!\n"));
9278
9279 section.sh_size = ftell (file) - section.sh_offset;
9280 }
9281
9282 if (is_32bit_elf)
9283 section.sh_entsize = sizeof (Elf32_External_Sym);
9284 else
9285 section.sh_entsize = sizeof (Elf64_External_Sym);
9286 section.sh_name = string_table_length;
9287
9288 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
9289 if (num_dynamic_syms < 1)
9290 {
9291 error (_("Unable to determine the number of symbols to load\n"));
9292 continue;
9293 }
9294 }
9295 }
9296
9297 /* Similarly find a string table. */
9298 if (dynamic_strings == NULL)
9299 {
9300 for (entry = dynamic_section;
9301 entry < dynamic_section + dynamic_nent;
9302 ++entry)
9303 {
9304 unsigned long offset;
9305 long str_tab_len;
9306
9307 if (entry->d_tag != DT_STRTAB)
9308 continue;
9309
9310 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9311
9312 /* Since we do not know how big the string table is,
9313 we default to reading in the entire file (!) and
9314 processing that. This is overkill, I know, but it
9315 should work. */
9316
9317 offset = offset_from_vma (file, entry->d_un.d_val, 0);
9318
9319 if (archive_file_offset != 0)
9320 str_tab_len = archive_file_size - offset;
9321 else
9322 {
9323 if (fseek (file, 0, SEEK_END))
9324 error (_("Unable to seek to end of file\n"));
9325 str_tab_len = ftell (file) - offset;
9326 }
9327
9328 if (str_tab_len < 1)
9329 {
9330 error
9331 (_("Unable to determine the length of the dynamic string table\n"));
9332 continue;
9333 }
9334
9335 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
9336 str_tab_len,
9337 _("dynamic string table"));
9338 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9339 break;
9340 }
9341 }
9342
9343 /* And find the syminfo section if available. */
9344 if (dynamic_syminfo == NULL)
9345 {
9346 unsigned long syminsz = 0;
9347
9348 for (entry = dynamic_section;
9349 entry < dynamic_section + dynamic_nent;
9350 ++entry)
9351 {
9352 if (entry->d_tag == DT_SYMINENT)
9353 {
9354 /* Note: these braces are necessary to avoid a syntax
9355 error from the SunOS4 C compiler. */
9356 /* PR binutils/17531: A corrupt file can trigger this test.
9357 So do not use an assert, instead generate an error message. */
9358 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9359 error (_("Bad value (%d) for SYMINENT entry\n"),
9360 (int) entry->d_un.d_val);
9361 }
9362 else if (entry->d_tag == DT_SYMINSZ)
9363 syminsz = entry->d_un.d_val;
9364 else if (entry->d_tag == DT_SYMINFO)
9365 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
9366 syminsz);
9367 }
9368
9369 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9370 {
9371 Elf_External_Syminfo * extsyminfo;
9372 Elf_External_Syminfo * extsym;
9373 Elf_Internal_Syminfo * syminfo;
9374
9375 /* There is a syminfo section. Read the data. */
9376 extsyminfo = (Elf_External_Syminfo *)
9377 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
9378 _("symbol information"));
9379 if (!extsyminfo)
9380 return 0;
9381
9382 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9383 if (dynamic_syminfo == NULL)
9384 {
9385 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9386 (unsigned long) syminsz);
9387 return 0;
9388 }
9389
9390 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9391 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9392 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9393 ++syminfo, ++extsym)
9394 {
9395 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9396 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9397 }
9398
9399 free (extsyminfo);
9400 }
9401 }
9402
9403 if (do_dynamic && dynamic_addr)
9404 printf (_("\nDynamic section at offset 0x%lx contains %lu entries:\n"),
9405 dynamic_addr, (unsigned long) dynamic_nent);
9406 if (do_dynamic)
9407 printf (_(" Tag Type Name/Value\n"));
9408
9409 for (entry = dynamic_section;
9410 entry < dynamic_section + dynamic_nent;
9411 entry++)
9412 {
9413 if (do_dynamic)
9414 {
9415 const char * dtype;
9416
9417 putchar (' ');
9418 print_vma (entry->d_tag, FULL_HEX);
9419 dtype = get_dynamic_type (entry->d_tag);
9420 printf (" (%s)%*s", dtype,
9421 ((is_32bit_elf ? 27 : 19)
9422 - (int) strlen (dtype)),
9423 " ");
9424 }
9425
9426 switch (entry->d_tag)
9427 {
9428 case DT_FLAGS:
9429 if (do_dynamic)
9430 print_dynamic_flags (entry->d_un.d_val);
9431 break;
9432
9433 case DT_AUXILIARY:
9434 case DT_FILTER:
9435 case DT_CONFIG:
9436 case DT_DEPAUDIT:
9437 case DT_AUDIT:
9438 if (do_dynamic)
9439 {
9440 switch (entry->d_tag)
9441 {
9442 case DT_AUXILIARY:
9443 printf (_("Auxiliary library"));
9444 break;
9445
9446 case DT_FILTER:
9447 printf (_("Filter library"));
9448 break;
9449
9450 case DT_CONFIG:
9451 printf (_("Configuration file"));
9452 break;
9453
9454 case DT_DEPAUDIT:
9455 printf (_("Dependency audit library"));
9456 break;
9457
9458 case DT_AUDIT:
9459 printf (_("Audit library"));
9460 break;
9461 }
9462
9463 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9464 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
9465 else
9466 {
9467 printf (": ");
9468 print_vma (entry->d_un.d_val, PREFIX_HEX);
9469 putchar ('\n');
9470 }
9471 }
9472 break;
9473
9474 case DT_FEATURE:
9475 if (do_dynamic)
9476 {
9477 printf (_("Flags:"));
9478
9479 if (entry->d_un.d_val == 0)
9480 printf (_(" None\n"));
9481 else
9482 {
9483 unsigned long int val = entry->d_un.d_val;
9484
9485 if (val & DTF_1_PARINIT)
9486 {
9487 printf (" PARINIT");
9488 val ^= DTF_1_PARINIT;
9489 }
9490 if (val & DTF_1_CONFEXP)
9491 {
9492 printf (" CONFEXP");
9493 val ^= DTF_1_CONFEXP;
9494 }
9495 if (val != 0)
9496 printf (" %lx", val);
9497 puts ("");
9498 }
9499 }
9500 break;
9501
9502 case DT_POSFLAG_1:
9503 if (do_dynamic)
9504 {
9505 printf (_("Flags:"));
9506
9507 if (entry->d_un.d_val == 0)
9508 printf (_(" None\n"));
9509 else
9510 {
9511 unsigned long int val = entry->d_un.d_val;
9512
9513 if (val & DF_P1_LAZYLOAD)
9514 {
9515 printf (" LAZYLOAD");
9516 val ^= DF_P1_LAZYLOAD;
9517 }
9518 if (val & DF_P1_GROUPPERM)
9519 {
9520 printf (" GROUPPERM");
9521 val ^= DF_P1_GROUPPERM;
9522 }
9523 if (val != 0)
9524 printf (" %lx", val);
9525 puts ("");
9526 }
9527 }
9528 break;
9529
9530 case DT_FLAGS_1:
9531 if (do_dynamic)
9532 {
9533 printf (_("Flags:"));
9534 if (entry->d_un.d_val == 0)
9535 printf (_(" None\n"));
9536 else
9537 {
9538 unsigned long int val = entry->d_un.d_val;
9539
9540 if (val & DF_1_NOW)
9541 {
9542 printf (" NOW");
9543 val ^= DF_1_NOW;
9544 }
9545 if (val & DF_1_GLOBAL)
9546 {
9547 printf (" GLOBAL");
9548 val ^= DF_1_GLOBAL;
9549 }
9550 if (val & DF_1_GROUP)
9551 {
9552 printf (" GROUP");
9553 val ^= DF_1_GROUP;
9554 }
9555 if (val & DF_1_NODELETE)
9556 {
9557 printf (" NODELETE");
9558 val ^= DF_1_NODELETE;
9559 }
9560 if (val & DF_1_LOADFLTR)
9561 {
9562 printf (" LOADFLTR");
9563 val ^= DF_1_LOADFLTR;
9564 }
9565 if (val & DF_1_INITFIRST)
9566 {
9567 printf (" INITFIRST");
9568 val ^= DF_1_INITFIRST;
9569 }
9570 if (val & DF_1_NOOPEN)
9571 {
9572 printf (" NOOPEN");
9573 val ^= DF_1_NOOPEN;
9574 }
9575 if (val & DF_1_ORIGIN)
9576 {
9577 printf (" ORIGIN");
9578 val ^= DF_1_ORIGIN;
9579 }
9580 if (val & DF_1_DIRECT)
9581 {
9582 printf (" DIRECT");
9583 val ^= DF_1_DIRECT;
9584 }
9585 if (val & DF_1_TRANS)
9586 {
9587 printf (" TRANS");
9588 val ^= DF_1_TRANS;
9589 }
9590 if (val & DF_1_INTERPOSE)
9591 {
9592 printf (" INTERPOSE");
9593 val ^= DF_1_INTERPOSE;
9594 }
9595 if (val & DF_1_NODEFLIB)
9596 {
9597 printf (" NODEFLIB");
9598 val ^= DF_1_NODEFLIB;
9599 }
9600 if (val & DF_1_NODUMP)
9601 {
9602 printf (" NODUMP");
9603 val ^= DF_1_NODUMP;
9604 }
9605 if (val & DF_1_CONFALT)
9606 {
9607 printf (" CONFALT");
9608 val ^= DF_1_CONFALT;
9609 }
9610 if (val & DF_1_ENDFILTEE)
9611 {
9612 printf (" ENDFILTEE");
9613 val ^= DF_1_ENDFILTEE;
9614 }
9615 if (val & DF_1_DISPRELDNE)
9616 {
9617 printf (" DISPRELDNE");
9618 val ^= DF_1_DISPRELDNE;
9619 }
9620 if (val & DF_1_DISPRELPND)
9621 {
9622 printf (" DISPRELPND");
9623 val ^= DF_1_DISPRELPND;
9624 }
9625 if (val & DF_1_NODIRECT)
9626 {
9627 printf (" NODIRECT");
9628 val ^= DF_1_NODIRECT;
9629 }
9630 if (val & DF_1_IGNMULDEF)
9631 {
9632 printf (" IGNMULDEF");
9633 val ^= DF_1_IGNMULDEF;
9634 }
9635 if (val & DF_1_NOKSYMS)
9636 {
9637 printf (" NOKSYMS");
9638 val ^= DF_1_NOKSYMS;
9639 }
9640 if (val & DF_1_NOHDR)
9641 {
9642 printf (" NOHDR");
9643 val ^= DF_1_NOHDR;
9644 }
9645 if (val & DF_1_EDITED)
9646 {
9647 printf (" EDITED");
9648 val ^= DF_1_EDITED;
9649 }
9650 if (val & DF_1_NORELOC)
9651 {
9652 printf (" NORELOC");
9653 val ^= DF_1_NORELOC;
9654 }
9655 if (val & DF_1_SYMINTPOSE)
9656 {
9657 printf (" SYMINTPOSE");
9658 val ^= DF_1_SYMINTPOSE;
9659 }
9660 if (val & DF_1_GLOBAUDIT)
9661 {
9662 printf (" GLOBAUDIT");
9663 val ^= DF_1_GLOBAUDIT;
9664 }
9665 if (val & DF_1_SINGLETON)
9666 {
9667 printf (" SINGLETON");
9668 val ^= DF_1_SINGLETON;
9669 }
9670 if (val & DF_1_STUB)
9671 {
9672 printf (" STUB");
9673 val ^= DF_1_STUB;
9674 }
9675 if (val & DF_1_PIE)
9676 {
9677 printf (" PIE");
9678 val ^= DF_1_PIE;
9679 }
9680 if (val != 0)
9681 printf (" %lx", val);
9682 puts ("");
9683 }
9684 }
9685 break;
9686
9687 case DT_PLTREL:
9688 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9689 if (do_dynamic)
9690 puts (get_dynamic_type (entry->d_un.d_val));
9691 break;
9692
9693 case DT_NULL :
9694 case DT_NEEDED :
9695 case DT_PLTGOT :
9696 case DT_HASH :
9697 case DT_STRTAB :
9698 case DT_SYMTAB :
9699 case DT_RELA :
9700 case DT_INIT :
9701 case DT_FINI :
9702 case DT_SONAME :
9703 case DT_RPATH :
9704 case DT_SYMBOLIC:
9705 case DT_REL :
9706 case DT_DEBUG :
9707 case DT_TEXTREL :
9708 case DT_JMPREL :
9709 case DT_RUNPATH :
9710 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9711
9712 if (do_dynamic)
9713 {
9714 char * name;
9715
9716 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9717 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9718 else
9719 name = NULL;
9720
9721 if (name)
9722 {
9723 switch (entry->d_tag)
9724 {
9725 case DT_NEEDED:
9726 printf (_("Shared library: [%s]"), name);
9727
9728 if (streq (name, program_interpreter))
9729 printf (_(" program interpreter"));
9730 break;
9731
9732 case DT_SONAME:
9733 printf (_("Library soname: [%s]"), name);
9734 break;
9735
9736 case DT_RPATH:
9737 printf (_("Library rpath: [%s]"), name);
9738 break;
9739
9740 case DT_RUNPATH:
9741 printf (_("Library runpath: [%s]"), name);
9742 break;
9743
9744 default:
9745 print_vma (entry->d_un.d_val, PREFIX_HEX);
9746 break;
9747 }
9748 }
9749 else
9750 print_vma (entry->d_un.d_val, PREFIX_HEX);
9751
9752 putchar ('\n');
9753 }
9754 break;
9755
9756 case DT_PLTRELSZ:
9757 case DT_RELASZ :
9758 case DT_STRSZ :
9759 case DT_RELSZ :
9760 case DT_RELAENT :
9761 case DT_SYMENT :
9762 case DT_RELENT :
9763 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9764 /* Fall through. */
9765 case DT_PLTPADSZ:
9766 case DT_MOVEENT :
9767 case DT_MOVESZ :
9768 case DT_INIT_ARRAYSZ:
9769 case DT_FINI_ARRAYSZ:
9770 case DT_GNU_CONFLICTSZ:
9771 case DT_GNU_LIBLISTSZ:
9772 if (do_dynamic)
9773 {
9774 print_vma (entry->d_un.d_val, UNSIGNED);
9775 printf (_(" (bytes)\n"));
9776 }
9777 break;
9778
9779 case DT_VERDEFNUM:
9780 case DT_VERNEEDNUM:
9781 case DT_RELACOUNT:
9782 case DT_RELCOUNT:
9783 if (do_dynamic)
9784 {
9785 print_vma (entry->d_un.d_val, UNSIGNED);
9786 putchar ('\n');
9787 }
9788 break;
9789
9790 case DT_SYMINSZ:
9791 case DT_SYMINENT:
9792 case DT_SYMINFO:
9793 case DT_USED:
9794 case DT_INIT_ARRAY:
9795 case DT_FINI_ARRAY:
9796 if (do_dynamic)
9797 {
9798 if (entry->d_tag == DT_USED
9799 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
9800 {
9801 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9802
9803 if (*name)
9804 {
9805 printf (_("Not needed object: [%s]\n"), name);
9806 break;
9807 }
9808 }
9809
9810 print_vma (entry->d_un.d_val, PREFIX_HEX);
9811 putchar ('\n');
9812 }
9813 break;
9814
9815 case DT_BIND_NOW:
9816 /* The value of this entry is ignored. */
9817 if (do_dynamic)
9818 putchar ('\n');
9819 break;
9820
9821 case DT_GNU_PRELINKED:
9822 if (do_dynamic)
9823 {
9824 struct tm * tmp;
9825 time_t atime = entry->d_un.d_val;
9826
9827 tmp = gmtime (&atime);
9828 /* PR 17533 file: 041-1244816-0.004. */
9829 if (tmp == NULL)
9830 printf (_("<corrupt time val: %lx"),
9831 (unsigned long) atime);
9832 else
9833 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
9834 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9835 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9836
9837 }
9838 break;
9839
9840 case DT_GNU_HASH:
9841 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
9842 if (do_dynamic)
9843 {
9844 print_vma (entry->d_un.d_val, PREFIX_HEX);
9845 putchar ('\n');
9846 }
9847 break;
9848
9849 default:
9850 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
9851 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
9852 entry->d_un.d_val;
9853
9854 if (do_dynamic)
9855 {
9856 switch (elf_header.e_machine)
9857 {
9858 case EM_MIPS:
9859 case EM_MIPS_RS3_LE:
9860 dynamic_section_mips_val (entry);
9861 break;
9862 case EM_PARISC:
9863 dynamic_section_parisc_val (entry);
9864 break;
9865 case EM_IA_64:
9866 dynamic_section_ia64_val (entry);
9867 break;
9868 default:
9869 print_vma (entry->d_un.d_val, PREFIX_HEX);
9870 putchar ('\n');
9871 }
9872 }
9873 break;
9874 }
9875 }
9876
9877 return 1;
9878 }
9879
9880 static char *
9881 get_ver_flags (unsigned int flags)
9882 {
9883 static char buff[32];
9884
9885 buff[0] = 0;
9886
9887 if (flags == 0)
9888 return _("none");
9889
9890 if (flags & VER_FLG_BASE)
9891 strcat (buff, "BASE ");
9892
9893 if (flags & VER_FLG_WEAK)
9894 {
9895 if (flags & VER_FLG_BASE)
9896 strcat (buff, "| ");
9897
9898 strcat (buff, "WEAK ");
9899 }
9900
9901 if (flags & VER_FLG_INFO)
9902 {
9903 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
9904 strcat (buff, "| ");
9905
9906 strcat (buff, "INFO ");
9907 }
9908
9909 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
9910 strcat (buff, _("| <unknown>"));
9911
9912 return buff;
9913 }
9914
9915 /* Display the contents of the version sections. */
9916
9917 static int
9918 process_version_sections (FILE * file)
9919 {
9920 Elf_Internal_Shdr * section;
9921 unsigned i;
9922 int found = 0;
9923
9924 if (! do_version)
9925 return 1;
9926
9927 for (i = 0, section = section_headers;
9928 i < elf_header.e_shnum;
9929 i++, section++)
9930 {
9931 switch (section->sh_type)
9932 {
9933 case SHT_GNU_verdef:
9934 {
9935 Elf_External_Verdef * edefs;
9936 unsigned int idx;
9937 unsigned int cnt;
9938 char * endbuf;
9939
9940 found = 1;
9941
9942 printf (_("\nVersion definition section '%s' contains %u entries:\n"),
9943 printable_section_name (section),
9944 section->sh_info);
9945
9946 printf (_(" Addr: 0x"));
9947 printf_vma (section->sh_addr);
9948 printf (_(" Offset: %#08lx Link: %u (%s)"),
9949 (unsigned long) section->sh_offset, section->sh_link,
9950 printable_section_name_from_index (section->sh_link));
9951
9952 edefs = (Elf_External_Verdef *)
9953 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
9954 _("version definition section"));
9955 if (!edefs)
9956 break;
9957 endbuf = (char *) edefs + section->sh_size;
9958
9959 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
9960 {
9961 char * vstart;
9962 Elf_External_Verdef * edef;
9963 Elf_Internal_Verdef ent;
9964 Elf_External_Verdaux * eaux;
9965 Elf_Internal_Verdaux aux;
9966 int j;
9967 int isum;
9968
9969 /* Check for very large indices. */
9970 if (idx > (size_t) (endbuf - (char *) edefs))
9971 break;
9972
9973 vstart = ((char *) edefs) + idx;
9974 if (vstart + sizeof (*edef) > endbuf)
9975 break;
9976
9977 edef = (Elf_External_Verdef *) vstart;
9978
9979 ent.vd_version = BYTE_GET (edef->vd_version);
9980 ent.vd_flags = BYTE_GET (edef->vd_flags);
9981 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
9982 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
9983 ent.vd_hash = BYTE_GET (edef->vd_hash);
9984 ent.vd_aux = BYTE_GET (edef->vd_aux);
9985 ent.vd_next = BYTE_GET (edef->vd_next);
9986
9987 printf (_(" %#06x: Rev: %d Flags: %s"),
9988 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
9989
9990 printf (_(" Index: %d Cnt: %d "),
9991 ent.vd_ndx, ent.vd_cnt);
9992
9993 /* Check for overflow. */
9994 if (ent.vd_aux > (size_t) (endbuf - vstart))
9995 break;
9996
9997 vstart += ent.vd_aux;
9998
9999 eaux = (Elf_External_Verdaux *) vstart;
10000
10001 aux.vda_name = BYTE_GET (eaux->vda_name);
10002 aux.vda_next = BYTE_GET (eaux->vda_next);
10003
10004 if (VALID_DYNAMIC_NAME (aux.vda_name))
10005 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10006 else
10007 printf (_("Name index: %ld\n"), aux.vda_name);
10008
10009 isum = idx + ent.vd_aux;
10010
10011 for (j = 1; j < ent.vd_cnt; j++)
10012 {
10013 /* Check for overflow. */
10014 if (aux.vda_next > (size_t) (endbuf - vstart))
10015 break;
10016
10017 isum += aux.vda_next;
10018 vstart += aux.vda_next;
10019
10020 eaux = (Elf_External_Verdaux *) vstart;
10021 if (vstart + sizeof (*eaux) > endbuf)
10022 break;
10023
10024 aux.vda_name = BYTE_GET (eaux->vda_name);
10025 aux.vda_next = BYTE_GET (eaux->vda_next);
10026
10027 if (VALID_DYNAMIC_NAME (aux.vda_name))
10028 printf (_(" %#06x: Parent %d: %s\n"),
10029 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10030 else
10031 printf (_(" %#06x: Parent %d, name index: %ld\n"),
10032 isum, j, aux.vda_name);
10033 }
10034
10035 if (j < ent.vd_cnt)
10036 printf (_(" Version def aux past end of section\n"));
10037
10038 /* PR 17531: file: id:000001,src:000172+005151,op:splice,rep:2. */
10039 if (idx + ent.vd_next <= idx)
10040 break;
10041
10042 idx += ent.vd_next;
10043 }
10044
10045 if (cnt < section->sh_info)
10046 printf (_(" Version definition past end of section\n"));
10047
10048 free (edefs);
10049 }
10050 break;
10051
10052 case SHT_GNU_verneed:
10053 {
10054 Elf_External_Verneed * eneed;
10055 unsigned int idx;
10056 unsigned int cnt;
10057 char * endbuf;
10058
10059 found = 1;
10060
10061 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
10062 printable_section_name (section), section->sh_info);
10063
10064 printf (_(" Addr: 0x"));
10065 printf_vma (section->sh_addr);
10066 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10067 (unsigned long) section->sh_offset, section->sh_link,
10068 printable_section_name_from_index (section->sh_link));
10069
10070 eneed = (Elf_External_Verneed *) get_data (NULL, file,
10071 section->sh_offset, 1,
10072 section->sh_size,
10073 _("Version Needs section"));
10074 if (!eneed)
10075 break;
10076 endbuf = (char *) eneed + section->sh_size;
10077
10078 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10079 {
10080 Elf_External_Verneed * entry;
10081 Elf_Internal_Verneed ent;
10082 int j;
10083 int isum;
10084 char * vstart;
10085
10086 if (idx > (size_t) (endbuf - (char *) eneed))
10087 break;
10088
10089 vstart = ((char *) eneed) + idx;
10090 if (vstart + sizeof (*entry) > endbuf)
10091 break;
10092
10093 entry = (Elf_External_Verneed *) vstart;
10094
10095 ent.vn_version = BYTE_GET (entry->vn_version);
10096 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10097 ent.vn_file = BYTE_GET (entry->vn_file);
10098 ent.vn_aux = BYTE_GET (entry->vn_aux);
10099 ent.vn_next = BYTE_GET (entry->vn_next);
10100
10101 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
10102
10103 if (VALID_DYNAMIC_NAME (ent.vn_file))
10104 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10105 else
10106 printf (_(" File: %lx"), ent.vn_file);
10107
10108 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10109
10110 /* Check for overflow. */
10111 if (ent.vn_aux > (size_t) (endbuf - vstart))
10112 break;
10113 vstart += ent.vn_aux;
10114
10115 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10116 {
10117 Elf_External_Vernaux * eaux;
10118 Elf_Internal_Vernaux aux;
10119
10120 if (vstart + sizeof (*eaux) > endbuf)
10121 break;
10122 eaux = (Elf_External_Vernaux *) vstart;
10123
10124 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10125 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10126 aux.vna_other = BYTE_GET (eaux->vna_other);
10127 aux.vna_name = BYTE_GET (eaux->vna_name);
10128 aux.vna_next = BYTE_GET (eaux->vna_next);
10129
10130 if (VALID_DYNAMIC_NAME (aux.vna_name))
10131 printf (_(" %#06x: Name: %s"),
10132 isum, GET_DYNAMIC_NAME (aux.vna_name));
10133 else
10134 printf (_(" %#06x: Name index: %lx"),
10135 isum, aux.vna_name);
10136
10137 printf (_(" Flags: %s Version: %d\n"),
10138 get_ver_flags (aux.vna_flags), aux.vna_other);
10139
10140 /* Check for overflow. */
10141 if (aux.vna_next > (size_t) (endbuf - vstart)
10142 || (aux.vna_next == 0 && j < ent.vn_cnt - 1))
10143 {
10144 warn (_("Invalid vna_next field of %lx\n"),
10145 aux.vna_next);
10146 j = ent.vn_cnt;
10147 break;
10148 }
10149 isum += aux.vna_next;
10150 vstart += aux.vna_next;
10151 }
10152
10153 if (j < ent.vn_cnt)
10154 warn (_("Missing Version Needs auxillary information\n"));
10155
10156 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
10157 {
10158 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
10159 cnt = section->sh_info;
10160 break;
10161 }
10162 idx += ent.vn_next;
10163 }
10164
10165 if (cnt < section->sh_info)
10166 warn (_("Missing Version Needs information\n"));
10167
10168 free (eneed);
10169 }
10170 break;
10171
10172 case SHT_GNU_versym:
10173 {
10174 Elf_Internal_Shdr * link_section;
10175 size_t total;
10176 unsigned int cnt;
10177 unsigned char * edata;
10178 unsigned short * data;
10179 char * strtab;
10180 Elf_Internal_Sym * symbols;
10181 Elf_Internal_Shdr * string_sec;
10182 unsigned long num_syms;
10183 long off;
10184
10185 if (section->sh_link >= elf_header.e_shnum)
10186 break;
10187
10188 link_section = section_headers + section->sh_link;
10189 total = section->sh_size / sizeof (Elf_External_Versym);
10190
10191 if (link_section->sh_link >= elf_header.e_shnum)
10192 break;
10193
10194 found = 1;
10195
10196 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
10197 if (symbols == NULL)
10198 break;
10199
10200 string_sec = section_headers + link_section->sh_link;
10201
10202 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
10203 string_sec->sh_size,
10204 _("version string table"));
10205 if (!strtab)
10206 {
10207 free (symbols);
10208 break;
10209 }
10210
10211 printf (_("\nVersion symbols section '%s' contains %lu entries:\n"),
10212 printable_section_name (section), (unsigned long) total);
10213
10214 printf (_(" Addr: "));
10215 printf_vma (section->sh_addr);
10216 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10217 (unsigned long) section->sh_offset, section->sh_link,
10218 printable_section_name (link_section));
10219
10220 off = offset_from_vma (file,
10221 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10222 total * sizeof (short));
10223 edata = (unsigned char *) get_data (NULL, file, off, total,
10224 sizeof (short),
10225 _("version symbol data"));
10226 if (!edata)
10227 {
10228 free (strtab);
10229 free (symbols);
10230 break;
10231 }
10232
10233 data = (short unsigned int *) cmalloc (total, sizeof (short));
10234
10235 for (cnt = total; cnt --;)
10236 data[cnt] = byte_get (edata + cnt * sizeof (short),
10237 sizeof (short));
10238
10239 free (edata);
10240
10241 for (cnt = 0; cnt < total; cnt += 4)
10242 {
10243 int j, nn;
10244 char *name;
10245 char *invalid = _("*invalid*");
10246
10247 printf (" %03x:", cnt);
10248
10249 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10250 switch (data[cnt + j])
10251 {
10252 case 0:
10253 fputs (_(" 0 (*local*) "), stdout);
10254 break;
10255
10256 case 1:
10257 fputs (_(" 1 (*global*) "), stdout);
10258 break;
10259
10260 default:
10261 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10262 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10263
10264 /* If this index value is greater than the size of the symbols
10265 array, break to avoid an out-of-bounds read. */
10266 if ((unsigned long)(cnt + j) >= num_syms)
10267 {
10268 warn (_("invalid index into symbol array\n"));
10269 break;
10270 }
10271
10272 name = NULL;
10273 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10274 {
10275 Elf_Internal_Verneed ivn;
10276 unsigned long offset;
10277
10278 offset = offset_from_vma
10279 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10280 sizeof (Elf_External_Verneed));
10281
10282 do
10283 {
10284 Elf_Internal_Vernaux ivna;
10285 Elf_External_Verneed evn;
10286 Elf_External_Vernaux evna;
10287 unsigned long a_off;
10288
10289 if (get_data (&evn, file, offset, sizeof (evn), 1,
10290 _("version need")) == NULL)
10291 break;
10292
10293 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10294 ivn.vn_next = BYTE_GET (evn.vn_next);
10295
10296 a_off = offset + ivn.vn_aux;
10297
10298 do
10299 {
10300 if (get_data (&evna, file, a_off, sizeof (evna),
10301 1, _("version need aux (2)")) == NULL)
10302 {
10303 ivna.vna_next = 0;
10304 ivna.vna_other = 0;
10305 }
10306 else
10307 {
10308 ivna.vna_next = BYTE_GET (evna.vna_next);
10309 ivna.vna_other = BYTE_GET (evna.vna_other);
10310 }
10311
10312 a_off += ivna.vna_next;
10313 }
10314 while (ivna.vna_other != data[cnt + j]
10315 && ivna.vna_next != 0);
10316
10317 if (ivna.vna_other == data[cnt + j])
10318 {
10319 ivna.vna_name = BYTE_GET (evna.vna_name);
10320
10321 if (ivna.vna_name >= string_sec->sh_size)
10322 name = invalid;
10323 else
10324 name = strtab + ivna.vna_name;
10325 break;
10326 }
10327
10328 offset += ivn.vn_next;
10329 }
10330 while (ivn.vn_next);
10331 }
10332
10333 if (data[cnt + j] != 0x8001
10334 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10335 {
10336 Elf_Internal_Verdef ivd;
10337 Elf_External_Verdef evd;
10338 unsigned long offset;
10339
10340 offset = offset_from_vma
10341 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10342 sizeof evd);
10343
10344 do
10345 {
10346 if (get_data (&evd, file, offset, sizeof (evd), 1,
10347 _("version def")) == NULL)
10348 {
10349 ivd.vd_next = 0;
10350 /* PR 17531: file: 046-1082287-0.004. */
10351 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10352 break;
10353 }
10354 else
10355 {
10356 ivd.vd_next = BYTE_GET (evd.vd_next);
10357 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10358 }
10359
10360 offset += ivd.vd_next;
10361 }
10362 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
10363 && ivd.vd_next != 0);
10364
10365 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
10366 {
10367 Elf_External_Verdaux evda;
10368 Elf_Internal_Verdaux ivda;
10369
10370 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10371
10372 if (get_data (&evda, file,
10373 offset - ivd.vd_next + ivd.vd_aux,
10374 sizeof (evda), 1,
10375 _("version def aux")) == NULL)
10376 break;
10377
10378 ivda.vda_name = BYTE_GET (evda.vda_name);
10379
10380 if (ivda.vda_name >= string_sec->sh_size)
10381 name = invalid;
10382 else if (name != NULL && name != invalid)
10383 name = _("*both*");
10384 else
10385 name = strtab + ivda.vda_name;
10386 }
10387 }
10388 if (name != NULL)
10389 nn += printf ("(%s%-*s",
10390 name,
10391 12 - (int) strlen (name),
10392 ")");
10393
10394 if (nn < 18)
10395 printf ("%*c", 18 - nn, ' ');
10396 }
10397
10398 putchar ('\n');
10399 }
10400
10401 free (data);
10402 free (strtab);
10403 free (symbols);
10404 }
10405 break;
10406
10407 default:
10408 break;
10409 }
10410 }
10411
10412 if (! found)
10413 printf (_("\nNo version information found in this file.\n"));
10414
10415 return 1;
10416 }
10417
10418 static const char *
10419 get_symbol_binding (unsigned int binding)
10420 {
10421 static char buff[32];
10422
10423 switch (binding)
10424 {
10425 case STB_LOCAL: return "LOCAL";
10426 case STB_GLOBAL: return "GLOBAL";
10427 case STB_WEAK: return "WEAK";
10428 default:
10429 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
10430 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
10431 binding);
10432 else if (binding >= STB_LOOS && binding <= STB_HIOS)
10433 {
10434 if (binding == STB_GNU_UNIQUE
10435 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10436 /* GNU is still using the default value 0. */
10437 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10438 return "UNIQUE";
10439 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
10440 }
10441 else
10442 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
10443 return buff;
10444 }
10445 }
10446
10447 static const char *
10448 get_symbol_type (unsigned int type)
10449 {
10450 static char buff[32];
10451
10452 switch (type)
10453 {
10454 case STT_NOTYPE: return "NOTYPE";
10455 case STT_OBJECT: return "OBJECT";
10456 case STT_FUNC: return "FUNC";
10457 case STT_SECTION: return "SECTION";
10458 case STT_FILE: return "FILE";
10459 case STT_COMMON: return "COMMON";
10460 case STT_TLS: return "TLS";
10461 case STT_RELC: return "RELC";
10462 case STT_SRELC: return "SRELC";
10463 default:
10464 if (type >= STT_LOPROC && type <= STT_HIPROC)
10465 {
10466 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
10467 return "THUMB_FUNC";
10468
10469 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
10470 return "REGISTER";
10471
10472 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
10473 return "PARISC_MILLI";
10474
10475 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
10476 }
10477 else if (type >= STT_LOOS && type <= STT_HIOS)
10478 {
10479 if (elf_header.e_machine == EM_PARISC)
10480 {
10481 if (type == STT_HP_OPAQUE)
10482 return "HP_OPAQUE";
10483 if (type == STT_HP_STUB)
10484 return "HP_STUB";
10485 }
10486
10487 if (type == STT_GNU_IFUNC
10488 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10489 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
10490 /* GNU is still using the default value 0. */
10491 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10492 return "IFUNC";
10493
10494 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
10495 }
10496 else
10497 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
10498 return buff;
10499 }
10500 }
10501
10502 static const char *
10503 get_symbol_visibility (unsigned int visibility)
10504 {
10505 switch (visibility)
10506 {
10507 case STV_DEFAULT: return "DEFAULT";
10508 case STV_INTERNAL: return "INTERNAL";
10509 case STV_HIDDEN: return "HIDDEN";
10510 case STV_PROTECTED: return "PROTECTED";
10511 default:
10512 error (_("Unrecognized visibility value: %u"), visibility);
10513 return _("<unknown>");
10514 }
10515 }
10516
10517 static const char *
10518 get_solaris_symbol_visibility (unsigned int visibility)
10519 {
10520 switch (visibility)
10521 {
10522 case 4: return "EXPORTED";
10523 case 5: return "SINGLETON";
10524 case 6: return "ELIMINATE";
10525 default: return get_symbol_visibility (visibility);
10526 }
10527 }
10528
10529 static const char *
10530 get_mips_symbol_other (unsigned int other)
10531 {
10532 switch (other)
10533 {
10534 case STO_OPTIONAL:
10535 return "OPTIONAL";
10536 case STO_MIPS_PLT:
10537 return "MIPS PLT";
10538 case STO_MIPS_PIC:
10539 return "MIPS PIC";
10540 case STO_MICROMIPS:
10541 return "MICROMIPS";
10542 case STO_MICROMIPS | STO_MIPS_PIC:
10543 return "MICROMIPS, MIPS PIC";
10544 case STO_MIPS16:
10545 return "MIPS16";
10546 default:
10547 return NULL;
10548 }
10549 }
10550
10551 static const char *
10552 get_ia64_symbol_other (unsigned int other)
10553 {
10554 if (is_ia64_vms ())
10555 {
10556 static char res[32];
10557
10558 res[0] = 0;
10559
10560 /* Function types is for images and .STB files only. */
10561 switch (elf_header.e_type)
10562 {
10563 case ET_DYN:
10564 case ET_EXEC:
10565 switch (VMS_ST_FUNC_TYPE (other))
10566 {
10567 case VMS_SFT_CODE_ADDR:
10568 strcat (res, " CA");
10569 break;
10570 case VMS_SFT_SYMV_IDX:
10571 strcat (res, " VEC");
10572 break;
10573 case VMS_SFT_FD:
10574 strcat (res, " FD");
10575 break;
10576 case VMS_SFT_RESERVE:
10577 strcat (res, " RSV");
10578 break;
10579 default:
10580 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
10581 VMS_ST_FUNC_TYPE (other));
10582 strcat (res, " <unknown>");
10583 break;
10584 }
10585 break;
10586 default:
10587 break;
10588 }
10589 switch (VMS_ST_LINKAGE (other))
10590 {
10591 case VMS_STL_IGNORE:
10592 strcat (res, " IGN");
10593 break;
10594 case VMS_STL_RESERVE:
10595 strcat (res, " RSV");
10596 break;
10597 case VMS_STL_STD:
10598 strcat (res, " STD");
10599 break;
10600 case VMS_STL_LNK:
10601 strcat (res, " LNK");
10602 break;
10603 default:
10604 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
10605 VMS_ST_LINKAGE (other));
10606 strcat (res, " <unknown>");
10607 break;
10608 }
10609
10610 if (res[0] != 0)
10611 return res + 1;
10612 else
10613 return res;
10614 }
10615 return NULL;
10616 }
10617
10618 static const char *
10619 get_ppc64_symbol_other (unsigned int other)
10620 {
10621 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
10622 {
10623 static char buf[32];
10624 snprintf (buf, sizeof buf, _("<localentry>: %d"),
10625 PPC64_LOCAL_ENTRY_OFFSET (other));
10626 return buf;
10627 }
10628 return NULL;
10629 }
10630
10631 static const char *
10632 get_symbol_other (unsigned int other)
10633 {
10634 const char * result = NULL;
10635 static char buff [32];
10636
10637 if (other == 0)
10638 return "";
10639
10640 switch (elf_header.e_machine)
10641 {
10642 case EM_MIPS:
10643 result = get_mips_symbol_other (other);
10644 break;
10645 case EM_IA_64:
10646 result = get_ia64_symbol_other (other);
10647 break;
10648 case EM_PPC64:
10649 result = get_ppc64_symbol_other (other);
10650 break;
10651 default:
10652 result = NULL;
10653 break;
10654 }
10655
10656 if (result)
10657 return result;
10658
10659 snprintf (buff, sizeof buff, _("<other>: %x"), other);
10660 return buff;
10661 }
10662
10663 static const char *
10664 get_symbol_index_type (unsigned int type)
10665 {
10666 static char buff[32];
10667
10668 switch (type)
10669 {
10670 case SHN_UNDEF: return "UND";
10671 case SHN_ABS: return "ABS";
10672 case SHN_COMMON: return "COM";
10673 default:
10674 if (type == SHN_IA_64_ANSI_COMMON
10675 && elf_header.e_machine == EM_IA_64
10676 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
10677 return "ANSI_COM";
10678 else if ((elf_header.e_machine == EM_X86_64
10679 || elf_header.e_machine == EM_L1OM
10680 || elf_header.e_machine == EM_K1OM)
10681 && type == SHN_X86_64_LCOMMON)
10682 return "LARGE_COM";
10683 else if ((type == SHN_MIPS_SCOMMON
10684 && elf_header.e_machine == EM_MIPS)
10685 || (type == SHN_TIC6X_SCOMMON
10686 && elf_header.e_machine == EM_TI_C6000))
10687 return "SCOM";
10688 else if (type == SHN_MIPS_SUNDEFINED
10689 && elf_header.e_machine == EM_MIPS)
10690 return "SUND";
10691 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
10692 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
10693 else if (type >= SHN_LOOS && type <= SHN_HIOS)
10694 sprintf (buff, "OS [0x%04x]", type & 0xffff);
10695 else if (type >= SHN_LORESERVE)
10696 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
10697 else if (type >= elf_header.e_shnum)
10698 sprintf (buff, _("bad section index[%3d]"), type);
10699 else
10700 sprintf (buff, "%3d", type);
10701 break;
10702 }
10703
10704 return buff;
10705 }
10706
10707 static bfd_vma *
10708 get_dynamic_data (FILE * file, bfd_size_type number, unsigned int ent_size)
10709 {
10710 unsigned char * e_data;
10711 bfd_vma * i_data;
10712
10713 /* If the size_t type is smaller than the bfd_size_type, eg because
10714 you are building a 32-bit tool on a 64-bit host, then make sure
10715 that when (number) is cast to (size_t) no information is lost. */
10716 if (sizeof (size_t) < sizeof (bfd_size_type)
10717 && (bfd_size_type) ((size_t) number) != number)
10718 {
10719 error (_("Size truncation prevents reading %" BFD_VMA_FMT "u"
10720 " elements of size %u\n"),
10721 number, ent_size);
10722 return NULL;
10723 }
10724
10725 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
10726 attempting to allocate memory when the read is bound to fail. */
10727 if (ent_size * number > current_file_size)
10728 {
10729 error (_("Invalid number of dynamic entries: %" BFD_VMA_FMT "u\n"),
10730 number);
10731 return NULL;
10732 }
10733
10734 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
10735 if (e_data == NULL)
10736 {
10737 error (_("Out of memory reading %" BFD_VMA_FMT "u dynamic entries\n"),
10738 number);
10739 return NULL;
10740 }
10741
10742 if (fread (e_data, ent_size, (size_t) number, file) != number)
10743 {
10744 error (_("Unable to read in %" BFD_VMA_FMT "u bytes of dynamic data\n"),
10745 number * ent_size);
10746 free (e_data);
10747 return NULL;
10748 }
10749
10750 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
10751 if (i_data == NULL)
10752 {
10753 error (_("Out of memory allocating space for %" BFD_VMA_FMT "u"
10754 " dynamic entries\n"),
10755 number);
10756 free (e_data);
10757 return NULL;
10758 }
10759
10760 while (number--)
10761 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
10762
10763 free (e_data);
10764
10765 return i_data;
10766 }
10767
10768 static void
10769 print_dynamic_symbol (bfd_vma si, unsigned long hn)
10770 {
10771 Elf_Internal_Sym * psym;
10772 int n;
10773
10774 n = print_vma (si, DEC_5);
10775 if (n < 5)
10776 fputs (&" "[n], stdout);
10777 printf (" %3lu: ", hn);
10778
10779 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
10780 {
10781 printf (_("<No info available for dynamic symbol number %lu>\n"),
10782 (unsigned long) si);
10783 return;
10784 }
10785
10786 psym = dynamic_symbols + si;
10787 print_vma (psym->st_value, LONG_HEX);
10788 putchar (' ');
10789 print_vma (psym->st_size, DEC_5);
10790
10791 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
10792 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
10793
10794 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
10795 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
10796 else
10797 {
10798 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
10799
10800 printf (" %-7s", get_symbol_visibility (vis));
10801 /* Check to see if any other bits in the st_other field are set.
10802 Note - displaying this information disrupts the layout of the
10803 table being generated, but for the moment this case is very
10804 rare. */
10805 if (psym->st_other ^ vis)
10806 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
10807 }
10808
10809 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
10810 if (VALID_DYNAMIC_NAME (psym->st_name))
10811 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
10812 else
10813 printf (_(" <corrupt: %14ld>"), psym->st_name);
10814 putchar ('\n');
10815 }
10816
10817 static const char *
10818 get_symbol_version_string (FILE * file,
10819 bfd_boolean is_dynsym,
10820 const char * strtab,
10821 unsigned long int strtab_size,
10822 unsigned int si,
10823 Elf_Internal_Sym * psym,
10824 enum versioned_symbol_info * sym_info,
10825 unsigned short * vna_other)
10826 {
10827 unsigned char data[2];
10828 unsigned short vers_data;
10829 unsigned long offset;
10830
10831 if (!is_dynsym
10832 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
10833 return NULL;
10834
10835 offset = offset_from_vma (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10836 sizeof data + si * sizeof (vers_data));
10837
10838 if (get_data (&data, file, offset + si * sizeof (vers_data),
10839 sizeof (data), 1, _("version data")) == NULL)
10840 return NULL;
10841
10842 vers_data = byte_get (data, 2);
10843
10844 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data <= 1)
10845 return NULL;
10846
10847 /* Usually we'd only see verdef for defined symbols, and verneed for
10848 undefined symbols. However, symbols defined by the linker in
10849 .dynbss for variables copied from a shared library in order to
10850 avoid text relocations are defined yet have verneed. We could
10851 use a heuristic to detect the special case, for example, check
10852 for verneed first on symbols defined in SHT_NOBITS sections, but
10853 it is simpler and more reliable to just look for both verdef and
10854 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
10855
10856 if (psym->st_shndx != SHN_UNDEF
10857 && vers_data != 0x8001
10858 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10859 {
10860 Elf_Internal_Verdef ivd;
10861 Elf_Internal_Verdaux ivda;
10862 Elf_External_Verdaux evda;
10863 unsigned long off;
10864
10865 off = offset_from_vma (file,
10866 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10867 sizeof (Elf_External_Verdef));
10868
10869 do
10870 {
10871 Elf_External_Verdef evd;
10872
10873 if (get_data (&evd, file, off, sizeof (evd), 1,
10874 _("version def")) == NULL)
10875 {
10876 ivd.vd_ndx = 0;
10877 ivd.vd_aux = 0;
10878 ivd.vd_next = 0;
10879 }
10880 else
10881 {
10882 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10883 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10884 ivd.vd_next = BYTE_GET (evd.vd_next);
10885 }
10886
10887 off += ivd.vd_next;
10888 }
10889 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
10890
10891 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
10892 {
10893 off -= ivd.vd_next;
10894 off += ivd.vd_aux;
10895
10896 if (get_data (&evda, file, off, sizeof (evda), 1,
10897 _("version def aux")) != NULL)
10898 {
10899 ivda.vda_name = BYTE_GET (evda.vda_name);
10900
10901 if (psym->st_name != ivda.vda_name)
10902 {
10903 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
10904 ? symbol_hidden : symbol_public);
10905 return (ivda.vda_name < strtab_size
10906 ? strtab + ivda.vda_name : _("<corrupt>"));
10907 }
10908 }
10909 }
10910 }
10911
10912 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10913 {
10914 Elf_External_Verneed evn;
10915 Elf_Internal_Verneed ivn;
10916 Elf_Internal_Vernaux ivna;
10917
10918 offset = offset_from_vma (file,
10919 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10920 sizeof evn);
10921 do
10922 {
10923 unsigned long vna_off;
10924
10925 if (get_data (&evn, file, offset, sizeof (evn), 1,
10926 _("version need")) == NULL)
10927 {
10928 ivna.vna_next = 0;
10929 ivna.vna_other = 0;
10930 ivna.vna_name = 0;
10931 break;
10932 }
10933
10934 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10935 ivn.vn_next = BYTE_GET (evn.vn_next);
10936
10937 vna_off = offset + ivn.vn_aux;
10938
10939 do
10940 {
10941 Elf_External_Vernaux evna;
10942
10943 if (get_data (&evna, file, vna_off, sizeof (evna), 1,
10944 _("version need aux (3)")) == NULL)
10945 {
10946 ivna.vna_next = 0;
10947 ivna.vna_other = 0;
10948 ivna.vna_name = 0;
10949 }
10950 else
10951 {
10952 ivna.vna_other = BYTE_GET (evna.vna_other);
10953 ivna.vna_next = BYTE_GET (evna.vna_next);
10954 ivna.vna_name = BYTE_GET (evna.vna_name);
10955 }
10956
10957 vna_off += ivna.vna_next;
10958 }
10959 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
10960
10961 if (ivna.vna_other == vers_data)
10962 break;
10963
10964 offset += ivn.vn_next;
10965 }
10966 while (ivn.vn_next != 0);
10967
10968 if (ivna.vna_other == vers_data)
10969 {
10970 *sym_info = symbol_undefined;
10971 *vna_other = ivna.vna_other;
10972 return (ivna.vna_name < strtab_size
10973 ? strtab + ivna.vna_name : _("<corrupt>"));
10974 }
10975 }
10976 return NULL;
10977 }
10978
10979 /* Dump the symbol table. */
10980 static int
10981 process_symbol_table (FILE * file)
10982 {
10983 Elf_Internal_Shdr * section;
10984 bfd_size_type nbuckets = 0;
10985 bfd_size_type nchains = 0;
10986 bfd_vma * buckets = NULL;
10987 bfd_vma * chains = NULL;
10988 bfd_vma ngnubuckets = 0;
10989 bfd_vma * gnubuckets = NULL;
10990 bfd_vma * gnuchains = NULL;
10991 bfd_vma gnusymidx = 0;
10992 bfd_size_type ngnuchains = 0;
10993
10994 if (!do_syms && !do_dyn_syms && !do_histogram)
10995 return 1;
10996
10997 if (dynamic_info[DT_HASH]
10998 && (do_histogram
10999 || (do_using_dynamic
11000 && !do_dyn_syms
11001 && dynamic_strings != NULL)))
11002 {
11003 unsigned char nb[8];
11004 unsigned char nc[8];
11005 unsigned int hash_ent_size = 4;
11006
11007 if ((elf_header.e_machine == EM_ALPHA
11008 || elf_header.e_machine == EM_S390
11009 || elf_header.e_machine == EM_S390_OLD)
11010 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
11011 hash_ent_size = 8;
11012
11013 if (fseek (file,
11014 (archive_file_offset
11015 + offset_from_vma (file, dynamic_info[DT_HASH],
11016 sizeof nb + sizeof nc)),
11017 SEEK_SET))
11018 {
11019 error (_("Unable to seek to start of dynamic information\n"));
11020 goto no_hash;
11021 }
11022
11023 if (fread (nb, hash_ent_size, 1, file) != 1)
11024 {
11025 error (_("Failed to read in number of buckets\n"));
11026 goto no_hash;
11027 }
11028
11029 if (fread (nc, hash_ent_size, 1, file) != 1)
11030 {
11031 error (_("Failed to read in number of chains\n"));
11032 goto no_hash;
11033 }
11034
11035 nbuckets = byte_get (nb, hash_ent_size);
11036 nchains = byte_get (nc, hash_ent_size);
11037
11038 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
11039 chains = get_dynamic_data (file, nchains, hash_ent_size);
11040
11041 no_hash:
11042 if (buckets == NULL || chains == NULL)
11043 {
11044 if (do_using_dynamic)
11045 return 0;
11046 free (buckets);
11047 free (chains);
11048 buckets = NULL;
11049 chains = NULL;
11050 nbuckets = 0;
11051 nchains = 0;
11052 }
11053 }
11054
11055 if (dynamic_info_DT_GNU_HASH
11056 && (do_histogram
11057 || (do_using_dynamic
11058 && !do_dyn_syms
11059 && dynamic_strings != NULL)))
11060 {
11061 unsigned char nb[16];
11062 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11063 bfd_vma buckets_vma;
11064
11065 if (fseek (file,
11066 (archive_file_offset
11067 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
11068 sizeof nb)),
11069 SEEK_SET))
11070 {
11071 error (_("Unable to seek to start of dynamic information\n"));
11072 goto no_gnu_hash;
11073 }
11074
11075 if (fread (nb, 16, 1, file) != 1)
11076 {
11077 error (_("Failed to read in number of buckets\n"));
11078 goto no_gnu_hash;
11079 }
11080
11081 ngnubuckets = byte_get (nb, 4);
11082 gnusymidx = byte_get (nb + 4, 4);
11083 bitmaskwords = byte_get (nb + 8, 4);
11084 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11085 if (is_32bit_elf)
11086 buckets_vma += bitmaskwords * 4;
11087 else
11088 buckets_vma += bitmaskwords * 8;
11089
11090 if (fseek (file,
11091 (archive_file_offset
11092 + offset_from_vma (file, buckets_vma, 4)),
11093 SEEK_SET))
11094 {
11095 error (_("Unable to seek to start of dynamic information\n"));
11096 goto no_gnu_hash;
11097 }
11098
11099 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
11100
11101 if (gnubuckets == NULL)
11102 goto no_gnu_hash;
11103
11104 for (i = 0; i < ngnubuckets; i++)
11105 if (gnubuckets[i] != 0)
11106 {
11107 if (gnubuckets[i] < gnusymidx)
11108 return 0;
11109
11110 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11111 maxchain = gnubuckets[i];
11112 }
11113
11114 if (maxchain == 0xffffffff)
11115 goto no_gnu_hash;
11116
11117 maxchain -= gnusymidx;
11118
11119 if (fseek (file,
11120 (archive_file_offset
11121 + offset_from_vma (file, buckets_vma
11122 + 4 * (ngnubuckets + maxchain), 4)),
11123 SEEK_SET))
11124 {
11125 error (_("Unable to seek to start of dynamic information\n"));
11126 goto no_gnu_hash;
11127 }
11128
11129 do
11130 {
11131 if (fread (nb, 4, 1, file) != 1)
11132 {
11133 error (_("Failed to determine last chain length\n"));
11134 goto no_gnu_hash;
11135 }
11136
11137 if (maxchain + 1 == 0)
11138 goto no_gnu_hash;
11139
11140 ++maxchain;
11141 }
11142 while ((byte_get (nb, 4) & 1) == 0);
11143
11144 if (fseek (file,
11145 (archive_file_offset
11146 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
11147 SEEK_SET))
11148 {
11149 error (_("Unable to seek to start of dynamic information\n"));
11150 goto no_gnu_hash;
11151 }
11152
11153 gnuchains = get_dynamic_data (file, maxchain, 4);
11154 ngnuchains = maxchain;
11155
11156 no_gnu_hash:
11157 if (gnuchains == NULL)
11158 {
11159 free (gnubuckets);
11160 gnubuckets = NULL;
11161 ngnubuckets = 0;
11162 if (do_using_dynamic)
11163 return 0;
11164 }
11165 }
11166
11167 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11168 && do_syms
11169 && do_using_dynamic
11170 && dynamic_strings != NULL
11171 && dynamic_symbols != NULL)
11172 {
11173 unsigned long hn;
11174
11175 if (dynamic_info[DT_HASH])
11176 {
11177 bfd_vma si;
11178
11179 printf (_("\nSymbol table for image:\n"));
11180 if (is_32bit_elf)
11181 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11182 else
11183 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11184
11185 for (hn = 0; hn < nbuckets; hn++)
11186 {
11187 if (! buckets[hn])
11188 continue;
11189
11190 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
11191 print_dynamic_symbol (si, hn);
11192 }
11193 }
11194
11195 if (dynamic_info_DT_GNU_HASH)
11196 {
11197 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11198 if (is_32bit_elf)
11199 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11200 else
11201 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11202
11203 for (hn = 0; hn < ngnubuckets; ++hn)
11204 if (gnubuckets[hn] != 0)
11205 {
11206 bfd_vma si = gnubuckets[hn];
11207 bfd_vma off = si - gnusymidx;
11208
11209 do
11210 {
11211 print_dynamic_symbol (si, hn);
11212 si++;
11213 }
11214 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11215 }
11216 }
11217 }
11218 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11219 && section_headers != NULL)
11220 {
11221 unsigned int i;
11222
11223 for (i = 0, section = section_headers;
11224 i < elf_header.e_shnum;
11225 i++, section++)
11226 {
11227 unsigned int si;
11228 char * strtab = NULL;
11229 unsigned long int strtab_size = 0;
11230 Elf_Internal_Sym * symtab;
11231 Elf_Internal_Sym * psym;
11232 unsigned long num_syms;
11233
11234 if ((section->sh_type != SHT_SYMTAB
11235 && section->sh_type != SHT_DYNSYM)
11236 || (!do_syms
11237 && section->sh_type == SHT_SYMTAB))
11238 continue;
11239
11240 if (section->sh_entsize == 0)
11241 {
11242 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11243 printable_section_name (section));
11244 continue;
11245 }
11246
11247 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
11248 printable_section_name (section),
11249 (unsigned long) (section->sh_size / section->sh_entsize));
11250
11251 if (is_32bit_elf)
11252 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11253 else
11254 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11255
11256 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
11257 if (symtab == NULL)
11258 continue;
11259
11260 if (section->sh_link == elf_header.e_shstrndx)
11261 {
11262 strtab = string_table;
11263 strtab_size = string_table_length;
11264 }
11265 else if (section->sh_link < elf_header.e_shnum)
11266 {
11267 Elf_Internal_Shdr * string_sec;
11268
11269 string_sec = section_headers + section->sh_link;
11270
11271 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
11272 1, string_sec->sh_size,
11273 _("string table"));
11274 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11275 }
11276
11277 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11278 {
11279 const char *version_string;
11280 enum versioned_symbol_info sym_info;
11281 unsigned short vna_other;
11282
11283 printf ("%6d: ", si);
11284 print_vma (psym->st_value, LONG_HEX);
11285 putchar (' ');
11286 print_vma (psym->st_size, DEC_5);
11287 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11288 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11289 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11290 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11291 else
11292 {
11293 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11294
11295 printf (" %-7s", get_symbol_visibility (vis));
11296 /* Check to see if any other bits in the st_other field are set.
11297 Note - displaying this information disrupts the layout of the
11298 table being generated, but for the moment this case is very rare. */
11299 if (psym->st_other ^ vis)
11300 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11301 }
11302 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
11303 print_symbol (25, psym->st_name < strtab_size
11304 ? strtab + psym->st_name : _("<corrupt>"));
11305
11306 version_string
11307 = get_symbol_version_string (file,
11308 section->sh_type == SHT_DYNSYM,
11309 strtab, strtab_size, si,
11310 psym, &sym_info, &vna_other);
11311 if (version_string)
11312 {
11313 if (sym_info == symbol_undefined)
11314 printf ("@%s (%d)", version_string, vna_other);
11315 else
11316 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
11317 version_string);
11318 }
11319
11320 putchar ('\n');
11321
11322 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
11323 && si >= section->sh_info
11324 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
11325 && elf_header.e_machine != EM_MIPS
11326 /* Solaris binaries have been found to violate this requirement as
11327 well. Not sure if this is a bug or an ABI requirement. */
11328 && elf_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
11329 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
11330 si, printable_section_name (section), section->sh_info);
11331 }
11332
11333 free (symtab);
11334 if (strtab != string_table)
11335 free (strtab);
11336 }
11337 }
11338 else if (do_syms)
11339 printf
11340 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
11341
11342 if (do_histogram && buckets != NULL)
11343 {
11344 unsigned long * lengths;
11345 unsigned long * counts;
11346 unsigned long hn;
11347 bfd_vma si;
11348 unsigned long maxlength = 0;
11349 unsigned long nzero_counts = 0;
11350 unsigned long nsyms = 0;
11351 unsigned long chained;
11352
11353 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
11354 (unsigned long) nbuckets);
11355
11356 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
11357 if (lengths == NULL)
11358 {
11359 error (_("Out of memory allocating space for histogram buckets\n"));
11360 return 0;
11361 }
11362
11363 printf (_(" Length Number %% of total Coverage\n"));
11364 for (hn = 0; hn < nbuckets; ++hn)
11365 {
11366 for (si = buckets[hn], chained = 0;
11367 si > 0 && si < nchains && si < nbuckets && chained <= nchains;
11368 si = chains[si], ++chained)
11369 {
11370 ++nsyms;
11371 if (maxlength < ++lengths[hn])
11372 ++maxlength;
11373 }
11374
11375 /* PR binutils/17531: A corrupt binary could contain broken
11376 histogram data. Do not go into an infinite loop trying
11377 to process it. */
11378 if (chained > nchains)
11379 {
11380 error (_("histogram chain is corrupt\n"));
11381 break;
11382 }
11383 }
11384
11385 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11386 if (counts == NULL)
11387 {
11388 free (lengths);
11389 error (_("Out of memory allocating space for histogram counts\n"));
11390 return 0;
11391 }
11392
11393 for (hn = 0; hn < nbuckets; ++hn)
11394 ++counts[lengths[hn]];
11395
11396 if (nbuckets > 0)
11397 {
11398 unsigned long i;
11399 printf (" 0 %-10lu (%5.1f%%)\n",
11400 counts[0], (counts[0] * 100.0) / nbuckets);
11401 for (i = 1; i <= maxlength; ++i)
11402 {
11403 nzero_counts += counts[i] * i;
11404 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11405 i, counts[i], (counts[i] * 100.0) / nbuckets,
11406 (nzero_counts * 100.0) / nsyms);
11407 }
11408 }
11409
11410 free (counts);
11411 free (lengths);
11412 }
11413
11414 if (buckets != NULL)
11415 {
11416 free (buckets);
11417 free (chains);
11418 }
11419
11420 if (do_histogram && gnubuckets != NULL)
11421 {
11422 unsigned long * lengths;
11423 unsigned long * counts;
11424 unsigned long hn;
11425 unsigned long maxlength = 0;
11426 unsigned long nzero_counts = 0;
11427 unsigned long nsyms = 0;
11428
11429 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
11430 (unsigned long) ngnubuckets);
11431
11432 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
11433 if (lengths == NULL)
11434 {
11435 error (_("Out of memory allocating space for gnu histogram buckets\n"));
11436 return 0;
11437 }
11438
11439 printf (_(" Length Number %% of total Coverage\n"));
11440
11441 for (hn = 0; hn < ngnubuckets; ++hn)
11442 if (gnubuckets[hn] != 0)
11443 {
11444 bfd_vma off, length = 1;
11445
11446 for (off = gnubuckets[hn] - gnusymidx;
11447 /* PR 17531 file: 010-77222-0.004. */
11448 off < ngnuchains && (gnuchains[off] & 1) == 0;
11449 ++off)
11450 ++length;
11451 lengths[hn] = length;
11452 if (length > maxlength)
11453 maxlength = length;
11454 nsyms += length;
11455 }
11456
11457 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11458 if (counts == NULL)
11459 {
11460 free (lengths);
11461 error (_("Out of memory allocating space for gnu histogram counts\n"));
11462 return 0;
11463 }
11464
11465 for (hn = 0; hn < ngnubuckets; ++hn)
11466 ++counts[lengths[hn]];
11467
11468 if (ngnubuckets > 0)
11469 {
11470 unsigned long j;
11471 printf (" 0 %-10lu (%5.1f%%)\n",
11472 counts[0], (counts[0] * 100.0) / ngnubuckets);
11473 for (j = 1; j <= maxlength; ++j)
11474 {
11475 nzero_counts += counts[j] * j;
11476 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11477 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
11478 (nzero_counts * 100.0) / nsyms);
11479 }
11480 }
11481
11482 free (counts);
11483 free (lengths);
11484 free (gnubuckets);
11485 free (gnuchains);
11486 }
11487
11488 return 1;
11489 }
11490
11491 static int
11492 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
11493 {
11494 unsigned int i;
11495
11496 if (dynamic_syminfo == NULL
11497 || !do_dynamic)
11498 /* No syminfo, this is ok. */
11499 return 1;
11500
11501 /* There better should be a dynamic symbol section. */
11502 if (dynamic_symbols == NULL || dynamic_strings == NULL)
11503 return 0;
11504
11505 if (dynamic_addr)
11506 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
11507 dynamic_syminfo_offset, dynamic_syminfo_nent);
11508
11509 printf (_(" Num: Name BoundTo Flags\n"));
11510 for (i = 0; i < dynamic_syminfo_nent; ++i)
11511 {
11512 unsigned short int flags = dynamic_syminfo[i].si_flags;
11513
11514 printf ("%4d: ", i);
11515 if (i >= num_dynamic_syms)
11516 printf (_("<corrupt index>"));
11517 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
11518 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
11519 else
11520 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
11521 putchar (' ');
11522
11523 switch (dynamic_syminfo[i].si_boundto)
11524 {
11525 case SYMINFO_BT_SELF:
11526 fputs ("SELF ", stdout);
11527 break;
11528 case SYMINFO_BT_PARENT:
11529 fputs ("PARENT ", stdout);
11530 break;
11531 default:
11532 if (dynamic_syminfo[i].si_boundto > 0
11533 && dynamic_syminfo[i].si_boundto < dynamic_nent
11534 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
11535 {
11536 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
11537 putchar (' ' );
11538 }
11539 else
11540 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
11541 break;
11542 }
11543
11544 if (flags & SYMINFO_FLG_DIRECT)
11545 printf (" DIRECT");
11546 if (flags & SYMINFO_FLG_PASSTHRU)
11547 printf (" PASSTHRU");
11548 if (flags & SYMINFO_FLG_COPY)
11549 printf (" COPY");
11550 if (flags & SYMINFO_FLG_LAZYLOAD)
11551 printf (" LAZYLOAD");
11552
11553 puts ("");
11554 }
11555
11556 return 1;
11557 }
11558
11559 /* Check to see if the given reloc needs to be handled in a target specific
11560 manner. If so then process the reloc and return TRUE otherwise return
11561 FALSE. */
11562
11563 static bfd_boolean
11564 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
11565 unsigned char * start,
11566 Elf_Internal_Sym * symtab)
11567 {
11568 unsigned int reloc_type = get_reloc_type (reloc->r_info);
11569
11570 switch (elf_header.e_machine)
11571 {
11572 case EM_MSP430:
11573 case EM_MSP430_OLD:
11574 {
11575 static Elf_Internal_Sym * saved_sym = NULL;
11576
11577 switch (reloc_type)
11578 {
11579 case 10: /* R_MSP430_SYM_DIFF */
11580 if (uses_msp430x_relocs ())
11581 break;
11582 /* Fall through. */
11583 case 21: /* R_MSP430X_SYM_DIFF */
11584 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
11585 return TRUE;
11586
11587 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
11588 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
11589 goto handle_sym_diff;
11590
11591 case 5: /* R_MSP430_16_BYTE */
11592 case 9: /* R_MSP430_8 */
11593 if (uses_msp430x_relocs ())
11594 break;
11595 goto handle_sym_diff;
11596
11597 case 2: /* R_MSP430_ABS16 */
11598 case 15: /* R_MSP430X_ABS16 */
11599 if (! uses_msp430x_relocs ())
11600 break;
11601 goto handle_sym_diff;
11602
11603 handle_sym_diff:
11604 if (saved_sym != NULL)
11605 {
11606 bfd_vma value;
11607
11608 value = reloc->r_addend
11609 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
11610 - saved_sym->st_value);
11611
11612 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
11613
11614 saved_sym = NULL;
11615 return TRUE;
11616 }
11617 break;
11618
11619 default:
11620 if (saved_sym != NULL)
11621 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
11622 break;
11623 }
11624 break;
11625 }
11626
11627 case EM_MN10300:
11628 case EM_CYGNUS_MN10300:
11629 {
11630 static Elf_Internal_Sym * saved_sym = NULL;
11631
11632 switch (reloc_type)
11633 {
11634 case 34: /* R_MN10300_ALIGN */
11635 return TRUE;
11636 case 33: /* R_MN10300_SYM_DIFF */
11637 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
11638 return TRUE;
11639 case 1: /* R_MN10300_32 */
11640 case 2: /* R_MN10300_16 */
11641 if (saved_sym != NULL)
11642 {
11643 bfd_vma value;
11644
11645 value = reloc->r_addend
11646 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
11647 - saved_sym->st_value);
11648
11649 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
11650
11651 saved_sym = NULL;
11652 return TRUE;
11653 }
11654 break;
11655 default:
11656 if (saved_sym != NULL)
11657 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
11658 break;
11659 }
11660 break;
11661 }
11662
11663 case EM_RL78:
11664 {
11665 static bfd_vma saved_sym1 = 0;
11666 static bfd_vma saved_sym2 = 0;
11667 static bfd_vma value;
11668
11669 switch (reloc_type)
11670 {
11671 case 0x80: /* R_RL78_SYM. */
11672 saved_sym1 = saved_sym2;
11673 saved_sym2 = symtab[get_reloc_symindex (reloc->r_info)].st_value;
11674 saved_sym2 += reloc->r_addend;
11675 return TRUE;
11676
11677 case 0x83: /* R_RL78_OPsub. */
11678 value = saved_sym1 - saved_sym2;
11679 saved_sym2 = saved_sym1 = 0;
11680 return TRUE;
11681 break;
11682
11683 case 0x41: /* R_RL78_ABS32. */
11684 byte_put (start + reloc->r_offset, value, 4);
11685 value = 0;
11686 return TRUE;
11687
11688 case 0x43: /* R_RL78_ABS16. */
11689 byte_put (start + reloc->r_offset, value, 2);
11690 value = 0;
11691 return TRUE;
11692
11693 default:
11694 break;
11695 }
11696 break;
11697 }
11698 }
11699
11700 return FALSE;
11701 }
11702
11703 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
11704 DWARF debug sections. This is a target specific test. Note - we do not
11705 go through the whole including-target-headers-multiple-times route, (as
11706 we have already done with <elf/h8.h>) because this would become very
11707 messy and even then this function would have to contain target specific
11708 information (the names of the relocs instead of their numeric values).
11709 FIXME: This is not the correct way to solve this problem. The proper way
11710 is to have target specific reloc sizing and typing functions created by
11711 the reloc-macros.h header, in the same way that it already creates the
11712 reloc naming functions. */
11713
11714 static bfd_boolean
11715 is_32bit_abs_reloc (unsigned int reloc_type)
11716 {
11717 /* Please keep this table alpha-sorted for ease of visual lookup. */
11718 switch (elf_header.e_machine)
11719 {
11720 case EM_386:
11721 case EM_IAMCU:
11722 return reloc_type == 1; /* R_386_32. */
11723 case EM_68K:
11724 return reloc_type == 1; /* R_68K_32. */
11725 case EM_860:
11726 return reloc_type == 1; /* R_860_32. */
11727 case EM_960:
11728 return reloc_type == 2; /* R_960_32. */
11729 case EM_AARCH64:
11730 return reloc_type == 258; /* R_AARCH64_ABS32 */
11731 case EM_ADAPTEVA_EPIPHANY:
11732 return reloc_type == 3;
11733 case EM_ALPHA:
11734 return reloc_type == 1; /* R_ALPHA_REFLONG. */
11735 case EM_ARC:
11736 return reloc_type == 1; /* R_ARC_32. */
11737 case EM_ARC_COMPACT:
11738 case EM_ARC_COMPACT2:
11739 return reloc_type == 4; /* R_ARC_32. */
11740 case EM_ARM:
11741 return reloc_type == 2; /* R_ARM_ABS32 */
11742 case EM_AVR_OLD:
11743 case EM_AVR:
11744 return reloc_type == 1;
11745 case EM_BLACKFIN:
11746 return reloc_type == 0x12; /* R_byte4_data. */
11747 case EM_CRIS:
11748 return reloc_type == 3; /* R_CRIS_32. */
11749 case EM_CR16:
11750 return reloc_type == 3; /* R_CR16_NUM32. */
11751 case EM_CRX:
11752 return reloc_type == 15; /* R_CRX_NUM32. */
11753 case EM_CYGNUS_FRV:
11754 return reloc_type == 1;
11755 case EM_CYGNUS_D10V:
11756 case EM_D10V:
11757 return reloc_type == 6; /* R_D10V_32. */
11758 case EM_CYGNUS_D30V:
11759 case EM_D30V:
11760 return reloc_type == 12; /* R_D30V_32_NORMAL. */
11761 case EM_DLX:
11762 return reloc_type == 3; /* R_DLX_RELOC_32. */
11763 case EM_CYGNUS_FR30:
11764 case EM_FR30:
11765 return reloc_type == 3; /* R_FR30_32. */
11766 case EM_FT32:
11767 return reloc_type == 1; /* R_FT32_32. */
11768 case EM_H8S:
11769 case EM_H8_300:
11770 case EM_H8_300H:
11771 return reloc_type == 1; /* R_H8_DIR32. */
11772 case EM_IA_64:
11773 return reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
11774 || reloc_type == 0x25; /* R_IA64_DIR32LSB. */
11775 case EM_IP2K_OLD:
11776 case EM_IP2K:
11777 return reloc_type == 2; /* R_IP2K_32. */
11778 case EM_IQ2000:
11779 return reloc_type == 2; /* R_IQ2000_32. */
11780 case EM_LATTICEMICO32:
11781 return reloc_type == 3; /* R_LM32_32. */
11782 case EM_M32C_OLD:
11783 case EM_M32C:
11784 return reloc_type == 3; /* R_M32C_32. */
11785 case EM_M32R:
11786 return reloc_type == 34; /* R_M32R_32_RELA. */
11787 case EM_68HC11:
11788 case EM_68HC12:
11789 return reloc_type == 6; /* R_M68HC11_32. */
11790 case EM_MCORE:
11791 return reloc_type == 1; /* R_MCORE_ADDR32. */
11792 case EM_CYGNUS_MEP:
11793 return reloc_type == 4; /* R_MEP_32. */
11794 case EM_METAG:
11795 return reloc_type == 2; /* R_METAG_ADDR32. */
11796 case EM_MICROBLAZE:
11797 return reloc_type == 1; /* R_MICROBLAZE_32. */
11798 case EM_MIPS:
11799 return reloc_type == 2; /* R_MIPS_32. */
11800 case EM_MMIX:
11801 return reloc_type == 4; /* R_MMIX_32. */
11802 case EM_CYGNUS_MN10200:
11803 case EM_MN10200:
11804 return reloc_type == 1; /* R_MN10200_32. */
11805 case EM_CYGNUS_MN10300:
11806 case EM_MN10300:
11807 return reloc_type == 1; /* R_MN10300_32. */
11808 case EM_MOXIE:
11809 return reloc_type == 1; /* R_MOXIE_32. */
11810 case EM_MSP430_OLD:
11811 case EM_MSP430:
11812 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
11813 case EM_MT:
11814 return reloc_type == 2; /* R_MT_32. */
11815 case EM_NDS32:
11816 return reloc_type == 20; /* R_NDS32_RELA. */
11817 case EM_ALTERA_NIOS2:
11818 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
11819 case EM_NIOS32:
11820 return reloc_type == 1; /* R_NIOS_32. */
11821 case EM_OR1K:
11822 return reloc_type == 1; /* R_OR1K_32. */
11823 case EM_PARISC:
11824 return (reloc_type == 1 /* R_PARISC_DIR32. */
11825 || reloc_type == 41); /* R_PARISC_SECREL32. */
11826 case EM_PJ:
11827 case EM_PJ_OLD:
11828 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
11829 case EM_PPC64:
11830 return reloc_type == 1; /* R_PPC64_ADDR32. */
11831 case EM_PPC:
11832 return reloc_type == 1; /* R_PPC_ADDR32. */
11833 case EM_RISCV:
11834 return reloc_type == 1; /* R_RISCV_32. */
11835 case EM_RL78:
11836 return reloc_type == 1; /* R_RL78_DIR32. */
11837 case EM_RX:
11838 return reloc_type == 1; /* R_RX_DIR32. */
11839 case EM_S370:
11840 return reloc_type == 1; /* R_I370_ADDR31. */
11841 case EM_S390_OLD:
11842 case EM_S390:
11843 return reloc_type == 4; /* R_S390_32. */
11844 case EM_SCORE:
11845 return reloc_type == 8; /* R_SCORE_ABS32. */
11846 case EM_SH:
11847 return reloc_type == 1; /* R_SH_DIR32. */
11848 case EM_SPARC32PLUS:
11849 case EM_SPARCV9:
11850 case EM_SPARC:
11851 return reloc_type == 3 /* R_SPARC_32. */
11852 || reloc_type == 23; /* R_SPARC_UA32. */
11853 case EM_SPU:
11854 return reloc_type == 6; /* R_SPU_ADDR32 */
11855 case EM_TI_C6000:
11856 return reloc_type == 1; /* R_C6000_ABS32. */
11857 case EM_TILEGX:
11858 return reloc_type == 2; /* R_TILEGX_32. */
11859 case EM_TILEPRO:
11860 return reloc_type == 1; /* R_TILEPRO_32. */
11861 case EM_CYGNUS_V850:
11862 case EM_V850:
11863 return reloc_type == 6; /* R_V850_ABS32. */
11864 case EM_V800:
11865 return reloc_type == 0x33; /* R_V810_WORD. */
11866 case EM_VAX:
11867 return reloc_type == 1; /* R_VAX_32. */
11868 case EM_VISIUM:
11869 return reloc_type == 3; /* R_VISIUM_32. */
11870 case EM_X86_64:
11871 case EM_L1OM:
11872 case EM_K1OM:
11873 return reloc_type == 10; /* R_X86_64_32. */
11874 case EM_XC16X:
11875 case EM_C166:
11876 return reloc_type == 3; /* R_XC16C_ABS_32. */
11877 case EM_XGATE:
11878 return reloc_type == 4; /* R_XGATE_32. */
11879 case EM_XSTORMY16:
11880 return reloc_type == 1; /* R_XSTROMY16_32. */
11881 case EM_XTENSA_OLD:
11882 case EM_XTENSA:
11883 return reloc_type == 1; /* R_XTENSA_32. */
11884 default:
11885 {
11886 static unsigned int prev_warn = 0;
11887
11888 /* Avoid repeating the same warning multiple times. */
11889 if (prev_warn != elf_header.e_machine)
11890 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
11891 elf_header.e_machine);
11892 prev_warn = elf_header.e_machine;
11893 return FALSE;
11894 }
11895 }
11896 }
11897
11898 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
11899 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
11900
11901 static bfd_boolean
11902 is_32bit_pcrel_reloc (unsigned int reloc_type)
11903 {
11904 switch (elf_header.e_machine)
11905 /* Please keep this table alpha-sorted for ease of visual lookup. */
11906 {
11907 case EM_386:
11908 case EM_IAMCU:
11909 return reloc_type == 2; /* R_386_PC32. */
11910 case EM_68K:
11911 return reloc_type == 4; /* R_68K_PC32. */
11912 case EM_AARCH64:
11913 return reloc_type == 261; /* R_AARCH64_PREL32 */
11914 case EM_ADAPTEVA_EPIPHANY:
11915 return reloc_type == 6;
11916 case EM_ALPHA:
11917 return reloc_type == 10; /* R_ALPHA_SREL32. */
11918 case EM_ARC_COMPACT:
11919 case EM_ARC_COMPACT2:
11920 return reloc_type == 49; /* R_ARC_32_PCREL. */
11921 case EM_ARM:
11922 return reloc_type == 3; /* R_ARM_REL32 */
11923 case EM_AVR_OLD:
11924 case EM_AVR:
11925 return reloc_type == 36; /* R_AVR_32_PCREL. */
11926 case EM_MICROBLAZE:
11927 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
11928 case EM_OR1K:
11929 return reloc_type == 9; /* R_OR1K_32_PCREL. */
11930 case EM_PARISC:
11931 return reloc_type == 9; /* R_PARISC_PCREL32. */
11932 case EM_PPC:
11933 return reloc_type == 26; /* R_PPC_REL32. */
11934 case EM_PPC64:
11935 return reloc_type == 26; /* R_PPC64_REL32. */
11936 case EM_S390_OLD:
11937 case EM_S390:
11938 return reloc_type == 5; /* R_390_PC32. */
11939 case EM_SH:
11940 return reloc_type == 2; /* R_SH_REL32. */
11941 case EM_SPARC32PLUS:
11942 case EM_SPARCV9:
11943 case EM_SPARC:
11944 return reloc_type == 6; /* R_SPARC_DISP32. */
11945 case EM_SPU:
11946 return reloc_type == 13; /* R_SPU_REL32. */
11947 case EM_TILEGX:
11948 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
11949 case EM_TILEPRO:
11950 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
11951 case EM_VISIUM:
11952 return reloc_type == 6; /* R_VISIUM_32_PCREL */
11953 case EM_X86_64:
11954 case EM_L1OM:
11955 case EM_K1OM:
11956 return reloc_type == 2; /* R_X86_64_PC32. */
11957 case EM_XTENSA_OLD:
11958 case EM_XTENSA:
11959 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
11960 default:
11961 /* Do not abort or issue an error message here. Not all targets use
11962 pc-relative 32-bit relocs in their DWARF debug information and we
11963 have already tested for target coverage in is_32bit_abs_reloc. A
11964 more helpful warning message will be generated by apply_relocations
11965 anyway, so just return. */
11966 return FALSE;
11967 }
11968 }
11969
11970 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
11971 a 64-bit absolute RELA relocation used in DWARF debug sections. */
11972
11973 static bfd_boolean
11974 is_64bit_abs_reloc (unsigned int reloc_type)
11975 {
11976 switch (elf_header.e_machine)
11977 {
11978 case EM_AARCH64:
11979 return reloc_type == 257; /* R_AARCH64_ABS64. */
11980 case EM_ALPHA:
11981 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
11982 case EM_IA_64:
11983 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
11984 case EM_PARISC:
11985 return reloc_type == 80; /* R_PARISC_DIR64. */
11986 case EM_PPC64:
11987 return reloc_type == 38; /* R_PPC64_ADDR64. */
11988 case EM_RISCV:
11989 return reloc_type == 2; /* R_RISCV_64. */
11990 case EM_SPARC32PLUS:
11991 case EM_SPARCV9:
11992 case EM_SPARC:
11993 return reloc_type == 54; /* R_SPARC_UA64. */
11994 case EM_X86_64:
11995 case EM_L1OM:
11996 case EM_K1OM:
11997 return reloc_type == 1; /* R_X86_64_64. */
11998 case EM_S390_OLD:
11999 case EM_S390:
12000 return reloc_type == 22; /* R_S390_64. */
12001 case EM_TILEGX:
12002 return reloc_type == 1; /* R_TILEGX_64. */
12003 case EM_MIPS:
12004 return reloc_type == 18; /* R_MIPS_64. */
12005 default:
12006 return FALSE;
12007 }
12008 }
12009
12010 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12011 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12012
12013 static bfd_boolean
12014 is_64bit_pcrel_reloc (unsigned int reloc_type)
12015 {
12016 switch (elf_header.e_machine)
12017 {
12018 case EM_AARCH64:
12019 return reloc_type == 260; /* R_AARCH64_PREL64. */
12020 case EM_ALPHA:
12021 return reloc_type == 11; /* R_ALPHA_SREL64. */
12022 case EM_IA_64:
12023 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
12024 case EM_PARISC:
12025 return reloc_type == 72; /* R_PARISC_PCREL64. */
12026 case EM_PPC64:
12027 return reloc_type == 44; /* R_PPC64_REL64. */
12028 case EM_SPARC32PLUS:
12029 case EM_SPARCV9:
12030 case EM_SPARC:
12031 return reloc_type == 46; /* R_SPARC_DISP64. */
12032 case EM_X86_64:
12033 case EM_L1OM:
12034 case EM_K1OM:
12035 return reloc_type == 24; /* R_X86_64_PC64. */
12036 case EM_S390_OLD:
12037 case EM_S390:
12038 return reloc_type == 23; /* R_S390_PC64. */
12039 case EM_TILEGX:
12040 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12041 default:
12042 return FALSE;
12043 }
12044 }
12045
12046 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12047 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12048
12049 static bfd_boolean
12050 is_24bit_abs_reloc (unsigned int reloc_type)
12051 {
12052 switch (elf_header.e_machine)
12053 {
12054 case EM_CYGNUS_MN10200:
12055 case EM_MN10200:
12056 return reloc_type == 4; /* R_MN10200_24. */
12057 case EM_FT32:
12058 return reloc_type == 5; /* R_FT32_20. */
12059 default:
12060 return FALSE;
12061 }
12062 }
12063
12064 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12065 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12066
12067 static bfd_boolean
12068 is_16bit_abs_reloc (unsigned int reloc_type)
12069 {
12070 /* Please keep this table alpha-sorted for ease of visual lookup. */
12071 switch (elf_header.e_machine)
12072 {
12073 case EM_ARC:
12074 case EM_ARC_COMPACT:
12075 case EM_ARC_COMPACT2:
12076 return reloc_type == 2; /* R_ARC_16. */
12077 case EM_ADAPTEVA_EPIPHANY:
12078 return reloc_type == 5;
12079 case EM_AVR_OLD:
12080 case EM_AVR:
12081 return reloc_type == 4; /* R_AVR_16. */
12082 case EM_CYGNUS_D10V:
12083 case EM_D10V:
12084 return reloc_type == 3; /* R_D10V_16. */
12085 case EM_H8S:
12086 case EM_H8_300:
12087 case EM_H8_300H:
12088 return reloc_type == R_H8_DIR16;
12089 case EM_IP2K_OLD:
12090 case EM_IP2K:
12091 return reloc_type == 1; /* R_IP2K_16. */
12092 case EM_M32C_OLD:
12093 case EM_M32C:
12094 return reloc_type == 1; /* R_M32C_16 */
12095 case EM_CYGNUS_MN10200:
12096 case EM_MN10200:
12097 return reloc_type == 2; /* R_MN10200_16. */
12098 case EM_CYGNUS_MN10300:
12099 case EM_MN10300:
12100 return reloc_type == 2; /* R_MN10300_16. */
12101 case EM_MSP430:
12102 if (uses_msp430x_relocs ())
12103 return reloc_type == 2; /* R_MSP430_ABS16. */
12104 /* Fall through. */
12105 case EM_MSP430_OLD:
12106 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12107 case EM_NDS32:
12108 return reloc_type == 19; /* R_NDS32_RELA. */
12109 case EM_ALTERA_NIOS2:
12110 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12111 case EM_NIOS32:
12112 return reloc_type == 9; /* R_NIOS_16. */
12113 case EM_OR1K:
12114 return reloc_type == 2; /* R_OR1K_16. */
12115 case EM_TI_C6000:
12116 return reloc_type == 2; /* R_C6000_ABS16. */
12117 case EM_VISIUM:
12118 return reloc_type == 2; /* R_VISIUM_16. */
12119 case EM_XC16X:
12120 case EM_C166:
12121 return reloc_type == 2; /* R_XC16C_ABS_16. */
12122 case EM_XGATE:
12123 return reloc_type == 3; /* R_XGATE_16. */
12124 default:
12125 return FALSE;
12126 }
12127 }
12128
12129 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
12130 relocation entries (possibly formerly used for SHT_GROUP sections). */
12131
12132 static bfd_boolean
12133 is_none_reloc (unsigned int reloc_type)
12134 {
12135 switch (elf_header.e_machine)
12136 {
12137 case EM_386: /* R_386_NONE. */
12138 case EM_68K: /* R_68K_NONE. */
12139 case EM_ADAPTEVA_EPIPHANY:
12140 case EM_ALPHA: /* R_ALPHA_NONE. */
12141 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
12142 case EM_ARC: /* R_ARC_NONE. */
12143 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
12144 case EM_ARC_COMPACT: /* R_ARC_NONE. */
12145 case EM_ARM: /* R_ARM_NONE. */
12146 case EM_C166: /* R_XC16X_NONE. */
12147 case EM_CRIS: /* R_CRIS_NONE. */
12148 case EM_FT32: /* R_FT32_NONE. */
12149 case EM_IA_64: /* R_IA64_NONE. */
12150 case EM_K1OM: /* R_X86_64_NONE. */
12151 case EM_L1OM: /* R_X86_64_NONE. */
12152 case EM_M32R: /* R_M32R_NONE. */
12153 case EM_MIPS: /* R_MIPS_NONE. */
12154 case EM_MN10300: /* R_MN10300_NONE. */
12155 case EM_MOXIE: /* R_MOXIE_NONE. */
12156 case EM_NIOS32: /* R_NIOS_NONE. */
12157 case EM_OR1K: /* R_OR1K_NONE. */
12158 case EM_PARISC: /* R_PARISC_NONE. */
12159 case EM_PPC64: /* R_PPC64_NONE. */
12160 case EM_PPC: /* R_PPC_NONE. */
12161 case EM_RISCV: /* R_RISCV_NONE. */
12162 case EM_S390: /* R_390_NONE. */
12163 case EM_S390_OLD:
12164 case EM_SH: /* R_SH_NONE. */
12165 case EM_SPARC32PLUS:
12166 case EM_SPARC: /* R_SPARC_NONE. */
12167 case EM_SPARCV9:
12168 case EM_TILEGX: /* R_TILEGX_NONE. */
12169 case EM_TILEPRO: /* R_TILEPRO_NONE. */
12170 case EM_TI_C6000:/* R_C6000_NONE. */
12171 case EM_X86_64: /* R_X86_64_NONE. */
12172 case EM_XC16X:
12173 return reloc_type == 0;
12174
12175 case EM_AARCH64:
12176 return reloc_type == 0 || reloc_type == 256;
12177 case EM_AVR_OLD:
12178 case EM_AVR:
12179 return (reloc_type == 0 /* R_AVR_NONE. */
12180 || reloc_type == 30 /* R_AVR_DIFF8. */
12181 || reloc_type == 31 /* R_AVR_DIFF16. */
12182 || reloc_type == 32 /* R_AVR_DIFF32. */);
12183 case EM_METAG:
12184 return reloc_type == 3; /* R_METAG_NONE. */
12185 case EM_NDS32:
12186 return (reloc_type == 0 /* R_XTENSA_NONE. */
12187 || reloc_type == 204 /* R_NDS32_DIFF8. */
12188 || reloc_type == 205 /* R_NDS32_DIFF16. */
12189 || reloc_type == 206 /* R_NDS32_DIFF32. */
12190 || reloc_type == 207 /* R_NDS32_ULEB128. */);
12191 case EM_XTENSA_OLD:
12192 case EM_XTENSA:
12193 return (reloc_type == 0 /* R_XTENSA_NONE. */
12194 || reloc_type == 17 /* R_XTENSA_DIFF8. */
12195 || reloc_type == 18 /* R_XTENSA_DIFF16. */
12196 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
12197 }
12198 return FALSE;
12199 }
12200
12201 /* Returns TRUE if there is a relocation against
12202 section NAME at OFFSET bytes. */
12203
12204 bfd_boolean
12205 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
12206 {
12207 Elf_Internal_Rela * relocs;
12208 Elf_Internal_Rela * rp;
12209
12210 if (dsec == NULL || dsec->reloc_info == NULL)
12211 return FALSE;
12212
12213 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
12214
12215 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
12216 if (rp->r_offset == offset)
12217 return TRUE;
12218
12219 return FALSE;
12220 }
12221
12222 /* Apply relocations to a section.
12223 Note: So far support has been added only for those relocations
12224 which can be found in debug sections.
12225 If RELOCS_RETURN is non-NULL then returns in it a pointer to the
12226 loaded relocs. It is then the caller's responsibility to free them.
12227 FIXME: Add support for more relocations ? */
12228
12229 static void
12230 apply_relocations (void * file,
12231 const Elf_Internal_Shdr * section,
12232 unsigned char * start,
12233 bfd_size_type size,
12234 void ** relocs_return,
12235 unsigned long * num_relocs_return)
12236 {
12237 Elf_Internal_Shdr * relsec;
12238 unsigned char * end = start + size;
12239
12240 if (relocs_return != NULL)
12241 {
12242 * (Elf_Internal_Rela **) relocs_return = NULL;
12243 * num_relocs_return = 0;
12244 }
12245
12246 if (elf_header.e_type != ET_REL)
12247 return;
12248
12249 /* Find the reloc section associated with the section. */
12250 for (relsec = section_headers;
12251 relsec < section_headers + elf_header.e_shnum;
12252 ++relsec)
12253 {
12254 bfd_boolean is_rela;
12255 unsigned long num_relocs;
12256 Elf_Internal_Rela * relocs;
12257 Elf_Internal_Rela * rp;
12258 Elf_Internal_Shdr * symsec;
12259 Elf_Internal_Sym * symtab;
12260 unsigned long num_syms;
12261 Elf_Internal_Sym * sym;
12262
12263 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12264 || relsec->sh_info >= elf_header.e_shnum
12265 || section_headers + relsec->sh_info != section
12266 || relsec->sh_size == 0
12267 || relsec->sh_link >= elf_header.e_shnum)
12268 continue;
12269
12270 is_rela = relsec->sh_type == SHT_RELA;
12271
12272 if (is_rela)
12273 {
12274 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
12275 relsec->sh_size, & relocs, & num_relocs))
12276 return;
12277 }
12278 else
12279 {
12280 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
12281 relsec->sh_size, & relocs, & num_relocs))
12282 return;
12283 }
12284
12285 /* SH uses RELA but uses in place value instead of the addend field. */
12286 if (elf_header.e_machine == EM_SH)
12287 is_rela = FALSE;
12288
12289 symsec = section_headers + relsec->sh_link;
12290 if (symsec->sh_type != SHT_SYMTAB
12291 && symsec->sh_type != SHT_DYNSYM)
12292 return;
12293 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
12294
12295 for (rp = relocs; rp < relocs + num_relocs; ++rp)
12296 {
12297 bfd_vma addend;
12298 unsigned int reloc_type;
12299 unsigned int reloc_size;
12300 unsigned char * rloc;
12301 unsigned long sym_index;
12302
12303 reloc_type = get_reloc_type (rp->r_info);
12304
12305 if (target_specific_reloc_handling (rp, start, symtab))
12306 continue;
12307 else if (is_none_reloc (reloc_type))
12308 continue;
12309 else if (is_32bit_abs_reloc (reloc_type)
12310 || is_32bit_pcrel_reloc (reloc_type))
12311 reloc_size = 4;
12312 else if (is_64bit_abs_reloc (reloc_type)
12313 || is_64bit_pcrel_reloc (reloc_type))
12314 reloc_size = 8;
12315 else if (is_24bit_abs_reloc (reloc_type))
12316 reloc_size = 3;
12317 else if (is_16bit_abs_reloc (reloc_type))
12318 reloc_size = 2;
12319 else
12320 {
12321 static unsigned int prev_reloc = 0;
12322 if (reloc_type != prev_reloc)
12323 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
12324 reloc_type, printable_section_name (section));
12325 prev_reloc = reloc_type;
12326 continue;
12327 }
12328
12329 rloc = start + rp->r_offset;
12330 if ((rloc + reloc_size) > end || (rloc < start))
12331 {
12332 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
12333 (unsigned long) rp->r_offset,
12334 printable_section_name (section));
12335 continue;
12336 }
12337
12338 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
12339 if (sym_index >= num_syms)
12340 {
12341 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
12342 sym_index, printable_section_name (section));
12343 continue;
12344 }
12345 sym = symtab + sym_index;
12346
12347 /* If the reloc has a symbol associated with it,
12348 make sure that it is of an appropriate type.
12349
12350 Relocations against symbols without type can happen.
12351 Gcc -feliminate-dwarf2-dups may generate symbols
12352 without type for debug info.
12353
12354 Icc generates relocations against function symbols
12355 instead of local labels.
12356
12357 Relocations against object symbols can happen, eg when
12358 referencing a global array. For an example of this see
12359 the _clz.o binary in libgcc.a. */
12360 if (sym != symtab
12361 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
12362 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
12363 {
12364 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
12365 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
12366 (long int)(rp - relocs),
12367 printable_section_name (relsec));
12368 continue;
12369 }
12370
12371 addend = 0;
12372 if (is_rela)
12373 addend += rp->r_addend;
12374 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
12375 partial_inplace. */
12376 if (!is_rela
12377 || (elf_header.e_machine == EM_XTENSA
12378 && reloc_type == 1)
12379 || ((elf_header.e_machine == EM_PJ
12380 || elf_header.e_machine == EM_PJ_OLD)
12381 && reloc_type == 1)
12382 || ((elf_header.e_machine == EM_D30V
12383 || elf_header.e_machine == EM_CYGNUS_D30V)
12384 && reloc_type == 12))
12385 addend += byte_get (rloc, reloc_size);
12386
12387 if (is_32bit_pcrel_reloc (reloc_type)
12388 || is_64bit_pcrel_reloc (reloc_type))
12389 {
12390 /* On HPPA, all pc-relative relocations are biased by 8. */
12391 if (elf_header.e_machine == EM_PARISC)
12392 addend -= 8;
12393 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
12394 reloc_size);
12395 }
12396 else
12397 byte_put (rloc, addend + sym->st_value, reloc_size);
12398 }
12399
12400 free (symtab);
12401
12402 if (relocs_return)
12403 {
12404 * (Elf_Internal_Rela **) relocs_return = relocs;
12405 * num_relocs_return = num_relocs;
12406 }
12407 else
12408 free (relocs);
12409
12410 break;
12411 }
12412 }
12413
12414 #ifdef SUPPORT_DISASSEMBLY
12415 static int
12416 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
12417 {
12418 printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
12419
12420 /* FIXME: XXX -- to be done --- XXX */
12421
12422 return 1;
12423 }
12424 #endif
12425
12426 /* Reads in the contents of SECTION from FILE, returning a pointer
12427 to a malloc'ed buffer or NULL if something went wrong. */
12428
12429 static char *
12430 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
12431 {
12432 bfd_size_type num_bytes;
12433
12434 num_bytes = section->sh_size;
12435
12436 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
12437 {
12438 printf (_("\nSection '%s' has no data to dump.\n"),
12439 printable_section_name (section));
12440 return NULL;
12441 }
12442
12443 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
12444 _("section contents"));
12445 }
12446
12447 /* Uncompresses a section that was compressed using zlib, in place. */
12448
12449 static bfd_boolean
12450 uncompress_section_contents (unsigned char **buffer,
12451 dwarf_size_type uncompressed_size,
12452 dwarf_size_type *size)
12453 {
12454 dwarf_size_type compressed_size = *size;
12455 unsigned char * compressed_buffer = *buffer;
12456 unsigned char * uncompressed_buffer;
12457 z_stream strm;
12458 int rc;
12459
12460 /* It is possible the section consists of several compressed
12461 buffers concatenated together, so we uncompress in a loop. */
12462 /* PR 18313: The state field in the z_stream structure is supposed
12463 to be invisible to the user (ie us), but some compilers will
12464 still complain about it being used without initialisation. So
12465 we first zero the entire z_stream structure and then set the fields
12466 that we need. */
12467 memset (& strm, 0, sizeof strm);
12468 strm.avail_in = compressed_size;
12469 strm.next_in = (Bytef *) compressed_buffer;
12470 strm.avail_out = uncompressed_size;
12471 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
12472
12473 rc = inflateInit (& strm);
12474 while (strm.avail_in > 0)
12475 {
12476 if (rc != Z_OK)
12477 goto fail;
12478 strm.next_out = ((Bytef *) uncompressed_buffer
12479 + (uncompressed_size - strm.avail_out));
12480 rc = inflate (&strm, Z_FINISH);
12481 if (rc != Z_STREAM_END)
12482 goto fail;
12483 rc = inflateReset (& strm);
12484 }
12485 rc = inflateEnd (& strm);
12486 if (rc != Z_OK
12487 || strm.avail_out != 0)
12488 goto fail;
12489
12490 *buffer = uncompressed_buffer;
12491 *size = uncompressed_size;
12492 return TRUE;
12493
12494 fail:
12495 free (uncompressed_buffer);
12496 /* Indicate decompression failure. */
12497 *buffer = NULL;
12498 return FALSE;
12499 }
12500
12501 static void
12502 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
12503 {
12504 Elf_Internal_Shdr * relsec;
12505 bfd_size_type num_bytes;
12506 unsigned char * data;
12507 unsigned char * end;
12508 unsigned char * real_start;
12509 unsigned char * start;
12510 bfd_boolean some_strings_shown;
12511
12512 real_start = start = (unsigned char *) get_section_contents (section,
12513 file);
12514 if (start == NULL)
12515 return;
12516 num_bytes = section->sh_size;
12517
12518 printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
12519
12520 if (decompress_dumps)
12521 {
12522 dwarf_size_type new_size = num_bytes;
12523 dwarf_size_type uncompressed_size = 0;
12524
12525 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12526 {
12527 Elf_Internal_Chdr chdr;
12528 unsigned int compression_header_size
12529 = get_compression_header (& chdr, (unsigned char *) start);
12530
12531 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12532 {
12533 warn (_("section '%s' has unsupported compress type: %d\n"),
12534 printable_section_name (section), chdr.ch_type);
12535 return;
12536 }
12537 else if (chdr.ch_addralign != section->sh_addralign)
12538 {
12539 warn (_("compressed section '%s' is corrupted\n"),
12540 printable_section_name (section));
12541 return;
12542 }
12543 uncompressed_size = chdr.ch_size;
12544 start += compression_header_size;
12545 new_size -= compression_header_size;
12546 }
12547 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12548 {
12549 /* Read the zlib header. In this case, it should be "ZLIB"
12550 followed by the uncompressed section size, 8 bytes in
12551 big-endian order. */
12552 uncompressed_size = start[4]; uncompressed_size <<= 8;
12553 uncompressed_size += start[5]; uncompressed_size <<= 8;
12554 uncompressed_size += start[6]; uncompressed_size <<= 8;
12555 uncompressed_size += start[7]; uncompressed_size <<= 8;
12556 uncompressed_size += start[8]; uncompressed_size <<= 8;
12557 uncompressed_size += start[9]; uncompressed_size <<= 8;
12558 uncompressed_size += start[10]; uncompressed_size <<= 8;
12559 uncompressed_size += start[11];
12560 start += 12;
12561 new_size -= 12;
12562 }
12563
12564 if (uncompressed_size
12565 && uncompress_section_contents (& start,
12566 uncompressed_size, & new_size))
12567 num_bytes = new_size;
12568 }
12569
12570 /* If the section being dumped has relocations against it the user might
12571 be expecting these relocations to have been applied. Check for this
12572 case and issue a warning message in order to avoid confusion.
12573 FIXME: Maybe we ought to have an option that dumps a section with
12574 relocs applied ? */
12575 for (relsec = section_headers;
12576 relsec < section_headers + elf_header.e_shnum;
12577 ++relsec)
12578 {
12579 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12580 || relsec->sh_info >= elf_header.e_shnum
12581 || section_headers + relsec->sh_info != section
12582 || relsec->sh_size == 0
12583 || relsec->sh_link >= elf_header.e_shnum)
12584 continue;
12585
12586 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12587 break;
12588 }
12589
12590 data = start;
12591 end = start + num_bytes;
12592 some_strings_shown = FALSE;
12593
12594 while (data < end)
12595 {
12596 while (!ISPRINT (* data))
12597 if (++ data >= end)
12598 break;
12599
12600 if (data < end)
12601 {
12602 size_t maxlen = end - data;
12603
12604 #ifndef __MSVCRT__
12605 /* PR 11128: Use two separate invocations in order to work
12606 around bugs in the Solaris 8 implementation of printf. */
12607 printf (" [%6tx] ", data - start);
12608 #else
12609 printf (" [%6Ix] ", (size_t) (data - start));
12610 #endif
12611 if (maxlen > 0)
12612 {
12613 print_symbol ((int) maxlen, (const char *) data);
12614 putchar ('\n');
12615 data += strnlen ((const char *) data, maxlen);
12616 }
12617 else
12618 {
12619 printf (_("<corrupt>\n"));
12620 data = end;
12621 }
12622 some_strings_shown = TRUE;
12623 }
12624 }
12625
12626 if (! some_strings_shown)
12627 printf (_(" No strings found in this section."));
12628
12629 free (real_start);
12630
12631 putchar ('\n');
12632 }
12633
12634 static void
12635 dump_section_as_bytes (Elf_Internal_Shdr * section,
12636 FILE * file,
12637 bfd_boolean relocate)
12638 {
12639 Elf_Internal_Shdr * relsec;
12640 bfd_size_type bytes;
12641 bfd_size_type section_size;
12642 bfd_vma addr;
12643 unsigned char * data;
12644 unsigned char * real_start;
12645 unsigned char * start;
12646
12647 real_start = start = (unsigned char *) get_section_contents (section, file);
12648 if (start == NULL)
12649 return;
12650 section_size = section->sh_size;
12651
12652 printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
12653
12654 if (decompress_dumps)
12655 {
12656 dwarf_size_type new_size = section_size;
12657 dwarf_size_type uncompressed_size = 0;
12658
12659 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12660 {
12661 Elf_Internal_Chdr chdr;
12662 unsigned int compression_header_size
12663 = get_compression_header (& chdr, start);
12664
12665 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12666 {
12667 warn (_("section '%s' has unsupported compress type: %d\n"),
12668 printable_section_name (section), chdr.ch_type);
12669 return;
12670 }
12671 else if (chdr.ch_addralign != section->sh_addralign)
12672 {
12673 warn (_("compressed section '%s' is corrupted\n"),
12674 printable_section_name (section));
12675 return;
12676 }
12677 uncompressed_size = chdr.ch_size;
12678 start += compression_header_size;
12679 new_size -= compression_header_size;
12680 }
12681 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12682 {
12683 /* Read the zlib header. In this case, it should be "ZLIB"
12684 followed by the uncompressed section size, 8 bytes in
12685 big-endian order. */
12686 uncompressed_size = start[4]; uncompressed_size <<= 8;
12687 uncompressed_size += start[5]; uncompressed_size <<= 8;
12688 uncompressed_size += start[6]; uncompressed_size <<= 8;
12689 uncompressed_size += start[7]; uncompressed_size <<= 8;
12690 uncompressed_size += start[8]; uncompressed_size <<= 8;
12691 uncompressed_size += start[9]; uncompressed_size <<= 8;
12692 uncompressed_size += start[10]; uncompressed_size <<= 8;
12693 uncompressed_size += start[11];
12694 start += 12;
12695 new_size -= 12;
12696 }
12697
12698 if (uncompressed_size
12699 && uncompress_section_contents (& start, uncompressed_size,
12700 & new_size))
12701 section_size = new_size;
12702 }
12703
12704 if (relocate)
12705 {
12706 apply_relocations (file, section, start, section_size, NULL, NULL);
12707 }
12708 else
12709 {
12710 /* If the section being dumped has relocations against it the user might
12711 be expecting these relocations to have been applied. Check for this
12712 case and issue a warning message in order to avoid confusion.
12713 FIXME: Maybe we ought to have an option that dumps a section with
12714 relocs applied ? */
12715 for (relsec = section_headers;
12716 relsec < section_headers + elf_header.e_shnum;
12717 ++relsec)
12718 {
12719 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12720 || relsec->sh_info >= elf_header.e_shnum
12721 || section_headers + relsec->sh_info != section
12722 || relsec->sh_size == 0
12723 || relsec->sh_link >= elf_header.e_shnum)
12724 continue;
12725
12726 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12727 break;
12728 }
12729 }
12730
12731 addr = section->sh_addr;
12732 bytes = section_size;
12733 data = start;
12734
12735 while (bytes)
12736 {
12737 int j;
12738 int k;
12739 int lbytes;
12740
12741 lbytes = (bytes > 16 ? 16 : bytes);
12742
12743 printf (" 0x%8.8lx ", (unsigned long) addr);
12744
12745 for (j = 0; j < 16; j++)
12746 {
12747 if (j < lbytes)
12748 printf ("%2.2x", data[j]);
12749 else
12750 printf (" ");
12751
12752 if ((j & 3) == 3)
12753 printf (" ");
12754 }
12755
12756 for (j = 0; j < lbytes; j++)
12757 {
12758 k = data[j];
12759 if (k >= ' ' && k < 0x7f)
12760 printf ("%c", k);
12761 else
12762 printf (".");
12763 }
12764
12765 putchar ('\n');
12766
12767 data += lbytes;
12768 addr += lbytes;
12769 bytes -= lbytes;
12770 }
12771
12772 free (real_start);
12773
12774 putchar ('\n');
12775 }
12776
12777 static int
12778 load_specific_debug_section (enum dwarf_section_display_enum debug,
12779 const Elf_Internal_Shdr * sec, void * file)
12780 {
12781 struct dwarf_section * section = &debug_displays [debug].section;
12782 char buf [64];
12783
12784 /* If it is already loaded, do nothing. */
12785 if (section->start != NULL)
12786 return 1;
12787
12788 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
12789 section->address = sec->sh_addr;
12790 section->user_data = NULL;
12791 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
12792 sec->sh_offset, 1,
12793 sec->sh_size, buf);
12794 if (section->start == NULL)
12795 section->size = 0;
12796 else
12797 {
12798 unsigned char *start = section->start;
12799 dwarf_size_type size = sec->sh_size;
12800 dwarf_size_type uncompressed_size = 0;
12801
12802 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
12803 {
12804 Elf_Internal_Chdr chdr;
12805 unsigned int compression_header_size;
12806
12807 if (size < (is_32bit_elf
12808 ? sizeof (Elf32_External_Chdr)
12809 : sizeof (Elf64_External_Chdr)))
12810 {
12811 warn (_("compressed section %s is too small to contain a compression header"),
12812 section->name);
12813 return 0;
12814 }
12815
12816 compression_header_size = get_compression_header (&chdr, start);
12817
12818 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12819 {
12820 warn (_("section '%s' has unsupported compress type: %d\n"),
12821 section->name, chdr.ch_type);
12822 return 0;
12823 }
12824 else if (chdr.ch_addralign != sec->sh_addralign)
12825 {
12826 warn (_("compressed section '%s' is corrupted\n"),
12827 section->name);
12828 return 0;
12829 }
12830 uncompressed_size = chdr.ch_size;
12831 start += compression_header_size;
12832 size -= compression_header_size;
12833 }
12834 else if (size > 12 && streq ((char *) start, "ZLIB"))
12835 {
12836 /* Read the zlib header. In this case, it should be "ZLIB"
12837 followed by the uncompressed section size, 8 bytes in
12838 big-endian order. */
12839 uncompressed_size = start[4]; uncompressed_size <<= 8;
12840 uncompressed_size += start[5]; uncompressed_size <<= 8;
12841 uncompressed_size += start[6]; uncompressed_size <<= 8;
12842 uncompressed_size += start[7]; uncompressed_size <<= 8;
12843 uncompressed_size += start[8]; uncompressed_size <<= 8;
12844 uncompressed_size += start[9]; uncompressed_size <<= 8;
12845 uncompressed_size += start[10]; uncompressed_size <<= 8;
12846 uncompressed_size += start[11];
12847 start += 12;
12848 size -= 12;
12849 }
12850
12851 if (uncompressed_size
12852 && uncompress_section_contents (&start, uncompressed_size,
12853 &size))
12854 {
12855 /* Free the compressed buffer, update the section buffer
12856 and the section size if uncompress is successful. */
12857 free (section->start);
12858 section->start = start;
12859 }
12860 section->size = size;
12861 }
12862
12863 if (section->start == NULL)
12864 return 0;
12865
12866 if (debug_displays [debug].relocate)
12867 apply_relocations ((FILE *) file, sec, section->start, section->size,
12868 & section->reloc_info, & section->num_relocs);
12869 else
12870 {
12871 section->reloc_info = NULL;
12872 section->num_relocs = 0;
12873 }
12874
12875 return 1;
12876 }
12877
12878 /* If this is not NULL, load_debug_section will only look for sections
12879 within the list of sections given here. */
12880 unsigned int *section_subset = NULL;
12881
12882 int
12883 load_debug_section (enum dwarf_section_display_enum debug, void * file)
12884 {
12885 struct dwarf_section * section = &debug_displays [debug].section;
12886 Elf_Internal_Shdr * sec;
12887
12888 /* Locate the debug section. */
12889 sec = find_section_in_set (section->uncompressed_name, section_subset);
12890 if (sec != NULL)
12891 section->name = section->uncompressed_name;
12892 else
12893 {
12894 sec = find_section_in_set (section->compressed_name, section_subset);
12895 if (sec != NULL)
12896 section->name = section->compressed_name;
12897 }
12898 if (sec == NULL)
12899 return 0;
12900
12901 /* If we're loading from a subset of sections, and we've loaded
12902 a section matching this name before, it's likely that it's a
12903 different one. */
12904 if (section_subset != NULL)
12905 free_debug_section (debug);
12906
12907 return load_specific_debug_section (debug, sec, (FILE *) file);
12908 }
12909
12910 void
12911 free_debug_section (enum dwarf_section_display_enum debug)
12912 {
12913 struct dwarf_section * section = &debug_displays [debug].section;
12914
12915 if (section->start == NULL)
12916 return;
12917
12918 free ((char *) section->start);
12919 section->start = NULL;
12920 section->address = 0;
12921 section->size = 0;
12922 }
12923
12924 static int
12925 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
12926 {
12927 char * name = SECTION_NAME (section);
12928 const char * print_name = printable_section_name (section);
12929 bfd_size_type length;
12930 int result = 1;
12931 int i;
12932
12933 length = section->sh_size;
12934 if (length == 0)
12935 {
12936 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
12937 return 0;
12938 }
12939 if (section->sh_type == SHT_NOBITS)
12940 {
12941 /* There is no point in dumping the contents of a debugging section
12942 which has the NOBITS type - the bits in the file will be random.
12943 This can happen when a file containing a .eh_frame section is
12944 stripped with the --only-keep-debug command line option. */
12945 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
12946 print_name);
12947 return 0;
12948 }
12949
12950 if (const_strneq (name, ".gnu.linkonce.wi."))
12951 name = ".debug_info";
12952
12953 /* See if we know how to display the contents of this section. */
12954 for (i = 0; i < max; i++)
12955 if (streq (debug_displays[i].section.uncompressed_name, name)
12956 || (i == line && const_strneq (name, ".debug_line."))
12957 || streq (debug_displays[i].section.compressed_name, name))
12958 {
12959 struct dwarf_section * sec = &debug_displays [i].section;
12960 int secondary = (section != find_section (name));
12961
12962 if (secondary)
12963 free_debug_section ((enum dwarf_section_display_enum) i);
12964
12965 if (i == line && const_strneq (name, ".debug_line."))
12966 sec->name = name;
12967 else if (streq (sec->uncompressed_name, name))
12968 sec->name = sec->uncompressed_name;
12969 else
12970 sec->name = sec->compressed_name;
12971 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
12972 section, file))
12973 {
12974 /* If this debug section is part of a CU/TU set in a .dwp file,
12975 restrict load_debug_section to the sections in that set. */
12976 section_subset = find_cu_tu_set (file, shndx);
12977
12978 result &= debug_displays[i].display (sec, file);
12979
12980 section_subset = NULL;
12981
12982 if (secondary || (i != info && i != abbrev))
12983 free_debug_section ((enum dwarf_section_display_enum) i);
12984 }
12985
12986 break;
12987 }
12988
12989 if (i == max)
12990 {
12991 printf (_("Unrecognized debug section: %s\n"), print_name);
12992 result = 0;
12993 }
12994
12995 return result;
12996 }
12997
12998 /* Set DUMP_SECTS for all sections where dumps were requested
12999 based on section name. */
13000
13001 static void
13002 initialise_dumps_byname (void)
13003 {
13004 struct dump_list_entry * cur;
13005
13006 for (cur = dump_sects_byname; cur; cur = cur->next)
13007 {
13008 unsigned int i;
13009 int any;
13010
13011 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
13012 if (streq (SECTION_NAME (section_headers + i), cur->name))
13013 {
13014 request_dump_bynumber (i, cur->type);
13015 any = 1;
13016 }
13017
13018 if (!any)
13019 warn (_("Section '%s' was not dumped because it does not exist!\n"),
13020 cur->name);
13021 }
13022 }
13023
13024 static void
13025 process_section_contents (FILE * file)
13026 {
13027 Elf_Internal_Shdr * section;
13028 unsigned int i;
13029
13030 if (! do_dump)
13031 return;
13032
13033 initialise_dumps_byname ();
13034
13035 for (i = 0, section = section_headers;
13036 i < elf_header.e_shnum && i < num_dump_sects;
13037 i++, section++)
13038 {
13039 #ifdef SUPPORT_DISASSEMBLY
13040 if (dump_sects[i] & DISASS_DUMP)
13041 disassemble_section (section, file);
13042 #endif
13043 if (dump_sects[i] & HEX_DUMP)
13044 dump_section_as_bytes (section, file, FALSE);
13045
13046 if (dump_sects[i] & RELOC_DUMP)
13047 dump_section_as_bytes (section, file, TRUE);
13048
13049 if (dump_sects[i] & STRING_DUMP)
13050 dump_section_as_strings (section, file);
13051
13052 if (dump_sects[i] & DEBUG_DUMP)
13053 display_debug_section (i, section, file);
13054 }
13055
13056 /* Check to see if the user requested a
13057 dump of a section that does not exist. */
13058 while (i++ < num_dump_sects)
13059 if (dump_sects[i])
13060 warn (_("Section %d was not dumped because it does not exist!\n"), i);
13061 }
13062
13063 static void
13064 process_mips_fpe_exception (int mask)
13065 {
13066 if (mask)
13067 {
13068 int first = 1;
13069 if (mask & OEX_FPU_INEX)
13070 fputs ("INEX", stdout), first = 0;
13071 if (mask & OEX_FPU_UFLO)
13072 printf ("%sUFLO", first ? "" : "|"), first = 0;
13073 if (mask & OEX_FPU_OFLO)
13074 printf ("%sOFLO", first ? "" : "|"), first = 0;
13075 if (mask & OEX_FPU_DIV0)
13076 printf ("%sDIV0", first ? "" : "|"), first = 0;
13077 if (mask & OEX_FPU_INVAL)
13078 printf ("%sINVAL", first ? "" : "|");
13079 }
13080 else
13081 fputs ("0", stdout);
13082 }
13083
13084 /* Display's the value of TAG at location P. If TAG is
13085 greater than 0 it is assumed to be an unknown tag, and
13086 a message is printed to this effect. Otherwise it is
13087 assumed that a message has already been printed.
13088
13089 If the bottom bit of TAG is set it assumed to have a
13090 string value, otherwise it is assumed to have an integer
13091 value.
13092
13093 Returns an updated P pointing to the first unread byte
13094 beyond the end of TAG's value.
13095
13096 Reads at or beyond END will not be made. */
13097
13098 static unsigned char *
13099 display_tag_value (int tag,
13100 unsigned char * p,
13101 const unsigned char * const end)
13102 {
13103 unsigned long val;
13104
13105 if (tag > 0)
13106 printf (" Tag_unknown_%d: ", tag);
13107
13108 if (p >= end)
13109 {
13110 warn (_("<corrupt tag>\n"));
13111 }
13112 else if (tag & 1)
13113 {
13114 /* PR 17531 file: 027-19978-0.004. */
13115 size_t maxlen = (end - p) - 1;
13116
13117 putchar ('"');
13118 if (maxlen > 0)
13119 {
13120 print_symbol ((int) maxlen, (const char *) p);
13121 p += strnlen ((char *) p, maxlen) + 1;
13122 }
13123 else
13124 {
13125 printf (_("<corrupt string tag>"));
13126 p = (unsigned char *) end;
13127 }
13128 printf ("\"\n");
13129 }
13130 else
13131 {
13132 unsigned int len;
13133
13134 val = read_uleb128 (p, &len, end);
13135 p += len;
13136 printf ("%ld (0x%lx)\n", val, val);
13137 }
13138
13139 assert (p <= end);
13140 return p;
13141 }
13142
13143 /* ARM EABI attributes section. */
13144 typedef struct
13145 {
13146 unsigned int tag;
13147 const char * name;
13148 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
13149 unsigned int type;
13150 const char ** table;
13151 } arm_attr_public_tag;
13152
13153 static const char * arm_attr_tag_CPU_arch[] =
13154 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
13155 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "", "v8-M.baseline",
13156 "v8-M.mainline"};
13157 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
13158 static const char * arm_attr_tag_THUMB_ISA_use[] =
13159 {"No", "Thumb-1", "Thumb-2", "Yes"};
13160 static const char * arm_attr_tag_FP_arch[] =
13161 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
13162 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
13163 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
13164 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
13165 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
13166 "NEON for ARMv8.1"};
13167 static const char * arm_attr_tag_PCS_config[] =
13168 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
13169 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
13170 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
13171 {"V6", "SB", "TLS", "Unused"};
13172 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
13173 {"Absolute", "PC-relative", "SB-relative", "None"};
13174 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
13175 {"Absolute", "PC-relative", "None"};
13176 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
13177 {"None", "direct", "GOT-indirect"};
13178 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
13179 {"None", "??? 1", "2", "??? 3", "4"};
13180 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
13181 static const char * arm_attr_tag_ABI_FP_denormal[] =
13182 {"Unused", "Needed", "Sign only"};
13183 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
13184 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
13185 static const char * arm_attr_tag_ABI_FP_number_model[] =
13186 {"Unused", "Finite", "RTABI", "IEEE 754"};
13187 static const char * arm_attr_tag_ABI_enum_size[] =
13188 {"Unused", "small", "int", "forced to int"};
13189 static const char * arm_attr_tag_ABI_HardFP_use[] =
13190 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
13191 static const char * arm_attr_tag_ABI_VFP_args[] =
13192 {"AAPCS", "VFP registers", "custom", "compatible"};
13193 static const char * arm_attr_tag_ABI_WMMX_args[] =
13194 {"AAPCS", "WMMX registers", "custom"};
13195 static const char * arm_attr_tag_ABI_optimization_goals[] =
13196 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13197 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
13198 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
13199 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13200 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
13201 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
13202 static const char * arm_attr_tag_FP_HP_extension[] =
13203 {"Not Allowed", "Allowed"};
13204 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
13205 {"None", "IEEE 754", "Alternative Format"};
13206 static const char * arm_attr_tag_DSP_extension[] =
13207 {"Follow architecture", "Allowed"};
13208 static const char * arm_attr_tag_MPextension_use[] =
13209 {"Not Allowed", "Allowed"};
13210 static const char * arm_attr_tag_DIV_use[] =
13211 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
13212 "Allowed in v7-A with integer division extension"};
13213 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
13214 static const char * arm_attr_tag_Virtualization_use[] =
13215 {"Not Allowed", "TrustZone", "Virtualization Extensions",
13216 "TrustZone and Virtualization Extensions"};
13217 static const char * arm_attr_tag_MPextension_use_legacy[] =
13218 {"Not Allowed", "Allowed"};
13219
13220 #define LOOKUP(id, name) \
13221 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
13222 static arm_attr_public_tag arm_attr_public_tags[] =
13223 {
13224 {4, "CPU_raw_name", 1, NULL},
13225 {5, "CPU_name", 1, NULL},
13226 LOOKUP(6, CPU_arch),
13227 {7, "CPU_arch_profile", 0, NULL},
13228 LOOKUP(8, ARM_ISA_use),
13229 LOOKUP(9, THUMB_ISA_use),
13230 LOOKUP(10, FP_arch),
13231 LOOKUP(11, WMMX_arch),
13232 LOOKUP(12, Advanced_SIMD_arch),
13233 LOOKUP(13, PCS_config),
13234 LOOKUP(14, ABI_PCS_R9_use),
13235 LOOKUP(15, ABI_PCS_RW_data),
13236 LOOKUP(16, ABI_PCS_RO_data),
13237 LOOKUP(17, ABI_PCS_GOT_use),
13238 LOOKUP(18, ABI_PCS_wchar_t),
13239 LOOKUP(19, ABI_FP_rounding),
13240 LOOKUP(20, ABI_FP_denormal),
13241 LOOKUP(21, ABI_FP_exceptions),
13242 LOOKUP(22, ABI_FP_user_exceptions),
13243 LOOKUP(23, ABI_FP_number_model),
13244 {24, "ABI_align_needed", 0, NULL},
13245 {25, "ABI_align_preserved", 0, NULL},
13246 LOOKUP(26, ABI_enum_size),
13247 LOOKUP(27, ABI_HardFP_use),
13248 LOOKUP(28, ABI_VFP_args),
13249 LOOKUP(29, ABI_WMMX_args),
13250 LOOKUP(30, ABI_optimization_goals),
13251 LOOKUP(31, ABI_FP_optimization_goals),
13252 {32, "compatibility", 0, NULL},
13253 LOOKUP(34, CPU_unaligned_access),
13254 LOOKUP(36, FP_HP_extension),
13255 LOOKUP(38, ABI_FP_16bit_format),
13256 LOOKUP(42, MPextension_use),
13257 LOOKUP(44, DIV_use),
13258 LOOKUP(46, DSP_extension),
13259 {64, "nodefaults", 0, NULL},
13260 {65, "also_compatible_with", 0, NULL},
13261 LOOKUP(66, T2EE_use),
13262 {67, "conformance", 1, NULL},
13263 LOOKUP(68, Virtualization_use),
13264 LOOKUP(70, MPextension_use_legacy)
13265 };
13266 #undef LOOKUP
13267
13268 static unsigned char *
13269 display_arm_attribute (unsigned char * p,
13270 const unsigned char * const end)
13271 {
13272 unsigned int tag;
13273 unsigned int len;
13274 unsigned int val;
13275 arm_attr_public_tag * attr;
13276 unsigned i;
13277 unsigned int type;
13278
13279 tag = read_uleb128 (p, &len, end);
13280 p += len;
13281 attr = NULL;
13282 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
13283 {
13284 if (arm_attr_public_tags[i].tag == tag)
13285 {
13286 attr = &arm_attr_public_tags[i];
13287 break;
13288 }
13289 }
13290
13291 if (attr)
13292 {
13293 printf (" Tag_%s: ", attr->name);
13294 switch (attr->type)
13295 {
13296 case 0:
13297 switch (tag)
13298 {
13299 case 7: /* Tag_CPU_arch_profile. */
13300 val = read_uleb128 (p, &len, end);
13301 p += len;
13302 switch (val)
13303 {
13304 case 0: printf (_("None\n")); break;
13305 case 'A': printf (_("Application\n")); break;
13306 case 'R': printf (_("Realtime\n")); break;
13307 case 'M': printf (_("Microcontroller\n")); break;
13308 case 'S': printf (_("Application or Realtime\n")); break;
13309 default: printf ("??? (%d)\n", val); break;
13310 }
13311 break;
13312
13313 case 24: /* Tag_align_needed. */
13314 val = read_uleb128 (p, &len, end);
13315 p += len;
13316 switch (val)
13317 {
13318 case 0: printf (_("None\n")); break;
13319 case 1: printf (_("8-byte\n")); break;
13320 case 2: printf (_("4-byte\n")); break;
13321 case 3: printf ("??? 3\n"); break;
13322 default:
13323 if (val <= 12)
13324 printf (_("8-byte and up to %d-byte extended\n"),
13325 1 << val);
13326 else
13327 printf ("??? (%d)\n", val);
13328 break;
13329 }
13330 break;
13331
13332 case 25: /* Tag_align_preserved. */
13333 val = read_uleb128 (p, &len, end);
13334 p += len;
13335 switch (val)
13336 {
13337 case 0: printf (_("None\n")); break;
13338 case 1: printf (_("8-byte, except leaf SP\n")); break;
13339 case 2: printf (_("8-byte\n")); break;
13340 case 3: printf ("??? 3\n"); break;
13341 default:
13342 if (val <= 12)
13343 printf (_("8-byte and up to %d-byte extended\n"),
13344 1 << val);
13345 else
13346 printf ("??? (%d)\n", val);
13347 break;
13348 }
13349 break;
13350
13351 case 32: /* Tag_compatibility. */
13352 {
13353 val = read_uleb128 (p, &len, end);
13354 p += len;
13355 printf (_("flag = %d, vendor = "), val);
13356 if (p < end - 1)
13357 {
13358 size_t maxlen = (end - p) - 1;
13359
13360 print_symbol ((int) maxlen, (const char *) p);
13361 p += strnlen ((char *) p, maxlen) + 1;
13362 }
13363 else
13364 {
13365 printf (_("<corrupt>"));
13366 p = (unsigned char *) end;
13367 }
13368 putchar ('\n');
13369 }
13370 break;
13371
13372 case 64: /* Tag_nodefaults. */
13373 /* PR 17531: file: 001-505008-0.01. */
13374 if (p < end)
13375 p++;
13376 printf (_("True\n"));
13377 break;
13378
13379 case 65: /* Tag_also_compatible_with. */
13380 val = read_uleb128 (p, &len, end);
13381 p += len;
13382 if (val == 6 /* Tag_CPU_arch. */)
13383 {
13384 val = read_uleb128 (p, &len, end);
13385 p += len;
13386 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
13387 printf ("??? (%d)\n", val);
13388 else
13389 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
13390 }
13391 else
13392 printf ("???\n");
13393 while (p < end && *(p++) != '\0' /* NUL terminator. */)
13394 ;
13395 break;
13396
13397 default:
13398 printf (_("<unknown: %d>\n"), tag);
13399 break;
13400 }
13401 return p;
13402
13403 case 1:
13404 return display_tag_value (-1, p, end);
13405 case 2:
13406 return display_tag_value (0, p, end);
13407
13408 default:
13409 assert (attr->type & 0x80);
13410 val = read_uleb128 (p, &len, end);
13411 p += len;
13412 type = attr->type & 0x7f;
13413 if (val >= type)
13414 printf ("??? (%d)\n", val);
13415 else
13416 printf ("%s\n", attr->table[val]);
13417 return p;
13418 }
13419 }
13420
13421 return display_tag_value (tag, p, end);
13422 }
13423
13424 static unsigned char *
13425 display_gnu_attribute (unsigned char * p,
13426 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const),
13427 const unsigned char * const end)
13428 {
13429 int tag;
13430 unsigned int len;
13431 int val;
13432
13433 tag = read_uleb128 (p, &len, end);
13434 p += len;
13435
13436 /* Tag_compatibility is the only generic GNU attribute defined at
13437 present. */
13438 if (tag == 32)
13439 {
13440 val = read_uleb128 (p, &len, end);
13441 p += len;
13442
13443 printf (_("flag = %d, vendor = "), val);
13444 if (p == end)
13445 {
13446 printf (_("<corrupt>\n"));
13447 warn (_("corrupt vendor attribute\n"));
13448 }
13449 else
13450 {
13451 if (p < end - 1)
13452 {
13453 size_t maxlen = (end - p) - 1;
13454
13455 print_symbol ((int) maxlen, (const char *) p);
13456 p += strnlen ((char *) p, maxlen) + 1;
13457 }
13458 else
13459 {
13460 printf (_("<corrupt>"));
13461 p = (unsigned char *) end;
13462 }
13463 putchar ('\n');
13464 }
13465 return p;
13466 }
13467
13468 if ((tag & 2) == 0 && display_proc_gnu_attribute)
13469 return display_proc_gnu_attribute (p, tag, end);
13470
13471 return display_tag_value (tag, p, end);
13472 }
13473
13474 static unsigned char *
13475 display_power_gnu_attribute (unsigned char * p,
13476 int tag,
13477 const unsigned char * const end)
13478 {
13479 unsigned int len;
13480 unsigned int val;
13481
13482 if (tag == Tag_GNU_Power_ABI_FP)
13483 {
13484 val = read_uleb128 (p, &len, end);
13485 p += len;
13486 printf (" Tag_GNU_Power_ABI_FP: ");
13487 if (len == 0)
13488 {
13489 printf (_("<corrupt>\n"));
13490 return p;
13491 }
13492
13493 if (val > 15)
13494 printf ("(%#x), ", val);
13495
13496 switch (val & 3)
13497 {
13498 case 0:
13499 printf (_("unspecified hard/soft float, "));
13500 break;
13501 case 1:
13502 printf (_("hard float, "));
13503 break;
13504 case 2:
13505 printf (_("soft float, "));
13506 break;
13507 case 3:
13508 printf (_("single-precision hard float, "));
13509 break;
13510 }
13511
13512 switch (val & 0xC)
13513 {
13514 case 0:
13515 printf (_("unspecified long double\n"));
13516 break;
13517 case 4:
13518 printf (_("128-bit IBM long double\n"));
13519 break;
13520 case 8:
13521 printf (_("64-bit long double\n"));
13522 break;
13523 case 12:
13524 printf (_("128-bit IEEE long double\n"));
13525 break;
13526 }
13527 return p;
13528 }
13529
13530 if (tag == Tag_GNU_Power_ABI_Vector)
13531 {
13532 val = read_uleb128 (p, &len, end);
13533 p += len;
13534 printf (" Tag_GNU_Power_ABI_Vector: ");
13535 if (len == 0)
13536 {
13537 printf (_("<corrupt>\n"));
13538 return p;
13539 }
13540
13541 if (val > 3)
13542 printf ("(%#x), ", val);
13543
13544 switch (val & 3)
13545 {
13546 case 0:
13547 printf (_("unspecified\n"));
13548 break;
13549 case 1:
13550 printf (_("generic\n"));
13551 break;
13552 case 2:
13553 printf ("AltiVec\n");
13554 break;
13555 case 3:
13556 printf ("SPE\n");
13557 break;
13558 }
13559 return p;
13560 }
13561
13562 if (tag == Tag_GNU_Power_ABI_Struct_Return)
13563 {
13564 val = read_uleb128 (p, &len, end);
13565 p += len;
13566 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
13567 if (len == 0)
13568 {
13569 printf (_("<corrupt>\n"));
13570 return p;
13571 }
13572
13573 if (val > 2)
13574 printf ("(%#x), ", val);
13575
13576 switch (val & 3)
13577 {
13578 case 0:
13579 printf (_("unspecified\n"));
13580 break;
13581 case 1:
13582 printf ("r3/r4\n");
13583 break;
13584 case 2:
13585 printf (_("memory\n"));
13586 break;
13587 case 3:
13588 printf ("???\n");
13589 break;
13590 }
13591 return p;
13592 }
13593
13594 return display_tag_value (tag & 1, p, end);
13595 }
13596
13597 static unsigned char *
13598 display_s390_gnu_attribute (unsigned char * p,
13599 int tag,
13600 const unsigned char * const end)
13601 {
13602 unsigned int len;
13603 int val;
13604
13605 if (tag == Tag_GNU_S390_ABI_Vector)
13606 {
13607 val = read_uleb128 (p, &len, end);
13608 p += len;
13609 printf (" Tag_GNU_S390_ABI_Vector: ");
13610
13611 switch (val)
13612 {
13613 case 0:
13614 printf (_("any\n"));
13615 break;
13616 case 1:
13617 printf (_("software\n"));
13618 break;
13619 case 2:
13620 printf (_("hardware\n"));
13621 break;
13622 default:
13623 printf ("??? (%d)\n", val);
13624 break;
13625 }
13626 return p;
13627 }
13628
13629 return display_tag_value (tag & 1, p, end);
13630 }
13631
13632 static void
13633 display_sparc_hwcaps (int mask)
13634 {
13635 if (mask)
13636 {
13637 int first = 1;
13638
13639 if (mask & ELF_SPARC_HWCAP_MUL32)
13640 fputs ("mul32", stdout), first = 0;
13641 if (mask & ELF_SPARC_HWCAP_DIV32)
13642 printf ("%sdiv32", first ? "" : "|"), first = 0;
13643 if (mask & ELF_SPARC_HWCAP_FSMULD)
13644 printf ("%sfsmuld", first ? "" : "|"), first = 0;
13645 if (mask & ELF_SPARC_HWCAP_V8PLUS)
13646 printf ("%sv8plus", first ? "" : "|"), first = 0;
13647 if (mask & ELF_SPARC_HWCAP_POPC)
13648 printf ("%spopc", first ? "" : "|"), first = 0;
13649 if (mask & ELF_SPARC_HWCAP_VIS)
13650 printf ("%svis", first ? "" : "|"), first = 0;
13651 if (mask & ELF_SPARC_HWCAP_VIS2)
13652 printf ("%svis2", first ? "" : "|"), first = 0;
13653 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
13654 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
13655 if (mask & ELF_SPARC_HWCAP_FMAF)
13656 printf ("%sfmaf", first ? "" : "|"), first = 0;
13657 if (mask & ELF_SPARC_HWCAP_VIS3)
13658 printf ("%svis3", first ? "" : "|"), first = 0;
13659 if (mask & ELF_SPARC_HWCAP_HPC)
13660 printf ("%shpc", first ? "" : "|"), first = 0;
13661 if (mask & ELF_SPARC_HWCAP_RANDOM)
13662 printf ("%srandom", first ? "" : "|"), first = 0;
13663 if (mask & ELF_SPARC_HWCAP_TRANS)
13664 printf ("%strans", first ? "" : "|"), first = 0;
13665 if (mask & ELF_SPARC_HWCAP_FJFMAU)
13666 printf ("%sfjfmau", first ? "" : "|"), first = 0;
13667 if (mask & ELF_SPARC_HWCAP_IMA)
13668 printf ("%sima", first ? "" : "|"), first = 0;
13669 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
13670 printf ("%scspare", first ? "" : "|"), first = 0;
13671 }
13672 else
13673 fputc ('0', stdout);
13674 fputc ('\n', stdout);
13675 }
13676
13677 static void
13678 display_sparc_hwcaps2 (int mask)
13679 {
13680 if (mask)
13681 {
13682 int first = 1;
13683
13684 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
13685 fputs ("fjathplus", stdout), first = 0;
13686 if (mask & ELF_SPARC_HWCAP2_VIS3B)
13687 printf ("%svis3b", first ? "" : "|"), first = 0;
13688 if (mask & ELF_SPARC_HWCAP2_ADP)
13689 printf ("%sadp", first ? "" : "|"), first = 0;
13690 if (mask & ELF_SPARC_HWCAP2_SPARC5)
13691 printf ("%ssparc5", first ? "" : "|"), first = 0;
13692 if (mask & ELF_SPARC_HWCAP2_MWAIT)
13693 printf ("%smwait", first ? "" : "|"), first = 0;
13694 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
13695 printf ("%sxmpmul", first ? "" : "|"), first = 0;
13696 if (mask & ELF_SPARC_HWCAP2_XMONT)
13697 printf ("%sxmont2", first ? "" : "|"), first = 0;
13698 if (mask & ELF_SPARC_HWCAP2_NSEC)
13699 printf ("%snsec", first ? "" : "|"), first = 0;
13700 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
13701 printf ("%sfjathhpc", first ? "" : "|"), first = 0;
13702 if (mask & ELF_SPARC_HWCAP2_FJDES)
13703 printf ("%sfjdes", first ? "" : "|"), first = 0;
13704 if (mask & ELF_SPARC_HWCAP2_FJAES)
13705 printf ("%sfjaes", first ? "" : "|"), first = 0;
13706 }
13707 else
13708 fputc ('0', stdout);
13709 fputc ('\n', stdout);
13710 }
13711
13712 static unsigned char *
13713 display_sparc_gnu_attribute (unsigned char * p,
13714 int tag,
13715 const unsigned char * const end)
13716 {
13717 unsigned int len;
13718 int val;
13719
13720 if (tag == Tag_GNU_Sparc_HWCAPS)
13721 {
13722 val = read_uleb128 (p, &len, end);
13723 p += len;
13724 printf (" Tag_GNU_Sparc_HWCAPS: ");
13725 display_sparc_hwcaps (val);
13726 return p;
13727 }
13728 if (tag == Tag_GNU_Sparc_HWCAPS2)
13729 {
13730 val = read_uleb128 (p, &len, end);
13731 p += len;
13732 printf (" Tag_GNU_Sparc_HWCAPS2: ");
13733 display_sparc_hwcaps2 (val);
13734 return p;
13735 }
13736
13737 return display_tag_value (tag, p, end);
13738 }
13739
13740 static void
13741 print_mips_fp_abi_value (int val)
13742 {
13743 switch (val)
13744 {
13745 case Val_GNU_MIPS_ABI_FP_ANY:
13746 printf (_("Hard or soft float\n"));
13747 break;
13748 case Val_GNU_MIPS_ABI_FP_DOUBLE:
13749 printf (_("Hard float (double precision)\n"));
13750 break;
13751 case Val_GNU_MIPS_ABI_FP_SINGLE:
13752 printf (_("Hard float (single precision)\n"));
13753 break;
13754 case Val_GNU_MIPS_ABI_FP_SOFT:
13755 printf (_("Soft float\n"));
13756 break;
13757 case Val_GNU_MIPS_ABI_FP_OLD_64:
13758 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
13759 break;
13760 case Val_GNU_MIPS_ABI_FP_XX:
13761 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
13762 break;
13763 case Val_GNU_MIPS_ABI_FP_64:
13764 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
13765 break;
13766 case Val_GNU_MIPS_ABI_FP_64A:
13767 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
13768 break;
13769 case Val_GNU_MIPS_ABI_FP_NAN2008:
13770 printf (_("NaN 2008 compatibility\n"));
13771 break;
13772 default:
13773 printf ("??? (%d)\n", val);
13774 break;
13775 }
13776 }
13777
13778 static unsigned char *
13779 display_mips_gnu_attribute (unsigned char * p,
13780 int tag,
13781 const unsigned char * const end)
13782 {
13783 if (tag == Tag_GNU_MIPS_ABI_FP)
13784 {
13785 unsigned int len;
13786 int val;
13787
13788 val = read_uleb128 (p, &len, end);
13789 p += len;
13790 printf (" Tag_GNU_MIPS_ABI_FP: ");
13791
13792 print_mips_fp_abi_value (val);
13793
13794 return p;
13795 }
13796
13797 if (tag == Tag_GNU_MIPS_ABI_MSA)
13798 {
13799 unsigned int len;
13800 int val;
13801
13802 val = read_uleb128 (p, &len, end);
13803 p += len;
13804 printf (" Tag_GNU_MIPS_ABI_MSA: ");
13805
13806 switch (val)
13807 {
13808 case Val_GNU_MIPS_ABI_MSA_ANY:
13809 printf (_("Any MSA or not\n"));
13810 break;
13811 case Val_GNU_MIPS_ABI_MSA_128:
13812 printf (_("128-bit MSA\n"));
13813 break;
13814 default:
13815 printf ("??? (%d)\n", val);
13816 break;
13817 }
13818 return p;
13819 }
13820
13821 return display_tag_value (tag & 1, p, end);
13822 }
13823
13824 static unsigned char *
13825 display_tic6x_attribute (unsigned char * p,
13826 const unsigned char * const end)
13827 {
13828 int tag;
13829 unsigned int len;
13830 int val;
13831
13832 tag = read_uleb128 (p, &len, end);
13833 p += len;
13834
13835 switch (tag)
13836 {
13837 case Tag_ISA:
13838 val = read_uleb128 (p, &len, end);
13839 p += len;
13840 printf (" Tag_ISA: ");
13841
13842 switch (val)
13843 {
13844 case C6XABI_Tag_ISA_none:
13845 printf (_("None\n"));
13846 break;
13847 case C6XABI_Tag_ISA_C62X:
13848 printf ("C62x\n");
13849 break;
13850 case C6XABI_Tag_ISA_C67X:
13851 printf ("C67x\n");
13852 break;
13853 case C6XABI_Tag_ISA_C67XP:
13854 printf ("C67x+\n");
13855 break;
13856 case C6XABI_Tag_ISA_C64X:
13857 printf ("C64x\n");
13858 break;
13859 case C6XABI_Tag_ISA_C64XP:
13860 printf ("C64x+\n");
13861 break;
13862 case C6XABI_Tag_ISA_C674X:
13863 printf ("C674x\n");
13864 break;
13865 default:
13866 printf ("??? (%d)\n", val);
13867 break;
13868 }
13869 return p;
13870
13871 case Tag_ABI_wchar_t:
13872 val = read_uleb128 (p, &len, end);
13873 p += len;
13874 printf (" Tag_ABI_wchar_t: ");
13875 switch (val)
13876 {
13877 case 0:
13878 printf (_("Not used\n"));
13879 break;
13880 case 1:
13881 printf (_("2 bytes\n"));
13882 break;
13883 case 2:
13884 printf (_("4 bytes\n"));
13885 break;
13886 default:
13887 printf ("??? (%d)\n", val);
13888 break;
13889 }
13890 return p;
13891
13892 case Tag_ABI_stack_align_needed:
13893 val = read_uleb128 (p, &len, end);
13894 p += len;
13895 printf (" Tag_ABI_stack_align_needed: ");
13896 switch (val)
13897 {
13898 case 0:
13899 printf (_("8-byte\n"));
13900 break;
13901 case 1:
13902 printf (_("16-byte\n"));
13903 break;
13904 default:
13905 printf ("??? (%d)\n", val);
13906 break;
13907 }
13908 return p;
13909
13910 case Tag_ABI_stack_align_preserved:
13911 val = read_uleb128 (p, &len, end);
13912 p += len;
13913 printf (" Tag_ABI_stack_align_preserved: ");
13914 switch (val)
13915 {
13916 case 0:
13917 printf (_("8-byte\n"));
13918 break;
13919 case 1:
13920 printf (_("16-byte\n"));
13921 break;
13922 default:
13923 printf ("??? (%d)\n", val);
13924 break;
13925 }
13926 return p;
13927
13928 case Tag_ABI_DSBT:
13929 val = read_uleb128 (p, &len, end);
13930 p += len;
13931 printf (" Tag_ABI_DSBT: ");
13932 switch (val)
13933 {
13934 case 0:
13935 printf (_("DSBT addressing not used\n"));
13936 break;
13937 case 1:
13938 printf (_("DSBT addressing used\n"));
13939 break;
13940 default:
13941 printf ("??? (%d)\n", val);
13942 break;
13943 }
13944 return p;
13945
13946 case Tag_ABI_PID:
13947 val = read_uleb128 (p, &len, end);
13948 p += len;
13949 printf (" Tag_ABI_PID: ");
13950 switch (val)
13951 {
13952 case 0:
13953 printf (_("Data addressing position-dependent\n"));
13954 break;
13955 case 1:
13956 printf (_("Data addressing position-independent, GOT near DP\n"));
13957 break;
13958 case 2:
13959 printf (_("Data addressing position-independent, GOT far from DP\n"));
13960 break;
13961 default:
13962 printf ("??? (%d)\n", val);
13963 break;
13964 }
13965 return p;
13966
13967 case Tag_ABI_PIC:
13968 val = read_uleb128 (p, &len, end);
13969 p += len;
13970 printf (" Tag_ABI_PIC: ");
13971 switch (val)
13972 {
13973 case 0:
13974 printf (_("Code addressing position-dependent\n"));
13975 break;
13976 case 1:
13977 printf (_("Code addressing position-independent\n"));
13978 break;
13979 default:
13980 printf ("??? (%d)\n", val);
13981 break;
13982 }
13983 return p;
13984
13985 case Tag_ABI_array_object_alignment:
13986 val = read_uleb128 (p, &len, end);
13987 p += len;
13988 printf (" Tag_ABI_array_object_alignment: ");
13989 switch (val)
13990 {
13991 case 0:
13992 printf (_("8-byte\n"));
13993 break;
13994 case 1:
13995 printf (_("4-byte\n"));
13996 break;
13997 case 2:
13998 printf (_("16-byte\n"));
13999 break;
14000 default:
14001 printf ("??? (%d)\n", val);
14002 break;
14003 }
14004 return p;
14005
14006 case Tag_ABI_array_object_align_expected:
14007 val = read_uleb128 (p, &len, end);
14008 p += len;
14009 printf (" Tag_ABI_array_object_align_expected: ");
14010 switch (val)
14011 {
14012 case 0:
14013 printf (_("8-byte\n"));
14014 break;
14015 case 1:
14016 printf (_("4-byte\n"));
14017 break;
14018 case 2:
14019 printf (_("16-byte\n"));
14020 break;
14021 default:
14022 printf ("??? (%d)\n", val);
14023 break;
14024 }
14025 return p;
14026
14027 case Tag_ABI_compatibility:
14028 {
14029 val = read_uleb128 (p, &len, end);
14030 p += len;
14031 printf (" Tag_ABI_compatibility: ");
14032 printf (_("flag = %d, vendor = "), val);
14033 if (p < end - 1)
14034 {
14035 size_t maxlen = (end - p) - 1;
14036
14037 print_symbol ((int) maxlen, (const char *) p);
14038 p += strnlen ((char *) p, maxlen) + 1;
14039 }
14040 else
14041 {
14042 printf (_("<corrupt>"));
14043 p = (unsigned char *) end;
14044 }
14045 putchar ('\n');
14046 return p;
14047 }
14048
14049 case Tag_ABI_conformance:
14050 {
14051 printf (" Tag_ABI_conformance: \"");
14052 if (p < end - 1)
14053 {
14054 size_t maxlen = (end - p) - 1;
14055
14056 print_symbol ((int) maxlen, (const char *) p);
14057 p += strnlen ((char *) p, maxlen) + 1;
14058 }
14059 else
14060 {
14061 printf (_("<corrupt>"));
14062 p = (unsigned char *) end;
14063 }
14064 printf ("\"\n");
14065 return p;
14066 }
14067 }
14068
14069 return display_tag_value (tag, p, end);
14070 }
14071
14072 static void
14073 display_raw_attribute (unsigned char * p, unsigned char * end)
14074 {
14075 unsigned long addr = 0;
14076 size_t bytes = end - p;
14077
14078 assert (end > p);
14079 while (bytes)
14080 {
14081 int j;
14082 int k;
14083 int lbytes = (bytes > 16 ? 16 : bytes);
14084
14085 printf (" 0x%8.8lx ", addr);
14086
14087 for (j = 0; j < 16; j++)
14088 {
14089 if (j < lbytes)
14090 printf ("%2.2x", p[j]);
14091 else
14092 printf (" ");
14093
14094 if ((j & 3) == 3)
14095 printf (" ");
14096 }
14097
14098 for (j = 0; j < lbytes; j++)
14099 {
14100 k = p[j];
14101 if (k >= ' ' && k < 0x7f)
14102 printf ("%c", k);
14103 else
14104 printf (".");
14105 }
14106
14107 putchar ('\n');
14108
14109 p += lbytes;
14110 bytes -= lbytes;
14111 addr += lbytes;
14112 }
14113
14114 putchar ('\n');
14115 }
14116
14117 static unsigned char *
14118 display_msp430x_attribute (unsigned char * p,
14119 const unsigned char * const end)
14120 {
14121 unsigned int len;
14122 int val;
14123 int tag;
14124
14125 tag = read_uleb128 (p, & len, end);
14126 p += len;
14127
14128 switch (tag)
14129 {
14130 case OFBA_MSPABI_Tag_ISA:
14131 val = read_uleb128 (p, &len, end);
14132 p += len;
14133 printf (" Tag_ISA: ");
14134 switch (val)
14135 {
14136 case 0: printf (_("None\n")); break;
14137 case 1: printf (_("MSP430\n")); break;
14138 case 2: printf (_("MSP430X\n")); break;
14139 default: printf ("??? (%d)\n", val); break;
14140 }
14141 break;
14142
14143 case OFBA_MSPABI_Tag_Code_Model:
14144 val = read_uleb128 (p, &len, end);
14145 p += len;
14146 printf (" Tag_Code_Model: ");
14147 switch (val)
14148 {
14149 case 0: printf (_("None\n")); break;
14150 case 1: printf (_("Small\n")); break;
14151 case 2: printf (_("Large\n")); break;
14152 default: printf ("??? (%d)\n", val); break;
14153 }
14154 break;
14155
14156 case OFBA_MSPABI_Tag_Data_Model:
14157 val = read_uleb128 (p, &len, end);
14158 p += len;
14159 printf (" Tag_Data_Model: ");
14160 switch (val)
14161 {
14162 case 0: printf (_("None\n")); break;
14163 case 1: printf (_("Small\n")); break;
14164 case 2: printf (_("Large\n")); break;
14165 case 3: printf (_("Restricted Large\n")); break;
14166 default: printf ("??? (%d)\n", val); break;
14167 }
14168 break;
14169
14170 default:
14171 printf (_(" <unknown tag %d>: "), tag);
14172
14173 if (tag & 1)
14174 {
14175 putchar ('"');
14176 if (p < end - 1)
14177 {
14178 size_t maxlen = (end - p) - 1;
14179
14180 print_symbol ((int) maxlen, (const char *) p);
14181 p += strnlen ((char *) p, maxlen) + 1;
14182 }
14183 else
14184 {
14185 printf (_("<corrupt>"));
14186 p = (unsigned char *) end;
14187 }
14188 printf ("\"\n");
14189 }
14190 else
14191 {
14192 val = read_uleb128 (p, &len, end);
14193 p += len;
14194 printf ("%d (0x%x)\n", val, val);
14195 }
14196 break;
14197 }
14198
14199 assert (p <= end);
14200 return p;
14201 }
14202
14203 static int
14204 process_attributes (FILE * file,
14205 const char * public_name,
14206 unsigned int proc_type,
14207 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
14208 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const))
14209 {
14210 Elf_Internal_Shdr * sect;
14211 unsigned i;
14212
14213 /* Find the section header so that we get the size. */
14214 for (i = 0, sect = section_headers;
14215 i < elf_header.e_shnum;
14216 i++, sect++)
14217 {
14218 unsigned char * contents;
14219 unsigned char * p;
14220
14221 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
14222 continue;
14223
14224 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
14225 sect->sh_size, _("attributes"));
14226 if (contents == NULL)
14227 continue;
14228
14229 p = contents;
14230 if (*p == 'A')
14231 {
14232 bfd_vma section_len;
14233
14234 section_len = sect->sh_size - 1;
14235 p++;
14236
14237 while (section_len > 0)
14238 {
14239 bfd_vma attr_len;
14240 unsigned int namelen;
14241 bfd_boolean public_section;
14242 bfd_boolean gnu_section;
14243
14244 if (section_len <= 4)
14245 {
14246 error (_("Tag section ends prematurely\n"));
14247 break;
14248 }
14249 attr_len = byte_get (p, 4);
14250 p += 4;
14251
14252 if (attr_len > section_len)
14253 {
14254 error (_("Bad attribute length (%u > %u)\n"),
14255 (unsigned) attr_len, (unsigned) section_len);
14256 attr_len = section_len;
14257 }
14258 /* PR 17531: file: 001-101425-0.004 */
14259 else if (attr_len < 5)
14260 {
14261 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
14262 break;
14263 }
14264
14265 section_len -= attr_len;
14266 attr_len -= 4;
14267
14268 namelen = strnlen ((char *) p, attr_len) + 1;
14269 if (namelen == 0 || namelen >= attr_len)
14270 {
14271 error (_("Corrupt attribute section name\n"));
14272 break;
14273 }
14274
14275 printf (_("Attribute Section: "));
14276 print_symbol (INT_MAX, (const char *) p);
14277 putchar ('\n');
14278
14279 if (public_name && streq ((char *) p, public_name))
14280 public_section = TRUE;
14281 else
14282 public_section = FALSE;
14283
14284 if (streq ((char *) p, "gnu"))
14285 gnu_section = TRUE;
14286 else
14287 gnu_section = FALSE;
14288
14289 p += namelen;
14290 attr_len -= namelen;
14291
14292 while (attr_len > 0 && p < contents + sect->sh_size)
14293 {
14294 int tag;
14295 int val;
14296 bfd_vma size;
14297 unsigned char * end;
14298
14299 /* PR binutils/17531: Safe handling of corrupt files. */
14300 if (attr_len < 6)
14301 {
14302 error (_("Unused bytes at end of section\n"));
14303 section_len = 0;
14304 break;
14305 }
14306
14307 tag = *(p++);
14308 size = byte_get (p, 4);
14309 if (size > attr_len)
14310 {
14311 error (_("Bad subsection length (%u > %u)\n"),
14312 (unsigned) size, (unsigned) attr_len);
14313 size = attr_len;
14314 }
14315 /* PR binutils/17531: Safe handling of corrupt files. */
14316 if (size < 6)
14317 {
14318 error (_("Bad subsection length (%u < 6)\n"),
14319 (unsigned) size);
14320 section_len = 0;
14321 break;
14322 }
14323
14324 attr_len -= size;
14325 end = p + size - 1;
14326 assert (end <= contents + sect->sh_size);
14327 p += 4;
14328
14329 switch (tag)
14330 {
14331 case 1:
14332 printf (_("File Attributes\n"));
14333 break;
14334 case 2:
14335 printf (_("Section Attributes:"));
14336 goto do_numlist;
14337 case 3:
14338 printf (_("Symbol Attributes:"));
14339 /* Fall through. */
14340 do_numlist:
14341 for (;;)
14342 {
14343 unsigned int j;
14344
14345 val = read_uleb128 (p, &j, end);
14346 p += j;
14347 if (val == 0)
14348 break;
14349 printf (" %d", val);
14350 }
14351 printf ("\n");
14352 break;
14353 default:
14354 printf (_("Unknown tag: %d\n"), tag);
14355 public_section = FALSE;
14356 break;
14357 }
14358
14359 if (public_section && display_pub_attribute != NULL)
14360 {
14361 while (p < end)
14362 p = display_pub_attribute (p, end);
14363 assert (p <= end);
14364 }
14365 else if (gnu_section && display_proc_gnu_attribute != NULL)
14366 {
14367 while (p < end)
14368 p = display_gnu_attribute (p,
14369 display_proc_gnu_attribute,
14370 end);
14371 assert (p <= end);
14372 }
14373 else if (p < end)
14374 {
14375 printf (_(" Unknown attribute:\n"));
14376 display_raw_attribute (p, end);
14377 p = end;
14378 }
14379 else
14380 attr_len = 0;
14381 }
14382 }
14383 }
14384 else
14385 printf (_("Unknown format '%c' (%d)\n"), *p, *p);
14386
14387 free (contents);
14388 }
14389 return 1;
14390 }
14391
14392 static int
14393 process_arm_specific (FILE * file)
14394 {
14395 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
14396 display_arm_attribute, NULL);
14397 }
14398
14399 static int
14400 process_power_specific (FILE * file)
14401 {
14402 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14403 display_power_gnu_attribute);
14404 }
14405
14406 static int
14407 process_s390_specific (FILE * file)
14408 {
14409 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14410 display_s390_gnu_attribute);
14411 }
14412
14413 static int
14414 process_sparc_specific (FILE * file)
14415 {
14416 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14417 display_sparc_gnu_attribute);
14418 }
14419
14420 static int
14421 process_tic6x_specific (FILE * file)
14422 {
14423 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
14424 display_tic6x_attribute, NULL);
14425 }
14426
14427 static int
14428 process_msp430x_specific (FILE * file)
14429 {
14430 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
14431 display_msp430x_attribute, NULL);
14432 }
14433
14434 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
14435 Print the Address, Access and Initial fields of an entry at VMA ADDR
14436 and return the VMA of the next entry, or -1 if there was a problem.
14437 Does not read from DATA_END or beyond. */
14438
14439 static bfd_vma
14440 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
14441 unsigned char * data_end)
14442 {
14443 printf (" ");
14444 print_vma (addr, LONG_HEX);
14445 printf (" ");
14446 if (addr < pltgot + 0xfff0)
14447 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
14448 else
14449 printf ("%10s", "");
14450 printf (" ");
14451 if (data == NULL)
14452 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14453 else
14454 {
14455 bfd_vma entry;
14456 unsigned char * from = data + addr - pltgot;
14457
14458 if (from + (is_32bit_elf ? 4 : 8) > data_end)
14459 {
14460 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
14461 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
14462 return (bfd_vma) -1;
14463 }
14464 else
14465 {
14466 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14467 print_vma (entry, LONG_HEX);
14468 }
14469 }
14470 return addr + (is_32bit_elf ? 4 : 8);
14471 }
14472
14473 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
14474 PLTGOT. Print the Address and Initial fields of an entry at VMA
14475 ADDR and return the VMA of the next entry. */
14476
14477 static bfd_vma
14478 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
14479 {
14480 printf (" ");
14481 print_vma (addr, LONG_HEX);
14482 printf (" ");
14483 if (data == NULL)
14484 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14485 else
14486 {
14487 bfd_vma entry;
14488
14489 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14490 print_vma (entry, LONG_HEX);
14491 }
14492 return addr + (is_32bit_elf ? 4 : 8);
14493 }
14494
14495 static void
14496 print_mips_ases (unsigned int mask)
14497 {
14498 if (mask & AFL_ASE_DSP)
14499 fputs ("\n\tDSP ASE", stdout);
14500 if (mask & AFL_ASE_DSPR2)
14501 fputs ("\n\tDSP R2 ASE", stdout);
14502 if (mask & AFL_ASE_DSPR3)
14503 fputs ("\n\tDSP R3 ASE", stdout);
14504 if (mask & AFL_ASE_EVA)
14505 fputs ("\n\tEnhanced VA Scheme", stdout);
14506 if (mask & AFL_ASE_MCU)
14507 fputs ("\n\tMCU (MicroController) ASE", stdout);
14508 if (mask & AFL_ASE_MDMX)
14509 fputs ("\n\tMDMX ASE", stdout);
14510 if (mask & AFL_ASE_MIPS3D)
14511 fputs ("\n\tMIPS-3D ASE", stdout);
14512 if (mask & AFL_ASE_MT)
14513 fputs ("\n\tMT ASE", stdout);
14514 if (mask & AFL_ASE_SMARTMIPS)
14515 fputs ("\n\tSmartMIPS ASE", stdout);
14516 if (mask & AFL_ASE_VIRT)
14517 fputs ("\n\tVZ ASE", stdout);
14518 if (mask & AFL_ASE_MSA)
14519 fputs ("\n\tMSA ASE", stdout);
14520 if (mask & AFL_ASE_MIPS16)
14521 fputs ("\n\tMIPS16 ASE", stdout);
14522 if (mask & AFL_ASE_MICROMIPS)
14523 fputs ("\n\tMICROMIPS ASE", stdout);
14524 if (mask & AFL_ASE_XPA)
14525 fputs ("\n\tXPA ASE", stdout);
14526 if (mask == 0)
14527 fprintf (stdout, "\n\t%s", _("None"));
14528 else if ((mask & ~AFL_ASE_MASK) != 0)
14529 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
14530 }
14531
14532 static void
14533 print_mips_isa_ext (unsigned int isa_ext)
14534 {
14535 switch (isa_ext)
14536 {
14537 case 0:
14538 fputs (_("None"), stdout);
14539 break;
14540 case AFL_EXT_XLR:
14541 fputs ("RMI XLR", stdout);
14542 break;
14543 case AFL_EXT_OCTEON3:
14544 fputs ("Cavium Networks Octeon3", stdout);
14545 break;
14546 case AFL_EXT_OCTEON2:
14547 fputs ("Cavium Networks Octeon2", stdout);
14548 break;
14549 case AFL_EXT_OCTEONP:
14550 fputs ("Cavium Networks OcteonP", stdout);
14551 break;
14552 case AFL_EXT_LOONGSON_3A:
14553 fputs ("Loongson 3A", stdout);
14554 break;
14555 case AFL_EXT_OCTEON:
14556 fputs ("Cavium Networks Octeon", stdout);
14557 break;
14558 case AFL_EXT_5900:
14559 fputs ("Toshiba R5900", stdout);
14560 break;
14561 case AFL_EXT_4650:
14562 fputs ("MIPS R4650", stdout);
14563 break;
14564 case AFL_EXT_4010:
14565 fputs ("LSI R4010", stdout);
14566 break;
14567 case AFL_EXT_4100:
14568 fputs ("NEC VR4100", stdout);
14569 break;
14570 case AFL_EXT_3900:
14571 fputs ("Toshiba R3900", stdout);
14572 break;
14573 case AFL_EXT_10000:
14574 fputs ("MIPS R10000", stdout);
14575 break;
14576 case AFL_EXT_SB1:
14577 fputs ("Broadcom SB-1", stdout);
14578 break;
14579 case AFL_EXT_4111:
14580 fputs ("NEC VR4111/VR4181", stdout);
14581 break;
14582 case AFL_EXT_4120:
14583 fputs ("NEC VR4120", stdout);
14584 break;
14585 case AFL_EXT_5400:
14586 fputs ("NEC VR5400", stdout);
14587 break;
14588 case AFL_EXT_5500:
14589 fputs ("NEC VR5500", stdout);
14590 break;
14591 case AFL_EXT_LOONGSON_2E:
14592 fputs ("ST Microelectronics Loongson 2E", stdout);
14593 break;
14594 case AFL_EXT_LOONGSON_2F:
14595 fputs ("ST Microelectronics Loongson 2F", stdout);
14596 break;
14597 default:
14598 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
14599 }
14600 }
14601
14602 static int
14603 get_mips_reg_size (int reg_size)
14604 {
14605 return (reg_size == AFL_REG_NONE) ? 0
14606 : (reg_size == AFL_REG_32) ? 32
14607 : (reg_size == AFL_REG_64) ? 64
14608 : (reg_size == AFL_REG_128) ? 128
14609 : -1;
14610 }
14611
14612 static int
14613 process_mips_specific (FILE * file)
14614 {
14615 Elf_Internal_Dyn * entry;
14616 Elf_Internal_Shdr *sect = NULL;
14617 size_t liblist_offset = 0;
14618 size_t liblistno = 0;
14619 size_t conflictsno = 0;
14620 size_t options_offset = 0;
14621 size_t conflicts_offset = 0;
14622 size_t pltrelsz = 0;
14623 size_t pltrel = 0;
14624 bfd_vma pltgot = 0;
14625 bfd_vma mips_pltgot = 0;
14626 bfd_vma jmprel = 0;
14627 bfd_vma local_gotno = 0;
14628 bfd_vma gotsym = 0;
14629 bfd_vma symtabno = 0;
14630
14631 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14632 display_mips_gnu_attribute);
14633
14634 sect = find_section (".MIPS.abiflags");
14635
14636 if (sect != NULL)
14637 {
14638 Elf_External_ABIFlags_v0 *abiflags_ext;
14639 Elf_Internal_ABIFlags_v0 abiflags_in;
14640
14641 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
14642 fputs ("\nCorrupt ABI Flags section.\n", stdout);
14643 else
14644 {
14645 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
14646 sect->sh_size, _("MIPS ABI Flags section"));
14647 if (abiflags_ext)
14648 {
14649 abiflags_in.version = BYTE_GET (abiflags_ext->version);
14650 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
14651 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
14652 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
14653 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
14654 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
14655 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
14656 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
14657 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
14658 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
14659 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
14660
14661 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
14662 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
14663 if (abiflags_in.isa_rev > 1)
14664 printf ("r%d", abiflags_in.isa_rev);
14665 printf ("\nGPR size: %d",
14666 get_mips_reg_size (abiflags_in.gpr_size));
14667 printf ("\nCPR1 size: %d",
14668 get_mips_reg_size (abiflags_in.cpr1_size));
14669 printf ("\nCPR2 size: %d",
14670 get_mips_reg_size (abiflags_in.cpr2_size));
14671 fputs ("\nFP ABI: ", stdout);
14672 print_mips_fp_abi_value (abiflags_in.fp_abi);
14673 fputs ("ISA Extension: ", stdout);
14674 print_mips_isa_ext (abiflags_in.isa_ext);
14675 fputs ("\nASEs:", stdout);
14676 print_mips_ases (abiflags_in.ases);
14677 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
14678 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
14679 fputc ('\n', stdout);
14680 free (abiflags_ext);
14681 }
14682 }
14683 }
14684
14685 /* We have a lot of special sections. Thanks SGI! */
14686 if (dynamic_section == NULL)
14687 /* No information available. */
14688 return 0;
14689
14690 for (entry = dynamic_section;
14691 /* PR 17531 file: 012-50589-0.004. */
14692 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
14693 ++entry)
14694 switch (entry->d_tag)
14695 {
14696 case DT_MIPS_LIBLIST:
14697 liblist_offset
14698 = offset_from_vma (file, entry->d_un.d_val,
14699 liblistno * sizeof (Elf32_External_Lib));
14700 break;
14701 case DT_MIPS_LIBLISTNO:
14702 liblistno = entry->d_un.d_val;
14703 break;
14704 case DT_MIPS_OPTIONS:
14705 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
14706 break;
14707 case DT_MIPS_CONFLICT:
14708 conflicts_offset
14709 = offset_from_vma (file, entry->d_un.d_val,
14710 conflictsno * sizeof (Elf32_External_Conflict));
14711 break;
14712 case DT_MIPS_CONFLICTNO:
14713 conflictsno = entry->d_un.d_val;
14714 break;
14715 case DT_PLTGOT:
14716 pltgot = entry->d_un.d_ptr;
14717 break;
14718 case DT_MIPS_LOCAL_GOTNO:
14719 local_gotno = entry->d_un.d_val;
14720 break;
14721 case DT_MIPS_GOTSYM:
14722 gotsym = entry->d_un.d_val;
14723 break;
14724 case DT_MIPS_SYMTABNO:
14725 symtabno = entry->d_un.d_val;
14726 break;
14727 case DT_MIPS_PLTGOT:
14728 mips_pltgot = entry->d_un.d_ptr;
14729 break;
14730 case DT_PLTREL:
14731 pltrel = entry->d_un.d_val;
14732 break;
14733 case DT_PLTRELSZ:
14734 pltrelsz = entry->d_un.d_val;
14735 break;
14736 case DT_JMPREL:
14737 jmprel = entry->d_un.d_ptr;
14738 break;
14739 default:
14740 break;
14741 }
14742
14743 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
14744 {
14745 Elf32_External_Lib * elib;
14746 size_t cnt;
14747
14748 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
14749 liblistno,
14750 sizeof (Elf32_External_Lib),
14751 _("liblist section data"));
14752 if (elib)
14753 {
14754 printf (_("\nSection '.liblist' contains %lu entries:\n"),
14755 (unsigned long) liblistno);
14756 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
14757 stdout);
14758
14759 for (cnt = 0; cnt < liblistno; ++cnt)
14760 {
14761 Elf32_Lib liblist;
14762 time_t atime;
14763 char timebuf[128];
14764 struct tm * tmp;
14765
14766 liblist.l_name = BYTE_GET (elib[cnt].l_name);
14767 atime = BYTE_GET (elib[cnt].l_time_stamp);
14768 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
14769 liblist.l_version = BYTE_GET (elib[cnt].l_version);
14770 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
14771
14772 tmp = gmtime (&atime);
14773 snprintf (timebuf, sizeof (timebuf),
14774 "%04u-%02u-%02uT%02u:%02u:%02u",
14775 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
14776 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
14777
14778 printf ("%3lu: ", (unsigned long) cnt);
14779 if (VALID_DYNAMIC_NAME (liblist.l_name))
14780 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
14781 else
14782 printf (_("<corrupt: %9ld>"), liblist.l_name);
14783 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
14784 liblist.l_version);
14785
14786 if (liblist.l_flags == 0)
14787 puts (_(" NONE"));
14788 else
14789 {
14790 static const struct
14791 {
14792 const char * name;
14793 int bit;
14794 }
14795 l_flags_vals[] =
14796 {
14797 { " EXACT_MATCH", LL_EXACT_MATCH },
14798 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
14799 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
14800 { " EXPORTS", LL_EXPORTS },
14801 { " DELAY_LOAD", LL_DELAY_LOAD },
14802 { " DELTA", LL_DELTA }
14803 };
14804 int flags = liblist.l_flags;
14805 size_t fcnt;
14806
14807 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
14808 if ((flags & l_flags_vals[fcnt].bit) != 0)
14809 {
14810 fputs (l_flags_vals[fcnt].name, stdout);
14811 flags ^= l_flags_vals[fcnt].bit;
14812 }
14813 if (flags != 0)
14814 printf (" %#x", (unsigned int) flags);
14815
14816 puts ("");
14817 }
14818 }
14819
14820 free (elib);
14821 }
14822 }
14823
14824 if (options_offset != 0)
14825 {
14826 Elf_External_Options * eopt;
14827 Elf_Internal_Options * iopt;
14828 Elf_Internal_Options * option;
14829 size_t offset;
14830 int cnt;
14831 sect = section_headers;
14832
14833 /* Find the section header so that we get the size. */
14834 sect = find_section_by_type (SHT_MIPS_OPTIONS);
14835 /* PR 17533 file: 012-277276-0.004. */
14836 if (sect == NULL)
14837 {
14838 error (_("No MIPS_OPTIONS header found\n"));
14839 return 0;
14840 }
14841
14842 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
14843 sect->sh_size, _("options"));
14844 if (eopt)
14845 {
14846 iopt = (Elf_Internal_Options *)
14847 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
14848 if (iopt == NULL)
14849 {
14850 error (_("Out of memory allocating space for MIPS options\n"));
14851 return 0;
14852 }
14853
14854 offset = cnt = 0;
14855 option = iopt;
14856
14857 while (offset <= sect->sh_size - sizeof (* eopt))
14858 {
14859 Elf_External_Options * eoption;
14860
14861 eoption = (Elf_External_Options *) ((char *) eopt + offset);
14862
14863 option->kind = BYTE_GET (eoption->kind);
14864 option->size = BYTE_GET (eoption->size);
14865 option->section = BYTE_GET (eoption->section);
14866 option->info = BYTE_GET (eoption->info);
14867
14868 /* PR 17531: file: ffa0fa3b. */
14869 if (option->size < sizeof (* eopt)
14870 || offset + option->size > sect->sh_size)
14871 {
14872 error (_("Invalid size (%u) for MIPS option\n"), option->size);
14873 return 0;
14874 }
14875 offset += option->size;
14876
14877 ++option;
14878 ++cnt;
14879 }
14880
14881 printf (_("\nSection '%s' contains %d entries:\n"),
14882 printable_section_name (sect), cnt);
14883
14884 option = iopt;
14885 offset = 0;
14886
14887 while (cnt-- > 0)
14888 {
14889 size_t len;
14890
14891 switch (option->kind)
14892 {
14893 case ODK_NULL:
14894 /* This shouldn't happen. */
14895 printf (" NULL %d %lx", option->section, option->info);
14896 break;
14897 case ODK_REGINFO:
14898 printf (" REGINFO ");
14899 if (elf_header.e_machine == EM_MIPS)
14900 {
14901 /* 32bit form. */
14902 Elf32_External_RegInfo * ereg;
14903 Elf32_RegInfo reginfo;
14904
14905 ereg = (Elf32_External_RegInfo *) (option + 1);
14906 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
14907 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
14908 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
14909 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
14910 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
14911 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
14912
14913 printf ("GPR %08lx GP 0x%lx\n",
14914 reginfo.ri_gprmask,
14915 (unsigned long) reginfo.ri_gp_value);
14916 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
14917 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
14918 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
14919 }
14920 else
14921 {
14922 /* 64 bit form. */
14923 Elf64_External_RegInfo * ereg;
14924 Elf64_Internal_RegInfo reginfo;
14925
14926 ereg = (Elf64_External_RegInfo *) (option + 1);
14927 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
14928 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
14929 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
14930 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
14931 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
14932 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
14933
14934 printf ("GPR %08lx GP 0x",
14935 reginfo.ri_gprmask);
14936 printf_vma (reginfo.ri_gp_value);
14937 printf ("\n");
14938
14939 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
14940 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
14941 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
14942 }
14943 ++option;
14944 continue;
14945 case ODK_EXCEPTIONS:
14946 fputs (" EXCEPTIONS fpe_min(", stdout);
14947 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
14948 fputs (") fpe_max(", stdout);
14949 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
14950 fputs (")", stdout);
14951
14952 if (option->info & OEX_PAGE0)
14953 fputs (" PAGE0", stdout);
14954 if (option->info & OEX_SMM)
14955 fputs (" SMM", stdout);
14956 if (option->info & OEX_FPDBUG)
14957 fputs (" FPDBUG", stdout);
14958 if (option->info & OEX_DISMISS)
14959 fputs (" DISMISS", stdout);
14960 break;
14961 case ODK_PAD:
14962 fputs (" PAD ", stdout);
14963 if (option->info & OPAD_PREFIX)
14964 fputs (" PREFIX", stdout);
14965 if (option->info & OPAD_POSTFIX)
14966 fputs (" POSTFIX", stdout);
14967 if (option->info & OPAD_SYMBOL)
14968 fputs (" SYMBOL", stdout);
14969 break;
14970 case ODK_HWPATCH:
14971 fputs (" HWPATCH ", stdout);
14972 if (option->info & OHW_R4KEOP)
14973 fputs (" R4KEOP", stdout);
14974 if (option->info & OHW_R8KPFETCH)
14975 fputs (" R8KPFETCH", stdout);
14976 if (option->info & OHW_R5KEOP)
14977 fputs (" R5KEOP", stdout);
14978 if (option->info & OHW_R5KCVTL)
14979 fputs (" R5KCVTL", stdout);
14980 break;
14981 case ODK_FILL:
14982 fputs (" FILL ", stdout);
14983 /* XXX Print content of info word? */
14984 break;
14985 case ODK_TAGS:
14986 fputs (" TAGS ", stdout);
14987 /* XXX Print content of info word? */
14988 break;
14989 case ODK_HWAND:
14990 fputs (" HWAND ", stdout);
14991 if (option->info & OHWA0_R4KEOP_CHECKED)
14992 fputs (" R4KEOP_CHECKED", stdout);
14993 if (option->info & OHWA0_R4KEOP_CLEAN)
14994 fputs (" R4KEOP_CLEAN", stdout);
14995 break;
14996 case ODK_HWOR:
14997 fputs (" HWOR ", stdout);
14998 if (option->info & OHWA0_R4KEOP_CHECKED)
14999 fputs (" R4KEOP_CHECKED", stdout);
15000 if (option->info & OHWA0_R4KEOP_CLEAN)
15001 fputs (" R4KEOP_CLEAN", stdout);
15002 break;
15003 case ODK_GP_GROUP:
15004 printf (" GP_GROUP %#06lx self-contained %#06lx",
15005 option->info & OGP_GROUP,
15006 (option->info & OGP_SELF) >> 16);
15007 break;
15008 case ODK_IDENT:
15009 printf (" IDENT %#06lx self-contained %#06lx",
15010 option->info & OGP_GROUP,
15011 (option->info & OGP_SELF) >> 16);
15012 break;
15013 default:
15014 /* This shouldn't happen. */
15015 printf (" %3d ??? %d %lx",
15016 option->kind, option->section, option->info);
15017 break;
15018 }
15019
15020 len = sizeof (* eopt);
15021 while (len < option->size)
15022 {
15023 unsigned char datum = * ((unsigned char *) eopt + offset + len);
15024
15025 if (ISPRINT (datum))
15026 printf ("%c", datum);
15027 else
15028 printf ("\\%03o", datum);
15029 len ++;
15030 }
15031 fputs ("\n", stdout);
15032
15033 offset += option->size;
15034 ++option;
15035 }
15036
15037 free (eopt);
15038 }
15039 }
15040
15041 if (conflicts_offset != 0 && conflictsno != 0)
15042 {
15043 Elf32_Conflict * iconf;
15044 size_t cnt;
15045
15046 if (dynamic_symbols == NULL)
15047 {
15048 error (_("conflict list found without a dynamic symbol table\n"));
15049 return 0;
15050 }
15051
15052 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
15053 if (iconf == NULL)
15054 {
15055 error (_("Out of memory allocating space for dynamic conflicts\n"));
15056 return 0;
15057 }
15058
15059 if (is_32bit_elf)
15060 {
15061 Elf32_External_Conflict * econf32;
15062
15063 econf32 = (Elf32_External_Conflict *)
15064 get_data (NULL, file, conflicts_offset, conflictsno,
15065 sizeof (* econf32), _("conflict"));
15066 if (!econf32)
15067 return 0;
15068
15069 for (cnt = 0; cnt < conflictsno; ++cnt)
15070 iconf[cnt] = BYTE_GET (econf32[cnt]);
15071
15072 free (econf32);
15073 }
15074 else
15075 {
15076 Elf64_External_Conflict * econf64;
15077
15078 econf64 = (Elf64_External_Conflict *)
15079 get_data (NULL, file, conflicts_offset, conflictsno,
15080 sizeof (* econf64), _("conflict"));
15081 if (!econf64)
15082 return 0;
15083
15084 for (cnt = 0; cnt < conflictsno; ++cnt)
15085 iconf[cnt] = BYTE_GET (econf64[cnt]);
15086
15087 free (econf64);
15088 }
15089
15090 printf (_("\nSection '.conflict' contains %lu entries:\n"),
15091 (unsigned long) conflictsno);
15092 puts (_(" Num: Index Value Name"));
15093
15094 for (cnt = 0; cnt < conflictsno; ++cnt)
15095 {
15096 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
15097
15098 if (iconf[cnt] >= num_dynamic_syms)
15099 printf (_("<corrupt symbol index>"));
15100 else
15101 {
15102 Elf_Internal_Sym * psym;
15103
15104 psym = & dynamic_symbols[iconf[cnt]];
15105 print_vma (psym->st_value, FULL_HEX);
15106 putchar (' ');
15107 if (VALID_DYNAMIC_NAME (psym->st_name))
15108 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
15109 else
15110 printf (_("<corrupt: %14ld>"), psym->st_name);
15111 }
15112 putchar ('\n');
15113 }
15114
15115 free (iconf);
15116 }
15117
15118 if (pltgot != 0 && local_gotno != 0)
15119 {
15120 bfd_vma ent, local_end, global_end;
15121 size_t i, offset;
15122 unsigned char * data;
15123 unsigned char * data_end;
15124 int addr_size;
15125
15126 ent = pltgot;
15127 addr_size = (is_32bit_elf ? 4 : 8);
15128 local_end = pltgot + local_gotno * addr_size;
15129
15130 /* PR binutils/17533 file: 012-111227-0.004 */
15131 if (symtabno < gotsym)
15132 {
15133 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
15134 (unsigned long) gotsym, (unsigned long) symtabno);
15135 return 0;
15136 }
15137
15138 global_end = local_end + (symtabno - gotsym) * addr_size;
15139 /* PR 17531: file: 54c91a34. */
15140 if (global_end < local_end)
15141 {
15142 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
15143 return 0;
15144 }
15145
15146 offset = offset_from_vma (file, pltgot, global_end - pltgot);
15147 data = (unsigned char *) get_data (NULL, file, offset,
15148 global_end - pltgot, 1,
15149 _("Global Offset Table data"));
15150 if (data == NULL)
15151 return 0;
15152 data_end = data + (global_end - pltgot);
15153
15154 printf (_("\nPrimary GOT:\n"));
15155 printf (_(" Canonical gp value: "));
15156 print_vma (pltgot + 0x7ff0, LONG_HEX);
15157 printf ("\n\n");
15158
15159 printf (_(" Reserved entries:\n"));
15160 printf (_(" %*s %10s %*s Purpose\n"),
15161 addr_size * 2, _("Address"), _("Access"),
15162 addr_size * 2, _("Initial"));
15163 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15164 printf (_(" Lazy resolver\n"));
15165 if (ent == (bfd_vma) -1)
15166 goto got_print_fail;
15167 if (data
15168 && (byte_get (data + ent - pltgot, addr_size)
15169 >> (addr_size * 8 - 1)) != 0)
15170 {
15171 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15172 printf (_(" Module pointer (GNU extension)\n"));
15173 if (ent == (bfd_vma) -1)
15174 goto got_print_fail;
15175 }
15176 printf ("\n");
15177
15178 if (ent < local_end)
15179 {
15180 printf (_(" Local entries:\n"));
15181 printf (" %*s %10s %*s\n",
15182 addr_size * 2, _("Address"), _("Access"),
15183 addr_size * 2, _("Initial"));
15184 while (ent < local_end)
15185 {
15186 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15187 printf ("\n");
15188 if (ent == (bfd_vma) -1)
15189 goto got_print_fail;
15190 }
15191 printf ("\n");
15192 }
15193
15194 if (gotsym < symtabno)
15195 {
15196 int sym_width;
15197
15198 printf (_(" Global entries:\n"));
15199 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
15200 addr_size * 2, _("Address"),
15201 _("Access"),
15202 addr_size * 2, _("Initial"),
15203 addr_size * 2, _("Sym.Val."),
15204 _("Type"),
15205 /* Note for translators: "Ndx" = abbreviated form of "Index". */
15206 _("Ndx"), _("Name"));
15207
15208 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
15209
15210 for (i = gotsym; i < symtabno; i++)
15211 {
15212 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15213 printf (" ");
15214
15215 if (dynamic_symbols == NULL)
15216 printf (_("<no dynamic symbols>"));
15217 else if (i < num_dynamic_syms)
15218 {
15219 Elf_Internal_Sym * psym = dynamic_symbols + i;
15220
15221 print_vma (psym->st_value, LONG_HEX);
15222 printf (" %-7s %3s ",
15223 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15224 get_symbol_index_type (psym->st_shndx));
15225
15226 if (VALID_DYNAMIC_NAME (psym->st_name))
15227 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15228 else
15229 printf (_("<corrupt: %14ld>"), psym->st_name);
15230 }
15231 else
15232 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
15233 (unsigned long) i);
15234
15235 printf ("\n");
15236 if (ent == (bfd_vma) -1)
15237 break;
15238 }
15239 printf ("\n");
15240 }
15241
15242 got_print_fail:
15243 if (data)
15244 free (data);
15245 }
15246
15247 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
15248 {
15249 bfd_vma ent, end;
15250 size_t offset, rel_offset;
15251 unsigned long count, i;
15252 unsigned char * data;
15253 int addr_size, sym_width;
15254 Elf_Internal_Rela * rels;
15255
15256 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
15257 if (pltrel == DT_RELA)
15258 {
15259 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
15260 return 0;
15261 }
15262 else
15263 {
15264 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
15265 return 0;
15266 }
15267
15268 ent = mips_pltgot;
15269 addr_size = (is_32bit_elf ? 4 : 8);
15270 end = mips_pltgot + (2 + count) * addr_size;
15271
15272 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
15273 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
15274 1, _("Procedure Linkage Table data"));
15275 if (data == NULL)
15276 return 0;
15277
15278 printf ("\nPLT GOT:\n\n");
15279 printf (_(" Reserved entries:\n"));
15280 printf (_(" %*s %*s Purpose\n"),
15281 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
15282 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15283 printf (_(" PLT lazy resolver\n"));
15284 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15285 printf (_(" Module pointer\n"));
15286 printf ("\n");
15287
15288 printf (_(" Entries:\n"));
15289 printf (" %*s %*s %*s %-7s %3s %s\n",
15290 addr_size * 2, _("Address"),
15291 addr_size * 2, _("Initial"),
15292 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
15293 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
15294 for (i = 0; i < count; i++)
15295 {
15296 unsigned long idx = get_reloc_symindex (rels[i].r_info);
15297
15298 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15299 printf (" ");
15300
15301 if (idx >= num_dynamic_syms)
15302 printf (_("<corrupt symbol index: %lu>"), idx);
15303 else
15304 {
15305 Elf_Internal_Sym * psym = dynamic_symbols + idx;
15306
15307 print_vma (psym->st_value, LONG_HEX);
15308 printf (" %-7s %3s ",
15309 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15310 get_symbol_index_type (psym->st_shndx));
15311 if (VALID_DYNAMIC_NAME (psym->st_name))
15312 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15313 else
15314 printf (_("<corrupt: %14ld>"), psym->st_name);
15315 }
15316 printf ("\n");
15317 }
15318 printf ("\n");
15319
15320 if (data)
15321 free (data);
15322 free (rels);
15323 }
15324
15325 return 1;
15326 }
15327
15328 static int
15329 process_nds32_specific (FILE * file)
15330 {
15331 Elf_Internal_Shdr *sect = NULL;
15332
15333 sect = find_section (".nds32_e_flags");
15334 if (sect != NULL)
15335 {
15336 unsigned int *flag;
15337
15338 printf ("\nNDS32 elf flags section:\n");
15339 flag = get_data (NULL, file, sect->sh_offset, 1,
15340 sect->sh_size, _("NDS32 elf flags section"));
15341
15342 switch ((*flag) & 0x3)
15343 {
15344 case 0:
15345 printf ("(VEC_SIZE):\tNo entry.\n");
15346 break;
15347 case 1:
15348 printf ("(VEC_SIZE):\t4 bytes\n");
15349 break;
15350 case 2:
15351 printf ("(VEC_SIZE):\t16 bytes\n");
15352 break;
15353 case 3:
15354 printf ("(VEC_SIZE):\treserved\n");
15355 break;
15356 }
15357 }
15358
15359 return TRUE;
15360 }
15361
15362 static int
15363 process_gnu_liblist (FILE * file)
15364 {
15365 Elf_Internal_Shdr * section;
15366 Elf_Internal_Shdr * string_sec;
15367 Elf32_External_Lib * elib;
15368 char * strtab;
15369 size_t strtab_size;
15370 size_t cnt;
15371 unsigned i;
15372
15373 if (! do_arch)
15374 return 0;
15375
15376 for (i = 0, section = section_headers;
15377 i < elf_header.e_shnum;
15378 i++, section++)
15379 {
15380 switch (section->sh_type)
15381 {
15382 case SHT_GNU_LIBLIST:
15383 if (section->sh_link >= elf_header.e_shnum)
15384 break;
15385
15386 elib = (Elf32_External_Lib *)
15387 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
15388 _("liblist section data"));
15389
15390 if (elib == NULL)
15391 break;
15392 string_sec = section_headers + section->sh_link;
15393
15394 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
15395 string_sec->sh_size,
15396 _("liblist string table"));
15397 if (strtab == NULL
15398 || section->sh_entsize != sizeof (Elf32_External_Lib))
15399 {
15400 free (elib);
15401 free (strtab);
15402 break;
15403 }
15404 strtab_size = string_sec->sh_size;
15405
15406 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
15407 printable_section_name (section),
15408 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
15409
15410 puts (_(" Library Time Stamp Checksum Version Flags"));
15411
15412 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
15413 ++cnt)
15414 {
15415 Elf32_Lib liblist;
15416 time_t atime;
15417 char timebuf[128];
15418 struct tm * tmp;
15419
15420 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15421 atime = BYTE_GET (elib[cnt].l_time_stamp);
15422 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15423 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15424 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15425
15426 tmp = gmtime (&atime);
15427 snprintf (timebuf, sizeof (timebuf),
15428 "%04u-%02u-%02uT%02u:%02u:%02u",
15429 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15430 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15431
15432 printf ("%3lu: ", (unsigned long) cnt);
15433 if (do_wide)
15434 printf ("%-20s", liblist.l_name < strtab_size
15435 ? strtab + liblist.l_name : _("<corrupt>"));
15436 else
15437 printf ("%-20.20s", liblist.l_name < strtab_size
15438 ? strtab + liblist.l_name : _("<corrupt>"));
15439 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
15440 liblist.l_version, liblist.l_flags);
15441 }
15442
15443 free (elib);
15444 free (strtab);
15445 }
15446 }
15447
15448 return 1;
15449 }
15450
15451 static const char *
15452 get_note_type (unsigned e_type)
15453 {
15454 static char buff[64];
15455
15456 if (elf_header.e_type == ET_CORE)
15457 switch (e_type)
15458 {
15459 case NT_AUXV:
15460 return _("NT_AUXV (auxiliary vector)");
15461 case NT_PRSTATUS:
15462 return _("NT_PRSTATUS (prstatus structure)");
15463 case NT_FPREGSET:
15464 return _("NT_FPREGSET (floating point registers)");
15465 case NT_PRPSINFO:
15466 return _("NT_PRPSINFO (prpsinfo structure)");
15467 case NT_TASKSTRUCT:
15468 return _("NT_TASKSTRUCT (task structure)");
15469 case NT_PRXFPREG:
15470 return _("NT_PRXFPREG (user_xfpregs structure)");
15471 case NT_PPC_VMX:
15472 return _("NT_PPC_VMX (ppc Altivec registers)");
15473 case NT_PPC_VSX:
15474 return _("NT_PPC_VSX (ppc VSX registers)");
15475 case NT_386_TLS:
15476 return _("NT_386_TLS (x86 TLS information)");
15477 case NT_386_IOPERM:
15478 return _("NT_386_IOPERM (x86 I/O permissions)");
15479 case NT_X86_XSTATE:
15480 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
15481 case NT_S390_HIGH_GPRS:
15482 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
15483 case NT_S390_TIMER:
15484 return _("NT_S390_TIMER (s390 timer register)");
15485 case NT_S390_TODCMP:
15486 return _("NT_S390_TODCMP (s390 TOD comparator register)");
15487 case NT_S390_TODPREG:
15488 return _("NT_S390_TODPREG (s390 TOD programmable register)");
15489 case NT_S390_CTRS:
15490 return _("NT_S390_CTRS (s390 control registers)");
15491 case NT_S390_PREFIX:
15492 return _("NT_S390_PREFIX (s390 prefix register)");
15493 case NT_S390_LAST_BREAK:
15494 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
15495 case NT_S390_SYSTEM_CALL:
15496 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
15497 case NT_S390_TDB:
15498 return _("NT_S390_TDB (s390 transaction diagnostic block)");
15499 case NT_S390_VXRS_LOW:
15500 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
15501 case NT_S390_VXRS_HIGH:
15502 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
15503 case NT_ARM_VFP:
15504 return _("NT_ARM_VFP (arm VFP registers)");
15505 case NT_ARM_TLS:
15506 return _("NT_ARM_TLS (AArch TLS registers)");
15507 case NT_ARM_HW_BREAK:
15508 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
15509 case NT_ARM_HW_WATCH:
15510 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
15511 case NT_PSTATUS:
15512 return _("NT_PSTATUS (pstatus structure)");
15513 case NT_FPREGS:
15514 return _("NT_FPREGS (floating point registers)");
15515 case NT_PSINFO:
15516 return _("NT_PSINFO (psinfo structure)");
15517 case NT_LWPSTATUS:
15518 return _("NT_LWPSTATUS (lwpstatus_t structure)");
15519 case NT_LWPSINFO:
15520 return _("NT_LWPSINFO (lwpsinfo_t structure)");
15521 case NT_WIN32PSTATUS:
15522 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
15523 case NT_SIGINFO:
15524 return _("NT_SIGINFO (siginfo_t data)");
15525 case NT_FILE:
15526 return _("NT_FILE (mapped files)");
15527 default:
15528 break;
15529 }
15530 else
15531 switch (e_type)
15532 {
15533 case NT_VERSION:
15534 return _("NT_VERSION (version)");
15535 case NT_ARCH:
15536 return _("NT_ARCH (architecture)");
15537 default:
15538 break;
15539 }
15540
15541 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15542 return buff;
15543 }
15544
15545 static int
15546 print_core_note (Elf_Internal_Note *pnote)
15547 {
15548 unsigned int addr_size = is_32bit_elf ? 4 : 8;
15549 bfd_vma count, page_size;
15550 unsigned char *descdata, *filenames, *descend;
15551
15552 if (pnote->type != NT_FILE)
15553 return 1;
15554
15555 #ifndef BFD64
15556 if (!is_32bit_elf)
15557 {
15558 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
15559 /* Still "successful". */
15560 return 1;
15561 }
15562 #endif
15563
15564 if (pnote->descsz < 2 * addr_size)
15565 {
15566 printf (_(" Malformed note - too short for header\n"));
15567 return 0;
15568 }
15569
15570 descdata = (unsigned char *) pnote->descdata;
15571 descend = descdata + pnote->descsz;
15572
15573 if (descdata[pnote->descsz - 1] != '\0')
15574 {
15575 printf (_(" Malformed note - does not end with \\0\n"));
15576 return 0;
15577 }
15578
15579 count = byte_get (descdata, addr_size);
15580 descdata += addr_size;
15581
15582 page_size = byte_get (descdata, addr_size);
15583 descdata += addr_size;
15584
15585 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
15586 {
15587 printf (_(" Malformed note - too short for supplied file count\n"));
15588 return 0;
15589 }
15590
15591 printf (_(" Page size: "));
15592 print_vma (page_size, DEC);
15593 printf ("\n");
15594
15595 printf (_(" %*s%*s%*s\n"),
15596 (int) (2 + 2 * addr_size), _("Start"),
15597 (int) (4 + 2 * addr_size), _("End"),
15598 (int) (4 + 2 * addr_size), _("Page Offset"));
15599 filenames = descdata + count * 3 * addr_size;
15600 while (count-- > 0)
15601 {
15602 bfd_vma start, end, file_ofs;
15603
15604 if (filenames == descend)
15605 {
15606 printf (_(" Malformed note - filenames end too early\n"));
15607 return 0;
15608 }
15609
15610 start = byte_get (descdata, addr_size);
15611 descdata += addr_size;
15612 end = byte_get (descdata, addr_size);
15613 descdata += addr_size;
15614 file_ofs = byte_get (descdata, addr_size);
15615 descdata += addr_size;
15616
15617 printf (" ");
15618 print_vma (start, FULL_HEX);
15619 printf (" ");
15620 print_vma (end, FULL_HEX);
15621 printf (" ");
15622 print_vma (file_ofs, FULL_HEX);
15623 printf ("\n %s\n", filenames);
15624
15625 filenames += 1 + strlen ((char *) filenames);
15626 }
15627
15628 return 1;
15629 }
15630
15631 static const char *
15632 get_gnu_elf_note_type (unsigned e_type)
15633 {
15634 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
15635 switch (e_type)
15636 {
15637 case NT_GNU_ABI_TAG:
15638 return _("NT_GNU_ABI_TAG (ABI version tag)");
15639 case NT_GNU_HWCAP:
15640 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
15641 case NT_GNU_BUILD_ID:
15642 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
15643 case NT_GNU_GOLD_VERSION:
15644 return _("NT_GNU_GOLD_VERSION (gold version)");
15645 default:
15646 {
15647 static char buff[64];
15648
15649 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15650 return buff;
15651 }
15652 }
15653 }
15654
15655 static int
15656 print_gnu_note (Elf_Internal_Note *pnote)
15657 {
15658 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
15659 switch (pnote->type)
15660 {
15661 case NT_GNU_BUILD_ID:
15662 {
15663 unsigned long i;
15664
15665 printf (_(" Build ID: "));
15666 for (i = 0; i < pnote->descsz; ++i)
15667 printf ("%02x", pnote->descdata[i] & 0xff);
15668 printf ("\n");
15669 }
15670 break;
15671
15672 case NT_GNU_ABI_TAG:
15673 {
15674 unsigned long os, major, minor, subminor;
15675 const char *osname;
15676
15677 /* PR 17531: file: 030-599401-0.004. */
15678 if (pnote->descsz < 16)
15679 {
15680 printf (_(" <corrupt GNU_ABI_TAG>\n"));
15681 break;
15682 }
15683
15684 os = byte_get ((unsigned char *) pnote->descdata, 4);
15685 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
15686 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
15687 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
15688
15689 switch (os)
15690 {
15691 case GNU_ABI_TAG_LINUX:
15692 osname = "Linux";
15693 break;
15694 case GNU_ABI_TAG_HURD:
15695 osname = "Hurd";
15696 break;
15697 case GNU_ABI_TAG_SOLARIS:
15698 osname = "Solaris";
15699 break;
15700 case GNU_ABI_TAG_FREEBSD:
15701 osname = "FreeBSD";
15702 break;
15703 case GNU_ABI_TAG_NETBSD:
15704 osname = "NetBSD";
15705 break;
15706 case GNU_ABI_TAG_SYLLABLE:
15707 osname = "Syllable";
15708 break;
15709 case GNU_ABI_TAG_NACL:
15710 osname = "NaCl";
15711 break;
15712 default:
15713 osname = "Unknown";
15714 break;
15715 }
15716
15717 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
15718 major, minor, subminor);
15719 }
15720 break;
15721
15722 case NT_GNU_GOLD_VERSION:
15723 {
15724 unsigned long i;
15725
15726 printf (_(" Version: "));
15727 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
15728 printf ("%c", pnote->descdata[i]);
15729 printf ("\n");
15730 }
15731 break;
15732
15733 case NT_GNU_HWCAP:
15734 {
15735 unsigned long num_entries, mask;
15736
15737 /* Hardware capabilities information. Word 0 is the number of entries.
15738 Word 1 is a bitmask of enabled entries. The rest of the descriptor
15739 is a series of entries, where each entry is a single byte followed
15740 by a nul terminated string. The byte gives the bit number to test
15741 if enabled in the bitmask. */
15742 printf (_(" Hardware Capabilities: "));
15743 if (pnote->descsz < 8)
15744 {
15745 printf (_("<corrupt GNU_HWCAP>\n"));
15746 break;
15747 }
15748 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
15749 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
15750 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
15751 /* FIXME: Add code to display the entries... */
15752 }
15753 break;
15754
15755 default:
15756 /* Handle unrecognised types. An error message should have already been
15757 created by get_gnu_elf_note_type(), so all that we need to do is to
15758 display the data. */
15759 {
15760 unsigned long i;
15761
15762 printf (_(" Description data: "));
15763 for (i = 0; i < pnote->descsz; ++i)
15764 printf ("%02x ", pnote->descdata[i] & 0xff);
15765 printf ("\n");
15766 }
15767 break;
15768 }
15769
15770 return 1;
15771 }
15772
15773 static const char *
15774 get_v850_elf_note_type (enum v850_notes n_type)
15775 {
15776 static char buff[64];
15777
15778 switch (n_type)
15779 {
15780 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
15781 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
15782 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
15783 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
15784 case V850_NOTE_CACHE_INFO: return _("Use of cache");
15785 case V850_NOTE_MMU_INFO: return _("Use of MMU");
15786 default:
15787 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
15788 return buff;
15789 }
15790 }
15791
15792 static int
15793 print_v850_note (Elf_Internal_Note * pnote)
15794 {
15795 unsigned int val;
15796
15797 if (pnote->descsz != 4)
15798 return 0;
15799 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
15800
15801 if (val == 0)
15802 {
15803 printf (_("not set\n"));
15804 return 1;
15805 }
15806
15807 switch (pnote->type)
15808 {
15809 case V850_NOTE_ALIGNMENT:
15810 switch (val)
15811 {
15812 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return 1;
15813 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return 1;
15814 }
15815 break;
15816
15817 case V850_NOTE_DATA_SIZE:
15818 switch (val)
15819 {
15820 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return 1;
15821 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return 1;
15822 }
15823 break;
15824
15825 case V850_NOTE_FPU_INFO:
15826 switch (val)
15827 {
15828 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return 1;
15829 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return 1;
15830 }
15831 break;
15832
15833 case V850_NOTE_MMU_INFO:
15834 case V850_NOTE_CACHE_INFO:
15835 case V850_NOTE_SIMD_INFO:
15836 if (val == EF_RH850_SIMD)
15837 {
15838 printf (_("yes\n"));
15839 return 1;
15840 }
15841 break;
15842
15843 default:
15844 /* An 'unknown note type' message will already have been displayed. */
15845 break;
15846 }
15847
15848 printf (_("unknown value: %x\n"), val);
15849 return 0;
15850 }
15851
15852 static int
15853 process_netbsd_elf_note (Elf_Internal_Note * pnote)
15854 {
15855 unsigned int version;
15856
15857 switch (pnote->type)
15858 {
15859 case NT_NETBSD_IDENT:
15860 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
15861 if ((version / 10000) % 100)
15862 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
15863 version, version / 100000000, (version / 1000000) % 100,
15864 (version / 10000) % 100 > 26 ? "Z" : "",
15865 'A' + (version / 10000) % 26);
15866 else
15867 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
15868 version, version / 100000000, (version / 1000000) % 100,
15869 (version / 100) % 100);
15870 return 1;
15871
15872 case NT_NETBSD_MARCH:
15873 printf (" NetBSD\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
15874 pnote->descdata);
15875 return 1;
15876
15877 default:
15878 break;
15879 }
15880
15881 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
15882 pnote->type);
15883 return 1;
15884 }
15885
15886 static const char *
15887 get_freebsd_elfcore_note_type (unsigned e_type)
15888 {
15889 switch (e_type)
15890 {
15891 case NT_FREEBSD_THRMISC:
15892 return _("NT_THRMISC (thrmisc structure)");
15893 case NT_FREEBSD_PROCSTAT_PROC:
15894 return _("NT_PROCSTAT_PROC (proc data)");
15895 case NT_FREEBSD_PROCSTAT_FILES:
15896 return _("NT_PROCSTAT_FILES (files data)");
15897 case NT_FREEBSD_PROCSTAT_VMMAP:
15898 return _("NT_PROCSTAT_VMMAP (vmmap data)");
15899 case NT_FREEBSD_PROCSTAT_GROUPS:
15900 return _("NT_PROCSTAT_GROUPS (groups data)");
15901 case NT_FREEBSD_PROCSTAT_UMASK:
15902 return _("NT_PROCSTAT_UMASK (umask data)");
15903 case NT_FREEBSD_PROCSTAT_RLIMIT:
15904 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
15905 case NT_FREEBSD_PROCSTAT_OSREL:
15906 return _("NT_PROCSTAT_OSREL (osreldate data)");
15907 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
15908 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
15909 case NT_FREEBSD_PROCSTAT_AUXV:
15910 return _("NT_PROCSTAT_AUXV (auxv data)");
15911 }
15912 return get_note_type (e_type);
15913 }
15914
15915 static const char *
15916 get_netbsd_elfcore_note_type (unsigned e_type)
15917 {
15918 static char buff[64];
15919
15920 if (e_type == NT_NETBSDCORE_PROCINFO)
15921 {
15922 /* NetBSD core "procinfo" structure. */
15923 return _("NetBSD procinfo structure");
15924 }
15925
15926 /* As of Jan 2002 there are no other machine-independent notes
15927 defined for NetBSD core files. If the note type is less
15928 than the start of the machine-dependent note types, we don't
15929 understand it. */
15930
15931 if (e_type < NT_NETBSDCORE_FIRSTMACH)
15932 {
15933 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15934 return buff;
15935 }
15936
15937 switch (elf_header.e_machine)
15938 {
15939 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
15940 and PT_GETFPREGS == mach+2. */
15941
15942 case EM_OLD_ALPHA:
15943 case EM_ALPHA:
15944 case EM_SPARC:
15945 case EM_SPARC32PLUS:
15946 case EM_SPARCV9:
15947 switch (e_type)
15948 {
15949 case NT_NETBSDCORE_FIRSTMACH + 0:
15950 return _("PT_GETREGS (reg structure)");
15951 case NT_NETBSDCORE_FIRSTMACH + 2:
15952 return _("PT_GETFPREGS (fpreg structure)");
15953 default:
15954 break;
15955 }
15956 break;
15957
15958 /* On all other arch's, PT_GETREGS == mach+1 and
15959 PT_GETFPREGS == mach+3. */
15960 default:
15961 switch (e_type)
15962 {
15963 case NT_NETBSDCORE_FIRSTMACH + 1:
15964 return _("PT_GETREGS (reg structure)");
15965 case NT_NETBSDCORE_FIRSTMACH + 3:
15966 return _("PT_GETFPREGS (fpreg structure)");
15967 default:
15968 break;
15969 }
15970 }
15971
15972 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
15973 e_type - NT_NETBSDCORE_FIRSTMACH);
15974 return buff;
15975 }
15976
15977 static const char *
15978 get_stapsdt_note_type (unsigned e_type)
15979 {
15980 static char buff[64];
15981
15982 switch (e_type)
15983 {
15984 case NT_STAPSDT:
15985 return _("NT_STAPSDT (SystemTap probe descriptors)");
15986
15987 default:
15988 break;
15989 }
15990
15991 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15992 return buff;
15993 }
15994
15995 static int
15996 print_stapsdt_note (Elf_Internal_Note *pnote)
15997 {
15998 int addr_size = is_32bit_elf ? 4 : 8;
15999 char *data = pnote->descdata;
16000 char *data_end = pnote->descdata + pnote->descsz;
16001 bfd_vma pc, base_addr, semaphore;
16002 char *provider, *probe, *arg_fmt;
16003
16004 pc = byte_get ((unsigned char *) data, addr_size);
16005 data += addr_size;
16006 base_addr = byte_get ((unsigned char *) data, addr_size);
16007 data += addr_size;
16008 semaphore = byte_get ((unsigned char *) data, addr_size);
16009 data += addr_size;
16010
16011 provider = data;
16012 data += strlen (data) + 1;
16013 probe = data;
16014 data += strlen (data) + 1;
16015 arg_fmt = data;
16016 data += strlen (data) + 1;
16017
16018 printf (_(" Provider: %s\n"), provider);
16019 printf (_(" Name: %s\n"), probe);
16020 printf (_(" Location: "));
16021 print_vma (pc, FULL_HEX);
16022 printf (_(", Base: "));
16023 print_vma (base_addr, FULL_HEX);
16024 printf (_(", Semaphore: "));
16025 print_vma (semaphore, FULL_HEX);
16026 printf ("\n");
16027 printf (_(" Arguments: %s\n"), arg_fmt);
16028
16029 return data == data_end;
16030 }
16031
16032 static const char *
16033 get_ia64_vms_note_type (unsigned e_type)
16034 {
16035 static char buff[64];
16036
16037 switch (e_type)
16038 {
16039 case NT_VMS_MHD:
16040 return _("NT_VMS_MHD (module header)");
16041 case NT_VMS_LNM:
16042 return _("NT_VMS_LNM (language name)");
16043 case NT_VMS_SRC:
16044 return _("NT_VMS_SRC (source files)");
16045 case NT_VMS_TITLE:
16046 return "NT_VMS_TITLE";
16047 case NT_VMS_EIDC:
16048 return _("NT_VMS_EIDC (consistency check)");
16049 case NT_VMS_FPMODE:
16050 return _("NT_VMS_FPMODE (FP mode)");
16051 case NT_VMS_LINKTIME:
16052 return "NT_VMS_LINKTIME";
16053 case NT_VMS_IMGNAM:
16054 return _("NT_VMS_IMGNAM (image name)");
16055 case NT_VMS_IMGID:
16056 return _("NT_VMS_IMGID (image id)");
16057 case NT_VMS_LINKID:
16058 return _("NT_VMS_LINKID (link id)");
16059 case NT_VMS_IMGBID:
16060 return _("NT_VMS_IMGBID (build id)");
16061 case NT_VMS_GSTNAM:
16062 return _("NT_VMS_GSTNAM (sym table name)");
16063 case NT_VMS_ORIG_DYN:
16064 return "NT_VMS_ORIG_DYN";
16065 case NT_VMS_PATCHTIME:
16066 return "NT_VMS_PATCHTIME";
16067 default:
16068 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16069 return buff;
16070 }
16071 }
16072
16073 static int
16074 print_ia64_vms_note (Elf_Internal_Note * pnote)
16075 {
16076 switch (pnote->type)
16077 {
16078 case NT_VMS_MHD:
16079 if (pnote->descsz > 36)
16080 {
16081 size_t l = strlen (pnote->descdata + 34);
16082 printf (_(" Creation date : %.17s\n"), pnote->descdata);
16083 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
16084 printf (_(" Module name : %s\n"), pnote->descdata + 34);
16085 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
16086 }
16087 else
16088 printf (_(" Invalid size\n"));
16089 break;
16090 case NT_VMS_LNM:
16091 printf (_(" Language: %s\n"), pnote->descdata);
16092 break;
16093 #ifdef BFD64
16094 case NT_VMS_FPMODE:
16095 printf (_(" Floating Point mode: "));
16096 printf ("0x%016" BFD_VMA_FMT "x\n",
16097 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
16098 break;
16099 case NT_VMS_LINKTIME:
16100 printf (_(" Link time: "));
16101 print_vms_time
16102 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16103 printf ("\n");
16104 break;
16105 case NT_VMS_PATCHTIME:
16106 printf (_(" Patch time: "));
16107 print_vms_time
16108 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16109 printf ("\n");
16110 break;
16111 case NT_VMS_ORIG_DYN:
16112 printf (_(" Major id: %u, minor id: %u\n"),
16113 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
16114 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
16115 printf (_(" Last modified : "));
16116 print_vms_time
16117 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
16118 printf (_("\n Link flags : "));
16119 printf ("0x%016" BFD_VMA_FMT "x\n",
16120 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
16121 printf (_(" Header flags: 0x%08x\n"),
16122 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
16123 printf (_(" Image id : %s\n"), pnote->descdata + 32);
16124 break;
16125 #endif
16126 case NT_VMS_IMGNAM:
16127 printf (_(" Image name: %s\n"), pnote->descdata);
16128 break;
16129 case NT_VMS_GSTNAM:
16130 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
16131 break;
16132 case NT_VMS_IMGID:
16133 printf (_(" Image id: %s\n"), pnote->descdata);
16134 break;
16135 case NT_VMS_LINKID:
16136 printf (_(" Linker id: %s\n"), pnote->descdata);
16137 break;
16138 default:
16139 break;
16140 }
16141 return 1;
16142 }
16143
16144 /* Note that by the ELF standard, the name field is already null byte
16145 terminated, and namesz includes the terminating null byte.
16146 I.E. the value of namesz for the name "FSF" is 4.
16147
16148 If the value of namesz is zero, there is no name present. */
16149 static int
16150 process_note (Elf_Internal_Note * pnote,
16151 FILE * file ATTRIBUTE_UNUSED,
16152 Elf_Internal_Shdr * section ATTRIBUTE_UNUSED)
16153 {
16154 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
16155 const char * nt;
16156
16157 if (pnote->namesz == 0)
16158 /* If there is no note name, then use the default set of
16159 note type strings. */
16160 nt = get_note_type (pnote->type);
16161
16162 else if (const_strneq (pnote->namedata, "GNU"))
16163 /* GNU-specific object file notes. */
16164 nt = get_gnu_elf_note_type (pnote->type);
16165
16166 else if (const_strneq (pnote->namedata, "FreeBSD"))
16167 /* FreeBSD-specific core file notes. */
16168 nt = get_freebsd_elfcore_note_type (pnote->type);
16169
16170 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
16171 /* NetBSD-specific core file notes. */
16172 nt = get_netbsd_elfcore_note_type (pnote->type);
16173
16174 else if (const_strneq (pnote->namedata, "NetBSD"))
16175 /* NetBSD-specific core file notes. */
16176 return process_netbsd_elf_note (pnote);
16177
16178 else if (strneq (pnote->namedata, "SPU/", 4))
16179 {
16180 /* SPU-specific core file notes. */
16181 nt = pnote->namedata + 4;
16182 name = "SPU";
16183 }
16184
16185 else if (const_strneq (pnote->namedata, "IPF/VMS"))
16186 /* VMS/ia64-specific file notes. */
16187 nt = get_ia64_vms_note_type (pnote->type);
16188
16189 else if (const_strneq (pnote->namedata, "stapsdt"))
16190 nt = get_stapsdt_note_type (pnote->type);
16191
16192 else
16193 /* Don't recognize this note name; just use the default set of
16194 note type strings. */
16195 nt = get_note_type (pnote->type);
16196
16197 printf (" ");
16198 print_symbol (-20, name);
16199 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
16200
16201 if (const_strneq (pnote->namedata, "IPF/VMS"))
16202 return print_ia64_vms_note (pnote);
16203 else if (const_strneq (pnote->namedata, "GNU"))
16204 return print_gnu_note (pnote);
16205 else if (const_strneq (pnote->namedata, "stapsdt"))
16206 return print_stapsdt_note (pnote);
16207 else if (const_strneq (pnote->namedata, "CORE"))
16208 return print_core_note (pnote);
16209
16210 else if (pnote->descsz)
16211 {
16212 unsigned long i;
16213
16214 printf (_(" description data: "));
16215 for (i = 0; i < pnote->descsz; i++)
16216 printf ("%02x ", pnote->descdata[i]);
16217 printf ("\n");
16218 }
16219
16220 return 1;
16221 }
16222
16223 static int
16224 process_notes_at (FILE * file,
16225 Elf_Internal_Shdr * section,
16226 bfd_vma offset,
16227 bfd_vma length)
16228 {
16229 Elf_External_Note * pnotes;
16230 Elf_External_Note * external;
16231 char * end;
16232 int res = 1;
16233
16234 if (length <= 0)
16235 return 0;
16236
16237 if (section)
16238 {
16239 pnotes = (Elf_External_Note *) get_section_contents (section, file);
16240 if (pnotes)
16241 apply_relocations (file, section, (unsigned char *) pnotes, length, NULL, NULL);
16242 }
16243 else
16244 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
16245 _("notes"));
16246 if (pnotes == NULL)
16247 return 0;
16248
16249 external = pnotes;
16250
16251 if (section)
16252 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (section));
16253 else
16254 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
16255 (unsigned long) offset, (unsigned long) length);
16256
16257 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
16258
16259 end = (char *) pnotes + length;
16260 while ((char *) external < end)
16261 {
16262 Elf_Internal_Note inote;
16263 size_t min_notesz;
16264 char *next;
16265 char * temp = NULL;
16266 size_t data_remaining = end - (char *) external;
16267
16268 if (!is_ia64_vms ())
16269 {
16270 /* PR binutils/15191
16271 Make sure that there is enough data to read. */
16272 min_notesz = offsetof (Elf_External_Note, name);
16273 if (data_remaining < min_notesz)
16274 {
16275 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
16276 (int) data_remaining);
16277 break;
16278 }
16279 inote.type = BYTE_GET (external->type);
16280 inote.namesz = BYTE_GET (external->namesz);
16281 inote.namedata = external->name;
16282 inote.descsz = BYTE_GET (external->descsz);
16283 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
16284 /* PR 17531: file: 3443835e. */
16285 if (inote.descdata < (char *) pnotes || inote.descdata > end)
16286 {
16287 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
16288 inote.descdata = inote.namedata;
16289 inote.namesz = 0;
16290 }
16291
16292 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16293 next = inote.descdata + align_power (inote.descsz, 2);
16294 }
16295 else
16296 {
16297 Elf64_External_VMS_Note *vms_external;
16298
16299 /* PR binutils/15191
16300 Make sure that there is enough data to read. */
16301 min_notesz = offsetof (Elf64_External_VMS_Note, name);
16302 if (data_remaining < min_notesz)
16303 {
16304 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
16305 (int) data_remaining);
16306 break;
16307 }
16308
16309 vms_external = (Elf64_External_VMS_Note *) external;
16310 inote.type = BYTE_GET (vms_external->type);
16311 inote.namesz = BYTE_GET (vms_external->namesz);
16312 inote.namedata = vms_external->name;
16313 inote.descsz = BYTE_GET (vms_external->descsz);
16314 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
16315 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16316 next = inote.descdata + align_power (inote.descsz, 3);
16317 }
16318
16319 if (inote.descdata < (char *) external + min_notesz
16320 || next < (char *) external + min_notesz
16321 /* PR binutils/17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
16322 || inote.namedata + inote.namesz < inote.namedata
16323 || inote.descdata + inote.descsz < inote.descdata
16324 || data_remaining < (size_t)(next - (char *) external))
16325 {
16326 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
16327 (unsigned long) ((char *) external - (char *) pnotes));
16328 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
16329 inote.type, inote.namesz, inote.descsz);
16330 break;
16331 }
16332
16333 external = (Elf_External_Note *) next;
16334
16335 /* Verify that name is null terminated. It appears that at least
16336 one version of Linux (RedHat 6.0) generates corefiles that don't
16337 comply with the ELF spec by failing to include the null byte in
16338 namesz. */
16339 if (inote.namedata[inote.namesz - 1] != '\0')
16340 {
16341 temp = (char *) malloc (inote.namesz + 1);
16342 if (temp == NULL)
16343 {
16344 error (_("Out of memory allocating space for inote name\n"));
16345 res = 0;
16346 break;
16347 }
16348
16349 strncpy (temp, inote.namedata, inote.namesz);
16350 temp[inote.namesz] = 0;
16351
16352 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
16353 inote.namedata = temp;
16354 }
16355
16356 res &= process_note (& inote, file, section);
16357
16358 if (temp != NULL)
16359 {
16360 free (temp);
16361 temp = NULL;
16362 }
16363 }
16364
16365 free (pnotes);
16366
16367 return res;
16368 }
16369
16370 static int
16371 process_corefile_note_segments (FILE * file)
16372 {
16373 Elf_Internal_Phdr * segment;
16374 unsigned int i;
16375 int res = 1;
16376
16377 if (! get_program_headers (file))
16378 return 0;
16379
16380 for (i = 0, segment = program_headers;
16381 i < elf_header.e_phnum;
16382 i++, segment++)
16383 {
16384 if (segment->p_type == PT_NOTE)
16385 res &= process_notes_at (file, NULL,
16386 (bfd_vma) segment->p_offset,
16387 (bfd_vma) segment->p_filesz);
16388 }
16389
16390 return res;
16391 }
16392
16393 static int
16394 process_v850_notes (FILE * file, bfd_vma offset, bfd_vma length)
16395 {
16396 Elf_External_Note * pnotes;
16397 Elf_External_Note * external;
16398 char * end;
16399 int res = 1;
16400
16401 if (length <= 0)
16402 return 0;
16403
16404 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
16405 _("v850 notes"));
16406 if (pnotes == NULL)
16407 return 0;
16408
16409 external = pnotes;
16410 end = (char*) pnotes + length;
16411
16412 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
16413 (unsigned long) offset, (unsigned long) length);
16414
16415 while ((char *) external + sizeof (Elf_External_Note) < end)
16416 {
16417 Elf_External_Note * next;
16418 Elf_Internal_Note inote;
16419
16420 inote.type = BYTE_GET (external->type);
16421 inote.namesz = BYTE_GET (external->namesz);
16422 inote.namedata = external->name;
16423 inote.descsz = BYTE_GET (external->descsz);
16424 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
16425 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16426
16427 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
16428 {
16429 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
16430 inote.descdata = inote.namedata;
16431 inote.namesz = 0;
16432 }
16433
16434 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
16435
16436 if ( ((char *) next > end)
16437 || ((char *) next < (char *) pnotes))
16438 {
16439 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
16440 (unsigned long) ((char *) external - (char *) pnotes));
16441 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
16442 inote.type, inote.namesz, inote.descsz);
16443 break;
16444 }
16445
16446 external = next;
16447
16448 /* Prevent out-of-bounds indexing. */
16449 if ( inote.namedata + inote.namesz > end
16450 || inote.namedata + inote.namesz < inote.namedata)
16451 {
16452 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
16453 (unsigned long) ((char *) external - (char *) pnotes));
16454 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
16455 inote.type, inote.namesz, inote.descsz);
16456 break;
16457 }
16458
16459 printf (" %s: ", get_v850_elf_note_type (inote.type));
16460
16461 if (! print_v850_note (& inote))
16462 {
16463 res = 0;
16464 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
16465 inote.namesz, inote.descsz);
16466 }
16467 }
16468
16469 free (pnotes);
16470
16471 return res;
16472 }
16473
16474 static int
16475 process_note_sections (FILE * file)
16476 {
16477 Elf_Internal_Shdr * section;
16478 unsigned long i;
16479 int n = 0;
16480 int res = 1;
16481
16482 for (i = 0, section = section_headers;
16483 i < elf_header.e_shnum && section != NULL;
16484 i++, section++)
16485 {
16486 if (section->sh_type == SHT_NOTE)
16487 {
16488 res &= process_notes_at (file, section,
16489 (bfd_vma) section->sh_offset,
16490 (bfd_vma) section->sh_size);
16491 n++;
16492 }
16493
16494 if (( elf_header.e_machine == EM_V800
16495 || elf_header.e_machine == EM_V850
16496 || elf_header.e_machine == EM_CYGNUS_V850)
16497 && section->sh_type == SHT_RENESAS_INFO)
16498 {
16499 res &= process_v850_notes (file,
16500 (bfd_vma) section->sh_offset,
16501 (bfd_vma) section->sh_size);
16502 n++;
16503 }
16504 }
16505
16506 if (n == 0)
16507 /* Try processing NOTE segments instead. */
16508 return process_corefile_note_segments (file);
16509
16510 return res;
16511 }
16512
16513 static int
16514 process_notes (FILE * file)
16515 {
16516 /* If we have not been asked to display the notes then do nothing. */
16517 if (! do_notes)
16518 return 1;
16519
16520 if (elf_header.e_type != ET_CORE)
16521 return process_note_sections (file);
16522
16523 /* No program headers means no NOTE segment. */
16524 if (elf_header.e_phnum > 0)
16525 return process_corefile_note_segments (file);
16526
16527 printf (_("No note segments present in the core file.\n"));
16528 return 1;
16529 }
16530
16531 static int
16532 process_arch_specific (FILE * file)
16533 {
16534 if (! do_arch)
16535 return 1;
16536
16537 switch (elf_header.e_machine)
16538 {
16539 case EM_ARM:
16540 return process_arm_specific (file);
16541 case EM_MIPS:
16542 case EM_MIPS_RS3_LE:
16543 return process_mips_specific (file);
16544 break;
16545 case EM_NDS32:
16546 return process_nds32_specific (file);
16547 break;
16548 case EM_PPC:
16549 case EM_PPC64:
16550 return process_power_specific (file);
16551 break;
16552 case EM_S390:
16553 case EM_S390_OLD:
16554 return process_s390_specific (file);
16555 break;
16556 case EM_SPARC:
16557 case EM_SPARC32PLUS:
16558 case EM_SPARCV9:
16559 return process_sparc_specific (file);
16560 break;
16561 case EM_TI_C6000:
16562 return process_tic6x_specific (file);
16563 break;
16564 case EM_MSP430:
16565 return process_msp430x_specific (file);
16566 default:
16567 break;
16568 }
16569 return 1;
16570 }
16571
16572 static int
16573 get_file_header (FILE * file)
16574 {
16575 /* Read in the identity array. */
16576 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
16577 return 0;
16578
16579 /* Determine how to read the rest of the header. */
16580 switch (elf_header.e_ident[EI_DATA])
16581 {
16582 default:
16583 case ELFDATANONE:
16584 case ELFDATA2LSB:
16585 byte_get = byte_get_little_endian;
16586 byte_put = byte_put_little_endian;
16587 break;
16588 case ELFDATA2MSB:
16589 byte_get = byte_get_big_endian;
16590 byte_put = byte_put_big_endian;
16591 break;
16592 }
16593
16594 /* For now we only support 32 bit and 64 bit ELF files. */
16595 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
16596
16597 /* Read in the rest of the header. */
16598 if (is_32bit_elf)
16599 {
16600 Elf32_External_Ehdr ehdr32;
16601
16602 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
16603 return 0;
16604
16605 elf_header.e_type = BYTE_GET (ehdr32.e_type);
16606 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
16607 elf_header.e_version = BYTE_GET (ehdr32.e_version);
16608 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
16609 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
16610 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
16611 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
16612 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
16613 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
16614 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
16615 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
16616 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
16617 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
16618 }
16619 else
16620 {
16621 Elf64_External_Ehdr ehdr64;
16622
16623 /* If we have been compiled with sizeof (bfd_vma) == 4, then
16624 we will not be able to cope with the 64bit data found in
16625 64 ELF files. Detect this now and abort before we start
16626 overwriting things. */
16627 if (sizeof (bfd_vma) < 8)
16628 {
16629 error (_("This instance of readelf has been built without support for a\n\
16630 64 bit data type and so it cannot read 64 bit ELF files.\n"));
16631 return 0;
16632 }
16633
16634 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
16635 return 0;
16636
16637 elf_header.e_type = BYTE_GET (ehdr64.e_type);
16638 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
16639 elf_header.e_version = BYTE_GET (ehdr64.e_version);
16640 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
16641 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
16642 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
16643 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
16644 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
16645 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
16646 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
16647 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
16648 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
16649 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
16650 }
16651
16652 if (elf_header.e_shoff)
16653 {
16654 /* There may be some extensions in the first section header. Don't
16655 bomb if we can't read it. */
16656 if (is_32bit_elf)
16657 get_32bit_section_headers (file, TRUE);
16658 else
16659 get_64bit_section_headers (file, TRUE);
16660 }
16661
16662 return 1;
16663 }
16664
16665 /* Process one ELF object file according to the command line options.
16666 This file may actually be stored in an archive. The file is
16667 positioned at the start of the ELF object. */
16668
16669 static int
16670 process_object (char * file_name, FILE * file)
16671 {
16672 unsigned int i;
16673
16674 if (! get_file_header (file))
16675 {
16676 error (_("%s: Failed to read file header\n"), file_name);
16677 return 1;
16678 }
16679
16680 /* Initialise per file variables. */
16681 for (i = ARRAY_SIZE (version_info); i--;)
16682 version_info[i] = 0;
16683
16684 for (i = ARRAY_SIZE (dynamic_info); i--;)
16685 dynamic_info[i] = 0;
16686 dynamic_info_DT_GNU_HASH = 0;
16687
16688 /* Process the file. */
16689 if (show_name)
16690 printf (_("\nFile: %s\n"), file_name);
16691
16692 /* Initialise the dump_sects array from the cmdline_dump_sects array.
16693 Note we do this even if cmdline_dump_sects is empty because we
16694 must make sure that the dump_sets array is zeroed out before each
16695 object file is processed. */
16696 if (num_dump_sects > num_cmdline_dump_sects)
16697 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
16698
16699 if (num_cmdline_dump_sects > 0)
16700 {
16701 if (num_dump_sects == 0)
16702 /* A sneaky way of allocating the dump_sects array. */
16703 request_dump_bynumber (num_cmdline_dump_sects, 0);
16704
16705 assert (num_dump_sects >= num_cmdline_dump_sects);
16706 memcpy (dump_sects, cmdline_dump_sects,
16707 num_cmdline_dump_sects * sizeof (* dump_sects));
16708 }
16709
16710 if (! process_file_header ())
16711 return 1;
16712
16713 if (! process_section_headers (file))
16714 {
16715 /* Without loaded section headers we cannot process lots of
16716 things. */
16717 do_unwind = do_version = do_dump = do_arch = 0;
16718
16719 if (! do_using_dynamic)
16720 do_syms = do_dyn_syms = do_reloc = 0;
16721 }
16722
16723 if (! process_section_groups (file))
16724 {
16725 /* Without loaded section groups we cannot process unwind. */
16726 do_unwind = 0;
16727 }
16728
16729 if (process_program_headers (file))
16730 process_dynamic_section (file);
16731
16732 process_relocs (file);
16733
16734 process_unwind (file);
16735
16736 process_symbol_table (file);
16737
16738 process_syminfo (file);
16739
16740 process_version_sections (file);
16741
16742 process_section_contents (file);
16743
16744 process_notes (file);
16745
16746 process_gnu_liblist (file);
16747
16748 process_arch_specific (file);
16749
16750 if (program_headers)
16751 {
16752 free (program_headers);
16753 program_headers = NULL;
16754 }
16755
16756 if (section_headers)
16757 {
16758 free (section_headers);
16759 section_headers = NULL;
16760 }
16761
16762 if (string_table)
16763 {
16764 free (string_table);
16765 string_table = NULL;
16766 string_table_length = 0;
16767 }
16768
16769 if (dynamic_strings)
16770 {
16771 free (dynamic_strings);
16772 dynamic_strings = NULL;
16773 dynamic_strings_length = 0;
16774 }
16775
16776 if (dynamic_symbols)
16777 {
16778 free (dynamic_symbols);
16779 dynamic_symbols = NULL;
16780 num_dynamic_syms = 0;
16781 }
16782
16783 if (dynamic_syminfo)
16784 {
16785 free (dynamic_syminfo);
16786 dynamic_syminfo = NULL;
16787 }
16788
16789 if (dynamic_section)
16790 {
16791 free (dynamic_section);
16792 dynamic_section = NULL;
16793 }
16794
16795 if (section_headers_groups)
16796 {
16797 free (section_headers_groups);
16798 section_headers_groups = NULL;
16799 }
16800
16801 if (section_groups)
16802 {
16803 struct group_list * g;
16804 struct group_list * next;
16805
16806 for (i = 0; i < group_count; i++)
16807 {
16808 for (g = section_groups [i].root; g != NULL; g = next)
16809 {
16810 next = g->next;
16811 free (g);
16812 }
16813 }
16814
16815 free (section_groups);
16816 section_groups = NULL;
16817 }
16818
16819 free_debug_memory ();
16820
16821 return 0;
16822 }
16823
16824 /* Process an ELF archive.
16825 On entry the file is positioned just after the ARMAG string. */
16826
16827 static int
16828 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
16829 {
16830 struct archive_info arch;
16831 struct archive_info nested_arch;
16832 size_t got;
16833 int ret;
16834
16835 show_name = 1;
16836
16837 /* The ARCH structure is used to hold information about this archive. */
16838 arch.file_name = NULL;
16839 arch.file = NULL;
16840 arch.index_array = NULL;
16841 arch.sym_table = NULL;
16842 arch.longnames = NULL;
16843
16844 /* The NESTED_ARCH structure is used as a single-item cache of information
16845 about a nested archive (when members of a thin archive reside within
16846 another regular archive file). */
16847 nested_arch.file_name = NULL;
16848 nested_arch.file = NULL;
16849 nested_arch.index_array = NULL;
16850 nested_arch.sym_table = NULL;
16851 nested_arch.longnames = NULL;
16852
16853 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
16854 {
16855 ret = 1;
16856 goto out;
16857 }
16858
16859 if (do_archive_index)
16860 {
16861 if (arch.sym_table == NULL)
16862 error (_("%s: unable to dump the index as none was found\n"), file_name);
16863 else
16864 {
16865 unsigned long i, l;
16866 unsigned long current_pos;
16867
16868 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
16869 file_name, (unsigned long) arch.index_num, arch.sym_size);
16870 current_pos = ftell (file);
16871
16872 for (i = l = 0; i < arch.index_num; i++)
16873 {
16874 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
16875 {
16876 char * member_name;
16877
16878 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
16879
16880 if (member_name != NULL)
16881 {
16882 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
16883
16884 if (qualified_name != NULL)
16885 {
16886 printf (_("Contents of binary %s at offset "), qualified_name);
16887 (void) print_vma (arch.index_array[i], PREFIX_HEX);
16888 putchar ('\n');
16889 free (qualified_name);
16890 }
16891 }
16892 }
16893
16894 if (l >= arch.sym_size)
16895 {
16896 error (_("%s: end of the symbol table reached before the end of the index\n"),
16897 file_name);
16898 break;
16899 }
16900 /* PR 17531: file: 0b6630b2. */
16901 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
16902 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
16903 }
16904
16905 if (arch.uses_64bit_indicies)
16906 l = (l + 7) & ~ 7;
16907 else
16908 l += l & 1;
16909
16910 if (l < arch.sym_size)
16911 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
16912 file_name, arch.sym_size - l);
16913
16914 if (fseek (file, current_pos, SEEK_SET) != 0)
16915 {
16916 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
16917 ret = 1;
16918 goto out;
16919 }
16920 }
16921
16922 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
16923 && !do_segments && !do_header && !do_dump && !do_version
16924 && !do_histogram && !do_debugging && !do_arch && !do_notes
16925 && !do_section_groups && !do_dyn_syms)
16926 {
16927 ret = 0; /* Archive index only. */
16928 goto out;
16929 }
16930 }
16931
16932 ret = 0;
16933
16934 while (1)
16935 {
16936 char * name;
16937 size_t namelen;
16938 char * qualified_name;
16939
16940 /* Read the next archive header. */
16941 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
16942 {
16943 error (_("%s: failed to seek to next archive header\n"), file_name);
16944 return 1;
16945 }
16946 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
16947 if (got != sizeof arch.arhdr)
16948 {
16949 if (got == 0)
16950 break;
16951 error (_("%s: failed to read archive header\n"), file_name);
16952 ret = 1;
16953 break;
16954 }
16955 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
16956 {
16957 error (_("%s: did not find a valid archive header\n"), arch.file_name);
16958 ret = 1;
16959 break;
16960 }
16961
16962 arch.next_arhdr_offset += sizeof arch.arhdr;
16963
16964 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
16965 if (archive_file_size & 01)
16966 ++archive_file_size;
16967
16968 name = get_archive_member_name (&arch, &nested_arch);
16969 if (name == NULL)
16970 {
16971 error (_("%s: bad archive file name\n"), file_name);
16972 ret = 1;
16973 break;
16974 }
16975 namelen = strlen (name);
16976
16977 qualified_name = make_qualified_name (&arch, &nested_arch, name);
16978 if (qualified_name == NULL)
16979 {
16980 error (_("%s: bad archive file name\n"), file_name);
16981 ret = 1;
16982 break;
16983 }
16984
16985 if (is_thin_archive && arch.nested_member_origin == 0)
16986 {
16987 /* This is a proxy for an external member of a thin archive. */
16988 FILE * member_file;
16989 char * member_file_name = adjust_relative_path (file_name, name, namelen);
16990 if (member_file_name == NULL)
16991 {
16992 ret = 1;
16993 break;
16994 }
16995
16996 member_file = fopen (member_file_name, "rb");
16997 if (member_file == NULL)
16998 {
16999 error (_("Input file '%s' is not readable.\n"), member_file_name);
17000 free (member_file_name);
17001 ret = 1;
17002 break;
17003 }
17004
17005 archive_file_offset = arch.nested_member_origin;
17006
17007 ret |= process_object (qualified_name, member_file);
17008
17009 fclose (member_file);
17010 free (member_file_name);
17011 }
17012 else if (is_thin_archive)
17013 {
17014 /* PR 15140: Allow for corrupt thin archives. */
17015 if (nested_arch.file == NULL)
17016 {
17017 error (_("%s: contains corrupt thin archive: %s\n"),
17018 file_name, name);
17019 ret = 1;
17020 break;
17021 }
17022
17023 /* This is a proxy for a member of a nested archive. */
17024 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
17025
17026 /* The nested archive file will have been opened and setup by
17027 get_archive_member_name. */
17028 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
17029 {
17030 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
17031 ret = 1;
17032 break;
17033 }
17034
17035 ret |= process_object (qualified_name, nested_arch.file);
17036 }
17037 else
17038 {
17039 archive_file_offset = arch.next_arhdr_offset;
17040 arch.next_arhdr_offset += archive_file_size;
17041
17042 ret |= process_object (qualified_name, file);
17043 }
17044
17045 if (dump_sects != NULL)
17046 {
17047 free (dump_sects);
17048 dump_sects = NULL;
17049 num_dump_sects = 0;
17050 }
17051
17052 free (qualified_name);
17053 }
17054
17055 out:
17056 if (nested_arch.file != NULL)
17057 fclose (nested_arch.file);
17058 release_archive (&nested_arch);
17059 release_archive (&arch);
17060
17061 return ret;
17062 }
17063
17064 static int
17065 process_file (char * file_name)
17066 {
17067 FILE * file;
17068 struct stat statbuf;
17069 char armag[SARMAG];
17070 int ret;
17071
17072 if (stat (file_name, &statbuf) < 0)
17073 {
17074 if (errno == ENOENT)
17075 error (_("'%s': No such file\n"), file_name);
17076 else
17077 error (_("Could not locate '%s'. System error message: %s\n"),
17078 file_name, strerror (errno));
17079 return 1;
17080 }
17081
17082 if (! S_ISREG (statbuf.st_mode))
17083 {
17084 error (_("'%s' is not an ordinary file\n"), file_name);
17085 return 1;
17086 }
17087
17088 file = fopen (file_name, "rb");
17089 if (file == NULL)
17090 {
17091 error (_("Input file '%s' is not readable.\n"), file_name);
17092 return 1;
17093 }
17094
17095 if (fread (armag, SARMAG, 1, file) != 1)
17096 {
17097 error (_("%s: Failed to read file's magic number\n"), file_name);
17098 fclose (file);
17099 return 1;
17100 }
17101
17102 current_file_size = (bfd_size_type) statbuf.st_size;
17103
17104 if (memcmp (armag, ARMAG, SARMAG) == 0)
17105 ret = process_archive (file_name, file, FALSE);
17106 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
17107 ret = process_archive (file_name, file, TRUE);
17108 else
17109 {
17110 if (do_archive_index)
17111 error (_("File %s is not an archive so its index cannot be displayed.\n"),
17112 file_name);
17113
17114 rewind (file);
17115 archive_file_size = archive_file_offset = 0;
17116 ret = process_object (file_name, file);
17117 }
17118
17119 fclose (file);
17120
17121 current_file_size = 0;
17122 return ret;
17123 }
17124
17125 #ifdef SUPPORT_DISASSEMBLY
17126 /* Needed by the i386 disassembler. For extra credit, someone could
17127 fix this so that we insert symbolic addresses here, esp for GOT/PLT
17128 symbols. */
17129
17130 void
17131 print_address (unsigned int addr, FILE * outfile)
17132 {
17133 fprintf (outfile,"0x%8.8x", addr);
17134 }
17135
17136 /* Needed by the i386 disassembler. */
17137 void
17138 db_task_printsym (unsigned int addr)
17139 {
17140 print_address (addr, stderr);
17141 }
17142 #endif
17143
17144 int
17145 main (int argc, char ** argv)
17146 {
17147 int err;
17148
17149 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
17150 setlocale (LC_MESSAGES, "");
17151 #endif
17152 #if defined (HAVE_SETLOCALE)
17153 setlocale (LC_CTYPE, "");
17154 #endif
17155 bindtextdomain (PACKAGE, LOCALEDIR);
17156 textdomain (PACKAGE);
17157
17158 expandargv (&argc, &argv);
17159
17160 parse_args (argc, argv);
17161
17162 if (num_dump_sects > 0)
17163 {
17164 /* Make a copy of the dump_sects array. */
17165 cmdline_dump_sects = (dump_type *)
17166 malloc (num_dump_sects * sizeof (* dump_sects));
17167 if (cmdline_dump_sects == NULL)
17168 error (_("Out of memory allocating dump request table.\n"));
17169 else
17170 {
17171 memcpy (cmdline_dump_sects, dump_sects,
17172 num_dump_sects * sizeof (* dump_sects));
17173 num_cmdline_dump_sects = num_dump_sects;
17174 }
17175 }
17176
17177 if (optind < (argc - 1))
17178 show_name = 1;
17179 else if (optind >= argc)
17180 {
17181 warn (_("Nothing to do.\n"));
17182 usage (stderr);
17183 }
17184
17185 err = 0;
17186 while (optind < argc)
17187 err |= process_file (argv[optind++]);
17188
17189 if (dump_sects != NULL)
17190 free (dump_sects);
17191 if (cmdline_dump_sects != NULL)
17192 free (cmdline_dump_sects);
17193
17194 return err;
17195 }
This page took 0.400429 seconds and 4 git commands to generate.